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8 Finite difference methods for parabolic partial differential

equations

8.1 Introduction
A linear parabolic PDE has the following form
uy = Lu (8.1)
where L is a linear elliptic differential operator. We list some examples below.
e One dimensional heat equation with a source.
Ut = Ugy + f(x,1).

The dimension is referred to the space variable even though there are two independent

variables z and t.

e The general one dimensional second order partial differential equations the following

form:
a(z,t)uy + 2b(z, t)ugys + c(z, t)uyy + lower order terms = f(z,t).
If b — ac = 0 in the entire domain, then the equation is parabolic.
e A general heat equation in any dimensions can be written as
ug = Vu - (BVu) + f(x,t) (8.2)

where f is called the heat conductivity, f(x,%) is called a source term (including a

sink as well).
e A diffusion and advection equation has the following form
up = V- (BVu) + w- Vu+ f(x,t)
where V - (8Vu) is the diffusion term, and w - Vu is called the advection term.
e A canonical form of a diffusion and reaction equation is
ug = V- (BVu) + f(x,t,u).

The non-linear source term is called a reaction term.

A steady state solution meaning u; = 0 of a parabolic PDE is an elliptic PDE.
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8.2 Inmitial and boundary conditions and dynamic stability.

For time dependent problems, we should have an initial condition, usually at ¢ = 0, that
is, u(x,0) = up(x) is given. We also need boundary conditions as well. As an example, for
one-dimensional heat equation u; = ugz;, a < £ < b, we should have boundary conditions at
z = a and z = b, and an initial condition at ¢ = 0. There is consistency condition at (a,0)
and (b,0). For example, if a Dirichlet boundary condition is prescribed at x = a and z = b
such that u(a,t) = ¢1(t) and u(b,t) = ga2(t), then the consistency condition is ug(a) = ¢1(0),
and ug(b) = g2(0).

The dynamical stability.

_m2
The fundamental solution for one dimensional heat equation is u; = ug, is %. The
solution is uniformly bounded. However, for the backward heat equation, u; = —ug,, if

u(z,0 # 0, then lim;_,o u(z,t) = co. We call the solution is dynamically unstable if u(z,t)
is not uniformly bounded. In other words, we can not find a positive constant such that
|u(z,t)| < C. There are some applications of unstable problems, sometimes called blow-up
problems. We will not discuss how to solve those dynamically unstable problems numerically

here. We will only concentrate dynamically stable problems.

Some commonly used finite difference methods will be discussed in this section are listed

below:

e the forward, backward Euler’s methods;
e the Crank-Nicolson and the-8 method;
e the method of line (MOL) if a good ODE solver can be applied;

e the alternating directional implicit (ADI) method for high dimensional problems.

We can use the finite difference methods for elliptic problems to take care of the spa-
tial discretization and the boundary conditions. The crucial discussion here is the time
discretization. In terms of the stability of numerical methods, we will use the Fourier
transformation and the von Neumann stability analysis.

8.3 The Euler’s method
Counsider the heat equation:
ut:ﬂumm‘l‘f(xat)a a<z<b,

u(a,t) = g1(t), u(b,t) = ga2(t), u(z,0) = up(z).
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Figure 12: A diagram of the finite difference stencils of the forward, backward Euler method,
and the method of line (MOL) approach.

We want to approximate the solution at certain time 7', 0 < T, or all the solution between
O0<t<T.

As the first step, we generate a grid

z;=a+th, +=0,1,---,m, h= ,
m

T
tF =kAt, k=0,1,---,n, At=—.

However, we should know that we can not use arbitrary At or n for explicit methods because

of the stability concerns.

The second step is to approximate the derivatives with finite difference formulas. We
know how to discretize the spatial derivatives. Let us try different finite difference formulas

for the time derivative.
Forward Euler’s method (FT-CT).

u(z, th 4+ At) — u(z;, tF) uw(m; 1,t%) — 2u(z;, t5) + u(wipr, tF)

=p

At 12
+ f(zi, t*) + T(xs, tF).
The local truncation error is
h? At
T(.’I}i, tk) - —61]4;5;5;5;5 + — Uyt + hOt

12 2
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The discretization is order O(h? 4+ At). Often we call the discretization is first order in time,
second order in space. The finite difference equation then is
Uik+1 — Uzk _ Uik—l B 2Uik + Uik—:i-l
At h?

where lec = f(z;,t*). The solution of the finite difference equations Uik is an approximation

B + fF, (8.3)

to the exact u(z;,t*). Note that when k = 0, we have the initial condition at the grid points
(z;,0). If we know the solution at the time level k, the solution of the finite difference
equation at the next time level is

12

Therefore we can get the solution of the finite difference equations directly from the ap-
proximate solution at previous time steps. We do not need to solve a system of equations.

