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The most commonly used nonoverlapping domain decomposition algorithms, such as the FETI-DP and
BDDC, require the introduction of discontinuous vector spaces. Most of the works on such methods are
based on approaches that originated in Lagrange multipliers formulations. Using a theory of partial dif-
ferential equations formulated in discontinuous piecewise-defined functions, introduced and developed by
Herrera and his collaborators through a long time span, recently the authors have developed an approach to
domain decomposition methods in which general problems with prescribed jumps are treated at the discrete
level. This yields an elegant and general direct framework that permits analyzing the problems in greater
detail. The algorithms derived using it have properties similar to those of well-established methods such as
FETI-DP, but, in our experience, they are easier to implement. Also, they yield explicit matrix formulas that
unify the different methods. Furthermore, this multipliers-free framework has permitted us to extend such
formulas to make them applicable to nonsymmetric matrices. The extension of the unifying matrix formulas
to nonsymmetric matrices is the subject matter of the present article. A conspicuous result is that in numerical
experiments in 2D and 3D, the MF-DP algorithms for nonsymmetric matrices exhibit an efficiency of the
same order as state-of-the-art algorithms for symmetric matrices, such as BDDC, FETI-DP, and MF-DP.
© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2010
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I. INTRODUCTION

Two of the most commonly used nonoverlapping domain decomposition algorithms are the FETI-
DP and the BDDC. The original finite element tearing and interconnecting method (FETI) of
Farhat [1, 2] was later modified by the incorporation of a dual-primal approach to obtain FETI-
DP [3, 4]. On the other hand, the balancing domain decomposition (BDD) preconditioner of
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2 HERRERA AND YATES

Mandel [5, 6] is an improved version of the Neumann–Neumann preconditioner that is due to
De Roeck and Le Tallec [7], which in turn is based on the work of Glowinski, Wheeler, and
others [8, 9]. The original BDD method was recently modified by Dohrman using a constrained
minimization approach to obtain BDDC [10, 11]. The main advantage of FETI-DP and BDDC
over the original FETI and BDD methods is that the more recent versions eliminate the need for
solving singular systems.

In the case of FETI, one first formulates Neumann–Neumann local problems and then the
Schur complement is applied to them as a preconditioner; this is very clearly explained by Toselli
and Widlund in their book [12] (Chapter 6 is devoted to FETI and Neumann–Neumann methods),
where the FETI method is referred to as the preconditioned FETI (see pp. 13–15 of [12]). In
the case of BDD [5,6], Mandel’s preconditioner is applied to the Schur-complement formulation
(also known as Dirichlet–Dirichlet formulation). Thus, essentially the same problems are solved
in both methods, except that they are solved in reverse order; therefore, these two methods are
closely related. Indeed, it has recently been shown that the eigenvalues of the preconditioned
BDDC and FETI-DP systems are almost identical [13, 14].

It is clear from the above that when applying either FETI or BDD algorithms, sooner or
later, one has to solve discretized versions of Neumann problems formulated in each one of the
subdomains of a domain decomposition. This introduces two kinds of complications: first, such
problems do not possess a unique solution and, second, their solutions are discontinuous on the
internal boundary when the normal derivative is continuous there (see for example [15]).

The BDD preconditioner of Mandel was very significant precisely because it introduced an
effective manner of dealing with the first of these problems. However, as mentioned before, the
more recent introduction of FETI-DP and BDDC eliminates the need to deal with singular prob-
lems. As for the second problem mentioned above, the need to deal with discontinuous solutions,
two approaches are feasible:

APPROACH A: Treat the problem as one of constrained optimization, using a Lagrange mul-
tipliers formulation, where the condition that the solution be continuous is imposed as a
constraint; or

APPROACH B: Formulate an equivalent problem in an enlarged function-space in which its mem-
bers are generally discontinuous, albeit it contains the continuous function-space as a linear
subspace.

In both approaches, one has to work in the discontinuous function-space (the space W , in
Widlund’s notation, see [12], which is the cartesian product of the function-spaces of the sub-
structures); the main difference, however, is that in the Approach A such a space remains in the
background when the basic formulations are established, whereas in Approach B it remains in the
foreground. In particular, for example, the basic matrix formulas for solving Neumann problems
that are incorporated both in BDD and FETI were derived using the Approach A. In this respect,
we would like to be more precise. FETI, for example, was originally formulated in terms of a
collection of substructure spaces [1], but very soon after it was realized that it can be formulated in
terms of the cartesian product of such spaces, which is the space W mentioned above. As the sad-
dle point formulation and the Lagrange multipliers are only used to obtain the matrix formulation
of the problem, at the end the numerical algorithms are derived from matrix formulas defined on
the discontinuous function-space W . On the other hand, when Approach B is used, one defines a
general class of problems in the enlarged space (i.e., the discontinuous function-space), which is
constituted by problems with “prescribed jumps.” In particular, a continuous solution is obtained
when the prescribed jump is zero. Independently of the relative merits of the two approaches, A
and B are clearly different methodologies.
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In our opinion Approach B, besides being more elegant, is more general, more direct and more
enlightening. So, we thought it was a subject that deserved more study and research, especially
since the DDM community has clearly given more attention to Approach A, up to now. Thus, we
embarked on a line of research oriented to develop Approach B more fully. The results of this line
of research have been reported in a sequence of articles [16–19]. In it, the authors have devel-
oped systematically a theory of domain decomposition methods, the “multipliers-free dual-primal
DDM” (briefly: MF-DP), applying Approach B.

Domain decomposition methods have achieved a very impressive development during the last
20 or 25 years, most of it using Approach A (in this respect, two very good sources of information
are the Proceedings of the International Congresses organized by the DDM organization [20]
and the broad set of references contained in [12]). Through such developments a broad knowl-
edge of domain decomposition methods has been attained; our work was made possible by that
knowledge and, also, has found inspiration on it. In particular, for example, in Section III of the
second article of the series [17], we introduced two preconditioned algorithms that were inspired
by the continuous versions of Neumann–Neumann and the Dirichlet–Dirichlet (or preconditioned
FETI) algorithms, as described by Toselli and Widlund (pp.10–15 of [12]), albeit we introduced
a modification.

Indeed, in the standard versions [12, 15], the introduction of an acceleration parameter (the
symbol θ is used for it in pages 10 and 13 of [12]) is required. This is due to the fact that in
standard formulations un+1 is not derived from un by means of a symmetric, positive definite
transformation and, so, the conjugate gradient method (CGM) cannot be directly applied. The
developments of the theory of MF-PD methods, on the other hand, have permitted us to formulate
the same problem in a manner that un+1 is derived from un by means of a symmetric and positive
definite transformation. So, in our formulation, the direct application of CGM is feasible. Thereby,
we observe that although CGM does not introduce explicitly an acceleration parameter, its use
implies an optimal choice of the acceleration parameter required in standard formulations at the
continuous level. This modification of such standard formulations was originally made in [17]
(see, Section III and the Appendix, where the new formulations at the continuous level were pre-
sented and compared with the standard formulations, respectively) by application of the general
abstract scheme of Section III of the present article, due to Herrera but then unpublished, where
the “abstract form of the MF-DP algorithms” is stated.

For the case when the matrix of the original continuous problem is symmetric and positive def-
inite, the MF-DP method has already been fully developed using a dual-primal approach, which,
as is well known, has the advantage of avoiding the need of dealing with singular local problems.
A thorough description of the MF-DP method in its present state is given in [19], where numerical
experiments to test its efficiency were carried out. Up to now, the results of such numerical tests
have been very encouraging and more extensive computational experiments are underway.

The present article is devoted to extend the MF-DP method to nonsymmetric matrices and to
report the results of numerical tests of its efficiency when it is applied to such kinds of matrices.
We achieve this by introducing a more general scheme where the matrices are generally non-
symmetric, but in which they can also be symmetric and positive definite. When this latter case
occurs, the framework reduces to that discussed in previous articles of the series [16–19]; thus the
new scheme is truly a generalization of the previous one. A brief description of its main features
follows.

First, we introduce in Section III a scheme, mentioned before, that yields the abstract form
of the MF-DP algorithms. A characteristic of this abstract form that we think is attractive is that
in its framework many Dual-Primal nonoverlapping DDMs can be formulated in a unified yet
explicit manner. Here, such explicit formulas are only derived for the algorithms that we had
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called, in [19], the Neumann–Neumann and the preconditioned FETI algorithms, but in a form
that is also applicable to general nonsymmetric matrices. In particular, when the original matrix
is symmetric we recover the algorithms presented in [19]. However, many more algorithms are
included in the general class of preconditioned algorithms of Section III; to obtain explicit for-
mulas for them all that is required is to make a choice of the four operators σαβ , α, β = 1, 2,
satisfying the assumptions of that Section, and supply explicit expressions for each one of such
four operators.

