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Abstract 
 
The effects of Intel Hyper-Threading technology on a system performance vary 
according to the type of applications the system is running. Hyper-Threading affects 
High Performance Computing (HPC) clusters similarly. The characteristics of 
application run on a cluster will determine whether Hyper-Threading will help or 
hinder performance. In addition, the operating system’s support for scheduling tasks, 
with Hyper-Threading enabled, is an important factor in the overall performance of 
the system.  
 
In this paper, we used an experimental approach to demonstrate the performance 
gain or degradation of various parallel benchmarks running on a Linux cluster.  The 
results of these benchmarks show that performance varies as a function of the 
number of nodes and the number of processors per node.  Furthermore, we used a 
performance analysis tool to determine the cause of these performance differences 
when Hyper-Threading was enabled versus disabled. Our analysis shows the 
correlation between the cluster performance and the program characteristics, such as 
computational type, cache and memory usage, and message-passing properties.  We 
conclude the paper by providing guidance on how to best apply Hyper-Threading 
technology to application classes. 
 
1. Introduction 
 
Intel’s Hyper-Threading technology makes a single physical processor appear as two 
logical processors. The physical processor resources are shared and the architectural 
state is duplicated for the two logical processors [1].  The premise is that this 
duplication allows a single physical processor to execute instructions from different 
threads in parallel rather than in serial, and therefore, could lead to better processor 
utilization and overall performance. 
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1.1. Level of Parallelism 
 
Two levels of parallelism have been addressed in the modem computer processor 
design to improve performance. Instruction-level-parallelism (ILP) refers to 
techniques of increasing the number of instructions executed each clock cycle. 
Although it is possible that the multiple execution units in a processor can execute 
multiple instructions at the same time, the dependencies existed among instructions 
makes it a challenge of finding enough instructions to execute simultaneously. 
Several mechanisms have been implemented to increase ILP. For example, “out-of-
order execution” is a technique of evaluating a set of instructions and sending them 
for execution in parallels, regardless their original order defined by the program, and 
yet preserving the dependencies among the instructions. 
 
Thread-Level Parallelism (TLP), on the other hand, enables a processor or 
multiprocessor system to concurrently run multiple threads from an application or 
from multiple, independent programs. SMT, or Simultaneous Multi-Threading 
technology, upon which Hyper-Threading is based, permits a processor to exploit 
both ILP and TLP. Multiple threads can run on an SMT processor, and the processor 
will dynamically allocate resources between the threads, enabling a processor to 
adapt to the varying requirements of the workload. Intel’s Hyper-Threading 
implements SMT in such a way that each logical processor maintains a separate 
architectural state, which consists of general-purpose, control, machine state, and 
advanced programmable interrupt controller (APIC) registers [1]. The chip real 
estate required for the architectural states is negligible compared to the total die size. 
Thus, threads or separate programs using separate architectural states must share 
most of the physical processor resources, such as trace cache, L2-L3 unified caches, 
translation look aside buffer, execution units, branch history table, branch target 
buffer, control logic, and buses. This simultaneous sharing of resources between two 
threads creates a potential for performance degradation. 
 
1.2. Multithreading and Message-passing Applications 
 
In general, processors enabled with Hyper-Threading technology can improve the 
performance of applications with high degree of parallelism. Previous studies have 
shown that the Hyper-Threading technology improves multi-threaded applications’ 
performance by the range of 10 to 30 percentages depending on the characteristics of 
the applications [2]. These studies also suggest that the potential gain is only 
obtained if the application is multi-threaded by any means of parallelization 
techniques. A multithreading program is capable of creating multiple processes, or 
threads, at a time without having to have multiple copies of the program running in 
the computer. 
 
With the addition of Hyper-Threading support in Linux kernels 2.4.9-31 and above, 
Linux cluster practitioners have started to assess its performance impact on their 
applications. In our area of interest, high performance computing (HPC) clusters, 
applications are commonly implemented by using standard message-passing 
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interface, such as MPI or PVM. Applications developed from message-passing 
programming model usually employ a mechanism, “mpirun” for example, to spawn 
multiple processes and map them to processors in the systems.  Parallelism is 
achieved through the message-passing interface among the processes to coordinate 
the parallel tasks. Unlike the multithreaded programs in which the values of 
application variables are shared by all the threads, a message-passing application 
runs as a collective of autonomous processes, each with its own local memory.  
 
