
A Set of GMRES Routines

for Real and Complex Arithmetics

on High Performance Computers

Valérie Frayssé ‡ Luc Giraud § Serge Gratton § Julien Langou §

CERFACS Technical Report TR/PA/03/3

This report is the users’ guide for the new release and supersedes TR/PA/97/49

Abstract

In this report we describe the implementations of the GMRES algorithm for both real
and complex, single and double precision arithmetics suitable for serial, shared memory and
distributed memory computers. For the sake of portability, simplicity, flexibility and efficiency
the GMRES solvers have been implemented in Fortran 77 using the reverse communication
mechanism for the matrix-vector product, the preconditioning and the dot product computa-
tions. For distributed memory computation, several orthogonalization procedures have been
implemented to reduce the cost of the dot product calculation, that is a well-known bottleneck
of efficiency for the Krylov methods. Finally the implemented stopping criterion is based on
a normwise backward error. After a short presentation of the GMRES methods and of the
solution of the least-squares problems in real and complex arithmetic, we give a detailed de-
scription of the user interface. This report is the users’ guide for the release 2.0 of the package
and supersedes [10].

Keywords : linear systems, Krylov methods, GMRES, reverse communication, distributed
memory.

1 Introduction

The purpose of this report is to present the API (Application Program Interface) of the GMRES
routines and to describe several choices that have been made in order to get an efficient and
reliable implementation of the GMRES [16] algorithm suitable for real and complex arithmetic on
any scientific computer.

This report is organized as follows. In Section 2 we briefly describe the GMRES method and
present the key ingredients on whose we paid a particular attention. In Section 3 we detail the
API and explain the meaning of the control parameters enabling the users to select any particular
feature of the code. We also indicate what are the output generated by the code as warning
and error. We end with a short example that illustrates the use of the reverse communication
mechanism and the typical feed-back that is given to the user.

‡Wallaware Inc., 146 Smith Street #2, Boston MA 02120, U.S.A. Email: valerie@spydre.com. Part of this work

was performed while the author was a researcher at CERFACS
§CERFACS, 42 av. Gaspard Coriolis, 31057 Toulouse Cedex, France. Email : giraud, gratton,

langou@cerfacs.fr

1

2 The GMRES algorithm

2.1 General description

The Generalized Minimum RESidual (GMRES) method was proposed by Saad and Schultz in
1986 [16] in order to solve large, sparse and non Hermitian linear systems. GMRES belongs to the
class of Krylov based iterative methods.

For the sake of generality we describe this method for linear systems that are complex, every-
thing also extends to real arithmetic calculation. Let A be a square nonsingular n × n complex
matrix, and b be a complex vector of length n, defining the linear system

Ax = b (1)

to be solved. Let x0 ∈ Cn be an initial guess for this linear system and r0 = b − Ax0 be its
corresponding residual.

The GMRES algorithm builds an approximation of the solution of (1) under the form

xm = x0 + Vmy (2)

where Vm is an orthonormal basis for the Krylov space of dimension m defined by

Km = span
{
r0, Ar0, . . . , A

m−1r0

}
,

and where y belongs to Cm. The vector y is determined so that the 2-norm of the residual
rm = b−Axm is minimal over Km.

The basis Vm for the Krylov subspace Km is obtained via the well-known Arnoldi process.
The orthogonal projection of A onto Km results in an upper Hessenberg matrix Hm = V H

m AVm of
order m. The Arnoldi process satisfies the relationship

AVm = VmHm + hm+1,mvm+1e
H
m, (3)

where em is the mth canonical basis vector. Equation (3) can be rewritten as

AVm = Vm+1H̄m

where

H̄m =

[
Hm

0 · · · 0 hm+1,m

]

is an (m + 1)×m matrix.

Let v1 = r0/β where β = ‖r0‖2. The residual rm associated with the approximate solution (2)
verifies

rm = b−Axm = b−A(x0 + Vmy)

= r0 −AVmy = r0 − Vm+1H̄my

= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my).

2

Since Vm+1 is a matrix with orthonormal columns, the residual norm ‖rm‖2 =
∥∥βe1 − H̄my

∥∥
2

is
minimal when y solves the linear least-squares problem

min
y∈Cm

∥∥βe1 − H̄my
∥∥

2
. (4)

We will denote by ym the solution of (4). Therefore, xm = x0 + Vmym is an approximate solution
of (1) for which the residual is minimal over Km. GMRES owes its name to this minimization
property that is its key feature as it ensures the decrease of the residual norm.