Such a method is called ezplicit time marching method.

Remark 8.1 According to our definition, the local truncation is

z,t+ At) — U(.’E,t) _ ;8 ’U,(.’E — hat) — ZU(.’L',t) + ’U,(.’I} + hat)
At h?

Howewver, in the literature, there is another definition using

e B e n )

T(w, 1) = U — f(z,t) = O(h2 + At)

T(z,t) = wu(z,t+ At) —u(z,t) — At (ﬂ 12
= O (At(h* + At)).

The difference is the factor of At. According to this definition, the local truncation error is

one order of At higher.

Remark 8.2 If f(z,t) = 0 and B is a constant, then uy = Pug,, and uy = ﬂa’é% =

2 . .
ﬂa U — B2Uprre, and the local truncation error is

0z?
T(z,t) = (ﬂ22At - ﬁ—f) Ugzez + O ((AL)? + h*). (8.5)

Therefore if B is a constant, we can choose At = % to get O(h*+(At)?) = O(h*) = O(A?)
order of accuracy without increase computational complexity. This is significant for the

explicit method.

If we try the numerical method with different A¢ and check the error against a problem
that we know its exact solution, we see the method works for some At and blows up for
some other At. Since the method is consistent, it has something to do with the stability.

Intuitively, we can see that to prevent the errors in uf from getting amplified, we should set

2BAL h?
< < —. .
o S 1, or At< 28 (8.6)
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The backward Euler’s method (BW-CT).

If we use the backward finite difference formula for u; at (z;,t*), we get

UF-up U - 20k + UK,
At h?

However, this is equivalent to the conventional expression

+fzka k:152’

vkt —uF UM Uttt r Ul
=0 2 + fEL (8.7)

The backward Euler’s method is consistent. The discretization error is still O(At + h?).

Question: Can we choose At to increase the order of accuracy?

k+1 k‘—l—l,

However, we can not get u; "~ with a few simple algebraic operations because all u;
are coupled together. We need to solve the following tri-diagonal system in order to get the

approximate solution at time level k + 1:

[ 1+2u  —pu 1T okt ] [ UF+ At 4 pghtt
—p 142p  —p Ukt US + At fE+1
—u 142 —p Ustt Uk + At fE+1
= (8.8)
142 —p Uk+1 Uk_Z_I_Atfk—H
I —p L42u | | UMY | | Uk + AR+ gyt

where p = ﬂAt and fFT = f(z;,t#1). Note that we can use f(z;,#*) instead of f(z;,t**1)
if the method is first order accurate in time. Such a numerical method is called an implicit
time marching method because the solution at time level k& + 1 are coupled together. What
is the advantage of the backward Euler’s method? It is stable for any choice of At. For
one dimensional problems, the computational cost is only slightly more than the explicit

Euler’s method if we can use an efficient tridiagonal solver.

8.4 The method of line (MOL).

If there is a good solver for ordinary differential equations/systems, we can use the method

of line (MOL) to solve the parabolic partial differential equations.

Given a general parabolic equation of the form
’U,t(.’L‘, t) = Lu(l‘at) + f(.T,t),

where L is an elliptic operator. Let Lj be a finite difference operator acting on a grid

z; = a + th. We can form a semi-discrete system of ordinary differential equations of the
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following form

oU;
ot

In other words, we only discretize the spatial variable. For the heat equation with a source

= LpU;(t) + fi(2)-

Uy = PBugy + f, we have L = %, Ly = §2,, the discretize system of ODE is:

ouL(t) =2U:(t) + Ua(t)  g1(t)
ot = p 12 + h2 + f(wlat)
. . —9 .
30897:(’5) = pYtd) 022@) U | pgn), =23, m—2, (89
OUm-1(t) _  Un—2(t) —2U0;-1(t) | g2(t)
It = B 72 + 72 +f(.’IJm_1,t).
The initial condition is
Ui(0) = up(x;,0), 1=1,2,--- ,m—1. (8.10)
The ODE system can be written as a vector form
d
D=y, y(0) = o (8.11)

dt
The MOL is especially useful for non-linear PDEs of the form u; = f(%, u,t). For linear

problems, we typically have

dy
&4
g y+c¢

where A is a matrix, and ¢ is a vector. Both A and ¢ may depend on t.

There are many efficient solvers for a system of ODES. Most of them are based on high
order Runge-Kutta methods with adaptive time steps. For example, we can use ODE suits
in Matlab, and dsode. f, which is available through Netlib, in Fortran.

It is important to know that the ODE system from the MOL is typically stiff meaning
that the eigenvalues of A has very different scales. For example, for the heat equation, the
eigenvalues are between O(1) and O(1/h?).

