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1 Introduction

1.1 The Problems

We want to solve ordinary /partial differential equations (ODE/PDE), especially linear sec-
ond order ODE/PDEs, and first order systems, numerically.

What is a differential equation? It is an equation whose unknown is a function,
say u(zx), or u(x,y), or u(t,z), or u(t,z,y, z) etc. The equation involves the derivatives or

partial derivatives of the unknown function.

Differential equations' have been used intensively to model many physical problems
including fluid/solid mechanics, biology, material sciences, economics, ecology, sports and
computer sciences, for example, the Navier Stokes equations in fluid dynamics, biharmonic
equations for stress, the Maxwell equations in electro-magnetics, and many others.

Unfortunately, while differential equations can describe many physical problems, only
very small portion of them can be solved exactly in terms of elementary functions (polyno-
mials, sinz, cosz, logz, e*, a” etc.) and their combinations (composite functions). Quite
often, even if a differential equation can be solved analytically, great efforts and sound
mathematical theories are needed. The closed form of the solution may be too complicated

to be actually useful.

If the analytic solution is not available, we want to find an approximate solution to the

differential equation. Typically, there are two approaches:

e Semi-analytic methods. Sometime we can approximate the solution using series, inte-
gral equations, perturbation techniques, asymptotic approximations etc. The solution

is often expressed as some simpler function.

e Numerical approximate solutions in which some numbers are obtained. Nowadays,

those numbers are obtained from computers. The development of modern computers

!There are other models as well, for example, statistical models.
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make it possible to solve many problems that were impossible just a few decades, or

years ago.

In this course, we will mainly use the second approach. In Fig.1, we show a flow chart of a
problem solving process. In this class, we will focus on numerical solutions using computers,

especially the finite difference methods for differential equations.
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Figure 1: A flow chart of a problem solving process.

The linear differential equations can be classified as elliptic, parabolic, and hyperbolic

equations. Below are some examples:

1. Initial value problems and ordinary differential equation (ODE) systems:

u"(t) + a(t)u'(t) + b(t)u(t) = f(t),

1.1
u(0) = ug, |u'(0) =gl (L)
The general form can be written as
dy
5 = L&y), y(t) = yo (1.2)

The system of initial value problems can often be solved using the Runge-Kutta meth-
ods with adaptive time steps. In Matlab, it is the ode-suits which include ode45, ode23,
ode23s, odelbs, ---.
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2. Boundary value problems: One dimensional example,
u'(z) + a(z)u'(z) + b(z)u(z) = f(=),
u(0) = wo, |u(l) =wug|
Two dimensional example:

- (Uzz + U’yy) = f(way)a ('Tay) €0
U(.’E,y) = Uo(.’E,y), (-T,y) € 0Q.

3. Boundary and initial value problems

Ut = QUgy + f(z,1)
U(Oa t) =4g1 (t)a u(la t) = gZ(t)a BC (15)
u(z,0) = ug(z), IC

4. Eigenvalue problem:

Both u(z) and scalar A are unknowns.

Generally, we will consider the second order linear partial differential equations of the

form

a(2, Y)uzs + 20(2, Y)uzy + c(z,y)uyy + d(2,y)us + e(z, y)uy + (2, y)u(z, y) = f(z,y){1.7)

in a domain 2, where the coefficients are independent of u(z,y). The equation is linear

with respect to u and its partial derivatives. We can classify the equation above as
e Elliptic if b2 — ac < 0 for all (z,y) € Q.
e Parabolic if b — ac = 0 for all (z,y) € Q.
e Hyperbolic if b — ac > 0 for all (z,y) € Q.

Different type equation requires different method. Another type of problems is the

first order system

Ou Ou

The classification then is determined from the eigenvalues of the matrix A(x).

5. Diffusion and reaction equations:

%:V-ﬁVu+a-Vu+f(u) (1.9)

where a is a constant vector, V - fVu is called a diffusion term, a - Vu is called an

advection term, and f(u) is called a reaction term.
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6. System of PDEs and non-linear PDEs. A very important one is the incompressible

Navier Stokes equations

p(ug+ (u-V)u) =Vp+ pAu+F

1.10
V-u=0 ( )

A finite difference approach is one of techniques to solve differential equations numeri-
cally. The other techniques include finite element methods, the collocation method, spectral
method etc.

1.2 An example of a finite difference method for a model problem

Consider a model problem
u'(z) = f(z), 0<z<1, u(0)=us u(l)=mu.

We will solve this problem using the finite difference method to see the general procedure.

The procedure a finite difference method:

1. Generate a grid. For example, we can use a uniform Cartesian grid

z;=1th, 1=0,1,---n, h=—.
n
A grid is a finite set of points where we want to find an approximate solution to the

differential equation.

2. Substitute the derivatives with some finite difference formulas at every grid points
where the solution is unknown to get an algebraic system of equations. Notice that

for a twice differentiable function ¢(z), we have

¢//($) _ AI;EO ¢(£IJ — ASC) - ?ﬁ;ﬂ;l + ¢(.’L‘ + A;(;)

Therefore we can approximate u”(x) using nearby function values

¢(x — Az) — 2¢(z) + ¢(z + Ax)

¢”($) = (A.’E)2

+ error

At each grid point z; we approximate the differential equation by

u(z; — h) — 2u(z;) + u(z; + h)
72

= f(z;) + error.
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We define the approximate solution of u(z) at z; as U; as the solution (if exist) of the

following linear system of equations

Ug — 2U1 + U2
h2
Ui — 20Uy + Us
h2
Uy —2U3 + Uy
h2
Uic1 = 2U; + Ui
h2
Un73 - 2Un72 + Unfl
h2
Un—2 - 2Un—1 + up
h2

f(z1)
f(z2)
f(zs3)

f(zi)

f($nf2)

f(zn-1).

Note that at each grid, the finite difference approximation involve the solution at three

grid points z;_1, z;, and z;41. The set of these three grid points is called the finite

difference stencil.

