
Chapter 1: Linear Systems

GMRES
Uses the Generalized Minimal Residual Method with reverse communication to generate an approximate solution of Ax = b.

Required Arguments

IDO— Flag indicating task to be done.   (Input/Output)
On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP, where A is the
matrix, and call GMRES again. If the routine returns with IDO = 2, then set Z to the solution of the system
MZ = P, where M is the preconditioning matrix, and call GMRES again. If the routine returns with IDO = 3,

set Z = AM-1P, and call GMRES again. If the routine returns with IDO = 4, the iteration has converged, and X
contains the approximate solution to the linear system.

X — Array of length N containing an approximate solution.   (Input/Output)
On input, X contains an initial guess of the solution. On output, X contains the approximate solution.

P — Array of length N.   (Output)
Its use is described under IDO.

R — Array of length N.   (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it contains the residual, b
− Ax.

Z — Array of length N.   (Input)

When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2, it contains M-1P. When

IDO = 3, it contains AM-1P. When IDO = 0, it is ignored.

TOL — Stopping tolerance.   (Input/Output)
The algorithm attempts to generate a solution x such that |b − Ax|  ≤ TOL*|b| . On output, TOL contains
the final residual norm.

Optional Arguments

N — Order of the linear system.   (Input)
Default: N = size (X,1).

FORTRAN 90 Interface

Generic:                              CALL GMRES (IDO, X, P, R, Z, TOL [,…])

Specific:                             The specific interface names are S_GMRES and D_GMRES.

FORTRAN 77 Interface

Single:            CALL GMRES (IDO, N, X, P, R, Z, TOL)

Double:                              The double precision name is DGMRES.

Description

The routine GMRES implements restarted GMRES with reverse communication to generate an approximate solution to Ax = b. It is

based on GMRESD by Homer Walker.

There are four distinct GMRES implementations, selectable through the parameter vector INFO. The first Gram-Schmidt

implementation, INFO(1) = 1, is essentially the original algorithm by Saad and Schultz (1986). The second Gram-Schmidt

implementation, developed by Homer Walker and Lou Zhou, is simpler than the first implementation. The least squares problem i

constructed in upper-triangular form and the residual vector updating at the end of a GMRES cycle is cheaper. The first Householder

implementation is algorithm 2.2 of Walker (1988), but with more efficient correction accumulation at the end of each GMRES cycle.

GMRES http://www.vni.com/products/imsl/documentation/fo...

1 of 9 02/18/2010 06:36 PM



The second Householder implementation is algorithm 3.1 of Walker (1988). The products of Householder transformations are

expanded as sums, allowing most work to be formulated as large scale matrix-vector operations. Although BLAS are used wherever

possible, extensive use of Level 2 BLAS in the second Householder implementation may yield a performance advantage on certain

computing environments.

The Gram-Schmidt implementations are less expensive than the Householder, the latter requiring about twice as much arithmetic

beyond the coefficient matrix/vector products. However, the Householder implementations may be more reliable near the limits of

residual reduction. See Walker (1988) for details. Issues such as the cost of coefficient matrix/vector products, availability of effectiv

preconditioners, and features of particular computing environments may serve to mitigate the extra expense of the Householder

implementations.

Comments

1.         Workspace may be explicitly provided, if desired, by use of G2RES/DG2RES. The reference is:

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR, USRNRM, WORK)

The additional arguments are as follows:

INFO — Integer vector of length 10 used to change parameters of GMRES.   (Input/Output).

For any components INFO(1) ... INFO(7) with value zero on input, the default value
is used.

INFO(1) = IMP, the flag indicating the desired implementation.

IMP Action

1 first Gram-Schmidt implementation

2 second Gram-Schmidt implementation

3 first Householder implementation

4 second Householder implementation

            Default: IMP = 1

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the maximum
allowable number of GMRES iterations before restarting. It must satisfy 1 ≤
KDMAX ≤ N.
Default: KDMAX = min(N, 20)

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed.
Default: ITMAX = 1000

INFO(4) = IRP, the flag indicating whether right preconditioning is used.
If IRP = 0, no right preconditioning is performed. If IRP = 1, right
preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not occur.
Default: IRP = 0

INFO(5) = IRESUP, the flag that indicates the desired residual vector updating prior
to restarting or on termination.         