In exact arithmetic, GMRES converges in at most n steps. However, in practice, n can be
very large and the storage of the orthonormal basis Vm may become prohibitive. The restarted
GMRES method is designed to cope with this memory drawback. Given a fixed m, the restarted
GMRES method computed the sequel of approximate solutions xj until xj is acceptable or j = m.
If the solution was not found, then a new starting vector is chosen on which GMRES is applied
again. Often, GMRES is restarted from the last computed approximation, i.e. x0 = xm to comply
with the monotonicity property even when restarting. The process is iterated until a good enough
approximation is found. We will denote by GMRES(m) the restarted GMRES algorithm for a
projection size of at most m. One possible benefit of using restarted GMRES is that it alleviates
the cost of the orthogonalization procedure that can becomes very much time consuming when the
size of the Krylov space becomes large.

In the following paragraphs, we enlight the main key-points for GMRES:

• the solution of the least-squares problem (4),

• the construction of the orthonormal basis Vm,

• the stopping criteria for the iterative scheme, and

• the calculation of the residual at the restart.

2.2 The least-squares problem

At each step j of GMRES, one needs to solve the least-squares problem (4). The matrix H̄j in-
volved in this least-squares problem is an (j + 1) × j complex matrix which is upper Hessenberg.
We wish to use an efficient algorithm for solving (4) which exploits the structure of H̄j .

First, we base the solution of (4) on the QR factorization of the matrix [H̄j , βe1]: if QR =
[H̄j , βe1] where Q is an orthonormal matrix and R = (rik) is an (j + 1)× (j + 1) upper triangular
matrix, then the solution yj of (4) is given by

yj = R(1 : j, 1 : j)−1R(1 : j, j + 1). (5)

Here, R(1 : j, 1 : j) denotes the j × j first submatrix of R and R(1 : j, j + 1) stands for the last
column of R. Moreover, it is easy to see that

‖rj‖2 = ‖b−Axj‖2 =
∥∥βe1 − H̄jyj

∥∥
2

= |rj+1,j+1| . (6)

Therefore, the norm of the residual of the linear system is the by product value of the algorithm
and can be obtained without explicitly evaluating the residual vector.

QR factorization of upper Hessenberg matrices can be efficiently performed using Givens
rotations, because they enable to zero out sequentially all elements H̄k+1,k, k = 1, . . . j. However,

3

since [H̄j+1, βe1] is obtained from [H̄j , βe1] by adding one column c, the R factor Rj+1 of
[H̄j+1, βe1] is obtained by updating the R factor Rj of [H̄j , βe1] using an algorithm that we
briefly outline now, for j = 3 (see [3, 5, 6]):

1. Let

Rj =




+ + + +
0 + + +
0 0 + +
0 0 0 +




and Qk ∈ C(j+1)×(j+1) be such that [H̄j , βe1] = QkRk. The matrix Qk is not explicitly
computed, only the sine and cosine of the Givens rotations are stored. The vector w = QH

k c
is then computed by applying the stored Givens rotations, and w is inserted in between the
j and j + 1 columns of Rk, to yield

R̃j =




+ + + ∗ +
0 + + ∗ +
0 0 + ∗ +
0 0 0 ∗ +
0 0 0 ∗ 0




2. A Givens rotation that zeros element R̃j(j + 2, j + 1) is computed and applied to R̃j to
produce the matrix

Rj+1 =




+ + + + +
0 + + + +
0 0 + + +
0 0 0 + +
0 0 0 0 +




The computation of the sine and cosine involved in the givens QR factorization use the BLAS
routines *ROTG, and we refer the reader to [3, 6] for questions related to the reliability of these
transformations.

2.3 Computation of Vj

The orthogonality quality of the Vj plays a central role in GMRES as deteriorating it might slow
down or delay the convergence. On the other hand, ensuring a very good orthogonality might be
expensive and useless for some applications. Consequently a trade-off has to be found to balance
the numerical efficiency of the orthogonalization scheme and its inherent efficiency on a given tar-
get computer.
Most of the time, the Arnoldi algorithm is implemented through the Modified Gram-Schmidt
(MGS) process for the computation of Vm and Hm. However, in finite precision arithmetic, there
might be a severe loss of orthogonality in the computed basis; this loss can be compensated by
selectively iterating the orthogonalization scheme [4, 13]. The resulting algorithm is called Iterative
Modified Gram-Schmidt (IMGS). The drawback of IMGS is the increased number of dot products.
The Classical Gram-Schmidt (CGS) algorithm can be implemented in a efficient manner by gather-
ing the dot products into one matrix-vector product, but it is well-known that CGS is numerically
worse than MGS. However, CGS with selective reorthogonalization (ICGS) results in an algorithm
of the same numerical quality as IMGS. Therefore, ICGS is particularly attractive in a parallel dis-
tributed environment, where the global reduction involved in the computation of the dot product
is a well-known bottleneck [1, 9, 12, 17].