This system of equations can be written as the matrix and vector form:

2 1
“hZ  A?
1 _2 1
n2 B2 R2
1 2 1
h? h?  hZ
1 2 1
hZ T h2Z A2
1 2
i 2

Ur
Us
Us

Uan

L Un_l -

f(z1) — 33

f(z2)
f(z3)

f(zn—2)

i fan—1) —

Ub
2

h

(1.11)

3. Solve the system of equations to get the approximate solution at each grid point.

4. Implement and debug the computer code. Run the program to get the output. Ana-

lyze the results (tables, plots etc.), see below:

5. Error analysis (consistency + stability => convergence). It is pointwise convergence,

that is ’llir% |lu(z;) — Ui]loc = 0. The finite difference method needs the solution to
_)

have second order derivative.
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1.3 The Matlab code for the model problem

The Matlab function for the model problem called two_point.m

function [x,U] = two_point(a,b,ua,ub,f,n)

Tl ToloToToToToToToTo 1o 1o o o o o o o o fo o Jo o Jo o To o To T T T T T T T T T o oo oo Fo o oo oo oo o o o oo o o o o Jo o o o T o T oo

% This matlab function two_point solvers the following two-point %
yA boundary value problem: u’’(x) = f(x) using center difference h
yA scheme. h
% Input: %
% a, b: Two end points. %
% ua, ub: Dirichlet boundary conditions at a and b %
% f: external function f(x). %
% n: number of grid points. b
% Output: %
% x: x(1),x(2),...x(n-1) are grid points %
% U: U(1),U(2),...U(n-1) are approximate solution at grid points %

T ToloToToToToToToTo 1o 1o o o o o o o o fo o Jo o Jo o To o To T T To T T T T T o T o oo oo Fo o oo oo o o o o o oo o o o o Jo o o T o To oo

h = (b-a)/n; hil=h*h;
A = sparse(n-1,n-1);
F = zeros(n-1,1);

for i=1:n-2,

A(i,i) = -2/h1; A(i+1,i) = 1/h1; A(i,i+1)= 1/hi1;
end

A(n-1,n-1) = -2/hi;

for i=1:n-1,

x(1) = a+ixh;
F(i) = feval(f,x(i));
end

F(1) = F(1) - ua/hi;
F(n-1) = F(n-1) - ub/hi;

U = A\F;

return
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"I A f=—=—=—= === End of the program ---———--—-————————————————————————————

The Matlab function for the model problem called main.m

Let the interval be [0, 1], f(z) = —72 cos(nz), u(0) = 0 and u(1) = —1. We can use the

following program to solve the problem numerically.

Whhhhhh%h Clear all unwanted variable and graphs.
clear; close all
hhh%hh% Input

a =0; b=1; n=40;
ua = 1; ub = -1;

Whhhhkh Call solver: U is

[x,U] = two_point(a,b,ua,ub,’f’,n);

Gl bbb hhhhhhh il Plot and error analysis: Uhhhhhhhhhhhhhhhhh
plot(x,U,’0’); hold

u=zeros(n-1,1);
for i=1:n-1,
u(i) = cos(pi*x(i));
end
plot(x,u)

%hhh%%Ah Plot error
figure(2); plot(x,U-u)

norm(U-u,inf) %%%h Print out the maximum error.

It is easy to check that the exact solution is cos(wz). If we plot the computed solution
that is defined only at the grid points (use plot(x,u,’0’), and the exact solution, solid line
in Fig. 2 (a), we see no difference with naked eyes. However, if we plot the difference of
the computed solution and the exact solution, which we call the error, we see there is a
difference which is about O(1073), see Fig. 2 (b). So we should be happy about our results.



8 Z. Li

Figure 2: (a) The plot of the computed solution (in little ’0’s), and the exact solution (in
solid line). (b) The plot of the errors in the infinity norm.

1.4 Questions that we should ask from this example

e Are there other ways using finite difference to approximate derivatives? If so, are

there general approaches?

e How do we know the method works or not? If it works, how accurate is it (that is

how small is it the error)? This depends on the consistency and the stability.

e Do the computer errors, they are called round off errors, affect the computed solution?

If so, how much?

e How do we deal with different boundary conditions such as derivative (Neumann) and

mixed (Robin) boundary conditions?

e Do we need different finite difference methods for different problems? If the finite

difference method is different, is there a similar procedure?
e How do we know that we are using the most efficient method? What are the criteria?
How do we implement an method efficiently?
1.5 Advantages and disadvantages of finite difference and finite element
methods
Finite difference methods:
e Simple to use and are easy to understand.
e Easy to implement for rectangular regions in two and three dimensions.

o It is pointwise.
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e Many fast solvers and packages, e.g., FFT, for regular domains (rectangular and
circular regions).
e Difficult for complicated geometries.

e Have strong regularity requirements (derivatives) for the solutions.
Finite element methods:

e Very successful for structural (elliptic type) problems.
e Natural approach for problems with complicated boundaries.
e Solid theoretical foundations at least for elliptic type problems.

e Weaker requirement for the solutions. For example, we do not need u” for the 1D

model problem since only the integral forms are used.
e Many commercial packages.
e Usually coupled with multigrid solvers.

e Need expert knowledge to generate the triangulation which is used to be the most
difficult part. Now we can use many packages, for example, Matlab, Triangle, Pltmg,
Fidap, Ansys etc.

Finite Difference methods, finite element methods, finite volume methods, spectral methods
are all useful for solving PDEs/ODEs.
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2 Fundamentals of Finite Difference Methods

The Taylor expansion is the most important tool in the analysis of finite difference methods.

They can be written as two slightly different form

— ! h? " hk (k)

u(z+h) = u(:z:)—l—hu(m)%—?u (m)++ﬁ () +--- (2.1)
_ ! h? " hk (k)

u(z+h) = u(z)+ hu'(z)+ o () +--+ ot &), (2.2)

if |h| is small enough. The second one sometimes is called the extended mean value theorem.

In a finite difference method, we need to substitute the derivatives with finite difference
scheme to get an linear/non-linear algebraic system. There are several different ways to

substitute the derivatives with finite difference formulas.

2.1 Forward, backward, and central finite difference formulas for u'(x)

Let first exam the first derivative u'(z) of u(z) at  using the nearby function values u(z+h),
where h is called the step size. There are three commonly used formulas:

z+h) —u(x)

Forward finite difference: Aiu(z) = ul 5 ~u(Z), (2.3)
7) — u(z — h

Backward finite difference: A_u(z) = u(@) Z(m ) ~u(Z), (2.4)

Backward finite difference: du(z) = @+ h)2—hu(:1: —h) ~ /' (Z). (2.5)

2.1.1 Derivation of finite difference formulas from geometric intuition and

calculus.

