
64 CHAPTER 4. RELATED ISSUESpreconditioner. Since iterative methods are typically used on sparse matrices, we willreview here a number of sparse storage formats. Often, the storage scheme used arisesnaturally from the speci�c application problem.In this section we will review some of the more popular sparse matrix formats thatare used in numerical software packages such as ITPACK [140] and NSPCG [165]. Aftersurveying the various formats, we demonstrate how the matrix-vector product and anincomplete factorization solve are formulated using two of the sparse matrix formats.4.3.1 Survey of Sparse Matrix Storage FormatsIf the coe�cient matrix A is sparse, large-scale linear systems of the form Ax = bcan be most e�ciently solved if the zero elements of A are not stored. Sparse storageschemes allocate contiguous storage in memory for the nonzero elements of the matrix,and perhaps a limited number of zeros. This, of course, requires a scheme for knowingwhere the elements �t into the full matrix.There are many methods for storing the data (see for instance Saad [186] andEijkhout [87]). Here we will discuss Compressed Row and Column Storage, BlockCompressed Row Storage, Diagonal Storage, Jagged Diagonal Storage, and SkylineStorage.Compressed Row Storage (CRS)The Compressed Row and Column (in the next section) Storage formats are the mostgeneral: they make absolutely no assumptions about the sparsity structure of thematrix, and they don't store any unnecessary elements. On the other hand, they arenot very e�cient, needing an indirect addressing step for every single scalar operationin a matrix-vector product or preconditioner solve.The Compressed Row Storage (CRS) format puts the subsequent nonzeros of thematrix rows in contiguous memory locations. Assuming we have a nonsymmetricsparse matrix A, we create 3 vectors: one for 
oating-point numbers (val), and theother two for integers (col ind, row ptr). The val vector stores the values of thenonzero elements of the matrix A, as they are traversed in a row-wise fashion. Thecol ind vector stores the column indexes of the elements in the val vector. That is, ifval(k) = ai;j then col ind(k) = j. The row ptr vector stores the locations in the valvector that start a row, that is, if val(k) = ai;j then row ptr(i) � k < row ptr(i+ 1).By convention, we de�ne row ptr(n+ 1) = nnz + 1, where nnz is the number ofnonzeros in the matrix A. The storage savings for this approach is signi�cant. Insteadof storing n2 elements, we need only 2nnz + n+ 1 storage locations.As an example, consider the nonsymmetric matrix A de�ned byA = 0BBBBBB@ 10 0 0 0 �2 03 9 0 0 0 30 7 8 7 0 03 0 8 7 5 00 8 0 9 9 130 4 0 0 2 �1 1CCCCCCA : (4.1)The CRS format for this matrix is then speci�ed by the arrays fval, col ind,row ptrg given below



4.3. DATA STRUCTURES 65val 10 -2 3 9 3 7 8 7 3 � � � 9 13 4 2 -1col ind 1 5 1 2 6 2 3 4 1 � � � 5 6 2 5 6row ptr 1 3 6 9 13 17 20 .If the matrixA is symmetric, we need only store the upper (or lower) triangular portionof the matrix. The trade-o� is a more complicated algorithmwith a somewhat di�erentpattern of data access.Compressed Column Storage (CCS)Analogous to Compressed Row Storage there is Compressed Column Storage (CCS),which is also called the Harwell-Boeing sparse matrix format [78]. The CCS formatis identical to the CRS format except that the columns of A are stored (traversed)instead of the rows. In other words, the CCS format is the CRS format for AT .The CCS format is speci�ed by the 3 arrays fval, row ind, col ptrg, whererow ind stores the row indices of each nonzero, and col ptr stores the index of theelements in val which start a column of A. The CCS format for the matrix A in (4.1)is given by val 10 3 3 9 7 8 4 8 8 � � � 9 2 3 13 -1row ind 1 2 4 2 3 5 6 3 4 � � � 5 6 2 5 6col ptr 1 4 8 10 13 17 20 .Block Compressed Row Storage (BCRS)If the sparse matrix A is comprised of square dense blocks of nonzeros in some regularpattern, we can modify the CRS (or CCS) format to exploit such block patterns. Blockmatrices typically arise from the discretization of partial di�erential equations in whichthere are several degrees of freedom associated with a grid point. We then partitionthe matrix in small blocks with a size equal to the number of degrees of freedom, andtreat each block as a dense matrix, even though it may have some zeros.If nb is the dimension of each block and nnzb is the number of nonzero blocks inthe n � n matrix A, then the total storage needed is nnz = nnzb � n2b . The blockdimension nd of A is then de�ned by nd = n=nb.Similar to the CRS format, we require 3 arrays for the BCRS format: a rectangulararray for 
