64 CHAPTER 4. RELATED ISSUES

preconditioner. Since iterative methods are typically used on sparse matrices, we will
review here a number of sparse storage formats. Often, the storage scheme used arises
naturally from the specific application problem.

In this section we will review some of the more popular sparse matrix formats that
are used in numerical software packages such as ITPACK [140] and NSPCG [165]. After
surveying the various formats, we demonstrate how the matrix-vector product and an
incomplete factorization solve are formulated using two of the sparse matrix formats.

4.3.1 Survey of Sparse Matrix Storage Formats

If the coefficient matrix A is sparse, large-scale linear systems of the form Az = b
can be most efficiently solved if the zero elements of A are not stored. Sparse storage
schemes allocate contiguous storage in memory for the nonzero elements of the matrix,
and perhaps a limited number of zeros. This, of course, requires a scheme for knowing
where the elements fit into the full matrix.

There are many methods for storing the data (see for instance Saad [186] and
Eijkhout [87]). Here we will discuss Compressed Row and Column Storage, Block
Compressed Row Storage, Diagonal Storage, Jagged Diagonal Storage, and Skyline
Storage.

Compressed Row Storage (CRS)

The Compressed Row and Column (in the next section) Storage formats are the most
general: they make absolutely no assumptions about the sparsity structure of the
matrix, and they don’t store any unnecessary elements. On the other hand, they are
not very efficient, needing an indirect addressing step for every single scalar operation
in a matrix-vector product or preconditioner solve.

The Compressed Row Storage (CRS) format puts the subsequent nonzeros of the
matrix rows in contiguous memory locations. Assuming we have a nonsymmetric
sparse matrix A, we create 3 vectors: one for floating-point numbers (val), and the
other two for integers (col_ind, row ptr). The val vector stores the values of the
nonzero elements of the matrix A, as they are traversed in a row-wise fashion. The
col_ind vector stores the column indexes of the elements in the val vector. That is, if
val(k) = a@; ; then col_ind(k) = j. The row_ptr vector stores the locations in the val
vector that start a row, that is, if val(k) = a; ; then rowptr(i) < k < rowptr(i+ 1).
By convention, we define rowptr(n+1) = nnz + 1, where nnz is the number of
nonzeros in the matrix A. The storage savings for this approach is significant. Instead
of storing n? elements, we need only 2nnz + n + 1 storage locations.

As an example, consider the nonsymmetric matrix A defined by

10 0 0 0 =2 0
39 00 O 3
078 7 O 0

A= 3 0 8 7 b 0 (4.1)
08 0 9 9 13
0400 2 -1

The CRS format for this matrix is then specified by the arrays {val, col_ind,
row_ptr} given below

4.3. DATA STRUCTURES 65

val (10 [-2 (39|37 |87 |3---9]13|4]|2]-1
coldind | 1| 5|1 |2|6|2|3|4|1---5] 6|2|5| 6

|row_ptr|1|3|6|9|13|17|20|.

If the matrix A is symmetric, we need only store the upper (or lower) triangular portion
of the matrix. The trade-off is a more complicated algorithm with a somewhat different
pattern of data access.

Compressed Column Storage (CCS)

Analogous to Compressed Row Storage there is Compressed Column Storage (CCS),
which is also called the Harwell-Boeing sparse matrix format [78]. The CCS format
is identical to the CRS format except that the columns of A are stored (traversed)
instead of the rows. In other words, the CCS format is the CRS format for A7

The CCS format is specified by the 3 arrays {val, row_ind, col ptr}, where
row_ind stores the row indices of each nonzero, and col_ptr stores the index of the
elements in val which start a column of A. The CCS format for the matrix A4 in (4.1)
is given by

val ({10 |3 |39 |7 (8|4 |8|8---9|2|3|13]-1
row_ind 11214123563 |4---5]|6]2 5

[colptr [1[4[8]10[13]17]20].

Block Compressed Row Storage (BCRS)

If the sparse matrix A is comprised of square dense blocks of nonzeros in some regular
pattern, we can modify the CRS (or CCS) format to exploit such block patterns. Block
matrices typically arise from the discretization of partial differential equations in which
there are several degrees of freedom associated with a grid point. We then partition
the matrix in small blocks with a size equal to the number of degrees of freedom, and
treat each block as a dense matrix, even though it may have some zeros.

