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Abstract: Concerns have been raised about the performance of PC-based virtual routers as they do packet processing in 

software. Furthermore, it becomes challenging to maintain isolation among virtual routers due to resource contention in a 

shared environment. Hardware vendors recognize this issue and PC hardware with virtualization support (SR-IOV and 

Intel-VTd) has been introduced in recent years. In this paper, we investigate how such hardware features can be integrated 

with two different virtualization technologies (LXC and KVM) to enhance performance and isolation of virtual routers on 

shared environments. We compare LXC and KVM and our results indicate that KVM in combination with hardware support 

can provide better trade-offs between performance and isolation. We notice that KVM has slightly lower throughput, but has 

superior isolation properties by providing more explicit control of CPU resources. We demonstrate that KVM allows defining 

a CPU share for a virtual router, something that is difficult to achieve in LXC, where packet forwarding is done in a kernel 

shared by all virtual routers.  
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1. Introduction 

Network virtualization allows running heterogeneous 

virtual networks in parallel to support a diverse range of 

services over a shared substrate. An important building 

block of network virtualization is router virtualization. One 

way to enable virtual routers is to use open source 

virtualization technologies on commodity PC hardware and 

let each virtual machine act as a router. This is a flexible 

and low-cost solution. However, there are concerns that 

PC-based virtual routers could potentially suffer from low 

performance as packets are processed in software [1][2]. 

Furthermore, it becomes challenging to maintain isolation 

among virtual routers due to resource contention in a PC 

environment [3][4]. 

It is complicated to provide performance and isolation at 

the same time in a PC environment. To address this issue, 

we investigate how virtualization support in PC hardware 

can be used for virtual routers. Single root I/O 

virtualization (SR-IOV) [5] is a step in that direction. It 

provides hardware support to virtualize network interface 

cards (NICs). SR-IOV divides a single physical PCIe 

device into multiple PCIe instances, called Virtual 

Functions (VFs) [5][15]. A VF interface is an Ethernet-like 

interface that can be used in a virtual router. In addition, 

SR-IOV offloads packet handling from the host CPU and 

allows packets to be directly dispatched to virtual routers. 

This should result in performance improvements. 

Furthermore, SR-IOV provides dedicated hardware queues 

(receive and transmit) for each VF, which can be used to 

isolate traffic streams for different virtual routers.  

Different virtualization approaches may have different 

properties from performance and isolation perspectives. 

KVM [6] is a full virtualization solution where hardware 

resources are virtualized through hypervisor software. It is 

a flexible solution that allows a diversity of virtual 

machines to run on the same host, but at the potential cost 

of performance penalties due to overhead. In contrast, LXC 

[7] is a container-based approach where operating system 

resources (e.g. files, system libraries, routing tables) are 

virtualized to create multiple execution environments 

within the same operating system [2][7]. It is attractive 

from a performance point of view, but has negative 

implications for isolation.  

In our work we investigate the impact of SR-IOV on 

performance and isolation of KVM and LXC-based virtual 

routers. We anticipate a certain degree of performance 

improvement in both cases due to processing offload. 
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However, we believe that different virtualization techniques 

can exploit hardware support differently depending on how 

packets are processed along the forwarding path. Hence, we 

examine the forwarding path and modifications made by 

the hardware. Our hypothesis is that KVM could make use 

of hardware support more effectively by eliminating a 

considerable amount of software-based packet processing. 

In comparison, LXC is already lightweight in nature, and 

the relative improvement gains could be less significant. 

When it comes to isolation, the resource contention 

among virtual routers may lead to poor isolation properties. 

For instance, an overloaded virtual router can consume 

much CPU and starve others. Such behavior can be avoided 

by defining a guaranteed CPU share for a virtual router. In 

this regard, Linux kernel introduces a CPU share feature to 

provide controlled CPU access among different processes    

[8]. However, CPU share is intended to control CPU for 

user-space applications (processes) in server environments, 

and may not be directly applicable for virtual routers. 

Generally, a forwarding path is a combination of many 

different components including interrupt processing, kernel 

and user level devices. It is not trivial to control CPU usage 

along a forwarding path in a consolidated fashion. In such 

situations, SR-IOV might be useful. It offloads packet 

handling by replacing software-based processing modules 

along the forwarding path. We investigate how CPU share 

can be combined with hardware-assisted forwarding paths 

in KVM and LXC-based virtual routers. Furthermore, we 

analyze how CPU guarantees can be enforced and what the 

effects would be on isolation between virtual routers. 

