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6 Finite difference methods for two dimensional second order

elliptic problems

There are many important applications of elliptic partial differential equations. Below are

some examples:
e Laplace equation.
Ugg + Uyy = 0. (6.1)
e Poisson equation.
Ugg + Uyy = f. (6.2)

The solution to a Laplace or Poisson equation sometimes is called a potential equation.

This is because for a vector field v that is conservative meaning that curl(v) = 0, its

potential function u satisfies uz; + tyy = V - v, where V = [3%, a% |7 is the gradient
operator.
e Helmholtz equation.
Ugg + Uyy + Au = f. (6.3)

If A <0, it is called generalized Helmholtz equation and it is easy to solve. If A > 0
is big, then the problem is hard to solve.

e General self-adjoint elliptic PDEs
V-a(z,y)Vu(z, y) + Az, y)u = f(z,9), (6.4)
or  (aug)s + (auy)y + Az, y)u = f(z,y), (6.5)
We should assume that a(z,y) does not change the sign in the solution domain.
e General elliptic PDEs (diffusion and advection equations)
a(2, Y)Uge + 26(2, Y)uzy + (T, Y)uyy + d(2,Y)us + e(z,y)uy + g(z,y)u(z,y) = f(z,y)
It can be re-written as
V-a(z,y)Vu(z,y) + w(z,y) - Vu+c(z,y)u = f(z,9) (6.6)
after some transformation, where w(z,y) is a vector.

Below are some examples of non-linear elliptic PDEs.
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e Diffusion and reaction equation.

V- (a(z, y)Vu(z,y)) = f(u). (6.7)

The V - a(z,y)Vu(z,y) is called the diffusion term, the non-linear term f(u) is called

the reaction term. If a(z,y) = 1, it is also called a non-linear Poisson equation.
e p-Laplacian equation

div (|Du[P~?Du) =0, p>2. (6.8)

e Minimal surface equation

) Du
div W =0. (6.9)

Note that an elliptic PDE, P(a%, %)u = 0, can be regarded as the steady state solution
of a corresponding parabolic equation u; = P(a%, (%)u.

If a linear PDE is defined on a rectangle domain, then we can use a finite difference
approximation dimension by dimension both for the equation and the boundary condition.
The most difficult part of a finite difference method is how to solve the resulting linear

system of equation efficiently.

6.1 Boundary conditions and compatibility condition.

Assume a second order elliptic PDE is defined on a domain Q2. Let 02 be the boundary of

2 and n is the unit normal direction (positive according to the right side rule), see Fig. 8.

n

002

Figure 8: A diagram of a two dimensional domain €2, its boundary 02 and its unit normal

direction.

Some commonly used boundary conditions are listed below:



Finite Difference Method 35

e Dirichlet boundary condition: the solution u(z,y)|sn = ug(z,y) is given along the

boundary.

e Neumann or flux boundary condition: the normal derivative g—ﬁ =Vu-n=u, =

UgNg + Uyny = g(z,y) is given along the boundary, where n = (ng,ny) is the unit

normal direction.

e Robin or mixed boundary condition: (a(m,y)u(m,y) + ﬁ(z,y)g—u)
n

= v(z,y) is
N
given along the boundary 0f2.

e For some domains, for example, we can define a periodic boundary condition. For
example, if Q = [a, b] X [¢, d], the periodic boundary condition in the z- direction
is u(a,y) = u(b,y), the periodic boundary condition in the y- direction is u(z,c) =
u(z,d).

We can have different boundary condition on different parts of the boundary. For example,
for a channel flow in a domain [a,b] X [c,d], where b —a >> d — ¢, it is reasonable to
assume that the flux boundary condition at £ = a and z = b, but non-slip u = 0 along the

boundaries y = ¢ and y = d.

For a Poisson equation with pure Neumann boundary condition, the solution does not

exist unless the compatibility condition is satisfied. If u is a solution to the following problem

ou
Au = f(z,y), (z,y)€Q, {Tn'aﬂ =g(z,y).

Integrate and use the Green’s theorem, we can get

//QAud:vdy = //Qf(:v,y)dxdy
aﬂg—ids = //Qf(a:,y)dzdy

;gﬂg<x,y)ds /Cé;f(w,y)dwdy-

If the compatibility condition is satisfied and 052 is smooth, then the solution do exist

but it is not unique. If u(z,y) is a solution, then u(x,y)+ C is also a solution with arbitrary
constant C. In this case, we can specify the solution at a particular point, for example,

u(zo,y0) = 0 to make the solution well defined.
6.2 The central finite difference method with five point stencil for Poisson
equation.

