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The concept of dual-primal methods can be formulated in a manner that incorporates, as a subclass, the
non preconditioned case. Using such a generalized concept, in this article without recourse to “Lagrange
multipliers,” we introduce an all-inclusive unified theory of nonoverlapping domain decomposition methods
(DDMs). One-level methods, such as Schur-complement and one-level FETI, as well as two-level meth-
ods, such as Neumann-Neumann and preconditioned FETI, are incorporated in a unified manner. Different
choices of the dual subspaces yield the different dual-primal preconditioners reported in the literature. In
this unified theory, the procedures are carried out directly on the matrices, independently of the differential
equations that originated them. This feature reduces considerably the code-development effort required for
their implementation and permit, for example, transforming 2D codes into 3D codes easily. Another source
of this simplification is the introduction of two projection-matrices, generalizations of the average and jump
of a function, which possess superior computational properties. In particular, on the basis of numerical results
reported there, we claim that our jump matrix is the optimal choice of the B operator of the FETI methods.
A new formula for the Steklov-Poincaré operator, at the discrete level, is also introduced. © 2008 Wiley
Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2008
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I. INTRODUCTION

Mathematical models of many systems of interest, including very important continuous systems
of Engineering and Science, lead to a great variety of partial differential equations whose solution
methods are based on the computational processing of large-scale algebraic systems. Furthermore,
the incredible growth experienced by the existing computational hardware and software has made
amenable to effective treatment an ever increasing diversity and complexity of problems, posed
by engineering and scientific applications.

Parallel computing is outstanding among the new computational tools, especially at present
when further increases in hardware speed apparently have reached insurmountable barriers [1].
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2 HERRERA AND YATES

Therefore, the emergence of parallel computing during the last 20 years or so has prompted a
continued and systematic effort on the part of the computational-modeling community with the
purpose of harnessing it for the endeavor of solving partial differential equations. Very early after
such an effort began, it was recognized that domain decomposition methods (DDM) were the most
effective technique for applying parallel computing to the solution of partial differential equations,
since such an approach drastically simplifies the coordination of many processors that carry out
the different tasks and also significantly reduces the requirements of information-transmission
between them. Up to this date, the DDM organization has held 18 international conferences and
their proceedings constitute a valuable source of information [2]. Since research work on DDM
has been abundant, survey articles and monographs are especially useful and some of the most
distinguished of them are included in the Refs. 3–11. We will draw especially from [11] due to
its broadness, extensive coverage of material pertinent to the subject of this article, and its recent
publication date.

There are many approaches to DDM, albeit lately much of the effort has gone into iterative sub-
structuring methods in nonoverlapping partitions such as Neumann-Neumann, Dirichlet-Dirichlet
(preconditioned FETI), and FETI [11]. In the processing of such methods, discontinuous functions
are generated at some stages and so a conspicuous feature of them is that, after a domain parti-
tion has been introduced, they use discontinuous piecewise-defined functions as base functions
for representing the approximate solutions of the partial differential equations (see, for exam-
ple [9, 11]). Until recently, the treatment of discontinuous functions had been based on the use
of Lagrange multipliers (see [12], for a review of this topic). However, a more direct approach is
feasible, as has been shown by Herrera in two very recent papers in which discontinuous functions
are dealt-with without recourse to Lagrange multipliers [12, 13]. Significant improvements and
generalizations of such an approach have been made during the last year or so, and this article is
devoted to report that progress.

As indicated by its title, this article summarizes contributions in a “Unified Multipliers-
Free Theory of Nonoverlapping Iterative Domain Decompositions Methods.” In this theory,
the domain decomposition procedures are carried out directly on the matrices independently
of the partial differential equations that originated them; so, throughout the article, function-
spaces are not discussed. The methods so derived possess many advantages; therefore, for
example, codes developed for 2D-problems can be easily modified for its application to
3D-problems.

First, in this theory a framework is established with the purpose of unifying different
approaches. In it, the usual concepts of primal and dual nodes are slightly modified: a node
is primal if and only if it is not divided, and dual nodes are all others. This permits incorporating
dual-primal preconditioners from the start and, therefore, all the methods and, more importantly,
matrices derived in this setting can, in a direct manner, be applied indistinctly with or without dual-
primal preconditioners. Different choices of the dual subspaces yield the different dual-primal
preconditioners reported in the literature. Second, in that setting and without recourse to Lagrange
multipliers, a DDM matrix-formulation of problems in discontinuous functions is introduced. The
results so obtained constitute a unified matrix and algorithmic formulation of dual-primal meth-
ods, which incorporates as a particular case that for which a node is divided if and only if it lies
on the interior boundary; i.e., all interior nodes are primal and all internal-boundary nodes are
dual. This yields an all-inclusive theory of one-level nonoverlapping DDMs that, in particular,
incorporates the Schur complement method (obtained using a Dirichlet approach) and a one-level
FETI method (obtained using a Neumann approach). Then, a general matrix-formulation is con-
structed for two-level nonoverlapping DDMs, which is based on a scheme of wide applicability
here called the “round-trip algorithm”, and that was first introduced by Herrera in [13]. In the
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DDM MULTIPLIERS-FREE THEORY 3

developments presented in this article, such DDMs consist of the solution of a Dirichlet prob-
lem followed by a Neumann problem, or the same but in reverse order; so, they essentially are
Neumann-Neumann and preconditioned FETI methods [11], respectively, except that they do not
use Lagrange multipliers and, furthermore, they ab initio incorporate dual-primal precondition-
ers and yield explicit matrix expressions valid when they are applied. This feature considerably
reduces the code-development effort required for its implementation, as it is further discussed in
Section XII, devoted to numerical results.

Two projection-matrices, a and j are introduced, which are generalizations of the “average”

and “jump” of a function and can be effectively applied at the discrete level (i.e., to vectors) not
only at internal-boundary nodes but at edges and corners, as well. The matrix a yields, when
applied to any vector, the projection on the subspace of continuous vectors, whereas j is the

projection on its orthogonal complement, so that aj = ja = 0. Furthermore, these matrices,

being, symmetric, nonnegative and orthogonal projection-matrices, have superior computational
properties and, on the basis of numerical results here reported, we claim that the j operator is

the optimal choice for the B operator of the FETI methods [11], as discussed in the section on
Computational Results. Construction of these matrices is very simple; indeed, a is the average
over each node and, once a is available, j easily derives from it.

Numerical experiments that use dual-primal competitive preconditioners, which incorporate
a coarse space, were also carried out as part of the research supporting this study. Furthermore,
in Section XI an efficient method of solution applicable to general preconditioned dual-primal
formulations is introduced. The unified theory presented here introduces certain number of new
concepts and revises some others; in this respect, it should be mentioned that the framework in
which the theory is based implies a slight modification of the expression for Steklov-Poincaré
operator at the discrete level (see the end of Section III). A significant difference of the new
expression here proposed for it, with respect to standard formulas, lies in the fact that the new
formula of ours does not contain the right-hand side of the equation to be solved; winning thereby,
in theoretical consistency.

The theory and algorithms derived without recourse to Lagrange multipliers will be referred
to as multipliers-free. Other unified theories have been published [14,15]. We believe our unified
theory goes beyond such contributions as follows: it is more systematic, complete, and covers the
specifics more thoroughly.

