
Notes on GMRES Algorithm Organization

Richard J. Hanson

Center for High Performance Software Research, Rice University, Houston, Texas,

77251–1892 USA

David R. Kincaid

Department of Computer Sciences, University of Texas at Austin, Austin, Texas,

78712–0233 USA

Technical Report TR-05-05

Department of Computer Sciences, University of Texas at Austin, March 05, 2005

Abstract

The Generalized Minimum Residual (GMRES) iterative method and variations of
it are frequently used for solving systems of linear equations of the form Ax = b,
where A is a large sparse nonsingular nonsymmetric matrix. We discuss ways to
reorganize the algorithm to improve its efficiency.

Key words: Generalized Minimum Residual (GMRES) iterative method,
Preconditioned GMRES(m) Algorithm, solving large sparse systems of linear
equations, GMRES algorithm reorganization and Matlab code,

1 Introduction

The well-known Generalized Minimum Residual (GMRES) iterative method
is often used to solve a system of linear equations

Ax = b

Email addresses: hanson.rj@worldnet.att.net (Richard J. Hanson),
kincaid@cs.utexas.edu (David R. Kincaid).

Preprint submitted to Elsevier Science 6 March 2005

where A is a large sparse nonsingular nonsymmetric n × n matrix. The left-
right preconditioned system is

(M−1
L AM−1

R)(MRx) = M−1
L b

where matrices ML and MR are nonsingular matrices.

2 Review GMRES.

In this section, we present a brief review of the GMRES procedure for the case
m = 3. Knowledgeable readers should immediately skip to the next section. In
the first phase, the Arnoldi process is used to generate an orthonormal basis
set {w(1), w(2), w(3)} for the Krylov subspace K3(r

(0), A) where r(0) = b−Az(0)

is the residual vector for the initial value z(0). In the second phase, we form a
linear combination

z(3) = z(0) + c
(3)
1 w(1) + c

(3)
2 w(2) + c

(3)
3 w(3) = z(0) + W3c

(3) (1)

using matrix and vector notation

W3 = [w(1), w(2), w(3)]n×3, c(3) = [c
(3)
1 , c

(3)
2 , c

(3)
3]T3

From the Arnoldi process, we have

AW3 = W4H3, W T
4 W4 = I (2)

and

H3 =




h1,1 h1,2 h1,3

σ1 h2,2 h2,3

0 σ2 h3,3

0 0 σ3




4×3

(3)

where σ0 = ||b−Az(0)||22 and σi = ||w(i)||22. In the solution phase, we need the
least squares solution of

H3c
(3) =




h1,1 h1,2 h1,3

σ1 h2,2 h2,3

0 σ2 h3,3

0 0 σ3







c
(3)
1

c
(3)
2

c
(3)
3




=




σ0

0

0

0




= q

2

To successively zero out the values of σ1, σ2, and σ3, We use Givens transfor-
mation matrices Qi of the form

Q1 =




c1 s1 0 0

−s1 c1 0 0

0 0 1 0

0 0 0 1




, Q2 =




1 0 0 0

0 c2 s2 0

0 −s2 c2 0

0 0 0 1




, Q3 =




1 0 0 0

0 1 0 0

0 0 c3 s3

0 0 −s3 c3




,

where
αi = [h̃2

i,i + σ2
i]

1/2, ci = h̃i,i/αi, si = σi/αi

for i = 1, 2, 3. When the Givens matrix is constructed so that when Qi is
applied to matrix Hm it modifies the diagonal entry h̃i,i ← cih̃ii + siσi and
zeros-out the σi entry. It also modifies the rows i and i + 1 from column i + 1
through n; namely, h̃i,j ← cih̃i,j + siσi and h̃i+1,j ← −sih̃i,j + cih̃i+1,j for

j = i + 1, . . . , n. Here h̃i,j are the appropriately updated elements of the Hm

matrix. In our Matlab code, we use the function rotg.m to determine the
elements si and ci in the Givens rotation matrix.

