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Abstract

Virtualization is a technology that combines or divides computing resources to present one or
many operating environments using methodologies like hardware and software partitioning or
aggregation, partial or complete machine simulation, emulation, time-sharing, and others. Vir-
tualization technologies find important applications over a wide range of areas such as server
consolidation, secure computing platforms, supporting multiple operating systems, kernel de-
bugging and development, system migration, etc, resulting in widespread usage. Most of them
present similar operating environments to the end user; however, they tend to vary widely in
their levels of abstraction they operate at and the underlying architecture. This paper surveys
a wide range of virtualization technologies, analyzes their architecture and implementation,
and proposes a taxonomy to categorize them on the basis of their abstraction levels. The pa-
per identifies the following abstraction levels: instruction set level, hardware abstraction layer
(HAL) level, operating system level, library level and application level virtual machines. It
studies examples from each of the categories and provides relative comparisons. It also gives a
broader perpective of the virtualization technologies and gives an insight that can be extended
to accommodate future virtualization technologies under this taxonomy. The paper proposes
the concept of an extremely lightweight technology, which we calFestherweight Virtual
Machine (FVM), that can be used to "try out” untrusted programs in a realistic environment
without causing any permanent damage to the system. Finally, it demonstrates FVM’s effec-
tiveness by applying it to two applications: secure mobile code execution and automatic clean
uninstall of Windows programs.

1 Introduction

Virtual machine concept was in existence since 1960s when it was first developed by IBM to provide con-
current, interactive access to a mainframe computer. Each virtual machine (VM) used to be an instance of
the physical machine that gave users an illusion of accessing the physical machine directly. It was an elegant
and transparent way to enable time-sharing and resource-sharing on the highly expensive hardware. Each
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VM was a fully protected and isolated copy of the underlying system. Users could execute, develop, and test
applications without ever having to fear causing a crash to systems used by other users on the same com-
puter. Virtualization was thus used to reduce the hardware acquisition cost and improving the productivity
by letting more number of users work on it simultaneously. As hardware got cheaper and multiprocessing
operating systems emerged, VMs were almost extinct in 1970s and 1980s. With the emergence of wide
varieties of PC based hardware and operating systems in 1990s, the virtualization ideas were in demand
again. The main use for VMs then was to enable execution of a range of applications, originally targeted for
different hardware and OSes, on a given machine. The trend is contuing even now.

"Virtuality” differs from "reality” only in the formal world, while possessing a similar essence or effect.
In the computer world, &irtual environmenis perceived the same as that ofeal environmenby appli-
cation programs and the rest of the world, though the underlying mechanisifiesraedly different. More
often than not, the virtual environment (or virtual machine) presents a misleading image of a machine (or
resource) that has more (or less) capability compared to the physical machine (or resource) underneath for
various reasons. A typical computer system already uses many such technologies. One such example is the
virtual memory implementation in any modern operating system that lets a process use memory typically
much more than the amount of physical memory its computer has to offer. This (virtual memory) also en-
ables the same physical memory to be shared among hundereds of processes. Similarly, multitasking can be
thought of as another example where a single CPU is partitioned in a time-shared manner to present some
sort of a virtual CPU to each task. In a different setting, a cluster of medium-speed processors can be grouped
together to present a singirtualizedprocessor that has a very high clock speed. There are lots and lots
of examples in today’s world that exploit such methods. The umbrella of technologies that help build such
virtualized objects can be said to achieve tasks that have one common phenovirtnalization

With the increase in applications of virtualization concepts across a wide range of areas in computer
science, the girth of the definition has been increasing even more. However, just for the discussions in this
paper, we use the following relaxed definitiof\irtualization is a technology that combines or divides
computing resources to present one or many operating environments using methodologies like hardware
and software partitioning or aggregation, partial or complete machine simulation, emulation, time-sharing,
and many others”. Although virtualization can, in general, mean both partitioning as well as aggregation,
for the purposes of this paper, we shall concentrate on only patitioning problems (as these are much more
prevalent). A virtualization layer, thus, provides infrastructural support using the lower-level resources to
create multiplevirtual machines that are independent of and isolated from each other. Sometimes,
such a virtualization layer is also call&rtual Machine Monitor (VMM). Although traditionally
VMM is used to mean a virtualization layer right on top of the hardware and below the operating system, we
might use it to represent a generic layer in many cases. There can be innumerous reasons how virtualization
can be useful in practical scenarios, a few of which are the following:

e Server Consolidation: To consolidate workloads of multiple under-utilized machines to fewer ma-
chines to save on hardware, management, and administration of the infrastructure

e Application consolidation: A legacy application might require newer hardware and/or operating
systems. Fulfilment of the need of such legacy applications could be served well by virtualizing the
newer hardware and providing its access to others.



e Sandboxing: Virtual machines are useful to provide secure, isolated environments (sandboxes) for
running foreign or less-trusted applications. Virtualization technology can, thus, help build secure
computing platforms.

e Multiple execution environments: Virtualization can be used to create mutiple execution environ-
ments (in all possible ways) and can increase the QoS by guaranteeing specified amount of resources.

e Virtual hardware: It can provide the hardware one never had, e.g. Virtual SCSI drives, Virtual
ethernet adapters, virtual ethernet switches and hubs, and so on.

e Multiple simultaneous OS: It can provide the facility of having multiple simultaneous operating
systems that can run many different kind of applications.

e Debugging: It can help debug complicated software such as an operating system or a device driver
by letting the user execute them on an emulated PC with full software controls.

e Software Migration: Eases the migration of software and thus helps mobility.
e Appliances: Lets one package an application with the related operating environment as an appliance.

e Testing/QA: Helps produce arbitrary test scenarios that are hard to produce in reality and thus eases
the testing of software.

Accepting the reality we must admit, machines were never designed with the aim to support virtualiza-
tion. Every computer exposes only one "bare” machine interface; hence, would support only one instance
of an operating system kernel. For example, only one software component can be in control of the processor
at a time and be able to execute a privilged instrudtionything that needs to execute a privileged in-
struction, e.g. an I/O instruction, would need the help of the currently booted kernel. In such a scenario, the
unprivileged software would trap into the kernel when it tries to execute an instruction that requires privilege
and the kernel executes the instruction. This technique is often used to virtualize a processor.

In general, a virtualizable processor architecture is definédraarchitecture that allows any instruc-
tion inspecting or modifying machine state to be trapped when executed in any but the most privileged
mode”. This provides the basis for the isolation of an entity (rgatlal maching from the rest of the
machine. Processors include instructions that can affect the state of a machine, such as I/O instructions,
or instructions to modify or manipulate segment registers, processor control registers, flags, etc. These are
called "sensitive” instructions. These instructions can affect the underlying virtualization layer and rest of
the machine and thus must be trapped for a correct virtualization implementation. The job of the virtualiza-
tion layer (e.g. the virtual machine monitor) is to remember the machine state for each of these independent
entities and update the state, when required, only to the set that represents the particular entity. However,
the world is not so simple; the most popular architecture, x86, is not virtualizable. It contains instructions
that, when executed in a lower-privileged mode, fails silently rather than causing a trap. So virtualizing such
architectures are more challenging than it seems.

Yinstructions that are allowed to be executed only when the processor is in the highest privilege mode
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Figure 1: Machine stack showing virtualization opportunities.

Architectures aside, there are many other problems that make virtualization difficult. Since a virtual-
ization layer (e.g. a Virtual Machine Monitor) has little knowledge regarding what goes on inside a virtual
machine, it is typically hard for it to know what not to do. For example, a page fault exception caused by
a guest OS inside one virtual machine should not be handled by the virtualization layer, and rather, be left
to the guest OS to handle by itself. Similarly, a virtualization layer in the OS level should not handle any
system call issued by one of the processes in a virtual machine; rather, should be left to its guest OS kernel
to handle. Optimizations are also hard to achieve in the virtualization software as it does not know when a
virtual machine does not need some resource. For example, it is hard for the VMM to know if the guest OS
inside one of its virtual machine (VM) instances is running idle thread and is wasting processor cycles that
can be allocated to other VMs for better performance.

Conceptually a virtual machine represents an operating environment for a set of user-level applications,
which includes libraries, system call interface/service, system configurations, daemon processes, and file
system state. There can be several levels of abstraction where virtualization can take place: instruction
set level, hardware abstraction layer (HAL), OS level (system call interface), user-level library interface,
or in the application level (depicted in Figure 1). Whatever may be the level of abstraction, the general
phenomenon still remains the same; it partitions the lower-level resources using some novel techniques to
map to multiple higher level VMs transparently.

Virtualization at the instruction set architecture (ISA) level is all about instruction set emulation. Emu-
lation is the technique of interpreting the instructions completely in software. For example, an x86 emulator
on Sparc processor can execute any x86 application, thus giving the illusion to the application as if it is a
real x86 processor. To achieve this, however, an emulator would have to be able to translate the guest ISA
(x86 here) to the host’s ISA (Sparc).

The functionality and abstraction level of a HAL level virtual machine lies between a real machine and
an emulator. A virtual machine is an environment created by a VMM, which is the virtualization software
lying between the bare hardware and the OS and gives the OS a virtualized view of all the hardware. A
VMM can create multiple virtual machines (VMs) on a single machine. While an emulator provides a
complete layer between the operating system or applications and the hardware, a VMM manages one or



more VMs where every VM provides facilities to an OS or application to believe as if it runs in a normal
environment and directly on the hardware.

Virtualization at the OS level work at on top of or as a module in OS to provide a virtualized system call
interface. Since system call invocation is the only way of communication from user-space to kernel-space,
it should be possible for the virtualization software to totally control what the user-space processes can do
by managing this interface.

Most applications use the APIs exported by user-level libraries rather than direct system calls for the
implementation of their logic. Since most systems provide well-documented APIs and well-defined ways
to hook them, such an interface becomes another candidate for virtualization. Virtualization at the library
interface is possible by controlling the communication link between the applications and the rest of the
system through the API hooks. This can, in turn, choose to expose a different implementation altogether
using the same set of API and still have a running system. WINE [1] does a similar thing to support Windows
applications on top of Unix/X.

Virtualization at the application level is a little different. This is not a case of inserting the virtualization
layer in the middle; rather, it implements a virtualization layer as an application that eventually creates a
virtual machine. The created VM could be as simple as a language interpreter or as complex as JVM.

All these virtualization technologies, however, differ significantly in terms of performance, flexibility,
ease of use, resource consumption, and scalability; hence, differ in their usage scenarios as well. For exam-
ple, instruction set emulators (operate at the ISA level) tend to possess very high latencies which makes it
impractical to use them on a regular basis, unlike commercial virtual machines that operate at HAL level.
However, they are very useful for debugging and learning purposes as every component is implemented
in software that is fully under user’s control. Commercal VMs, like VMware, give the flexibity of using
different OSes or different versions of the same OS on the same machine by presenting a complete machine
interface; this demands a much higher amount of resources. When this flexibility is not necessary, OS level
virtual machines are more useful. Although they expose the OS same as that of the underlying one in all
of its virtual machines, the resource requirement is much lower, performance much better, and manipula-
tions (e.g. creation) much faster. However, it compromizes on the level of isolation as all the VMs use the
same kernel and can potentially affect the whole system. Library-level virtualization technologies are ex-
tremely lightweight and can even help build a different subsystem altogether under the same infrastructure
(e.g. Win32 on Unix). Application- level virtualization find applications in mobile computing and building
trusted computing infrastructures. However, being in the application-level, these suffer from extra overhead.

