
Parallelization and Performance of Conjugate GradientAlgorithms on the Cedar hierarchical-memory MultiprocessorUlrike Meier and Rudolf Eigenmann �AbstractThe conjugate gradient method is a powerful algorithm for solving well-structured sparselinear systems that arise from partial di�erential equations. The broad application rangemakes it an interesting object for investigating novel architectures and programming sys-tems.In this paper we analyze the computational structure of three di�erent conjugate gradientschemes for solving elliptic partial di�erential equations. We describe its parallel implemen-tation on the Cedar hierarchical memory multiprocessor from both angles, explicit manualparallelization and automatic compilation. We report performance measurements taken onCedar, which allow us a number of conclusions on the Cedar architecture, the programmingmethodology for hierarchical computer structures, and the contrast of manual vs automaticparallelization.1 IntroductionThe preconditioned Conjugate Gradient Method is a powerful tool for solving sparse wellstructured symmetric positive de�nite linear systems that arise in many applications. Thismethod has been considered on a variety of parallel computers, vector computers as wellas parallel processors. In this paper, we investigate the e�ciency of some suitable precon-ditioned Conjugate Gradient schemes implemented on Cedar, a parallel computer whichpossesses besides three levels of parallelism (clusters, processors and vectorization) the fol-lowing interesting memory structure: a global memory shared by all clusters, and a clustermemory and a fast high-performance cache which are local to each cluster but shared by thecluster's processors. Former experiments on an Alliant FX/8 (which is equivalent to a clus-ter of Cedar) have shown that the performance of iterative methods on one cluster is limitedby its cache size [MS88]. But the use of this new architecture showed an improvement inperformance. Data locality could be increased signi�cantly by distributing the data acrossclusters and handling smaller chunks on each cluster. We implemented the classical Con-jugate Gradient scheme (which is the slowest), but also the simplest and therefore a goodalgorithm to gain a better understanding of the performance behavior of Cedar. We alsoexamine a blockdiagonal block Incomplete Cholesky preconditioner as well as the reducedsystem approach.Another aspect considered here is automatic parallelization of the conjugate gradientscheme. To generate an e�cient object code the compiler needs to take into account the�Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, 305Talbot Laboratory, 104 South Wright St., Urbana, IL 61801-2932. This research was supported by the NationalScience Foundation under Grant No. US NSF CCR-87-17942, and the Dept. of Energy under Grant No. DE-FG02-85ER25001, with additional support from NASA NCC 2-559 (DARPA).1

available tools of parallelization as well as the complicated memory structure. The exper-iments with manual parallelization have shown that the choice of memory clearly a�ectsthe performance. A compilation method that takes advantage of the memory hierarchyis introduced and supported by experiments. Both approaches, the manual as well as theautomatic one, are compared.In Sections 2 the architecture and system software is brie
y described. Section 3 de-scribes the conjugate gradient schemes and Section 4 their implementation and experimentalresults. In Section 5 the automatic compilation is discussed. Section 6 compares manualand automatic parallelization, and �nally section 7 contains the conclusions.2 Cedar: a vector multiprocessor with a hierarchicalmemory2.1 The Cedar architectureCedar consists of 4 multiple processor clusters which are connected through an interconnec-tion network to a globally shared memory. To prevent long global memory access delays,array data can be prefetched into local bu�ers before they are needed. Each Cedar clus-ter is a slightly modi�ed Alliant FX/8. Each processor has eight 64-bit 32-element vectorregisters. The processors are connected to a concurrency control bus and a cache whichis shared by the processors in each cluster. The cache is connected to the cluster mainmemory through a memory bus with a maximum bandwidth of 188 megabytes/second. Inthe here considered Cedar con�gurations, each cluster has 32 mbytes of cluster memory,512 kilobytes of cache memory and 4 processors. The cluster shared global memory is 32megabytes. The �nal Cedar con�guration is expected to have 8 processors per cluster anda global memory of 64 megabytes.2.2 Cedar system softwareThe software that coordinates the clusters is the Xylem Operating System [Emr85], anextension of Unix. Its functionality is made available to the user through Cedar Fortran,the main application programming language. Cedar Fortran is basically Fortran77 witha few additional constructs for exploiting Cedar architectural features [GPHL90] . Usersprogram Cedar by either writing directly in Cedar Fortran, or by starting from a sequentialFortran77 code and applying the auto-parallelizing Cedar Restructurer, outputing CedarFortran [EHJP90]. Important Cedar Fortran constructs, refered to in this paper are:CTSKSTART forks a new task. The fork operation is costly, taking up to 200ms. It isused for initiating long-term parallel activities.Synchronization primitives: A variety of constructs is available to manually performsynchronization. This can be done by de�ning events, integer variables in globalmemory, which can be activated by the routines evpost, evclear, evwait, or lockingcertain parts of global memory to prevent simultaneous writes by di�erent clusters.For the manual parallelized code, we used the routine ifetch and add and some versionsof evwait, evclear and evpost which make use of busy-wait methods. A more detaileddescription of the synchronization mechanism used is given in Section 4.1.SDOALL, CDOALL are loop constructs that spread the iterations across all Cedar clus-ters, and across all processors of a cluster, respectively. Work parallelized in thismanner executes in 'lightweight' mode, forking in 1 �s within and in 10 to 100 �sacross clusters. 2