Finally, we identify an approach that provides a suitable 

trade-off between performance and isolation after hardware 

support. 

The rest of this paper is organized as follows: Section 2 

surveys related work on virtual router platforms. Section 3 

presents the packet forwarding architecture for KVM and 

LXC-based virtual routers. Thereafter, section 4 describes 

our performance and isolation measurements, results and 

discussion. Finally, Section 5 concludes the paper.  

2. Related Work and Contributions 

There are several studies in the literature where Xen is 

proposed to enable virtual routers [9][10][11]. The work 

presented in [10] compares performance of two different 

versions of Xen (3.1 and 3.2). It shows that guest domain 

packet forwarding is improved in version 3.2, but that 

isolation is weakened when more virtual routers are added. 

Another work [11] suggests an architecture using Xen and 

Click. It achieves encouraging performance and isolation 

results, but requires dedicated NICs to be allocated to each 

virtual router, something that might be difficult to realize in 

practice. Others introduce customized components to 

improve forwarding performance [12], but observe 

degraded isolation (in terms of packet loss) at high network 

load. 

We conclude from previous work that software-based 

solutions have difficulties providing high performance and 

strong isolation at the same time. We therefore propose a 

hardware-assisted platform for router virtualization. There 

are some examples where SR-IOV is proposed to improve 

performance of virtual machines [13][14] in a server setting. 

The focus of these studies is not on virtual routers and 

therefore no relevant results are available (e.g. packet 

forwarding rate, latency etc).  

In our previous work, we study PC-based virtual routers 

[2][15]. The first study [2] compares two container-based 

approaches (i.e. OpenVZ and LXC) from a performance 

perspective. Our results show that LXC achieves better 

performance than OpenVZ. However, the work does not 

consider hardware assistance for virtualization. The other 

work [15] focuses on hardware assistance (i.e. SR-IOV) to 

enable virtual routers in LXC environment. We investigate 

how SR-IOV can be used to enable parallel forwarding 

paths over a multi-core platform. We dedicate a CPU core 

to each virtual router in order to improve performance and 

isolation. The focus of the current paper is different, since it 

aims to compare two different virtualization techniques. In 

addition, we evaluate a more challenging and practical 

scenario where a CPU core is shared between virtual 

routers. We anticipate that such resource sharing may result 

in degraded isolation properties for a shared kernel 

environment (i.e. LXC). In this regard, a KVM-based 

approach might be a better alternative, since it uses a 

different packet forwarding architecture.  

To our knowledge, there is no previous work on 

comparing KVM and LXC for hardware-assisted virtual 

routers. These techniques are part of the mainstream Linux 

kernel and hence readily available. A solution based on 

them should be more up to date and adoptable. On the other 

hand, Xen based solutions in existing literature are not 

completely in line with main stream kernel. For instance, 

Xen uses custom process scheduler and memory 

management system. 

We evaluate the CPU share feature of Linux kernel to 

control CPU usage of parallel running virtual routers, 

something not investigated before. In addition, we study 

how non-virtualized components of the underlying host (e.g. 

NAPI will be discussed later) can impact the behavior of 

virtual routers.  

3. Virtual Routers Forwarding 

Architecture 

In this section we explore the packet forwarding path for 

KVM and LXC-based virtual routers. First we discuss 

various software-based devices to enable virtual routers. 

Then we investigate how these devices can be replaced 

with hardware-assisted devices. We analyze impact of 

hardware support on forwarding paths from performance 

and isolation perspectives. 
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3.1. KVM-based Virtual Routers 

Figure 1 shows the packet forwarding path for a 

KVM-based virtual router. When a packet is received on a 

physical network interface (NIC1) it is copied to the main 

memory of the host system, and an interrupt is generated to 

notify the CPU. The Linux packet reception API (NAPI 

[16]) handles this interrupt. It adds the network interface to 

a queue (the NAPI poll list for interfaces with incoming 

traffic) and disables interrupts for more incoming packets 

on that interface. An RX SoftIRQ (software interrupt/kernel 

thread) is scheduled to process the packet. Through the 

SoftIRQ, NAPI serves network interfaces (i.e. packet 

processing) from the NAPI poll list in a round robin 

fashion.  

