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9 Finite difference methods for hyperbolic differential equa-

tions.

In this section, we will discuss finite difference methods for hyperbolic partial differential

equations. First we list a few typical hyperbolic PDEs.

e Advection equations (one-way wave equations).
ut + auy = f(z,t), 0<z <1,
u(z,0) =n(z), IC, (9.1)
u(0,t) = gi(t), if a>0, or wu(l,t)=g-(t), if a<O0.
e Second order linear wave equations:
Uy = augy + f(2,t), 0<z <1,
u(z,0) =n(z), IC, (9.2)
w(0,t) = gu(t), u(l,t) = gr(t)
e Linear first order hyperbolic system:

w = Au, + f(z, 1) (9.3)

where u and f are two vectors, A is a matrix. The system is hyperbolic if A is

diagonalizable, A = TDT~!, and all eigenvalues of A are real numbers.

e Non-linear hyperbolic system, particularly the conservation laws

2
ut+ fo =0, eg., Burger’'seqn., wug;+ (u_) —0.
2/, (9.4)

u +f; +g, =0, in2D.

For non-linear hyperbolic PDEs, shocks (discontinuous solution) can develop even if

the initial condition is smooth.

9.1 Boundary conditions
We know the exact solution for the one-way wave equation
ur +auy, =0, —oo <z < 00,
u(z,0) =n(z), t>0

is u(z,t) = n(z — at).
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If the domain is finite, we can also find the exact solution. Consider the model problem
ur+auy, =0, 0<z <]l
u(z,0) =n(z), t>0, u(0,t) = gi(t) ifa>0.
We can use the characteristic method to solve the problem. Assume that the solution

keeps a constant value along a line (the characteristic). Given a point (z,t), we can trace

the solution along the characteristic line (z + ks, t + s). Define
z(s) = u(z + ks, t + s) (9.5)

along which the solution keeps a constant, that is z’(s) = 0. Plug this into the PDE, we

can get:
2'(8) = up + kug = 0.

which is always true of we take k = a. Therefore the solution at (z + ks,t + s) is the same
as at (z,t). So we can solve the problem by tracing back until the line hit the boundary.
Therefore u(Z,t) = u(z + as,t + s) = u(z — at,0) if z — at > 0 which means we trace back
to the initial condition. If z — at < 0, we can only trace back to z = 0 or s = —Z/a and
t = Z/a and the solution is u(Z,¢) = u(0,t — £) = g,(t — 2). Therefore the solution for the
case a > 0 can be written as

n(z —at) if z > at,

ulat) = g (t — g) if x < at.

(9.6)

Now we can see that we have to prescribe a boundary condition at £ = 0 but we can not
have any boundary condition at £ = 1. It is important to get correct boundary conditions

for hyperbolic problems.

The one-way wave equation is often used as a bench-mark problem for different numerical

methods for hyperbolic problems.

Simple numerical methods for hyperbolic problems include
e Lax-Friedrichs method.

e Up-wind scheme.

e Leap-frog method

e Box-scheme

e Lax-Wendroff method

e Crank-Nicholson scheme

e Beam-Warming method.
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9.2 Lax-Friedrichs method.

Consider the one-way wave equation u; + au, = 0. One may want to try the simple finite
difference scheme

Uj’?“ — Uk

J a k k _
T ar o (U -01) =0,
or  US =Uf - (Uf - U,

where p = aAt/(2h). The scheme has O(At + h?) local truncation error. But the method
is unconditionally unstable. To see why, we conduct the von Neumann stability analysis to

get the growth factor:
g) = 1—pu (ez’hg _ 6—ih§)
= 1— p24 sin(hé),
where 6 = h¢. Therefore
9(0)” = 1 + 44” sin®(hé) > 1,

and the scheme is unconditionally unstable.