In Matlab, we can call the ODE solver using the format
[t,y] = ode23s(’yfun-mol’, [0, t_final], yO0);
The solution in the last row of y which can be extracted using

[mr,nc] = size(y);

ysol = y(mr,:);

is the approximate solution at time ¢ = ¢_final. To define the ODE system of the MOL,

we should create a Matlab file, yfun-mol.m whose contends contain the following
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function yp = yfun-mol(t,y)
global m h x
k = length(y); yp=size(k,1);
yp(1) = (-2*xy(1) + y(2))/(h*h) + £(t,x(1)) + gi(t)/(h*h);
for i=2:m-2
yp(i) = (y(i-1) -2*xy(1) + y(2))/(h*h) + £(t,x(i));
end
yp(m-1) = (y(m-2) -2*y(m-1) )/(h*h) + f(t,x(i)) + g2(t)/(h*h);

where g1(¢) and ¢g2(t) are two matlab functions for the boundary condition at z = a and

xz = b; and f(t,z(7) is the source term.

The initial condition can be defined as

global m h x
for i=1:m-1

yo(i) = u_0(x(i));
end

where ug(z) is a Matlab function of the initial condition.

8.5 The Crank-Nicolson scheme.

The time step constraint At = h%/(283) for the explicit Euler’s method is generally consid-
ered as a severe restriction. If A = 0.01 and the final time is 7' = 10, and 8 = 100, we
need 2107 steps. The backward Euler’s method does not have the time step constraint but
it is only first order accurate. If we want second order accuracy O(h?), we need to take
At = O(h?). Can we derive a finite difference scheme which is second order accurate both
in time without compromise the stability and computational complexity? The answer is

the Crank-Nicolson scheme.

The Crank-Nicolson scheme is based on the following lemma, which can be proved easily

using the Taylor expansion.

Lemma 8.1 Let ¢(t) be a function that has continuous first order derivative, that is ¢(t) €
C!, then

At At (At)?

B(t) = % (¢(t - 7) + ¢t + 7)) + Tu”(t) + h.o.t. (8.12)

The Crank-Nicolson scheme approximate the partial differential equation

Uy = (ﬂum)m + f(l" t)
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at (z;,t* + At/2) and use the averaging lemma above to approximate the spatial derivative
V- (BVu)) and f(z,t). Therefore it has the following form

k 17k k k k. gk 77k
Uik+1_Uik B ’Bz—%UZ*I_(’BZ—%-i_’BZ—I—%)UZ +’8i+%Ui+1
At N 2h?
k+177k+1 k+1 | pk+1\yrk+1 | pk+177k+1
ﬁi_% Uiy — (@_é + ﬂH% WUy + ﬂH% Uit

2h?

(8.13)

+ +%(fi’“+fz.’“+1).

The discretization is second order in time and second in space. This can be easily proved

using the following (we take 8 = 1 for simplicity of the proof):

et A —ul@l) _ vy a2) + 2 (A2 4 ogan),
A 32
w(e —hot) = 2u(e,t) fule thit) _ o gy
2h?
u(z — byt + At) — 2u(z,t + At) + u(z + ht + At)

o3 = Uy (2, t + At) + O(h?),

5 (e (,0) F tza 1+ AD) = (e, 1 + At/2) + O((A?),

% (f(m,t) + flx,t+ At)) = f(z,t + At/2) + O((AL)?).

The Crank-Nicolson scheme is an implicit method. In the next section, we will prove that

it is unconditional stable for the heat equation.

At each time step, we need to solve a tridiagonal system of equations to get uf“. The
computational cost is only slightly more than the explicit Euler’s method, we can take
At ~ h and have second order accuracy. It is much more efficient than the explicit Euler’s
method.

The #-method.

The - method for the hear equation u; = uzy + f(z,t) has the following form

U - ok

A = 005U+ (1= )05, U T+ 0fF + (1 - 0)f7

When 8 = 1, the method is the explicit Euler’s method. When 6 = 0, the method is the
backward Euler’s method. When 6 = 1/2, the method is the Crank-Nicolson scheme. If the
0 < %, then the method is unconditional stable, otherwise, it is conditional stable meaning
there is a time step constraint. The f-method is generally first order in time and second

order in space except for § = 1/2.
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8.6 Stability analysis for time-dependent problems—Discrete Fourier trans-
form and von-Neumann analysis.

Let us first review Fourier transform (FT) in continuous space. Let u(z) € L?(—o00,00),

o0
that is / u?dx < oo or ||lu|j2 < oo. The Fourier transform is defined as

—0o

{ b - e~ Wry(z)dz
iw) = \/ﬂ/_w (z)dz, (8.14)

where i = 4/—1. We can u(z) is defined in the space domain while %(w) is defined in the
frequency domain. Note that if a function is defined in the domain (0,0c0), usually we can

use the Laplace transform.