From calculus, we know that

o (z) = }lll_% u(x + h}i — u(z)

(z+h)—u(z)
h

Assume h is small and «'(z) is continuous, then if & is small, we expect that “ is

very close to u/(z). We can use it to approximate the first derivative

u(z + h) — u(z)
h

~ ' (z). (2.6)

Note that usually they are not the same, so this step brings an error! In practice, h is the
step size which is the distance between two grid points, so h > 0, we call the following
formula as the forward finite difference

u(z + h) — u(z) .

Asu(z) = A

(2.7)
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Geometrically, it is the slope of the secant line that connects the two points (z,u(z)) and
(z 4+ h,u(z + h)). How close is this formula to the derivative? We can use the extend mean
value theorem (truncated Taylor expansion) to find it out. Assume that u(z) has second

order continuous derivatives. if h is small, then we have
1
u(z+ h) = u(z) + u'(z)h + Eu"(f)hQ. (2.8)

Therefore we can get an error estimate

u(z + h) — u(z)
h

So the error, defined as the difference of the approximate value and the exact one, is

E¢(h) =

() = %u"(&)h — Ch=0(h). (2.9)

proportional to h, such discretization is called first order accurate. Generally, if the error

has the form
E(h) = Ch?, p >0, (2.10)

the method is called p-th order accurate.

tangent line at

T—h T T+ h

Figure 3: A geometric illustration of forward, backward, and central finite difference to

approximate u'(z).

Similarly, we can get and analyze the backward finite difference formula for approx-

imating u/(z) which is

h > 0. (2.11)

It is easy to get

u(z) — u(z — h)
h

Therefore, the backward finite difference is also first order accurate.

Ey(h) = () = —%u"({) h=Ch (2.12)
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Geometrically, we can see that the slope of the secant line that pass through (z+h, u(z+
h)) and (z — h,u(x — h)) is a better approximation to the slope of the tangent line of u(z).

The formula

du(z) = e+ h)2—hu(x — h), h >0, (2.13)

is called the central finite difference for the first order derivative.

In order to get a correct error estimate, we need to use more terms in the Taylor

expansion

w@w+h) = u@)+h(@) + o (@)h? + " (@)h3 4 —u® (@) 4 .

2" 6 24
1 1 1
wlz+h) = u(z)—hd(z) + §u"(w)h2 - Eu'"(a:)h3 + ﬂu(‘l) (z)h* + -
Therefore, we have
B,(h) = 2E+N 2_h“(”7 —h) () = %u'"(m)h2 +hot = CH?, (2.14)

where h.o.t stands for higher order terms. Note we have used a slightly different approach
from that we used for forward and backward formulas. Therefore the central finite difference
formula is second order accurate. It can be proved that the formula above can be written
as
u(z+ h) —u(z — h)
2h

- %(m + A )u(z)

A third order accurate finite difference formula for u/'(z) is

Sau(z) = 2u(z + h) + 3u(z) —66:(30 —h) +u(z — 2h). (2.15)

2.1.2 Verification, and grid refinement analysis

Assume that we have learned or developed a numerical method and have had some analysis.
We can write a compute code to implement the method. How do we know that our code is

bug-free and our analysis is correct. One method is called the grid refinement analysis.

Typically, in the grid refinement analysis, we solve a problem in which we know the
exact solution?, we start with a fixed h, say h = 0.1, then decrease h by half to see how the
error changes. For a first order method, the error should be decrease by factor two, and for
a second order method, the error should be decrease by factor four. We can also plot the

error versus h in log — log scale. In the log — log scale, the slope is the order of convergence.

2This is not always available. We will mention other techniques about how to validate a computed
solution later.
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Below we show the comparison of the forward, backward, and central finite difference
formula in Matlab script file compare.m. We choose the test function as u(xz) = sinz at
z =1, so the exact derivative is cos 1. In Fig. 4, we plot the error versus h in log — log scale

in which the slopes do give correct indication of the convergence order.

% Compare truncation errors of the forward, backward, and central
% scheme for approximating u’(x). Plot the error and estimate the
% convergence order.

% u(x) = sin(x) at x=1. Exact u’(1) = cos(1)

clear; close all
h=0.1;
for i=1:5,
a(i,1) = h;
a(i,2) = (sin(1+h)-sin(1))/h - cos(1);

a(i,3) = (sin(1) - sin(1-h))/h - cos(1);
a(i,4) = (sin(1+h)-sin(1-h))/(2*h)- cos(1l);
h = h/2;

end

format short e

a % Display the result

a = abs(a); % Take absolute value of the matrix.
hi = a(:,1); % Extract the first column which is h.
el = a(:,2); e2 = a(:,3); e3 = a(:,4);

loglog(hl,el,hl,e2,hl,e3)
axis(’square’)

axis([1le-6 1lel 1e-6 lell)

gtext (’Slope of FW and BW = 1)
gtext (’Slope of CD =27)

DAIIh L hhhhhhhhhh% End 0f Matlab Program %h%hhhhhhhhhhhhhhhhhhhhhhhhhhh%

%Computed Results:

% h forward backward central
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% 1.0000e-01 -4.2939e-02 4.1138e-02 -9.0005e-04
% 5.0000e-02 -2.1257e-02 2.0807e-02 -2.2510e-04
% 2.5000e-02 -1.0574e-02 1.0462e-02 -5.6280e-05
% 1.2500e-02 -5.2732e-03 5.2451e-03 -1.4070e-05
% 6.2500e-03 -2.6331e-03 2.6261e-03 -3.5176e-06

. Grid refinement analysis and comparison
10 T T T T

10" F

10 ¢ Slope of FW and BW = 1

o2l /

107 F

error

10

107F
Slope of CD =2

10" '
10° 10° 10" 10° 10° 10" 10 10"

Figure 4: A plot of grid refinement analysis of the forward, backward, and central finite
difference formula for u'(z) using log —log plot. The curves for forward and backward finite
difference are almost identical and have slope one. The central formula is second order

accurate and the slope of the plot is two.