II. DUAL-PRIMAL SPACES

Let �̄ denote a discrete set, whose members will be referred to as “degrees of freedom.” In this
setting “nodes” are subsets of �̄, to be denoted by Z ⊂ �̄. Furthermore, the collection of the
nodes constitute a partition, P , of �̄; i.e.,{

�̄ =⋃Z∈P Z
Z ∩ ϒ = φ, when Z �= ϒ and Z, ϒ ∈ P (2.1)

Nodes with cardinality one are said to be “primal” while those whose cardinality is greater than
one, are said to be “dual nodes.” The sets � ⊂ �̄ and � ⊂ �̄ are defined as the union of all the
degrees of freedom associated with primal nodes and as the union of all the degrees of freedom
associated with dual nodes, respectively, so that

�̄ = � ∪ � and φ = � ∩ � (2.2)
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4 HERRERA AND YATES

Notice that every real-valued function defined in �̄ is a vector (so, they will be referred to indis-
tinctly as functions or vectors). The set of such vectors, of dimension “d”, equal to the cardinality
of �̄, constitutes a linear space that will be denoted by D̃(�̄). When u ∈ D̃(�̄), we write

u ≡ (u1, . . . , ud) (2.3)

Then, the “Euclidean inner product”, which is the only one to be considered in this section, is
defined to be

u • w ≡
∑
i∈�̄

uiwi =
d∑

i=1

uiwi (2.4)

Correspondingly, D̃(Z) ⊂ D̃(�̄), D̃(�) ⊂ D̃(�̄), and D̃(�) ⊂ D̃(�̄) will be the linear spaces
whose elements are the real-valued functions defined in Z, �, and �, where Z is any node,
respectively. More properly, D̃(Z), D̃(�), and D̃(�) will be the linear subspaces of D̃(�̄) whose
vectors vanish identically outside of Z, �, and �, respectively. Then

D̃(�̄) = D̃(�) ⊕ D̃(�) (2.5)

Here, and in what follows, the symbol ⊕ stands for the direct sum of two linear spaces; thus, Eq.
(2.5) is fulfilled if and only if {

D̃(�̄) = D̃(�) + D̃(�)

{0} = D̃(�) ∩ D̃(�)
(2.6)

Therefore, vectors of D̃(�̄) can be represented in a unique manner as

u = (u�, u�) = u� + u�, with u� ∈ D̃(�) and u� ∈ D̃(�) (2.7)

A vector u ∈ D̃(�̄) is said to be continuous when for every node Z, one has

ui = uj , ∀i, j ∈ Z (2.8)

That is, at every node Z ∈ P the value of such a vector is unique. Continuous vectors constitute
a linear subspace of D̃(�̄) that will be denoted by D̄(�̄). We notice that

D̃(�) ⊂ D̄(�̄) (2.9)

Two matrices a : D̃(�̄) → D̃(�̄) and j : D̃(�̄) → D̃(�̄) are now introduced, which are

defined by

au = ProjD̄u and j = I − a (2.10)

Here, I is the identity matrix and the projection on D̄ is taken with respect to the Euclidean inner
product. In view of this definition we have

D̄(�̄) ≡ aD̃(�̄) (2.11)

An obvious and important property is that

I = a + j (2.12)
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Furthermore, j is also a projection; indeed, it is the projection on the orthogonal complement of

D̄. Therefore, a and j are both symmetric, nonnegative, and idempotent. We also notice that

aj = ja = 0 (2.13)

In particular

jD̄(�̄) = {0} (2.14)

The construction of the matrix a is straightforward: “given a vector of u ∈ D̃(�̄) to obtain au,
at every degree of freedom belonging to a node the value of au equals the average of u over that
node”, i.e.,

(au)i = 1

|Z|
∑
j∈Z

uj , whenever i ∈ Z (2.15)

Here, |Z| is the cardinality of Z. As for j , it does not need to be computed since

ju = u − au, ∀u ∈ D̃(�̄) (2.16)

On the other hand,

au = u and ju = 0, ∀u ∈ D̃(�) (2.17)

It can also be seen that, for every node Z ∈ P:

au ∈ D̃(Z) and ju ∈ D̃(Z), when u ∈ D̃(Z) (2.18)

Then, it is clear that

a{D̃(�)} ⊂ D̃(�), a{D̃(�)} ⊂ D̃(�) and j{D̃(�)} = {0} (2.19)

Using the notation of Eq. (2.7), one has j ũ = j ũ� ∈ D̃(�) for every ũ ∈ D̃(�̄); therefore,

j{D̃(�̄)} = j{D̃(�)} ⊂ D̃(�) (2.20)

A more formal treatment of the matrices a and j , as well as some additional details, is given in

the Appendix.
Now, we define

D̃1(�) ≡ jD̃(�) = jD̃(�̄)

D̃2(�) ≡ aD̃(�) (2.21)
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6 HERRERA AND YATES

The following properties of these subspaces of D̃(�) are listed:
• D̃1(�) is the orthogonal complement of D̄(�̄) = aD̃(�̄);
•

D̃(�̄) = D̃1(�) ⊕ D̄(�̄) (2.22)

•

D̃(�) = D̃1(�) ⊕ D̃2(�) (2.23)

• D̃1(�) and D̃2(�) are orthogonal complements relative to D̃(�).
•

D̄(�̄) = D̃2(�) ⊕ D̃(�) (2.24)

D̃(�̄) = aD̃(�̄) ⊕ jD̃(�̄) = D̄(�̄) ⊕ jD̃(�̄) = D̃(�) ⊕ D̃1(�) ⊕ D̃2(�) (2.25)

Other properties implied by the above results are

D̄(�̄) =
{
u ∈ D̃(�̄)

∣∣∣∣ju = 0

}
=
{
u ∈ D̃(�̄)

∣∣∣∣au = u

}
D̃1(�) =

{
u ∈ D̃(�̄)

∣∣∣∣au = 0

}
=
{
u ∈ D̃(�̄)

∣∣∣∣ju = u

}
D̃2(�) =

{
u ∈ D̃(�)

∣∣∣∣ju = 0

}
=
{
u ∈ D̃(�)

∣∣∣∣au = u

}
(2.26)

These relations, together with Eq. (2.9), will also be used in the sequel.
Other notation, which will also be used, is that for every function u ∈ D̃(�̄), we will write

•
û ≡ au and

[[
u
]] ≡ ju (2.27)

Then
•
û ∈ D̄(�̄), whereas

[[
u
]]

belongs to D̃1(�) ⊂ D̃(�). It should be noticed that, in view
of Eq. (2.25), any u ∈ D̃(�̄) can be written uniquely as

u = u� + u� = u� + u�1 + u�2 with u� ∈ D̃(�), u�1 ∈ D̃1(�) and u�2 ∈ D̃2(�) (2.28)

with u�1 ≡ [[u�

]]
, u�2 ≡ •

û� and u� = u�1 + u�2.

III. GREEN-HERRERA FORMULA FOR MATRICES AND THE
STEKLOV-POINCARÉ OPERATOR

Now, let A : D̃(�̄) → D̃(�̄) be a symmetric and positive definite matrix. The “energy inner
product” is defined by

(u, w) ≡ u • Aw, ∀u, w ∈ D̃(�̄) (3.1)

The linear space, D̃(�̄) becomes a (finite-dimensional) Hilbert space when it is provided with
the energy inner product. We will write

A ≡
(

A
��

A
��

A
��

A
��

)
(3.2)
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DDM MULTIPLIERS-FREE THEORY 7

The notation here is such that{
A

��
: D̃(�) → D̃(�), A

��
: D̃(�) → D̃(�)

A
��

: D̃(�) → D̃(�), A
��

: D̃(�) → D̃(�)
(3.3)

We introduce the following definitions

L ≡
(

A
��

A
��

0 0

)
and R ≡

(
0 0

A
��

A
��

)
(3.4)

The matrices
[[

R
]]

: D̃(�) → D̃(�) and
•
R̂ : D̃(�) → D̃(�) are defined by

[[
R
]]

≡ aR and
•
R̂ ≡ jR (3.5)

When Eq. (3.5) holds, in view of Eq.(2.8), one has

R =
•
R̂ +

[[
R
]]

(3.6)

Furthermore [[
R
]]T ≡ RTaand

( •
R̂

)T

≡ RTj (3.7)

We notice that the ranges of L and R are D̃(�) and D̃(�), respectively, whereas those of
[[

R
]]

and
•
R̂ are contained in D̃(�). Even more, these latter two ranges are linearly independent.