There are innumerous examples where virtualization concept is used in various abstraction models. This
paper, however, concentrates only the virtualization concepts involved in building virtual machines. For this
reason, concepts involved in, say, a virtual file system or virtual memory are overlooked. It makes an attempt
to capture and study a good number of such developments and come up with a taxonomy for them. Section 2
through 6 discuss virtualization technologies at various abstraction levels by studying some example cases.
After these background studies, we identify a potential class in the taxonomy that has not been tapped and
try to concretize the idea with a project proposaatherweight Virtual Machine. We discuss the current
implementation status and a couple of its applications. All these are discussed in section 7. Section 8
concludes with the summary and some future directions.



2 Virtualization at the Instruction Set Architecture Level

Virtualization at the instruction set architecture level is implemented by emulating an instruction set archi-
tecture completely in software. A typical computer consists of processors, memory chips, buses, hard drives,
disk controllers, timers, multiple 1/0 devices, and so on. An emulator tries to execute instructions issued by
the guest machine (the virtual machine that is being emulated) by translating them to a set of native instruc-
tions and then executing them on the the available hardware. These instructions would include those typical
of a processor (add, sub, jmp, etc on x86), and the I/O specific instructions for the devices (IN/OUT for
example). For an emulator to successfully emulate a real computer, it has to be able to emulate everything
that a real computer does that includes reading ROM chips, rebooting, switching it on, etc.

Although this virtual machine architecture works fine in terms of simplicity and robustness, it has its own
pros and cons. On the positive side, the architecture provides ease of implementation while dealing with
multiple platforms. As the emulator works by translating instructions from the guest platform to instructions
of the host platform, it accomodates easily when the guest platform’s architecture changes as long as there
exists a way of accomplishing the same task through instructions available on the host platform. In this way,
it enforces no stringent binding between the guest and the host platforms. It can easily provide infrastructure
through which one can create virtual machines based on, say x86 on platforms such as x86, Sparc, Alpha,
etc. However, the architectural portability comes at a price of performance. Since every instruction issued by
the emulated computer needs to be interpreted in software, the performance penalty involved is significant.
We take three such examples to illustrate this in detail.

2.1 Bochs

Bochs [2] is an open-source x86 PC emulator written in C++ by a group of people lead by Kevil Lawton. It
is a highly portable emulator that can be run on most popular platforms that include x86, PowerPC, Alpha,
Sun, and MIPS. It can be compiled to emulate most of the versions of x86 machines including 386, 486,
Pentium, Pentium Pro or AMD64 CPU, including optional MMX, SSE, SSE2, and 3DNow instructions.
Bochs interprets every instruction from power-up to reboot, emulates the Intel x86 CPU, a custom BIOS,
and has device models for all of the standard PC peripherals: keyboard, mouse, VGA card/monitor, disks,
timer chips, network card, etc. Since Bochs simulates the whole PC environment, the software running in
the simulation thinks as if it is running on a real machine (hence virtual machine) and in this way, supports
execution of unmodified legacy software (e.g. Operating Systems) on its virtual machines without any dif-
ficulty. No matter what the host platform is, Bochs always simulates x86 software, and thus incurs the extra
overhead of instruction translation. Commercial emulators (covered in the next section) can achieve high
emulation speed using a technique called "virtualization”. However, they lose the property of portability to
non-x86 platforms.

To achieve anything "interesting” in the simulated machine, Bochs needs to interact with the operating
system on the host platform. When a key is pressed in the Bochs virtual machine, a key event goes into
the device model for the keyboard. When the Bochs virtual machine needs to read from the simulated hard
disk, Bochs’ device model for the hard disk reads from a disk image file on the host machine. When the
Bochs virtual machine sends a network packet to the local network, Bochs’ virtual ethernet card uses the
host platform’s network card to send the packet to the real world. These interactions between Bochs and the



host operating system can be complicated, and in some cases be specific to the host platform.

Although Bochs is too slow a system to be used as a virtual machine technology in practice, it has
several important applications that are hard to achieve using commercial emulators. It can have important
use in letting people run applications in a second operating system. For example, it lets people run Windows
software on anon-x86workstation or on an x86-Unix box. Being an open source, it can be extensively
used for debugging new operating systems. For example, if your boot code for a new operating system does
not seem to work, Bochs can be used to go through the memory content, CPU registers, and other relevant
information to fix the bug. Writing a new device driver, understanding how the hardware devices work and
interact with others, are made easy through Bochs. In industry, it is used to support legacy applications on
modern hardware, and as a reference model when testing new x86-compatible hardware.

2.2 Crusoe

Transmeta’s VLIW based Crusoe [3] processor comes with a dynamic x86 emulator, called "code morphing
engine”, and can execute any x86 based application on top of it. Although the initial intent was to create a
simpler, smaller, and less power consuming chip, which Crusoe is, there were few compiler writers to target
this new processor. Thus, with some additional hardware support, extensive caching, and other optimizations
Crusoe was released with an x86 emulator on top of it. It uses 16MB system memory for use as a "translation
cache”, that stores recent results of the x86 to VLIW instruction translations for future use. The Crusoe is
designed to handle the x86 ISA's precise exception semantics without constraining speculative scheduling.
This is accomplished by shadowing all registers holding the x86 state. For example, if a division by zero
occurs, it rolls back the effect of all the out of order and aggressively loaded instructions by copying the
processor states from the shadow registers. Alias hardware also helps the Crusoe rearrange code so that data
can be loaded optimally. All these technigues greatly enhance Crusoe’s performance.

2.3 QEMU

QEMU [4] is a fast processor emulator that uses a portable dynamic translator. It supports two operating
modes: user space only, and full system emulation. In the earlier mode, QEMU can launch Linux processes
compiled for one CPU on another CPU, or for cross-compilation and cross-debugging. In the later mode, it
can emulate a full system that includes a processor and several peripheral devices. It supports emulation of a
number of processor architectures that includes x86, ARM, PowerPC, and Sparc, unlike Bochs that is closed
tied with the x86 architecture. Like Crusoe, it uses a dynamic translation to native code for reasonable speed.
In addition, its features include support for self-modifying code and precise exceptions. Both full software
MMU and simulation througlmmap() system call on the host are supported.

During dynamic translation, it converts a piece of encountered code to the host instruction set. The
basic idea is to split every x86 instruction (e.g.) into fewer simpler instructions. Each simple instruction
is implemented by a piece of C code and then a compile time tool takes the corresponding object file to a
dynamic code generator which concatenates the simple instructions to build a function. More such tricks
enable QEMU to be relatively easily portable and simple while achieving high performances. Like Crusoe,
it also uses a 16MB translation cache and flushes to empty when it gets filled. It uses a basic block as a
translation unit. Self-modifying code is a special challenge in x86 emulation because no instruction cache



invalidation is signaled by the application when code is modified. When translated code is generated for a
basic block, the corresponding host page is write protected if it is not already read-only. Then, if a write
access is done to the page, Linux raises a SEGV signal. QEMU, at this point, invalidates all the translated
code in the page and enables write accesses to the page, to support self-modifying code. It uses basic block
chaining to accelerate most common sequences.

24 BIRD

BIRD [5] is an interpretation engine for x86 binaries that currently supports only x86 as the host ISA and
aims to extend for other architectures as well. It exploits the similarity between the architectures and tries
to execute as many instructions as possible on the native hardware. All other instructions are supported
through software emulation. Apart from interpretation, it provides tools for binary analysis as well as binary
rewriting that are useful in eliminating security vulnerabilities and code optimizations. It combines static as
well as dynamic analysis and translation techniques for efficient emulation of x86-based programs.

Dynamo [6] is another project that has a similar aim. It uses a cache to store the so-called "hot-traces”
(sequences of frequently executed instructions), e.g. a blockion laop, optimizes and executes them
natively on the hardware to improve its performance.

3 \Virtualization at the Hardware Abstraction Layer

Virtualization at the HAL exploits the similarity in architectures of the guest and host platforms to cut down

the interpretation latency. Most of the today’s world’s commercial PC emulators use this virtualization
technique on popular x86 platforms to make it efficient and its use, viable and practical. Virtualization
technique helps map the virtual resources to physical resources and use the native hardware for computations
in the virtual machine. When the emulated machine needs to talk to critical physical resources, the simulator
takes over and multiplexes appropriately.

For such a virtualization technology to work correctly, the VM must be able to trap every privileged
instruction execution and pass it to the underlying VMM to be taken care of. This is because, in a VMM
environment, multiple VMs may each have an OS running that wants to issue privileged instructions and
get the CPU’s attention. When a trap occurs during privileged instruction execution, rather than generating
an exception and crashing, the instruction is sent to the VMM. This allows the VMM to take complete
control of the machine and keep each VM isolated. The VMM then either executes the instruction on the
processor, or emulates the results and returns them to the VM. However, the most popular platform, x86,
is not fully-virtualizable, i.e. certain supervisor (privileged) instructions $déntly rather than causing a
convenient trap when executed with insufficient privileges. Thus, the virtualization technique must have
some workaround to pass control to the VMM when a faulting instruction executes. Most commercial
emulators use techniques likede scanningnddynamic instruction rewritingo overcome such issues. In
this section, we shall explore the technigues used by a number of commercial PC emulators to create correct
and efficient virtualized machines and some of their features and shortcomings.
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Stand Alone Virtual Machine

Figure 2: Stand-alone VM implementation.

3.1 VMWare

VMware [7] is an industrial strength virtual machine company with three levels of VM products: VMware
Workstation, VMware GSX Server, and VMware ESX server. In this paper, we shall concentrate on the
VMware Workstation product for normal PC users that is very common and a few features and the diffrences
with the other ones.

VMware’s VMMs can bestandaloneor hosted Figure 2 shows an architecture of a standalone Virtual
Machine Monitor. A standalone VMM is basically a software layer on the base hardware that lets users
create one or more VMs. These are similar to operating systems, require device drivers for each hardware
device, and are typically limited in hardware support. Such VMMs are typically used in servers, VMware
ESX server being a prime example of such an architecture. A hosted VMM, however, runs as an application
on an existing host operating system as shown in Figure 3. It can take advantage of the host operating system
for memory management, processor scheduling, hardware drivers, and resource management [8]. VMware
Workstation group of products use this hosted virtual machine architecture.

VMware products are targeted towards x86-based workstations and servers. Thus, it has to deal with the
complications that arise as x86 is not a fully-virtualizable architecture. VMware deals with this problem by
using a patent-pending technology that dynamically rewrites portions of the hosted machine code to insert
traps wherever VMM intervention is required [9]. Although it solves the problem, it adds some overhead
due to the translation and execution costs. VMware tries to reduce the cost by caching the results and reusing
them wherever possible. Nevertheless, it again adds some caching cost that is hard to avoid.