In a virtualized environment, the first processing task is 

to identify the virtual interface (VIF) within the virtual 

router that should process the incoming packet. A VIF is an 

Ethernet-like interface with a unique MAC address. A 

virtual router may contain one or more VIFs. The VIF is 

identified based on the destination MAC address in the 

Ethernet header. This process is known as physical-virtual 

device mapping (Figure 1). 

 

Figure 1. Forwarding path- KVM-based virtual router 

There are various options for how to perform device 

mapping. The most common is Linux bridging. It is a 

software implementation of a bridge function that can 

switch packets between any pair of interfaces based on 

MAC addresses. However, Linux bridging has a 

considerable amount of overhead for redirecting packets 

between virtual and physical interfaces. Similar solutions 

are virtual switch [17] and Open vSwitch [18]. An 

attractive solution from a performance perspective is to 

replace the software bridge with macvlan devices. A 

macvlan device maintains a static MAC address table to 

provide physical to virtual address mapping and thus incurs 

less processing overhead [2]. 

After the device mapping, the packet should be made 

available to the virtual router on the VIF. However, 

according to the KVM architecture, a guest machine runs in 

user space with its own memory management system [6]. 

This requires a copy operation to move the packet from 

kernel to the user memory that belongs to the VIF. 

Furthermore, a CPU context switch is also required from 

kernel to user mode. Hence, a packet cannot be 

immediately delivered to the VIF after device mapping. 

Instead, it must be queued in kernel space. We use the tap 

device for this purpose (Figure 1). The tap device is a layer 

2 network device that consists of two interfaces, one in 

kernel space and one in user space. The two interfaces are 

connected in such a way that data written at one end is 

available for reading at the other end.  

At this point there are several alternatives for a VIF. For 

instance, a virtual interface can be an emulated network 

device using Qemu. An emulated device can be attractive 

as it uses standard network device drivers without any 

changes (e.g. Intel e1000). However, emulation is a 

CPU-intensive task and leads towards high performance 

penalties. Another option is the virtio para-virtualized 

network device. It is optimized to reduce virtualization 

overhead but requires modifications in the guest kernel. Yet 

another option is the macvtap device. It integrates the 

functionality of macvlan (device mapping), tap device and 

VIF in a single device, which makes it an attractive choice. 

Once the packet is available on the ingress VIF (VIF1 in 

Figure 1) of the virtual router, the forwarding decision is 

taken and next hop is determined. The packet is placed on 

the outgoing virtual interface VIF2. After that, the tap 

interface and the mapping device are used in order to place 

the packet on the outgoing physical interface (NIC2).  

We conclude that the software-based approach demands 

much packet processing in order to deliver a packet to a 

virtual router, which could lead to performance penalties. In 

contrast, a hardware-assisted approach makes it possible to 

directly deliver a packet to a virtual interface inside a 

virtual router without any major intervention from the 

system CPU. With such an approach, when a packet is 

received on a NIC, it is passed to a hardware switch inside 

the NIC. A destination MAC address lookup is performed 

to determine the VF. After that, the packet is placed on a 

hardware queue reserved for that VF. The next step is to 

transfer the packet from NIC to the VF’s memory areas in 

the virtual router (i.e. the guest machine). The guest 

machine has its own memory addresses separated from host 

memory addresses, so guest memory addresses need to be 

translated to host memory addresses in order to perform a 

DMA operation. Hardware support for such address 

translation is integrated inside the CPU chipset [19] 

(Intel-VTd, directed I/O), which makes it possible to 

directly transfer a packet to virtual router memory 

(something that would otherwise require software 

intervention). This should improve forwarding 
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performance.  

We see in Figure 1 that SR-IOV replaces many 

software-based devices (e.g. bridge, macvlan, and tap) and 

therefore appears promising for considerable processing 

offload. We also observe other architectural benefits; 

SR-IOV replaces the entire kernel level packet processing 

required in the software-based solution. Packets are 

processed only in user space. This should improve cache 

locality and reduce the amount of CPU context switches 

(between kernel and user space) compared to a 

software-based architecture. In addition, it should be more 

straight-forward to control a CPU in such an architecture, 

by for example defining CPU share for user space 

processes. As a result, we expect to achieve better isolation 

between virtual routers.  