Consider the Poisson equation
s+ uyy = f(@,9), (2,) €D = (@,5) x (¢,d), (6.10)

u(z,y)|aq = uo(z,y), Dirichlet BC. (6.11)
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If f € L?(Q2), then the solution exists and it is unique. Analytic solution is rarely available.

Now we discuss how to use the finite difference equation to solve the Poisson equation.

e Step 1: Generate a grid. A uniform Cartesian grid can be used:

b_
2i=a+ihg, i=01,2--m, hy=-—2 (6.12)
m

d_
yi=c+jhy, j=0,1,2n, hy=—" (6.13)
n

We want to find an approximate solution U;; to the exact solution at all the grid
points (z;,y;) where u(z;,y;) is unknown. So there are (m — 1)(n — 1) unknown for
Dirichlet boundary condition.

e Step 2: Substitute the partial derivatives with a finite difference formula in terms of
the function values at grid points to get.

w(@i-1,Y5) = 2u(@i,y;) + u(@iv1,y5) | w(zi yj-1) — 2u(zi y;) + (i i)
2 + 5
(hs) (hy)
=fij+ T, i=1,---m—-1, j=1,---n—-1,

where f;; = f(zi,y;). The local truncation error satisfies

(he)? 0*u  (hy)? u

Thi ~ — —_—. .14
" 12 Ozt 12 oyt (6.14)
Define
h = max{ hy, hy } (6.15)
The finite difference discretization is consistent if
lim ||T|| = 0. 6.16
lim |7 (6.16)

Therefore the discretization is consistent and second order accurate.

If we remove the error term in the equation above, and replace the exact solution
u(z;,y;) with the approximate solution U;; which is the solution of the linear system

of equations

Uiij +Uipry | Uijr +Uijsr ( 2 2

(he)? (hy)? )+ (hy)2> Uij = fij (6.17)

The finite difference scheme at a grid point (z;,7;) involves five grid points, east,

north, west, south, and the center. The center is called the master grid point.

e Solve the linear system of equations to get an approximate solution at grid points
(how?).

e Error analysis, implementation, visualization etc.
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6.3 Matrix-vector form of the finite difference equations.

Generally, if one wants to use a direct method such as Gaussian elimination method or sparse
matrix techniques, then one needs to find out the matrix structure. If one use an iterative
method, such as Jacobi, Gauss Seidel, SOR(w) methods, then it may be not necessarily to

have the matrix and vector form.

In the matrix vector form AU = F, the unknown is a one dimensional array. For the two
dimensional Poisson equations, the unknowns U;; are a two dimensional array. Therefore we
need to order it to get a one dimensional array. We also need to order the finite difference
equations. It is common practice that we use the same ordering for the equations and for
the unknowns.

There are two commonly used ordering. One is called the natural ordering that fits
sequential computers. The other one is called the red and black ordering that fits parallel

computers.

7 8 9 4 9 5
4 5 6 7 3 8
1 2 3 1 6 2

Figure 9: The natural ordering (left) and the red-black ordering (right).

The natural row ordering.

In the natural row ordering, we order the unknowns/equations row-wise, therefore the k-th

equation corresponding to (i,7) with the following relation
k=it (m—-1)(G—-1), i=12--,m-1, j=1,2---,n—1. (6.18)

We use the following example to verify the matrix-vector form of the finite difference
equations.

Assume that h, = hy = h, m = n = 4, so we will have nine equations and nine

unknowns. The coefficient matrix is 9 by 9! To write down the matrix-vector form, we use
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a one-dimensional array x to express the unknown Uj;;.

1 =Un, z2=Us, x3=U3z1, x4="Ui2, z5=Us,
(6.19)
z6 = Usg, w7 ="U13, x8="Us3, x9=Us3.

If we order the equations the same way as we order the unknowns, then the nine equations

from the standard central finite difference scheme using the five point stencil are

1 up1 + U190
= (z o o) = - M
1 U
ﬁ($1—4$2+.’[)3 +LE5) = f21_$
1 u30 + U41
7 (z2 —da3+36) = f31— 7z
1
ﬁ($1—4$4+1‘5 +$7) = flg—%
1
ﬁ (xQ + T4 — 4.135 + xg + -'178) = f22
1 U42
ﬁ(l‘{{ +.’E5—4.’I}6 +.’E9) = fgg—ﬁ
1 Ug3 + U14
72 (za —4z7+28) = f13— — 7
1 U
ﬁ($5+$7_4$8+$9) = f23—%
1 usq + u
ﬁ(ivs +xg —4x9) = f33— %-

Now we can write down the coefficient matrix easily. It is block tridiagonal and has the

following form:

B I 0
1
A= 72 I B I (6.20)
0 I B
where [ is a 3 x 3 identity matrix:
-4 1 0
B = 1 -4 1
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For a general n by n grid, we will have

B: i 4 1
I B I 1 —4 1

I B 1 -4

Note that —A is a symmetric positive definite matrix and it is weakly diagonally dominant.