CLUSTER, GLOBAL type statements are for placing variables in the memory hierar-chy. Cluster data can only be seen by the local processors. Data declared global areautomatically prefetched in block mode when referencing them in vector operations.Typically, application programmers think of a Cedar program as a number of explicittasks, coordinated by synchronization calls, whereas the Cedar restructurer, translating aFortran77 source code, transforms the sequential loop structure into as many parallel loopsas possible. This is also true for the Conjugate Gradient algorithm. The explicit parallelimplementation makes use of ctskstart() and synchronization constructs, while the auto-parallelized version applies SDOALL and CDOALL constructs. We will comment on someinteresting di�erences of these two paradigms in section 6.3 The CG algorithm3.1 The CG family and its application rangeThe Preconditioned Conjugate Gradient method is a very e�ective method for solving sparsewell structured symmetric positive de�nite linear systems which e.g. arise from �nite di�er-ence or �nite element discretizations of elliptic partial di�erential equations. Many e�ortshave been made to implement it with a variety of preconditioning techniques on di�erentparallel computers, trying to take advantage of the various architectures [MS88] [vdV86].As it consists mainly of vector operations, it turns out to be a very e�cient method for avector computer but due to the necessity of evaluating dotproducts in each iteration, it isnot as well suited for a parallel computer that requires larger grain parallelism and has adistributed memory system. Among the preconditioners considered were many variants ofIncomplete Cholesky factorization preconditioners which improve the condition number ofthe preconditioned system very e�ciently [CGM85], are however highly recursive and notsuited for parallel computation. Vectorization e�orts improved the performance, worsenedhowever the convergence of the method [Meu84]. Polynomial preconditioners [Saa85] wereanother attempt to combine higher convergence rates and a higher degree of parallelism,turned however out to be not as e�cient as a high convergence rate requires a high degreepolynomial which increases however the computational complexity. Another approach con-sidered was the reduced system approach which leads to a system of half the size and is ane�cient method if the matrix of the linear system is consistently ordered, i.e. the red andblack points can be decoupled which is the case for a 5-point �nite di�erence discretization.We focus here on the Classical Conjugate Gradient Algorithm which due to its simplicityis a good tool to evaluate the performance behavior of Cedar. We also consider a vector-ized block Incomplete Cholesky preconditioner which is a very e�cient and stable schemeif considered from the numerical point of view and the reduced system approach which isthe best scheme among the considered.3.2 The Classical Conjugate Gradient AlgorithmWe consider a linear system of n2 equationsAx = f ; (1)where A is a symmetric positive de�nite block tridiagonal matrix with tridiagonal n � n-diagonal blocks and diagonal o�-diagonal blocks.This system can be solved iteratively by the conjugate gradient algorithm which is givenhere in its preconditioned form: 3

M is the preconditioning matrix which is symmetric positive de�nite, x0 is an arbitraryinitial approximation to x,r f �Ax0; p r; solve Mz = r;
 rTz (2)do until stopping criteria are ful�lledq Ap;� pTq;�
� ;x x+ �p;r r� �q;solve Mz = r;
new rTz;�
new
 ;p z + �p;

newendFor the classical Conjugate Gradient algorithm (CG), M is just the identity matrix,therefore solvingMz = r is omitted and z replaced by r in the above algorithm description.The basic CG iteration can be vectorized very e�ciently for well structured problems as theone considered here. The elementary operations required are matrix-vector multiplications,dotproducts and linear combination of vectors.3.3 A block diagonal-block Incomplete Cholesky preconditionerFor this approach, A is approximated by a preconditioning matrix M which was obtainedthrough the following construction: Partition A into a k � k-block matrix where k is thenumber of clusters. Consider the block diagonal matrix obtained by taking the block diag-onal of A (see Fig 1) and approximate each diagonal block by a block Incomplete Choleskypreconditioner. For the sake of vectorizability we chose the vectorized block IncompleteCholesky preconditioner INVC3(1) [Meu84]. This preconditioner is completely paralleliz-able across clusters, has however the disadvantage that the number of iterations depends onthe number of clusters used. This can also be seen clearly in our experiments (see Section5).
Figure 1: Block ICCG preconditioner4