To understand how VMware workstation is installed and run, it helps to look at the way IA32 platform
works. On the intel architecture, the protection mechanism provides four privilege levels, 0 through 3
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Figure 3: Hosted VM implementation.

(shown in Figure 4). These levels are also called)s. These protection rings exist only Protected
Modé. According to Intel, ring 0 is meant for operating systems and kernel services, ring 1 and 2 for device
dribers, and ring 3 for applications. However, in practice, most operating systems along with the device
drivers run completely in ring O and applications in ring 3. Privileged instructions are allowed only in ring
0, and cause protection violation if executed anywhere else.

VMware Workstation has three components: ¥dX driver and VMM installed in ring 0, and the
VMware applicationVMApp) in ring 3. The VMX driver is installed within the operating system to gain
the high privilege levels required by the virtual machine monitor. When executed, the VMApp loads the
VMM into kernel memory with the help of VMX driver, giving it the highest privilege (ring 0). The host
OS, at this point, knows about the VMX driver and the VMApp, but does not know about the VMM. The
machine now has two worlds: thest worldand theVMM world. The VMM world can communicate
directly with the processor hardware or through the VMX driver to the host world. However, every switch
to the host world would require all the hardware states to be saved and restored on return, which makes
switching hit the performance. The architecture of the whole system can be seen in Figure 5.

When the guest OS or any of its applications run purely computational programs, they are executed
directly through the VMM in the CPU. I/O instructions, being privileged ones, are trapped by the VMM and
are executed in the host world by a world switch. The 1/O operations requested in the VM are translated
to high-level I/O related calls and are invoked through the VMApp in the host world, and the results are
communicated back to the VMM world. An example is illustrated in the Figure 6 for the netseoitk and
recv operation. This makes the overall VM run slow for I/O intensive applications.

2Intel processors provide Protected, Real, and Virtual-86 Modes of operation. However, most of the modern OSes such as
Windows 2000 and XP run pretty much in Protected Mode.
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ESX server product is installed on a bare machine without any operating system. It gives a console
interface to create and configure VMs. The product typically finds use in server consolidation and web host-
ing. Since there is no host operating system, VMM has to handle all the I/O instructions, which necessitates
the installation of all the hardware drivers and related software. It implements shadow versions of system
structures such as page tables and maintains consistency with the virtual tables by trapping every instruc-
tion that attempts to update these structures [9]. Thus, there exists one extra level of mapping in the page
table. The virtual pages are mapped to physical pages throught the guest operating system’s page table. The
physical page (often callgdame) is then translated to the machine page by the VMM, which eventually is
the correct page in physical memory. This helps the ESX server better manage the overall memory and im-
prove the overall system performance. It uses various other techniques to increase the overall efficiency, and
level of isolation to keep each VM independent from another, making it a reliable system for commercial
deployment.

The newer versions of VMware Workstation come with some of the striking featBoaster integration
with the host desktop allows the use to move the mouse pointer seamlessly in and out of the VMware
Application’s display window like it happens with any other window-based applicafibe sharingallows
the user to share files and folders between the host and the guest machines to help easy transfer of data
from and to the virtual machines for backing up and other purpddgsamic display resizintgts the user
dynamically resize the VMware Application’s display window like any other window. This is not so trivial
realizing the fact that every resize operation changes the screen resolution for the virtual machine.

VMware Workstation supports a variety of networking setups to help user connect to the network ac-
cording to his/her convenience. It has the provision of a virtual ethernet hub that connects all the virtual
ethernet adapters that exist in the VMs to create a LAN within the host computer. It also supports bridged
networking through the external ethernet card connected to the real network outside the VM. Network ad-
dress translation (NAT) is also supported. Among other features, it passes the host USB devices to the virtual
machines that lets user connect and work with any USB device inside of a VM. However, VMware limits
the maximum memory to be allocated across all the active VMs to be 4GB. Although at this time it does not
really look like a limitation, it is for the world to see how things develop in the next few years.

3.2 Virtual PC

Microsoft's Virtual PC [10], recently acquired from Connectix, is a product very similar to what is offered

by VMware Workstation. It is based on the Virtual Machine Monitor (VMM) architecture and lets the
user create and configure one or more virtual machines. Apart from the features supported by VMware,
it provides two distiguishing functionalities. It maintains amdo diskthat lets the user easily undo some
previous operations on the hard disks of a VM. This enables easy data recovery and might come handy
in several circumstances. The other striking featurbimgry translation which it uses to provide x86
machines on Macintosh-based machines.

There are a number of shortcomings that the Virtual PC possess in terms of features when compared
to VMware. Linux, FreeBSD, OpenBSD, Solaris, etc are not supported as guest OSes in Virtual PC. The
Virtual PC VMs do not have support for SCSI devices, unlike VMware workstation, although some SCSI
disks are recognized as IDEs by the VMs. It does not let user add or upgrade the hardware set for a VM.
Once configured, it makes it impossible to change the hardware devices a VM possesses later on. Linux or
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other exotic operating systems are not available as host OS.

3.3 Denali

Although virtual machines provided by the likes of VMware Workstation and Microsoft Virtual PC are very
efficient and practical to use supporting almost all the PC-like features with all the ease, due to design limi-
tations it is difficult to create and use thousands of them simultaneously. The way virtualization is achieved
in the VMM makes it difficult to scale it to high numbers. For example, the interrupt handling mechanism

is hard to scale beyond a few active VMs, if multiplexed simultaneously. The same is the case for memory
management, world switching, and so on. However, there might be legitimate reasons to have large numbers
of active virtual machines for various purposes. The University of Washington’s Denali project [11] tries to
address this issue and come up with a new virtualization architecture to support thousands of simultaneous
machines, which they callightweight Virtual Machines . Using a technique, callggaravirtu-
alization it tries to increase the scalability and performance of the Virtual Machines without too much of
implementation complexity.

Theparavirtualizationtechnique modifies the traditional virtualization architecture for new customized
guest operating systems (unlike VMware Workstation, that supports legacy OSes) to obtain extra perfor-
mance, and high scalability. This new architecture comes up with new interfaces for the customized guest
operating systems. The paravirtualized architecture provides modified architectural features that makes the
implementation of guest OSes simple yet versatigtual instructions equivalent to system calls in tra-
ditional architecture, expose rich and simple instructions for the upper layer by grouping and optimizing
commonly used instructions. The new architecture exposes agetaf registersfor ease of data transfer
between the virtualization layer and the virtual machines. It also provides a simplified architectural interface
to be exported by the virtual I/O devices. Among other things, it supports a modified interrupt delivery, and
does not support the virtual memory concept. All these modifications are incorporated aiming at a simpler
implementation with low overhead to make the overall system scalable and the VMs lighter.

3.4 Xen

The discussions so far have been concentrating on full virtualization, where applications and the operating
system within a VM live in a complete virtual world with no knowledge of the real machine whatsoever.
Although many a times this has been the goal of virtualization, there may be cases where an application
or the operating system running within a VM might desire to see both the real as well as virtual resources
and use the information to its benefit. For example, seeing both real and virtual time might help the guest
OS better support time-sensitive tasks and come up with good round trip time (RTT) estimates for handling
TCP timeouts. Likewise, seeing real machine addresses might help improve performance by using super-
pages [12] and page coloring [13]. This apart, a full virtualization is always tricky and cumbersome when
implemented on x86 due to its inherent problem of not being a virtualizable architecture. X86, being an
uncooperative machine architecture, makes the task of achieving high performance with a strong resource
isolation in virtualization very difficult. In addition, completely hiding the effects of resource virtualization
from guest OSes risks both correctness and performance.
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All these along with issues like QoS, security, and denial of service motivate the researchers in Univer-
sity of Cambridge come up with a modified architecture for virtualization, called Xen [9]. Xen exports a
paravirtualized architecture in each of its VMs to maximize performance and resource isolation yet main-
taining the same application binary interface (ABI) as commodity operating systems. Although it does
require the operating systems to be ported, the porting effort is kept as low as possible. It aims at supporting
around a hundred VM instances within a single physical machine within a reasonable performance hit.

Although Denali [11] uses a paravirtualized architecture for more or less the same purposes, they both
have diffrent targets. Denali is designed to supposed thousands of virtual machines running network ser-
vices, the vast majority of which are small-scale and unpopular. Since the applications used in Denali are
customized ones, the paravirtualization architecture does not have to guarantdd tteempatibilityand
thus can elide certain architectural features from its VM interface. No support for x86 segmentation is one
such example although ABIs in most of the OSes including Windows XP, Linux, and NetBSD export this
feature. Denali VMs are designed with the aim of hostisgngle application, single-user unprotected guest
OS(e.g. llwaco) and thus does not have support for virtual memory which is a common feature in almost all
the modern OSes. Denali VMM performs all the paging work to and from the disks that are vulnerable to
thrashing should there be any malicious VM, while Xen relies on the guest OS to do all the paging. Denali
virtualizesnamespacesvhereas Xen believésecure access controlwithin the hypervisor is sufficient to
ensure protection while making physical resources directly accessible to guest OSes .

The paravirtualization exports a new virtual machine interface that aims at improving the performance
and scalability as compared to the other commercial VMMs. A hgitweight event mechanisraplaces
the traditional hardware interrupts in the x86 architecture for both CPU as well as the device I/O. This
greatly improves the performance and scales to great numigyachronous I/O ringare used for simple
and efficient data transfers between the VMs and the hypervisor (Xen's VMM or simply Xen, in short). For
security purposeslescriptor tablegor exception handlers are registered with Xen by each of the VMs and
aside the page faults, the handlers remain the same. Guest OS may install 'fast’ handler for system calls,
allowing direct calls from an application into its guest OS avoiding the indirection through Xen on every
call.

For efficient page table and TLB management, Xen exists in a 64MB section of every address space.
This avoids a TLB flush when entering and leaving the hypervisor. However, this also means a restricted
segmentation that disallows installation of fully-privileged segment descriptors and the top end of the linear
address space can not be overlapped. Guest OSes have the direct access to hardware page tables, however,
updates are batched and validated by Xen. This allows Xen to implement a secure but efficient memory
management technique when compared to VMware where every update to the page table is trapped by
VMM and updated. In particular, when a new process is created through fork(), the number of updates is
enormous which might hit the performance badly in VMware. Using batched updates, as in Xen, helps it a
lot. Each guest OS is provided a timer interface and is aware of both ‘real’ and 'virtual’ time. In this way,
even though the hypervisor exports a modified VM interface as compared to a traditional x86 architecture,
it tries to build a more robust architecture that preserves all the features that are of importance to application
binaries yet keeping the porting effort for the guest OSes minimal.
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3.5 Plex86

Plex86 [14] project works toward an open-source x86 simulator with virtualization. It uses the virtualization
technique to improve the efficiency of a virtual machine such as Bochs. Virtualization is a technique that is
used to take advantage of the hardware similarity of the guest and the host machine to allow large portions of
the simulation to take place at the native hardware speed. When the simulated machine talks to the hardware,
or enters certain privileged modes (such as the "kernel mode”), the simulator takes control and simulates
the code in software at a much slower speed, as the Bochs does. Thus, virtualization helps Plex86 run much
faster compared to Bochs, however, the portability is lost. Another version of Plex86 is being developed
just to create a partial virtual machine that is able to support Linux and which runs much faster than the full
scale virtual machine.