Therefore A is non-singular and there is a unique solution.

The matrix-vector form is useful to understand the structure of the linear system of
equations, and it may be necessary if a direct method (such as Gaussian elimination) or
sparse matrix techniques are used for solving the system. However, it is more convenient
sometimes to use the two parameters system (i, j), especially if an iterative method is used
to solve the system. It is more intuitive and useful to visualize the data using two index

system.

The eigenvalues and eigenvectors of A can be indexed by two parameters p and & corre-

sponding to wave numbers in the z and y directions. The (p, k)-th eigenvector uP* has n?

elements for a n by n matrix of the form above:

D,k
ij

uy: = sin(pmih) sin(kwjh), 4,7 =1,2,---n (6.21)
for p,k =1,2,---n. The corresponding eigenvalues are
2
ok = = ( cos(prh) — 1) + cos(kmh) — 1)) . (6.22)
The least dominant eigenvalue ( the smallest in the magnitude) is

AbL = —27 4 O(h?). (6.23)

The dominant eigenvalue (the largest in the magnitude) is

4
)\n/2,n/2 ~ _ﬁ (624)
Therefore we have the following estimates:
4 1 1
A ~ Ap’k = — A_l = -~ —

(6.25)

2
condy(4) = | All2l| A7 2 ~ — = O(n?).

Since the condition number is considered to be large, we should use double precision to

reduce the effect of round off errors.
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7 Maximum Principle and Error Analysis

Given an elliptic operator

0? 0? 0?
L= -2 el
+ b8$8y+68y2’

=a53 b —ac<0, for (z,y)€Q, a>0, ¢c>0.

The maximum principle is the following theorem.

Theorem 7.1 Ifu(x,y) € C3(Q) satisfies Lu(z,y) > 0 is a bounded domain Q, then u(z,u)

has its mazimum on the boundary.

Proof: If the theorem is not true, then there is an interior point (zg,yo) € 2 such that
u(zo,yo) > u(z,u) for all (z,y) € Q. Therefore, form the necessary condition of the local

extrema, we have

15] 15]
8—Z($0,y0) =0, 8—Z($0,y0) = 0.

Since (zg,yo) is not on the boundary and u(z,y) is continuous, there is a neighborhood of

(z0,y0) within the domain Q that we can use the Taylor expansion:
u(zo + Az, yo + Ay) = u(zo,yo) + ! (Az)%ul, + 28zAyul, + (Ay)?ul,) + O((Az)?, (Ay)?)
’ ’ 2 TIT Ty Yy ’

where the superscript of 0 indicating that the functions are evaluated at (zg, yg), for example,
ud, = %(xo,’yo)- Since we have u(zg + Az, yo + Ay) < u(zg,yo) for all Az and Ay that

are small enough. We have

1
2 ((Am)ngz + 2A$Ayugy + (Ay)Zugy) <0. (7.1)

On the other hand, from the given condition we know that

Lu® = a®ul, + 2b0u2y + cougy > 0. (7.2)

where a’ = a(z,10) and so forth. In order to match the Taylor expansion to get an

contradiction, we re-write the inequality above as

[a® ’ 0 [ a® ¥ © o, Uy (o (092
where M > 0 is a constant. The role of M is to make some choices of Az and Ay that are

small enough.

Next we take
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From (7.1), we know that

Now we take

From (7.1) again, we know that
1 (b0)2
(Aw%%:__GW-ao ug, < 0. (7.5)

From (7.4) and (7.11), we know that the left hand side of (7.3) should not be positive which
contradicts the the condition

Lu® = a®ul, + 2b0u2y + cougy > 0.
This completes the proof. O
Similarly, if Lu < 0, then » has its minimum value on the boundary of €.
For general elliptic equations with no cross derivative term u,,, the maximum principle
is the following. Let
Lu = augg + 2bugy + cuyy + diug + douy +eu =0, (z,y) € Q,

¥ —ac<0, a>0,¢>0, e<O0,

where 2 is a bounded domain. Then u(z,y) can not have a positive local maximum or a

negative local minimum in the interior of €. This can be easily proved using Theorem 7.1.

7.1 Discrete maximum principle.

Theorem 7.2 Given a grid function Us;, i = 0,1,--- ,m, j =0,1,2,--- ,n. If the discrete
Laplacian operator (using the central five-point stencil) satisfies
Ui1j + Ui1j + Uij 1 + Uijp1 =405

h? (7.6)
i=1,2,---m—1, j=1,2,---n—1.