The inverse Fourier transform is defined as
1 S
u(r) = — e"“"i(w)dw. 8.15
@ == [ i (5.19

Parseval’s relation: Under the Fourier transform, we have ||4||s = ||ul|2 or

o0 o0
/ i 2de = / lu|2ds. (.16)

-0 —0o0

Fourier transform is a useful tool for theoretical and numerical analysis. Use the Fourier
transform, we can get rid of one derivative.

From the definition of Fourier transform (FT), we have

—

di . du
<B_w) = —izu, 5y — Wi (8.17)

To show the equalities above, we use the definition of the the inverse Fourier transform for

g—g(x) to get

ou 1 ® ez du

Pl = - d

oz (z) V27 /_oo ¢ or @

On the other hand, since u(z) and 4(w) are both in L?(—o00, 00), we can take the partial

derivative of the inverse Fourier transform with respect to x to get

Ou WT
)

(xz) = ! /00 0 (" 4) dw = ! /00 iwtie™?® dw

Oz V21 J oo O V21 /s

Since the Fourier transform and its inverse transform are unique, we have g—g = iwu. The

proof of the first equality will be left as an exercise. It is easy to generalize the equality to
o m
— = (w)" 4. 8.18
= (iw) (8.15)

In other words, we can get rid of the derivatives of one variable. The Fourier transform can

be used to study the behavior of differential equations.
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Example 1:
The wave equation
ug + augy = 0, —0o<zr<oo, t>0, wu(zr,0)=uz).
If we apply the Fourier transform to the equation and the initial condition, we get
Uy +augy =0, or U+ aiwd =0.
Therefore we get an ODE for 4(w) which can be solved easily
G(w,t) = 4w, 0) e ¥ = Gg(w) e "L,

Therefore the solution to the original wave equation is
1 *© awt
u(z,t) = — e go(w) e " dw
@) = o= [ i)

L [7 jwG-ar
= — e\ g0 (w) dw
vV 2m /—oo ( )
= u(z — at,0),
according to the definition of the inverse Fourier transform. Thus we have solved the
problem. The solution tell us that for a pure wave equation, the solution does not change

shape but simply propagates along the characteristic line z — at = 0. Also note that

lullz = llall2 = [[a(w,0)e™**"|l2 = [la(w, 0)ll2 = lluoll2

Example 2: The heat equation (diffusion equation).
Consider

up = Pugy, —o<zr<oo, t>0, u(r,0) =uy(zx), lim u=0.
|z| =00

We apply the Fourier transform to the equation and the initial condition to get
Uy = ﬂ/u\m, or U = Biw)*a = —puw?i.
The solution of the ODE then is
(w,t) = i(w,0) e P,
Therefore

N N _ 2
lullz = [[all = @(w, 0)e™ ||z < [luoll2,

if > 0. Actually, it can be shown that lim; , ||ulle = 0 if 8 > 0, and limy_, . ||u|l2 = oo
if 8 <0 and |lugl|]2 # 0.
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Example 3: Dispersive waves.

Consider

_ 82m—|—1u 82mu
Ut = Gpemil T pem

+l.o.t.,

where m is a non-negative integer. For example u; = gy, we have

—

Uy = BUugpg, OF U= ﬂ(iw)?’ﬂ = —iw’i.
The solution of the ODE then is
W(w, 1) = 0w, 0) et
Therefore
lull2 = lla]l2 = lld(w, 0)ll2 = llu(w, 0)]l2,

The solution to the original PDE can be expressed as

1 (> . 4
u(z,t) = E/ ezw‘”ﬂo(w)e*’wtdw
—0o0

= —12_7T/ giw(z—w?t) G (w) dw.

It can be interpreted in the following way. The Fourier component with wave number w is

propagating with the velocity w?. Waves interact with each other, but there is no diffusion.

Example 4: The PDE with even order derivatives (highest).

Consider

82mu an—lu
+ a$2m—1

U = a8x2m +l.o.t.,

where m is a non-negative integer. Then we know that

—aw®g 4+ ifm=2k+1
iy = a(iw)?™ a4 - =
aw?™ g + - - if m = 2k.

Therefore we have

W(w,0) e ™™ 4 ifm =2k +1

)
Il

A(w, 0) @™t ... if m = 2k.

From the equality above, we can conclude that u; = ugz; and u; = —ugg., are dynamically

stable, while uy = —uy; and u; = Ugzzz, are dynamically unstable.
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8.7 Discrete Fourier transform.

The motivations to study a discrete Fourier transform include the stability analysis of finite

difference schemes, data analysis in frequency domain, filtering techniques etc.