3.2. LXC-based Virtual Routers 

In the case of LXC, packet reception and device mapping 

are similar to that of KVM. However, in contrast to KVM, 

LXC performs packet forwarding in kernel space, as shown 

in Figure 2. It does not require any packet copying or 

context switching operations, and the packet is immediately 

available to a virtual router after device mapping. This 

should result in better performance, compared to KVM. 

We have two choices for VIFs. The first is the virtual 

Ethernet (veth) device. It is an Ethernet-like device, which 

can be used in combination with the bridge device in order 

to access the host’s physical devices. Alternatively we can 

use the macvlan device, which combines the functionality 

of virtual interfaces and device mapping.  

 

Figure 2. Forwarding path- LXC-based virtual router 

We see in Figure 2 that SR-IOV can be used in the same 

way as for KVM to offload packet processing onto the 

hardware. However, in contrast to KVM, there are not 

many differences between software and hardware based 

solutions from an architectural point of view, since both 

solutions perform packet processing in kernel space. The 

kernel space processing might be an advantage from a 

performance point of view, but there are potential 

drawbacks from a resource management perspective. The 

reason is that packet handling inside the kernel is mainly 

done through SoftIRQ processing. SoftIRQ serves all 

(virtual) interfaces in a round robin fashion with equal 

priority, even though the interfaces may belong to different 

virtual routers. Accordingly, it is not possible to control the 

CPU usage of individual forwarding paths, something that 

we expect could lead to poor isolation properties.  

4. Experimental Evaluation 

In this section we evaluate performance and isolation of 

KVM and LXC-based virtual routers. First, we measure 

performance both for software and hardware based 

solutions. For KVM, we compare macvtap and SR-IOV 

whereas macvlan and SR-IOV are compared in LXC. We 

investigate the level of performance gains that can be 

achieved using hardware assistance. As the next step we 

increase the number of virtual router running in parallel and 

measure the effect on aggregated performance.  

For the isolation study, we consider two SR-IOV-based 

virtual routers running in parallel with different 

performance requirements. We overload one of the virtual 

routers and study the impact on the performance of the 

other virtual router. We evaluate two different scenarios by 

varying performance requirements and offered loads. 

 

Figure 3. Experimental test bed  

The experimental setup is shown in Figure 3. We use 

three Linux machines where the first, Traffic Generator, is 

used to generate network load using pktgen [20]. The load 

is fed into the device under test (DUT). The DUT has two 

physical interfaces and a virtual router that forward packets 

from one interface to the other. The virtual router is 

configured with two virtual interfaces as shown in Figure 3; 

one virtual interface is connected to the physical ingress 

interface while the other virtual interface is connected to 

the physical egress interface. The network load is received 

on a third machine, Traffic Sink. All performance 

measurements are taken at Traffic Sink using pktgen 

receiver side utility [21].  

The hardware used for DUT is Intel i7 Quad Core 3.4 

GHz processor (Intel VT-d supported, chipset Intel Q-67 

Express) and 4GB of RAM, running Linux kernel net-next 

3.2-rc1. We use a single CPU core in all experiments unless 

otherwise stated. The machine is also equipped with one 1 

Gbps dual-port NIC with an Intel 82576 GbE controller. On 
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each port a maximum of eight SR-IOV devices are 

supported. It means that we can run up to eight parallel 

virtual routers using the configuration shown in Figure 3.    

4.1. Performance Results 

We offer network load (100 UDP Flows) on DUT and 

gradually increase the load until line rate i.e. 1488 kilo 

packets per second (kpps) using 64 byte packets. As a 

baseline, we relate the performance of the virtual router to 

the performance of regular “IP forwarding” in a 

non-virtualized Linux-based router. 

The throughput results are presented in Figure 4. It can 

be seen that only the baseline IP forwarder is able to 

achieve line rate. The rest of the configurations are below 

line rate. SR-IOV has the highest rate compared to the other 

software-based approaches. It is interesting to note that the 

difference between SR-IOV (KVM) and SR-IOV (LXC) is 

marginal. The former achieves 1250 kpps whereas SR-IOV 

(LXC) obtains 1300 kpps. It indicates that full 

virtualization with proper hardware support can achieve 

performance comparable to that of lightweight containers.  