To profit from such a general scheme we have to develop a suitable framework, which is very
similar to that developed in previous articles, but some adjustments had to be made. This is done
in Sections IV to VIII. Then, in Section IX, given the original problem formulated in the space
of continuous vectors—the Ŵ space, in Widlund’s notation [12]—an equivalent problem is for-
mulated in the space of discontinuous vectors. The original continuous problem is formulated in
terms of the matrix

¯̄
�

A, whereas the problem in discontinuous vectors is formulated in terms of the

matrix
¯̄
At , and procedures for deriving

¯̄
At from

¯̄
�

A are supplied. Using
¯̄
At , a general problem with

prescribed jumps is formulated; this problem has the property that when the prescribed jump is
zero the continuous solution of the original problem is obtained.

A special kind of Schur-complement matrix, the dual-primal Schur-complement matrix, is
defined in Section X, where the dual-primal Schur-complement formulations are given. Then, the
four algorithms previously mentioned: Schur MF-DP, FETI MF-DP, Neumann–Neumann MF-
DP, and Preconditioned FETI MF-DP, are derived in Section XI, whereas Section XII is devoted
to explain the numerical procedures and results. The Conclusions of the article are summarized
in Section XIII. As the multipliers-free methodology is recent and not yet well known, some
background about its origin and foundations is given in Section III.

The unified explicit matrix formulas obtained in the present article for nonsymmetric matrices,
in form, are the same as those that were introduced in [19], except that now they can also be
applied to nonsymmetric matrices:


¯̄

a
¯̄
Su = f

�2
and

¯̄
ju = 0; Schur MF-DP

¯̄
S−1

¯̄
ju = −

¯̄
S−1

¯̄
j
¯̄
S−1f

�2
and

¯̄
a
¯̄
Su = 0; FETI-MF-DP

(1.1)

for the non-preconditioned algorithms. For the preconditioned algorithms they are:


¯̄

a
¯̄
S−1

¯̄
a
¯̄
Su� =

¯̄
a
¯̄
S−1f

�2
; Neumann–Neumann MF-DP

¯̄
S−1

¯̄
j
¯̄
S

¯̄
ju = −

¯̄
S−1

¯̄
j
¯̄
S

¯̄
j
¯̄
S−1f

�2
; Preconditioned FETI-MF-DP

(1.2)

In Eqs. (1.1) and (1.2),
¯̄
S is the dual-primal Schur complement matrix defined in Section X of

the present article for the general case of possibly nonsymmetric matrices; for the special case
when the matrix is symmetric and positive definite, this definition reduces to that we introduced
in Section XI of [19]. To avoid confusion, we use the suffix MF-DP (for Multipliers-Free and
Dual-Primal). The search in the Schur MF-DP algorithm and its preconditioned version, the
Neumann–Neuman MF-DP, is carried out in the subspace of dual-vectors (i.e., vectors that vanish
everywhere except at dual nodes) that are continuous (as already said, continuity is tantamount
to

¯̄
ju = 0). The search in the FETI-MF-DP algorithm and its preconditioned version is carried

out in the subspace of dual-vectors for which
¯̄
a
¯̄
Su = 0. In Section IX of [19], a new definition

of the Steklov-Poincaré operator at the discrete level was proposed and has been used in our
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developments. As it is explained there, this new definition has clear advantages over the standard
definitions, such as those presented in [12], p.3, and [15]. According to the new definition,

¯̄
a
¯̄
Su

is the discretized version of the jump of the normal derivative across the internal boundary. Thus,

¯̄
a
¯̄
Su = 0 is tantamount to the condition that the normal derivative be continuous.

Among the features we have observed throughout our study and application of the “multipliers-
free dual-primal method,” the following should be highlighted.

• The MF-DP method supplies a framework applicable to both symmetric and nonsymmetric
matrices.

• In the case of symmetric matrices, the numerical efficiency of the preconditioned algorithms
is as good as other state-of-the-art DDMs (see [19], where the comparisons are made with
those obtained using FETI-DP, as reported in [12]). However, in our experience thus far, the
computational properties of the multipliers-free DDMs have shown to be superior.

• In the case of nonsymmetric matrices, in the numerical experiments performed in the present
article (see Section XII) they have worked nearly as efficiently as they do for symmetric ones
(here, the efficiency is measured by the number of iterations required for convergence and
such a number is of the same order for both symmetric and nonsymmetric matrices). Here,
we remark that the treatment of non-symmetric matrices is considerably more difficult than
that of non-symmetric ones (see, for example, Chapter 12 of [12]).

• Explicit matrix formulas, given in Eqs. (1.1) and (1.2), are supplied that unify the different
methods. Some properties of these formulas worth noticing are: once the original matrix is
given, they are uniquely determined; the very same formulas are applicable in both the sym-
metric and nonsymmetric cases; and they are equally applicable to a single linear differential
equation or to a system of such equations.

• Code development is simplified.
• Very robust codes are obtained; for example, a code has been developed that has been applied

in 2D and 3D problems (such a code was used to obtain the numerical results reported in
Section XII of this article), something that is not possible when standard approaches are
used.

• The MF-DP algorithms are 100% parallelizable, as it is shown in Section XII.

It is also worth mentioning that the jump matrix,
¯̄
j , introduced in previous articles, is prob-

ably the optimal choice of the matrix
¯̄
B, used to specify the continuity constraint in standard

formulations [6, 7].

II. SOME BACKGROUND ON THE MULTIPLIERS-FREE THEORY

Some background material on the foundations of the multipliers free domain decomposition
approach applied in this article was given in the first article of the series on which the MF-DP is
based [16].

The origin of our approach can be traced back to a series of articles, published in 1985 [21–23],
in which the development of a “general theory of partial differential equations in discontinuous
piecewise-defined functions,” which supplies a framework suitable for discontinuous Galerkin
(dG-) methods, was initiated. These articles, in turn, were based on a previous Algebraic Theory
of Boundary Value Problems published in book form in the Pitman Advanced Publishing Pro-
gram [24]. The general theory of partial differential equations in discontinuous piecewise-defined
functions was further developed through a long time span: It was the basis of a discretization
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method known as the localized adjoint method (LAM) [25]; the Eulerian–Lagrangian LAM
(ELLAM) [26] was also based on it and has been recently presented in an integrated form in
the first article of the series previously mentioned [16], where further references can be found.

Basic elements of that theory are a general boundary value problem with prescribed jumps,
which is formulated for any linear differential operator L, and a general Green’s formula intro-
duced by Herrera in [21, 23] that can be used when such an operator is applied to discontinuous
piecewise-defined functions [16]. In an explicit form, they may be found in several articles such
as [26].

Such Green’s formulas, sometimes called Green–Herrera formulas, as we shall do in what fol-
lows, can be derived as it is explained next. Given L, a domain � and a partition � ≡ {�1, . . . , �E}
of �, with internal boundary 	 (
 is used in [26]), are introduced. When L∗ is the formal adjoint
of L, the following equation is satisfied

wLu − uL
∗w = ∇ � D(u, w) (2.1)

Here, D(u, w) is a suitable vector-valued function, bilinear in the pair (u, w). Therefore,∫
�

{wLu − uL
∗w}dx =

∫
∂�

D(u, w) � ndx −
∫

	

[[D(u, w)]] � ndx (2.2)

Here, u and w are fully discontinuous piecewise-defined functions [16]. Then, Eq. (2.2) is
equivalent to the following Green’s formula, sometimes called Green–Herrera formula:

∫
�

wLudx −
∫

∂�

B(u, w)dx −
∫

	

J(u, w)dx

=
∫

�

uL
∗wdx −

∫
∂�

C(w, u)dx −
∫

	

K (w, u)dx (2.3)

Here,

D(u, w) � n = B(u, w) − C(w, u) and [[D(u, w)]] � n = J(u, w) − K (w, u) (2.4)

The introduction of B(u, w) and C(w, u) is standard in the theory of partial differential equations
(see, for example, Lions and Magenes [27]), whereas the introduction of J(u, w) and K (w, u)

is only required when the problems are formulated in discontinuous piecewise-defined functions
[16]. The Green–Herrera formula of Eq. (2.3) is applicable to any vector-valued linear differen-
tial operator that may have discontinuous coefficients. One deals with vector-valued differential
operators when treating systems of differentials equations; in particular, if such a system consists
of only one equation, the functions are real-valued functions. A particular case of the application
of the formula of Eq. (2.3), is when the coefficients of the differential operator are continuous;
then, suitable definitions of J(u, w) and K (w, u) are

J(u, w) ≡ −D

(
[[u]], ẇ

)
� n and K (w, u) ≡ D

(
u̇, [[w]]

)
� n (2.5)

Many ideas of domain decomposition methods (DDMs), when they are approached after dis-
cretization, have been inspired by concepts stemming from partial differential equations formu-
lations of such methods before discretization. In the standard approach, the model to mimic is
that of boundary value problems formulated on the Sobolev space of the domain of definition of
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FIG. 1. A conjugate coordinate system.

the problem. On the other hand, we preferred to mimic boundary value problems with prescribed
jumps formulated on the Sobolev space of discontinuous piecewise-defined functions. This was
possible because we had available the theory of partial differential equations in discontinuous
piecewise-defined-functions [16].