In the Lax-Friedrichs scheme, we average UJ’-c using Uf_l and U]’-“H to get

1
Ut = S (UF 1+ Ufr) = (U - U -
The local truncation error has an order of O(At + h) if At ~ h. The growth factor is

g(6) = 1 (eih§ n e—ihf) tu (eihf _ e—ih§)
2

= cos(h€) — 2usin(hé).
Therefore
9(0)* = cos®(h€) + 4u” sin® (hé)
= 1 —sin?(h¢) + 4u? sin®(h¢)
= 1— (1 —4u?)sin*(h¢).

We can conclude that |g()] < 1if 1 —4u? > 0 or 1 — (aAt/h)? > 0, which implies that
At < h/|a|. This is called the CFL (Courant-Friedrichs-Lewy) condition.
For the Lax-Friedrichs scheme, we need a numerical boundary condition at x = 1 which

will be explained later. The Lax-Friedrichs scheme is the basis of several other popular

schemes.
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9.3 The upwind scheme.

The upwind scheme for u; + au, = 0 is

a k k .
At ) G (g A 6.7

It is first order accurate in time and in space. To find out the CFL constraint, we conduct

the von Neumann stability analysis. The growth factor for the case when a > 0 is

g0) = 1—p (1 — efih§>

= 1— p(l —cos(h)) — iusin(h).

Now we investigate the magnitude:

9O)* = (1—p+ pcos(he))® + u? sin(hg)
= (1—p)®+2(1 — p)pcos(ht) + p?
= 1-2(1 = p)u(l — cos(hf))
= 1—4usin®(hé/2)

Therefore if 1 — p > 0, that is p < 1, or At < h/a, we have |g(0)| < 1.

Note that for the upwind scheme, no numerical boundary condition is needed; no severe
time step restriction since At < h/a. If a = a(z,t) is a variable function that does not

change the sign, then the CFL condition is

h

A<M
0< A< el )

However, the upwind scheme is first order in time and in space. Below we discuss some

high order schemes.

9.4 The Leap-Frog scheme.

The Leap-Frog scheme for u; 4+ au, = 0 is:

k+1 k—1
Uj+ — UJ a Uk: Uk: =0
~oar o (Ut U =0

k+1 k—1
or UM =UF - (U, - UE),

(9.8)

where ;1 = aAt/(2h). The discretization is second order in time and in space. It requires

a numerical boundary condition at one end and need Uj1 to get started. We know that
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the Leap-Frog scheme is unconditionally unstable for the heat equation. So we should be

concerned with the stability through the von Neumann stability analysis. Let
U]]-C = ¢, U]’-“"'1 = g(€)e8, U]’-C_1 = ﬁ et
Plug in these into the Leap-Frog scheme, we can get
g+ u(e — e Mg —1=0,
or g* + 2uisin(hé) — 1 = 0.
The solution is

g+ = —ipsin(hé) £ 1/1 — p? sin?(hé)

we distinguish three different cases:

(9.9)

1. If |u| > 1, then there are such £’s such that one of |g_| > 1 or |g4+| > 1 is true. The

scheme is unstable!
2. If |u| < 1, then 1 — p2?sin?(h¢) > 0, we have

lg+ |2 = p?sin®(hé) + 1 — p?sin®(h¢) = 1.

However, since it is two stages method, we have to be careful about the stability. For

linear finite difference equation theory, we know that the general solution is
Uk = C'1gli + C2gi

U* < max{C1, 0o} (g +1441)
< 2max{Cy,Ca}.

Therefore, the scheme is called neutral stable according to the definition ||U*| <

Cr Yo U7

3. If |u| = 1, we still have |g+| = 1. However, we can find ¢ such that psin(hé) = 1, and

g+ =g = —i. That is —i is a double root of the characteristic polynomial. Therefore

the solution of the finite difference equation has the form

U = C1(—i)* + Cak(—i)F,

where C; and C5, can be complex numbers, are determined from the initial conditions.

Therefore there are solutions that |U¥|| ~ & which is unstable (slow growing).