 

Figure 4. Throughput- LXC vs. KVM based virtual router 

A clear performance difference can be observed among 

the software-based approaches. The macvlan (LXC) 

achieves around 11 times higher throughput than macvtap 

(KVM). This is remarkable, so we investigate more closely 

the poor performance of macvtap. With macvtap, there is a 

significant amount of packet drop on the tap interface 

(kernel side) at high packet rates. The amount of packet 

drop increases when the load is increased. This results in 

more throughput degradation. For instance, we see in 

Figure 4 that throughput is around 280 kpps for macvtap 

(KVM) at an offered load of 280 kpps. However, when load 

is increased up to the line rate, throughput degrades to 100 

kpps.  

We further investigate the reasons behind this large 

packet drop by measuring how CPU utilization varies with 

offered load. In addition to total CPU utilization, we also 

measure CPU consumption in kernel and user space. We 

see in Figure 5 that macvtap-kernel CPU usage increases 

very quickly with offered load. This behavior points 

towards an architectural bottleneck of the KVM 

software-based setup: In the software-based approach, 

packets are switched between kernel and user space during 

forwarding and this switching becomes a bottleneck at high 

load. The packet handling is done through SoftIRQs inside 

the kernel, which runs at higher CPU priority than user 

space processes. At high offered load, the CPU is occupied 

with SoftIRQ processing most of the time. This results in 

starvation of user space processes and the virtual router is 

unable to process its incoming queue. As a result, packets 

are simply dropped after RX SoftIRQ handling, without 

further processing. This is clearly a waste of CPU resources 

and results in throughput degradation. The SR-IOV (KVM) 

eliminates this bottleneck by offloading the kernel side 

packet handling to hardware. This results in much higher 

throughput. 

 

Figure 5. CPU utilization of KVM based virtual router 

In addition to throughput, we measure latency at 

maximum offered load (i.e. line rate). The results follow the 

same pattern as for the throughput measurements. We see in 

Figure 6 that SR-IOV is very effective for KVM and 

produces comparable results to SR-IOV (LXC).  

 

Figure 6. Latency- LXC vs. KVM based virtual router 

As a next step, we gradually increase the number of 

virtual routers running in parallel. We offer load at line rate 
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and measure the aggregated throughput. We see in Figure 7 

that throughput for the macvtap case drops to zero with five 

virtual routers. It shows complete starvation of user space 

tap devices as a result of extensive SoftIRQ processing. 

The performance is quite reasonable for the rest of the 

configurations. It appears that SR-IOV (LXC) scales better 

than SR-IOV (KVM). The performance difference becomes 

more pronounced as the number of virtual routers increases. 

The SR-IOV (LXC) achieves 1230 kpps whereas SR-IOV 

(KVM) obtains 949 kpps for eight parallel virtual routers. 

The difference is considerable; still, SR-IOV (KVM) is 

achieving reasonable performance at high-load conditions 

(i.e. 64-byte packets).  

 

Figure 7. Throughput vs. no. of virtual routers (1 CPU core) 

 

Figure 8. Throughput vs. no. of virtual routers (2 CPU cores) 

As the next step, we investigate how performance scales 

while introducing another CPU core. We configure a CPU 

core to process all traffic belonging to one virtual router 

while the other core services a second virtual router. It can 

be seen in Figure 8 that line rate (1488 kpps) is achieved 

both for SR-IOV (LXC) and SR-IOV (KVM). However, 

some performance drop can be seen while adding more 

virtual routers for SR-IOV (KVM). Apart from this, 

performance is still quite high and we observe performance 

scalability for both cases. It can also be noticed that we are 

approaching line rate and adding more CPU cores probably 

would not increase throughput much. In this regard, it 

might be interesting to test performance scalability over a 

10Gbps network.   

4.2. Isolation Results 

For the isolation experiments we focus on SR-IOV 

(KVM) and SR-IOV (LXC). We consider two identical 

virtual routers VR1 and VR2, with two VFs on each virtual 

router (Figure 9). We offer network load on eth0. The two 

virtual routers are responsible for processing packets in 

parallel and for forwarding them onto the same outgoing 

interface eth1.  

 

Figure 9. Isolation test setup 

In this setup we use a single CPU core for both virtual 

routers, in order to explore possible CPU contention under 

stress and then investigate different ways of resolving it. 