oating-point numbers ( val(1 : nnzb,1 : nb,1 : nb)) which stores thenonzero blocks in (block) row-wise fashion, an integer array (col ind(1 : nnzb)) whichstores the actual column indices in the original matrix A of the (1; 1) elements of thenonzero blocks, and a pointer array (row blk(1 : nd + 1)) whose entries point to thebeginning of each block row in val(:,:,:) and col ind(:). The savings in storagelocations and reduction in indirect addressing for BCRS over CRS can be signi�cantfor matrices with a large nb.Compressed Diagonal Storage (CDS)If the matrix A is banded with bandwidth that is fairly constant from row to row,then it is worthwhile to take advantage of this structure in the storage scheme bystoring subdiagonals of the matrix in consecutive locations. Not only can we eliminate



66 CHAPTER 4. RELATED ISSUESthe vector identifying the column and row, we can pack the nonzero elements in sucha way as to make the matrix-vector product more e�cient. This storage schemeis particularly useful if the matrix arises from a �nite element or �nite di�erencediscretization on a tensor product grid.We say that the matrix A = (ai;j) is banded if there are nonnegative constants p, q,called the left and right halfbandwidth, such that ai;j 6= 0 only if i�p � j � i+q. In thiscase, we can allocate for the matrix A an array val(1:n,-p:q). The declaration withreversed dimensions (-p:q,n) corresponds to the LINPACK band format [73], whichunlike CDS, does not allow for an e�ciently vectorizable matrix-vector multiplicationif p+ q is small.Usually, band formats involve storing some zeros. The CDS format may evencontain some array elements that do not correspond to matrix elements at all. Considerthe nonsymmetric matrix A de�ned byA = 0BBBBBB@ 10 �3 0 0 0 03 9 6 0 0 00 7 8 7 0 00 0 8 7 5 00 0 0 9 9 130 0 0 0 2 �1 1CCCCCCA : (4.2)Using the CDS format, we store this matrix A in an array of dimension (6,-1:1)using the mappingval(i; j) = ai;i+j: (4.3)Hence, the rows of the val(:,:) array areval(:,-1) 0 3 7 8 9 2val(:, 0) 10 9 8 7 9 -1val(:,+1) -3 6 7 5 13 0 .Notice the two zeros corresponding to non-existing matrix elements.A generalization of the CDS format more suitable for manipulating general sparsematrices on vector supercomputers is discussed by Melhem in [154]. This variant ofCDS uses a stripe data structure to store the matrix A. This structure is more e�cientin storage in the case of varying bandwidth, but it makes the matrix-vector productslightly more expensive, as it involves a gather operation.As de�ned in [154], a stripe in the n � n matrix A is a set of positions S =f(i; �(i)); i 2 I � Ing, where In = f1; : : : ; ng and � is a strictly increasing function.Speci�cally, if (i; �(i)) and (j; �(j)) are in S, theni < j ! �(i) < �(j):When computing the matrix-vector product y = Ax using stripes, each (i; �k(i)) ele-ment of A in stripe Sk is multiplied with both xi and x�k(i) and these products areaccumulated in y�k(i) and yi, respectively. For the nonsymmetric matrix A de�ned byA = 0BBBBBB@ 10 �3 0 1 0 00 9 6 0 �2 03 0 8 7 0 00 6 0 7 5 40 0 0 0 9 130 0 0 0 5 �1 1CCCCCCA ; (4.4)