This type of applications can also benefit from Hyper-Threading technology in the 
sense that the number of processes spawned can be doubled and the parallel tasks 
can potentially execute faster. Applying Hyper-Threading and doubling the 
processes that simultaneously run on the cluster will increase the utilization rate of 
the processors’ execution resources. Therefore, the performance can be improved. 
On the other hand, overheads might be introduced in the following ways: 
 

• Logical processes may compete for access to the caches, and thus could 
generate more cache-miss situations 

• More processes running on the same node may create additional memory 
contention 

• More processes on each node increase the communication traffic (message 
passing) between nodes, which can oversubscribe the communication 
capacity of the shared memory, the I/O bus or the interconnect networking, 
and thus create performance bottlenecks.  

 
Whether the performance benefits of Hyper-Threading – better resource utilization – 
can nullify these overhead conditions depends on the application’s characteristics.  
 
In this paper, we have used an experimental approach to demonstrate the impact of 
Hyper-Threading on a Linux cluster by using various MPI benchmark programs, and 
discussed the adaptability of this new technology into HPC clusters for improving 
performance. In the next section, we describe the cluster configurations and the 
performance tool for our experiments. Section 3 introduces the performance 
benchmarks and the results, alone with the performance analysis. In this section, we 
use a performance tool called Vtune™ to analyze the system behavior while running 
the benchmark programs on the cluster. The causes of performance gain or 
degradation for applying Hyper-Threading on the cluster can be understood through 
the performance analysis. Section 4 is the conclusion. 
 
2. Experimental Environment 
 
2.1 The Cluster Configuration 
 
Our testing environment is based on a cluster consisting of 32 Dell PowerEdge 2650 
servers interconnected with Myrinet. Each PowerEdge 2650 has two Intel Xeon 
processors running at 2.4 GHz with 512KB L2 cache, 2GB of DDR-RAM (double 
data rate RAM) memory operating on a 400 MHz Front Side Bus. The chipset of 
PowerEdge 2650 is the ServerWorks GC-LE, which accommodates up to six 
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Benchmark High Performance Linpack (HPL) and NPB2.3-Class B  

Compiler Intel compilers 6.0 & ATLAS math library 

Middleware MPICH for GM 1.2..8

OS Linux 2.4.18-3smp 

Protocol GM 

Interconnect Myrinet 2000 

Platform DELL PowerEdge PE2650s 32-node Cluster 

Figure 1. Architectural stack of the test environment. The benchmarks were 
compiled with Intel C or Fortran compilers. The OS is RedHat 7.3 distribution 

with kernel version 2.4.18-3smp. 

registered DDR 200 (PC1600) DIMMs with a 2-way interleaved memory 
architecture. Each of the two PCI-X controllers on the 2650 has its own dedicated 
1.6 GB/s full duplex connection to the North Bridge to accommodate the peak traffic 
generated by the PCI-X busses it controls. 
 
The operating system installed for the cluster is RedHat 7.3 with kernel version 
2.4.18-3smp1. The benchmark programs were compiled with Intel C or FORTRAN 
compilers, and ATLAS (Automatically Tuned Linear Algebra Software) math 
library. Figure 1 shows the architectural stack of our test environment. 
 
2.2 The Performance Analysis Tool 
 
We use Vtune™, an Intel implemented tool, for our performance analysis. A 
Windows desktop is then utilized in our test environment for the Vtune Performance 
Analyzer to display performance data in graphical formats, as well as collecting 
statistical data of the system behavior. Through a “data collector”, a Linux agent, the 
analyzer is able to gather targeted Linux system’s information remotely on the fly. 
The collecting method we selected is called “sampling”, which is a non-intrusive, 
instruction-address collector mechanism [3]. During sampling, the performance 
analyzer monitors all the software executing on the system including the OS kernel 
and the benchmark program. The monitoring areas that the analyzer emphasizes on 
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1 The Linux information collector of Vtune™ performance analysis tools 6.1 used 
for this study supports Linux Kernel version 2.4.18-3. 



are according to the user’s specification. For our study, we focus on the following 
system information in particular. 
 