Now we apply each Givens transformations to both sides of the linear system
(3) and obtain

QH3c
(3)
3 =




h̃1,1 h̃1,2 h̃1,3

0 h̃2,2 h̃2,3

0 0 h̃3,3

0 0 0







c
(3)
1

c
(3)
2

c
(3)
3




= Q3Q2Q1q =




y1

y2

y3

y4




(4)

where Q = Q3Q2Q1. Consequently, we obtain

R3c
(3)
3 = QH3c

(3)
3 = Qq = y

Finally using the first three equations in (4), we can solve this upper triangular

system for the coefficients c̃
(3)
1 , c̃

(3)
2 , and c̃

(3)
3 .

Let r(0) = W4q where q = σ0[1, 0, 0, 0]T4 and σ0 = ||r(0)||22. Evidently from (1)
and (2), we have

r(3) = r(0) − AW3c
(3) = r(0) − W4H3c

(3) = W4(q − H3c
(3))

We have
||r(3)||22 = ||W4(q − H3c

(3))||22 = ||q − H3c
(3)||22

using the second equation in (2). Now we have

min ||r(3)||22 = min ||q − H3c
(3)||22

3

= min ||QT (Qq − R3c
(3))||22 = min ||Qq − R3c

(3)||22

Here H3 is factored as H3 = QT R3 where Q is an 4 × 4 orthogonal matrix
(QQT = I) that is a product of three Givens rotation matrices and R3 is an
4 × 3 upper triangular matrix. Let Qq = y = [y1, y2, y3, y4]

T . We can write

||Qq − R3c
(3)||22 = ||ỹ − R̃3c̃

(3)||22 + |y4|
2

where ỹ and R̃3 are the first 3 rows of this vector and matrix. (Remember the
last row of R3 is all zeros.) Choosing c̃(3) such that

R̃3c̃
(3) = ỹ

then min ||r(3)||22 = |y4|
2. The last element of y = Qq is y4 = −σ0s1s2s3.

So we obtain ||r(k)||2 = |y4| for each iteration without having to compute
the residuals. The value of |y4| gives an indication of whether there is an
improvement in the approximation or stagnation has occurred. The latter is
the case when all the si = 1 to within the floating-point precision being used.

3 Preconditioned GMRES(m) Algorithm.

The originally published GMRES algorithm found in Saad and Schultz (1986)
now appears in many others publications. (See, for example, Golub and van
Loan (1996), Greenbaum (1997), or Saad (2003).) We do not include the
statement of the traditional algorithm because there are many slightly differ-
ent versions of the GMRES algorithm (preconditioned and unpreconditioned)
in various papers and books. Rather than stating the standard GMRES algo-
rithm, we present it in a more streamlined fashion.

Generalizations and modifications of the GMRES method involving a weight-
ing norm ||x||2C = 〈x, x〉C = 〈Cx, x〉 = xT Cx, where C is positive definite
symmetric, are given in Chen (1997); Chen, Kincaid, and Young (1999);
Kincaid, Young and Chen (2003). We could have easily done that here but it
would made the flow of the algorithm more complicated and less likely to be
understood.

An important issue with the standard statement of the GMRES algorithm is
the occurrence of two applications of the n × n matrix A times a vector (or
a linear operator can be used instead of a matrix). With a small amount of
reorganization, the algorithm can be written so that the matrix-vector product
is used just once as shown below. The reorganized algorithm uses a single
scratch array of size n.

An improved and reorganized version of the GMRES Algorithm is as follows.