2.2 Using the method of un-determined coefficients method to determine
finite difference formula

Suppose we want to use one-sided finite difference to approximate u'(z) at T = b which is a
boundary using u(Z), u(Z — h), u(Z — 2h) to second order accuracy. We can use the method

of un-determined coefficients method. Let
Uw'T ~yu(Z) + you(Z — h) + y3u(z — 2h).
We can use the Taylor expansion at  to get a system of equations for the coefficient
Y1u(Z) + v2u(Z — h) + y3u(Z — 2h) =
n? h3

yu(@) + 7 ((u(o) - (@) + (o) - @) ) +

2 3
7o ((u(a) ~ 21t (@) + “5-u@) = 5-u@)) + Oamax )
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The linear combination should approximate u'(z). So we should set
Nnt+r+ty = 0
—h’)’g — 2h")’3 =1
Ry +2h%y; = 0

It is easy to check the solution is

_ 3 _2 _ 1
Y= o ’Y2—h, Y3 = o

Therefore we get a one-sided finite difference scheme

W(F) = % u(z) — %u(a‘c _h)+ % (@ — 2h) + O(h?). (2.16)
Similarly we can get another one-sided finite difference formula by setting h = —h in the
formula above
W (F) = - (@) + 2@+ h) — — u(@ + 2h) + O(h?). (2.17)
2h h 2h

One can also differentiate a polynomials interpolation to get finite difference scheme.
For example, given a sequence points (z;,u(z;)), i = 0,1,2,--- ,n. Let the Lagrange inter-
polation polynomial be

n

pn(z) = le(x)u(xj), where [;(z) = H M

§=0 i#j

Then /(%) can be approximated by

2.3 Finite difference formula for second order and higher derivatives

We can apply the finite difference operator for the first order derivative twice to get fi-
nite difference formula for second order derivative u”(Z). For example, the central finite

difference formula for second order derivative can be obtained from

AA uz) = AME)= Z(f” —)

_ ! (u(:v-l—h) —u(r)  u(z) —ulz —h))

h h h

| weh) =) bl £ ey o)
= A Ayu(z) = 6%u(z) = 62,u(x).

(2.18)
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We will either use ¢2 if there is no confusion occurs or §2, is we want to specify in the z
direction for the central finite difference formula for 4”(Z). The central formula used very
often for second order differential equations. If we use the same finite difference operator

twice, we get a one-sided finite difference formula for second order derivative

AcAu(@) = (AL)%u(z) :A+u(w+h)—u(:v)

h
_ % (u(w + 2h)h— u(z+h) u(z+ hf)b — “($)> (2.19)
u(z) — 2u(z + h) + u(z + 2h)

- h2 = u"(z) + O(h)

which is only first order accurate. Below is an example of a finite difference formula for a

cross derivative,

v u(z+hy+h)+ul—hy—h)—u(z+hy—h)—ulz—hy+h)
0xdy 4h?

with a uniform step size in both directions.

(2.20)

2.3.1 Finite difference formula for third order derivatives

We can either apply the lower order finite difference formulas or use the method of un-
determined coefficients method to obtain finite difference formulas for third order deriva-
tives. For example, we have
w(Z — h) — 2u(Z) + uw(Z + h)

h2

ALS%u(z) = AL

u(a‘c — h) + 3u(z) — 3u(Z + h) + u(Z + 2h)
h3

= u"(z) + gu@) @)+

So the finite difference formula is first order accurate. If we use the central formula below

—u(Z — 2h) + 2u(Z — h2)h—3 2u(Z +h) +u(Z +2h) _ (3 + %2“(5) @)+ (221)

we can have second order accuracy.

In practice, we seldom need more than fourth order derivatives. For high order differ-

ential equations, we can transfer them to first order systems.
3 Consistency, stability, convergence, and error estimates of
finite difference methods

When we use a finite difference method to solve a differential equation, we need to know

how accurate the approximate solution compared to the exact one.
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3.1 Definition of the global error

Let U = [Uy, Us, - - - Uy)T be the solution of the finite difference scheme (assume no round-off
errors), and u = [u(z1),u(z2), -+ ,u(z,)] be the exact solution at grid points. The global
error vector is defined as E = U — u. Naturally, we wish to give a smallest upper bound

for the error vector. Usually we can use different norms

e The maximum norm or the infinity norm ||E||, = max; |e;|. Usually this is regarded
as the strongest measurement. If error is large at one grid point, then the maximum

norm is also large.

e The 1-norm is one of the average norms. It is defined as ||E||; = ), hi|e;| which is

similar to the continuous space [ |e(z)|dz.

¢ The 2-norm is another average norm. It is defined as ||E||2 = (3, hilei|?)!/? which is

similar to the continuous space ( [ |e(z)|?dz)'/2.

Note they are slightly different from, and more appropriate than, the definition of vector

norms in the one and two norms.

If |[E|| < ChP, p > 0, we can the finite difference method is p-th order accurate.
Naturally, we wish to have reasonably high order method while keep the computational

cost low.

Definition 3.1 A finite difference method is called convergent if ’llin}) |E| = 0.
—

3.2 Definition of the local truncation error

Let P(ZL) be the differential operator (take off u from the linear differential equation).

Examples:

d d?
e Given u"(z) = f(z), then P(%) =
o If P(%) = % + a(x)% + b(fﬂ)% + ¢(x), then Pu = f stands for the differential

equation: u"” + au" + bu' + cu = f(z),

and Pu = f.

Let P, be the finite difference operator. For example, for the second order differential
equation u”(z) = f(xz), one of the finite difference operator is

u(z — h) — 2u(z) + u(z + h)
2

Pyu(z) =

More examples will be given later.

The local truncation error is defined as

T(z) = Pu— Pyu (3.1)
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Now that we use the exact solution in the definition above. For the differential equation
u"(z) = f(z) and the three-point central difference scheme, the local truncation error is

u(z — h) —2u(z) + u(z + h
Pu— Byt - ST = 2ule) a4

— ) - u(z — h) —21;1(243) +u(:c+h). (3.3)

T(z) (3.2)

Note that the local truncation error only depends on the solution in the finite difference
stencil (it is three-point in the example) but do not depends on the solution globally (far
away). That is one of reasons that is called the local truncation error. The local truncation
errors measure how well the finite difference discretization approximates the differential

equation.