• Cycle per Instruction (CPI) Retired – The lower the CPI is, the faster the 
program has been executed. For P4 Xeon processor, 0.75 or less of CPI is 
considered “good”. This event count is used to understand the performance 
of each node and to verify the performance results of our benchmarks. 

• Floating-point Computation Instructions – shows all the floating-pint 
instructions that had been retired. 

• 2nd-Level Cache Read Misses % – 2nd Level cache read misses reduce 
performance for the processor must then access main memory 

• Streaming SIMD Extension 2 (SSE2) – The floating-point SIMD 
instructions allow computations to be performed on packed double-
precision floating-point values (two double-precision values per XMM 
register). Our benchmark programs were compiled with – SSE2 option, 
which allows the code taking advantage of the SSE2 feature. This event 
count is for understanding if the program threads are fully utilizing this 
resource. 

• x87 Instruction Retired – This event count increments for each x87 floating-
point micro-op, specified through the event mask for detection. All of our 
benchmarks, except IS, are floating-point intensive. This event count will 
provide a fair understanding of the utilization of floating-point execution 
units. 

 
3. Benchmarking Results and Analysis 
 
The MPI programs we used for the experiments are the High-Performance Linpack 
(HPL) and the NAS Parallel Benchmark (NPB), benchmarks commonly used in the 
High Performance Computing arena. 
 
3.1 Benchmarking with the High Performance Linpack (HPL) 
 
HPL uses a number of linear algebra routines to measure the time it takes to solve 
dense linear equations in double precision (64 bits) arithmetic using the Gaussian 
elimination method [4]. The measurement obtained from Linpack is in the number of 
floating-point operations per second (FLOPS). Linpack mainly exercises the 
floating-point calculation capability of the system. However, the communication 
latency of the system for running Linpack also plays a significant role on the overall 
performance; when using dual processors compute nodes interconnected with high-
speed networking, such as Myrinet, the actual performance of a cluster may reach 
almost 60% of its theoretical peak performance, and the percentage could be less 
than 30% when using slower interconnect like Fast Ethernet [5]. When running 
Linpack, the more the memory used of the system or the larger the problem size 
specified for executing the program, the better the performance of the system. 
However, as a rule of thumb, the problem size or the memory usage should not 
exceed 80% of the total memory in the system for avoiding the swapping situation, 
which will decrease the performance significantly. 
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Linpack running on a Dual-XEON System
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 Figure 2. The Linpack performance results on single node. The worse case in 
here is to spawn two processes when the Hyper-Threading (HT) is on. 

 

To understand the impact of Hyper-Threading on single compute node, we first 
conducted a series of HPL runs from small problem size to large. The results shown 
in Figure 2 indicate that only when the problem size or the memory used is larger to 
some extent, 2000x2000 blocks or more, we can see modest performance 
improvement (around 5%) on Hyper-Threading configurations. This is due to the 
initiating overhead of Linpack, which is larger when spawning more processes. This 
overhead is not disguised when running a very small problem size. Since Linpack 
was compiled with the highly optimized ATLAS library, the floating-point 
functional units including the SSE2 were almost fully utilized during the execution. 
This leaves very little room for improving the Linpack performance by switching on 
Hyper-Threading to increase CPUs’ resources utilization. 
 
Also note that in Figure 2, for the runs where the number of processes is less than the 
number of logical processors with Hyper-Threading enabled, the performance is 
considerably worse. This observation is more apparent on 16-node runs. Figure 3 
shows that the result of 16x2 with Hyper-Threading enabled has only small 
performance improvement compared to the 16x1 runs with HT disabled. 
 