If np 1s the dimension of each block and nnzb is the number of nonzero blocks 1n
the n x n matrix A, then the total storage needed is nnz = nnzb x n?. The block
dimension ng4 of A is then defined by ng = n/ny.

Similar to the CRS format, we require 3 arrays for the BCRS format: a rectangular
array for floating-point numbers (val(l : nnzb,1 : ny,1 : np)) which stores the
nonzero blocks in (block) row-wise fashion, an integer array (col_ind (1 : nnzb)) which
stores the actual column indices in the original matrix A of the (1,1) elements of the
nonzero blocks, and a pointer array (row_blk(l :ng+ 1)) whose entries point to the
beginning of each block row in val(:,:,:) and col_ind(:). The savings in storage
locations and reduction in indirect addressing for BCRS over CRS can be significant
for matrices with a large ny.

Compressed Diagonal Storage (CDS)

If the matrix A is banded with bandwidth that is fairly constant from row to row,
then it is worthwhile to take advantage of this structure in the storage scheme by
storing subdiagonals of the matrix in consecutive locations. Not only can we eliminate

66 CHAPTER 4. RELATED ISSUES

the vector identifying the column and row, we can pack the nonzero elements in such
a way as to make the matrix-vector product more efficient. This storage scheme
i1s particularly useful if the matrix arises from a finite element or finite difference
discretization on a tensor product grid.

We say that the matrix A = (q; ;) is banded if there are nonnegative constants p, ¢,
called the left and right halfbandwidth, such that a; ; # 0 only if i—p < j < i4q. In this
case, we can allocate for the matrix A an array val(1:n,-p:q). The declaration with
reversed dimensions (-p:q,n) corresponds to the LINPACK band format [73], which
unlike CDS, does not allow for an efficiently vectorizable matrix-vector multiplication
if p+ q is small.

Usually, band formats involve storing some zeros. The CDS format may even
contain some array elements that do not correspond to matrix elements at all. Consider
the nonsymmetric matrix A defined by

10 =3 0 0 0 0
3 9 6 0 0 0
0 7T 8 7 0 0
A= 0 0 8 7 5 0 (4.2)
0 00 9 9 13
0 00 0 2 -1

Using the CDS format, we store this matrix A in an array of dimension (6,-1:1)
using the mapping

val(i, J) = U5 5+4j- (43)
Hence, the rows of the val(:,:) array are

val(:,-1) 0131718 9 2
val(:, 0) |10 |9 | &8 |7 91 -1
val(:,+1) | -3 |6 |7 |b5 | 13| 0O

Notice the two zeros corresponding to non-existing matrix elements.

A generalization of the CDS format more suitable for manipulating general sparse
matrices on vector supercomputers is discussed by Melhem in [154]. This variant of
CDS uses a stripe data structure to store the matrix A. This structure is more efficient
in storage in the case of varying bandwidth, but it makes the matrix-vector product
slightly more expensive, as it involves a gather operation.

As defined in [154], a stripe in the n x n matrix A is a set of positions S =
{(¢,0(d)); i€ I C I}, where I, = {1,...,n} and o is a strictly increasing function.
Specifically, if (¢, o(4)) and (j, o(j)) are in S, then

i<j—ood) <o(y).

When computing the matrix-vector product y = Az using stripes, each (i, 05(7)) ele-
ment of A in stripe Sy is multiplied with both z; and z,,(;; and these products are
accumulated in y,, (;y and y;, respectively. For the nonsymmetric matrix A defined by

10 =3 0 1 0 0
0 9 6 0 =2 0
3 087 0 O
A= 0 6 07 5 4 ’ (4.4)
0 0 0 0 9 13
0 0 0 0 5 -1

4.3. DATA STRUCTURES 67

the 4 stripes of the matrix A stored in the rows of the val(:,:) array would be

val(:,-1) 0] 0] 3|61]0 5
val(:, 0) | 10| 9| 8| 79| -1
val(:,+1) 0]-3] 675113
val(:,+2) 0 11-2(0 (4 0

Jagged Diagonal Storage (JDS)

The Jagged Diagonal Storage format can be useful for the implementation of iterative
methods on parallel and vector processors (see Saad [185]). Like the Compressed
Diagonal format, it gives a vector length essentially of the size of the matrix. It is
more space-efficient than CDS at the cost of a gather/scatter operation.