3.4 The reduced system approachAnother approach that was implemented on Cedar is the reduced system approach. Re-ordering the unknowns with the permutation matrix P according to a red-black coloring ofthe nodes we get the following linear systemPAP TPx = � DR GGT DB � � xRxB � = � fRfB � = Pfwhere DR and DB are diagonal and G is a well structured sparse matrix with 5 non-zero diagonals if n is even and 4 non-zero diagonals if n is odd. When scaled, the Schurcomplement of this system gives the reduced system Cy = g of order n2=2 for even n andof order (n2 � 1)=2 for odd n with C = I � HTH. The reduced system is now solved bythe classical conjugate gradient. Once y is found, the solution x can easily be retrievedfrom y. The reduced matrix C has nine non-zero diagonals in the case of odd n. Themain part of the algorithm, solving the reduced system, is implemented as described in thefollowing section. The pre- and post- operations that are necessary to generate the reducedsystem and retrieve the solution of the original system are completely parallel and can beimplemented with only few synchronization points.4 Explicit parallel implementation on Cedar4.1 Implementation structureThe algorithmwas implemented for an arbitrary number k of clusters by splitting the matrixand the vectors as shown below (note that the pi must be chosen slightly larger as shownhere to compute Aipi), and performing the operations involving Ai, xi, bi, pi, qi and rion cluster i, i = 1; :::; k. Not all of these operations are, however, independent from theAA1A2A3 xx1x2x3 bb1b2b3 pp1p2p3 qq1q2q3 rr1r2r3results obtained on the other clusters. For the computation of the dotproducts � and
new,the partial results �i and
i have to be accumulated. For the evaluation of the matrix-vectorproduct Aipi n elements of pi+1 and/or pi�1 which are calculated in cluster i+ 1 and/ori� 1 are required. For the exchange of those elements, a work array w of length 2n(k � 1)is created in global memory (GM). The original matrix, right hand side and the solution,as well as the variables
i, �i, i = 1; :::; k, the synchronization variables and w are in globalmemory. Ai, xi, bi, pi, qi, ri, �, �,
,
new and � are created in cluster memory usingdynamic allocation. The contents of A and b are copied to Ai and bi in the beginning ofthe subprogram and the contents of xi to x before returning to the calling program. Thenew iteration loop as implemented on k clusters (here k = 3) is of the form (? denotes5

synchronization points):Task 1::q1 A1p1�1 p1Tq1?� �1 + �2 + �3�
�x1 x1 + �p1r1 r1 � �q1
1 r1Tr1?
new
1 +
2 +
3�
new

newp1 r1 + �p1?exchange part of p1::
Task 2::q2 A2p2�2 p2Tq2?� �1 + �2 + �3�
�x2 x2 + �p2r2 r2 � �q2
2 r2Tr2?
new
1 +
2 +
3�
new

newp2 r2 + �p2?exchange part of p2::

Task 3::q3 A3p3�3 p3Tq3?� �1 + �2 + �3�
�x3 x3 + �p3r3 r3 � �q3
3 r3Tr3?
new
1 +
2 +
3�
new

newp3 r3 + �p3?exchange part of p3::The synchronization for the dotproducts was implemented by using the routine ifetch and add(which adds an integer to a global integer) and a wait-routine. Every cluster after having�nished their part of the dotproduct adds an integer to the global integer to signal thatthey are �nished writing and when all parts of the dotproduct are computed and the globalinteger equals the desired value, all tasks can read those values and accumulate the �naldotproduct. A second global integer is necessary to indicate when all tasks are done readingto prevent overwriting of the partial dotproducts before they have been read by all tasks.For the exchange of the overlapping elements of p, 2(k� 1) event variables and the routinesevwait, evclear and evpost were used.4.2 Numerical ResultsSeveral versions of the described algorithms were implemented on Cedar.The codes run are given in the following table.code descriptionCGM Cg, k clusters, all arrays in CMCGGM k-cluster code, matrix in GM, other arrays in CMRSCG k clusters, all arrays in CMBDBICG k clusters, all arrays in CMThe following experiments were performed for the Laplace equation with Dirichlet bound-ary conditions on a n� n-grid. The timings given in the appendix are wall clock times (inseconds) and the best out of at least 3 runs for each system size being the only user of themachine.4.2.1 Convergence behavior of CG schemesThe reduced system approach is clearly faster than the classical conjugate gradient due to itssmaller operation count. Only about half as many iterations are necessary for convergence6