IRESUP Action

1 update by linear combination, restarting only

2 update by linear combination, restarting and termination

3 update by direct evaluation, restarting only

4 update by direct evaluation, restarting and termination

Updating by direct evaluation requires an otherwise unnecessary matrix-vector
product. The alternative is to update by forming a linear combination of
various available vectors. This may or may not be cheaper and may be less
reliable if the residual vector has been greatly reduced. If IRESUP = 2 or 4,
then the residual vector is returned in WORK(1), ..., WORK(N). This is useful
in some applications but costs another unnecessary residual update. It is
recommended that IRESUP = 1 or 2 be used, unless matrix-vector products
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are inexpensive or great residual reduction is required. In this case use
IRESUP = 3 or 4. The meaning of “ inexpensive” varies with IMP as follows:

 

IMP ≤

1 (KDMAX + 1) *N flops

2 N flops

3 (2*KDMAX + 1) *N flops

4 (2*KDMAX + 1) *N flops

“ Great residual reduction” means that TOL is only a few orders of magnitude larger
than machine epsilon.
Default: IRESUP = 1

INFO(6) = flag for indicating the inner product and norm used in the Gram-Schmidt
implementations. If INFO(6) = 0, sdot and snrm2, from BLAS, are used. If
INFO(6) = 1, the user must provide the routines, as specified under arguments
USRNPR and USRNRM.
Default: INFO(6) = 0

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is performed. If
IPRINT = 1, print the iteration numbers and residuals.
Default: IPRINT = 0

INFO(8) = the total number of GMRES iterations on output.

INFO(9) = the total number of matrix-vector products in GMRES on output.

INFO(10) = the total number of right preconditioner solves in GMRES on output if IRP
= 1.

USRNPR — User-supplied FUNCTION to use as the inner product in the Gram-Schmidt implementation, if INFO(6) =
1. If INFO(6) = 0, the dummy function G8RES/DG8RES may be used. The usage is

REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY)

N — Length of vectors X and Y.   (Input)

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input)

INCX — Displacement between elements of SX.   (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.

SY — Real vector of length MAX(N*IABS(INXY),1).   (Input)

INCY — Displacement between elements of SY.   (Input)
Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or
SY(1+(I-N)*INCY) if INCY is less than zero.
USRNPR must be declared EXTERNAL in the calling program.

USRNRM — User-supplied FUNCTION to use as the norm | |X| |  in the Gram-Schmidt implementation, if INFO(6) =
1. If INFO(6) = 0, the dummy function G9RES/DG9RES may be used.The usage is

REAL FUNCTION USRNRM (N, SX, INCX)

N — Length of vectors X and Y.   (Input)

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input)

INCX — Displacement between elements of SX.   (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.
USRNRM must be declared EXTERNAL in the calling program.

WORK — Work array whose length is dependent on the chosen implementation.

IMP length of  WORK

1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2

2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1
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3 N*(KDMAX + 2) + 3 *KDMAX + 2

4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2

Example 1

This is a simple example of GMRES usage. A solution to a small linear system is found. The coefficient matrix A is stored as a full

matrix, and no preconditioning is used. Typically, preconditioning is required to achieve convergence in a reasonable number of

iterations.
 
      USE IMSL_LIBRARIES
!                    Declare variables
      INTEGER    LDA, N
      PARAMETER  (N=3, LDA=N)
!                                  Specifications for local variables
      INTEGER    IDO, NOUT
      REAL       P(N), TOL, X(N), Z(N)
      REAL       A(LDA,N), R(N)
      SAVE       A, R
!                                  Specifications for intrinsics
      INTRINSIC  SQRT
      REAL       SQRT
!                                  ( 33.0  16.0  72.0)
!                              A = (-24.0 -10.0 -57.0)
!                                  ( 18.0 -11.0   7.0)
!
!                              B = (129.0 -96.0   8.5)
!
      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
      DATA R/129.0, -96.0, 8.5/
!
      CALL UMACH (2, NOUT)
!
!                                  Initial guess = (0 ... 0)
!
      X = 0.0E0
!                                  Set stopping tolerance to
!                                  square root of machine epsilon
      TOL = AMACH(4)
      TOL = SQRT(TOL)
      IDO = 0
   10 CONTINUE
      CALL GMRES (IDO, X, P, R, Z, TOL)
      IF (IDO .EQ. 1) THEN
!                                  Set z = A*p
        CALL MURRV (A, P, Z)
         GO TO 10
      END IF
!
      CALL WRRRN ('Solution', X, 1, N, 1)
      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL
      END

Output
 
      Solution
    1       2       3  
1.000   1.500   1.000
Residual =     0.29746E-05

Additional Examples
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Example 2

This example solves a linear system with a coefficient matrix stored in coordinate form, the same problem as in the document

example for LSLXG. Jacobi preconditioning is used, i.e. the preconditioning matrix M is the diagonal matrix with Mii = Aii, for i =

1, …, n.
 