Therefore, the Leap-Frog scheme is stable if At < ﬁ Note that we can use the upwind

or other scheme (even unstable one) to initialize the Leap-Frog scheme to get Ujl.

Note that if |g(¢£)| < 1, we call the numerical scheme is dissipative. The Leap-Frog

scheme is a non-dissipative scheme.



Finite Difference Method 83

9.5 Modified equations and numerical diffusion and dispersion.

A modified equation is the PDE that a finite difference equation satisfies exactly at grid
points. Consider the upwind method for the advection equation u; + au, = 0 in the case
a > 0,

Ukttt —uk
J J k k) _

sy (U -vk) =0

The process of deriving the modified PDE is similar to computing the local truncation error,

only now we insert v(z,t) into the finite difference equation to derive a PDE that v(z,t)

satisfies. Therefore we have

v(z.t+ At) —v(z,t)  a B
At -l-ﬁ(v(;v,t)—v(w—h,t))—O.

Expanding these terms in Taylor series about (z,t) and simplifying gives:
1 1 1.,

?}t+§Atvtt+"'+a Ul-_ghv$$+6hv$$$+"' :0.
We can rewrite this as

v; + avg = E(ahvm — Atvy) + 6 (ah Vgze — (Al) vtt) + .-
This is the PDE that v satisfies. From the equation above, we can get

1
v = —aUgt+ i(ah’vmt — Atvyy)

= —avg + O(At,h)
0
= —ag- (—avg + O(At, h))

Therefore, the leading term of the modified PDE is

1 At
v + avg = gah <1 — GT) V- (9.10)

This is a advection-diffusion equation. The grid values U;" can be viewed as giving a
second order accurate approximation to the true solution of this equation (whereas they
only give first order accurate approximation to the true solution of the original problem.

From modified equation, we can conclude the following;:

e The computed solution will smooth out discontinuities because the diffusion term. The

second order derivative term is called numerical dissipation, or numerical viscosity.

e If a is a constant, and At = h/a, then 1 — “TAt = 0, we have second order accuracy as

we see from numerical example.
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e We can add the correction term for the second order accuracy to get higher order
accurate method. The stability needs to be checked. For example, we get modify the
upwind scheme to get a second order scheme:

uktt—uk Uk -Uk
J J

J Jj—1 1
= 1—
N +a 5 2ah(

aAt\ U | —2UF + U},
h h?

which is second order accurate if At ~ h.

e From the modified equation, we can see why some scheme is unstable. For example,
the leading term of the modified PDE for the unstable scheme

k+1 k k k

I= — a1
At 2h 0 (9-11)
is
2At
v+ avg = —— . (9.12)

The highest derivative is similar to backward heat equation which is dynamically

unstable!

9.6 Lax-Wendroff scheme.

We can add numerical viscosity to improve the unstable scheme to stable. Since

u(z,t + At) — u(z, t)
At

At
= u+ T’U,tt + O((At)2)
— w— %aQ(At)um +O((t)?).

We can add the numerical viscosity to the —%aQAum to get the Lax-Wendroff scheme:

k+1 k k k

k _orrk k
N = 55 (U - 2U] +U]+1). (9.13)

j—

Lax-Wendroff scheme is second order accurate both in time and space. To show this, we

investigate the local truncation error:

T(z,t) = u(z,t + At) —u(z,t)  a(u(z+h,t) —u(z - h,t))

At oh
@At (u(z — h,t) — 2u(z,1) + u(z + h,t))
2hZ
At 2At
= U+ o — Oty — "Tu +O((AD)? + 12)

= O((At)? + h?)
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since u; = —aug, and uy = —aug = —a%ut = a’ugy.