3.6 User-mode Linux

User-mode Linux [15], or UML, is an open source project that lets the user run Linux on top of Linux.
Basically, it gives a virtual machine on which a Linux version can execute as it does on a physical machine,
and everything implemented in the user-level. Unlike previous ones that use the VMM right on the base
hardware, this uses a different implementation being on top of the operating system and in the user-space.
Implementation aside, the abstraction level still remains more or less similar to the previous ones. It lets the
user configure virtual hardware resources that would be available for the guest Linux kernel. Since every-
thing runs in the user-level, safety is assured. Its hardware support comes in the form of virtual devices that
make use of the physical resources. Among the devices supported are, block devices, consoles, serial lines,
network devices, SCSI devices, USB, Sound, and so on. The UML runs its own scheduler independent of
the host scheduler, runs is own virtual memory system, and basically supports anything that is not hardware-
specific. It also supportSMPandhighmem. The virtual console driver implementation lets the user attach
it to a number of interfaces available on the host: file descriptors, ptys, ttys, pts devices, and xterms.
Implementation of UML involves a port of the Linux kernel to the Linux system call interface rather than
to a hardware interface. In this regard, the virtual machine and the guest Linux kernel are tighty coupled.
Executing totally in the user space, the major challenge it faces is to be able to intercept the system calls
in the virtual kernel, as they would naturally go to the real host kernel. Using the Ipttege facility
to track system calls, it diverts the system calls made by processes running within the Virtual Machine to
the user space kernel to execute them. Similarly, traps are implemented through Linux signals. Kernel and
the processes within the VM share the same address space; and conflicts with process memory are avoided
by placing the kernel text and data in areas that processes are not likely to use. Each process in the virtual
machine gets its process in the host kernel. In order for the virtual kernel's data to be shared across all the
processes in the VM, its data segment is copied into a file, and the file is mapped shared to all the processes.
Using such tricks, it implements, that too within a reasonable overhead, the user-space virtual machine.

3.7 Cooperative Linux

ColLinux [16], as it is often called, is a variation of User-mode Linux. It is a port of the Linux kernel that
allows it to run as an unprivileged lightweight virtual machine in kernel mode, on top of another OS kernel.
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It allows Linux to run under any OS that supports loading drivers, such as Windows, with some minor
porting effort.

Cooperative Linux works in parallel with the host kernel. In such a setup, each kernel has its own
complete CPU context and address spce, and decides when to give the control back to its partner. However,
only one of the two kernels has the control on physical hardware (the host kernel), and the other (guest
kernel) is provided only with virtual hardware abstraction. The only requirement on the host kernel is that it
should allow to load the colinux portable driver to run in ring 0 and allocate memory. The colinux VM uses
only one host process, called tBaper Process |, for itself and its processes. It uses the portable driver
to switch the context to the host kernel and back as well as to load the kernel from a file during startup.
Using a forwarding technique, colinux handles the interrupts by making use of its own code and the context
switches appropriately. The overall performance is comparable to UML.

4 Virtualization at the OS level

Hardware-level virtual machines tend to possess properties like high degree of isolation (both from other
VMs as well as from the underlying physical machine), acceptance of the concept (people see it as a normal
machine, that they are used to), support for different OSes and applications without requiring to reboot or
going through the complicated dual-boot setup procedure, low risk, and easy maintenance. Since a vir-
tual machine at this level gives access to a raw computer, the user needs to spend a good amount of time
installing and administering the virtual computer before he can start thinking to test or run his required ap-
plication. This includes, operating system installation, application suites installation, network setup, and so
on. If the required OS is same as the one on the physical machine (and the user is using the VM for secu-
rity/sandboxing purposes, as a playground, or anything that warrants an extra machine), the user basically
ends up duplicating most of the effort he/she has already invested in setting up the physical machine. In this
section, we explore virtualization at a higher level in the machine stack (see Figure 1) that addresses this
issue of minimizing the redundancy of the OS requirement in VMs described above. The virtual machines
at this level share the hardware as well as the operating system on the physical machine and use a virtualiza-
tion layer (similar to the VMMs in VMware) on top of the OS to present multiple independent and isolated
machines to the user.

An operating environment for an application consists of the operating system, user-level libraries, other
applications, some system specific data structures, a file system, and other environmental settings. If all of
these are kept intact, an application would find it hard to notice any difference from that of a real environ-
ment. This is the key idea behind all the OS-level virtualization techniques, where virtualization layer above
the OS produces a partition per virtual machine on demand that is a replica of the operating environment
on the physical machine. With a careful partitioning and multiplexing technique, each VM can be able to
export a full operating environment and fairly isolated from one another and from the underlying physical
machine. In this section, we go though some examples that use this abstraction in their virtualizing software
and the techniques they usually employ to achieve the target.
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Figure 7: Machine with two configured jails.

4.1 Jalil

"Jail” [17] is a FreeBSD based virtualization software that provides the ability to partition an operating
system environment, while maintaining the simplicity of UNIX "root” model. The environment captured
within a jail are typical system resources and data structures such as processes, file system, network re-
sources, etc. Idail, users with privilege find the scope of their requests to be limited tdakleallowing

system administrators to delegate management capabilities to each virtual machine environment.

A process in a partition is referred to as "in jail’. When the system is booted up after a fresh install,
no processes will be in jail. When a process is placed in a jail, all of its descendants after the jail creation,
along with itself, remain within the jail. A processay notbelong to more than one jail. Jails are created
by a privileged process when it invokes a special systema#®) . Each call to jail(2) creates a new
jail; the only way for a new process to enter the jail is by inheriting access to the jail from another process
already in that jail. Processes may never leave the jail they created, or were created in. Figure 7 shows a
schematic diagram of a machine with two configured jails.

4.1.1 Approach

There are a number of restrictions involved in jail memberships. Access to only a subtree of the file sys-
tem, the ability to bind network resources to a specific IP address, a curtailed ability to manipulate sys-
tem resources and perform privileged operations, a limited ability to interact with other processes (to only
processes inside the same jail) are examples of some restrictions. Jail uses the existittyan{R)

facility to limit access to the file system name-space for the jailed processes. Each jail is configured to bind
to a particular file system subtree at the time of creation. Files outside this subtree are unaddressable by the
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jailed processes and thus can not be manipulated. All the mechanisms of breakinglmaodf2) are
blocked.

As jailed processes can only be bound to a particular IP address (specific to the jail), attempts to bind
to all IP addresses (INADDRNY) are redirected to the individual jail-specific IP address. Processes in
the jail may not make use of any of the IP addresses other than that of the jail. This may restrict the kind
of network services that may be offered in a jailed environment. Network functionalities of some of the
privileged calls are restricted or totally disabled depending on its type. In particular, facilities that would
allow "spoofing” of IP addresses or disruptive traffic to be generated are all disabled.

Processes running without root privileges experience hardly any difference between a jailed and an un-
jailed environment as long as they try not to interact with other processes. However, the interactions with
other processes are limited. They can not interact or even verify the existence of processes that lie outside
of the jail. Connecting to those processes via debuggers, delivering signals, and being able to see them in
the sysctl or process file system are also disallowed. Each jail, in theory, represents an abstract machine;
hence the use of covert channels or communication mechanisms via accepted interfaces like sockets are not
prevented. Processes running with root privileges face restrictions in terms of what they can achieve using
the privilege calls. Privileged calls that try to create device nodes, for example, are not allowed inside a jail.
These kind of calls result in an "access error” when invoked. An attempt to bind to a reserved port on all
available IP addresses would result in binding the port only to the jail’'s IP address. All file system related
system calls would succeed as long as the file is accessible through the jail file system name-space.

4.1.2 Implementation and Jail Management

The jail(2) system call is implemented as a non-optional system call in FreeBSD. The implementation of
the system call is straightforward: a data structure is allocated and populated with the arguments provided.
The data structure is attached to the current process’ struct proc, its reference count set to one and a call
to thechroot(2)  syscall implementation completes the task. Hooks in the code implementing process
creation and destruction maintains the reference count on the data structure and free it when the reference
count becomes zero. There is no way to attach a process to an existing jail if it was not created from its
inside. Process visibility is controlled by modifying the way processes are reporodig file system

and thesysctl  tree. The code which managgsotocol control blocks" is modified to use

just the jail-specific IP address and not the address provided by the process. Loop-back interface, or the
127.0.0.1 IP address, is also handled apropriately by replacing it with the jail’'s IP address. Virtual terminal
or the pty driver code is also modified to make sure multiple jails do not get access to a particular virtual
terminal.

Though not enforced, the expected configuration creates a complete FreeBSD installation for each jail.
This includes copies of all relevant system binaries, data files, and itg¢edavn directory. This maintains
complete independence among the jails. However, to improve storage efficiency, a fair number of the bi-
naries in the system tree may be deleted, as they are not relevant in a jail environment. This includes the
kernel, boot loader, and related files, as well as hardware and network configuration tools. The jailed virtual
machines are generally bound to an IP address configured using the normal IP alias mechanism; thus, these
jail IP addresses are also accessible to host environment applications to use. If the accessibility of some host
applications in the jail environment is not desirable, it is necessary to configure those applications to only
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listen on appropriate addresses.

4.2 Linux Kernel-mode Virtualization

The virtual environment system [18] for Linux is another similar work. It aims to allow administrators to run
several independent application environments on a single computer with proper boundaries between them.
This aims to help application hosting and improve system security.

The "Virtual Environment” (VE) consists of an isolated group of processes with its own file system
root, init, startup scripts, and so on. It also allows administration of the environment from the inside, like
mounting file systems, changing network configurations, etc with the obvious restriction of keeping changes
within the VE. Unlike jail, it provides more sophisticated access control measures. For example, it can
provide a user with aubsetf administrative rights inside the environment. It also tries to avoid the ugly
and unnatural relationships between file system roots and IP addresses that exist in the "jail” implementation
and interface.

It uses a name-space separation method to implement the environment boundaries. All environment
specific objects are marked by an identifier, VE-id, and the searching algorithms are modified to expose
only objects with VE-id matching the VE-id of the calling process. Some example objed&skisruct
socketsandskbuf The very first process spawned inside a VE is handled specially. That becomes the ’init’
process for the VE, with PID 1, which handles the orphans. Network changes ensure the processes can only
see |IP packets destined to the IP address of the VE. The file system plans to allow combine/union mount of
read-only template tree and a private VE tree.

4.3 Ensim

Ensim’s Virtual Private Server [19, 20] (VPS) employs a similar virtualization technique for server consol-
idation, cost reduction, and to increase the efficiency in the way web sites are managed and sold. Ensim
VPS "virtualizes” a server’s native operating system so that it can be partitioned into isolated computing en-
vironments called virtual private servers. These virtual private servers operate independently of each other,
just like a dedicated server. To the operating system, an Ensim VPS appears to be an application, and to
applications, it's indistinguishable from the native operating system. As a result, an Ensim VPS appears and
operates as a physical server for the users. Figure 8 shows the architecture of the Ensim VPS.