      USE IMSL_LIBRARIES
      INTEGER    N, NZ
      PARAMETER  (N=6, NZ=15)
!                                  Specifications for local variables
      INTEGER    IDO, INFO(10), NOUT
      REAL       P(N), TOL, WORK(1000), X(N), Z(N)
      REAL       DIAGIN(N), R(N)
!                                  Specifications for intrinsics
      INTRINSIC  SQRT
      REAL       SQRT
!                                  Specifications for subroutines
      EXTERNAL   AMULTP
!                                  Specifications for functions
      EXTERNAL   G8RES, G9RES
!
      DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/
      DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/
!
      CALL UMACH (2, NOUT)
!                                  Initial guess = (1 ... 1)
      X = 1.0E0
!                                  Set up the options vector INFO
!                                  to use preconditioning
      INFO = 0
      INFO(4) = 1
!                                  Set stopping tolerance to
!                                  square root of machine epsilon
      TOL = AMACH(4)
      TOL = SQRT(TOL)
      IDO = 0
   10 CONTINUE
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
      IF (IDO .EQ. 1) THEN
!                                  Set z = A*p
         CALL AMULTP (P, Z)
         GO TO 10
      ELSE IF (IDO .EQ. 2) THEN
!
!                                  Set z = inv(M)*p
!                                  The diagonal of inv(M) is stored
!                                  in DIAGIN
!
         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
         GO TO 10
      ELSE IF (IDO .EQ. 3) THEN
!
!                                  Set z = A*inv(M)*p
!
         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
         P = Z
         CALL AMULTP (P, Z)
         GO TO 10
      END IF
!
      CALL WRRRN ('Solution', X)
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      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL
      END
!
      SUBROUTINE AMULTP (P, Z)
      USE IMSL_LIBRARIES
      INTEGER    NZ
      PARAMETER  (NZ=15)
!                                  SPECIFICATIONS FOR ARGUMENTS
      REAL       P(*), Z(*)
!                                  SPECIFICATIONS FOR PARAMETERS
      INTEGER    N
      PARAMETER  (N=6)
!                                  SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    I
      INTEGER    IROW(NZ), JCOL(NZ)
      REAL       A(NZ)
      SAVE       A, IROW, JCOL
!                                  SPECIFICATIONS FOR SUBROUTINES
!                                  Define the matrix A
!
      DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, &
          10.0, -1.0, -2.0, -1.0, -2.0/
      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
!
      CALL SSET(N, 0.0, Z, 1)
!                                  Accumulate the product A*p in z
      DO 10  I=1, NZ
         Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I))
   10 CONTINUE
      RETURN
      END

Output
 
 Solution
1   1.000
2   2.000
3   3.000
4   4.000
5   5.000
6   6.000
Residual =     0.25882E-05

Example 3

The coefficient matrix in this example corresponds to the five-point discretization of the 2-d Poisson equation with the Dirichlet

boundary condition. Assuming the natural ordering of the unknowns, and moving all boundary terms to the right hand side, we

obtain the block tridiagonal matrix

where

GMRES http://www.vni.com/products/imsl/documentation/fo...

6 of 9 02/18/2010 06:36 PM



and I is the identity matrix. Discretizing on a k × k grid implies that T and I are both k × k, and thus the coefficient matrix A is k2

× k2.

The problem is solved twice, with discretization on a 50 × 50 grid. During both solutions, use the second Householder

implementation to take advantage of the large scale matrix/vector operations done in Level 2 BLAS. Also choose to update the

residual vector by direct evaluation since the small tolerance will require large residual reduction.

The first solution uses no preconditioning. For the second solution, we construct a block diagonal preconditioning matrix

M is factored once, and these factors are used in the forward solves and back substitutions necessary when GMRES returns with IDO =

2 or 3.

Timings are obtained for both solutions, and the ratio of the time for the solution with no preconditioning to the time for the

solution with preconditioning is printed. Though the exact results are machine dependent, we see that the savings realized by faster

convergence from using a preconditioner exceed the cost of factoring M and performing repeated forward and back solves.
 