We consider two different scenarios of router overload: 

4.2.1. Scenario I: VR1 overloaded, VR2 fixed at 400 kpps 

In this scenario we assume that the performance 

requirement for VR2 is 400 kpps. The VR1 is free to attain 

as much throughput as possible. However, the objective is 

that the load conditions on VR1 should not affect the 

performance of VR2. We offer a network load of 400 kpps 

towards each virtual router. The aggregated offered load on 

the DUT is 800 kpps. At this point, we gradually overload 

VR1 and study the impact on the performance of VR2. The 

offered load for VR1 is increased up to 1088 kpps (when a 

line rate of 1488 kpps on eth0 is reached) while it remains 

at 400 kpps for VR2. 

The results are shown in Table 1 and Table 2 for LXC 

and KVM respectively. We can see that isolation is 

maintained both for LXC and KVM. The performance for 

VR2 remains at 400 kpps no matter the load conditions on 

VR1.  

We believe that the high degree of isolation of LXC 

comes from the NAPI RX API in the host kernel. In our 

setup, we have incoming traffic on two VFs belonging to 

two different virtual routers. This means that the host kernel 

is responsible for handling incoming traffic on two 

interfaces in parallel. The NAPI algorithm maintains 

fairness among network interfaces that share a CPU [16]. 

The network interfaces are served in a round robin fashion 

during a RX SoftIRQ. The NAPI processes only a certain 

number of packets for an interface before it switches to 

serve the other interface. In this way it is not possible for an 

interface to monopolize the CPU. As a result, in an 

overload situation the excessive packets are simply dropped. 

This may result in some throughput degradation but 

provides isolation between interfaces. 

The strong isolation properties of KVM may come from 



94 Muhammad Siraj Rathore et al.: LXC vs. KVM: Comparing Performance and Isolation of Hardware-Assisted Virtual Routers 

 

Linux completely fair process scheduler (CFS) [8]. 

KVM-based virtual routers (which are simple user space 

processes as discussed in Section 3) are scheduled using 

CFS. The CFS maintains a mechanism (i.e. red block tree) 

to impose certain degree of fairness in CPU time allocation 

among processes. A process that receives less CPU time is 

given priority over those that have consumed more CPU 

time. As a result all running processes receive a fair amount 

of CPU time.   

Table 1. LXC: VR1 overloaded and VR2 fixed at 400 kpps 

Offered load (kpps) CPU% Throughput (kpps) 

VR1 VR2 Total Total VR1 VR2 Total 

400 400 800 61 400 400 800 

600 400 1000 75 600 400 1000 

800 400 1200 85 705 400 1105 

1000 400 1400 100 715 400 1115 

1088 400 1488 100 720 400 1120 

Table 2.KVM: VR1 overloaded and VR2 fixed at 400 kpps 

Offered load (kpps) CPU% Throughput (kpps) 

VR1 VR2 Tot VR1 VR2 Tot VR1 VR2 Tot 

400 400 800 33 33 66 400 400 800 

600 400 1000 49 33 82 600 400 1000 

800 400 1200 60 33 93 800 400 1200 

1000 400 1400 67 33 100 836 400 1236 

1088 400 1488 67 33 100 842 400 1242 

4.2.2. Scenario II: VR2 overloaded, VR1 fixed at 800 kpps 

We see in scenario I that isolation is achieved thanks to 

built-in fairness policies in Linux kernel. However, for 

other scenarios where for instance one virtual router should 

be given priority over other, fairness policies might be less 

suitable. 

In order to test our hypothesis we make some changes to 

scenario I. We still assume a performance requirement of 

400 kpps for VR2. In addition, we consider VR1 with a 

performance requirement of 800 kpps. However, here we 

overload VR2 instead. The offered load for VR2 is 

increased from 400 kpps to 688 kpps whereas a constant 

load of 800 kpps is offered on VR1. Ideally, the overload 

conditions on VR2 should not degrade VR1 performance.  

The results are shown in Table 3 and Table 4 for LXC 

and KVM respectively. We notice that both LXC and KVM 

yield poor isolation. In LXC, we observe that VR1 

performance decreases from 719 kpps to 667 kpps whereas 

it increases from 400 kpps to 633 kpps for VR2. In KVM, 

we notice that VR1 performance decreases from 800 kpps 

to 682 kpps whereas it increases from 400 kpps to 567 kpps 

for VR2. The poor isolation is related to the lack of 

sufficient CPU resource for VR1. For instance we see in 

Table 4 that 61% CPU is required to support 800 kpps. 