4

Preconditioned GMRES(m) Algorithm
(1) x ← z(0); (an initial solution approximation)
(2) for j = 0 to m do
(3) x ← Ax; (matrix-vector product/overwrite))
(4) if (j = 0) x ← b − x;
(5) [x ← M−1

L x; (left preconditioner, solve/overwrite)]
(6) for i = 1 to j do
(7) hi,j ← t ← 〈x,w(i)〉; x ← x − tw(i);
(8) end for
(9) σj ← ||x||;

(10) if (|σj| ≤ δ or j = m) exit loop j;
(11) x ← σ−1

j x; w(j+1) ← x
(12) [x ← M−1

R x; (right preconditioner, solve/overwrite)]
(13) end for

In the algorithm above, note that the outer loop starts with the index value
j = 0. The advantage of one instead of two occurrences of the matrix-vector
multiplication is a simplification of the interface to the user’s code. As a con-
sequence, there is a test in the outer loop of the algorithm (Step 4) where
the inner loop is skipped when j = 0 and, in this case, the first normalized
basis vector w(1) = σ−1

0 (b − Az(0)) is set in Step 11. Step 7, defines the upper
triangular matrix H = {hi,j} with the usual row and column values. It is
worth mentioning that the test (Step 10) is for σj = 0 and involves comparing
against a positive tolerance δ. The loop index j starts at the value j = 0 and

defines the columns of the matrix W = [w(1), w(2), . . . , w(ĵ)], where ĵ ≤ m is
the value of j at the exit in Step 10. With the test to exit the loop with j = m,
there is no need to store an unused column; namely, w(m+1).

In using GMRES, the interface to the user’s code is one of either forward
communication, reverse communication, or embedding the matrix (or an op-
erator) in the innards of the loop (the latter is not recommended). It is almost
always necessary to use preconditioners, in which case one considers a related
linear system as given in Golub and van Loan (1996, pp. 549–550) Thus,
one iterates with a matrix G = M−1

L AM−1
R (or an operator). Note that the

use of preconditioning is indicated above in brackets (Steps 5 and 12) with
related solve and overwrite steps. In these steps for large systems, we would
solve MLy = x for y and overwrite x ← y as well as solve MRy = x for y
and overwrite x ← y. It is with the use of preconditioners that we find the
reorganization most appealing.

Should stagnation occur with |ym+1| = σ0, we suggest that one combine the
following options: restart the iterative algorithm using the current approxi-
mate solution z(m) as the initial value z(0) with a larger value of m involv-
ing more storage or use preconditioners that achieve better conditioning of
G = M−1

L AM−1
R .

5

We want to emphasize that the rationale for the reorganized statement of the
algorithm is that when the GMRES algorithm is interfaced to the matrix (or
an operator) and preconditioner, there is only one place for each application
of it. However, the right preconditioner must be applied again at the update
step in the solution phase.

4 Solution Phase.

In the solution phase of this algorithm, we compute c(m) the minimizer of
||Hmc(m) − qm|| and compute z(m) = z(0) + Wmc(m). Here we define the (m +
1) × m Hessenberg matrix Hm = {hi,j}(m+1)×m and (m + 1) vectors Wm =
[w(1), w(2), . . . , w(m)]. To solve the least squares problem min ||Hmc(m) − qm||,
one transforms the Hessenberg matrix into upper triangular form by using
Givens plane rotations. Multiply the Hessenberg matrix Hm and the right hand
side qm by a sequence of rotation matrices Qi that eliminate the subdiagonal
elements σi one at a time. We obtain Rm = QHm and ym = Qqm where
Q = Qm · · ·Q2Q1. Since Q is unitary min ||Hmc(m)−qm|| = min ||Rmc(m)−ym||.
The solution of this least squares problem is obtained by solving the upper
triangular system resulting from deleting the last row of zeros in the matrix
Rm and the right hand side ym.

When solving the approximate resulting system with plane rotations, an im-
portant point is to have unit strides in the inner loop where the transforma-
tions are to be applied. This has a large impact on the efficiency for that
part of the algorithm. Our Matlab code uses packed upper triangular storage
with unit strides across rows for storing H. The subdiagonals of H are σi for
i = 1, 2, . . . ,m.