With this notation, the following relations are satisfied:

A = L + R (3.8)

w • Lu − u • Lw = u • Rw − w • Ru, ∀u, w ∈ D̃(�̄) (3.9)

Furthermore, Eq. (3.9) implies

w • Lu − [[u]] •
•
R̂ w + •

ŵ •
[[

R
]]

u = u • Lw − [[w]] •
•
R̂ u + •

û •
[[

R
]]

w,

∀u, w ∈ D̃(�̄) (3.10)

Eq. (3.10), will be referred to as the “Green-Herrera formula for matrices”. It establishes that the

matrix L −
•

R̂
T +

[[
R
]]

is symmetric; i.e.,

L −
•

R̂
T +

[[
R
]]

=
(

L −
•

R̂
T +

[[
R
]])T

(3.11)

Hence,

L −
•

R̂
T +

[[
R
]]

= LT −
•
R̂ +

[[
R
]]T

(3.12)
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8 HERRERA AND YATES

or, equivalently:

L − RT j + aR = LT − jR + RT a (3.13)

In the light of Eq. (3.10), it is now possible to explain the motivation of the definitions
introduced by Eq. (3.5). The Green-Herrera formulae were originally introduced in a couple
of papers [16,17] and have been used as basis for several numerical methods such as the Eulerian-
Lagrangian localized adjoint method (ELLAM) [18], Trefftz method [19], and FEM with optimal
functions (FEM-OF [20]). For Laplace’s differential operator acting on discontinuous piecewise–
defined functions that satisfy homogeneous boundary conditions, Green-Herrera formula is (see,
for example [19, 20]):

∫
�

wLudx +
∫

�

{
[[u]]

•
∂̂w

∂n
− •

ŵ

[[
∂u

∂n

]]}
dx =

∫
�

uLwdx +
∫

�

{
[[w]]

•
∂̂u

∂n
− •

û

[[
∂w

∂n

]]}
dx

(3.14)

Comparison of Eqs. (3.10) and (3.14) yields the following correspondences:

L↔ L

[[u]] ↔ [[
u
]]

•
û ↔ •

û

 and


[[

∂u

∂n

]]↔ −
[[

R
]]

u
•
∂̂u

∂n
↔ −

•
R̂ u

(3.15)

Of course, we could have modified the definitions of Eq. (3.5), by changing the sign there, so that[[
R
]]

u and
•
R̂ u would correspond directly to the jump and the average of the normal derivative,

respectively. However, we refrained from doing so since that would lead to unnecessary notation
complications in our developments.

Another example is the Green-Herrera formula for the general elliptic operator, symmetric,
and second order, which is

∫
�

wLudx +
∫

�

{
[[u]]

•
̂an • ∇w − •

ŵ
[[
an • ∇u

]]}
dx

=
∫

�

uLwdx +
∫

�

{
[[w]]

•
̂an • ∇u − •

û
[[
an • ∇w

]]}
dx (3.16)

The correspondence of Eq. (3.15) still holds for this case, except that
[[
an • ∇u

]]↔ −
[[

R
]]

u
•

̂an • ∇w ↔ −
•
R̂ u

(3.17)

Correspondences similar to those of Eqs. (3.15) and (3.17) can be established in general; applica-
tions include the governing system of equations of linear elasticity and many other problems. We
notice that Eqs. (3.15) and (3.17) imply a new formula for the Steklov-Poincaré operator (i.e., the
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DDM MULTIPLIERS-FREE THEORY 9

jump of the normal derivative) at the discrete level, which is different to standard interpretations
that have been presented by many authors (compare, for example, with [9] pp 3, 46 and 47, or [11]
pp 3 and 4). Indeed, our formula for the Steklov-Poincaré operator is as follows:

−
[[

R
]]

≡ −aR (3.18)

In particular, it does not contain the right-hand side of the equation to be solved; winning
thereby, in theoretical consistency. In this respect, we notice that our formula is applicable to any
vector (function) independently of whether it is solution of the problem under consideration or
not.

IV. THE DISCONTINUOUS MULTIPLIERS-FREE MATRIX-FORMULATION

Define

Ā ≡ aA (4.1)

Then the “original problem” consists in: “Given f̄ ∈ D̄(�̄), find ū ∈ D̄(�̄) such that

Āū = f̄ =
(

f̄
�

f̄
�

)
, (4.2)

Observe that the fact that f̄ ∈ D̄(�̄) implies that f̄
�

∈ D̃2(�) = D̃(�) ∩ D̄(�̄). Hence,

f̄
�2

= af̄
�

= f̄
�

and f̄
�1

= j f̄
�

= 0 (4.3)

Recall

A = L + R and aL = L (4.4)

Therefore,

Ā = aA = L + aR = L +
[[

R
]]

(4.5)

Hence, ū ∈ D̃(�̄) is the solution of the original problem, if and only if,

Lū = f̄
�[[

R
]]

ū = f̄
�

j ū = 0

 (4.6)

The following Lemma will be used in what follows.

Lemma 4.1. Let u ∈ D̃(�̄), then the following assertions are equivalent:

1.
•

R̂
T

u = 0 (4.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 HERRERA AND YATES

2.

j

•
R̂

T
u = 0 (4.8)

3.

ju = 0 (4.9)

Proof. Recall that A
��

is positive definite and observe, for any u ∈ D̃(�̄) one has

u • j

•
R̂

T
u = u • jRT ju = ju • A

��
ju ≥ 0 (4.10)

and the equal sign holds if and only if ju = 0. Then, the equivalence between Eqs. (4.8) and (4.9)

is clear. On the other hand, it is straight forward to see that Eq. (4.9) implies (4.7) while (4.7)
implies (4.8). Then, the proof is complete.

Using this Lemma, the conditions of Eq. (4.6) can be restated as: ū ∈ D̃(�̄) is the solution of
the original problem, if and only if,

Lū = f̄
�[[

R
]]

ū = f̄
�•

R̂
T

ū = 0

 (4.11)

Theorem 4.2. Let ū ∈ D̃(�̄), then the equation

(
L − RT j + aR

)
ū ≡

(
L −

•
R̂

T +
[[

R
]])

ū = f̄ (4.12)

is satisfied, if and only if, ū is the solution of the original problem.

Proof. That Eq. (4.12) is fulfilled when ū is solution of the original problem follows from
Eq.(4.11). Conversely, assume Eq. (4.12) is satisfied, then apply j to it to obtain

j

•
R̂

T
ū = 0 (4.13)

Therefore, j ū = 0 by the Lemma; i.e., ū ∈ D̄(�̄). Using this fact, Eq. (4.12) reduces to

(L + aR)ū = f̄ = f̄
�

+ f̄
�

(4.14)

Or, applying Eq. (4.5),

Āū = f̄ (4.15)

This completes the required proof.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



DDM MULTIPLIERS-FREE THEORY 11

To finish up with this section, we define the matrix G by

G ≡ L −
•

R̂
T +

[[
R
]]

= L − RT j + aR (4.16)

Then, in view of Eq. (4.12), the original problem can be stated as “Find ū ∈ D̃(�̄) such that

Gū = f̄ ” (4.17)

We notice that the matrix G is symmetric, by virtue of Eq. (3.11). Generally it is nonpositive-
definite; albeit, it is saddle as will be seen later. The result just obtained is relevant since we
have succeeded in deriving a formulation of the original problem in discontinuous functions
without resource to Lagrange multipliers: the “multipliers-free matrix-formulation” in discontin-
uous functions. As explained in the Introduction, the “unified multipliers-free theory of iterative
substructuring DDM” that motivates the title of this article will be based on it.