So, as a first step for developing the new approach, we extended the original Green-Herrera
formulas for differential operators to Green-Herrera formulas for matrices, which act on dis-
continuous vectors; once this was done the similarity between the continuous and the discrete
approaches was so apparent that the route to follow became evident. In particular, the new defin-
ition of the Steklov–Poincaré operator at the discrete level, which we introduced [19], was very
useful in our developments.

The geometric situation is very simple and it is summarized in Fig. 1, which appears and is
explained in detail in Section III of the present article, “A general class of preconditioned algo-
rithms”; essentially the same figure appeared previously in references [18] and [19]. This figure
contains four function-subspaces, Eαβ , with α, β = 1, 2. For β = 1, 2, the subspaces E1β and
E2β are orthogonal with respect to the Euclidean inner product. At this stage, it was clear that
our theory was not limited to symmetric matrices and proceeded to construct the MF-DP method
for nonsymmetric matrices that is presented in this article, which comes as an addition to the
other four articles previously published [16–19]. The main difference between the cases when
the matrix is symmetric (and positive definite) and when it is nonsymmetric is that in the former,
for α = 1, 2, the subspaces Eα1 and Eα2 are also orthogonal, but with respect to inner product
induced by the Schur complement, whereas in the latter case such an inner product is not defined.

As the reader can see, the MF-DP for nonsymmetric matrices uses a functional analytic frame-
work that we have introduced and used in previous articles (see [17–19]) to produce a very direct
approach in which all the developments are done at the matrix level. Recently, a functional ana-
lytic framework was introduced and used, by Brenner and Sung [28], to discuss the connection
between BDDC and FETI-DP. Independently of the merits of such an approach, at this stage we
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only observe that the functional analytic framework used in the MF-DP method is considerably
different from it.

Finally, a word on the notation we use. Such a notation has been developed steadily since the
inception of our theory in 1985, and has many attractive features, such as introducing a systematic
manner of denoting subspaces of any linear vector space and simplifying the algebraic manipu-
lations. However, we would like to make our notation friendlier for the potential readers of our
articles by transforming it into one closer to that used by the mainstream authors in DDM, but
without losing its attractive properties mentioned above as they contribute to the advancement
of DDM. A common practice, for example, is to use W for the whole space of discontinuous
functions and the same symbol with various ad hoc decorations are used for its subspaces [12].
On the other hand, we have a systematic manner of denoting such subspaces. Other examples of
the simplifications implied by our notation is that when it is used the interpolating (or restriction)
operators, Rα , are not required.

Unfortunately, this is not an easy task and we are still working on it. This having been said,
it should also be mentioned that the notation used in the unifying matrix formulas of Eqs. (1.1)
and (1.2) is sufficiently close to that of the DDM mainstream that we think they can be eas-
ily understood by any reader sufficiently acquainted with the basics of domain decomposition
methods.

III. THE ABSTRACT FORM OF THE PRECONDITIONED MF-DP ALGORITHMS

In this Section, we present a framework whose basic ideas were originally introduced by Her-
rera [17]. It supplies a general formulation that, without recourse to Lagrange Multipliers, permits
deriving a unified approach to Dual-Primal Domain Decomposition Methods, which is not only
applicable to symmetric matrices but also to nonsymmetric matrices as well. In this article, for
the first time, the formulation for nonsymmetric matrices will be introduced.

The notation ⊕ will be used for the direct sum of two linear spaces; i.e., when F , G, and H

are linear spaces,

H = F ⊕ G (3.1)

if and only if {
H = F + G

{0} = F ∩ G
(3.2)

Definition 3.1. When Eq. (3.1) is fulfilled, the pair of linear spaces (F , G) is said to be a
“coordinate system” of H .

In what follows, E will be a finite-dimensional Hilbert space.

Definition 3.2. Let (E11, E12) and (E21, E22) be two coordinate systems of E. Then, the pair of
coordinate systems {(E11, E12), (E21, E22)} is said to be “conjugate” when, for any α �= β,

Eαi ∩ Eβi = {0}, for i = 1, 2 (3.3)

A schematic representation of this Definition is given in Fig. 1.
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Given a conjugate pair of coordinate systems {(E11, E12), (E21, E22)}, we define four mappings:

σαi : E → Eαi ; i = 1, 2 and α = 1, 2 (3.4)

They are uniquely defined by the condition:

σα1 + σα2 = I ; which holds for α = 1, 2 (3.5)

Here, I is the identity mapping. It can be verified that such mappings are indeed uniquely defined
when Eq. (3.5) is fulfilled. For each one of such mappings, write σαi : Eβj → Eαi for its restriction
to Eβj ⊂ E. When we take β �= α and j �= i, this yields four mappings. To each one of them the
following Lemma applies.

Lemma 3.1. Given a conjugate pair of coordinate systems {(E11, E12), (E21, E22)} of E, con-
sider the mappings σαi : Eβj → Eαi such that β �= α and j �= i. Then, for each one of them the
null subspace of σαi : Eβj → Eαi is the set {0}.

Proof. Assume w ∈ Eβj and

σαiw = 0 (3.6)

Then, Eq. (3.6) implies w ∈ Eαj . Hence, w ∈ Eβj ∩ Eαj = {0} since β �= α.

Corollary 3.1. Under the assumptions of Lemma 2.1, the dimensions of the linear spaces Eαi

and Eβj are equal, whenever β �= α and j �= i, and each one of the mappings σαi : Eβj → Eαi

is bijective.

Proof. Each one of the mappings σαi : Eβj → Eαi and σβj : Eαi → Eβj is injective;
therefore, if dαi and dβj are the dimensions of Eαi and Eβj , respectively, then

dαi ≥ dβj ≥ dαi (3.7)

This implies dαi = dβj and, therefore, the mapping σαi : Eβj → Eαi is bijective.

Many domain decomposition methods can be cast in terms of the following abstract problem.

Problem A. In this problem, a conjugate pair of coordinate systems {(E11, E12), (E21, E22)} of
E, is given. Furthermore, it is assumed that α �= β and i �= j . The problem consists in: “Given
g ∈ Eαi , find u ∈ Eβj such that σαiu = g.” Thus, in this problem σαiu ∈ Eαi is prescribed

In view of Lemma 3.1, the existence of a solution of this problem is immediate since in that
case σαi : Eβj → Eαi is a bijection. Taking α �= i and β �= j , we define:

The non-preconditioned algorithm: Find u ∈ Eβj , such that

σαiu = g (3.8)

and
The preconditioned algorithm: Find u ∈ Eβj , such that

σβjσαiu = σβjg (3.9)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 HERRERA AND YATES

Theorem 3.1. Let a conjugate pair of coordinate systems {(E11, E12), (E21, E22)} of E, be given.
Then, the non-preconditioned algorithms and the preconditioned algorithms are equivalent.

Proof. It follows from the Lemma and the Corollary 3.1, since σβj : Eαi → Eβj is a
bijection.