The matrix H = {hi,j}(m+1)×m is upper Hessenberg and the subdiagonals are

the values σj for j = 1, 2, . . . ,m. The value of j = ĵ ≤ m is when the exit
occurs at Step 10 and it defines the dimension of the least squares system that
is computed in the solution phase. In this discussion, we assume the j = m.
Table 1 uses the fact that only the upper triangular part of H occupies space.
For j = 0, the updated solution is z(0). It is worth pointing out that this
requires a nonstandard triangular storage array for H in row-major form. This
way the solve step can always use unit stride in the inner loop while solving
the least squares system. This organization is independent of the programming
language used to implement the algorithm. See the Matlab code and Sections
5–6 for the implementation details.

The least squares system Rmc(m) = ym that must be solved for the solution
update is computed by using plane rotations in the form of Givens transfor-
mations matrices. Then a back solve step is performed on the resulting upper

6

triangular matrix. This description of the solution phase of the algorithm is a
refinement of Saad and Schultz (1986, Section 3.2).

Solution Phase Preconditioned GMRES(m) Algorithm
(1) y ← [σ0, 0, 0, . . . , 0]Tm+1

(2) for i = 1 to m do

(3) Construct Givens matrices Qi with principal submatrix




ci si

−si ci




(4) Apply Qi to H, (rows i and i + 1 of columns i + 1 through m)
so last two nonzero entries of column vector i become


h̃i,i ← cihii + siσi

σi ← 0




(5) Apply Qi to y (entries yi and yi+1)
(6) end for
(7) ym ← h−1

m,mym (begin back solve)
(8) for i = m − 1 to 1 step −1 do

(9) yi ← h−1
i,i

(
yi −

j∑

k=i+1

hi,kyk

)

(10) end for
(11) x ← Wy (matrix-vector product)
(12) [x ← M−1

R x (right preconditioner/overwrite)]
(13) z(m) ← z(0) + x (update approximation)

In Steps 4 and 9, unit strides in the storage of rows assure efficiency of memory
access. Step 5 requires two multiplies instead of the usual four because yi+1 =
0. Loop i (Steps 7-10) back solves the upper triangular system.

5 Testing Code.

We have written Matlab code to illustrate this organization of the GMRES
algorithm together with two test programs and the Givens rotation matrix
routine:

• test x.m

• test y.m

• gmres.m

• rotg.m

• summary.m

Two Matlab programs test x.m and test y.m exercise routine gmres.m using
the Given rotation routine rotg.m and resulting plots are produced by routine

7

summary.m. All of these have been placed on a Web site so others can download
and run them: www.cs.utexas.edu/users/kincaid/GMRES

In the first Matlab sample code test x, we ask the user to input the size of
the system n. An n × n random matrix A is created with a slight diagonal
dominance. Next we set the n component vector x = (1, 1, . . . , 1) and generate
the corresponding right hand side vector b = Ax using A and x. Then we
request the number of k subdiagonals and k superdiagonals used for computing
the ILU factors in the preconditioners. Finally, we ask the user to enter the
number m of GMRES iterations to be used in the compute intensive phase
of the GMRES(m) algorithm with preconditioner. The initial approximation
z(0) used is a random vector and the tolerance is set to δ = 10−4. We stop
the iteration if the residual is small enough or we have come to the maximum
number of iterations. At the end, summary plots are produced with a bar
graph of the solution vector and the logarithmic graph of the sigma(i) values,
which are an indication of the convergence. The sample data n = 30, k = 15,
m = 10 obtains the solution with 10−4 accuracy in 24 GMRES(10) iterations.

Users may notice that by selecting different values for k and m, the behavior
of the code varies. For example, n = 30, k = 15, m = 15 converges in 4
GMRES(m) iterations and n = 30, k = 5, m = 20 converges in 5 GMRES(m)
iterations but n = 30, k = 15, m = 5 does not converge. The number of
GMRES(m) iterations is always m but there may be an indefinite number of
restarted groups to obtain convergence. For example, 12 groups of GMRES(10)
implies that there are 12× 10 evaluations of Ax, 12 solution steps, and so on.
In general, one may obtain more rapid convergence with large values m but
this requires more storage. Also, there is the risk of not converging with too
small a value of m.