The von Neumann stability analysis. The growth factor of Lax-Wendroff scheme is

2
§0) = 1= B (o6 ) 4 1 (g g )

= 1— pisin@ —2u*sin?(9/2),

where again @ = hé. Therefore we proceed with the following derivation

0 2
lg(0)? = (1—2,usin2§> + p?sin? @
0 0 0 0
o1 42an2? 4.4 2.2, .90
= 1—4p”sin 2+4u sin 2—I—4u sin 2(1 sin 2)
0

We conclude that |g(0)| <1 is p < 1, that is At < h/|a|. If At > h/|a|, there are £’s such
that g(@)| > 1 and the scheme is unstable.

The leading term of the modified PDE for the Lax-Wendroff method is

1 At ?
V¢ + avy = _Eahz (1 — (GT) ) L (9.14)

This is a dispersive equation. The group velocity for the wave number ¢ under Lax-Wendroff

2
cg=a-— %ah2 (1 — <GTAt> ) £2 (9.15)

which is less than a for all wave numbers. As a result the numerical result can be expected to

is

develop a train of oscillations behind the peak, with the high wave numbers lagging farther
behind the correct location, see Strikwerda. If we retain one more term in the modified

eqaution for Lax-Wendroff, we will get:

1 At)?
Ut + avg = gahz ((%) - 1) Vpzr — €Uz, (916)

where the ¢ is the fourth order dissipative term is O(h®) and positive when the stability
bound holds. This high order dissipation causes the highest wave number to be damped,

so that there is a limit to the oscillations.
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9.7 Beam-Warming method.

Beam-Warming method is one sided finite difference scheme to the modified equation

a’At
v+ av, = Tvm.

Recall the one sided finite difference formulas:

3u(z) — 4u(x — h) + u(z — 2h)

u'(z) = o, + O(h?),
W(z) = u(z) — 2u(z —hf;) + u(z — 2h) + o).

The Beam-Warming method for u; + au, =0 for a > 0 is

k41 _ ook QAL k k k
Urt = uf - 4 (3Uj — AUk |+ UH) +

(aAt)?
2h?

k k k
(UF —20f, +Uf,)  (917)

The method is second order accurate in time and space if At ~ h. The CFL constraints is

2
0< At < ;h (9.18)

For this method, we do not numerical boundary condition at x = 1, but we need a scheme

to compute the solution Uf . The leading terms of the modified PDE for the Beam-Warming

1 At\?
v + av, = gahQ ((aT) — 1) TT— (9.19)

In this case, the group velocity is greater than a for all wave numbers in the case 0 <
aAt/h < 1, so that the oscillations move ahead of the main hump. If 1 < aAt/h < 2, then

the group velocity is less than a and the oscillations fall behind.

method is

9.8 The Crank-Nicholson scheme.

The Crank-Nicholson scheme for the advcetion equation u; + au, = f is

j+1 j+1 k+3

k+1 k k k k+1 k+1
UMt Uk Uk, - UR 4 UR U
Ar @ m =1

(9.20)

It is second order accurate in time and in space. It is also unconditionally stable. The
method need a numerical boundary condition at x = 1. For one dimensional problem, it
is very effective since it is very easy to solve tridiagonal system of equations. It may not
be necessary for high dimensional problems since for hyperbolic equations, the time step

constraint At ~ h is not a major concern.
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9.9 The method of lines (MOL).

Different MOL method can be used as well depending how the spatial derivative term is

discretized. For the advection equation u; + au, = 0, if we use the following discretization

oU; N an+1 - Ui

o o = 0. (9.21)

Then the ODE solver that is going to be used is likely to be implicit since the forward FEuler

method is unstable!