V. RELATION WITH LAGRANGE MULTIPLIERS FORMULATIONS

The formulation with Lagrange multipliers can be written as (see, for example, [21])A
��

A
��

0
A

��
A

��
BT

�

0 B
�

0


u�

u�

λ

 =
f

�

f
�

0

 (5.1)

Or, with our notation, this is

(L + R)u + BT

�
λ = f

�
+ f

�
(5.2)

On the other hand, in the formulation without Lagrange multipliers we have:(
L − (R)T j + aR

)
ū = f

�
+ f

�
(5.3)

Eqs. (5.2) and (5.3), together, imply

BT

�
λ = −

(
jR + (jR)T

)
ū (5.4)

When Eq. (5.4) is used in Eq.(5.2) it is seen that the “Lagrange multiplier formulation reduces”
to the formulation without Lagrange multipliers.

VI. HARMONIC-VECTORS SPACES AND SUBSPACES

The inner product used in this section, unless otherwise explicitly stated, is understood to be the
energy inner product; in particular, orthogonal complements will be taken with respect to it.

The “harmonic functions space” is defined to be

D ≡
{
u ∈ D̃(�̄)

∣∣∣L u = 0
}

(6.1)
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12 HERRERA AND YATES

Members of D will be referred as “harmonic functions (or vectors)”. An equivalent definition of
this linear subspace of D̃(�̄) is that it is the orthogonal complement of D̃(�); i.e.,

D = D̃(�)⊥ (6.2)

Eq. (6.2) can be derived using the fact that the range of L is contained in D̃(�), so that

w • Lu = w� • Lu = w� • Au, ∀w ∈ D̃(�̄) (6.3)

Furthermore, the transformation

ProjD : D̃(�) → D (6.4)

is one-to-one and covers D. This, because each one of the pairs {D̃(�), D̃(�)} and {D̃(�), D}
are linearly independent and

D̃(�) + D = D̃(�̄) = D̃(�) + D̃(�) (6.5)

The following subspaces of D will be used in the sequel:

D11 ≡ {u ∈ D|
[[

R
]]T

u = 0} and D12 ≡
{

u ∈ D

∣∣∣∣ •
R̂

T
u = 0

}

D21 ≡
{
u ∈ D

∣∣∣∣ •
R̂u = 0

}
andD22 ≡

{
u ∈ D

∣∣∣∣ [[R]] u = 0

}
(6.6)

We notice that

D11 =
{
u ∈ D

∣∣∣∣au� = 0

}
and D12 =

{
u ∈ D

∣∣∣∣ju = ju� = 0

}
D21 =

{
u ∈ D

∣∣∣∣jRu = 0

}
and D22 =

{
u ∈ D

∣∣∣∣aRu = 0

}
(6.7)

That
•

R̂
T

u = 0 if and only if ju = 0 was shown in Lemma 4.1. Similarly, it can be shown that[[
R
]]T

u = 0 if and only if au� = 0. It can also be seen that

D11 ≡ ProjDD̃1(�) and D12 ≡ ProjDD̃2(�) (6.8)

Therefore

D = D11 ⊕ D12 (6.9)

The identity

A = L + R = L + aR + jR = LT + RT a + RT j (6.10)

will be used in what follows. Applying it, it is seen that{
w • Au = 0, ∀u ∈ D11 and w ∈ D21

w • Au = 0, ∀u ∈ D12 and w ∈ D22
(6.11)
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Furthermore, it can also be seen that{
w • Au = 0, ∀w ∈ D11 ⇒ u ∈ D21

w • Au = 0, ∀w ∈ D12 ⇒ u ∈ D22
(6.12)

Therefore

D21 = D⊥
11 and D22 = D⊥

12 (6.13)

In [13], it was shown that Eq. (6.13) in the presence of Eq. (6.9), implies

D = D21 ⊕ D22 (6.14)

In summary, we have introduced two pairs of subspaces of D; namely, {D11, D12} and {D21, D22},
which enjoy the following properties:

D = D11 ⊕ D12

D = D21 ⊕ D22

D = D11 ⊕ D21

D = D12 ⊕ D22

D21 = D⊥
11 and D22 = D⊥

12

(6.15)

A geometrical interpretation of Eqs. (6.15) is supplied in Fig. 1.
Next we establish some properties of harmonic functions and, for this purpose, the functions

u and w to be considered in what follows will be assumed to be in D. For such functions, Eq.
(6.10) implies that when u, w ∈ D, one has:

wAu = w • aRu + w • jRu = w • RT au + w • RT ju (6.16)

Then

wAu = w • RT au, when u ∈ D12 (6.17)

FIG. 1. Geometric summary.
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14 HERRERA AND YATES

and

wAu = w • jRu, when u ∈ D22 (6.18)

Using Eqs. (6.17) and (6.18) it can be seen that the bilinear form associated with aR is symmetric
and positive definite when restricted to functions in D12, while the bilinear form associated with
jR is symmetric and positive definite when restricted to functions in D22. Hence, the bilinear

form associated with the matrix

G ≡ L − RT j + aR (6.19)

in terms of which the original problem was formulated in Eq. (4.17), is saddle, when it is restricted
to harmonic functions; indeed, it is positive definite on D12 and it is negative definite on D22.

VII. ONE-LEVEL METHODS, INCLUDING SCHUR COMPLEMENT, AND FETI

The purpose of this section is to transform the original problem into one that is formulated in terms
of harmonic functions exclusively. To this end, first a general basic matrix equation is established,
that will be used to derive one-level and two-level methods. In this section, it is applied to obtain
the Schur-complement method, using a Dirichlet approach, and a one-level FETI method, using
a Neumann approach. In the next section, the general basic matrix equation mentioned earlier is
applied to derive two-level methods.

We start by defining the “dual-primal Schur complement matrix”, S : D̃(�) → D̃(�) to be:

S ≡ A
��

− A
��

A−1

��
A

��
(7.1)

When S is so defined, it is symmetric and positive definite; a property that will used in the sequel.
Furthermore, when v ∈ D one has

Av = Rv =
(

0
Sv�

)
= Sv� (7.2)

Let u ∈ D(�̄) be solution of Eq. (4.12), and ũP ∈ D̃(�̄) be any vector such that

LũP = f̄
�

(7.3)

Then, we define

u ≡ ū − ũP (7.4)

and notice that u ∈ D. In view of Eq. (4.12), it is seen that this vector satisfies(
aR − RT j

)
u = f̄

�
−
(
aR − RT j

)
ũP (7.5)

Lemma 7.1. Let v ∈ D, then, û ≡ ũP + v is solution of the original problem if and only if

w •
(
aR − RT j

)
v = w •

(
f̄

�
−
(
aR − RT j

)
ũP

)
, ∀w ∈ D (7.6)
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Proof. Eq. (7.6) is a necessary condition in view of Eq. (7.5). Conversely, assume Eq. (7.6)
is fulfilled, then

w •
(
aR − RT j

) (
v − u

) = 0, ∀w ∈ D = D12 ⊕ D22 (7.7)

Hence:
w • aR(v − u) = w • (a + j)R(v − u) = w • A(v − u) = 0, ∀w ∈ D12

−w • RT j(v − u) = −(v − u) • jRw = −(v − u) • (a + j)Rw =
−w • A(v − u) = 0, ∀w ∈ D22

(7.8)

Eq. (7.8) implies that (v − u) ∈ D12 ∩ D22 = {0}. That is v = u. Thus Eq. (7.6) is a sufficient
condition. This completes the proof of the Lemma.