By zeroing out entries in A, we create a matrix B from A having only k
subdiagonals and k subdiagonal. We compute the row pivoted form of the
LU factorization of PB = LU where P is a permutation matrix, L is the
unit lower triangular matrix, and U is the upper triangular matrix. These
factors are used as the preconditioners. The idea here is that B approximates
A and the factorization of B is effective and relatively inexpensive to compute.
Thus, we have A ≈ B = P T LU . In terms of the GRMES algorithm, we use
ML = P T L and MR = U .

For our second Matlab sample code test y, we use finite differences and solve
the following elliptic partial differential equation on the unit square





uxx + uyy + 1 = 0, (x, y) ∈ R = [0, 1] × [0, 1]

u(x, y) = 0, (x, y) ∈ Boundary(R)

8

Array x W = [w(i)] σ H = {hi,j} z(0)

Size n mn m + 1 m(m + 1)/2 n

Table 1
Storage requirements.

We generate nonzero elements of the sparse linear system and use the GMRES
code Matlab to solve it. The user is asked to enter the number n of inner grid
points (in x or y direction) and the number m of GMRES iterations. To reduce
the amount of time spent building the sparse matrix from the standard finite
differences, the code is written to generate the nonzero coefficients in three
groupings. It traverses first the corners, then the edges, and finally the main
part of the code does the equations whose entries do not touch the boundary.
This results in the generation of large systems more quickly because the move-
ment of large chunks of data is reduced. The preconditioner is derived from the
LU factorization of the principle tridiagonal matrix. (Also, it could have been
done with the Cholesky decomposition.) Summary plots are produced at the
end of the solution phase for both the solution surface and for the logarithm
of sigma(i). We call this example solving for Gabriel’s pillow due to the shape
of the two-dimensional plot of the solution surface. For example, the sample
date n = 32, and m = 16 solves the n2 × n2 system with 10−4 accuracy in 6
GMRES(16) iterations.

6 Storage Requirements.

The amount of storage needed for the algorithm should be mentioned. Note
that we have eliminated a scratch array of size n. One could make a case
for having an additional scratch array. This is particularly important when
computing the operator evaluation and for the preconditioning steps. But this
extra array is not needed and in the context of solving large partial differential
equations this saving may be significant and appreciated.

In the solution phase of the Matlab code, the subdiagonal terms of H are
σ1, σ2, σ3, . . . , and they are stored in the array sigma. After the solution phase
ends, we check for decreasing values of the sigma entries , which implies con-

vergence. We use the stagnation stopping test is |σ
(k)
0 − |ym+1| | < eps1/2 σ

(0)
0

with σ
(k)
0 the current value, σ

(0)
0 the initial value, and eps the Matlab constant

for the spacing of the floating-point numbers on the computer being used.

9

References

J-Y. Chen. Iterative Solution of Large Sparse Nonsymmetric Linear Systems.
Report CNA–285 (Ph. D. thesis, Dept. of Mathematics), Center for Numer-
ical Analysis, University of Texas at Austin, 1997.

J-Y. Chen, D. R. Kincaid, D. M. Young. Generalizations and modifications of
the GMRES iterative method, Numerical Algorithms 21 (1999) 119–146.

A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadel-
phia, 1997.

G. Golub and C. van Loan. Matrix Computations, 3rd Edition. John Hopkins
University Press, London, 1996.

R. J. Hanson and D. R. Kincaid. Notes on GMRES Algorithm Organization,
Technical Report TR-05-05, Computer Sciences Department, University of
Texas at Austin, March 2005.

D. R. Kincaid, D. M. Young, and J-Y. Chen. Variations of the GMRES iter-
ative method, Applied Numerical Mathematics 45 (2003) 3–10.

Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM,
Philadelphia, 2003.

Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Com-

put. 7(3), 856–869, 1986.

10