IV. NODES AND THEIR CLASSIFICATION

Sections IV to VIII repeat briefly material that was presented in [19]. Thus, the reader is referred
to [19] for further details. For definiteness, the set of “original-nodes” is assumed to be a set of
natural numbers, � ≡ {1, . . . , d}, whereas the family {�1, . . . , �E} is a cover of �; i.e.,

� =
E⋃

α=1

�α (4.1)

We also consider pairs p ≡ (p, α), such that p ∈ � and α ∈ {1, . . . , E}. Then, we define

�̄ ≡
{
p ≡ (p, α)|p ∈ �α

}
(4.2)

The pairs p ≡ (p, α) that belong to �̄ are said to be “derived nodes,” which may be interior or
boundary nodes (see [19]); they constitute the sets I and 	, respectively. Given a p ∈ �, Z(p) is
the set of derived nodes that originated from p. The subset π ⊂ 	 is made of the primal nodes and
the subset of dual nodes is defined to be � ≡ 	 − π . Then, we define � ≡ I ∪ π . The following
relations hold [7]:

�̄ = I ∪ π ∪ � = � ∪ � and ∅ = � ∩ � = π ∩ � = π ∩ I = � ∩ I (4.3)

and

π = ∅ ⇒ � = 	 (4.4)

V. VECTORS AND CONTINUOUS VECTORS

The vector spaces D̃(�) and D̃(�̄) are constituted by the functions defined in � and in �̄,
respectively. Let u ∈ D̃(�̄) and write u(p, α) for its value a any derived node (p, α) ∈ �̄; then,
such a vector is said to be continuous when u(p, α) is independent of α, for every derived node
(p, α) ∈ �̄. The set of continuous vectors constitute a linear subspace that is denoted by D̄(�̄).
The notation: D̃(�) ⊂ D̃(�̄) and D̃(�) ⊂ D̃(�̄) is adopted for the linear subspaces of D̃(�̄)

whose elements vanish outside � and �, respectively. The subspaces D̃(I ), D̃(π), and D̃(	), of
D̃(�̄), are defined similarly. Then,

D̃(�̄) = D̃(�) ⊕ D̃(�) (5.1)

Vectors of D̃(�̄) can be uniquely represented as

u = (u�, u�) = u� + u�, with u� ∈ D̃(�) and u� ∈ D̃(�) (5.2)
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The natural immersion of D̃(�) into D̃(�̄), is defined to be the mapping τ : D̃(�) → D̄(�̄) ⊂
D̃(�), which for every

�
u ∈ D̃(�) and every (p, α) ∈ �̄ satisfies

(τ
�
u)(p, α) = �

u(p) (5.3)

Observe, that the inverse mapping of τ : D̃(�) → D̄(�̄) is well defined; it will be denoted by
τ−1 : D̄(�̄) → D̃(�).

VI. THE EUCLIDEAN INNER PRODUCTS

The “Euclidean inner product,” which is the only one to be considered in this article, is defined
to be 


�
u � �

w ≡ ∑
p∈�

�
u(p)

�
w(p), ∀�

u, �
w ∈ D̃(�)

u � w ≡ ∑
p∈�̄

u(p)w(p) = ∑
q∈�

∑
p∈ζ(q)

u(p)w(p), ∀u, w ∈ D̃(�̄)
(6.1)

The methods described in this article are not restricted, in their applicability, to a single differen-
tial equation, but they are equally applicable to systems of differential equations, such as those
occurring in elasticity. A proper treatment in our scheme of those systems requires introducing
vector-valued functions. In such cases,

�
u(p) and u(p) are themselves vectors and, when defining

the Euclidean inner product, Eq. (6.1) must be replaced by




�
u � �

w ≡ ∑
p∈�

�
u(p) � �

w(p), ∀�
u, �

w ∈ D̃(�)

u � w ≡ ∑
p∈�̄

u(p) � w(p) = ∑
q∈�

∑
p∈ζ(q)

u(p) � w(p), ∀u, w ∈ D̃(�̄)
(6.2)

Here, the symbol � stands for the inner product of the vector space where the vectors
�
u(p)

and u(p) lie.
The multiplicity of an original node, p, equals the number of derived nodes of the form (p, α);

it is denoted by m(p). The auxiliary matrices
¯̄
�
m : D̃(�) → D̃(�) and

¯̄
m : D̃(�̄) → D̃(�̄), are

defined, for each
�
u ∈ D̃(�) and each u ∈ D̃(�̄), by

¯̄
�
m

�
u(p) = m(p)

�
u(p), ∀p ∈ �

¯̄
mu(p) = m(p)u(p), ∀p = (p, α) ∈ �̄ (6.3)

Both of them are diagonal matrices; more precisely, one is diagonal and the other one is block-
diagonal. The values at the main diagonals of

¯̄
�
m and

¯̄
m are the multiplicities m(p). Simple results

whose proofs are straightforward are:

τ
¯̄
�
m

�
u =

¯̄
mτ

�
u and τ

¯̄
�
m

−1�
u =

¯̄
m−1τ

�
u, ∀�

u ∈ D̃(�) (6.4)

together with

¯̄
mD̄(�̄) = D̄(�̄) =

¯̄
m−1D̄(�̄) (6.5)
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In [19], it was shown that each one of the following relations holds:

�
u �

¯̄
�
m

�
w = τ(

�
u) � τ(

�
w)

�
u �

¯̄
�
w = τ(

�
u) �

¯̄
m−1τ(

�
w)

}
, ∀�

u, �
w ∈ D̃(�) (6.6)

Furthermore, let u ∈ D̄(�̄) be such that for some
�
u ∈ D̃(�) it fulfills

�
u � �

w = u � τ(
�
w), ∀�

w ∈ D̃(�) (6.7)

Then

u =
¯̄
m−1τ(

�
u) = τ

(
¯̄
�
m

−1�
u
)

(6.8)

VII. VECTOR SUBSPACES: THE AVERAGE AND JUMP MATRICES

The matrices
¯̄
a : D̃(�̄) → D̃(�̄) and

¯̄
j : D̃(�̄) → D̃(�̄) are the projections on the subspace

D̄(�̄) of continuous vectors and on its orthogonal complement, respectively. They satisfy:

¯̄
j =

¯̄
I −

¯̄
a and

¯̄
I =

¯̄
a +

¯̄
j (7.1)

Here,
¯̄
I is the identity matrix and the projection on D̄(�̄) is taken with respect to the Euclidean

inner product. The matrices
¯̄
a and

¯̄
j are referred to as the “average” and the “jump” matrices. The

following properties should be noticed:
¯̄
a and

¯̄
j are both symmetric, non-negative, and idempotent.

Furthermore,

¯̄
a

¯̄
j =

¯̄
j
¯̄
a =

¯̄
0 and

¯̄
jD̄(�̄) = {0} (7.2)

The construction of the matrix
¯̄
a is relatively simple [19]. Writing

¯̄
a ≡ (a(p,α)(q,β)) (7.3)

Then,

a(p,α)(q,β) = 1

m(p)
δpq , ∀(p, α) ∈ �̄ and ∀(q, β) ∈ �̄ (7.4)

The following expression permits computing the action of
¯̄
j on any vector

¯̄
ju = u −

¯̄
au, ∀u ∈ �̄ (7.5)

The following subspaces of D̃(�̄) are also defined:

D̃11(�̄) ≡
¯̄
jD̃(�̄) ⊂ D̃(	)

D̃12(�̄) ≡ D̄(�̄) =
¯̄
aD̃(�̄)


 and




D̃11(	) ≡
¯̄
jD̃(	) = D̃11(�̄)

D̃12(	) ≡
¯̄
aD̃(	)

(7.6)
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VIII. THE DUAL-PRIMAL SUBSPACE

The dual-primal space D̃
DP

(�̄) is the subspace of D̃(�̄) whose elements are continuous at every
node belonging to π . For each node k ∈ � = {1, . . . , d}, we define the local “jump-matrix at k,”
to be

¯̄
j k ≡

(
j k
(i,α)(j ,β)

)
(8.1)

where:

j k
(i,α)(j ,β) ≡

(
δαβ − 1

m(k)

)
δikδjk (8.2)

The “dual-primal” jump matrix is defined to be

¯̄
jπ ≡

∑
k∈�π ¯̄

j k (8.3)

Here, �π is the set of primal nodes. Introducing the symbol δπ
ij , defined by

δπ
ij ≡

{
1, if i, j ∈ �π

0, if iorj /∈ �π
(8.4)

It is seen that

jπ
(i,α)(j ,β) =

(
δαβ − 1

m(i)

)
δij δ

π
ij (8.5)

The matrix
¯̄
aπ : D̃(�̄) → D̃

DP
(�̄) is defined as

¯̄
aπ ≡

¯̄
I −

¯̄
jπ (8.6)

Therefore,

aπ
(i,α)(j ,β) = 1

m(i)
δij δ

π
ij + δαβδij

(
1 − δπ

ij

)
(8.7)

In words, this equation says that
¯̄
aπ equals the identity matrix at every derived node except when

the node belongs to the set π ⊂ 	 of primal nodes, in which case it equals the average matrix as
given by Eq. (6.4). The primal jump operator

¯̄
jπ , on the other hand, vanishes everywhere except

at primal nodes, where it equals the jump operator.