to the same accuracy (see Table 1), and the number of operations per iteration is reducedas the system is half the size of the original system. The number of iterations needed byBDBICG is clearly lower than those above. As expected, they increase if we use more than1 cluster. For large system sizes however, the number of iterations are only slightly varyingfor more than one cluster. The speedups in Figure 2 show that the multicluster versions arestill clearly faster than the one-cluster version.CG(G)M BDBICG RSCGn 1cl 2cl 3cl 4cl31 91 16 24 29 31 4563 180 32 42 47 50 8995 269 46 57 64 68 133127 358 61 74 80 85 177159 446 75 90 95 102 221191 534 88 107 113 118 265223 623 101 123 131 135 308255 711 114 140 148 151 352287 799 126 157 165 164 395319 887 139 173 182 179 438351 975 152 190 198 194 481Table 1: Number of iterations4.2.2 Performance behaviorThe performance (in M
ops) of RSCG and BDBICG is in general worse than the per-formance of CGM due to a larger overhead, caused by the less e�cient generation of thereduced system or the preconditioning step and in the case of RSCG additionally the largersynchronization overhead. For large system sizes, the performance of RSCG and BDBICGis approximately 5*k M
ops where k is the number of clusters. For small system sizes, theperformance is clearly lower and increases with increasing system sizes for BDBICG (whichrequires less synchronization due to its faster convergence) faster than for RSCG.4.2.3 In
uence of memory use on performanceThe number of data elements in cluster memory per iteration is 7n2 data elements forCGM and 4n2 data elements for CGGM. In the following table the maximal n is given forwhich these data elements theoretically still �t in cache where CS is the cache size (here:CS = m � 64K for m clusters), i.e. nmax =pCS=7 or nmax =pCS=4 respectively.Theoretical and observed performance peaksnumber of clusters theoretical observed theoretical observedfor 7n2 for 7n2 for 4n2 for 4n21 96 63 128 952 136 127 181 1593 167 159 221 1914 193 191 256 223The observed peaks for CGM (7n2 data elements per iteration) and CGGM (4n2 dataelements per iteration) are slightly below the theoretical peaks which is due to the fact thatthe cache is not optimal (see �gures) and the experimental increment for n is 32.7

0 1 2 3024 Number of clusters
Speedup

114 140 148 151BDBICGCGMRSCGCGGM
Figure 2: Speedups for Preconditioned CG

0 50 100 150 200 250 300 n050100sec. 1 cluster4 clustersCGGM CGM
CGMRSCGRSCGBDBICGBDBICGFigure 3: Times for Preconditioned CG on 1 and 4 clusters8

50 100 150 200 250 300 350 n510152025
M
ops CGMCGGM 4 cl3 cl2 cl1 clFigure 4: M
op rates for CGM and CGGM on Cedar5 Automatic compilation for CedarThe work reported in this section is part of the Cedar Fortran Compiler project [EHJP90].The auto-parallelizer component is built upon the Kuck & Associates, Inc. proprietaryFortran restructurer Kap [Kuc88][HMD+86]. In our �rst project phase we were mainlyconcerned with applying traditional compiler techniques and measuring their e�ectivenesson Cedar. This corresponds roughly to the scheme described in section 5.2.1. Currentlyour main interest is in developing data distribution schemes for better exploiting Cedar'scluster memories and in re�ning the compilation techniques using a broad spectrum of testapplications. The Conjugate Gradient algorithm is an important part of our benchmarksuite. It showed us upper limits of the achievable performance and gave much insight in theCedar system's intricacies.5.1 Recognition of parallelism for automatic compilationThe CG loop structure consists of a sequence of small kernels whose independent iterationscan be recognized by simple data dependence tests. The only non-trivial parallelizableconstructs to recognize are the dotproduct kernels. Their pattern, and the appropriatetransformation, are well known, though. Hence, the recognition of parallelism in the CGis a straightforward process. Similar is true for the automated generation of a parallelimplementation, provided we apply `traditional' techniques. Each kernel can be turned intoa parallel loop, spreading the iterations across processors.A much less understood area in parallelizing compilation is entered once we attemptto partition data and distribute them to di�erent processor or processor clusters. Thereare only few known approaches, most of which include user assistance for the partitioningprocess [], or tackle the problem at a theoretical end, not yet proven useful in practice[GJG88]. Our approach here shall be to �nd heuristics that deal with signi�cant programpatterns.The regular computational structure of the CG allows us to divide the loop index spacesinto 4 chunks and then copying to cluster memory read-only data and data that will be readfrom the same partition it is written to. In the main part of the CG algorithm this accesspattern applies for all but one arrays. 9