Theorem 7.2. Let ṽ ∈ D̃(�) be such that

ṽ� = −A−1

��
A

��
ṽ� (7.9)

Then, ũ ≡ ũP + ṽ is the solution of the original problem if and only if(
aS − Sj

)
ṽ� = f̄

�
−
(
aR − Sj

)
ũP (7.10)

Proof. Eq. (7.9) is a necessary and sufficient condition for ṽ ∈ D, and when ṽ ∈ D then Eq.
(7.6) is equivalent to

w� •
(
aS − Sj

)
ṽ� = w� •

(
f̄

�
−
(
aR − Sj

)
ũP

)
, ∀w� ∈ D̃(�) (7.11)

Finally, Eq. (7.11) is in turn equivalent to (7.10).
Eq. (7.10) is the basic matrix formulation without recourse to Lagrange multipliers mentioned

at the beginning of this section, and we proceed to use it to derive one-level methods. In the devel-
opment of iterative substructuring methods, the following two approaches have been extensively
used.
The Dirichlet Approach: Assume, ũP ∈ D̃(�̄) satisfies the equations

LũP = f̄
�

j ũP = 0

}
(7.12)

Then

Lu = 0[[
R
]]

u = f̄
�

−
[[

R
]]

ũP

•
R̂

T
u = 0

 (7.13)

We notice that when ũP ∈ D̃(�̄) is defined by Eq. (7.12), it is nonunique. However, if we
choose (ũP )� = 0, then ũP is the unique solution of a Dirichlet problem, and it is given by

ũP =
(

(ũP )�

(ũP )�

)
with (ũP )� ≡ A−1

��
f̄

�
and (ũP )� ≡ 0 (7.14)
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16 HERRERA AND YATES

In this case, Eq. (7.10) reduces to

aSu� = f̄
�

− aRũP = f̄
�

− aA
��

A−1

��
f̄

�
(7.15)

Here, the matrix aS is symmetric and positive definite on D12.
We first notice that Eq. (7.15) corresponds to a standard formula [11], but now it applies to the

dual-primal approach as well. So, by suitably choosing the dual nodes, the different dual-primal
preconditioners are obtained. Second, we also notice that

w • Au = w • Su� = w • (f̄
�

− A
��

A−1

��
f̄

�

)
, ∀w ∈ D12 (7.16)

We notice that the matrix a is not used when attention is restricted to continuous functions, as it
is done in standard approaches.
Neumann Approach: Assume, ũP ∈ D̃(�̄) satisfies the equations

LũP = f̄
�[[

R
]]

ũP = f̄
�

}
(7.17)

and define

u ≡ ū − ũP (7.18)

Then

Lu = 0[[
R
]]

u = 0
•

R̂
T

u = −
•

R̂
T

ũP

 (7.19)

Again, we notice that when ũP ∈ D̃(�̄) is defined by Eq. (7.12) it is nonunique. However, if we

impose the additional condition
•
R̂ ũP = 0, then ũP is the unique solution of a Neumann problem,

and it is given by

uP = A−1f̄ with f̄ =
(

f̄
�

f̄
�

)
(7.20)

Eq. (7.10) reduces to

Sju� = −SjũP (7.21)

which is fulfilled if and only if

ju� = −j ũP (7.22)

On the other hand, in this case the function u ∈ D is determined by the vector
•
R̂ u = jSu�, since[[

R
]]

u = 0 and Au =
[[

R
]]

u +
•
R̂ u. So, we search for a value of jSu� with the property Eq.

(7.21) is fulfilled. Let us call λ ≡ jSu�. Then

Au = λ (7.23)
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And Eq. (7.22) is equivalent to

jA−1λ = −juP (7.24)

since

u = A−1λ (7.25)

We notice that λ ∈ D̃1(�) necessarily since aλ = 0. Therefore, our search for λ is on D̃1(�) and

the matrix jA−1 is positive definite there. So, an iterative CGM approach is adequate to solve Eq.

(7.24). Once λ has been obtained, u is given by Eq. (7.25).
Before we leave this section, a few auxiliary results that will be used in the sequel will be

established. When the Dirichlet approach is used, the problem can be stated as:
“Find u ∈ D12 ⊂ D such that [[

R
]]

u = f̄
�

−
[[

R
]]

ũP ” (7.26)

Theorem 7.3. There exists a unique function u21 ∈ D that satisfies the conditions[[
R
]]

u21 = f̄
�

−
[[

R
]]

ũP and
•
Ru21 = 0 (7.27)

Such a function belongs to D21. Furthermore, a vector u ∈ D12 is the solution of the Dirichlet
approach if and only if, there exists a vector u22 ∈ D22 such that

u = u21 + u22 (7.28)

Proof. First, we show that there exists a unique function u21 ∈ D such that fulfills Eq. (7.27).
Now, under the condition u21 ∈ D this latter equation is equivalent to

Au =
(
L +

[[
R
]]

+ •
R

)
u =

(
L +

[[
R
]])

u = f̄
�

−
[[

R
]]

ũP (7.29)

And Eq. (7.29) has a unique solution, since A is positive definite. Now, when u ∈ D12 is the
solution of the Dirichlet approach, define u22 ≡ u − u21. Then[[

R
]]

u22 =
[[

R
]]

(u − u21) = f̄
�

−
[[

R
]]

ũP − (f̄
�

−
[[

R
]]

ũP ) = 0 (7.30)

This implies u22 ∈ D22, and Eq. (7.28) is satisfied by virtue of the definition of u22. Conversely,
assume u ∈ D12 and the conditions of Eq. (7.28) are satisfied, then[[

R
]]

u =
[[

R
]]

(u21 + u22) = f̄
�

−
[[

R
]]

ũP (7.31)

When the Neumann approach is used, the problem can be stated as follows:
“Find u ∈ D22 ⊂ D such that

•
R̂

T
u = −

•
R̂

T
ũP (7.32)
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or, equivalently

ju = −j ũP ” (7.33)

Theorem 7.4. There exists a unique function u11 ∈ D that satisfies the conditions

j(u11 + ũP ) = 0 and a(u11)� = 0 (7.34)

Furthermore, u11 ∈ D11 and a vector u ∈ D22 is the solution of the Neumann approach if and
only if, there exists a function u12 ∈ D12 such that:

u = u11 + u12 (7.35)

Proof. First, we show that there exists a unique function u11 ∈ D that fulfills Eq. (7.34). To
this end observe that this latter equation implies that

(u11)� = −j ũP (7.36)

Furthermore, the condition u11 ∈ D is equivalent to

Lu = 0 (7.37)

Using the definition of L, Eq. (3.4), we have

A
��

(u11)� = −A
��

(u11)� (7.38)

This determines u11 ∈ D uniquely, since A
��

is positive definite. Now, assume u ∈ D22 is the
solution of the Neumann approach, and then define u12 ≡ u − u11. Hence,

ju12 = j(u − u11) = j(u + ũP ) = 0 (7.39)

This implies u12 ∈ D12, and it can be verified that Eq. (7.35) is satisfied. Conversely, assume
u ∈ D22 and the conditions of Eq. (7.35) are satisfied, then

ju = j(u11 + u12) = ju11 = −j ũP (7.40)

VIII. TWO-LEVEL METHODS AND THE ‘ROUND-TRIP’ ALGORITHM

In this section, we briefly revise a general framework that was first introduced in [13] and two-level
methods are derived from it.

In Section VII, Theorems 7.3 and 7.4, we were led to consider the following two abstract
problems.

Problem 1. In this problem, u21 ∈ D21 is the datum: “Given u21 ∈ D21, find u ∈ D12 such that

u = u21 + u22 for some u22 ∈ D22” (8.1)
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Problem 2. In this problem, u11 ∈ D11 is the datum: “Given u11 ∈ D11, find u ∈ D22 such that

u = u11 + u12 for some u12 ∈ D12” (8.2)

At the end of this section a Theorem is given, which yields formulations of these problems that
are convenient in many respects. They are based on some linear transformations that we introduce
next. Eq. (6.15) implies that every function u ∈ D can be written in a unique manner as

u = u11 + u12 = u21 + u22, with uαβ ∈ Dαβ ; α, β = 1, 2 (8.3)

So, we define for each α, β = 1, 2, the matrices σ
αβ

: D → Dαβ , which satisfy for each u ∈ D,

the condition

σ
αβ

u ≡ uαβ (8.4)

For greater clarity, we recall that the energy inner product will be used in what follows
exclusively, as we have been doing.