The implementation is much stronger than the previous ones as it also lets the administrator provision
each VPS with a desired allocation of hardware resources such as memory, disk space, CPU, and net-
work bandwidth. The virtualization technology also supports adjustment of the resources and, if required,
movement of the VPs to another physical machine maintaining a total transparency. A centralized Ensim
ServerXchange accomplishes cross machine transfers seamlessly.

5 Virtualization at the Programming Language Level

A traditional machine is one that executes a set of instructions as supported by the Instruction Set Archi-
tecture (ISA). With this abstraction, operating systems and user-level programs all execute on a machine
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Figure 8: Ensim Virtual Private Server Architecture.

like applications for the machine. Hardware manipulations are dealt with either by special I/O instructions
(IO mapped), or by mapping a chunk of memory to the 1/0 and then manipulating the memory (memory
mapped). So ultimately, it is a block or sequence of instructions that constitute the application. A new level
of abstraction for virtual machine came to the limelight with the arrival of Java Virtual Machine (JVM). Fol-
lowing this, there were a few more, but the abstraction level was the same. The idea is to be able to create a
virtual machine at the application-level than can behave like a machine to a set of applications, just like any
other machine. It supports a new self-defined set of instructions (java byte codes for JVM). Such VMs pose
little security threat to the system while letting the user play with it by running applications like he would
on physical machines. Like a normal machine, it has to be able to provide an operating environment to its
applications either by hosting a commercial operating system, or by coming up with its own environment.
In this section, we explore a few such cases.

5.1 Java Virtual Machine

Chances are, everything you know about Java technology is only a few years old. There’s a good reason
for that: On May 23, 1998 the technology officially celebrated its third birthday. The motivation for the
technology came way back in 1995 from the idea of designing a processor-independent language that could
run on a wide range of platforms and appliances. The project started with a new language "Oak” designed
for the device *7 (called StarSeven) by James Gosling and later developed into what is nhow known as
"Java”. The back-end for such a language implements an interpreter of a new instruction set defined by the
Java people, and is made available for all the popular platforms including Windows, Unix, Mac, and other
OSes. In this way, a universal deployment of such a back-end made Java a platform-independent language,
and the back-end so popular, that is called the Java Virtual Machine [21], or in short JVM.

JVM is a virtual machine that runs Java byte code. This code is most often generated by Java compilers,
although the JVM has also been targeted by compilers of other languages. Programs intended to run on a
JVM must be compiled into a standardized portable binary format comprised of Java byte code (synonymous
to instructions), which typically comes in the form @lass files. This binary is then executed by the
JVM runtime which carries out emulation of the JVM instruction set by interpreting it or by applying a

21



just-in-time Compiler (JIT). The JVM, in addition to providing the instruction set interpreter, also provides
the operating environment (that OS typically provides in a native system) for the Java byte codes. Thus
the Java platform is a combination of a virtual machine along with an operating environment (JRE). The
virtual machine is eventually implemented in some native language and can afford to be more flexible than
traditional machines. It adds some extra computation to add features like byte code verification, structured
exception handling (SEH), garbage collections, and so on. Being in the application layer, it has much more
control over these implementation than system implementations, like SEH in Windows family of OSes.

JVM is a stack-based architecture and supports threads. Each thread has its own program counter and
imaginary register set (registers supported by the Virtual Machine). These instructions, on the runtime, are
mapped to a set of real instructions that are to be executed natively. Code verification also ensures that
arbitrary bit patterns cannot get used as an address. Memory protection is achieved without the need for an
MMU. Thus, JVM is an efficient way of getting memory protection on simple silicon that has no MMU.

The JVM supports instructions like load/store, arithmatic, type conversion, object creation/manipulation,
push/pop, branches, call/ret, and exception throws. However, more than the emulation of the byte code is
the complication involved in getting a compatible and efficient implementation of the map of Java core API
to the host OS.

The "virtual hardware” of the Java Virtual Machine can be divided into four basic parts: the registers,
the stack, the garbage-collected heap, and the method area. These parts are abstract, just like the machine
they compose, but they must exist in some form in every JVM implementation. JVM supports addresses
upto 4GB of memory with its 32-bit addressng scheme and uses 32-bit virtual registers. Depending on
the particular JVM implementation, the stack, garbage-collected heap, and the method area reside at some
well-defined places within this memory. JVM supports a small number of primitive data types: byte (8 bits),
short (16 bits), int (32 bits), long (64 bits), float (32 bits), double (64 bits), char (16 bits), and object handle
(32 bits). Apart from the program counter, it uses three registers to manage the stack: optop register, frame
register, and vars register. These point to various places within the stack of the executing method.

Method area is similar to the text area in an x86 machine; it contains the byte code to be executed and
the program counter always points to some byte in this area. The program counter is similar to PC and
advances as execution proceeds. The stack is used to store the parameters and results of the methods, and
to keep the state of each method invocation. Vesregister point to the local variables section containing
all the local variables in the methodframeregister points to the execution environment within the stack
that maintains the operations of the stack. Finally,dp®pregister points to the top of the stack where the
operands and results are placed.

Such a virtual machine architecture allows very fine-grained control over the actions that code within
the machine is permitted to take. This allows safe execution of untrusted code from remote sources, a model
used most famously by Java applets. Security, sandboxing, easy debugging, platform-independence are a
few very important features of such a virtualization setup. Since all the hardware devices are below the
JVM layer, it has access to everything in the system and virtually do everything that a normal application
can do. Thus, Java programs are equally powerful when compared with any other programs with traditional
languages such as C and c++.
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5.2 Microsoft .NET CLI

The common language runtime (CLR) in the .NET framework is the microsoft specific implementation of
the common language infrastructure [22] (CLI) specification. The CLR could be assumed to be Microsoft’s
equivalent of JVM. The CLI specification is an international standard for creating development and exe-
cution environments in which languages and libraries work together seamlessly. This, however, is much
stronger than JVM as it integrates data and services into the framework too. It supports interfaces, classes,
objects, as the Java framework does. It also defines a common library interface to all the languages that use
the platform. Similar to JVM, the source-codes are translated to an intermediate representation by compiler,
which eventually is run by the CLR.

5.3 Parrot

Parrot [23] is a virtual machine designed to execute bytecode for interpreted languages efficiently. Parrot
will be the target for the Perl 6 compiler. There is already a partial Perl 6 compiler as well as compilers in
various stages of completion for a wide range of other languages.

6 Virtualization at the Library Level

In almost all of the systems, applications are programmed using a set of APIs exported by a group of
user-level library implementations. Such libraries are designed to hide the operating system related nitty-
gritty details to keep it simpler for normal programmers. However, this gives a nhew opportunity to the
virtualization community.

Examples discussed in this section work above the operating system layer and produce a different virtual
environment, so much so that they can expose a different binary interface altother. In other words, virtu-
alization techniques are used to implement a different application binary interface (ABI) and/or a different
application programming interface (API) using the underlying system. Such techniques could well be said
to do the work ofABI/API emulation . The following few sub-sections discuss this in detail.

6.1 WINE

Wine [1] is often used as a recursive acronym, standing for "Wine Is Not an Emulator”. It is also known to be
used for "Windows Emulator”. In a way, both meanings are correct, only seen from different perspectives.
The first meaning suggests Wine is not a virtual machine, it does not emulate a processor, and one is not
supposed to install an operating system or device drivers on top of it; rather, Wine is an implementation of
the Windows API, and can be used as a library to port Windows applications to Unix. The second meaning
suggests that Wine does look like Windows to the Windows binaries (.EXE files) and emulates its behaviour
very closely to that of Windows. In other words, Wine is a virtualization layer on top of X and Unix to
export the Windows API/ABI, thus letting the Windows binaries run on top of it.
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DOS (.COM or .EXE) Winl16 (NE) Win32 (PE) WineLib
Multitasking | Only one application at | Cooperative Preemptive Preemptive
a time (except for TSR)
Address 1 MB of memory, where | All 16-bit apps share | Each app has its own Each app has its own
space each application is a single address spa-| address space. Requires address space. Requires MM
loaded and unloaded ce, protected mode | MMU support from CPU| support from CPU
Windows No Windows API but the| Calls the 16-bit Calls the 32-bit Wind- Calls the 32-bit Windows API
API DOS API (int 21h traps) | Windows API ows API possibly the Unix APIs
Code (CPU | Only available on x86 in | Only available on IA- | Available (with NT) on | Flat model, with 32-bit
level) real mode. Code and data32, code and data are several CPUs, including| addresses
are in segmented forms,| in segmented forms, | IA-32. On IA-32 uses a
with 16-bit offsets. Pro- | with 16-bit offsets. flat memory model with
cessor is in real mode Processor in protected 32 bit offsets (hence
mode the 32 bit name)
Multi- Not available Not available Available Available, but must use the
threading Win32 APIs for threading and
synchronization, not Unix
Table 1: Wine Executables
6.1.1 Executables

Wine’s task is to run Windows executables under non-Windows operating systems. It supports a varierty of

Windows exec

utables:

e DOS Executable:The older programs that use the DOS format, e.g. .com, .exe (MZ execuables)

e Windows NE: Also called 16-bit executable, they were the native processes run in Windows 2.x and
3.x versions

e Windows PE: Indoduced in Windows 95 and later became the native formats for all the new Windows
versions, it stands for Portable Executable, and still supports 16-bit applications. The word "portable”
says that the format remains the same across different CPU architectures although the code may be

different.

e WinelLib Executable: These are the applications written in Windows API, but compiled as Unix
executables, particularly useful when a Windows application’s sources are available that can benefit
from the optimizations of the Wine implementation. Wine provides tools for such cases.

Table 1 summarizes the differences in these executables.

Each Win32 process is launched as a separate process by Wine, which eventually gets translated to a
Unix process. However, due to their cooperative nature (unlike any modern OS’ processes), Win16 tasks are
handled differently. They are run as different intersynchronized Unix-threads in the same dedicated Wine
process; this Wine process is commonly known as a WOW process (Windows on Windows), similar to NT.
Synchronization among various Win16 tasks are done using a mutex variable; the running task holds it and
passes to the other when it wishes to let that run (cooperative).
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Figure 9: Windows 9x Architecture.

6.1.2 Windows Architectures

Figure 9 shows the architecture of the Windows 9x systems (e.g. Windows 95). Like a typical system, it
builds user-level system-specific libraries to expose kernel features at the user-level. All the graphics related
routines were designed to be in the user-level (GDI32.DLL). User32.DLL implements the core windows
Ul at the user-level. Applications have the free-hand of installing any library for its own use. Windows 9x
family of systems does not have any concept of subsystems.

The design was substantially changed in the next series of releases (from NT onwards) to incorporate a
native library (NTDLL.DLL) that hid several kernel and executive features from other system libraries. It
presented the only way through which an application or any other libraries can get access to system services
(equivalent to syscalls in Unix). This along with certain added features in the kernel improved the security
of the system as a whole. It also planned to support multiple APIs by introducing a subsystem concept.
Apart from Windows (that is implemented by Win32 subsystem), POSIX, OS/2 APIs were also supported.
Figure 10 depicts this changed architecture in the NT family of systems that includes all the popular OSes
like Windows NT, Windows 2000, Windows XP, and Windows 2003 server. Unlike Windows 9x that roots
its architecture in 16 bit systems, Windows NT family is a true 32 bit system. The driver model is also
different in these two architectures.