4.3. DATA STRUCTURES 67the 4 stripes of the matrix A stored in the rows of the val(:,:) array would beval(:,-1) 0 0 3 6 0 5val(:, 0) 10 9 8 7 9 -1val(:,+1) 0 -3 6 7 5 13val(:,+2) 0 1 -2 0 4 0 .Jagged Diagonal Storage (JDS)The Jagged Diagonal Storage format can be useful for the implementation of iterativemethods on parallel and vector processors (see Saad [185]). Like the CompressedDiagonal format, it gives a vector length essentially of the size of the matrix. It ismore space-e�cient than CDS at the cost of a gather/scatter operation.A simpli�ed form of JDS, called ITPACK storage or Purdue storage, can be describedas follows. In the matrix from (4.4) all elements are shifted left:0BBBBBB@ 10 �3 0 1 0 00 9 6 0 �2 03 0 8 7 0 00 6 0 7 5 40 0 0 0 9 130 0 0 0 5 �1 1CCCCCCA �! 0BBBBBB@ 10 �3 19 6 �23 8 76 7 5 49 135 �1 1CCCCCCAafter which the columns are stored consecutively. All rows are padded with zeros onthe right to give them equal length. Corresponding to the array of matrix elementsval(:,:), an array of column indices, col ind(:,:) is also stored:val(:; 1) 10 9 3 6 9 5val(:; 2) �3 6 8 7 13 �1val(:; 3) 1 �2 7 5 0 0val(:; 4) 0 0 0 4 0 0 ;col ind(:; 1) 1 2 1 2 5 5col ind(:; 2) 2 3 3 4 6 6col ind(:; 3) 4 5 4 5 0 0col ind(:; 4) 0 0 0 6 0 0 :It is clear that the padding zeros in this structure may be a disadvantage, especiallyif the bandwidth of the matrix varies strongly. Therefore, in the CRS format, wereorder the rows of the matrix decreasingly according to the number of nonzeros perrow. The compressed and permuted diagonals are then stored in a linear array. Thenew data structure is called jagged diagonals.The number of jagged diagonals is equal to the number of nonzeros in the �rstrow, i.e., the largest number of nonzeros in any row of A. The data structure torepresent the n � n matrix A therefore consists of a permutation array (perm(1:n))which reorders the rows, a 
oating-point array (jdiag(:)) containing the jaggeddiagonals in succession, an integer array (col ind(:)) containing the correspondingcolumn indices, and �nally a pointer array (jd ptr(:)) whose elements point to the



68 CHAPTER 4. RELATED ISSUESbeginning of each jagged diagonal. The advantages of JDS for matrix multiplicationsare discussed by Saad in [185].The JDS format for the above matrix A in using the linear arrays fperm, jdiag,col ind, jd ptrg is given below (jagged diagonals are separated by semicolons)jdiag 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;col ind 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;perm 4 2 3 1 5 6 jd ptr 1 7 13 17 .Skyline Storage (SKS)The �nal storage scheme we consider is for skyline matrices, which are also calledvariable band or pro�le matrices (see Du�, Erisman and Reid [80]). It is mostly ofimportance in direct solution methods, but it can be used for handling the diagonalblocks in block matrix factorization methods. A major advantage of solving linearsystems having skyline coe�cient matrices is that when pivoting is not necessary, theskyline structure is preserved during Gaussian elimination. If the matrix is symmetric,we only store its lower triangular part. A straightforward approach in storing theelements of a skyline matrix is to place all the rows (in order) into a 
oating-pointarray (val(:)), and then keep an integer array (row ptr(:)) whose elements point tothe beginning of each row. The column indices of the nonzeros stored in val(:) areeasily derived and are not stored.For a nonsymmetric skyline matrix such as the one illustrated in Figure 4.1, we storethe lower triangular elements in SKS format, and store the upper triangular elementsin a column-oriented SKS format (transpose stored in row-wise SKS format). Thesetwo separated substructures can be linked in a variety of ways. One approach, discussedby Saad in [186], is to store each row of the lower triangular part and each columnof the upper triangular part contiguously into the 
oating-point array (val(:)). Anadditional pointer is then needed to determine where the diagonal elements, whichseparate the lower triangular elements from the upper triangular elements, are located.4.3.2 Matrix vector productsIn many of the iterative methods discussed earlier, both the product of a matrix andthat of its transpose times a vector are needed, that is, given an input vector x wewant to compute productsy = Ax and y = ATx:We will present these algorithms for two of the storage formats from x4.3: CRS andCDS.CRS Matrix-Vector ProductThe matrix vector product y = Ax using CRS format can be expressed in the usualway: yi =Xj ai;jxj;