Lemma 8.1. We have

(w, σ
12

σ
21

u) = (w, u) + (σ
22

w, σ
22

u) = (w, u) − (w, σ
12

σ
22

u)(
w, σ

12
σ

22
u
)

= −
(
σ

22
w, σ

22
u
) }

, ∀u, w ∈ D12 (8.5)

Together with

(w, σ
22

σ
11

u) = (w, u) + (σ
12

w, σ
12

u) = (w, u) − (w, σ
22

σ
12

u)

(w, σ
22

σ
12

u) = −(σ
12

w, σ
12

u)

}
∀u, w ∈ D22 (8.6)

Proof. For u ∈ D12, we observe that

σ
21

u = u − σ
22

u and u⊥σ
22

u (8.7)

Therefore, (
σ

21
w, σ

21
u
)

=
(
w − σ

22
w, u − σ

22
u
)

= (w, u
)+

(
σ

22
w, σ

22
u
)

(8.8)

Furthermore,(
σ

22
w, σ

22
u
)

=
(
σ

22
w, σ

11
σ

22
u
)

=
(
w, σ

11
σ

22
u
)

= −
(
w, σ

12
σ

22
u
)

(8.9)

Hence, Eq. (8.5) is clear. As for Eq. (8.6), it can be derived in a similar fashion.

Corollary 8.2.

1. The mapping σ
12

σ
21

: D12 → D12 is symmetric and positive definite on D12. Furthermore(
u, σ

12
σ

21
u
)

= (u, u
)+

(
σ

22
u, σ

22
u
)

≥ (u, u
)

, ∀u ∈ D12 (8.10)
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2. The mapping σ
22

σ
12

: D22 → D22 is symmetric and positive definite on D22. Furthermore

(u, σ
22

σ
11

u) = (u, u) + (σ
12

u, σ
12

u) ≥ (u, u), ∀u ∈ D22 (8.11)

Proof. These results are straightforward applications of Lemma 8.1.

Definition 8.3. We define the operators TD : D12 → D12 and TN : D22 → D22 by

TDu ≡ −σ
12

σ
22

u and TNu ≡ −σ
22

σ
12

u (8.12)

Remark 8.4. We notice that, by virtue of Eqs. (8.5) and (8.6), both TD : D12 → D12 and
TN : D22 → D22 are symmetric and nonnegative. Furthermore:{

σ
12

σ
21

u = (I + TD)u, ∀u ∈ D12

σ
22

σ
11

u = (I + TN)u, ∀u ∈ D22
(8.13)

Theorem 8.5. Formulation of Problems 1 and 2

A. Problem 1, possesses a unique solution, which satisfies:

(I + TD)u = σ
12

u21 (8.14)

B. Problem 2, possesses a unique solution, which satisfies:

(I + TN)u = σ
22

u11 (8.15)

C. In view of Remark 8.4, Eqs. (8.14) and (8.15) can also be written as

σ
12

σ
21

u = σ
12

u21 and σ
22

σ
11

u = σ
22

u11 (8.16)

respectively.

Proof. Eq. (8.14) possesses a unique solution, ū ∈ D12, because σ
12

σ
21

is positive definite
on D12 and σ

12
u21 ∈ D12. Then

σ
12

(σ
21

ū − u21) = 0 (8.17)

This implies that (σ
21

ū − u21) ∈ D11 ∩ D21 = {0}; i.e.,

σ
21

ū = u21 (8.18)

Hence

ū = u21 + (ū)22 (8.19)

is a solution of Problem 1. This proves that Eq. (8.14) is a sufficient condition and thereby existence
of a solution for this problem. Assume now u21 ∈ D21, u22 ∈ D22, u ∈ D12 and

u = u21 + u22 (8.20)
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Then, applying σ
21

one gets

σ
21

u = u21 (8.21)

Application of σ
12

to this equation yields Eq. (8.14). Therefore, that equation is a necessary con-
dition. Thereby, this proves that the solution of Problem 1 is unique. The proof of Part A is now
complete and the proof of Part B is similar.

The algorithms derived from Theorem 8.5 will be referred to as “round-trip algorithms”. We
notice that the application of I + TD = σ

12
σ

21
consists of the solution of a Dirichlet problem

followed by a Neumann one, whereas the application of I + TN = σ
22

σ
11

consists of the solu-
tion of a Neumann problem followed by a Dirichlet one. So, the “round-trip algorithms” include
methods that are similar, probably equivalent, to the well-known Neumann-Neumann and pre-
conditioned FETI methods of the literature [9–11]. We observe, furthermore, that the conjugate
gradient method can be applied to the “round-trip algorithms” since for them the system-matrix
is positive definite.

IX. TWO-LEVEL DUAL-PRIMAL MATRIX EQUATIONS

Application of the round-trip algorithm requires computing the components vγα ∈ Dγα , of any
given a vector v ∈ D, which have the property that

v =
2∑

α=1

vγα , γ = 1, 2 (9.1)

In this section, the bases for carrying out such computations are established.
According to Eq. (2.28), when v ∈ D, we can write

v = v�1 + v�2 + v�, where v�1 ∈ D̃1(�), v�2 ∈ D̃2(�) and v� ∈ D̃(�) (9.2)

Furthermore, v�1 = (v11)�1 and v�2 = (v12)�2 because

v11 = (v11)�1 + (v11)�, where (v11)�1 ∈ D̃1(�) and (v11)� ∈ D̃(�)

v12 = (v12)�2 + (v12)�, where (v12)�2 ∈ D̃2(�) and (v12)� ∈ D̃(�)
(9.3)

Then the equations Lv11 = Lv12 = 0 together with Eqs. (9.2) and (9.3) imply{
((v11)�, w̃) = −(v�1, w̃), ∀w̃ ∈ D̃(�)

((v12)�, w̃) = −(v�2, w̃), ∀w̃ ∈ D̃(�)
(9.4)

Eqs. (9.4) yield

A
��

(v11)� = −A
��

jv�

A
��

(v12)� = −A
��

av�

}
(9.5)

Using the facts that every w ∈ D11 is

w = w�1 + w�, where w�1 ∈ D̃1(�) and w� ∈ D̃(�) (9.6)

and that every w ∈ D12 is

w = w�2 + w�, where w�2 ∈ D̃2(�) and w� ∈ D̃(�) (9.7)
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it is seen that

(v21, w̃) = 0, ∀w̃ ∈ D̃(�)

(v21, w̃) = (v, w̃), ∀w̃ ∈ D̃2(�)

(v21, w̃) = 0, ∀w̃ ∈ D̃1(�)

(9.8)

together with

(v22, w̃) = 0, ∀w̃ ∈ D̃(�)

(v22, w̃) = 0, ∀w̃ ∈ D̃2(�)

(v22, w̃) = (v, w̃), ∀w̃ ∈ D̃1(�) (9.9)

Now, let w̃ ∈ D̃(�), then

w̃ = jw̃ + aw̃ where jw̃ ∈ D̃1(�) and aw̃ ∈ D̃2(�) (9.10)

Thus, applying Eqs. (9.8) and (9.9) we get

(v21, w̃) = (v, aw̃�), ∀w̃ ∈ D̃(�̄) (9.11)

and

(v22, w̃) = (v, jw̃�), ∀w̃ ∈ D̃(�̄), (9.12)

respectively. Eq. (9.11) can be written as

w̃ • Av21 = w̃� • aAv = w̃� • a(L + R)v = w̃� • aRv, ∀w ∈ D̃(�̄) (9.13)

Furthermore,

w̃� • aRv = (aw̃�) • Rv = w̃� • Rv = 0, ∀w� ∈ D̃(�) (9.14)

Hence, Eq. (9.13) can be written as

w̃ • Av21 = w̃ • aRv, ∀w ∈ D̃(�̄) (9.15)

This latter equation is equivalent to

Av21 = aRv (9.16)

Similarly, Eq. (9.12) is equivalent to

Av22 = jRv (9.17)

