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GMRES: A GENERALIZED MINIMAL RESIDUAL ALGORITHM FOR
SOLVING NONSYMMETRIC LINEAR SYSTEMS*

YOUCEF SAADt AND MARTIN H. SCHULTZ?

Abstract. We present an iterative method for solving linear systems, which has the property of minimizing
at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the
Arnoldi process for constructing an I,-orthogonal basis of Krylov subspaces. It can be considered as a
generalization of Paige and Saunders’ MINRES algorithm and is theoretically equivalent to the Generalized
Conjugate Residual (GCR) method and to ORTHODIR. The new algorithm presents several advantages
over GCR and ORTHODIR.
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1. Introduction. One of the most effective iterative methods for solving large sparse
symmetric positive definite linear systems of equations is a combination of the conjugate
gradient method with some preconditioning technique [3], [8]. Moreover, several
different generalizations of the conjugate gradient method have been presented in the
recent years to deal with nonsymmetric problems [2], [9], [5], [4], [13], [14] and
symmetric indefinite problems [10], [3], [11], [14].

For solving indefinite symmetric systems, Paige and Saunders [10] proposed an
approach which exploits the relationship between the conjugate gradient method and
the Lanczos method. In particular, it is known that the Lanczos method for solving
the eigenvalue problem for an N X N matrix A is a Galerkin method onto the Krylov
subspace K, =span{v,, Av,,- -, A* "0}, while the conjugate gradient method is a
Galerkin method for solving the linear system Ax =f, onto the Krylov subspace K
with v, = ro/ || ro||. Thus, the Lanczos method computes the matrix representation Ty of
the linear operator P Ak, the restriction of P,A to K, where Py is the ,-orthogonal
projector onto K;. The Galerkin method for Ax=f in K, leads to solving a linear
system with the matrix T, which is tridiagonal if A is symmetric. In general, T} is
indefinite when A is and some stable direct method must be used to solve the
corresponding tridiagonal Galerkin system. The basis of Paige and Saunders’ SYMMLQ
algorithm is to use the stable LQ factorization of T,. Paige and Saunders also showed
that it is possible to formulate an algorithm called MINRES using the Lanczos basis
to compute an approximate solution x, which minimizes the residual norm over the
Krylov subspace K.

In the present paper we introduce and analyse a generalization of the MINRES
algorithm for solving nonsymmetric linear systems. This generalization is based on the
Arnoldi process [1], [12] which is an analogue of the Lanczos algorithm for nonsym-
metric matrices.

Instead of a tridiagonal matrix representing P.Ak,, as is produced by the Lanczos
method for symmetric matrices, Arnoldi’s method produces an upper Hessenberg
matrix. Using the I,-orthonormal basis generated by the Arnoldi process, we will show
that the approximate solution which minimizes the residual norm over K, is easily
computed by a technique similar to that of Paige and Saunders. We call the resulting
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algorithm the Generalized Minimal Residual (GMRES) method. We will establish that
GMRES is mathematically equivalent to the generalized conjugate residual method
(GCR) [5], [16] and to ORTHODIR [9]. It is known that when A is positive real, i.e.
when its symmetric part is positive definite, then the generalized conjugate residual
method and the ORTHODIR method will produce a sequence of approximations x;
which converge to the exact solution. However, when A is not positive real GCR may
break down. ORTHODIR on the other hand does not break down, but is known to
be numerically less stable than GCR [5], although this seems to be a scaling difficulty.

Thus, systems in which the coefficient matrix is not positive real provide the main
motivation for developing GMRES. For the purpose of illustration, consider the
following 2 x 2 linear system Ax = f, where

0 1 1
A=[—1 0]’ fz[l]’ %o=0

The GCR algorithm can be briefly described as follows:

1. Start: Set po=ro=f— Ax,
2. Iterate: For i=0,1, - - - until convergence do:
Compute a; = (r;, Ap;)/ (Ap;, Ap:),
X1 =X+ a;p;,
iy =r— aiAPi,
Di+1=Ti+1 +Z}=o B;('i)Pj
where {B}i)} are chosen so that (Ap;;,, Ap;)) =0, for 0=j =i

If one attempts to execute this algorithm for the above example one would obtain
the following results:
1. At step i=0 we get a,=0 and therefore x; = x,, r; = ro. Moreover, the vector
p1 is zero.
2. Atstep i =1, adivision by zero takes place when computing «, and the algorithm
breaks down.
We will prove that GMRES cannot break down even for problems with indefinite
symmetric parts unless it has already converged. Moreover, we will show that the
GMRES method requires only half the storage required by the GCR method and 3}
fewer arithmetic operations than GCR.
In § 2 we will briefly recall Arnoldi’s method for generating /,-orthogonal basis
vectors as it is described in [13]. In § 3, we will present the GMRES algorithm and
its analysis. Finally, in § 4 we present some numerical experiments.