A more advanced technique would recognize the data volume that needs to be exchangedat runtime between clusters, thus, distributing the remaining array. Still, this recognitioncan be easy for the CG, since the volumes are simple-to-describe regions of linear dataspaces.Distributing the dotproduct kernels is slightly more complex. A dotproduct can betransformed so it accumulates partial sums within each cluster, followed by a synchronizedglobal sum of these parts.5.2 Schemes for automated parallel implementation on Cedar5.2.1 A shared-memory oriented transformationWe have described the process of recognizing and implementing parallelism in CG, usingtraditional techniques, a simple one. The Cedar restructurer transforms all kernels of Figure5 into Cedar Fortran as in the following 'daxpy' example.double precision a(n), b(n), c double precision a(n), b(n), cdo i=1,n global a,b,ca(i) = a(i) + c* b(i) --> sdoall i=1,n,256enddo integer jcdoall j=i,i+255,32a(j:$32) = a(j:$32) + c * b(j:$32)end cdoallend sdoallThe compiler has decided to place the arrays a,b and the scalar c in global memory, sothey can be seen by all processors of the Cedar complex. The loop is �rst spread acrossall clusters, in chunks of 256 iterations. The clusters, in turn, spread the work across all 8processors, which execute the daxpy statement in a vector operation of length 32.There are a number of issues involved in this transformation process, such as choosingthe right chunk-size, making simpler transformations if `n' is small, not making an SDOALLif placing data globally causes performance loss elsewhere, etc. Also, in practice, this codelooks less readable. For example, it contains additional computation to deal with the casethat `n' is not a multiple of 256. A more detailed view of the compiler is given in [EHJP90].5.2.2 Applying data partitioning and distribution techniquesUsing the above scheme, Cedar is not yet fully exploited. There are only few variablesplaced in cluster memory, namely variables used but inside one sdoall iteration, in whichcase they are declared sdoall-local. In our example this holds for the cdoall loop index 'j'.In order to take fully advantage of the local memories, the main data structures shouldbe placed there. In section 5.1 we have introduced simple heuristics allowing the partitioningand data distribution in the CG algorithm. All arrays, except `p' were divided by the numberof clusters and the partitions are copied from global to cluster memory before the CG mainloop, as illustrated in Figure 6. Read-only data can be localized evidently. The compiler'smain task is to identify program phases that contain read-only access patterns. For the CGmain loop, 30% data references are read-only. Read-write data can also be localized if readsgo to the same data partition as writes, i.e. there is a `simple index function' such that nocross-cluster dependencies arise. This holds for 20% of the data references. The compiler'stask is also to judge whether copy operations, for moving the data from global to clustermemory and back, can be paid o� by the number of local accesses within the candidateprogram phases. 10

preamble

CG main loop

converged?

Y

N

stop

dotproduct global sum

dotproduct global sum

wait for ’p’ to be
written by all clusters

1

3

kernel 1

kernel 2

kernel 3

kernel 4

kernel 5Figure 5: The structure of the CG computationWe are currently implementing this scheme in the compiler. The performance datapresented in Figure 7 result from a manually applied version of the techniques.5.3 Performance resultsFigure 7 shows speedups we measured for the shared-memory oriented (solid lines) and thedata-partitioning compilation scheme (dashed lines). Data sizes are 255 by 255 and 63 by63, respectively. Speedup one is measured as the program performance on one cluster usingcluster memory. Thus, `speedup' can be looked at as a measure for what we gain whengoing from a traditional shared-memory architecture of type Alliant FX/4 �, to a Cedar typemachine.We show two sets of measurements which actually correspond to two di�erent Cedarcon�gurations. Both con�gurations have 16 processors. However, the global memory size is16 MB in con�guration 1 and 32 MB in con�guration 2. The raw global memory bandwidthis proportional to its size.The measurements represent best timings of the CG-main-loop iterations in Figure 5.Our measurements showed that only about 10% of the iterations are signi�cantly slowerthan the best timings. This rate can go up if computing resources are used by OS serverprocesses or if they are shared with other programs.We can characterize Figure 7, con�guration 1 as follows:The `global-memory strategy' works well until the memory bandwidth is reached.On two clusters we get twice the speed of one cluster. On three and four clusters theglobal memory becomes the bottleneck. The resulting best speedup is about 2.3.The data-partitioning scheme achieves near-ideal speedup up to 4 clusters Thisscheme successfully avoids the memory saturation. We observe a near-linear behavior,close to the one for the manually optimized program.�the �nal Cedar will have 8 processors per cluster, thus, compare to an FX/811