The “dual-primal” space, D̃
DP

(�̄), satisfies

D̃
DP

(�̄) ≡
¯̄
aπD̃(�̄) =

¯̄
aπD̃(�) + D̃(�) (8.8)

So,
¯̄
aπ : D̃(�̄) → D̃

DP
(�̄) is the projection matrix on the dual-primal subspace D̃

DP
(�̄). In

particular, D̃
DP

(�̄) = D̃(�̄) when π = ∅. Furthermore, we adopt the notations

D̃
DP

(�) ≡
¯̄
aπD̃(�) ⊂

¯̄
aD̃(�̄) ⊂

¯̄
aπD̃(�̄) and D̃

DP
(�) ≡

¯̄
aπD̃(�) = D̃(�) (8.9)
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14 HERRERA AND YATES

together with

D̃DP
11 (�̄) ≡

¯̄
jD̃

DP
(�̄) ⊂ D̃

DP
(�̄) and D̃DP

12 (�̄) ≡
¯̄
aD̃

DP
(�̄) = D̃12(�̄) (8.10)

To prove that
¯̄
jD̃

DP
(�̄) ⊂ D̃

DP
(�̄), given w ∈ D̃

DP
(�̄) we compute the projection of

¯̄
jw on

D̃
DP

(�̄):

¯̄
aπ

¯̄
jw = (I −

¯̄
jπ)

¯̄
jw =

¯̄
jw −

¯̄
jπw =

¯̄
jw (8.11)

IX. THE MF-DP FORMULATION FOR NONSYMMETRIC MATRICES

In the remaining of this article, several matrices will be considered.

¯̄
�

A : D̃(�) → D̃(�),
¯̄
At : D̃(�̄) → D̃(�̄) and

¯̄
A : D̃(�̄) → D̃

DP
(�̄) (9.1)

The matrices
¯̄
�

A,
¯̄
A

′
, and

¯̄
A will be referred to as the “original matrix,” “total matrix,” and the

“dual-primal matrix,” respectively. They satisfy the relation

¯̄
A =

¯̄
aπ

¯̄
At

¯̄
aπ (9.2)

And, we will use the notation:

¯̄
�

A ≡ (
�

Apq), where p, q ∈ � (9.3)

The developments presented in Sections IV to VIII are very similar to those of [19]. However,
in [19] the matrix

¯̄
�

A : D̃(�) → D̃(�) was assumed to be symmetric and positive definite, while
here that assumption is dropped. Therefore, the arguments presented in what follows differ in
many respects from those given in [19].

In particular, in this article the following concepts play an important role. Given any subset
X̄ ⊂ �̄ we define

D̃
DP

(X̄) ≡
¯̄
aπD̃(X̄) (9.4)

Let X̄ ⊂ �̄ be any subset of �̄ and write E ≡ D̃
DP

(X̄) ⊂ D̃
DP

(�̄). We say that the dual-primal

matrix
¯̄
A is “well posed everywhere” when, for every X̄ ⊂ �̄, projE ¯̄

A : D̃
DP

(X̄) → D̃
DP

(X̄) is a
bijection.

Assume
¯̄
A : D̃

DP
(�̄) → D̃

DP
(�̄) is well posed everywhere and define the matrix

¯̄
C :

D̃DP(�̄) → D̃
DP

(X̄) by ¯C ≡ projE ¯̄
AprojE . Then, we define the matrix

¯̄
C−1 : D̃DP(�̄) → D̃

DP
(�̄)

by

¯̄
C−1 ≡

¯̄
B−1projE (9.5)

Here,
¯̄
B−1 is the inverse of

¯̄
B ≡ projE ¯̄

A : D̃
DP

(X̄) → D̃
DP

(X̄), which in turn is well defined

because
¯̄
A : D̃

DP
(�̄) → D̃

DP
(�̄) is well posed everywhere.
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Using the notation of Eq. (9.3), it will be assumed throughout the article that:

1.

�

Apq = 0, whenever p ∈ �I ∩ �α , q ∈ �I ∩ �β , and α �= β (9.6)

2. The matrix
¯̄
At : D̃(�̄) → D̃(�̄) satisfies the condition:

�
w �

�

A
�
u = τ(

�
w) �

¯̄
Atτ(

�
u), ∀�

u, �
w ∈ D̃(�) (9.7)

where τ : D̃(�) → D̃(�̄) is the natural immersion of D̃(�) into D̃(�̄). It should be
observed that this condition does not determine

¯̄
At uniquely;

3. For each α ∈ {1, . . . , E} there is defined a matrix
¯̄
Aα : D̃(�̄α) → D̃(�̄α) such that

¯̄
At =

E∑
α=1 ¯̄

Aα (9.8)

A convenient procedure for constructing a matrix
¯̄
At , when

¯̄
�

A is given, fulfilling the above
conditions was presented in [19], proving thereby that there is always at least one such a
matrix; and

4. The matrix
¯̄
A : D̃

DP
(�̄) → D̃

DP
(�̄), defined by Eq. (9.2), is well posed everywhere.

Now, we recall Eq. (8.8):

D̃
DP

(�̄) =
¯̄
aπD̃(�) + D̃(�) (9.9)

and observe that
¯̄
aπD̃(�) ⊂ D̃(�) and D̃(�) are orthogonal complements, relative to D̃

DP
(�̄).

Taking E ≡ D̃
DP

(�) and F ≡ D̃
DP

(�), we adopt the notation

¯̄
A

��
≡ projE ¯̄

AprojE;
¯̄
A

��
≡ projE ¯̄

AprojF;

¯̄
A

��
≡ projF ¯̄

AprojE;
¯̄
A

��
≡ projF ¯̄

AprojF; (9.10)

This permits us writing the matrix
¯̄
A : D̃(�̄) → D̃(�̄) as

¯̄
A =

(
¯̄
A

�� ¯̄
A

��

¯̄
A

�� ¯̄
A

��

)
(9.11)

Furthermore, the matrices
¯̄
A−1 : D̃

DP
(�̄) → D̃

DP
(�̄) and

¯̄
A−1

�� : D̃
DP

(�̄) → D̃
DP

(�̄) will be used

in the sense of the definition of Eq. (9.5). We observe that the actions, on any vector v ∈ D̃(�̄),
of the matrices occurring in Eq. (9.11) are given by:

¯̄
A

��
v =

¯̄
a(

¯̄
Atv�)

�
,

¯̄
A

��
v =

¯̄
a(

¯̄
Atv�)

�

¯̄
A

��
v = (

¯̄
Atv�)

�
,

¯̄
A

��
v = (

¯̄
Atv�)

�
(9.12)

Here, the facts that D̃
DP

(�) =
¯̄
aπD̃(�) =

¯̄
aD̃(�) and D̃

DP
(�) = D̃(�) have been used.
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Definition 9.1. Let
�

f ∈ D̃(�). Then, the “original problem” consists in searching for a function
�
u ∈ D̃(�) that satisfies

¯̄
�

A
�
u = �

f (9.13)

This problem is assumed to possess a unique solution. The “dual-primal formulation” consists

in searching for a function ũ ∈ D̃
DP

(�̄) that satisfies

¯̄
a

¯̄
Aũ = f̄ and

¯̄
j ũ = 0 (9.14)

where f̄ ∈ D̄(�̄) = D̃12(�̄) ⊂ D̃
DP

(�̄) is given by

f̄ ≡
(

f̄
�

f̄
�

)
≡

¯̄
m−1τ(

�

f ) and f̄
�

= f̄
�2

(9.15)

Theorem 9.1. A function ũ ∈ D̃
DP

(�̄) is the solution of the dual-primal formulation if and
only if

�
u ≡ τ−1(ũ) (9.16)

is the solution of the original problem.

Proof. Because we have

1. If
�
u ∈ D̃(�) is solution of the original problem, then ũ ≡ τ(

�
u) ∈ D̄(�̄) ⊂ D̃

DP
(�̄) fulfills

Eq. (9.14);
2. Conversely, Eq. (9.14) implies ũ ∈ D̄(�̄), so that τ−1 is well defined. Taking

�
u ∈ D̃(�)

given by Eq. (9.16), it is seen that
�
u ∈ D̃(�) fulfills Eq. (9.13).

Corollary 9.1. The dual-primal formulation possesses a unique solution.

Proof. It is clear by virtue of Theorem 8.1 and the corresponding property of the original
problem.