4

In our GMRES implementation, we have chosen to give the user the possibility of using any
of the four different schemes quoted above : CGS, MGS, ICGS and IMGS. We follow [14] to define
the criterion for the selective reorthogonalization and set K =

√
2 as suggested by [8] as the value

for the threshold.

2.4 Preconditioning

The convergence of GMRES or GMRES(m) to solve (1) might be slow. To overcome this drawback,
one often prefer to solve a transformed linear system that is referred to as the preconditioned linear
system. More precisely if A ≈M1M2 we actually solve the linear system

M−1
1 AM−1

2 z = M−1
1 b (7)

with x = M−1
2 z. In our implementation we allow the user to select left and/or right preconditioning.

The use of preconditioners has some consequences on the stopping criterion. We discuss these points
in the next paragraph.

2.5 Stopping criteria

We have chosen to base our stopping criterion on the normwise backward error [7]. The backward
error analysis, introduced by Givens and Wilkinson [18], is a powerful concept for analyzing the
quality of an approximate solution:

1. it is independent from the details of round-off propagation: the error introduced during the
computation are interpreted in terms of perturbations of the initial data, and the computed
solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbations, they can be compared with errors due
to numerical approximations (consistency of numerical schemes) or to physical measurements
(uncertainties on data coming from experiments for instance).

The backward error measures in fact the distance between the data of the initial problem and
those of the perturbed problem; therefore it relies upon the choice of the data allowed to vary and
the norm to measure these variations. In the context of linear systems, classical choices are the
normwise and the componentwise perturbations [7]. These choices lead to explicit formulas for the
backward error (often a normalized residual) which is then easily evaluated. For iterative methods,
it is generally admitted that the normwise model of perturbation is appropriate [2].

Let xj be an approximation of the solution x = A−1b. Then

ηj = min {ε > 0; ‖∆A‖2 ≤ εα, ‖∆b‖2 ≤ εβ and (A + ∆A)xj = b + ∆b}

=
‖b−Axj‖2
α ‖xj‖2 + β

is called the normwise backward error associated with xj . The best one can require from an
algorithm is a backward error of the order of the machine precision. In practice, the approximation
of the solution is acceptable when its backward error is lower than the uncertainty on the data.
Therefore, there is no gain in iterating after the backward error has reached machine precision (or
data accuracy). Thanks to Equality (6), we see that the 2-norm of the residual is given directly in
the algorithm during the solution of the least-squares problem. Therefore, the backward error can
be obtained at a low cost and we can use

ηA,j =
|rj+1,j+1 |

α ‖xj‖2 + β

5

as the stopping criterion of the GMRES iterations. However, it is well-known that, in finite preci-
sion arithmetic, the computed residual (6) given from the Arnoldi process may differ significantly
from the true residual. Therefore, it is not safe to use exclusively ηA,j as the stopping criterion.
Our strategy is the following: first we iterate until ηA,j becomes lower than the tolerance, then
afterwards, we iterate until ηj becomes itself lower than the tolerance. We hope in this way to
minimize the number of explicit residual computations (involving the computation of matrix-vector
product) necessary to evaluate ηj , while still having a reliable stopping criterion.

When GMRES is used in conjunction with preconditioning, then our stopping criterion is
based on the backward error for the preconditioned system (7):

ηP
j =

∥∥M−1
1 AM−1

2 zj −M−1
1 b

∥∥
2
/(αP ‖xj‖2 + βP)

with xj = M−1
2 zj . We denote by

ηP
A,j =

|rj+1,j+1 |
αP ‖xj‖2 + βP

the stopping criterion for the preconditioned GMRES. As previously, we stop the iterations when
the computed values of ηP

A,j and then ηP
j satisfy the prescribed tolerance. We prefer to stop the

iterations on the preconditioned linear system and not on the original linear system because the
residual which is readily available in the algorithm is that of the preconditioned system. It would
be too expensive to compute the residual of the unpreconditioned system at each iteration. For the
user’s information, we also give the value of the backward error for the unpreconditioned system
on return from the solver.

We should notice that for right preconditioner η = ηP (or ηA = ηP
A); this is the reason why

right preconditioning is often preferred in many applications. Otherwise there is a priori no order
between the backward error of the preconditioned system and that of the unpreconditioned system.
Nevertheless, we noticed in our experiments that η (or ηA) is usually smaller than ηP (or ηP

A). It
is therefore recommended to use a larger tolerance for the preconditioned system than one would
have used on the unpreconditioned one.