Definition of a grid function: Let
tU-2,V-1,00,V1,V2, ",

be a continuous function v(z) at z; = i x h, the discrete Fourier transform is defined as

Z he %ihy (8.19)

9_—oo

Remark 8.3

o The definition is a quadrature approximation to the continuous case, that is, we ap-
prozimate [ by Y., and dz by h.

o (&) is continuous, and periodic function of & with period 27 /h:
e~ Uih(E+r2m/h) _ —ijhE 2ijm _ —i&jh (8.20)
So we can focus on ©(€) in the interval [—7, —F].

Definition of discrete inverse Fourier transform:

eI (€ de. (8.21)

vj =

\/%/ﬁ/h

Definition of discrete Fourier and inverse Fourier transform for a finite se-

quence: (h is not involved):
,0,0,v1,v2,- -+ ,uMm, 0,0, -

We define

9(€) = L Z e %y, —Ze S (8.22)

j=—o00
7r . .
vj = —— / eI () dE. (8.23)
Discrete Norm:

(8.24)

it is often denoted as ||v||2 as well. The Parseval’s relation is also true

A2 — w/h ~ 2 — - 2 — 2
[kl [5(©)[de > iR =l (8.25)

—7T/ j:—oo
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8.8 Definition of stability of a finite difference scheme.

A finite difference scheme PAt,hvf = 0 is stable in a stability region A if there is an integer
J such that for any positive time T', there is a constant C7 independent of At and h such
that

J
V" lln < Cr > IVl (8.26)
j=0

for any n that satisfies 0 < nAt < T with (At, h) € A.
Remark 8.4

1. The stability is usually independent of the source terms.

2. A stable finite difference scheme means that the growth of the solution is at the most

of a constant multiple of the sum of the norms of the solution at the first J 4+ 1 steps.

3. The stability region are all possible At and h.

The following theorem provide a simple way to check the stability of a finite difference

scheme.

Theorem 8.1 If ||vFtY||, < ||vF¥||n is true for any k, then the finite difference scheme is
stable.

Proof: From the condition, we have
IV [ln < V" HIn < o < VIR < IVl

So if we take J = 0, Cr = 1, we have the stability.

8.9 Von Neumann stability analysis of finite difference methods.

The von Neumann stability analysis of a finite difference scheme can be described as the

following process:

Discrete scheme —> discrete Fourier transform = growth factor g(¢) = stability (
lg(§)| <1 ?) And the simplification of the von-Neumann analysis.

Example 1.

The forward Euler method (FW-CT) for the heat equation u; = Buy, is:

Uk, —2UF 4+ UF BAL
UZIG+1:UZIC+H< i—1 h; i+1 ’ 'u:?
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From the discrete Fourier transform, we know

Uy = ¢L27r _//’; eIk (€)dg
Ut = o [ esorngrgae = L [ oneoneyae
\/ﬂ —n/h 21 J—x/n
Similarly
ok _L/ /h i€ih g —iEhTTH (¢ d.
T Ve Jagn

Plugging these relations into the finite difference scheme, we obtain

Ikl — / (iEih 1 1ol 9 1 i) R (6)d
e o e ")) U¥()de
On the other hand, according to the definition, we have
Uk+1 / Z§Jh0k+1(£)d§
' o7

The discrete Fourier transform is unique which implies
UF1() = (1+ ple € — 2.+ €M) T¥(¢) = g()U*(©),
where
9(&) =1+ p(e™™" =2+ )

is called the growth factor. If |g(€)| < 1, then |U*t1| < |U¥|, and thus ||[U*+1||, < |[|[T¥||,.
The finite difference scheme then is stable.

Let us examine [g(&)| now:
g9(§) = 1+ p(cos(=&h) —isin(Eh) — 2+ cos(&h) + isin(Eh))
= 1+42u(cos(éh) — 1) = 1 —4pusin®(¢h)/2 < 1.
But we need that |g(¢)| < 1, or —1 < g(¢) < 1. Note that
—1<1—4p <1 —4pusin®(Eh)/2 = g(¢) < 1.

So if we take —1 < 1—4y, then we can guarantee that |g(£)| < 1, so the stability. Therefore
a sufficient condition for the stability of the forward Euler’s method is
h2
—1<1—-4p, or 4u<2, or AtS2ﬁ (8.27)
while we can not claim what will happen if the condition is violated, it is a reasonable good
upper bound for the stability.
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Simplification of von Neumann stability analysis for one step time march-
ing method.

Assume that we have a one step time marching method U¥*! = f(U¥, U**1). We have the
following theorem that tells the stability of a finite difference method.