ACCESS PATTERNS ITERATION SPACE
1 N

read-only

DO i=1,N
 ... = a(i+m)
ENDDO
DO i=1,N
 ... = a(i)
ENDDO

partition
 1
 2
 3
 4

copied to
cluster
memory

cluster 1 2 3 4

read/write ’simple index’

DO i=1,N
 b(i) = ...
ENDDO
DO i=1,n
 ... = b(i)
ENDDO

1 2 3 4

copied to
cluster
memory

read-write other

DO i=1,N
 p(i) = ...
ENDDO
DO i=1,N
 ... = P(i+k)
ENDDO

1 2 3 4

no partitioning
data remains in
global memoryFigure 6: Data partitioning and localization

speedup

4

3

2

1

0

1 cluster 2 clusters 3 clusters 4 clusters

data size 255x255

data size 63x63

global-memory data placement

data distribution

Configuration 1

speedup

4

3

2

1

0

1 cluster 2 clusters 3 clusters 4 clusters

data size 255x255

data size 63x63

global-memory data placement

data distribution

Configuration 2

Figure 7: Compiler performance characteristics12

Note that still 50% data references go to global memory. This is apparently low enoughto keep the memory contention at a low level. In addition, we bene�t from the factthat accesses to global and local data can overlap, because Cedar has separate datapaths to shared and cluster memory.Small data sets cause a signi�cant deterioration There are two main e�ects respon-sible. First, the kernel execution times go down to a few milliseconds, where the loopcontrol overhead becomes a factor. Second, all data �ts in one cluster cache, mak-ing the one-cluster/cluster-memory execution relatively fast. Note that the 1-cluster`speedup' in Figure 7 is at 0.8, demonstrating the speed di�erence of global vs cachememory. The �rst e�ect goes along with the number of synchronization points re-quired. By fusing the kernels, as described above, the e�ect was reduced somewhat.The `cache e�ect' was observed in the manual CG implementation, already. It is re-sponsible for the better that linear speedup for data sizes not �tting in one clustercache. For small data sets this additional bonus going multi-cluster escapes.Now, let's look at con�guration 2. We said before, the global memory bandwidth hasa maximum twice as high as con�guration 1. We might expect the saturating curves fromcon�guration 1 to continue their ideal behavior up to 4 clusters. That this is not the casereveals an interesting aspect of the global memory system: The shu�e exchange network,connecting global memory and processors, is connected in an ideal way in con�guration 1.The speedups are bound by the memory bandwidth only. In Con�guration 2 the networkwas changed in preparation for Cedar's �nal 32 processor/64MB global memory shape. Inthe measured intermediate state it represents a considerable bottleneck. The speedup curvesare less distinctly `linear then saturating'. They are
attened more gradually.Figure 7 exempli�es the impact of the shu�e-exchange network con�guration on thesystem performance. Although we think this is the most interesting lesson to learn, thereader might be interested in the expected behavior of the �nal Cedar con�guration. Theglobal memory will be able to feed the processors at a speed close to the 2-cluster point incon�guration 1. The network will have twice as many global memory paths per processoras in con�guration 2. Thus, we can expect a better speedup behavior than any of thecon�gurations measured in Figure 7.6 Automatic vs manual parallelizationHere we compare the explicit parallel implementation of the standard Conjugate Gradientalgorithm with the code automatically generated by the Cedar restructurer. We do notcontrast the compiler techniques with the transformations made for the preconditioned CGand the reduced system approach. These variants need signi�cant changes at the algorithmiclevel, the automation of which is not a current goal of the Cedar restructurer. The issueof recognizing an algorithmic structure at a high level and replacing it by a better codemay belong in the area of `problem solving environments.' Of course, one can consider theintegration of compilers in such environments a desirable future goal.Tables 2 and 3 give the times for one iteration step obtained for several versions of CGfor a large and a small linear system. Comp 1cl shows the execution time of the programoptimized for 1 cluster. Comp shared shows the times for the automatically compiled multi-cluster version using the `shared-memory' scheme, whereas Comp dist shows the `distributed-memory' compilation results. The next two columns show the timings of the explicit parallelimplementations. CGM has all data in cluster memory whereas CGGM also exploits theglobal memory. All measures correspond to Cedar con�guration 2 of Figure 7.We can summarize the tables as follows.13