AhUij =

Then U;; attains its mazimum on the boundary. If ApU;; <0, then U;j attains its minimum

on the boundary.

Proof: Assume the theorem is not true, then U;; has its maximum at an interior grid

point (ig,jo). We have U, j, > U; ; for all i and j’s. Therefore we have

1
Uio,jo > Z (Uio—ljo + Ui0+1,j0 + Uio,jo—l + Uio,jo-l—l) .



42 Z. Li

On the other hand, from the condition AU;; > 0, we know that

1
Uio,jo < 4 (UiO*ljo + Ui0+1;j0 + UiO,]’O*l + Uio,jo-i-l) .

This contradicts the inequality above except that all U;; at the four neighbors of (i, jo)
have the same value as U(ig, jo). So Uj,—1,j, is also a maximum. If we apply the same
arguments several times, then we will reach the boundary and know that Up j, is also a
maximum. From the proof we can see that, if U;; has its maximum in interior, then U;; is

a constant.

If ApU;; <0, then we can consider —U;; which gives us the conclusion. O

7.2 Error estimates of the FD method for Poisson equations.

Lemma 7.1 Let U;; be a grid function that satisfies

Uicj + Uiv1,j + Uij—1 + Ui j1 — 4U;5
72

with homogeneous boundary condition. Then

ApUsj = = fij, 4,J=0,1,---,n (7.7)

[Ullw = s (U] < & max [AU| = g mase |7, (7.)
Proof: Define a grid function
ws = 1 (@ = 7+ 5 - 3?) (79)
where
z; =—-1+14h, y;j=-1+73h, 4,7=0,1,---n, h= %,
corresponding to the continuous function w(z) = 1 ((z — 2)% + (y — 3)?). We have
2 /o4 4
Apwij = (Wgg + wyy) o) + % <?371Z + ?371:) - =1, (7.10)
where (z],yj) is some point near (z;,y;). Therefore we have
Ap(Uij = [[flloowiz) = ApUsj — || flloo <0, 711)

Ap(Uij + || flloowij) = ApUsj + || flleo > 0.

From the discrete maximum principle, we know that U;; + || f||cowi; has its maximum on

the boundary while U;; — || f||ccws; has its minimum on the boundary. That is

—lIflloo llwijlloa < Uij = 1| f llowij < Uij,

and Uy < Uij + || flloowsj < [ floo [|wisllaa;
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since Uj; is zero on the boundary and || f||cows; > 0. It is easy to check that

1
lwijlloa = 3
therefore we get
1 1
—3lf o < Ui < 2l flloo- (7.12)
That completes the proof of the lemma. O

Theorem 7.3 Let U;; be the solution of the finite difference equations using the standard
central fine point stencil for Poisson equation with a Dirichlet boundary condition. Then

the global error is second order accurate and satisfies:

h2
Il = [0 = oo = max U — (s, 95)| < g (% tgaze] + masx gy ) - (7.13)

Proof: We know that
ApUsj = fij + Ty, ApE;j = Ty,

where T;; is the local truncation error at (z;,y;) and satisfies
h2
|Tz]| < 12 ( ma'x|uwwww| + max|uyyyy|) :
Therefore from Lemma 7?7, we have
1 h?
[Ellse < 51 Tlloo < 5= ((maxfuases] +max fuyyy ) -
7.3 Finite difference discretization for general second order elliptic PDE

using dimension by dimension.

If the domain of the interest is a rectangle [a, b] X [¢, d] and there is no cross derivative term
Ugy in the equation, then we can discretize the PDE dimension by dimension. We verify

this for the example below. Consider

V- (p(z,y)Vu) — q(z,y)u = f(z,y), or (puz)s + (puy)y —qu = f.

with Dirichlet boundary condition at £ = b, y = ¢, and y = d, but a Neumann boundary

condition u, = ¢g(y) along = = a.

If we use a uniform Cartesian grid

r;=a+1thy, 1=0,1,---m, hgy=

y]:C-'_]hy’ jZO,].,"")’L, hy:
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If we discretize the PDE dimension by dimension, the finite difference equation then is
Piv1 Uit = Pyt +pio1 Uij +p; 1 ;Ui-1
(ha)?
. PijyrUijir = Py gyt + 055 1)Uij +p; 51U

(7.14)

2

L —qijUij = fij

fori=1,2,---,m—1land j=1,2,--- ,n—1, Wherepii%’j = p(z; & hy/2,y;) and so forth.
For the indices i = 0,57 = 1,2,--- ,n — 1, we use the ghost point method to deal with
the Neumann boundary condition. Using the central finite difference scheme for the flux
boundary condition
U1,j — U_Lj
2hg
Plugging this into the finite difference equation at (0, j), we get

(p_%,j +p%,j)U1,j - (p%,j +p_%,j)U0j

= g(y])7 or Ufl,j = Ul,j - 2hw g(yj)7 ] = 172a N — 1.