Definition 3.2 A finite difference scheme is called consistent if

lim T'(z) = lim (Pu — Pyu) = 4
lim T(z) = lim (Pu — Pyu) =0 (3.4)

Usually, we should use a consistent finite difference scheme at least for most of grid points.

If T(z) = Ch?, p > 0, then we say the discretization is p-th order accurate, where C
is a constant independent of h but may depends on the solution u(z). To check whether a
finite difference scheme is consistent or not, we usually use Taylor expansion. For example,
for the three point central finite difference scheme for u”(z) = f(z), we have
u(z — h) — 2u(z) + u(z + h) h? @)

32 =3t (z) + h.o.t. = Ch?

T(z) =u"(z) —

where C' = 11—2u(4) (x). Therefore the finite difference scheme is consistent and the discriti-
zation is second order accurate.
Now let us exam another finite difference scheme for v (z) = f(z). The finite difference
scheme is
u(z;) — 2u(@it1) + w(Tit2)
2
w(Tp—2) — 2u(zp—1) + u(b)
h2

:f(x’t)a 1=1,2,---,n—2,

= f(xnfl)

The local truncation error at z, i satisfies T'(z,, 1) = Ch%. The local truncation error at

other grid points

u(z;) — 2u(@it1) + w(wit2)

= = Ch

T(z;) = u"(z) —

So the finite difference scheme is consistent. But if we implement the finite difference

scheme, you may get weird results.
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So the consistence can not guarantee a finite difference work. We need another condition
to determine whether a finite difference method converge or not. Such a condition is called

the stability of a finite difference method.

For the model problem, we have
Au=F+T, AU =F, A(u—U) =T = —-AE, (3.5)

where A is the coefficient matrix of the finite difference equations, F is the modified source
term by the boundary condition, and T is the vector of the local truncation error at grid
points.

If A is non-singular, then ||E|| = [|[A~!T| < ||A7L||||T||. If A is singular, then ||E| may
be arbitrary large like the example above. The finite difference method does not converge.
For the central finite difference scheme, we have |E|| < ||[A !||A2. So the global error

depends on both the local truncation error and ||A~!].

Definition 3.3 A finite difference method for the elliptic differential equation is stable if

A is invertible and
|A7Y < C,  for all h < hy, (3.6)

where C and hy are constants.
Theorem 3.1 A consistent and stable finite difference method is convergent.

Usually it is relatively easier to prove the consistency, but it is more difficult, sometime

impossible, to prove the stability.

Now we are ready to prove the convergence of the central finite difference scheme for

u"(z) = f(z). We need the following lemma.

Lemma 3.1 Given a symmetric tridiagonal matric A € R"™" whose main diagonals and

off-diagonals are two constant, d and o. Then the eigenvalues of A are

mj
n +

/\j:d—|—2acos( 1), j=1,2,---n, (3.7)

each with corresponding orthogonal eigenvector

i (TR —1.92....
Ty, s1n(n+1>, k , 2,1, (3.8)

The Lemma can be proved by direct verification Ax? = )\jxj .

Theorem 3.2 The central finite difference method for u"(z) = f(x) with Dirichlet bound-

ary condition is second order accurate.
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Proof: Assume the matrix is A € R® 1*("~1) then we have d = —2/h?, o = 1/h?,
the eigenvalues of A is

Aj = _2 + L cos (ﬂ) = % (cos(mjh) — 1)
n

Note that the eigenvalues of A~! are 1/); and A~ is also symmetric, we have

1 h? h? 1
< —.

”AJM:ImMM|:2u—C%wm):zu—(y-mmw2+@mﬂmb+~q w2

Therefore, we have
1 _
B3 < A2l T2 < 5 Vn — 1CH? < Ch*?
s

in the vector 2-norm. In the average 2-norm, we have ||E|s = V| E|/3¢ < Ch?. We can

also prove that the infinity norm is also proportional to h? using the maximum principal.

Remark 3.1 The eigenvectors and eigenvalues of the coefficient matriz in (1.11) can also

be obtained by considering the eigenvalue problem of the Sturm-Luiville problem

u"(z) + =0, u(0)=u(l)=0. (3.9)

It is easy to check that the eigenvalues are
M= (km)?, k=1,2,---. (3.10)
The corresponding eigenvectors are
ug(z) = sin(knz), (3.11)
Its discrete form at grid point is
ug(x;) = sin(knih), i=1,2,--- ,n—1. (3.12)
This is one of the eigenvectors of the coefficient matrix in (1.11). The corresponding eigen-
value can be found using the definition Ax = Ax.
3.3 The effect of round-off errors and the choice of machine precision.

From the knowledge of numerical linear algebra, we know that

o [|[Allz = max |\j| = & (1 — cos(m(n — 1)h)) ~ % = 4n?. Therefore
K(A) = [|A]l2| A2 ~ n?.
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e The relative error of the computed solution U for a stable scheme satisfies

< local truncation error + round-off error

< JATHIT] + Co(m) Al AT e

~ 1
< COh? + C’g(n)ﬁ €

where g(n) ~ n is the growth factor of the algorithm for solving the linear system of
equations, € is the machine precision. For several type of computers, ¢ ~ 10~® when we
use the single precision, and € ~ 1076 for the double precision. To make the discussion
simple, assume that C' = C' = g(n) = 1, the smallest error that we can expect is when the

truncation error is roughly the same as the round-off error

1 1
:} nm~N-——= ——
h

2
h el/4

~ ﬁ67

which is about 100 for the single precision, and 10,000 for the double precision. Therefore,
if we use single precision, there is no point to take more than 100 grid points, and we can
at best get roughly four significant digits. That is why we usually use double precision to
solve ODE/PDEs. Note that Matlab is using double precision.

4 Finite difference methods for 1-D elliptic equations.

4.1 Finite difference methods for 1-D self adjoint elliptic equations.

Consider the one dimensional self adjoint elliptic equations of the form

(p(w)u'(m))' —q(z)u(z) = f(z), a<z<b, (4.1)

u(a) = uq, u(b) =wup, or other BC. (4.2)
The existence and uniqueness of the solution is given in the following theorem.