2. Arnoldi’s method. Arnoldi’s method [1] which uses the Gram-Schmidt method
for computing an L-orthonormal basis {v,, v,, - * *, v} of the Krylov subspace K, =
span {v,, Av,, - - -, A*"'v,} can be described as follows.

ALGORITHM 1: Arnoldi.
1. Start: Choose an initial vector v, with |v,|| =1.
2. Iterate: For j=1,2,---, do:

hij=(Av, v,),i=1,2,---,}j,

13}+1 = Ay, _Zji=1 h;v;,

hjs1;= |11l and

Vj+1= Aj+1/hj+1,j-

In practical implementation it is usually more suitable to replace the Gram-Schmidt
algorithm of step 2 by the modified Gram-Schmidt algorithm [15]. If V; is the N x k
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matrix whose columns are the ,-orthonormal basis {v,, v,, - * -, v}, then Hy= VLAV,
is the upper kx k Hessenberg matrix whose entries are the scalars h;; generated by
Algorithm 1. If we call P, the l,-orthogonal projector onto K;, and denote by A, the
section of A in K, i.e. the operator A, = P, A|k,, we notice that H, is nothing but the
matrix representation of A, in the basis {v,, v, * -, v}. Thus Arnoldi’s original method
[1] was a Galerkin method for approximating the eigenvalues of A by those of H;
(1], [12].

In order to solve the linear system
(1) Ax=f,

by the Galerkin method using the I,-orthogonal basis V;, we seek an approximate
solution x; of the form x, = x,+ z;, where X, is some initial guess to the solution x,
and z; is a member of the Krylov subspace Ki=span {ry, Aro, -, A* 'r}, with
ro=f— Ax,. Suppose that k steps of Algorithm 1 are carried out starting with v, =
ro/ || roll- Then it is easily seen that the Galerkin condition that the residual vector
rn.=f— Ax; be l,-orthogonal to K, yields

ze=Viy. where y. = H'||ro ey

and e, is the unit vector e;=(1,0,0, - - -,0)” [13]. Hence we can define the following
Algorithm [13].

ALGORITHM 2: Full orthogonalization method.
1. Start: Choose x, and compute ro=f— Ax, and v, = ro/ || 7o||-
2. Iterate: For j=1,2,-- -,k do:

hij=(Av,v),i=1,2,"

D1 = Ay =2, hiyv,

hji1; =841, and

Vi1 = Aj+1/hj+1,j-
3. Form the solution:

X =Xo+ Viyr, where y, = HZIH roll ;.

In practice, the number k of iterations in step 2 is chosen so that the approximate
solution x; will be sufficiently accurate. Fortunately, it is simple to determine a posteriori
when k is sufficiently large without having to explictly compute the approximate
solution because we can compute the residual norm of x; thanks to the relation [13],
[14]:

(2) "f_Axk” =hk+l,k|e;€yk|'

Note, that if the algorithm stops at step k, then clearly it is unnecessary to compute
the vector vy ;.

Algorithm 2 has a number of important properties [14]:

¢ Apart from a multiplicative constant, the residual vector r; of x; is nothing but
the vector v;.,. Hence, the residual vectors produced by Algorithm 2 are I,-orthogonal
to each other.

¢ Algorithm 2 does not break down if and only if the degree of the minimal
polynomial of v, is at least k and the matrix H, is nonsingular.

¢ The process terminates in at most N steps.

Algorithm 2 generalizes a method developed by Parlett [11] for the symmetric
case. It is also known to be mathematically equivalent to the ORTHORES algorithm
developed by Young and Jea [9].
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A difficulty with the full orthogonalization method is that it becomes increasingly
expensive as the step number k increases. There are two distinct ways of avoiding this
difficulty. The first is simply to restart the algorithm every m steps. The second is to
truncate the l,-orthogonalization process, by insisting that the new vector v;,; be
I,-orthogonal to only the previous ! vectors where [ is some integer parameter. The
resulting Hessenberg matrix H, is then banded and the algorithm can be implemented
in such a way as to avoid storing all previous but only the ! most recent v;’s. The
details on this Incomplete I,-orthogonalization Method (IOM (1)), can be found in
[14]. A drawback of these truncation techniques is the lack of any theory concerning
the global convergence of the resulting method. Such a theory is difficult because there
is no optimality property similar to that of the conjugate gradient method. In the next
section we derive a method which we call GMRES based on Algorithm 1 to provide
an approximate solution which satisfies an optimality property.

3. The generalized minimal residual (GMRES) algorithm.
3.1. The algorithm. The approximate solution of the form x,+ z, which minimizes

the residual norm over z in K, can in principle be obtained by several known
algorithms:

¢ The ORTHODIR algorithm of Jea and Young [9];

¢ Axelsson’s method [2];

¢ the generalized conjugate residual method [4], [5].

However, if the matrix is indefinite these algorithms may break down or have
stability problems. Here we introduce a new algorithm to compute the same approxi-
mate solution by using the basis generated by Arnoldi’s method, Algorithm 1.