(hz)?
N Poj+1U05+1 = (Pojy1 +Po i 1)Uo0j + Py ;-1 V01 (7.15)
(hy)?
2p_1.g(y;)
] J
—qo;Uoj = foj + 2h7
xr

For general second order elliptic PDE with no cross derivative term wu,:

V- (p(z,y)Vu) + w-Vu — q(z,y)u = f(z,y),

we can still use the central finite difference scheme of |w| << 1/h, otherwise, we should use

the upwinding scheme to deal with the advection term.

Finite difference formula for cross derivative u,,.

If there is a cross derivative term uz,, we can not simply use the method of dimension by
dimension. However, it is easy to derive a centered finite difference scheme for ugy:
u(z,y + hy) —ulz,y — hy)
2hy
w(x — hg,y — hy) +u(z + hg,y + hy) —u(z + hg,y — hy) —u(z — hg,y + hy)
4hghy

Ugy ~ Oz0yu = 0y

(7.16)
Using Taylor expansion at (z,y), we can show the finite difference formula is consistent and
it it second order accurate. The finite difference formula for the PDE that involves a cross

derivative term has nine grid points involved.

The resulting linear system of equations for PDEs with a cross derivative term is more
difficult to solve because it is not symmetric, and there is no diagonally dominance any

more, and there is no upwinding scheme to deal with the cross derivative term.



Finite Difference Method 45

7.4 Solving the resulting linear system of equations.

The linear system of equations resulted from a finite finite difference discretization is very
large for two dimensional problems. For example, using an n x n grid for an elliptic PDE,
the linear system has about n? equations. The coefficient matrix has the size of n? x n?.
When we take n = 100, a modest number, the size of the matrix would be 10* x 10* which
can not be stored in most of computers if double precision is used. However, the matrix is
very sparse, for a self-adjoint elliptic PDE, the non-zero entries are about 5n2. Therefore
usually iterative methods or sparse matrix techniques are used. Typically, for an elliptic
PDE defined on a rectangle domain (or a disk), several methods listed below are used

frequently

e Fast Poisson solvers such as the FFT, cyclic reduction, see []. Usually the implemen-
tation is not so easy. It is recommended to use software packages, for example, the

Fishpack in Fortran which is free on the Netlib.

e Multigrid solver, for example, MGD9V using a structured grid, for example, a nine-
point stencil which includes the five-point stencil as a special case; AMG (algebraic

multi-grid solver) if the coefficient Matrix is an M-matrix.

e Sparse matrix techniques. It was quite popular before the multigrid method was

developed.

e Simple iterative method such as Jacobi, Gauss-Seidel, SOR(w). They are easy to
implement and fewer restrictions on the coefficient matrix. But they are generally

slow in convergence.

e Other iterative method such as CG or PCG (conjugate gradient method with pre-
conditioning), GMRES (generalized minimized residual), and BICG methods for non-

symmetric system of equations.

One of the most important advantage of an iterative method is that it only needs the
matrix-vector multiplication. So zero entries play no role. In the implementation, we use
the component form instead of manipulating the matrix and vector. In other words, the

equations are used directly.

7.5 Basic stationary iterative methods.

Give a linear system of equation Ax = b, det(A) # 0. Assume that we can write A as
A = M — N where M is an invertible matrix. Then we have (M —N)x =bor Mx = Nx+b

or x = M~'Nx + M~'b. We can form an iteration starting from an initial guess x°

X = M~INxF + M, k=1,2,.. (7.17)



46 Z. Li

Such iteration may converge or diverge depending the spectral radius of p(M ') = max |\;(M ~1)].

Since T = M~ N is a constant matrix, such a method is called a stationary iterative method.