Theorem 4.1 If p(z) and ¢(z) are continuous, and f(z) € Lla,b), that is fab f2dz < oo,
q(xz) > 0, and there is a positive constant such that p(x) > py > 0, then there is unique
solution u(x) € C%(a,b).

The proof is usually given in a course of differential equations. Now let us discuss the finite

difference method.

Step 1: Generate a grid. For simplicity, we use a uniform Cartesian grid here

b—a .

zi=a+1th, h= ,0=0,1,---n.

n
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Note that zy = a, x,, = b. Sometimes an adaptive grid may be preferred, however, we can

not use the central finite difference scheme for adaptive grids.

Step 2: Substitute derivatives with finite difference at each grid point that the solution
is unknown. This is step is also called discretization. Define z; 1=+ h/2. We have
Tipl =T 1= h. Use the central finite difference formula at a typical grid point z; with
half grid size, we can get

pz‘+§“'(3’z’+§) —Pi—gu'(%_%)

h — qu(z;) = f(z:) + B}

where p; 1 = p(z;,1), ¢ = q(z;), fi = f(xi), and E} = Ch®. Apply the central finite
2 2

difference scheme for the first order derivative further, we get

u(Tit1)—u(Ti) o, Wzi)—u(@io1)
h h

—gqqu(z;) = f(zi) + B} + B}, i=12--n-1

If we ignore the local truncation error and substitute u(z;) with U;, we get a linear system

of equations of U; which is a finite difference approximation to the exact solution u(z;):

Pip1Uiy1 — (pip1 +p;_1)Ui +p,_1Uia '
2 2 = 2 2 _QiUi:fia 2:1’2’...77/_1, (43)

In matrix-vector form, the linear system above can be written as AU = F, where

B _P1/2}‘L|_'2P3/2 —q I% T
P3/2 P3/2+Ps5/2 Ps/2
“h2 T Rz T2
A= ,
Pn— Ppn— +Pn—
L h23/2 - 3/2h2 2 dn—1 i
_ - i P1)2Uq 7]
U1 f(xl) - h2
Us f(z2)
Us f(z3)
U = ; F =
Prn—1/2Up
L Un—1 i | f(xn—l) - T ]

It is important to note that A is symmetric, and negative definite. A is also weakly weakly
diagonally dominant and it is an M-matrix. Those properties guarantee that A is non-

singular.
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Question: The differential equation can be written as

p(x)u” +p'(z)u' — qu = f(z).

This is called a non-conservative form. We can directly apply second order finite difference

formulas to the equation above. What are advantages and dis-advantages of this approach?

e We need to find the derivative, or its approximation, of p(z).

e The coefficient matrix of the finite difference equations is not symmetric, or negative

positive definite, or diagonally dominant anymore.

Therefore we should avoid such discretization if possible.

The local truncation error. The local truncation error is

Pipru(Tiv1) — (pip1 +p; 1)ulzs) +p; 1u(zig)
T, =t g L ~ quulay) — fi (4.4)

Note that f; = (pu')’ — qu is the differential operator. It is easy to show that T; = Ch?. Tt
is more difficult to show that ||A~!|| < C. However, we can use the maximum principal to

prove second order convergence of the finite difference scheme.

4.2 Finite difference methods for general 1D elliptic equations.

Consider the differential equation

ple)u’(z) + r(z)v'(z) - g(z)u(z) = f(z), a<z<b (4.5)
u(a) = uq, u(b) =up, or other BC. (4.6)
If p(z) =1, r(z) =0, and ¢(z) < 0, such an equation is called Helmholtz equation which is

difficult to solve if g(z) < 0 and |g(x)| is large, say g(z) ~ 1/h%.

There are two different discretization technique that we can use.

e Central finite difference scheme for all the derivatives. The finite difference scheme is

Ui —2U; + U; Uit1 — Ui
py 2t h;-l— i+, z+12h il U= fi i=1,2,m—1. (4.7)

The advantage of this discretization is that the method is second order accurate. The
disadvantage is that the coefficient matrix may not be diagonally dominant even if
g(z) > 0, p(z) > 0. The term r(z)u'(z) sometimes is called the advection term if
u is the velocity. When the advection is strong, that is |r(z)| is large, the equation

behaves like a wave equation.
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e A mixed scheme: the central finite difference scheme for diffusion term and the up-

wind scheme for advection term.

Di Vict ,gl + Uit +7i UZHh Ui _ qiU; = fi, if r; >0,
Vi1 =2U; + U1 | Ui = Ui
pZ h2 + TZ h

— QiUi = fi, ifr; <O.

The purpose is to increase the diagonally dominance. It is first order accurate. It
may be recommended if |r(z)| is very large, say |r(z)| ~ 1/h. It is easier to solve the

linear system of equations with either direct method or iterative methods.

4.3 Ghost point method for boundary condition involve the derivatives.

In this sub-section, we discuss the treatment of the Neumann and Robin, or mixed, boundary

conditions. First we consider the differential equation
u'(z) = f(z), a<z<b,
u'(a) = uza, u(b) = ub

Note that the solution at £ = a is unknown. If we use a uniform Cartesian grid z; = a + ih,

Up is one of component of the solution. We still can use

Ui—1 = 2U;i + Ui
12

:fia i:1,2,---n1.