A simplified form of JDS, called ITPACK storage or Purdue storage, can be described
as follows. In the matrix from (4.4) all elements are shifted left:

10 =3 01 0 0 10 -3 1
0 96 0 —2 0 9 6 —2
3 087 0 0 3 8 7
O 607 5 4| | 6 7 5 4
0O 000 9 13 9 13
0O 000 5 —1 5 —1

after which the columns are stored consecutively. All rows are padded with zeros on
the right to give them equal length. Corresponding to the array of matrix elements
val(:,:), an array of column indices, col_ind(:,:) is also stored:

val(:,; 1) | 10| 9|3|6] 9| 5
val(;,2) | —3 618|713 -1
val(:, 3) 11 =275 0| 0OF
val(:,4) 0] 004 0
coliind(;, 1) [1|2|1|2|5]|5
colind(:,2) 2|3 |3|4|6|6
colind(;,3) [4|5|4|5|0]|0
colind(:,4) [0 |0|0|6|0|0

It is clear that the padding zeros in this structure may be a disadvantage, especially
if the bandwidth of the matrix varies strongly. Therefore, in the CRS format, we
reorder the rows of the matrix decreasingly according to the number of nonzeros per
row. The compressed and permuted diagonals are then stored in a linear array. The
new data structure is called jagged diagonals.

The number of jagged diagonals is equal to the number of nonzeros in the first
row, i.e., the largest number of nonzeros in any row of A. The data structure to
represent the n x n matrix A therefore consists of a permutation array (perm(i:n))
which reorders the rows, a floating-point array (jdiag(:)) containing the jagged
diagonals in succession, an integer array (col_ind(:)) containing the corresponding
column indices, and finally a pointer array (jd_ptr(:)) whose elements point to the

68 CHAPTER 4. RELATED ISSUES

beginning of each jagged diagonal. The advantages of JDS for matrix multiplications
are discussed by Saad in [185].

The JDS format for the above matrix A in using the linear arrays {perm, jdiag,
col_ind, jd_ptr} is given below (jagged diagonals are separated by semicolons)

jdiag [6 |9 | 3|10 |9 |5 | 7|68 |-3|13|-L;{H|-2|7]1;]|4;
colind |2 |2 |1 1155, 14133 2 6| 6;5| 5|4]4;]6;
|perm|4|2|3|1|5|6||jd_ptr|1|7|13|17|.

Skyline Storage (SKS)

The final storage scheme we consider is for skyline matrices, which are also called
variable band or profile matrices (see Duff, Erisman and Reid [80]). Tt is mostly of
importance in direct solution methods, but it can be used for handling the diagonal
blocks in block matrix factorization methods. A major advantage of solving linear
systems having skyline coefficient matrices is that when pivoting is not necessary, the
skyline structure is preserved during Gaussian elimination. If the matrix is symmetric,
we only store its lower triangular part. A straightforward approach in storing the
elements of a skyline matrix is to place all the rows (in order) into a floating-point
array (val(:)), and then keep an integer array (row ptr(:)) whose elements point to
the beginning of each row. The column indices of the nonzeros stored in val(:) are
easily derived and are not stored.

For a nonsymmetric skyline matrix such as the one illustrated in Figure 4.1, we store
the lower triangular elements in SKS format, and store the upper triangular elements
in a column-oriented SKS format (transpose stored in row-wise SKS format). These
two separated substructures can be linked in a variety of ways. One approach, discussed
by Saad in [186], is to store each row of the lower triangular part and each column
of the upper triangular part contiguously into the floating-point array (val(:)). An
additional pointer is then needed to determine where the diagonal elements, which
separate the lower triangular elements from the upper triangular elements, are located.

4.3.2 Matrix vector products

In many of the iterative methods discussed earlier, both the product of a matrix and
that of its transpose times a vector are needed, that is, given an input vector = we
want to compute products

y= Ax and y=A"z.
We will present these algorithms for two of the storage formats from §4.3: CRS and
CDS.
CRS Matrix-Vector Product

The matrix vector product y = Az using CRS format can be expressed in the usual
way:

Yi = § a; ;Tj,

J