7.5.1 The Jacobi iterative method— Solve for the diagonals.

If we solve for z; in the first equation, and x2 in the second equation, we can get

1
T = — (bl — 12Ty — A13T3 " — alnwn)
ar
1
T3 = — | by —ao171 — ag3w3-- — awTy
ag
1
z; = — | bi—a;nz1—apT2-- — aipnTy
aj;
1
Tn = — by —ajT1 —apexe--- — On,n—1Tn—1
Gnn

Given an initial guess x°, the Jacobi iterative method is

k+1 1 k k k
x1+ = — (bl — Q19T — G13T3 - — alnxn)
a11
1
k+1 k k k
:1:2+ = — (bg — a21x] — a3%3 - — agna:n)
a22
k+1 1 k k k
aci'" = — (bi — Q;1T] — ATyt — ainwn)
(277
k1 1 k k k
wn+ = — (bn — Qi1 %] — ApaZy t — an,n_lxn_l) .
Qnn

In a compact form, it can be written as

1 n
AR Y Z Gijil?? . i=1,2,---,n, (7.18)
Qi L~
Jj=1,j#i
which provides the basis for easy programming. For the finite difference equation
Uip1 —2Ui + Uiy
2
with a Dirichlet boundary condition, we have

ua + Uéc B h2f1

= f

K+l _
Ui 2 2
k k
Ukt — Ui—1+Ui+1_h2fi’ i=92.3 . m—1
¢ 2 2
Ukt — Up_o+ub h2fn—1.

n—1 = P 2
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For a two dimensional Poisson equation, it is

Uik—l,j +UE;+ Uz‘lfj—l + Uz"fj+1 B B2 fi

J
4 4

Ul,§+1: ’ i’j:172a"'an_1'

7.5.2 The Gauss-Seidel iterative method— Solve for the diagonals and use the
most updated information.

In the Jacobi iterative method, we update all the components of x¥*1 based on x*. In the

Gauss-Seidel iterative method, we use the most updated information as follows:

1
E+1 f . i
.’L‘l - - (bl - a12$2 — a13$3 e — a’l’nl‘n)
a1
1
k+1 bl P .
$2+ = — (b2 — a/2]_,'1}'1+ — ao3Tg — a2n$n)
a2
k1 1 b k+1 k+1 k1 ; .
Z; T a i T Q1T T T QTy vt — Q1T — Qig1T4 1 T — Gy,
(12
o L b k+1 k+1 ka1
Ty - n — A31Tq — Ap2Toy e — an,nflxn_l
a’TLTL
or in compact form
1 i—1 n
k+1 _ k1 i o
Z,; - a_ bi - Zaz‘jxj - E aijxj , 1= 1’2’ cee T, (719)
7 = et

Below is a pseudo-code of the Gauss-Seidel iterative method for solving the Poisson

equation:

Give u0(i,j) and a tolerance tol

err = 1000; k = 0; u = u0;
while err > tol
for i=1,n
for j=1,n
u(i,j) = ( (u@i-1,jd)+u(i+1,jd+u(i,j-1+u(i,j+1)) -h~2xf(i,j) )/4
end
end
err = max(max(abs(u-u0)));
ud =u; k =k + 1; % Next iteration if err > tol

end
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7.5.3 The successive over relaxation (SOR(w)) iterative method, an extrapo-

lation technique.

Let x'&’gl be the new update of the Gauss-Seidel method from x*. The new update using

SOR(w) is the linear combination of x* and x[5':

P = (1 — w)x¥ + wxBL (7.20)

If the parameter w < 1, the iteration above is called an interpolation, if w > 1, it is called an
extrapolation, or over relaxation. For elliptic problems, usually we should choose 1 < w < 2.

if w =1, we are back to the Gauss-Seidel method.

In the component form, the SOR(w) method can be written as

i—1 n
w .
.'I/'é:+1 = (]_ — w)fEf + a_ bz - E aijfv‘,;—i—l - E G/Z].’L"]; ’ 1= 13 2, SRR LT (7'21)
[ : i
j=1 j=i+1

We just need to change one line in the pseudo-code of the Gauss-Seidel method to get the
SOR(w) method:

u(i,j) = (1-omega)*u0(i,j) + omega*( u(i-1,j) + u(i+1,j)
+ u(i,j-1) + u(i,j+1) -h"2*£(i,j) )/4

The convergence of the SOR(w) method depends on the choice of w. For the linear
system of equations obtained from the standard five-point stencil applied to a Poisson

equation with h = hy = hy = 1/n, it has been shown that the optimal w is

2 2
1+sin(r/n) 14+7/n

Wopt = (722)

Note that the optimal w approaches number two as n approaches infinity. For general
elliptic PDEs, we do not know the optimal w but we can use the optimal w for the Poisson
equation as a trial value. It is also recommended to use larger w than smaller ones. If w is
too large that the iterative method diverges, we would find it quickly because the solution
will blow-up. Also the optimal w is independent of the right hand side.

7.5.4 Convergence of the stationary iterative methods.

For a stationary iterative method, the discussion of the convergence of the method is based

on the following theorem (sufficient and necessary condition).