9.10 Numerical boundary conditions (NBC).

We need a numerical boundary condition at one end for the one-way wave equation when
we use the Lax-Friedrics, Lax-Wendroff, Beam-Warming, and Leap-Frog schemes. There

are several approaches that can be used

e Extrapolation. Recall the Lagrange interpolation formula

r — I9 r — I

+ f(z2)

L — T2 T2 — T

fz) = f(x1)

We can use the same time level for the interpolation to get

K+l prk+l
Ui = Uy, 1-st order
TM — TM-1 TM — TM—2
lj'k:—l_1 = Uﬁ127 + Ulk\ii__ll— 2_nd Order'

TYTM-1 — M TM-2 — TM-1

If a uniform grid is used with spatial step size h, the formula above becomes

R+l _ kel k41
Uy~ = Uy + 20U

e (Quasi-characteristics. If we use previous time level for the interpolation, we get

U]’\C/[+1 = UN_,, 1-st order
TM — TM-1 TM —TM-2

Ukt = Uk, Uk "= 2-nd order.
TM-1—TM ITM—2 —TM-1

e Use the schemes that does not need NBC at or near the boundary, for example, the

upwind scheme, the Beam-Warming method.

The accuracy, the stability of the numerical scheme usually depend on the numerical bound-
ary conditions that is used. As a rule of thumb, the main scheme and the scheme for NBC
both should be stable.
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9.11 Second order linear hyperbolic PDEs.
Consider the wave equation:
Uy = a*Ugy, 0<z<1,
IC: u(z,0) = ug(z), w(z,0) =ui(z),

BC: ’U,(O, t) =0 (t)a u(la t) = gZ(t)'

We can use D’Alembert’s technique to find the exact solution if the domain is the entire

space. Introduce:

£+
E=x—at ="
or (9.22)
n =z + at, t:n—ﬁ.
2
Using the chain role, we get
Uy =  —aug + auy,
Uy = a2u§§ — 2a2u§n + a2u,m,
Uy = Ug+ Uy,
Ugy = Uge + Ugy + Unpy-

Substitute these relations into the wave equation to get
ugea® — 2augy + a*uyy = a® (uge + 2ugy + Upy) -
The equation above then is simplified to
4a2u§" =0.

Therefore the solution can be obtained

ue=F(e), — ulz,t) = F(€)+Gln),

u(z,t) = F(z — at) + G(z + at).
Particularly, if the domain is (—00,00) then the solution is

u(z,t) = % (u(w —at,0) + u(z + at,0) ) )

which tells us that a signal (wave) will propogates along the characteristics  —at and =+ at
with speed a and half of the strength.
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9.11.1 A finite difference method (CT-CT) for the second order wave equation.

k+1 k k—1 k k k
(At)? h? )

=a

The method is second order accurate both in time and space ((At)? + h?). The CFL

constraints of this method is At < % this will be verified through the following discussion.
The von Neumann analysis gives:

g—2+1/g a2e’ih§ — 2+t
(At)2 h? '

- The equation above becomes:
9> —2g+1=pu’(—4sin’0),
where 6 = h{/2. Solve the equation above to get

g =1%2u|sinb|/gi,

2
or g+ = (\/ 1 —a2u?sin’0 + ipa sin9)

If 1—a?u?sin®@ > 0 which is ture if At is small enough, we have
lg+|? = ‘1 — a?u? sin? +p2a? sin? ‘o1

Note that the definition of stability for second order equations (in time) that contain

uy is weaker than that of the first order equations that contain only w; term.

A finite difference scheme for second order PDE (in time) PAt,hvf = 0 is stable in a
stability region A if there is an integer J such that for any positive time T, there is a
constant Cr independent of At and h such that

J
Iv™"lp < VI4+02Cr Y [V ]|n (9.24)
i=0

for any n that satisfies 0 < nAt < T with (At,h) € A.

The definition allows linear growth in time. Again, if a finite difference method is

consistent and stable, then the finite difference method will converge.

9.11.2 Transform second order wave equation to a first order system.

While we can solve the second order wave equation directly, in this section, we discuss how

to change the equation to a first order system. Most of discussions in the literature is about
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conservation laws which is a first order non-linear syste. A first order linear hyperbolic

system has the form
u; = (Au), = Au,

which is a special case of one dimensional conservation laws

of
u; + (f(u), =0, ut—l-%uz:O.