However, when the load increases on VR2 the CPU usage 

for VR1 drops to 53%, as a result of CPU contention 

between VR1 and VR2. As a result, we observe 

performance degradation for VR1.  

In order to achieve the required isolation, we should give 

priority to VR1 over VR2 in terms of CPU time. However, 

this is hard in LXC for two reasons. First, it is difficult to 

control CPU usage for each virtual router in a shared kernel. 

This is the reason why we are unable to present such data in 

Table 1 and Table 3. Secondly, LXC uses NAPI for packet 

processing in host kernel. The fairness policy of NAPI 

algorithm provides equal CPU time to the virtual routers. 

There is no easy way to adapt NAPI’s behavior to our 

requirements. In the first scenario, our performance 

requirements match with NAPI behavior and we achieve 

isolation. However, in the second scenario, it is not the case 

and we observe poor isolation. We also notice that the CPU 

share feature has no control over shared-kernel forwarding 

paths as it is intended for user space processes. 

In contrast to LXC, the KVM virtual router is a user 

space process and hence priority can be given to any virtual 

router using CPU share. When CPU share is configured, it 

changes CFS from a “fair” to a “proportional weight” 

scheduler. We allocate a CPU share to VR1 that is two 

times to the CPU share of VR2. It allows VR1 to obtain at 

least 66.66% of CPU time whereas VR2 is allowed to get at 

least 33.33%. The behavior of CPU share is 

work-conservative, which means that a VR is privileged to 

consume any unused share (or a portion of share) of the 

other VR(s). We repeat our experiment with these settings 

and the results are shown in Table 5. We see that both 

virtual routers achieve the required performance even in 

overload situations. VR1 is ensured its required CPU share 

regardless the load conditions on VR2. We also notice that 

VR1 consumes less than its allocated share and that an 

additional share is used by VR2 without causing any 

isolation problems.  

Table 3. LXC: VR2 overloaded and VR1 fixed at 800 kpps  

Offered load (kpps) CPU% Throughput (kpps) 

VR1 VR2 Total Total VR1 VR2 Total 

800 400 1200 87 719 400 1119 

800 500 1300 100 708 500 1208 

800 600 1400 100 687 600 1287 

800 688 1488 100 667 633 1300 
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Table 4. KVM: VR2 overloaded and VR1 fixed at 800 kpps   

Offered load (kpps) CPU% Throughput (kpps) 

VR1 VR2 Tot VR1 VR2 Tot VR1 VR2 Tot 

800 400 1200 61 33 94 800 400 1200 

800 500 1300 59 41 100 778 460 1238 

800 600 1400 56 44 100 739 502 1241 

800 688 1488 53 47 100 682 567 1249 

Table 5. KVM CPU share: VR2 overloaded and VR1 fixed at 800 

Offered load (kpps) CPU% Throughput (kpps) 

VR1 VR2 Tot VR1 VR2 Tot VR1 VR2 Tot 

800 400 1200 60 33 93 800 400 1200 

800 500 1300 61 39 100 800 441 1241 

800 600 1400 60 40 100 800 443 1243 

800 688 1488 61 39 100 800 440 1240 

5. Conclusions and Future Work 

In this paper we compare KVM and LXC as means to 

enable virtual routers. We investigate the level of 

performance that can be gained using hardware support for 

virtualization. The results show that hardware support is 

especially effective for full virtualization (KVM). We find 

that switching packets between kernel and user space is a 

potential bottleneck for the software-based KVM approach 

at high offered loads. The hardware assistance makes it 

possible to perform the entire packet processing in user 

space. This alleviates the bottleneck and we can see a 

significant performance improvement (Figure 4). In 

comparison, the behavior of LXC is somewhat different. We 

see some performance gain when moving from a 

software-based to a hardware-assisted approach. The gain is 

expected as we offload some packet processing (e.g. device 

mapping) onto hardware. However, in contrast to KVM, the 

hardware assistance does not constitute any major 

architectural changes, since packet processing is still done in 

the shared kernel. The shared kernel makes it hard to restrict 

the CPU allocation for a particular virtual router, which 

leads to very limited possibilities for isolating virtual routers 

from each other. In contrast, the KVM hardware-assisted 

architecture achieves a much higher degree of isolation 

between virtual routers. It is sufficient to control the CPU 

share for a virtual router process running in user space. 

For future work, we plan to enable multiple virtual 

networks with QoS guarantees for different types of services 

on a shared substrate.  
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