      USE IMSL_LIBRARIES
      INTEGER    K, N
      PARAMETER  (K=50, N=K*K)
!                                  Specifications for local variables
      INTEGER    IDO, INFO(10), IR(20), IS(20), NOUT
      REAL       A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N), &
                TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N), &
                Y(2*N), Z(2*N)
!                                  Specifications for subroutines
      EXTERNAL   AMULTP, G8RES, G9RES
!                                  Specifications for functions
      CALL UMACH (2, NOUT)
!                                  Right hand side and initial guess
!                                  to (1 ... 1)
      R = 1.0E0
      X = 1.0E0
!                                  Use the 2nd Householder
!                                  implementation and update the
!                                  residual by direct evaluation
      INFO = 0
      INFO(1) = 4
      INFO(5) = 3
      TOL     = AMACH(4)
      TOL     = 100.0*TOL
      IDO     = 0
!                                  Time the solution with no
!                                  preconditioning
      TNOPRE  = CPSEC()
   10 CONTINUE
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
      IF (IDO .EQ. 1) THEN

GMRES http://www.vni.com/products/imsl/documentation/fo...

7 of 9 02/18/2010 06:36 PM



!
!                                  Set z = A*p
!
         CALL AMULTP (K, P, Z)
         GO TO 10
      END IF
      TNOPRE = CPSEC() - TNOPRE
!
      WRITE (NOUT,'(A32, I4)') 'Iterations, no preconditioner = ', &
                             INFO(8)
!
!                                  Solve again using the diagonal blocks
!                                  of A as the preconditioning matrix M
      R = 1.0E0
      X = 1.0E0
!                                  Define M
      CALL SSET (N-1, -1.0, B, 1)
      CALL SSET (N-1, -1.0, C, 1)
      CALL SSET (N, 4.0, A, 1)
      INFO(4) = 1
      TOL     = AMACH(4)
      TOL     = 100.0*TOL
      IDO     = 0
      TPRE    = CPSEC()
!                                  Compute the LDU factorization of M
!
      CALL LSLCR (C, A, B, Y, U, IR, IS, IJOB=6)
   20 CONTINUE
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
         IF (IDO .EQ. 1) THEN
!
!                                  Set z = A*p
!
         CALL AMULTP (K, P, Z)
         GO TO 20
      ELSE IF (IDO .EQ. 2) THEN
!
!                                  Set z = inv(M)*p
!
         CALL SCOPY (N, P, 1, Z, 1)
         CALL LSLCR (C, A, B, Z, U, IR, IS, IJOB=5)
         GO TO 20
      ELSE IF (IDO .EQ. 3) THEN
!
!                                  Set z = A*inv(M)*p
!
         CALL LSLCR (C, A, B, P, U, IR, IS, IJOB=5)
         CALL AMULTP (K, P, Z)
         GO TO 20
      END IF
      TPRE = CPSEC() - TPRE
      WRITE (NOUT,'(A35, I4)') 'Iterations, with preconditioning = ',&
                             INFO(8)
      WRITE (NOUT,'(A45, F10.5)') '(Precondition time)/(No '// &
                                'precondition time) = ', TPRE/TNOPRE
!
      END
!
      SUBROUTINE AMULTP (K, P, Z)
      USE IMSL_LIBRARIES
!                                  Specifications for arguments
      INTEGER    K
      REAL       P(*), Z(*)
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!                                  Specifications for local variables
      INTEGER    I, N
!
      N = K*K
!                                  Multiply by diagonal blocks
!
      CALL SVCAL (N, 4.0, P, 1, Z, 1)
      CALL SAXPY (N-1, -1.0, P(2:(N)), 1, Z, 1)
      CALL SAXPY (N-1, -1.0, P, 1, Z(2:(N)), 1)
!
!                                  Correct for terms not properly in
!                                  block diagonal
      DO 10  I=K, N - K, K
         Z(I)   = Z(I) + P(I+1)
         Z(I+1) = Z(I+1) + P(I)
      10 CONTINUE
!                                  Do the super and subdiagonal blocks,
!                                  the -I's
!
      CALL SAXPY (N-K, -1.0, P((K+1):(N)), 1, Z, 1)
      CALL SAXPY (N-K, -1.0, P, 1, Z((K+1):(N)), 1)
!
      RETURN
      END

Output
 
Iterations, no preconditioner =  329
Iterations, with preconditioning =  192
(Precondition time)/(No precondition time) =    0.66278

Visual  Numerics, Inc.
Visual  Numerics - Developers of IMSL and PV-WAVE

http://www. vni. com/
PHONE: 713. 784. 3131

FAX:713. 781. 9260
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