It is straightforward to see that the solution of the dual-primal formulation is independent
of the choice of the set of primal nodes π ⊂ �̄. In the particular case, when primal nodes are
not used π = ∅ and the dual-primal formulation reduces to: “Find a function ũ ∈ D̃(�̄) such
that

¯̄
a

¯̄
Atũ = f̄ and

¯̄
j ũ = 0 (9.17)
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X. THE SCHUR-COMPLEMENT FORMULATIONS

The matrices L : D̃
DP

(�̄) → D̃
DP

(�̄) and R : D̃
DP

(�̄) → D̃
DP

(�̄) are introduced next:

L ≡
(

¯̄
A

�� ¯̄
A

��

0 0

)
and

¯̄
R ≡

(
0 0

¯̄
A

�� ¯̄
A

��

)
(10.1)

Then, Eq. (9.11) implies

¯̄
A =

¯̄
L +

¯̄
R (10.2)

In view of Eq. (9.10), the range of
¯̄
L is contained in D̃

DP
(�) ⊂

¯̄
aD̃(�̄) and therefore

¯̄
a

¯̄
L =

¯̄
L (10.3)

Equation (9.14) can now be written as

(
¯̄
L +

¯̄
a

¯̄
R)ũ = f̄ and

¯̄
j ũ = 0 (10.4)

We observe that the ranges of
¯̄
L and

¯̄
a

¯̄
R are linearly independent and Eq. (10.4) is fulfilled, if and

only if,

¯̄
Lũ = f̄

�
,

¯̄
a

¯̄
Rũ = f̄

�2
and

¯̄
j ũ = 0 (10.5)

This because f̄ = f̄
�

+ f̄
�2

, since f̄
�1

= 0, by virtue of Eq. (8.15). It is advantageous to
transform the problem of Eq. (10.5), by subtracting the auxiliary vector (see [19]):

uP ≡
¯̄
A−1

��f̄
�

(10.6)

We notice that Eq. (10.6) implies

(uP )
�

= 0 (10.7)

Therefore,
¯̄
juP = 0. Defining u ≡ ũ − uP , then Eq. (10.5) becomes

¯̄
Lu = 0,

¯̄
a

¯̄
Ru = f

�2
and

¯̄
j ũ = 0 (10.8)

Here, f
�2

∈ D̃12(�) is defined by

f
�2

≡ f̄
�2

−
¯̄
a

¯̄
A

�� ¯̄
A−1

��f̄
�

(10.9)

The “dual-primal harmonic functions space,” is defined to be the null subspace of
¯̄
L; i.e.,

D ≡
{
u ∈ D̃

DP
(�̄)

∣∣∣Lu = 0
}

(10.10)

Hence, the problem of Eq. (10.8) can be stated as: find a harmonic vector (i.e., such that u ∈ D)
that satisfies

¯̄
a

¯̄
Ru = f

�2
and

¯̄
j ũ = 0 (10.11)
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Some important properties are listed next.

A. Dual-primal harmonic functions are characterized by their dual-values. Indeed, if u ∈ D, is
such that Lu = 0, then

u� = −
¯̄
A−1

�� ¯̄
A

��
u� (10.12)

B. When u ∈ D,

¯̄
Au =

¯̄
Ru =

¯̄
Su (10.13)

where
¯̄
S is the “dual-primal Schur complement matrix,” defined by

¯̄
S ≡

¯̄
A

��
−

¯̄
A

�� ¯̄
A−1

�� ¯̄
A

��
(10.14)

C.
¯̄
S : D̃(�) → D̃(�) possesses an inverse that will be denoted by

¯̄
S−1 : D̃(�) → D̃(�).

Here, the equality D̃(�) = D̃
DP

(�) is recalled.
D. When the dual-primal matrix

¯̄
A is well posed everywhere:

¯̄
j
¯̄
S : D̃11(�) → D̃11(�)is bijective (10.15)

since
¯̄
j
¯̄
S : D̃11(�) → D̃11(�) and

¯̄
j
¯̄
S

¯̄
j : D̃11(�) → D̃11(�) are equal.

Theorem 10.1. Let u ≡ (u� + u�) ∈ DDP. Then, u is solution of Eq. (10.8), if and only if

¯̄
a
¯̄
Su� = f

�2
and

¯̄
j ũ� = 0 (10.16)

Proof. Because when u ∈ D, Eq. (10.8) reduces to

¯̄
a

¯̄
Au =

¯̄
a
¯̄
Su� and

¯̄
ju =

¯̄
j(u� + u�) =

¯̄
ju� (10.17)

In what follows, these properties will be used to derive a wide variety of non-overlapping
domain decomposition methods, which permit obtaining the dual-values, u� ∈ D̃(�). Once u�

is known, u� ∈ D̃
DP

(�) is obtained by means of Eq. (10.12).

XI. MULTIPLIERS-FREE METHOD FOR NONSYMMETRIC MATRICES

Let be{
D̃11(�) ≡

¯̄
jD̃(�) and D̃12(�) ≡

¯̄
aD̃(�)

D̃21(�) ≡ {u ∈ D̃(�)|
¯̄
j
¯̄
Su = 0} and D̃22(�) ≡ {u ∈ D̃(�)|

¯̄
a
¯̄
Su = 0} (11.1)

We observe that the relations

D̃21(�) = {u ∈ D̃(�)|
¯̄
Su =

¯̄
a
¯̄
Su} and D̃22(�) = {u ∈ D̃(�)|

¯̄
Su =

¯̄
j
¯̄
Su} (11.2)

are satisfied.
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Next, we show that each pair {D̃11(�), D̃12(�)} and {D̃21(�), D̃22(�)} is a coordinate system
for D̃(�), in the sense of Definition 3.1; i.e.,

D̃(�) = D̃11(�) ⊕ D̃12(�) and D̃(�) = D̃21(�) ⊕ D̃22(�) (11.3)

The first of these relations can be easily shown using the fact that v =
¯̄
jv +

¯̄
av. To prove the

second one, notice that v ∈ D̃21(�)∩D̃22(�) implies
¯̄
Sv =

¯̄
jSv+

¯̄
a
¯̄
Sv = 0 and this is tantamount

to v = 0; hence, D̃21(�) ∩ D̃22(�) = {0}. On the other hand, given v ∈ D̃(�) define

v21 =
¯̄
S−1

¯̄
a
¯̄
Sv and v22 =

¯̄
S−1

¯̄
j
¯̄
Sv (11.4)

Then, it can be verified that v21 + v22 = v, while v21 ∈ D̃21(�) and v22 ∈ D̃22(�). In view of the
above, we define {

σ11 ≡
¯̄
j , σ12 ≡

¯̄
a

σ21 ≡
¯̄
S−1

¯̄
a
¯̄
S, σ22 ≡

¯̄
S−1

¯̄
j
¯̄
S

(11.5)

Next, we show that the couple ({D̃11(�), D̃12(�)}, {D̃21(�), D̃22(�)}) is a conjugate pair of
coordinate systems of D̃(�), in the sense of Definition 3.2; i.e,

D̃11(�) ∩ D̃21(�) = {0} and D̃12(�) ∩ D̃22(�) = {0} (11.6)

Now, let u� ∈ D̃12(�) ∩ D̃22(�), then

¯̄
a
¯̄
Su� = 0 and

¯̄
ju� = 0 (11.7)

Because of Corollary 9.1, Eq. (11.7) implies that u� = 0.
Let u� ∈ D̃11(�) ∩ D̃21(�), then

¯̄
j
¯̄
Su� = 0 and

¯̄
au� = 0 (11.8)

Now, u� ∈ D̃11(�) since
¯̄
au� = 0 and by assumption

¯̄
j
¯̄
S : D̃11(�) → D̃11(�) is a bijection;

hence, u� = 0. Therefore, ({D̃11(�), D̃12(�)}, {D̃21(�), D̃22(�)}) is indeed a conjugate pair of
coordinate systems of D̃(�).

Problem 1. The first problem to be considered is obtained taking i = 1 and j = 2 (and,
consequently α = 2, β = 1) in Problem A of Section II: “Given g ∈ D21, find u ∈ D12 such that
σ21u = g.”

We consider two formulations of this problem:

Formulation 1a. “Given g ∈ D̃(�), which has the property that

¯̄
j
¯̄
Sg = 0 (11.9)

find a u ∈ D̃(�) such that

¯̄
S−1

¯̄
a
¯̄
Su = g and

¯̄
ju = 0 (11.10)
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Formulation 1b (the Schur-Complement Method). “Given f ∈ D̃(�), which has the property
that

¯̄
jf = 0 (11.11)

find a u ∈ D̃(�) such that

¯̄
a
¯̄
Su = f and

¯̄
ju = 0 (11.12)

Lemma 11.1. Assume g ∈ D̃(�) and f ∈ D̃(�), in Formulations 1a and 1b, are related by

f =
¯̄
a
¯̄
Sg (11.13)

Or equivalently, by

f =
¯̄
Sg; i.e., g =

¯̄
S−1f (11.14)

Then, for any u ∈ D̃(�), the following statements are equivalent:

i. u is solution of Problem 1;
ii. u satisfies Formulation 1a; and

iii. u satisfies Formulation 1b.