Summarizing, let any function v ∈ D be given by Eq. (9.2), then its components vγα ∈ Dγα

that satisfy Eq. (9.1), can be obtained applying the following matrix equations(
v11

)
�

= −(A
��

)−1
A

��
jv� together with

(
v12

)
�

= −(A
��

)−1
A

��
av� (9.18)
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and

v21 = A−1aRv together with v22 = A−1jRv (9.19)

Application of the round-trip algorithms require also the evaluation of the vectors u21 ∈ D21 and
u11 ∈ D11, that were defined in Theorems 7.2 and 7.3, for the first approach and for the second
approach, respectively. According to those theorems, such functions are given by

u21 = A−1

(
f̄

�
−
[[

R
]]

ũP

)
and

(
u11

)
�

= A−1
��A��jũP (9.20)

X. THE CASE WHEN ALL PRIMAL NODES ARE INTERIOR

This corresponds to case when {�1, . . . , �E} is a partition of �̄; i.e.,

�̄ =
E⋃

α=1

�̄α and �̄α ∩ �̄β = ϕ when α �= β (10.1)

We define

�α ≡ � ∩ �̄α , Iα ≡ � ∩ �̄α together with � ≡
E⋃

α=1

�α , I ≡
E⋃

α=1

Iα (10.2)

Then

�̄ = � ∪ I while � = � and � = I (10.3)

Furthermore, for each α = 1, . . . , E, we define the matrix

Aα : D(�̄α) → D(�̄α) (10.4)

by the condition that the bilinear form associated to it is the restriction to D(�̄α) × D(�̄α) of the
bilinear form associated with Aα : D(�̄) → D(�̄); more precisely:

w • Aαv = wα • Avα , ∀w, v ∈ D(�̄α) (10.5)

Here,

v =
E∑

α=1

vα and w =
E∑

α=1

wα , with vα , wα ∈ D(�̄α) (10.6)

Then, we write

Aα ≡
(

Aα

II
Aα

I�
Aα

�I
Aα

��

)
(10.7)

Furthermore, for the case discussed in this section one has

A ≡
E∑

α=1

Aα (10.8)
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Therefore, we have {
A

II
≡∑E

α=1 Aα

II
, A

I�
≡∑E

α=1 Aα

I�

A
�I

≡∑E

α=1 Aα

�I
, A

��
≡∑E

α=1 Aα

��

(10.9)

We notice the following important properties

(
A

II

)−1 =
E∑

α=1

(
Aα

II

)−1
and

(
A
)−1 ≡

E∑
α=1

(
Aα
)−1

(10.10)

This implies that computing the inverses of the matrices A
II

and A requires computing local
inverses exclusively.

Eqs. (9.18) and (9.19) now become

(v11)I = −
E∑

α=1

(
Aα

II

)−1
A

I�
jv� together with (v12)I = −

E∑
α=1

(
Aα

II

)−1
A

I�
av� (10.11)

and

v21 =
E∑

α=1

(Aα)−1aRv together with v22 =
E∑

α=1

(Aα)−1jRv (10.12)

Similarly, Eq. (9.20) is:

u21 =
E∑

α=1

(Aα)−1
(
f̄

�
−
[[

R
]]

ũP

)
and (u11)� =

E∑
α=1

(
Aα

II

)−1
A

��
jũP (10.13)

Finally, we recall once more that in view of Eq. (10.10) computation of the components of a
harmonic vector requires calculation of local inverses, exclusively.

XI. SCHUR-COMPLEMENT METHOD OF SOLUTION FOR
DUAL-PRIMAL FORMULATIONS

Here, the case when not all primal nodes are interior will be considered. The subset of primal
nodes that are not interior will be π ⊂ � and we write I ⊂ � for the set of interior nodes. Then

� = π ∪ I and φ = π ∩ I (11.1)

Furthermore, we write

� ≡ � (11.2)

And we will use an obvious notation similar to that defined by Eq. (3.3). Eqs. (3.2) and (3.4) yield

A =
A

II
A

Iπ
A

I�

A
πI

A
ππ

A
π�

A
�I

A
�π

A
��

 , L =
A

II
A

Iπ
A

I�

A
πI

A
ππ

A
π�

0 0 0

 , and R =
 0 0 0

0 0 0
A

�I
A

�π
A

��


(11.3)
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We notice also that

A
��

=
A

II
A

Iπ
0

A
πI

A
ππ

0
0 0 0

 (11.4)

Given v ∈ D, its components v11 and v12 are given by the two systems of Eq. (9.5). They are(
A

II
A

Iπ

A
πI

A
ππ

)(
(v11)I

(v11)π

)
= −

(
A

I�
jv�

A
π�

jv�

)
(11.5)

and (
A

II
AIπ

A
πI

Aππ

)(
(v12)I

(v12)π

)
= −

(
A

I�
av�

A
π�

av�

)
, (11.6)

respectively. When the cardinality of π is much smaller than that associated with I, an efficient
manner of solving these systems is by applying a standard Schur complement approach to the
matrix of the left-hand sides of these equations. This yields v11 and v12.

The components v21 and v22, on the other hand, are given by Eqs. (9.16) and (9.17). They are

Av21 = aRv and Av22 = jRv (11.7)

We define the restricted average and restricted jump, as those which take the average and the
jump, only at the primal degrees of freedom; they will be denoted by ā and j̄ , respectively. When

primal-dual preconditioners are used, we require that j̄u21 = 0 and j̄u22 = 0. By reordering, we

write each vector w ∈ D ⊂ D̃(�̄) in the form

w ≡
wI

wπ

w�

→ w ≡
(

wJ

wπ

)
(11.8)

where

wJ ≡
(

wI

w�

)
(11.9)

Then

Aw → Qw (11.10)

with

Qi =
(

Qi

JJ
Qi

Jπ

Qi

πJ
Qi

ππ

)
; i = 1, . . . , E (11.11)

and

Q ≡
E∑

i=1

Qi (11.12)
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Then, we define the local Schur complement by

Si = Qi

ππ
− Qi

πJ

(
Qi

JJ

)−1
Qi

Jπ
; i = 1, . . . , E (11.13)

and

S ≡
E∑

i=1

Si (11.14)

It can be seen that the Schur complement is positive definite in the subspace where j̄w = 0. Fur-

thermore, Eq.(11.7) can be expressed in terms of the Schur complement, and then the conjugate
gradient method can be applied.

XII. IMPLEMENTATION AND COMPUTATIONAL RESULTS

This article was initially intended as a continuation of the work started by Herrera in [13], where
the round-trip algorithm was first introduced; thus, only the two-level methods derived from it
were numerically tested. For this purpose, the two-dimensional unit square � = (0, 1)2 was
used. The square was decomposed into N 2 subdomains having sides of length 1

N
. Each such

subdomain was further divided into M2 smaller squares with sides of length 1
M·N . As mentioned

in this article’s text, the conjugate gradient algorithm was used — first without a preconditioner
and then applied with a dual-primal preconditioner and then again with a preconditoner under
study: the “projecion preconditioner”. The stopping criteria was a reduction of the residue to less
than 10−6. The problems tested involved elliptic operators that were strictly positive definite on
all subdomains. For the case of the Laplacian operator, the dual-primal preconditioned method
ensures nonsingular matrices on all subdomains and that is the only kind of preconditioners that
has been so far utilized.