Theorem 8.2 Let @ = hé. A one-step finite difference scheme (with constant coefficients)
is stable if and only if there is a constant K (independent of 8, At, and h) and some positive
grid spacing Aty and hg such that

lg(6,At,h)| <1+ KAt (8.28)

forall0,0 < k < kg, and 0 < h < hy. If g(0, At,h) is independent of h and At, the stability
condition (8.28) can be replaced with

lg(6] < 1. (8.29)

This theorem shows that to determine the stability of a finite difference scheme we need con-
sider only the amplification factor g(h&) = g(@). This observation is due to von Neumann,
and because of that, this analysis is usually called von Neumann analysis. We present some

examples below.

We can follow the following steps for the von Neumann analysis:
1. Set U]lC = ¢'/P¢, Plugging the expression into the finite difference scheme.
2. Express U]’-€+1 as UJ’-c+1 = g(&)ehe,

3. Solve g(¢) and determine whether or when |g(¢)| < 1 for the stability.

Example 2.

The stability of backward FEuler’s method for the heat equation u; = SBugy, is:

Ukt —ouFtt 4 Ukt At
Uik:—i—l = Uzk +u ( i-1 }:2 it+1 , M= —IBhQ .

Follow the procedure mentioned above, we have
g(e)eime = it 4y, (ezf(j—l)h _ 9¢ibih eif(j+1)h) G

= (1 (e 2 ) ().
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We solve g(&) to get
1
1 — p(e—ih — 2 4 eith)
1 B 1
1—p(2cos(hé) —2) 1+ 4psin(h)/2

9(§) =

<1

for any h and At > 0. Also it is obvious that —1 < 0 < g(&). Therefore, [g(¢)| < 1, and the
backward Euler’s method is unconditionally stable!

Example 3.

The Leapfrog scheme (two-stage method) for the heat equation u; = ugy is

UFt -Uft _UE - 2UF 4+ U

7

SAL 2 (8.30)

This method is unconditionally unstable! To show this, we follow the stability analysis.
Note that we need to use UJ’-“_1 ="M /g(€£). We can get

g(&)eiihe = %ei]’hg ) (u(e—ifh 94 ez’fh))
= %e”‘hg — eijhfélu sin2(h§/2).

We get a quadratic equation for g(¢).

(9(€))? + 4usin’(h/2) g(€) — 1 =0. (8.31)

The solution are

g(€) = —2usin®(hE/2) + \/4p2 sin*(h¢/2) + 1.

One of roots is

9(€) = —2pusin’ (he/2) — /4 sin® (he/2) + 1

whose magnitude g(¢) > 1. While we do not have any conclusion about the stability of the

method, the method is known to be a unstable method in the literature.

8.10 Finite difference methods and analysis for 2D parabolic equations.

The general form of equations is

Ut + a1y + a2Uy = (,Buz)z + (ﬂuy)y + Kku + f(a:, Y, t)
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with boundary conditions and an initial condition. It can be written as
ug = Lu+ f

where L is the spatial differential operator. Therefore, the method of line (MOL) can be
used if one can find a good ODE solver for stiff ODE systems. Note that the system is large
(O(m?)).
For simplicity, we discuss the heat equation uy = V- (8Vu) + f(z,y,t). We assume S is
a constant. The simplest method is the forward Euler’s method:
Uzl;ﬂ =Uf +p (Ulk—l,j + U + U + U - 4Ul’fj) + Atf
where u = BAt/h?. The method is first order in time and second order in space, and it is
conditionally stable. The stability condition is
At < h—2 (8.32)
=18
Note that factor of 4 instead of 2. To show this using von Neumann analysis with f = 0,

we should set

ufj = ¢! (halitihyla) — gi&x (8.33)
where £ = [fl,fg]T, X = [hxl,hyj]T.
Uit = g(&r,60)e' ™. (8.34)
Substituting these expressions into the finite difference scheme, we can get
9(é1, &) = 1 — 4y (sin’(€1h/2) + sin®(E2h/2)) < 1,
where we assume h, = hy = h for simplicity. Therefore to get the stability, we enforce
—1<1—4p2 <1— 4y (sin®(&h/2) + sin(&h/2)) .

The inequality from the very left is

2
%gz or At<h—.

Backward Euler’s method (BW-CT).

The scheme can be written as

k+1 k k+1 k+1 k+1 k+1 k+1
Uy =Yy _ Uiy * Uy + Uior # Ui =405 fEH, (8.35)

At h2 i

The method is first order in time and second order in space and it is unconditionally stable.

The coefficient matrix for the unknown UZ-’CJ-Jrl is a block tridiagonal and it is strictly row

diagonally dominant if we use the natural row ordering.
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Crank-Nicolson scheme (C-N).