6.1.3 Wine Architecture

The Wine implementation targets the Windows NT applications and hence closely follows its architecture.
The 16 bit support is implemented in a single 32 bit Windows executable (remember WOW), and not as a
subsystem. Figure 11 shows the global picture that implements Windows on top of Unix.
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Several design decisions that went into the Wine implementation are as follows:

e Wine closely follows the Windows NT architecture; so it is important to replace the NTDLL.DLL by
its corresponding implementation in Wine (over Unix) that is correct and captures all the aspects of
NT.

¢ In order to be able to provide the correct and full Windows API to the Wine user, the core subsystem
DLLs, viz. User32.DLL, Kernel32.DLL, and Gdi32.DLL need to have their own complete implemen-
tation in Wine. Since there are instances where these subsystem DLLs use the kernel knowledge and
features of NT, only NTDLL.DLL implementation is not sufficient for Wine.

e All other system- and user-level libraries are layered on top the above core DLLs and would be
automatically taken care of, i.e. no Wine-specific implementation is required for such libraries.

e The Wine server provides the backbone for the implementation of the core DLLs. It mainly
implementents inter-process synchronization and object sharing. It can be seen, from a functional
point of view, as a NT kernel, although the APIs and protocols used between Wine’s DLL and the
Wine server are Wine specific

e Being on top of Unix, Wine uses the Unix device drivers to access the hardware devices on the
machine. However, wherever necessary Wine has to provide a proxy driver (that looks like a Windows
driver to the Windows libraries) to access the hardware that acts as a proxy to the real Unix driver.
One such example is a graphics driver that uses the X11 or SDL driver as a proxy.

6.1.4 Wine Server

TheWine server is like a central management entity of the Wine implementation that helps implement
the NT core. It provides Inter-Process Communication (IPC), synchronizaton, and process/thread manage-
ment. When started, it creates a Unix socket for the current host in a well-defined location — all wine
processes (which basically represent Windows processes) launched later connect to the Wine server using
this socket. The message-queues that every thread in a Windows system possess, are implemented using
this server. Every thread in each Wine process has its own request buffer, which is shared with the Wine
server. When a thread needs to synchronize or communicate with any other thread or process, it fills out
its request buffer, then writes a command code through the socket. The Wine server handles the command
as appropriate, while the client thread waits for a reply. The synchronization primitiveg/éikéor are
handled by the server by making the thread wait until the condition has been satisfied.

Wine server is a separate Unix process that is built on a j|aotj  loop that alerts the server when
some important event happens, such as the receipt of a command from client, fulfilment of some wait con-
dition, etc. Because the Wine server needs to manage processes, threads, shared handles, synchronization,
and any related issues, all the clients’ Win32 objects are also managed by the Wine server, and the clients
must send requests to the Wine server whenever they need to know any Win32 object handle’s associated
Unix file descriptor.

27



6.1.5 Loading an Executable

Loading a windows binary is not a tough task. But the real complexity lies in creating the proper load
environment where the binary expects all those DLLs and entry points, it imports, to be present and function
as expected.

DLLs are implementated by Wine as a Unix shared library and contains, including the DLL code, some
more information like DLL resources and a DLL descriptor specific to Wine. When the DLL is instantiated,
the descriptor is used to create an in-memory PE header that provides information regarding the DLL, such
as its entry points, resources, sections, debug information, etc. The DLL descriptors are automatically
registered when shared libraries are loaded by putting a call to the registration routine inside the shared
library constructor.

When an application module wants to import a DLL, Wine does the following to search for it:

e It looks through its list of registered DLLs, i.e. loaded DLLs and the loaded shared libraries which
have a registered DLL descriptor.

¢ If not found, Wine looks for it on the disk, building the shared library name from the DLL module
name (by appending .so) in some environment specified directory.

¢ If still not found, it looks for real Windows .DLL file on disk, load it, and look through its imports etc.
¢ Failing all, it declares not found (an error condition).

The DLLs are mapped to the memory by traditional Udlgapen()  call. It relies on the dynamic
loading features of the Unix shared libraries to relocate the DLLs if needed.

6.1.6 Wine/Windows DLLs

Wine provides full implementation specific to Wine for many Windows DLLsS; these new DLLs are called as
Built-in DLLs. For this reason, the true Windows DLLSs, in this context, are often chléttve DLLs Native

DLLs guarantee 100would maintain a virtually perfect and Windows 95-like look for window borders,
dialog controls, etc. Using the built-in Wine version of this library, on the other hand, would produce a
display that does not precisely mimic that of Windows 95. However, not every native DLL would work if
its required features and imported DLLs are not fully available or not implemented in Wine. Sometimes, if
the Wine built-in DLL provides some extra features that exploit Unix/X facilities, the build-in DLL might
outperform the native ones. If, for a particular version, both the native and built-in versions are available,
load oder decides which one to choose. By default, a fully implementd built-in version takes precedence
over a native one.

6.1.7 Memory Management

Every Win32 process in Wine has its own dedicated native process on the host system, and therefore its own
address space. The virtual memory layout in Windows (and therefore Wine), and Linux are shown in the
table 2. Fortunately, they overlap in almost all the places, except the shared area in Win9x. This is taken
care of by creating and managing a shared heap by Wine at the address 0x80000000.
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Address Windows 9x | Windows NT | Linux
00000000-7ffffff | User User User
80000000-bfffffff | Shared User User
c0000000-ffffffff | Kernel Kernel Kernel

Table 2: Memory Layout in Windows and Linux

All the DLLs, and the EXE itself are loaded as they would in Windows. Work is going on to handle the
Ingo-Molnars 4G/4G VM split patch for Linux, which gives the Linux kernel its own address space of 4G
— this forces a switch in the address space at every system call.

6.1.8 Processes and Threads

Windows provides a richer API to create, manage, and destroy threads and many thread-related primitives.
But Linux, unfortunately does not have all these. Therefore, most of the thread realated APIs are imple-
mented in the user-space and wherever possible, Win32 threads are mapped to native Linux pthreads for
better performance.

To start a process, Wine first starts another executable to check the threading model of the underlying
OS (Win9x or WIinNT) of real executable and uses the corresponding Wine loader to start it. First, the
ntdll.dll.so (the built-in NTDLL.DLL implementation) is loaded into memory using the standard dynamic
library loader. Once loaded, ntdll does three things: creates a PEB and TEB (process/thread environment
block), sets up the connection to the Wine server, and creates the process heap. This follows by the load of
Kernel32 built-in dil and a wine specific entry pointwine_kernelinit is called which handles the rest of
the logic and never returns from the call. Following are the tasks accomplished hwthe kernelinit:

e Initialization of program arguments from Unix program arguments

e Lookup of the executable from the file system

e If the file is not found, then an error is printed and the Wine loader stops

e The PE module is loaded in memory using the Windows shared library mechanism

e A new stack is created, whose size is given in the PE header, and this stack is made one of the running
thread

e With this new stack, ntdll.LdrInitializeThunk is called which performs the remaining initialization
parts, including resolving all the DLL imports on the PE module, and doing the init of the TLS
(thread local storage) slots

e Control is then passed to the EntryPoint of the PE module, which will let the executable run

For non-PE executables, Wine hands over the execution to a different execwiadgdedm (VDM
stands for Virtual DOS Machine). This sets up the 16 bit environment to run the executable. Any new 16
bit executables created will eventually be executed by the same winevdm. Thus sharing of address space,
cooperative multitasking, managing the selectors for the 16 bit segments are all handled by winevdm.
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6.1.9 Miscellaneous

Apart from the above-mentioned main components, there are several others that play important roles in the
Wine implementation but are not covered in this report. Among them are: Structured Exception Handling
(signals are translated to exceptions), special console handle, customized graphics drivers (implemented on
top of X11 driver), synchronization, and messaging subsystem.

6.2 WABI

WABI [24], that stands for Windows Application Binary Interface, is the Sun’s implementation with an
aim similar to Wine. It lets users run Microsoft Windows applications on several UNIX operating envi-
ronments that use X Window System. It also has a variation, called WabiServer, that lets multiple users
connect remotely and use Wabi on a client computer. It works by translating Windows calls to X Window
and Unix calls, and on RISC platforms, translating x86 instructions to RISC instructions. However, the
implementations are not as extensive as Wine’s and hence fails to correctly execute certain programs.

6.3 LxRun

LxRun [25] is a Linux x86 binary emulator for other x86 *IX machines, such as SCO OpenServer, SCO
UnixWare, and Sun Solaris. It works be remapping system calls on the fly. As it turns out, there’s not much
difference between Linux and iBCS2 binaries. The main difference is the way in which system calls are
handled. In Linux, an "int 0x80” instruction is used, which jumps to the system-call-handling portion of
the Linux kernel. On other systems, "int 0x80” usually causes a SIGSEGYV signal. Lxrun intercepts these
signals and calls the native equivalent of the system call that the Linux program attempted. The result is that
the Linux binary can be run (with the help of Ixrun) with a small (usually negligible) performance penalty.
All this is accomplished without modifying the kernel or the Linux binary.

6.4 Visual MainWin

Visual MainWin [26] for the UNIX and Linux platforms is an enterprise-class application-porting platform
that enables software developers to develop C++ applications on Windows using Visual Studio and deploy
them on UNIX and Linux operating systems. The product actually recompiles Windows source code with
UNIX compilers to create native UNIX applications. The Visual MainWin Runtime consists of the Win-
dows Runtime on UNIX and Core Services. Together, they enable Windows applications to execute natively
on UNIX. Visual MainWin Core Services for UNIX and Linux provide functionality such as synchroniza-
tion objects, threads and low-level graphic functionality utilized by the Windows Runtime on UNIX. Visual
MainWin creates native UNIX binaries requiring no virtual machine with no emulation or mapping per-
formed at runtime to improve performance.
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7 Featherweight Virtual Machine

So far, there have been discussions on most of the techniques currently used in virtualization, and the tax-
onomy gives a reasonable exposure to various categories of them. Although, the taxonomy, by no means, is
complete but definitely gives the direction at which in can further be extended to accommodate future inno-
vations. After all the background survey and analysis, we propose an idea that fits in the category described
in section 3. In this section, we talk about the issues that motivated us to come up with such a proposal. In
addition, we discuss some of its features and applications that make it unique.

7.1 Motivation

Conceptually a virtual machine represents an operating environment for a set of user-level applications,
which includes libraries, system call interface/service, system configurations, daemon processes, and file
system state. Multiple virtual machines can run on a single physical machine through a virtualization soft-
ware as discussed in the previous sections. The choice of abstraction-level at which virtualization is im-
plemented, entails a different tradeoff among implementation complexity, run-time performance overhead,
flexibility, and degree of isolation.