For simplification of discussion, we set a = 1. Introduce

b=1u
Utt = Pty G = Ugg-
q = Ug,
Therefore we have
Dt = Ut = Ugy = qz,
gt = Ugt = (ut)z = Pz

In the matrix-vector form, it is

P 01 P
s . (9'25)

q 10 q

t T

The eigenvalues of A is —1 and 1, therefore the system is hyperbolic.
9.11.3 Initial and boundary conditions for the system.
From the given boundary conditions we get
u(0,t) = g1(t),  w(0,t) = g1(t) =p(0,2),
u(lat) ZQQ(t)a Ut(O,t) :gll(t) :p(lat)'

There is no boundary condition for ¢(z,t).

Now consider the initial conditions
p(z,0) = ug(z,0) = ui(z), known,
q(z,0) = uz(z,0) = gu(aﬂ,O) = ug(z), known.
T

To solve a hyperbolic system numerically, usually we change the system to a diag-
onal form (characteristic direction) so that we can determine the boundary conditions

and appropriate numerical methods (such as up-wind method). Let A = T~!DT, where
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D = diag(A1, A2, - - A\p) is a diagonal matrix containing eigenvalues of A, T is a non-singular

matrix. Then we have
w = Au,, Tuy=TAT 'Tu,, (Tu), = D (Tu), .
Let 1 = T'u. We get a new first order system
u; = Duy,

or (@)t = Ai()z, @ = 1,2,--- ,n which we know how do solve them one by one. We also
know at which end that we should have a boundary condition depending on the sign of A;.

For the second order wave equation, we know the eigenvalue is 1 and —1. The unit
eigenvector corresponding to the eigenvalue 1 can be found by solving Az = z, ||z|2 = 1.

we can get z = [1, 1]7/+/2. Similarly the unit eigenvector corresponding to the eigenvalue
—1is z = [~1, 1]7/+/2. Therefore we have

1 1

SIS
SERE

m N
—_
N
]
—_
Sl =
— N

1
V2P
1

— | la
V2 ' i

Sl- sl
SRR

S
S

Q

In component form, the first order system above is
( 1 1 ) ( 1 1 )
=P~ —=4 = —\ =P~ =4
V2§ V2T, V2§ V27,
( 1 n 1 ) < 1 n 1 )
V2§ V27, V2o V27,

Let

-y
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We get:
1o} a
ayl = —%yb
0 ad
a?& = —%yz

Now we have two separate one-way wave equations and we can use various numerical meth-
ods. We know the intial conditions. We need a boundary condition for y; at x = 1 and a

boundary condition for yo at x = 0. Note that

1 1
yl(oat) = ﬁp(ﬂ’t) - ﬁq(oat)a
10(0,1) = %p(a,t) + %qm,t)

and ¢(0,1) is unknown. However,
2
n (Oat) + yQ(Ov t) = ﬁp(oa t)
is known. We can use the followin steps to determine the boundary condition at x = 0.
1. Update (y1)E*! first which we do not need a boundary condition.

2. Use ()5t = Z5pp " — (m)g

Similar method can be applied at z = 1.

9.12 Some commonly used finite difference methods for a linear system
u; + Au, = 0.

Backward Euler method:

At
k+1 _ vk _
Uj =U; _ZhA(

Note that fackward Euler method does not work.

Ukt - Ukt (9.26)

Lax-Friedrichs scheme

1 At
o H(Ee o) - S u). e
e Leap-Frog scheme
At
E+1 _ prh—1 k k
Uit = Uk - o (Uj+1 - Uj_l) . (9.28)
e Lax-Wendroff scheme
At At)?
UF = U i (U - U) G (U 2054 UL 02

To determine correct boundary conditions, usually we need to find the diagonal form
A =T7'DT and the new system @i; = D1, with & = Tu.
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9.13 Finite difference methods for conservation laws.
The canonic form for one dimensional conservation law is
u; + f(u); =0. (9.30)

One famous benchmark problem is the Burge’s equation (scalar)

w+ (“;> o (9.31)

in which f(u) = u?/2. f(u) is often called the flux. Note that the Burge’s equation can be

written as a non-conservative form
up + uuy = 0. (9.32)

For the Burge’s equation, the solution likely form shock(s) where the solution is discontin-

3

uous® even if the initial condition is arbitrarily differentiable, for example, ug(z) = sinz.