� for large data sizes automatic compilation achieves 60% { 90% of the manually gainedperformance of CGM, depending on the compilation scheme.� For small data sizes the manual version performs signi�cantly better. This is mainlydue to the lower overhead of the synchronization constructs chosen when manuallyprogramming.� Using knowlege of the architecture and the algorithm can yield an additional per-formance gain of the manual version. In CGGM, storing some of the data in globalmemory led to a better use of the caches and resulted in an additional speedup of 20%for the 255 data set.� On one cluster, the Comp columns are faster. This is partly caused by the fact thatthe kernels of CGM and CGGM were compiled by the Alliant FX/8 Fortran compilerwhich uses a di�erent memory mapping strategy than the Cedar Fortran compiler.Besides, remember that Comp shared accesses all and Comp dist 50% of the data inglobal memory, which has a higher bandwidth than one cluster memory.no. clusters Comp 1cl Comp shared Comp dist CGM CGGM4 85 53 47 383 92 65 66 562 107 93 108 1021 192 168 183 226 226Table 2: Times in milliseconds for one iterationstep for n=255no. clusters Comp 1cl Comp shared Comp dist CGM CGGM4 6.6 3.9 2.3 2.73 7.1 4.8 2.9 3.22 7.9 5.7 4.0 4.41 8.6 11.6 9.8 7.2 8.0Table 3: Times in milliseconds for one iterationstep for n=636.1 `Shared-memory oriented' compilationFor the standard CG the manual version is about a factor 2 faster than the automatic code,using the `global-memory scheme'. The main reason for this was identi�ed as the globalmemory bandwidth which is not su�cient to feed all Cedar processors at full speed. Sincewe had a near-linear increase in performance going from one to two clusters, we could expectthis ideal behavior to continue up to 4 clusters, given a two times higher bandwidth.One may consider the inverse of the global memory speed as a measure for Cedar's`distributed system degree': with a high bandwidth the bene�t from cluster memories issmall, placing Cedar close to a traditional supercomputer architecture, such as Alliant FX/8or Cray YMP. With a small bandwidth, the cluster memories become the main data carriers,turning the architecture into a distributed memory multiprocessor. Using this terminology,we can attribute the performance limitation, when compiling in a shared-memory orientedway, to Cedar's distributed system degree.This thought is reinforced when reviewing the parallelization techniques applied in bothcases. The manually applied data distribution techniques are opposed to the traditional14

shared-memory oriented compilation scheme, which was, as we described, our �rst restruc-turing approach. The Comp dist columns represent the compiler performance after `teach-ing' it about distributed architectures. Still, there are di�erences between the manual andautomatic schemes, which we will discuss next.6.2 `Distributed-memory compilation'The parallelism model of the hand-optimized CG, shown in section 4.1, envisions a numberof independent tasks, each running on a cluster. They synchronize explicitly when cross-cluster communication is needed. The compilation scheme, on the other hand, produces asingle stream of loops, syntactically close to the original sequential program. These loops,then, are executed employing all processors. They all terminate with an implicit barriersynchronizing the whole Cedar complex. Therefore, additional explicit synchronization isnot necessary. Communication { for example the collection of partial dotproduct sums {can be done between the loops.If we look one step further into the implementation we �nd a scheme even closer to themanual programming. Spread loops (SDOALLS) are implemented using a fast microtaskingscheme, starting `helper tasks' on all clusters at the program start, and using a fast `awake'and `sleep' mechanism to employ them as the program runs. These helper tasks are directlycomparable to the explicit tasks used in the manual CG. The manually inserted synchro-nizations correspond to the `sleep' points at the loop ends. It is to be expected that themanual choice of synchronization functions is smarter than the generic barriers terminatingall loops. As mentioned earlier, we could remove some of this overhead by fusing loops,thus removing the barrier completely. This is possible at points 1 and 3 in Figure 5 whichcorrespond to the points that needed no synchronization in the manually translated code.7 ConclusionsThe Conjugate Gradient experiments have given us much insight into the intricacies andthe behavior of the Cedar architecture. They have given answers to many Cedar questionsfrom the angle of an important application example. The following paragraphs re
ect theoutcome of this research we think is most signi�cant.CG performance on Cedar The experiments presented show that for an importantclass of algorithms the Cedar architecture can be exploited very e�ciently. The resultingspeedups are remarkable. We could even demonstrate speedups of more than four, compar-ing one to four cluster runs. These could be obtained through an e�cient use of Cedar'smemory hierarchy.Cedar programming methodology An important goal of the Cedar Applicationresearch is to �nd an answer to the question `how do programs for Cedar-type architecturesdi�er from traditional parallel programs, and what are the design rules for these programs?'Programming has always had the
avor of an art which makes it hopeless to learn aboutthese issues without studying implementation details and warming up with many examples.Nevertheless, it seems appropriate to conclude with an abstract of what we experiencedwhen writing programs for the new Cedar machine.A large variety in available constructs and services to use, is a direct consequence ofthe highly structured Cedar architecture. For the programmer this means there are moredecisions to make, such as where to place data, what access mode to chose, what processors15