Many fault-tolerant and intrusion-tolerant systems require the ability to "try out” untrusted programs in
a realistic environment without leaving any permanent damage. Virtual machine technology is a perfect fit
to meet this need. Because such trial operations need to be invoked frequently on a routine basis, creating,
committing and terminating a virtual machine must be fully automatic and extremely low-overhead. How-
ever, none of the current virtual machine implementation address this issue. Although Denali (see section
3.3), and a few others are consideredlahtweight” , they still are not usable to solve this issue either be-
cause they do not support commaodity software, or because the latency involved are higher than the tolerance
limit. Thus, to satisfy this new requirement, we develop a new virtual machine architecture on the Windows
environment calledeather-weight virtual machiné=VM). As the name suggests, we aim at making the
virtual machine as light as feather so that it takes time of the order of milliseconds to create, manipulate,
and destroy such a machine without compromizing any functionality, correctness, or security aspects. In ad-
dition, we try to exhibit the beauty and usefulness of such a technology by coming up with two application
areas that can benefit from this: secure mobile code execution, safe vulnerability testing.

The key idea of FVM imame space virtualizatigrwhich virtualizes machine resources at the system
call interface using resource renaming technique. A typical operating system supports multiple types of
name spaces for various system resources, for example, virtual/physical address space, file system hierarchy,
process ID, network address, network protocol number, port number, etc. Through resource renaming, the
name spaces visible to processes in one virtual machine are guaranteed to be disjoint from those visible to
processes in another virtual machine. As a result, two FVM virtual machines never share any resources and
therefore cannot interact with each other directly. FVM is more flexible and scalable, incurs less start-up
overhead, and thus makes a more effective building block for cybersecurity applications that require constant
spawning of new virtual machines on an interactive basis.
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7.2 Related Work

The fundamental idea behindrtualizationis to introduce an additional layer of indirection so that the a
lower-level resource can be transparently mapped to multiple higher-level resources simultaneously. Vir-
tual machine implementations like VMware [7], Virtual PC [10] (see section 3) are very effective in this
regard, but incur significant initialization and management overhead. In contrast, FVM uses a much simpler
approach for partitioning that has almost negligible management overhead. Light-weight virtual machines
[9, 11, 27, 15] (discussed earlier) virtualizes only a subset of the computer hardware. Compared with light-
weight virtual machines, FVM is even lighter because it virtualizes the system resource at the system call
interface through renaming. Emulators like Bochs [2] are even worse due to their unusually high latency.
All of the OS level virtualization utilities discussed in section 4 are very similar to FVM in the way they
operate but are not supported on Windows.

The Alcatraz project [28] provides a virtual execution environment for Linux applications through sys-
tem call interposition technology. It is designed specifically to sandbox untrusted applications that may need
to access privileged files. However, it does not support general virtualization thus would not allow multi-
ple virtual machines to co-exist on a single physical machine without interfering one another. Nor does it
support virtualization of other types of system resources than files.

Softricity’s SystemGuard [29] virtualizes the operating environment of a user-level application so that
the application can be bundled together with its operating environment into a self-contained package for
distribution. It uses a name space overlay technique to carefully group resources before presenting them
to the application. Another system with similar goals and techniques is Jitit's Thinstall [30]. Windows
terminal server [31] also solves the resource conflict problem among multiple terminal server sessions using
the name space virtualization approach. ©hgct managem the Windows executive uses a hierarchical
naming convention for all the system resources and every terminal server session gets a separate sub-tree in
this hierarchy.

In some sense, FVM is equal to versioning of system resources plus visibility control. Various versioning
file system projects [32, 33] attempt to efficiently maintain multiple versions of the same file. Most if not all
of them use block-based versioning rather than file-based versioning to avoid unnecessary data copying. For
simplicity, FVM uses a file-based approach, but it also provides more comprehensive versioning support.

7.3 FVM Architecture
7.3.1 Overview

When applying virtual machine technology to fault-tolerant and intrusion-tolerant systems, a common re-
quirement is to start a new virtual machine to run a potentially damaging transaction in the original operating
environment while hiding its side effects from the host machine. In other words, the new virtual machine
should be able to access as many resources of the host machine as possible, but should never interfere with
it. One can satisfy this requirement by setting up a new virtual machine, and copying the hosting machine’s
environment to the new virtual machine. However, this approach is impractical for existing heavy-weight
virtual machine technology because its start-up overhead is too high. In contrast, the proposed feather-
weight virtual machine (FVM) architecture is specifically designed to reduce the invocation latency of a
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new virtual machine and to scale to a large number of virtual machines by minimizing per-virtual-machine
resource requirement.

By default, a new FVM virtual machine starts with the same operating environment as the host machine.
Therefore, both the invocation overhead and the initial resource requirement are minimal, and applications in
the new virtual machine can immediately run against the host machine’s operating environment. However, to
protect the host machine from a virtual machine, all the updates made by the virtual machine are only visible
to its processes but not to those running in the host machine or other virtual machines. To effectively control
visibility of updates, FVM performs resource renaming at the system call interface to ensure each virtual
machine sees exactly what it is supposed to see. The insight behind this technique is that by controlling the
name spaces visible to each virtual machine, it is possible that virtual machines can share as many common
resources as possible without interfering with each other. This machine virtualization approach is called
name space virtualizatiorCompared with name space virtualization, existing virtual machine technologies
incur higher start-up overhead and resource requirement, because they operate at the hardware abstraction
layer and thus require unnecessary duplication of common system resources, such as operating system and
shared libraries.

On modern Windows operating systems (Windows NT and subsequent versions), the operating envi-
ronment of a virtual machine is uniquely defined by the following system components: file system image,
registry entries (for examplé]KEY CURRENIUSER, kernel objects (for example, spin locks), system ser-
vices (for examplesvchost.exe ), and kernel state. The first four components of a virtual machine each
have a separate name space, and therefore can be easily separated through resource renaming. Accordingly,
the state of an FVM virtual machine is defined by the following:

A virtual machine ID,

An set of environment variables,

An IP address,

A list of IDs of the processes that are currently running in it,

A log of deleted files and registry entries, and optionally

An initial image of files, registry entries, kernel objects, and system services.

Typically the initial image of a new virtual machine is the same as that of the host machine at the time of
its creation. However, a user can choose to specify a special subset of the host machine’s image as a new
virtual machine’s initial image. The virtual machine ID is used for resource renaming. Currently, the FVM
architecture simply uses a virtual machine’s ID as the prefix when converting a resource name in the virtual
machine into a resource hame in the host machine. For example, a resource in a virtual machine whose
original name ida/b is renamed t@aXYZ/a/b , whereXYZis the ID of the virtual machine. The same
renaming mechanism is used in the name space for files, registry entries, kernel objects, and system services.
An FVM virtual machine’s state also includes an IP address, because it allows the same port such as Port 80
to be used simultaneously in multiple virtual machines that co-exist in the same physical machine. When
a socket is created in a virtual machine, it is automatically bound to the virtual machine’s IP address. An

30n Windows, the term "system service” actually refers to what is commonly known as system calls. We use the term "system
services” to mean "daemons.”
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Figure 12: Graphical user interface of FVM showing permitted operations and properties.

FVM virtual machine also keeps track of the set of active processes running in it in order to ensure that these
processes see the image of the virtual machine and nothing else. Finally, to compute the "delta” between an
FVM virtual machine and the host machine, each FVM virtual machine also maintains a log of deleted files
and registry entries. Files and registry entries that are added or modified by an FVM virtual machine are
guaranteed to be in its private name spaces through a copy-on-write mechanism, and therefore do not need
to be separately recorded.

FVM provides a suite of operations for users to manipulate virtual mach®esteVMcreates a new
virtual machine whose initial image is a replica of the host machine at the time of cre@tpgVMcreates
a new virtual machine whose initial image is copied from another virtual machiaefigureVMcreates a
new virtual machine with an initial image that the user can configure explifiyeteVMdeletes a virtual
machine completel\SuspendVMaves the virtual machine’s state to a persistent file and renders it inactive.
ResumeVMestarts a virtual machine from a file that stores the virtual machine’s €latamitVMmerges
the side effect of a virtual machine to the host machine and deletes the virtual machine. To help users decide
whether to commit a virtual machine, FVM provides a GUI to display the side effects of a virtual machine,
and to possibly commit a selective subset of them. A sample interface with all the operations and properties
of a FVM is shown in Figure 12.
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7.3.2 Registry Entry Virtualization

When an FVM virtual machine is created, by default it sees all the registry entries in the host machine.
Whenever an application in a virtual machine opens a registry entry, FVM checks whether and where the
registry entry exists. If a copy of the registry entry exists in the virtual machine itself, FVM uses this copy.
If the registry entry exists only in the host machine, FVM duplicates the host machine’s copy in the virtual
machine if the registry entry is opened for "write,” and uses the host machine’s copy directly if it is opened
for "read only.” If an application in a virtual machine creates a new registry entry, it is always created in the
virtual machine.

A registry entry in the Windows environment consists dfey and avalue Registry entries are or-
ganized in a hierarchical name space similar to standard UNIX file system. A registry entry can have
both subkeys and values. Subkeys are similar to subdirectories while values are similar to files. To re-
duce implementation complexity, FVM embeds a virtual machine’s registry entries in the host machine’s
registries using Windows’ own registry subsystem. More concretely, FVM intercepts all registry-related
system calls that use registry keys as arguments, and renames these registry key arguments by prepend-
ing a prefix to the path name of these keys. For each virtual machine, FVM creates a registry entry
with the key/HKEY _CURRENITUSER For example, for the virtual machine VM1, FVM creates the entry
/HKEY_CURRENIUSER/VMlas its root, and all the registry entries in VM1 will be stored under this entry .
Whenever any application from VM1 accesses a registry entry, FVM adds the/ptisiYy CURRENTUSER/VM1
to the path name of the requested registry entry.

7.3.3 File System Virtualization

File system virtualization is based on exactly the same renaming technique as in registry entry renaming.
However, in this case, the "copy on write” (COW) mechanism can be applied at the whole file or individual
file block level. Although block-based COW is more efficient than file-based COW, it is also more compli-
cated as it needs to duplicate some of the file system metadata. We plan to start with file-based COW in the
first FVM prototype, measure its performance cost under standard workloads, and then decide whether it is
worthwhile to pursue the more complex block-based alternative.

To implement file system virtualization, FVM intercepts system calls that use a file name as an input
argument, such as create/open files, delete/rename files, query file attributes and traverse directory content.
For such system calls, FVM transparently renames the input file name by prepending it with a virtual ma-
chine identifier of the issuing process. As a result, these system calls really operate on the renamed file
name, as shown in Figure 13. Again, if an application in a virtual machine opens an existing file for write,
the file is first copied to the virtual machine and accessed using the its renamed path name. FVM ensures
that a copied file has the same attributes and directory structure as the file being copied.

Windows object virtualization is based on the same techniques used in registry entry and file system
virtualization. However, the current prototype does not support it.
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Figure 13: File system virtualization works by renaming file path name arguments at file open time in a way
similar to registry entry renaming.