We can use the pwind scheme to solve the Burge’s equation, if we use the con-conservative

form, we have

Uktt _pk Uk _ yk

T U hjil = 0, ifUj >0,
Ukt _pyk Uk . — Uk

J J k g+l Jj : k
T UJ T = 0, if U] < O,

or the conservative form

Uit -up (U - (Uf )

k1
Uit -y + (UF)* = (UF)? = 0, ifUF<O
N oh o

If the solution is smooth, both methods work well (first order accurate). However, the

conservative form gives much better results than the non-conservative form if shocks develop.

We can derive the Lax-Wendroff scheme using the modifed equation of the non-conservative

form. Since u; = —uugz, we have

Ut = —Uglg — Uty
= uu? + u(uug)y
= uui +u (ui + uum)

2 2
= 2uuy + U Ugg-

3There is no classical solution to the PDE when shocks develop because ug is not well defined. We need
to look for weak solutions.
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Thus the leading terms of the modified equation for the first order method is

At
Uy + uug = - (2uu§ + u2um) . (9.33)
Therefore the non-conservative Lax-Wendroff scheme for the Burge’s equation is
Uk . Uk
k+1 kE k_J+1 Jj—1
U; = Uj — AtU; —on

= +

k k 2 k k k
G P (Um - Uj—l) el 20+ Ui
2 J 2h

9.14 Conservative finite difference method for conservation laws

Consider
u; + f(u), =0.
We seek a numerical scheme of the form:
uj Tt =y - % (g, &b 1) (9.34)
where
8i+l1 =8 (u§fp+1’u§*p+2’ e ’u§+q+1)

is called the numerical flux and satisfies

Such a scheme is called conservative scheme. For example, we can take g(u) = u?/2 for the
burge’s equation.

Below we derive the general criteria that g should satisfy.

1. Integrate the equation with respect to = from z,_1 to x we get

i3
T, 1 Z..1
its it+3

/ wdr = —/ f(u)zdz
T 1 T 1

=~ (flulages,t) ~ flulz;_y,0)

=
2 2

it3

2. Integrate the equation above with respect to ¢ from t* to t**1, we get

t:Hl /S:J;% updrdt = — {/t:kﬂ (f(u(mj+%’t)) B f(U(xj_%,t))) dt} ,

tk+1 tk+1

/tk (e, 51) — (e, ) da = - {/tk (Flulay 1) — Flulz;_s.1) dt} .
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Let

uh = — ; / u(zx, tF)d (9.36)

which is called the cell average of u(z,t) between the cell (z; 1,%5,1 ) at time level k. Then

the expression that we derived earlier can be written as

tk+1

) i 1 k1
u;?+1 — uf — (/tk f(u(:cj_l_%,t))dt — /tk f(u(:cj_é,t))dt)

- —%(ﬁ [, sty -5 f(u@j_;,t))dt)

where

1
Gy =7 [, Tty 0

Different conservative schemes can be obtained if different approximations are used to eval-

uate the integral above.

9.15 Some commonly used numerical scheme for conservation laws.

o Lax-Friedrichs scheme

At

Uit = 2 (Uka + UL - 5 (F0ED) - 1 UFD). (937)

N =

e Lax-Wendroff scheme:
A
vkt = Uf - S (Fk) - 10} )
A
A [ (50 — 10D — 4, (105) - £ )}
(9.38)

+

where A, 41 = = Df(u(z; %,t)) is the Jacobian matrix of f(u) at u(wﬂ_%,t)).

A modified version called Lax-Wendroff-Richtmyer scheme which does not need to the

Jacobian matrix is listed below:

(9.39)