Theorem 7.4 Given a stationary iteration

xFtt = TxF 4 ¢, (7.23)
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where T is a constant matriz, and c is a constant vector. The vector sequence {xk} converges
for arbitrary x° if and only if p(T) < 1, where p(T) is the spectral radius of T defined as

p(T) = max | (T)], (7.24)
that is, the largest magnitude of all the eigenvalues of T.

Another commonly used sufficient condition to check the convergence of a stationary

iterative method is the following theorem.

Theorem 7.5 If there is a matriz norm ||-|| such that ||T'|| < 1, then the stationary iterative

method converges for arbitrary initial guess x°.

We often check ||T'||, norm for p = 1,2, cc.
Now let us discuss the convergence of Jacobi, Gauss-Seidel, and SOR(w) methods.

Given a linear system Ax = b, Let D be the diagonal matrix formed from the diagonal
elements of A, —L be the lower triangular part of A, and —U be the upper triangular part

of A. The iteration matrices for the three basic iteration methods are
e Jacobi method: T = D~Y(L + U), c = D~ 'b.
e Gauss-Seidel method: T = (D — L)~'U, ¢ = (D — L)~ !b.

e SOR(w) method: T = (I — wL) ' (1 —w)I +wU), ¢ =w(I —wL) 1D 1b.

Theorem 7.6 If A is strictly diagonally dominant, that is

n

laii| > Y i), (7.25)

i=Lj#n

Then both Jacobi and Gauss-Seidel iterative methods converge. The conclusion is also true

when (1): A is weakly diagonally dominant

n

jail > D aggl; (7.26)

j=Lyj#n
(2): the inequality holds for at least one row; (3) A is irreducible.
From the theorem above, we can conclude that both Jacobi and Gauss-Seidel iterative

methods converge when they are applied to solve the linear system of equations obtained

from the standard central finite difference method for Poisson equations.
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7.6 Nine-point discrete Laplacian for Poisson equations.

The purpose of the nine-point discrete Laplacian is to get a compact 4-th order accurate
scheme, ||u — UJ|| < Ch*, for a Poisson equation. One of advantages of high order method
is that we can use fewer grid points to get the same order accuracy compared with lower
order method. We will have smaller system of equations. One of the disadvantages is that

we will have a denser system of equations.
While other methods may be used, we use a symbolic derivation from the second order

central scheme for u,,. Recall that

Pu hZo%

2 _ du nhowu 4
0, u = 92 + 12 5 + O(h*) -
= [1+ h_23_2 8_2 +O0(hY) '
N 12022 ) 922 * '
Plugging the operator relation
0? 2 2
92 = 02+ O(h%)

into equation (7.27), we get

2

h? 0
2, _ N 2yv) 9~ 4
02 u = (1 + D (025 +O(h ))) 52 U + O(h*)

h? 0? 4

We solver 88—3:2 from the equation above to get

Rz h2 5\ h2 , \ 7!
5% = (1 + E&iz) 62, u + (1 + ﬁ5§$> O(h*).

Note that

W\ h A
<1+ﬁ(5m> =1- 3505, + O(h')

if h is sufficient small. We get the symbolic relation

2 2 -1
o _ (1 + g ) 52.u+O(hY), or

O0x? 127
0? h?

With a Cartesian grid, we can approximate the Poisson equation Au = f to get

(1+530%) s (145508 =)+ 00
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where h = max(hy, hy). We multiply

h’2 2 h?2/ 2

to the expression above and use the fact that

(1 + (Alg)zégw> (1 + (Alg)zajy> = (1 + (Alg)25§y> (1 + (Alg)zégw> .

That is, the are commutative, we can get:

h o\ o, B2 o\ h2 o hy o "
1 gaiy ) et (10 338 ) = (1 1508 ) (14 53 ) So + 0

= 1+h—?”<52+h—12’52 f(z,y) + O(h*)
- 12770 T 1% ) J\HY

Expand the expression above, we get the nine-point scheme for the Poisson equation, for
example

h, h, Ui1,; — 2U;j + Uit
Y £2 2 _ Y £2 i=1,j ] it+1,
(1 * ﬁ%) %2 Uij = (1 * ﬁ%) (7z)?
Ui—1,; — 2Uij + Ui 4 1

- (h;)jQ a 12(7,)? (Uz'—l,j—la—2Ui—1,j +Ui-1,j41

—2Uij 1 +4Us5 — 2Ui 501 + Uigrj1 — 2Uip15 + Ui+1,j+1)

For the special case when h; = hy = h, the finite difference coefficients and the linear
combination of f are expressed in Fig. 10.

u(z,y) f(z,y)
1 4 1 1
° ° ° °
14 -20 4 L1 8 1
6h ° ° ° 12 ° ° °
° ° ° °
1 4 1 1

Figure 10: The coefficients of the finite difference scheme using the nine-point stencil.
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Possible advantages and disadvantages of nine-point finite difference methods for Poisson

equations include.

e It is fourth order accurate and it is still compact. The coefficient matrix is still block

tri-diagonal.

e Less grid orientation effects compared with the standard five point finite difference

scheme.