Proof. The equivalence between i and ii, follows from the above definitions and the use
of Eqs. (11.9) and (11.10). Next, we observe that Eq. (11.12) is obtained when the first of the
relations occurring in Eq. (11.10) is multiplied by

¯̄
S. This establishes the equivalence between

Formulations 1a and 1b, since
¯̄
S is non singular.

In what follows it will be assumed that g ∈ D̃(�) and f ∈ D̃(�) are related by Eq. (11.14),

in which case the condition f ∈ D̃12(�) is equivalent to g ∈ D̃21(�). Formulation 1b will be
referred as the Schur Complement Method for nonsymmetric matrices.

A. The Neumann–Neumann Method for Nonsymmetric Matrices

A new version of the Neumann–Neumann method, applicable to nonsymmetric matrices, will be
derived applying the preconditioned algorithm of section II to Problem 1.

In view of Eq. (11.5), Eq. (3.9) implies:

¯̄
a
¯̄
S−1

¯̄
a
¯̄
Su =

¯̄
a
¯̄
S−1f and

¯̄
ju = 0 (11.15)

Since

¯̄
ag =

¯̄
a
¯̄
S−1f (11.16)

Problem 2. The second problem to be considered is obtained taking i = 1 and j = 2 (and,
consequently α = 1, β = 2) in Problem A: “Given g ∈ D̃11(�), find u ∈ D̃22(�) such that
σ11u = g.”

Next, we consider two formulations of this problem:
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Formulation 2a. Given g ∈ D̃(�), which has the property that

¯̄
ag = 0 (11.17)

find a u ∈ D̃ such that

¯̄
ju = g and

¯̄
a
¯̄
Su = 0 (11.18)

Formulation 2b (the FETI- Method). Given f ∈ D̃(�), which has the property that

¯̄
a
¯̄
S−1f = 0 (11.19)

find a u ∈ D̃(�) such that

¯̄
S

¯̄
ju = f and

¯̄
a
¯̄
Su = 0 (11.20)

The FETI-MF-DP of Eq. (1.1), can be derived multiplying Eq. (11.20) by S to the minus two.

Lemma 11.2. As said before, we assume that g ∈ D̃(�) and f ∈ D̃(�) are related by

f =
¯̄
Sg; i.e., g =

¯̄
S−1f (11.21)

Then, for any u ∈ D̃(�), the following statements are equivalent:

i. u is solution of Problem 2;
ii. u satisfies Formulation 2a; and

iii. u satisfies Formulation 2b.

Proof. First, we notice that Eqs. (11.17) and (11.19) are equivalent when g ∈ D̃(�) and

f ∈ D̃(�) are related by Eq. (11.21). Then, the equivalence between i and ii, follows from
Eqs. (11.1) and (11.5). Next, we observe that Eq. (11.20) is obtained when the first of the relations
occurring in Eq. (11.18) is multiplied by

¯̄
S. This establishes the equivalence between Formulations

2a and 2b, since
¯̄
S is non singular.

Before leaving this Section we observe that the summary of formulas presented in Eqs. (1.1)
and (1.2) of the Introduction, correspond to Eqs.(11.12), (11.15), (11.20) and (11.22).

B. The Preconditioned FETI Method for Nonsymmetric Matrices

A new version of the preconditioned-FETI method, applicable to nonsymmetric matrices, is here
derived applying the matrix

¯̄
S−1

¯̄
j to the first equation in Eq. (11.20):

¯̄
S−1

¯̄
j
¯̄
S

¯̄
ju =

¯̄
S−1

¯̄
jf and

¯̄
a
¯̄
Su = 0 (11.22)

We recall that here f ∈ D̃22(�).
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XII. NUMERICAL PROCEDURES AND RESULTS

The developments of this Section are done in D̃DP(�̄), the extended dual-primal space of vectors,
whose members are generally discontinuous; i.e., all vectors considered here belong to D̃(�̄). We
recall that in Eq. (8.11)

{
¯̄
A�� : D̃DP(�) → D̃DP(�),

¯̄
A�� : D̃(�) → D̃DP(�)

¯̄
A�� : D̃DP(�) → D̃(�),

¯̄
A�� : D̃(�) → D̃(�)

(12.1)

Also, D̃(�) ⊂ D̃DP(�̄) is the linear space of vectors of D̃(�̄) that vanish at every derived node
that is not a dual node, whereas D̃DP(�) ⊂ D̃(�) is the linear space of vectors that are continuous
at the nodes of � and vanish at every vector of D̃(�). Furthermore,

D̃DP(�̄) = D̃DP(�) ⊕ D̃(�) (12.2)

We now define 
 ≡ I ∪ � and, in a similar fashion to that of Eq. (8.11), shall write

¯̄
A ≡

(
¯̄
A

 ¯̄

A
π

¯̄
Aπ
 ¯̄

Aππ

)
(12.3)

where

{
¯̄
A

 : D̃DP(
) → D̃DP(
),

¯̄
A
π : D̃DP(π) → D̃DP(
)

¯̄
Aπ
 : D̃DP(
) → D̃DP(π),

¯̄
Aππ : D̃DP(π) → D̃DP(π)

(12.4)

Using Eqs. (8.8), it can be verified that

¯̄
A

 ≡

(
¯̄
AII ¯̄

AI�

¯̄
A�I ¯̄

A��

)
=

E∑
α=1

(
¯̄
Aα

II ¯̄
Aα

I�

¯̄
Aα

�I ¯̄
Aα

��

)
(12.5)

According to our previous results, the numerical application of the multipliers-free domain-
decomposition methods requires the use of the following formulas:

For the Schur complement MF-DP :
¯̄
a
¯̄
Su� = f

�2
and

¯̄
ju� = 0 (12.6)

For Neumann–Neumann MF-DP :
¯̄
a
¯̄
S−1

¯̄
a
¯̄
Su� =

¯̄
a
¯̄
S−1f

�2
and

¯̄
ju� = 0 (12.7)

For non-preconditioned FETI-MF-DP :
¯̄
S−1

¯̄
ju = −

¯̄
S−1

¯̄
j
¯̄
S−1f

�2
and

¯̄
a
¯̄
Su = 0 (12.8)

For preconditioned FETI-MF-DP :
¯̄
S−1

¯̄
j
¯̄
S

¯̄
ju = −

¯̄
S−1

¯̄
j
¯̄
S

¯̄
j
¯̄
S−1f

�2
and

¯̄
a
¯̄
Su = 0 (12.9)

So, when iterating we need to have codes for computing the action of the following matrices
¯̄
a,

¯̄
j ,

¯̄
S, and

¯̄
S−1. The actions

¯̄
au and

¯̄
ju of the average and jump matrices on any vector u ∈ D̃(�̄),

which are given by Eqs. (6.4) and (6.5), are easy to compute so that their parallelization is not an
issue.
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A. Computation of
¯̄
S and

¯̄
S−1

As for the action of
¯̄
S, recall that

¯̄
S ≡

¯̄
A�� −

¯̄
A�� ¯̄

A−1
�� ¯̄

A�� (12.10)

Here, only the action of
¯̄
A−1

�� requires further explanation. Given w ∈ D̃(�), let v ∈ D̃(�) be
such that v = vI + vπ ≡

¯̄
A−1

��w. Then, since

¯̄
A��v ≡

(
¯̄
AII ¯̄

AIπ

¯̄
AπI ¯̄

Aππ

) (
vI

vπ

)
=

(
wI

wπ

)
(12.11)

Then, vπ ∈ D̃(π) is the solution of(
¯̄
Aππ −

¯̄
AπI ¯̄

A−1
I ,I ¯̄

AIπ

)
vπ ≡

¯̄
Sπvπ = wπ −

¯̄
AπI ¯̄

A−1
I ,IwI (12.12)

While

vI =
¯̄
A−1

I ,I (wI −
¯̄
AIπvπ) (12.13)

This last problem [Eq. (12.12)] can be treated by two separate techniques: The first involves the
explicit computation of the matrix

¯̄
Sπ (almost always banded) and its LU factorization whereas

the second involves an iterative approach formulated in the vector space D̃(π) whose dimension
is much smaller. It should be pointed out that this second approach can be carried out in parallel.
Once the vector vπ has been obtained, vI is computed in parallel from the fact that

¯̄
A−1

II =
E∑

α=1 ¯̄
A

(α)−1
II (12.14)

To obtain the action of
¯̄
S−1u� for some u� ∈ D̃(�), set w� ≡

¯̄
S−1u� and write w ≡ wπ + w


for the dual-primal harmonic extension of w�. Then,(
¯̄
A

 ¯̄

A
π

¯̄
Aπ
 ¯̄

Aππ

) (
w


wπ

)
=

(
u�

0

)
(12.15)