How to choose α, β, αP and βP ? Classical choices for α and β that appears in the literature
are α = ‖A‖2 and β = ‖b‖2. Similarly, αP and βP should be chosen such as αP ∼

∥∥M−1
1 A

∥∥
2

and

βP ∼
∥∥M−1

1 b
∥∥

2
. Any other choice that reflects the possible uncertainty on the data can also be

plugged in. In our implementation, default values are used when the user’s input is α = β = 0
or αP = βP = 0. Table 1 lists the stopping criteria for different choices of αP and βP . Similarly,
Table 2 explains the output information given to the user on the unpreconditioned linear system
on return from GMRES.

2.6 Computation of the residual at restart

In some applications, the computation of each matrix-vector product can be extremely expensive as
for instance in some domain decomposition technique or in electromagnetism when a fast multipole
expansions used to evaluate the matrix-vector product. In that case, one would like to avoid the
explicit calculation of the residual at each restart of GMRES. Since we then set x0 = xm, we have

6

αP βP Stopping criterion

0 0

∥∥M−1
1 AM−1

2 zj −M−1
1 b

∥∥
2∥∥M−1

1 b
∥∥

2

0 6= 0

∥∥M−1
1 AM−1

2 zj −M−1
1 b

∥∥
2

βP

6= 0 0

∥∥M−1
1 AM−1

2 zj −M−1
1 b

∥∥
2

αP ‖xj‖2

6= 0 6= 0

∥∥M−1
1 AM−1

2 zj −M−1
1 b

∥∥
2

αP ‖xj‖2 + βP

Table 1: Stopping criterion for the preconditioned GMRES method.

α β Information on the unpreconditioned system

0 0
‖Axj − b‖2
‖b‖2

0 6= 0
‖Axj − b‖2

β

6= 0 0
‖Axj − b‖2

α ‖xj‖2

6= 0 6= 0
‖Axj − b‖2
α ‖xj‖2 + β

Table 2: Stopping criterion for the unpreconditioned GMRES method.

7

r0 = b−Axm with xm = x0 + Vmy. We can then observe that

r0 = b−A(x0 + Vmym)
= Vm+1(βe1 − H̄ym)

= Vm+1Qm(QH
mβe1 −

[
R(1 : m, 1 : m)

0

]
ym)

= Vm+1Qm

[
0

rm+1,m+1

]

It follows that the calculation of the residual amounts at computing a linear combination of the
(m + 1) Arnoldi’s vectors. The coefficients of the linear combination are computed by applying
the Givens rotations in the reverse order to the vector which has all its entries equal to zero but
the last that is equal to rm+1,m+1. This non-zero value is a by product of the solution of the
least-square. This calculation of the residual requires n(2m + 1) + 2m floating point operations
(flops) and should be preferred to an explicit calculation if the matrix-vector product involving A
implies more than 2n(m + 1) flops. We should mention that in some circumstances, for instance
when the required backward error is close to the machine precision, the use of this trick might
slightly delay the convergence (while it might still enable us to get the solution in a shorter period
of time). Notice that the implementation of this trick requires to store (m + 1) Arnoldi’s vectors,
while only m have to be stored otherwise. For the sake of robustness, even if this calculation of
the residual is selected by the user, we enforce an explicit residual calculation if, in the previous
restart, the convergence was detected by ηP

A,j but not assessed by ηP
j .

3 Implementation of GMRES

3.1 The user interface

For the sake of simplicity and portability, the GMRES implementation is developed in Fortran 77
and based on the reverse communication mechanism

• for implementing the numerical kernels that depend on the data structure selected to repre-
sent the matrix A and the preconditioners,

• for performing the dot products.

This last point has been implemented to allow the use of GMRES in a parallel distributed memory
environment, where only the user knows how the data have been spread (we refer to [12] where
examples of parallel distributed performance are reported). We have one driver per arithmetic,
and we use the BLAS and LAPACK terminology that is

DRIVE SGMRES for real single precision arithmetic computation,
DRIVE DGMRES for real double precision arithmetic computation,
DRIVE CGMRES for complex single precision arithmetic computation,
DRIVE ZGMRES for complex double precision arithmetic computation.

Finally, to hide as much as possible the numerical method from the user, only a few parameters
are required by the drivers, whose interfaces are similar for all arithmetics. Below we present the
interface for the real double precision driver:

CALL DRIVE_DGMRES(N,NLOC,M,LWORK,WORK,IRC,ICNTL,CNTL,INFO,RINFO)

N is an INTEGER variable that must be set by the user to the order n of the matrix
A. It is not altered by the subroutine.