But we need an additional equation at zg = a. Certainly we should use the Neumann
boundary condition at £ = a. One intuitive approach is
U, — Uy —Up+U; _uza

— —uze, or 2 =

(4.8)

It works and the linear system of equations is still tri-diagonal and symmetric positive
definite:

- 1 1 - r - r ura 7]
R R Uo h
BooTm R Ui f(z1)
woTw Uz f(@2)

- (4.9)
ﬁlf _EQZ EIZ Un—2 f(xn—Q)
u
| 111_2 _% 1L Un-1 | f(@n—1) - h_g

But the global error is only first order accurate even though some people do not believe it.
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To keep the second order accuracy, we use the ghost point method by adding a ghost
grid point £_1 = 9 — h = a — h and assume that the solution is extended to the interval
[@ — h,a] as well. Now we can use the central finite difference scheme for the differential
equation at all grid points that the solution is unknown, that is, ¢ = 0,1,:--n. We have
n equations and n + 1 unknowns. The extra one is U;. We need one more equation to
close the system. The additional equation is the central finite difference equation for the
Neumann boundary condition:

U, -U_
—

From the equation above, we can get U_; = U; — 2huza. Plug this into the finite difference

= uza. (4.10)

equation for the differential equation at x = a, we have
U_1—-20y+ Uy B
Uy — 2huza — 20Uy 4+ Uy
h2
—Uo+ U1 _ Jo | uza
h? 2 h

The coefficient matrix of the finite difference equation is the exact the same as (4.9). The

= fo

only difference is the first component in the right hand side vector. Now the component is
fo/2+uza/2 compared with uza/2 of the first order method. But the results obtained from

the ghost point method is much better, second order method versus first order method.

In order to discuss the stability, we need to find the eigenvalues of the coefficient matrix.

Again, we can associate the eigenvector to the continuous problem:
u" +du =0, u'(0)=0, wu(l)=0. (4.11)
It is easy to show that the eigenvectors are
u(z) = cos (%ﬂj + kmc) (4.12)

corresponding to the eigenvalue \; = (7/2 + km)2.

We compare the two methods in Fig. 5. The differential equation is v”(z) = f(z) with
a Dirichlet boundary condition at z = 0, and a Neumann boundary condition at z = 0.5.
The exact solution is u(z) = cos(wz). Fig. 5 (a) shows the grid refinement analysis. The
error in the second order method is much smaller that that of the first order method. In
Fig. 5 (b), we show the error plot of the ghost point method. Note that the error at z = b

is not zero anymore.

4.4 A Matlab code of the ghost point method.

function [x,U] = two_pointa(a,b,ua,uxb,f,n)
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e “The error plot in log-log scale for 1-st and 2-nd order methods x10° Eror

.
0 The 1-st order method, slopg 1 1 o5
107°F 1 b

107

107

The 2-nd ordgr method, slope = 2

-25

Figure 5: (a) The grid refinement analysis of the ghost point method and the first order
method. The slopes of the curves are the order of convergence. (b) The error plot of the

computed solution from the ghost point method.
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% This matlab function two_point solvers the following two-point %
h boundary value problem: u’’(x) = f(x) using center difference h
% scheme. yA
% Input: %
% a, b: Two end points. %
% ua, uxb: Dirichlet and Neumann boundary conditions at a and b %
% f: external function f(x). %
% n: number of grid points. b
% Output: %
% x: x(1),x(2),...x(n-1) are grid points %
% U: U(1),U(2),...U(n) are approximate solution at grid points. %

T ToloToToToToToToTo 1o 1o o o o o o o o fo o Jo o Jo o To o To T T To T T T T T o T o oo oo Fo o oo oo o o o o o oo o o o o Jo o o T o To oo

=3
I

(b-a)/n; hil=hxh;

sparse(n,n);

zeros(n,1);

for i=1:n-1,

A(i,i) = -2/h1; A(i+1,i) = 1/h1; A(i,i+1)= 1/hi1;
end

A(n,n) = -2/h1;
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A(n,n-1) = 2/hi;

for i=1:n,

x(1i) = a+ixh;

F(i) = feval(f,x(i));
end

F(1) = F(1) - ua/hi;

F(n) = F(n) - 2%uxb/h;
U = A\F;
return

4.5 The Matlab drive program

hhhhhhhh Clear all unwanted variable and graphs.

clear; close all

hhhhhhh Input

a =0; b=1/2;

ua = 1; uxb = -pi;

Y%Uh%%% Call solver: U is

n=10;
k=1;
for k=1:5
[x,U] = two_pointa(a,b,ua,uxb,’f’,n);
% [x,U] = two_pointb(a,b,ua,uxb,’f’,n);

u=zeros(n,1);
for i=1:n,

u(i) = cos(pi*x(i));

%ghost-point method.

%Backward Difference

end
h(k) = 1/n;
e(k) = norm(U-u,inf); %%% Print out the maximum error.

27
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k = k+1; n=2*n;

end

loglog(h,e,h,e,’0’); axis(’equal’); axis(’square’),

%title(’The error plot in log-log scale, the slope = 2’); % Ghost point
title(’The error plot in log-log scale, the slope = 1’); % BW
figure(2); plot(x,U-u); title(’Error’)

4.6 Mixed boundary condition.

The ghost point method can be used for the mixed boundary condition, also called Robin
boundary condition in some literature. Assume that at z = a, we have au'(a) + fu(b) = v,

where a # 0. Then we can use the ghost point method to discretize the boundary condition

U, -U_
o—

o7 + pUp =
2 2
a (07

Plugging this into the central finite difference equation at z = zy we get

2 28 2 2y
_Z o7 U, = -7 4.1
( h2+ah>Uo+h2U1 fo-l-a, (4.13)
or
1 B 1. fo,
( 5+ ah) Up+ 3501 = 5+ — (4.14)

to get a symmetric coefficient matrix.

5 An example of a non-linear boundary value ODE.

By substituting the derivatives in a non-linear differential equation, we will have a non-
linear algebraic system of equations. If we can solve the non-linear system, then we can get
an approximate solution to the non-linear differential equation. We present an example in
this section to illustrate the procedure.

Consider the motion of a pendulum with mass M at the end of a rigid (but massless)
bar of length L. Let 6(¢) be the angle of the pendulum from vertical at time ¢, as illustrated
in Fig. 6. Ignoring the mass of the bar and forces of the friction and air resistance, the

differential equation for the pendulum motion can be well approximated by

Ma = —Mgsin#,
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Figure 6: A diagram of a pendulum.

where g is the gravitation constant. Since S = L@, where S is the arc, so we have v = Lé,
and a = Lé, where v is the velocity, a is the acceleration. Therefore we have the following
non-linear boundary value:

éz—%sin@szinO, K:%. (5.1)

with two reasonable boundary conditions #(0) = «, say « = ©/4, and the observed angle
at some time later (7)) = B. If 0 is very small, then we can use the approximation
sin® = 0 + O(03) to get a linear differential equation. However, we can apply the central

finite difference scheme directly to get a system of non-linear equations.