Using Eqs. (12.5) and (12.15), it can be seen that(
¯̄
Aππ −

¯̄
Aπ
 ¯̄

A−1


 ¯̄

A
π

)
wπ ≡

¯̄
S/

πwπ = −
¯̄
Aπ
 ¯̄

A−1


u� = −

¯̄
Aπ
(

¯̄
A�� −

¯̄
A�I ¯̄

A−1
II ¯̄

AI�)u�

(12.16)

Again, there are two approaches to the solution [similar to (12.12) of this equation]. Namely,
explicitly compute the banded, small-dimensional matrix

¯̄
S/

π and its LU factorization or solve
(12.16) iteratively in parallel since

¯̄
A−1



 is the sum of local inverses. Again, once wπ has been
obtained, we have:

w
 =
¯̄
A−1





(
u� −

¯̄
A
πwπ) (12.17)

which completes the parallel computation of w� = (w
)� =
¯̄
S−1u�.
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B. Numerical Procedure

The uniformity of the formulas of Eqs. (12.6)–(12.9) allows the development of very robust codes,
since the developments stem from the original matrix independently of the problem that motivated
it. In this manner, for example, the same code was applied to treat 2D and 3D problems; the only
routine of the code that had to be changed, when going from one class of problems to the other,
was that defining the geometry and that is a very small part of it.

The numerical procedure requires the computation of the dual values on the internal bound-
ary. Either the CGM (symmetric case) or GMRES (nonsymmetric case) algorithm is implemented
[29]. During the evaluation of the algorithm, the application of

¯̄
S, a, and

¯̄
S−1 are generally needed,

which, as explained above, can be achieved in parallel through the assignment of different proces-
sors to distinct subdomains. In the calculations for

¯̄
S and

¯̄
S−1, first the values at the primal variables

are obtained by either of the approaches outlined in the previous section and then the dual values.
It can be seen that for each subdomain α, the applications of the matrices:

¯̄
Aα ,

¯̄
A

(α)−1
II ,

¯̄
A

(α)−1


 (12.18)

are the only calculations required. The ability to generate robust codes stems in part from the fact
that these are the only main routines required for the subdomains.

C. Numerical Results

The problems implemented have the form:

−a∇2u +→b · ∇u + cu = f (x) x ∈ � u = g(x) x ∈ ∂� � =
d∏

i=1

(αi , βi) (12.19)

where a, c > 0 are constants, while b = (b1, . . . , bdim) is a constant vector and dim = 1, 2, 3.
The family of subdomains {�1, . . . , �E} is assumed to be a partition of the set � ≡ {1, . . . , d}
of original nodes (this count does not include the nodes that lie on the external boundary). In the
applications we present, d is equal to the number of degrees of freedom (dof), because we use
linear functions and only one of them is associated with each original node (see, Table I).

The matrices treated were obtained by discretization of two cases, in two and three dimensions,
of the above boundary value problem with a = 1. The choice b = (1, 1) or b = (1, 1, 1) with
c = 0 yields a nonsymmetric matrix. Choosing c = 1 and b = 0 a symmetric matrix was obtained
that was also treated for comparison purposes. Discretization is accomplished using central finite
differences and the original problem is then to solve:

�

A · �
u = �

f . (12.20)

In each domain, �α , the local matrix Aα
(i,α),(j ,α) is defined as in [19] as:

Aα
(i,α)(j ,α) = 1

m(i, j)

�

Aij (12.21)
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TABLE I. Iteration table (2-D).

Symmetric case Nonsymmetric case

Vertices Subdomains dof Primals N-N FETI N-N FETI

2 4 9 1 2 1 2 1
4 16 225 9 7 7 9 8
6 36 1225 25 9 9 13 12
8 64 3969 49 10 10 15 14

10 100 9801 81 11 11 17 15
12 144 20,449 121 12 11 18 17
14 196 38,025 169 12 12 19 18
16 256 65,025 225 13 12 20 19
18 324 1,04,329 289 13 13 21 19
20 400 1,59,201 361 13 13 21 20
22 484 2,33,289 441 13 14 22 20
24 576 3,30,625 529 14 14 23 21
26 676 4,55,625 625 14 14 23 22
28 784 6,13,089 729 14 14 23 22
30 900 8,08,201 841 15 14 24 22

where m(i, j) is the minimum of the multiplicities of i and j . The total matrix At then satisfies
the criteria of (7.4) and (7.5):

At =
E∑

α=1

Aα

�
w · �

A · �
u = τ(

�
w) · At · τ(

�
u). (12.22)

The DQGMRES algorithm [29] was implemented for the iterative solution of the nonsymmetric
problems (12.19).

D. Numerical Tables

The results of the numerical experiments are displayed in two tables. Only the results for the
preconditioned algorithms, Neumann–Neumann MF-DP, and preconditioned FETI-MF-DP, are
presented.

In Table I, the number of iterations required by the MF-DP algorithms in 2D for convergence are
reported. When the efficiency of such algorithms for nonsymmetric and symmetric matrices are
compared, it is observed that they are of the same order. Indeed, for the Neumann–Neumann algo-
rithm the number of iterations in the symmetric case is 62.5% of that required in the nonsymmetric
case treated, whereas for the preconditioned FETI-MF-DP such a percentage is 64%.

In Table II, the results that were obtained for the 3D problems are reported. This table is
organized in a similar fashion to that of Table I. Again, the efficiency of the MF-DP algorithms
for the nonsymmetric and symmetric matrices treated are of the same order: 53% and 58% for
Neumann–Neumann and preconditioned FETI, respectively.

XIII. CONCLUSIONS

The MF-DP approach to domain decomposition methods previously developed [16–19] has been
successfully extended to nonsymmetric matrices. In the numerical experiments in 2D and 3D
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TABLE II. Iteration table (3-D).

Symmetric case Nonsymmetric case

Vertices Subdomains dof Primals N-N FETI N-N FETI

2 8 27 7 3 2 3 2
8 27 512 80 5 4 7 6

27 64 3375 351 6 5 9 7
64 125 13,824 1024 7 6 11 9

125 216 42,875 2375 7 7 13 10
216 343 1,10,592 4752 8 7 14 11
343 512 2,50,047 8575 8 7 15 12
512 8019 5,12,000 14,336 8 8 16 13

8019 1000 9,70,299 22,599 8 8 16 14

carried out thus far, the MF-DP algorithms for nonsymmetric matrices exhibit an efficiency of the
same order as state-of-the-art algorithms for symmetric matrices, such as BDDC, FETI-DP, and
MF-DP (for symmetric matrices the number of iterations for convergence is between 53% and
62.5% of that required for nonsymmetric matrices).

The extension of the MF-DP approach to nonsymmetric matrices was accomplished by means
of the general abstract scheme that yields the very broad class of preconditioned DDM algorithms
of Section III; i.e., the new MF-DP algorithms for nonsymmetric matrices belongs to such a class.
Another concept that is fundamental for developing the extension of the MF-DP approach to non-
symmetric matrices is that of “well posed everywhere,” introduced for the dual-primal matrix, in
Section IX. To obtain the desired results, this concept replaces the assumption that the dual-primal
matrix is positive definite, which is used when developing the theory for matrices possessing such
a property. Indeed, it is easy to see that the dual-primal matrix is well posed everywhere, in the
sense of Section IX, whenever it is positive definite. Thus, the concept of well posed everywhere
is indeed a generalization of the concept of positive definite, in this respect; it is a key concept
that permits applying the general scheme of Section 3 in the developments of the present article.
Except for these concepts of Sections III and IX, the arguments of the theory for nonsymmetric
matrices are very similar to those used when developing the theory of the MF-DP methods for
symmetric matrices.

To finish, we recall that the algorithms for nonsymmetric matrices presented in this article
share many of the properties enjoyed by their symmetric counterparts; namely:

• In the case of nonsymmetric matrices, the numerical efficiency of the preconditioned algo-
rithms is of the same order as state-of-the-art DDMs algorithms for symmetric matrices. We
are not aware of other algorithms for nonsymmetric matrices with this property. Furthermore,
their computational properties are very good.

• The unifying, explicit matrix formulas given in Eqs. (1.1) and (1.2), possess several attractive
features worth noticing, among them: once the original matrix is given, they are uniquely
determined and are equally applicable to a single linear differential equation or to a system
of such equations.

• Code development is simplified.
• Very robust codes are obtained; for example, a code has been developed that has been applied

in 2D and 3D problems (such a code was used to obtain the numerical results reported in
Section XII of this article), something that is not possible when standard approaches are
used.

• The MF-DP algorithms are 100% parallelizable, as it is shown in Section XII.
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