8

NLOC is an INTEGER variable that must be set by the user to the size of the subset of
entries of b and x that are allocated to the calling process in a distributed memory
environment. For serial or shared memory computers NLOC should be equal to N. It
is not altered by the subroutine.

M is an INTEGER variable that must be set by the user to the projection size m (restart
parameter). This parameter controls the amount of memory required for storing the
Krylov basis and the Hessenberg matrix. It is not altered by the subroutine except
if it was set by the user to a value larger than N, it is then set to N; or to a value too
large for LWORK. In that latter case, it is set to the maximum possible value permitted
by LWORK.

LWORK is an INTEGER variable that must be set by the user to the size of the workspace
WORK. LWORK must be greater than or equal to
if ICNTL(5) = 0 or 1

M*M+M*(NLOC+5)+5*NLOC+2 if ICNTL(8) = 1; M*M+M*(NLOC+5)+6*NLOC+2otherwise.
if ICNTL(5) = 2 or 3

M*M+M*(NLOC+5)+5*NLOC+M+1 if ICNTL(8) = 1; M*M+M*(NLOC+5)+6*NLOC+M+1 oth-
erwise.
It is not altered by the subroutine.

WORK is a SINGLE/DOUBLE PRECISION REAL/COMPLEX array of length LWORK. The
first NLOC entries contain the initial guess x0 in input and the computed approxima-
tion of the unpreconditioned solution in output. The following NLOC entries contain
the right-hand side b of the unpreconditioned system. The remaining entries are used
as workspace by the subroutine.

IRC is an INTEGER array of length 5 that need not be set by the user. This array controls
the reverse communication. Details of the reverse communication management are
given in Section 3.2.

ICNTL is an INTEGER array of length 8 that contains control parameters that must be set
by the user. Details of the control parameters are given in Section 3.3.

CNTL is a SINGLE/DOUBLE PRECISION REAL array of length 5 that contains control
parameters that must be set by the user. Details of the control parameters are given
in Section 3.3.

INFO is an INTEGER array of length 3 which contains information on the reasons of exiting
GMRES. Details are given in Section 3.4.

RINFO is a SINGLE/DOUBLE PRECISION REAL array of length 2 which contains the
backward errors for the preconditioned and the unpreconditioned linear systems.

3.2 The reverse communication management

The INTEGER array IRC permits to implement the reverse communication. None of its entries
must be set by the user.
On each exit, IRC(1) indicates the action that must be performed by the user before invoking the
driver again. Possible values of IRC(1) and the associated actions are as follows:

0 Normal exit.

1 The user must perform the matrix vector product z ← Ax.

2 The user must perform the left preconditioning z ←M−1
1 x.

3 The user must perform the right preconditioning z ←M−1
2 x.

4 The user must perform one or more scalar products z ← x∗y.

9

On each exit with IRC(1) > 0, IRC(2) indicates the index in WORK where x should be read
and IRC(4) indicates the index in WORK where z should be written.

When IRC(1) = 4, IRC(5) gives the number of scalar products to be performed. In this
case, x denotes an array of size NLOC × IRC(5) stored column-wise (ie with a leading dimension
equal to NLOC). IRC(3) indicates the index in WORK where y should be read. This programming
trick permits to realize the parallel dot products with a BLAS 2 routine: this happens when the
orthogonalization scheme is either CGS or ICGS. Furthermore, on distributed memory computers,
this allows to reduce the number of global synchronizations introduced by the reduction and it
alleviates the cost of the parallel dot product computations.

3.3 The control parameters

The entries of the array ICNTL control the execution of the DRIVE GMRES subroutine. All entries
of ICNTL are input parameters and some of them have a default value set by the routine INIT GMRES.

ICNTL(1) is the stream number for the error messages (Default is 6).
Must be a strictly positive value.

ICNTL(2) is the stream number for the warning messages (Default is 6).
Must be greater of equal to zero. A zero value implies that the warning messages
will not be displayed.

ICNTL(3) is the stream number for the convergence history (Default is 0).
Must be greater of equal to zero. A zero value implies that the convergence history
will not be displayed.

ICNTL(4) controls the location of preconditioning. (No Default: Must be set by the user).

ICNTL(5) determines which orthogonalization scheme to apply (Default is 0, i.e. MGS).

ICNTL(6) controls whether the user wishes to supply an initial guess of the solution vector.
(Default is 0).
Must be equal to either 0 or 1. If ICNTL(6)=0, the initial guess is set to zero.

ICNTL(7) is the maximum number of iterations (cumulated over the restarts) allowed. (No
Default: Must be set by the user).
Must be equal larger than 0.