The scheme can be written as
k+1 k k+1 k+1 k+1 k+1 k+1
U;m -Us _ 1 (Ui—l Uiy, HUio + Ui — 405
t 2

i+1,5 k+1
A h?2 f

(8.36)

+U’“ G UR+ U +UE L - 4UZ.’;.+ k)
32 fig |-

Both the local truncation error and global error are O ((At)? + h?). The scheme is uncondi-
tionally stable for linear problems. However, we need to solve a system of equations whose
coefficient matrix is a strictly row diagonally dominant and block tridiagonal matrix if we

use the natural row ordering.

8.11 The alternating directional Implicit (ADI) method.

The ADI is one special case of time splitting or fractional step methods. The idea is to use
implicit discretization in one direction while using explicit in another direction. For the
heat equation uy = Uz + uyy + f(z,y,t), the ADI method is:

k+ k+3

k+3 k+3
UZ] Uzl; _ Ui- 2 —2Wy; C + U+123 + Ui]fj—l _ 2Uikj + Uzk3+1 + f'kﬂ'%
(&0)/2 i’ " v (8.37)
k+1 lc+ )
Ut -U; UL - 2U 1 utt i1l N UR - Ukt Uk, N f.k.*%
(At)/2 B h2 h2 i

The method is second order in time and space is u(z,y,t) € C* in space. It is unconditionally
stable for linear problems. We can use symbolic expressions to discuss the method. The
method can be written as

LAt At Lk
52 U +2 = 52 Uk f +2

1
k+1 At o ki At 5 1y At g+l
= Uy ° +—6 U 2 +75yyUzJ+ 5 - fij °

k+l k At
Uy * = Uj+ zzij 9 vy
(8.38)

Uktt

In the matrix-vector form, if we move unknowns to the left hand side, then we get

(I—g 3) Ukt = (I+%D§) U* + A;F’“J”

A A A
(I _ {DZ) Uk-l—l _ (I + 2 t ) Uk+ + tFk+_'

The following derivation is to get a simple form for convenience of analysis. Solve for Ukts

(8.39)

to get

At -1 At At LAt
Uk+l — (71— D2 I+ 2'p2)yk D2 2 gkt
’ ( 2 Dy ) U 2 2
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Plugging the expression into the second equation in the ADI method to get

A A A —1 A
(=gmp)oe = (re5e) (1-5) (1% z)Uk
-1
() (-3m) e

We can go further to get:

(I ~Alpe ) (I - AtDj) Uttt = (I + ﬁzﬂ) (I + %Di) U*

At At At
+ <I+ —D2> 5 Slpkts o 5 “lpkts,

Note that in the derivation, we have used the fact that

A A A A
(I+ —tDQ) (I—l— tDZ) = (I+ TtDS) <I+ tD2>

and other communitive operations.

Implementation:

We take advantages of the tridiagonal solver.

1k 9 k+ 2 7k At k41
Uij = Uzy (51:3: i ’+ 9 5yyU 9 fz] ’
k+1
For a fixed j, we get a tridiagonal system of equations for U1 U 2, U . assuming

a Dirichlet boundary condition at £ = a and £ = b. The system of equations in the matrix-

vector form is:

(1420 —u 1| Yy
—p 14+2u  —p U2j

- 14+2u —p U

Il
)

Bl
+

- 1+2p —p

-

- 142p

B
+

3
[
&

|
PONI= pol=
&
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where
[ Ufj*‘%;fﬁj%*‘Muw@%yﬁk+%4-M<Uﬁj—1—2549—1+-Uffu) ]
Uﬁj*‘%;fﬁfé'+/*(L¢bfl“2U§j71*‘U§j+1>
5 Ug; + %f:ff% +p (Uéc,jq —2U5; 1+ U?If,jﬂ)

At k+1
k k k k
Un—2,; + 9 7n7§J'+/i(Lnn—2J—1__2lnn—2J—1_Flﬁn—2d+1)

k k k k+1
[ﬁn—1J—1“2lﬁn—1g—1‘F[ﬁn—1J+1)'+/$Um(b,yﬂ i

At ktl
k
| U1+ 5 i+ (

k+3 . C s
where y = Q—ﬁft and f; T2 f (g, tk+%). For each j, we need to solve a symmetric tridiagonal

system of equations.