Note that if we apply

0? h?
57 = (1 - 1—5§w> 62 u+ O(h*).

to the Poisson equation, we will get another nine-point finite difference scheme which is not

compact and stronger grid orientation effects.

7.7 A finite difference method for Poisson equation using polar coordi-
nates.

If the domain of the interest is a circle, or an annulus, or a fan etc., see Fig. 11. It is much

easier to use polar coordinates:
x =rcosb, y = rsinf. (7.28)

Under the polar coordinates, the Poisson equation is
10 ou 1 0%u
R Pl 7= _ ,0
ror <r8r> +r2 06? f(r,)
Pu 10u 1 0%
— -t 5= = ,0).
o or? + r Or + 72 502 1(r9)
If the origin is not in the domain, Ry <r < Ry, 6; < 0 < 0,, we can use a uniform grid
in polar coordinates to discretize the Poisson equation:
Ry — Ry
 m
0, — 6
N

r; =R +1iAr, i=0,1,---,m, Ar

0320l+.7A05 j=0,1,---,N, Al =

The discretized equation is (using the conservative form)

171 Uir = (ris + 71 Ui+ 71U

. 2
; 10, 2U(A:)U (7.29)
L t,j—1 — i 4,j+1 _ ) ]
+ 2 (20)2 f(ri, 0;).

where U;; is an approximation to the solution u(r;, ;).
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BC BC
r r BC " BC
petiodic periodic BC BC
BC BU
No BC 27 ¢ or 0 0

Figure 11: A diagram of domains and boundary conditions that may be better solved in

polar coordinates.

7.8 Treating the boundary conditions.

If the origin is within the domain, then 0 < 8 < 27, we should use the periodic boundary
condition in @ direction, that is u(r,0) = u(r,6 + 27). In the r direction, R; = 0 needs
special attention. There are different methods in the literature in dealing with the pole
singularity. Some methods will lead to an un-desirable structure of the coefficient matrix
of the finite difference equation. One clever approach discussed here is to use the staggered

grid:

1 Ry
m_1

i=1,2,-- ,m. (7.30)

Notice that 7y = Ar/2 and r,;, = Ry. We can use the conservative form of the discretization
at ¢ =2,--- ,m — 1, except for ¢ = 1. At 4 = 1, we use the non-conservative form to take

care of the pole singularity:

Uoj — 2U1j + Usj n 1 Uz; — Uy, L 1 U1 =201 + Ui

(Ar)? ry 2Ar T% (AB)? = f(ry, 9]-).

Note that 7o = —Ar/2 and 1 = Ar/2. We can see that the coefficient of Up;, which is

the approximation at the ghost point rg, is zero! The above finite difference equation is
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simplified to

—2U15 + Uy, i Usj i Uij1—2U1; +Uij 11
(Ar)? ri 2Ar - r? (AB9)?2

= f(r1,0)-

We still have a diagonally dominant system of linear equations.

7.9 Use FFT to solve Poisson equation in polar coordinates.

Since the solution u(r, #) is periodic in 6 is the origin is an interior point, we can approximate
it by the truncated Fourier series as

N/2—1

u(r,0) = > up(r)e™ (7.31)

n=—N/2

where i = /—1 and u,(r) is the complex Fourier coefficient given by

| Nl .
Un(r) = N Z u(r, §)e” k0, (7.32)
k=0

Plugging (7.31) in to the Poisson equation, we get

19 (laun

2
n
;87’ ’I‘W)_']"—Qu” = fn(’r)a n:_N/27"'7N/2_1’ (733)

where f,(r) is the n-th coefficient of the Fourier series of f(r, ) defined in (7.32). For each
n, we can discretize in the r direction using the staggered grid to get a tridiagonal system
of equations which can be solved easily.
Assuming a Dirichlet boundary condition u(rmaz,8) = uPC(0) at r = ryae, we can use
the Fourier transform
N-1

1 .
UEC(Tma;U) - N UBC(G)e ko (7.34)

k=0

to find u2¢ (ryaz) which is the boundary condition for the ordinary differential equation.

Once we have the Fourier coefficient u,,, we can use the inverse Fourier transform (7.31)

to get an approximate solution to the Poisson equation.