ICNTL(8) controls the strategy to compute the residual at the restart (see Section 2.6 for
details). (Default is 1).
Must be equal to either 0 or 1.

Possible values for ICNTL(4) are

0 no preconditioning,

1 left preconditioning,

2 right preconditioning,

3 double side preconditioning,

4 error, default set in the routine INIT GMRES.

Possible values for ICNTL(5) are

0 modified Gram-Schmidt orthogonalization (MGS) (Default),

1 iterative selective modified Gram-Schmidt orthogonalization (IMGS),

2 classical Gram-Schmidt orthogonalization (CGS),

10

3 iterative selective classical Gram-Schmidt orthogonalization (ICGS).

Possible values for ICNTL(8) are

0 A recurrence formula is used to compute the residual at each restart, except if the
convergence was detected using the Arnoldi residual during the previous restart.

1 The residual is explicitly computed using a matrix vector product (Default).

The entries of the CNTL array define the tolerance and the normalizing factors (see Section 2.5)
that control the execution of the algorithm:

CNTL(1) is the convergence tolerance for the backward error (see Section 2.5 for details).
(Default is 10−5).
Must be greater of equal to zero.

CNTL(2) is the normalizing factor α. (Default is 0).
Must be greater of equal to zero.

CNTL(3) is the normalizing factor β. (Default is 0).
Must be greater of equal to zero.

CNTL(4) is the normalizing factor αP . (Default is 0).
Must be greater of equal to zero.

CNTL(5) is the normalizing factor βP . (Default is 0).
Must be greater of equal to zero.

Default values are used when the user’s input is αP = βP = 0, α = β = 0; that is βP =
∥∥M−1

1 b
∥∥

2
,

β = ‖b‖2 respectively.

3.4 The information parameters

Once IRC(1) = 0, the entries of the array INFO explain the circumstances under which GMRES
was exited. All entries of INFO are output parameters.

Possible values for INFO(1) are

0 normal exit. Convergence has been observed.

-1 erroneous value n < 1.

-2 erroneous value m < 1.

-3 LWORK too small.

-4 convergence not achieved after ICNTL(7) iterations.

-5 preconditioning type not set by user.

If INFO(1) = 0, then INFO(2) contains the number of iterations performed until achievement
of the convergence and INFO(3) gives the minimal size for workspace. If INFO(1) = -3, then
INFO(2) contains the minimal size necessary for the workspace.

If INFO(1) = 0, then RINFO(1) contains the backward error for the preconditioned linear
system and RINFO(2) contains the backward error associated with the unpreconditioned linear
system.

11

3.5 Initialization of the parameters

An initialization routine is available to the user for each arithmetic:

INIT SGMRES for real single precision arithmetic computation,
INIT DGMRES for double precision arithmetic computation,
INIT CGMRES for complex single precision arithmetic computation,
INIT ZGMRES for complex double precision arithmetic computation.

These routines set the input control parameters ICNTL and CNTL defined above to default values.
The generic interface is

CALL INIT_GMRES(ICNTL,CNTL)

The default value for

ICNTL(1) is 6,
ICNTL(2) is 6,

ICNTL(3) is 0: no convergence history,
ICNTL(4) is 4: erroneous value. The user must specify explicitly the type of preconditioning,

ICNTL(5) is 0: MGS is used,
ICNTL(6) is 0: default initial guess x0 = 0,

ICNTL(7) is -1: the user must specify explicitly the maximum number of iterations,

ICNTL(8) is 1: the residual is explicitly computed at each restart,
CNTL(1) is 10−7,

CNTL(2) is 0,
CNTL(3) is 0,

CNTL(4) is 0,
CNTL(5) is 0.

3.6 Automatic correction for invalid parameters

To avoid to exit with an error when some parameters have been wrongly set by the user, we try
as much as possible to correct them and generate a warning message in the warning stream. Such
a situation might occur when:

M is set to a value larger than N, we set it to N.
LWORK is too small for the required M, we then compute the largest possible value of M

enables for that size of the workspace. If M is lower than 1, we exit with an error.

ICNTL(5) is set to an invalid value, we set it back to the default.
ICNTL(6) is set to an invalid value, we set it back to the default.

ICNTL(7) is set to an invalid value, we set it to N.
ICNTL(8) is set to an invalid value, we set it back to the default.

3.7 Unrecoverable invalid parameters

For some invalid values of the input parameters we cannot guess what could be an relevant alter-
native and consequently we output an error message and return to the calling programme. Such a
situation might occur when:

N is set to a value smaller than 1.
M is set to a value smaller than 1.