For the cluster runs, the average CPIs shown in the Vtune analyzer are 0.42, 0.46, 
and 0.59 for running 4 processes on each node with Hyper-Threading enabled, 
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Linpack Perfromance Results
on a 16-node Dual-XEON cluster
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running 2 processes on each node without Hyper-Threading, and running 2 processes 
on each node with Hyper-Threading respectively. These statistical sampling data are 
in accordance with the actual performance results – when Hyper-Threading is 
enabled, running 4 processes on each node increases performance around 5%, and 
running 2 processes on each node reduces performance around 25% and more. 

16x4 processes with HT on

16x2 processes without HT
16x2 processes with HT on

16x1 processes without HT

 Figure 3. The HPL Linpack performance results running on the cluster of 16 
nodes. Small performance difference between using 2 logical processors and 
using 1 physical processor indicates the limitation of HT support in Linux. 

 

 
From the observation of “Instruction Retired Rate” in Vtune analyzer data, in the 
two-processes runs with Hyper-Threading enabled, three of the logical processors 
had been utilized substantially while the fourth one had not been used. In addition, 
the “2nd level cache misses %” showed inconsistent rates for the two physical 
processors (83% and 75%). Which means the Linux OS had been allocating the CPU 
resources for load-balancing the two threads. But the OS scheduler, without knowing 
the association of the physical processors and the logical processors, had been 
scheduling the two threads on two logical processors which may be designated to the 
same physical processor. This is a limitation of Hyper-Threading support in the 
Linux current kernel. The issue has been addressed in the Linux community and 
expecting to be resolved in the future releases [9]. 
 
Although our preliminary study indicates that Linpack-type of applications can 
benefit from Hyper-Threading, we have seen mixed results when running the NAS 
parallel benchmarks suite.  
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NAS Parallel Benchmark - EP (Class B)
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Figure 4. The EP (Class B) benchmark results of Hyper-Threading enabled and 
disabled. The results of Hyper-Threading enabled shows 40% improvement 

regardless the number of nodes. 

3.2 Benchmarking with the NAS Parallel Benchmark (NPB) 
 
The NAS benchmark suite comprises five kernels and three pseudo-applications and 
is designed to gauge parallel computing performance. Each of the programs solves a 
specific numerical problem [6].  The performance results are measured in Million 
Operations per Second (Mop/s). Since each program represents a specific type of 
CFD applications, from the benchmark results, one can realize the under-testing 
system’s performance characteristics from various aspects. In this paper, we used 
three of the eight programs for our experiments, EP, FT, and IS. 
 
In the Embarrassingly Parallel (EP) Benchmark, two-dimensional statistics are 
accumulated from a large number of Gaussian pseudo-random numbers, which are 
generated according to a particular scheme that is well suited for parallel 
computation. This problem is typical of many Monte Carlo applications. Since it 
requires almost no communication, in some sense this benchmark provides an 
estimate of the upper achievable limits for arithmetic operations’ performance on a 
particular system. 
 
Since EP is a computation-bound program and requires almost no communication 
during the runs, with Hyper-Threading enabled, it could effectively utilize the CPUs’ 
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NAS Parallel Benchmark - IS (Class B)
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Figure 5. The IS (Class B) benchmark results of Hyper-Threading enabled and 
disabled. The percentage of performance difference becomes smaller while the 

node count is larger. 
 

resources without being concerned with the communication overhead, which makes 
the performance improve significantly. This condition is true regardless of the 
number of nodes or CPUs of the cluster. Figure 4 shows the EP performance 
improved linearly from one node to 32 nodes, as well as the constant performance 
gains on Hyper-Threading enabled runs.  
 
Integer Sort (IS) tests a sorting operation that is important in particle method codes. 
This type of application is similar to particle-in-cell applications of physics, wherein 
particles are assigned to cells and may drift out. The sorting operation is used to 
reassign particles to the appropriate cells. This benchmark tests both integer 
computation speed and communication performance. This problem is unique in that 
floating-point arithmetic is not involved. Significant data communication, however, 
is required. 
 