Pseudo code in Matlab.

for j = 2:nm, % Look for fixed y(j)
A = sparse(m-1,m-1); b=zeros(m-1,1);
for i=2:m,
b(i-1) = (ul(i,j-1) -2%ul(i,j) + ul(i,j+1))/h1 + ...
£(£2,x(1),y(3)) + 2%ul(i,])/dt;

if i ==
b(i-1) = b(i-1) + uexact(t2,x(i-1),y(j))/hi;
A(i-1,i) = -1/n1;
else
if i==m
b(i-1) = b(i-1) + uexact(t2,x(i+1),y(j))/h1;
A(i-1,i-2) = -1/hi1;
else

A(i-1,i) = -1/h1;
A(i-1,i-2) = -1/n1;
end
end
A(i-1,i-1) = 2/d4t + 2/hi;
end

ut = A\b; % Solve the diagonal matrix.
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for i = 2:m,
A = sparse(m-1,m-1); b=zeros(m-1,1);
for j=2:mn,
b(j-1) = (u2(i-1,j) -2*%u2(i,j) + u2(i+1,j))/hl + ...
£(£2,x(1),y(3)) + 2*xu2(di,j)/dt;
if j ==
b(j-1) = b(j-1) + uexact(t1,x(i),y(j-1))/h1;
A(j-1,3) = -1/h1;

else
if j==n
b(j-1) = b(j-1) + uexact(tl,x(i),y(j+1))/h1;
A(j-1,j-2) = -1/h1;
else

A(j-1,j) = -1/h1;
A(j-1,j-2) = -1/n1;
end
end
A(j-1,j-1) = 2/dt + 2/h1; % Solve the system
end
ut = A\b;

8.11.1 Truncation error analysis.

If we add the two equations in (8.37) together, we get

k+1 k
Ui —Uij _op ghth | g2 (b + k) +2 Fiass (8.40)
(At)/2 zTY 1] vy 1] ) %)

If we subtract the first equation from the second equation in (8.37), we get

1
av"r =2 (UE 4 Ub) - A, (U5 - UF) . (8.41)

Plugging this into (8.40), we can get

k+1 k k+1 k
(At)? Ui~ — Ui 2 o Uig —Ujj kel
(1 + Tagzagy ”T” = (62, +67,) Jff + fi: 2

Now we can see clearly that the discretization is second order accurate both in space and
time, that is T} = O((At)? + h?).

8.11.2 The stability analysis.
We take f = 0 and set

Ull;' = e*i(§1h1l+§2h2j) UlI;'+1 _ 9(61,62) e*i(§1h1l+§2h2j)_ (8.42)

bl
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Using the operator form, we have:

(-5) (-5t = (e 5) (e 50 U
At At . -
(1 ) 7‘53””) (1 2 5§y> 9(&1, &) e EMITERD) =

At At (e Pl Eo b
(1 +5 ﬁw) (1 + 5 5§y) e HE1hI+Eahag)
After some manipulations, we can get

(1 — psin®(é1h/2)) (1 — psin®(&h/2))
(1+ psin?(&1h/2)) (1 + psin®(&R/2))’
At

where 4 = 535 and we have set hy = hgp = h for simplicity. So we have |g(£1,£2)| < 1 no

or

9(51152) =

matter what At and h are. Therefore the ADI method is unconditionally stable for linear

heat equations.

8.12 An implicit-explicit mixed method for diffusion and and advection
equations.

Consider the equation
ug+w-Vu=V-(Vu) + f(z,y,t).

It is not so easy to get second order implicit scheme that the coefficient matrix is diagonally
dominant or symmetric positive/negative definite due to the advection term. One solution
is to use implicit scheme for the diffusion term and an explicit scheme for the advection

term. The scheme has the following form from time level t*¥ to 51

k+1 _ k 1
E g (we VauHtE = O (Vi BV + (Vi BV + R (849)
where
3 1
(w- th)k+% =3 (w- Vyu) — 3 (w- Vhu)t. (8.44)

The time step constraint can be chosen as
h

< . .
At < 2w (8.45)
At each time step, we need to solve a Helmholtz equation
2 k+1 9 k
(V- p7u)t = 2 = =28 42w Va4 (Ve gVt 2t (5.46)

We need u' to get this method started. We can use the explicit Euler’s method (FW-CT)
to approximate u'. It should have no effect on the stability and global error O((At)? + h2).
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8.13 Solving elliptic PDEs using the numerical methods for parabolic
PDEs.

We know that the steady state solution of a parabolic PDE is the solution of the corre-
sponding elliptic PDE. For example, the steady state solution of the parabolic PDE:

up =V - (BVu) +w-u+ f(x,1)
is the solution to the elliptic PDE:
V- (BVu) +w-u+ f(x) =0,
if the limit
7o) = lim f(x,1

exists. The initial condition is irrevalent to the steady state solution. But the boundary
condition is. There are some advantages of this approach especially for some non-linear
problems in which the solution is not unique. Using this approach, we can control the
variation in the intermediate solutions. The linear system of equations are more diagonally
dominant. Since we only care about the steady state solution, we prefer to use implicit

methods with large time steps. The accuracy in time in unimportant.