0i1 — 20; +0;41
2

where h = T'/n is the step size.

+Ksin; =0, i=1,2---,n—1, (5.2)

There are several ways to solve the non-linear problems. We explain the ideas briefly
for the pendulum problem.

e Use a linear model to approximate the non-linear problem. For example, we can
approximate 0" + K sinf = 0 using the linear equation §” + K6 = 0. This is valid if

0 is small.

e Use a substitution method in which we approximate the non-linear term with the

previous approximation. Given an initial guess 60 (x), we form the iteration
(@F1)' + Ksing* =0, k=0,1,--- (5.3)

The main concern is when the iterative method convergence or not, and the rate of

the convergence.

e Solve the non-linear problem directly which is explained below.
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Usually we will get a non-linear system of equations if we use finite difference method
to discretize a non-linear ODE/PDE

[ F\(U1,Us, -+ ,U,) =0,
F2(U17U27"' aUn) :07

. F’n(UlaUQ"" 7U'n) = 0.

A commonly used method is Newton’s method. Given an initial guess U(®), we form

the Newton’s iteration
Utk = u® — (qu)—trut) (5.5)

or

J(U(k))AU(k) = —F(U(k))

k=0,1,---
Ukt = gk) 4 AUR),
where J(U®)) is the Jacobi matrix defined as

(oR OR OF

oUu; 0U, ou,,

oF, OF,  OF,

oUu;  0U, oU,

oF, OF, O,
| oU;  0U, ou, |

For the pendulum problem, we have
[ —2 4+ h2K cos 01 1 1
1 1 —2+h’Kcosfy 1

1 —2+4+h%Kcosb,_1

It is not always easy to find J(U) and it can be very computationally expensive. Further
more, Newton’s method is called local convergent method because it requires that the initial
guess is close to the solution to guarantee the convergence. Many new methods, for example,
quasi-Newton type method, such as Broyden and BFGS rank-one and rank-two update,
conjugate gradient methods, trust region methods, etc. The main issues include global
convergence, the convergence order (Newton’s method is quadratically convergent locally),
storage etc. A well known software package is MINPACK which is available through netlib,

see [?] for more complete discussions.
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nu=10 Final computed solutions of linear and non-linear ODE
T T

initial

mum error = 3.6459e-02

maxi

Figure 7: (a) Plot of some intermediate solution to the non-linear system of equations. (b)

Comparison of the solution of the linear and non-linear solution to the pendulum motion.

5.1 The grid refinement analysis technique.

After we have learned or developed a numerical method, which include convergence analysis
such as consistence, stability, and order of convergence, computational complexity (opera-
tion counts, storage and other issues) etc. We need to validate the method and numerically
confirm the analysis. We can also find out the algorithm behavior through numerically

results. There are same ways to serve these purposes.
e Analyze of the output. Examine the boundary conditions, maximum/minimum, etc.
e Compare with experiential data with sufficient variation of parameters.
e Do the grid refinement analysis with or without exact solutions.

Now we explain the grid refinement analysis with exact solutions. Assume a method is
p-th order accurate, meaning that ||Ep| ~ ChP is h is small enough. We can divide h by
half to get || Ej /|| Then we have the following relations

AR
= = 2P, 5.6
1Bnpall ~ ClhJ2)P (5:6)

ratio =

. log (Il Zall/l| En2ll)

log ||Ex|l =1log C + plogh, and
log 2

(5.7)

For a first order method (p = 1), the ratio approaches number two, and p approach number
one. For a second order method (p = 2), the ratio approaches number four, and p approach
number two, and so on. If p is some number between one and two, the method is called

super-linear convergent.

For simple problems, we may come up with exact solution easily. For example, for

all the linear single ODE/PDEs, we can simply set an exact solution u.(x), and from the
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exact solution, we can determine other functions and parameters such as the source term
f(x, boundary and initial conditions etc. For more complicated system of ODE/PDEs,
the exact solution sometimes is hard to construct. We can search for the literature to
see whether there are similar examples. Some examples in the literature will become bench
mark problems. New methods may have to compare the results of the bench mark problems

before they can be published.

For one dimensional problems, we can take n = 10, 20,40, ---, 640, depending on the
size of the problem and the speed of the computers, to do the grid refinement analysis.
For two dimensional problems, we can take (10,10), (20,20), ---, (320,320) to do the grid
refinement analysis, for three dimensional problems, we can take (10,10, 10), (20,20, 20),
.-+, (160, 160, 160) to do the grid refinement analysis if we have enough memory.

To present the grid refinement analysis, we can tabulate the grid size n, the ratio and /or
order so that we can see the results at the first glance. The other way is to plot the error
versus the step size h in log — log scale, with the same scale on both z- and y- axis, the

slope of the approximate line is the order of convergence.
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6 Finite difference methods for two dimensional second order

elliptic problems

There are many important applications of elliptic partial differential equations. Below are

some examples:
e Laplace equation.

e Poisson equation.

The solution to a Laplace or Poisson equation sometimes is called a potential equation.

This is because for a vector field v that is conservative meaning that curl(v) = 0, its

potential function u satisfies uz; + tyy = V - v, where V = [3%, a% |7 is the gradient

operator.
e Helmholtz equation.
Ugg + Uyy + Au = f. (6.3)

If A <0, it is called generalized Helmholtz equation and it is easy to solve. If A > 0
is big, then the problem is hard to solve.

e General self-adjoint elliptic PDEs
V- a(z,y)Vu(z, y) + Az, y)u = f(z,9), (6.4)
or  (aug)s + (auy)y + Az, y)u = f(z,y), (6.5)
We should assume that a(z,y) does not change the sign in the solution domain.
e General elliptic PDEs (diffusion and advection equations)
a(2, Y)Uge + 26(2, Y)uzy + c(, Y)uyy + d(2,Y)us + e(z,y)uy + g(z,y)u(z,y) = f(z,y)
It can be re-written as
V-a(z,y)Vu(z,y) + w(z,y) - Vu+c(z,y)u = f(z,9) (6.6)
after some transformation, where w(z,y) is a vector.

Below are some examples of non-linear elliptic PDEs.