With Hyper-Threading enabled, doubling the IS processes running on each node 
from 2 processes to 4 processes, creates much more communication traffics among 
processes and memory contentions inside the nodes. Yet the CPU floating-point 
execution units are still underutilized. In both cases, the “x87 Instruction Retired 
Rate”, observed from Vtune Performance Analyzer, are around 2.3% indicating that 
there is almost no floating-point calculation. Hence, the performance will not be 
improved through increasing the resource’s utilization. Figure 5 shows the IS results 
comparison from 1 node to 32 nodes. 
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NAS Parallel Benchmark - FT (Class B)
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It also can be observed that the IS performance dissimilarity between Hyper-

ote that this phenomenon might not be applicable for other cluster configurations. 

 the 3-D FFT PDE (FT) benchmark, a 3-D partial differential equation is solved 

benchmark; the large cache will facilitate the performance [7][10].  

Figure 6. The FT (Class B) benchmark results of Hyper-Threading enabled and 
disabled. The performances were degraded for 50% for all the configurations 

when using Hyper-Threading. 
 

Threading disabled and enabled is getting smaller when the node count is larger. As 
showed in Figure 3, when the node count is equal to 32, the performance becomes 
better for 128 (or 32x4) processes running IS with Hyper-Threading enabled. The 
reason is that the proportions of the communication through interconnect network 
becomes larger than that through the shared memory, which comparatively releases 
the memory contentions and communication traffics of having four logical 
processors running four processes in each node. Therefore, we expect to see 
performance improvement for the cluster larger than 32 nodes running IS with the 
same configuration.  
 
N
For example, using Fast Ethernet as the interconnect for the cluster decreases the 
communication capability dramatically; therefore the shared memory communication 
capability of the cluster becomes relatively higher. In such a case, increasing the 
node count will obstruct the performance of IS, instead of facilitating it [5]. 
 
In
using FFTs. This program performs the essence of many spectral methods. It is a 
good test of long-distance communication performance. FT requires intensive float-
point operations and messages passing among processes. FT is also a cache-friendly 
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From the Vtune performance data, the level 2 cache misses is increased from 68% 

r non-Hyper-Threading runs to 76% for Hyper-Threading runs. Also, the “SSE2” 

 improve the performance of some MPI applications running 
n a cluster, but not all. Depending on the cluster configurations and more 
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performance degradation significantly if Hyper-

 
Hyper-T yet another element of designing or 

perating a balanced cluster system.  The challenge of incorporating the technology 

arr el al, “Hyper-Threading Technology Architecture and Micro 
architecture”, Intel Technology Journal, Vol. 6, Issue 01, February, 2002. 

fo
and the “x87 instructions rate” were both up to 99.9%. Moreover, the communication 
bandwidth among processes required by FT creates memory contentions and 
communication bottlenecks, which lead to 50% constant performance degradation 
for the Hyper-Threading enabled runs.  The results shown in Figure 5 indicate that 
for applications like FT, Hyper-Threading will not provide any gain rather will 
degrade the cluster performance for any node count.  
 
2 Conclusions 
 
Hyper-Threading could
o
importantly the nature of the application running on the cluster, the performance gain 
can vary or even be negative. By using performance analysis tool, we were able to 
understand what areas contribute to the performance gains, and what areas contribute 
to the overheads, which lead to performance degradation. Based on our analysis, the 
following observations are made for applying Hyper-Threading on a Linux cluster. 
 

• Computational intensive applications with fine-tuned floating-poin

Threading, because the CPU resources could already be highly utilized. 
Cache-friendly applications might suffer from Hyper-Threading enabled, 
because logical processors share the caches and thus the processes runn
on the logical processors might be competing for the caches’ access, which 
might result in performance degradation. 
Communication-bound or I/O-bound parallel applications may benefit from 
Hyper-Threading, if the communication
performed in an interleaving fashion between processes. However, the 
additional I/O traffic might create communication bottleneck and reduce the 
overall performance. 
The current version of Linux OS’s support on Hyper-Threading is limited, 
which could cause 
Threading is not applied properly. 

hreading technology introduces 
o
in HPC environment is not just for the users to decide whether or how it should be 
applied, but also for the OS, compiler, and performance tool developers to make the 
technology more applicable and useful.  
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