or clusters to employ, and how to coordinate all activities. This requires both, more planningof an algorithm and more tuning of the implementation.Perhaps, the major question is how to exploit the memory hierarchy. We have seenthat both methods can be appropriate, distributing data onto clusters and accessing datafrom global memory. The latter may be applied when partitioning data results in a largecommunication overhead or for balancing the load of memories. To keep the cost of globalaccesses reasonable one must attempt to use cluster memory simultaneously and prefetchglobal data in block mode. From the programming language point of view the memorystructure often puzzles the programmer. One thing to learn is to abandon the premise thatdata is as accessible as its identi�er by the language scoping rules.Cedar's cluster structure might be considered a side e�ect of the memory hierarchy.`Going multi-cluster' has a price one needs to be aware of. Spreading loops, communicating,and synchronizing across clusters can be considerably slower than within clusters. Pagingacross clusters can even absorb all program performance. Again, we need a better knowledgeof the internal behavior than in traditional `
at' machines.Automatic vs manual parallelization Explicit manual parallelization is faster.This is to be expected. Partly this is because manual programming can adapt quicker tonew technologies. The hand-optimized CG is tailored to the Cedar architecture, whereas thecompiler technology is only about to learn how to automate these transformations. The cur-rently available compiler achieves approximately 50% of the manually gained performance.However, we have also shown a compilation scheme, we are about to implement, yielding aperformance close to the manually gained one.References[CGM85] P. Concus, G. Golub, and G. Meurant. Block preconditioning for the conjugategradient method. SIAM J. Sci. Stat. Comput., 6:220{252, 1985.[EHJP90] R. Eigenmann, J. Hoe
inger, G. Jaxon, and D. Padua. Cedar Fortran and itsCompiler. In CONPAR 90, 1990.[Emr85] Perry A. Emrath. Xylem: An Operating System for the Cedar Multiprocessor.IEEE Software, 2(4):30{37, July 1985.[GJG88] Kyle Gallivan, William Jalby, and Dennis Gannon. On the problem of optimiz-ing data transfers for complex memory systems. Proc. of 1988 Int'l. Conf. onSupercomputing, St. Malo, France, pages 238{253, July 1988.[GPHL90] Mark D. Guzzi, David A. Padua, Jay P. Hoe
inger, and Duncan H. Lawrie.Cedar Fortran and other Vector and Parallel Fortran dialects. Journal of Su-percomputing, pages 37{62, March 1990.[HMD+86] Christopher Huson, Thomas Macke, James R.B. Davies, Michael J. Wolfe, andBruce Leasure. The KAP/205: An Advanced Source-to-Source Vectorizer forthe Cyber 205 Supercomputer. In Kai Hwang, Steven M. Jacobs, and Earl E.Swartzlander, editors, Proceedings of the 1986 International Conference on Par-allel Processing, pages 827{832, 1730 Massachusetts Avenue, N.W., WashingtonD.C, 20036-1903, 1986. IEEE Computer Society Press.[Kuc88] Kuck&Associates, Inc., Champaign, IL 61820. KAP User's Guide, 1988.[Meu84] G. Meurant. The block preconditioned conjugate gradient algorithm on vectorcomputers. BIT, 24:623{633, 1984.16

[MS88] U. Meier and A. Sameh. The behavior of conjugate gradient algorithms ona multivector processor with a hierarchical memory. J. Comp. App. Math.,24:13{32, 1988.[Saa85] Y. Saad. Practical use of polynomial preconditionings for the conjugate gradientmethod. SIAM J. Sci. Stat. Comput, 6:865{881, 1985.[vdV86] H. van der Vorst. The performance of fortran implementations for precondi-tioned conjugate gradients on vector computers. Parallel Computing, 3:49{58,1986.

17