7.3.4 Service Virtualization

Services are to Windows what daemons are to UNIX. They run around the clock and are an integral part
of an operating environment. To fully isolate one virtual machine from others, FVM needs to ensure each
virtual machine has its own set of services so that sharing among virtual machines through common services
is not possible. The Windows operating system provides a generic service called the service control manager
(SCM), which is integrated within the kernel and is responsible for starting up and managing all the services.
SCM manages the kernel’s active services database, interacts with system services to exchange control or
status information, and can start or stop a service, save service-related information in registry entries for
persistence, etc. Because SCM itself cannot be duplicated in each virtual machine and it performs system
state modification on behalf of other services, it is essential that FVM can accurately identify the service
behind each of SCM’s update operation so that it can attribute each update to the associated virtual machine.
Conceptually, the technique of resource renaming at the system call interface still applies here. However,
there are complications. THereateService  call in the Win32 DLL, which is typically used to create
a Win32 service, is not just a simple wrapper to a system call; rather it makes a series of system calls that
cannot be easily recognized by the generic system call interception layer. To solve this problem, FVM
employs a DLL hooking mechanism [34] to intercept tBeeateService  call and issues an atrtificial
system call that just passes all the necessary information to the system call interception layer, including a
service name and the name of the program image used to start the service. As usual, the DLL hook modifies
the original service name by prepending the virtual machine ID to it before célliegteService . The
system call interceptor extracts the program image name and the renamed service name for future use. Later
on, when SCM forks a service process using a program image name that matches one of the stored image
name, FVM binds this service process to the virtual machine whose ID appears in the associated renamed
service name, and all subsequent modifications made by this service process are automatically ascribed to
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the matching virtual machine. When SCM makes a system state modification, it does so by making a system
call with the name of the associated service as an argument. Because service names are already renamed
when CreateService is called, FVM can easily identify from the service name argument the virtual
machine on behalf of which SCM performs this modification.

7.3.5 Mapping Processes to VMs

The central design issue in FVM is visibility control, which is essentially reduced to this: When a process
issues a system call to read or modify a system resource, which virtual machine should serve as the context
within which to interpret this system call? When a virtual machine is first created, FVM automatically starts
its first process, which is either a command shell or file browser, and tags it with the virtual machine’s ID.
All the descendant processes of this initial process belong to the same virtual machine and thus are tagged
with its virtual machine ID.

Because Windows does not maintain any process hierarchy, FVM needs to maintain a map between
process ID and virtual machine ID. More specifically, FVM propagates virtual machine ID from a parent
process to its child process by interceptitCreateProcess  (or NtCreateProcessex  for Windows
XP), which are the Windows equivalent fifrk , so as to assign to the newly forked process the same
virtual machine ID as its parent. There is one exception to this mechanism: When SCM forks a new
process, the new process does not necessarily belong to the physical machine, SCM’s operating environment.
Instead, the virtual machine ID for the new process is determined by the program image argument of the
NtCreateProcess  call.

7.3.6 Implementation Considerations

The key building block of FVM implementation is system call interception. For each system call that needs

to be instrumented, FVM modifies the corresponding entry in the System Services Dispatch Table (SSDT)
to redirect the control through FVM’s virtualization logic. FVM'’s system call interception module is loaded

into the kernel as a kernel driver, and is designed to be extensible so that it can serve as a reusable framework
for other projects that require similar system call interception functionality.

When a virtual machine is created, the system call interception driver allocates a data structure to main-
tain the virtual machine’s states as described in Section 2.1. When a virtual machine is terminated, FVM
discards and de-allocates its in-memory state. When a virtual machine is stopped, its state is saved to a file,
from which the virtual machine can be restarted later on.

7.4 Performance Evaluation

The performance overhead of FVM comes from the additional interception overhead associated with every
system call and the file/object/registry entry copying overhead for an "open for write” system call. In some
sense, the latter should be considered as a component of the cost of starting up a new virtual machine, only
distributed over time. Obviously, if a large file needs to be copied to a virtual machine’s private directory, the
performance penalty is significant. For more heavy-weight virtual machine technologies such as VMware,
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System Call Native (CPU Cyecles) | FVM (CPU Cycles) | Difference (%)
ZwCreateFile 340712 347172 2%
ZwOpenFile 170959 320433 87%
ZwQueryAttributesFile 144010 263355 83%
IwQuervFullAttributesFile 198261 330123 67%
ZwSetInformationFile 47244 48814 3%

Figure 14: Interception overhead for file system related system calls.

Test Program Native (msec) | FVM (msec) | Difference (%0)
Winzip32 to unzip a 667KB file 4172 4328 3.7%
Dlock? to encrypt a 15MB file 3688 3782 2.5%
CL to compile TapiComm SDK samples 7610 8906 17%

Figure 15: Batch program latencies experienced in FVYM

this copying cost also exists and needs to be paid out front; moreover, the sharing of files among virtual
machines is not possible.

We measured the system call interception overhead in terms of number of processor cycles spent in
a system call for some windows-based applications executing in an FVM virtual machine and compared
it with that of the natively executing system call. We ran the applications and the FVM prototype over
Windows 2000 server on a Pentium-4 2.8GHz Dell Dimension 2400 desktop machine. For Microsoft Word
that opens a 2.8MB .doc file, the average system call overheads for five frequently used file-related system
calls are shown in Figure 14. Opening files and querying file attributes are seen to suffer more as these
invoke the same system call on both the FVM private directory and the original directory, if the file only
reside in the original directory. Fortunately the impact on the overall application execution is negligible,
because most system calls do not require any interception.

We also tested three batch programs’ runtime overhead due to system call interception, as shown in
Figure 15. The runtime overhead for unzipping a 667KB file using WinZip32 under an FVM is about 3.7% of
that of the native execution. This result also indicates that although some system call interception overhead
is nontrivial, the proportion of these system calls out of all the system calls made by some applications may
be small so the total runtime overhead is not significant.

Finally we tested the start-up latency for some Windows-based interactive applications when they run
in the native mode and under an FVM, and measured the elapsed time from when a user clicks on the appli-
cation to when it has finished its initialization and is waiting for user input. This measurement includes the
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Application Startup Latency on FVM
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Figure 16:The startup latency for invoking four Windows applications in a new FVM virtual machine

initial startup time, which is the startup latency when the application runs for the first time after the physical
machine reboots, and the average startup time, which is the average startup latency when the application
runs for the second time onwards. The average startup time is much shorter than the initial startup time due
to different levels of caching and memory paging. When running Adobe Acrobat Reader against a 6KB
pdf file, the additional virtualization overhedélta  between initial startup times in the native mode and
under an FVM is approximately 594 milliseconds, and decreases to 110 milliseconds for the average startup
time. This difference arises because most file copying only takes place in the first time when the application
runs under an FVM. Tests using other applications show similar results. Figure 16 shows the startup latency
of invoking four common Windows applications in a new FVM virtual machine.

The space overhead associated with an FVM state is small because it includes only the file/registry delete
log. After we start some Windows-based interactive applications on an FVM for a while, the delete log is
always zero, because usually application processes will not delete any existing files or registry keys.

7.5 Application
7.5.1 Secure Mobile Code Execution

Mobile code refers to programs that come into an end user’s computer over the network and start to execute
with or without the user’s knowledge or consent. Examples of mobile code include a Java script embedded
within an HTML page, a Visual-Basic script contained in a WORD document, an HTML Help file, an
ActiveX Control, a Java applet, a transparent browser plug-in or DLL, a new document viewer installed
on demand, an explicitly downloaded executable binary, etc. Because a mobile code typically runs in the
context of the user that downloads it, it can issue any system calls that the user is allowed to make, including
deleting files, modifying configurations or registry entries, sending emails, or installing back-door programs
in the home directory.

FVM enables an intrusion-tolerant approach to the mobile code problem [35, 36]. Whenever a piece
of mobile code, be it an email attachment or a downloaded file through web browser, FTP or P2P , is
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scheduled to run, it is automatically executed in a new FVM virtual machine without user intervention. This
virtual machine provides the same operating environment as the host machine, but can effectively isolate
any side effects of the mobile code should it turn out to be malicious. To further protect the host machine,
the visibility of the virtual machine may need to be further limited. For example, the downloading user’s
home directory should be hidden to prevent viral propagation through address book. Identifying all possible
mobile code execution mechanisms and confining their execution through FVM in a way transparent to users
will be a major research focus of this project.

7.5.2 Automatic Clean Uninstall

Although the existing Windows Installer [37] infrastructure eases and automates many installation related
tasks, it can hardly do anything when a spyware gets installed through another software that the user installs.
Spyware could also be installed through security vulnerabilities in applications like web browser or by an-
other spyware that is already in the system. Examples of common spyware include Bonzi Buddy, SaveNow,
Search Assistant, Enhanced Mediaoads, and so on. Moreover, there are handwritten installation scripts that
are impossible to automatically uninstall and are usually left to the vendor to provide the uninstallation
scripts.

FVM guarantees a clean automatic uninstall of any application by confining all of the installation side-
effects inside a virtual machine. When the user tries to install an application, it is automatically started within
a separate FVM virtual machine that contains all the side-effects including any spyware installations. Since
the side-effects are isolated irrespective of whether they are caused by the installer service or the handwritten
installer scripts, FVM is able to uninstall absolutely any kind of installation programs. The modifications
through the Windows Installer Service are caught similar to how it figures out the modifications through
other services (discussed in Service virtualization).

8 Conclusion

Virtualization technologies provide several important features that make it a very powerful tool to be used
across a wide range of applications. These include but are not limited to server consolidation, application
sandboxing, access to varieties of hardware and OSes, debugging, mobile computing, packaging (for ap-
pliances), testing, easy system administration, and quality of service. All these features have made these
technologies immensely popular in academia as well as industry. A closer look reveals that although most
of them present a similar operating environment to the end-user, they greatly vary in their architecture de-
sign, implementation, and the level of abstraction at which they operate at. In this paper, we study a range
of virtual machine technologies and propose a taxonomy for the levels of abstraction at which they function.
We identify five different categories that account for most of the the implementation variations: instruction
set architecture level, hardware abstraction layer (HAL) level, operating system level, library level, and ap-
plication level virtual machines. We discuss the basic insight as well as the general approach behind this
taxonomy so that it would not be difficult to extend it further in the future if such a need arises. We survey a
few examples from each of the categories of virtual machines and study the general design, implementation
details, challeging issues involved, and do a comparative study of these. We then propose our own idea of a
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virtual machine implementation, which we calllsatherweight Virtual Machinghat aims at providing an
extremely lightweight virtual isolated infrastructure which can act as a playground machine for the purpose
of test-driving potentially dangerous programs. We also demonstrate the effectiveness of such a technology
by applying it to applications: secure mobile code execution and automatic clean uninstall.

Virtualization is an area that has been in existence since 1960s and attracts a heavy attention from the
research community even today. So, we believe, such a survey could actually help people analyze new
developments in the area and help put them in perspective. As a future work, we are trying to study a variety
of new taxonomies like cross-platform and multi-layer technologies and fit them in the current taxonomy.
We also are working on improving the degree of isolation among FVM machines by analyzing the protocols
of the common services they share. We are trying to apply FVM to another important application: memory
stick based mobile computing.
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