LWORK is too small to enable to perform any GMRES iteration.
ICNTL(4) does not correspond to any preconditioner alternative.

12

4 Availability of the software

For sake of maintenance of the code, only one source file exists and is used to generate the source
code for each of the four arithmetics. The final code is written in Fortran 77 and makes calls to
BLAS routines, as indicated in Table 3. The code is free for non-commercial use only. The source
code is available from the WEB at the URL

http://www.cerfacs.fr/algor/

together with the software license agreement and a set of example codes. We should also mention

Simple precision Double precision

real complex real complex

SAXPY CAXPY DAXPY ZAXPY

SNRM2 SCNRM2 DNRM2 DZNRM2

SCOPY CCOPY DCOPY ZCOPY

SGEMV CGEMV DGEMV ZGEMV

SROT CROT DROT ZROT

SROTG CROTG DROTG ZROTG

STRSV CTRSV DTRSV ZTRSV

Table 3: BLAS routines called in GMRES.

that a free implementation of Flexible GMRES [11, 15] is also available at the same URL address.

5 The API change since previous version of the package

The only change for the users of the previous version is that the integer array control ICNTL is
now of length 8, while it was 7 before.

13

6 An example of use

6.1 An example of call

14

%

program validation

*

integer lda, ldstrt, lwork

parameter (lda = 1000, ldstrt = 60)

parameter (lwork = ldstrt**2+ldstrt*(lda+5)+5*lda+1)

integer i, j, n, m

integer revcom, colx, coly, colz, nbscal

integer irc(5), icntl(8), info(3)

*

integer matvec, precondLeft, precondRight

parameter(matvec=1, precondLeft=2)

parameter(precondRight=3, dotProd=4)

*

complex*16 a(lda,lda), work(lwork)

real*8 cntl(5), rinfo(2)

*

complex*16 ZERO, ONE

parameter (ZERO = (0.0d0, 0.0d0), ONE = (1.0d0, 0.0d0))

*

complex*16 zdotc

external zdotc

*

* Initialize the matrix

*

....

*

* Set the right-hand side b such that b_i = 1+sqrt(-1)

do i = 1,n

work(i+n) = (1.d0,1.d0)

enddo

*

* Initialize the control parameters to default values

call init_zgmres(icntl,cntl)

*

* Tune some parameters for GMRES

*

* Tolerance

cntl(1) = 1.d-10

* Save the convergence history in file fort.20

icntl(3) = 20

* No preconditioning

icntl(4) = 1

* ICGS orthogonalization

icntl(5) = 3

* Maximum number of iterations

icntl(7) = 100

*

* reverse communication implementation

*

10 call drive_zgmres(n,n,m,lwork,work,irc,icntl,cntl,info,rinfo)

revcom = irc(1)

colx = irc(2)

coly = irc(3)

colz = irc(4)

nbscal = irc(5)

*

if (revcom.eq.matvec) then

* perform the matrix vector product

* work(colz) <-- A * work(colx)

call zgemv(’N’,n,n,ONE,a,lda,work(colx),1,

& ZERO,work(colz),1)

goto 10

*

else if (revcom.eq.precondLeft) then

* perform the left preconditioning

* work(colz) <-- M_1^{-1} * work(colx)

call zcopy(n,work(colx),1,work(colz),1)

goto 10

*

1
5

else if (revcom.eq.precondRight) then

* perform the right preconditioning

* work(colz) <-- M_2^{-1} * work(colx)

call zcopy(n,work(colx),1,work(colz),1)

goto 10

*

else if (revcom.eq.dotProd) then

* perform the scalar product

* work(colz) <-- work(colx) work(coly)

*

* The statement to perform the dot products can be

* written in a compact form.

* call zgemv(’C’,n,nbscal,ONE,work(colx),n,

* & work(coly),1,ZERO,work(colz),1)

* For the sake of simplicity we write it as a do-loop

do i=0,nbscal-1

work(colz+i) = zdotc(n,work(colx+i*n),1,

& work(coly),1)

enddo

goto 10

*

endif

*

if (info(1).eq.0) then

write(*,*) ’ Normal exit’

write(*,*) ’ Convergence after ’, info(2),

& ’ iterations’

write(*,*) ’ Backward error - preconditioned

& system’, rinfo(1)

write(*,*) ’ Backward error - unpreconditioned

& system’, rinfo(2)

write(*,*) ’ Solution : ’

do j=1,n

write(*,*) work(j)

enddo

write(*,*) ’ Optimal size for workspace ’, info(3)

else if (info(1).eq.-1) then

write(*,*) ’ Bad value of n’

else if (info(1).eq.-2) then

write(*,*) ’ Bad value of m’

else if (info(1).eq.-3) then

write(*,*) ’ Too small workspace. ’

write(*,*) ’ Minimal value should be ’, info(2)

else if (info(1).eq.-4) then

write(*,*) ’ No convergence after ’, icntl(7),

& ’ iterations’

else if (info(1).eq.-5) then

write(*,*) ’ Type of preconditioner not specified’

endif

*

* dump the solution on a file

.....