In [13], only the case when all primal nodes are interior was considered. Then, when
that approach is applied, the choice of D̃2(�) is unique and consists of continuous functions
exclusively. On the other hand, there are many choices of D̃1(�), which satisfy

D̃(�) = D̃1(�) ⊕ D̃2(�) (12.1)

However, when the approach here presented is applied the choices for D̃1(�) and D̃2(�) are
unique; they are defined by

D̃1(�) ≡ jD̃(�) and D̃2(�) ≡ aD̃(�) (12.2)

That is, D̃1(�) is the Euclidean orthogonal complement with respect to D̃(�) of the continuous
functions contained in D̃(�). In our numerical experiments, carried out for this article, the method
was first tested using the approach and basis functions of [13] and subsequently updated to incor-
porate the new procedure, together with the average a and jump j matrices. Then, the number of

iterations dropped significantly to about one half of the previous values. This would suggest that
these matrices, being, symmetric, nonnegative and orthogonal projection-matrices, have superior
computational properties and that the j operator is the optimal choice for the B operator of the

FETI methods [11]. To test this hypothesis, Antonio Carrilllo, a PhD student working in a project
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TABLE I. Comparison of B versus j .

Subdomains Total nodes Iterations FETI with B Iterations FETI with j

169 28,224 2,323 102
256 57,600 2,626 135
324 104,329 2,941 125
400 159,201 3,618 168

whose goal is to thoroughly compare the FETI methods with the multipliers-free methods, carried
out the computations that are described next. He applied the one-level FETI method, not using
any preconditioner, first using the B operator of the FETI methods described in [11] and then
he replaced the B operator by our matrix j , introduced in this article. Of course the one-level

FETI method, when it is not preconditioned, is not a competitive method, but the purpose of the
experiment was only to test the effect of replacing the B operator by our matrix j , and in this

respect the result of this experiment is very significant: the replacement of the B operator by the
matrix j reduced the number of iterations to essentially only 5%; a saving of 95%. A complete

list of the results of these numerical experiments is given in Table I.
A second observation is that the version of dual-primal methods introduced in this article

requires computations involving only L, R, A−1

α��
, and a, leading to a straightforward implemen-

tation that, furthermore, does not require the colateral Lagrange multipliers, with a concomitant
reduction in the degrees of freedom. However, a publication is being prepared in which this point
is discussed more thoroughly. From the results that have been obtained so far, of the precondition-
ers that were tested, the dual-primal method is clearly the best—both in number of iterations as
well as in computer time. It can also be noted that in comparing the Round-trip operators (I +TD)

and (I + TN), the (I + TD) operator gives somewhat better results. Another positive feature of
the new approach is that the same code works for all variants of the two-level methods.

XIII. DISCUSSION AND CONCLUSIONS

This article deals with nonoverlapping domain decomposition methods and for them, it introduces
a unified theory that incorporates from the start the possibility of including dual-primal precon-
ditioners; then, the different preconditioners reported in the literature can be derived by simply
choosing different dual subspaces. The entire theory is derived without recourse to Lagrange
multipliers.

The starting point is a general setting with the conspicuous feature that it incorporates dual-
primal preconditioners ab initio. In such a setting, one-level and two-level methods have been
developed in an integrated manner. Among one-level methods, a general Dirichlet and a general
Neumann approach are presented; the Dirichlet approach yields the standard Schur complement
formulation, whereas the Neumann approach yields a formulation that is very similar, proba-
bly equivalent, to the one-level FETI formulation. Two-level methods are introduced by means
of a single general algorithm, the “round-trip” algorithm, which was first presented by Herrera
in [13] and is here developed at the matrix level. They include methods that are alike to the
Neumann-Neumann and to the preconditioned FETI (Dirichlet-Dirichlet, according to Toselli
and Widlund [11]). All these procedures and the matrix expressions here developed for them
can, in a direct manner, be applied indistinctly with (or without) dual-primal preconditioners.
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As mentioned earlier, different choices of the dual subspaces yield the different dual-primal
preconditioners reported in the literature.

Some contributions of this article and the unified theory it contains that deserve to be mentioned
are as follows:

1. The significant simplification of the computational codes required for the algorithms
implementation.

2. The algorithms are derived directly from the problem-matrices, independently of the partial
differential equations that originated them, and the number of dimensions of the problem;
thus, codes developed for its application to 2D-problems can be easily modified for its
application to 3D-problems. In standard treatments, the dimensions of the space are defined
from the start.

3. The matrices a and j , which are also a contribution contained in this article, exhibit supe-

rior computational properties in the numerical experiments. In particular, the j operator

seems to be the optimal choice for the B operator of the FETI methods [11]. In numerical
experiments discussed in the section on Computational Results, very significant reductions
in the number of iterations were achieved when the matrix j was used instead of standard

B operators.
4. These matrices are generalizations of the “average” and “jump” of a function, which can be

effectively applied at the discrete level (i.e., to vectors) not only at internal-boundary nodes
but at edges and corners, as well. They are symmetric and non-negative projection matrices
on complementary subspaces. Furthermore, their construction is very simple; indeed, a

is the average over each node and, once a is available, j derives from it. Another useful

property is aj = ja = 0.

5. Elimination of Lagrange multipliers in the formulation of the methods yields significant
reductions in the number of degrees of freedom in many problems.

6. In section XI, an efficient method of solution applicable to general dual-primal precondi-
tioned formulations is introduced.

7. The unified theory implies a new expression for the Steklov-Poincaré operator (i.e, the jump
of the normal derivative) at the discrete level. A significant difference of the new expression,
with respect to standard formulas, lies in the fact that it does not contain the right-hand side
of the equation to be solved (compare, for example, with [9] and [11], pp 3 and 4); winning
thereby, in theoretical consistency.

8. This article contains also numerical experiments that use competitive preconditioners, which
incorporate a coarse space.

9. Using our unified theory we have also derived a class of preconditioners, projection-
preconditioners, which have some attractive features and are now under study.

XIV. APPENDIX

Derivation of the Average and Jump Matrices

This Appendix is devoted to derive explicit expressions for the matrices a and j introduced and

extensively used in the text of the article.
Consider the space Rm, of vectors of dimension m, provided with the Euclidean inner product.

Then, Rm can be decomposed into two orthogonal (with respect to the Euclidean inner product)
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subspaces

Rm = Rm
a + Rm

j and Rm
a ⊥Rm

j (A.1)

They are defined by

Rm
a ≡ {b ≡ (b1, . . . , bm)|b1 = · · · = bm} and Rm

j ≡
{

b ≡ (b1, . . . , bm)
∣∣ m∑

j=1

bj = 0

}
(A.2)

Then every vector b ≡ (b1, . . . , bd) ∈ Rd can be written, in a unique manner, as

b = ba + bj ; where ba ∈ Rm
a and bj ∈ Rm

j (A.3)

Explicit expressions for the vectors ba ≡ (ba1, . . . , bad) and bj ≡ (bj1, . . . , bjd) are

baα = 1

d

d∑
β=1

baβ , α = 1, . . . , d and bj = b − ba (A.4)

The matrices ad and jd , defined by

ad ≡ d−1


11 . . . 1
11 . . . 1
.........

11 . . . 1

 and jd ≡


10 . . . 0
01 . . . 0

. . . . . . . . .

00 . . . 1

− d−1


11 . . . 1
11 . . . 1

. . . . . . . . .

11 . . . 1

 (A.5)

have the property that for every b ≡ (b1, . . . , bm) ∈ Rm one has

ba = amb and bj = jmb (A.6)

Each one of the matrices ad and jd is a projection matrix and as such they are symmetric,

nonnegative, and idempotent.
Going back to the material contained in Section II, we observe that

D̃(�̄) = D̃(Z1) ⊕ · · · ⊕ D̃(ZN) (A.7)

where N is number of nodes (i.e., the cardinality of the partition P). Then,

a = a|Z1|
1

+ · · · + a|ZN |
N

(A.8)

Let us write P = P� ∪ P�, where P� is the set of primal nodes and P� is the set of dual nodes.
Then, to finish we observe that

a|Zα |
α

= I , whenever α ∈ P� (A.9)

Therefore, Eq. (A.4) needs to be applied only at dual nodes.

The authors express their gratitude to Antonio Carrillo, PhD student at UNAM, for having
permitted us reproduce some results of his research work (Table I). Also, the research reported
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Información y la Computación, para la Universidad.”
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