*

stop

end

1
6

6.2 An example of output

In the example below all the output stream were set to the screen

17

guinness% sTestgmres

This code is an example of use of GMRES

in single precision arithmetic

Results are written in output files

fort.10 and sol_sTestgmres.

Matrix size < 1000

900

Restart < 60

4

WARNING GMRES :

For M = 4 optimal value

for LWORK = 9037

CONVERGENCE HISTORY FOR GMRES

Errors are displayed in unit: 6

Warnings are displayed in unit: 6

Matrix size: 900

Local matrix size: 900

Restart: 4

Left and right preconditioning

Iterative classical Gram-Schmidt

Default initial guess x_0 = 0

True residual computed at restart

Maximum number of iterations: 100

Tolerance for convergence: 0.10E-06

Backward error on the unpreconditioned system Ax = b:

the residual is normalised by ||b||

Backward error on the preconditioned system (P1)A(P2)y = (P1)b:

the preconditioned residual is normalised by ||(P1)b||

Optimal size for the workspace: 9037

Convergence history: b.e. on the preconditioned system

Iteration Arnoldi b.e. True b.e.

1 0.33E-01 --

2 0.29E-02 --

3 0.37E-03 --

4 0.45E-04 --

5 0.61E-05 --

6 0.77E-06 --

7 0.11E-06 --

8 0.15E-07 0.49E-07

Convergence achieved

B.E. on the preconditioned system: 0.49E-07

B.E. on the unpreconditioned system: 0.65E-07

info(1) = 0

Number of iterations (info(2)): 8

1
8

References

[1] R. B. Lehoucq A. G. Salinger. Large-scale eigenvalue calculations for stability analysis of
steady flows on massively parallel computers. Int. J. Numerical Methods in Fluids, 36:309–
327, 2001.

[2] M. Arioli, I. S. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM J. Matrix
Anal. Appl., 13:138–144, January 1992.

[3] D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing givens rotations reliably
and efficiently. ACM Transactions on Mathematical Software (TOMS), 28(2):206–238, June
2002.

[4] Å. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra Appl., 197–198:297–
316, 1994.

[5] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[6] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An up-
dated set of Basic Linear Algebra Subprograms (BLAS). ACM Transactions on Mathematical
Software (TOMS), 28(2):135–151, June 2002.

[7] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM,
Philadelphia, 1996.

[8] W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable
algorithms for updating the Gram-Schmidt QR factorization. Math. Comp., 30:772–795, 1976.

[9] J. Frank and C. Vuik. Parallel implementation of a multiblock method with approximate
subdomain solution. Appl. Num. Math., 30:403–423, 1999.

[10] V. Frayssé, L. Giraud, and S. Gratton. A set of GMRES routines for real and complex
arithmetics. Tech. Rep. TR/PA/97/49, CERFACS, 1997.

[11] V. Frayssé, L. Giraud, and S. Gratton. A set of Flexible-GMRES routines for real and complex
arithmetics. Technical Report TR/PA/98/20, CERFACS, 1998.

[12] V. Frayssé, L. Giraud, and H. Kharraz-Aroussi. On the influence of the orthogonalization
scheme on the parallel performance of GMRES. Tech. Rep. TR/PA/98/07, CERFACS,
Toulouse, France, 1998. Preliminary version of the paper published in the proceedings of
EuroPar’98, Lecture Notes in Computer Science, Springer-Verlag, vol. 1470, pp. 751-762.

[13] W. Hoffmann. Iterative algorithms for Gram-Schmidt orthogonalization. Computing, 41:335–
348, 1989.

[14] H. Rutishauser. Description of algol 60. handbook for automatic computation. Springer
Verlag, Berlin, 1.a, 1967.

[15] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14:461–469, 1993.

[16] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

19

[17] J. N. Shadid and R. S. Tuminaro. A comparison of preconditioned nonsymmetric Krylov
methods on a large-scale MIMD machine. SIAM J. Sci. Comp., 14(2):440–459, 1994.

[18] J. H. Wilkinson. Rounding errors in algebraic processes, volume 32. Her Majesty’s stationery
office, London, 1963.

20