To describe the algorithm we start by noticing that after k steps of Arnoldi’s
method we have an L-orthonormal system Vi, and a (k+1)x k matrix H, whose
only nonzero entries are the elements h; generated by the method. Thus H, is the
same as H, except for an additional row whose only nonzero element is hy, x in the
(k+1, k) position. The vectors v; and the matrix H, satisfy the important relation:

(3) AV, = Vk+1I'_Ik-
Now we would like to solve the least squares problem:
) min |f — AL+ 2]l = min | ro— Az].

If we set z = V,y, we can view the norm to be minimized as the following function of
y:

(5) J(y)=|Bv:— AV |
where we have let B =||r,| for convenience. Using (3) we obtain
(6) J(y) = Vis:1[Be, - Hky]”

Here, the vector e, is the first column of the (k+1) x (k+1) identity matrix. Recalling
that V.., is ,,-orthonormal, we see that

(7) J(y)=|Ber— Hwy|.
Hence the solution of the least squares problem (4) is given by
(8) X = Xot Vi

where y, minimizes the function J(y), defined by (7), over y € R*.
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The resulting algorithm is similar to the Full Orthogonalization Method, Algorithm
2, described earlier, the only difference being that the vector y, used in step 3 for
computing X; is now replaced by the minimizer of J(y). Hence we define the following
structure of the method.

ALGORITHM 3: The generalized minimal residual method (GMRES).
1. Start: Choose x, and compute ry=f— Ax, and v, = ry/ || ro||.
2. Iterate: For j=1,2,--- k, - -, until satisfied do:
hij=(Av,v,),i=1,2,---,}j,
b= Ay =Y, hyo,
vy =041, and
Vi1 = Aj+1/ hj+1,j-
3. Form the approximate solution:
X = X0+ Viyi, where y, minimizes (7).

When using the GMRES algorithm we can easily use the Arnoldi matrix H, for
estimating the eigenvalues of A. This is particularly useful in the hybrid Chebyshev
procedure proposed in [6].

It is clear that we face the same practical difficulties with the above GMRES
method as with the Full Orthogonalization Method. When k increases the number of
vectors requiring storage increases like k and the number of multiplications like 3k N.
To remedy this difficulty, we can use the algorithm iteratively, i.e. we can restart the
algorithm every m steps, where m is some fixed integer parameter. This restarted
version of GMRES denoted by GMRES(m) is described below.

ALGoRrITHM 4: GMRES(m).
1. Start: Choose x, and compute ro=f— Ax, and v, = ro/ || ro|.
2. Iterate: For j=1,2,---, m do:
hij=(Av,v,),i=1,2,---,},
6j+l = Ay, — ]i=1 h v,
hjs1; =8|, and
Vji+1= Aj+l/hj+1,j-
3. Form the approximate solution:
Xpm = Xo+ VY, Where y,, minimizes ||Be, — H,.y|, ye R™
4. Restart:
Compute r,, = f — Ax,,; if satisfied then stop
else compute x4:= x,,, v,:=r,/|r.| and go to 2.

Note that in certain applications we will not restart GMRES. Such is the case for
example in the solution of stiff ODE’s [7] and in the hybrid adaptive Chebyshev
method [6].

3.2. Practical implementation. We now describe a few important additional details
concerning the practical implementation of GMRES. Consider the matrix Hy, and let
us suppose that we want to solve the least squares problem:

min | Be, ~ Fi .

A classical way of solving such problems is to factor H, into QR using plane
rotations. This is quite simple to implement because of the special structure of H,.
However, it is desirable to be able to update the factorization of H, progressively as
each column appears, i.e. at every step of the Arnoldi process. This is important
because, as will be seen, it enables us to obtain the residual norm of the approximate
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solution without computing x, thus allowing us to decide when to stop the process
without wasting needless operations.

We now show in detail how such a factorization can be carried out. In what
follows, we let F; represent the rotation matrix which rotates the unit vectors e¢; and
e;.1, by the angle 6;:

_1 1
1
G5
F= s ¢ <row j+1
1
L 1]

where ¢; = cos (6;), s;=sin (6;). _
Assume that the rotations F, i=1,- - -, j have been previously applied to H; to
produce the following upper triangular matrix of dimension (j+1) Xj:

1

X X
X

% x %
% ox x x
% 8 ® x x

O 8 % or ® R X

| 0

The letter x stands for a nonzero element. At the next step the last column and
row of b_ljﬂ appear and are appended to the above matrix. In order to obtain R, we
must start by premultiplying the new column by the previous rotations. Once this is
done we obtain a (j+2) % (j+1) matrix of the form

- . -1

X X X
X X
X

% X X %

% 8 8 ® ®

O xR B R rR 8 X
%o 8 X 8 =

0 o
o - - - - 0: &l

The principal upper (j+1) X j submatrix of the above matrix is nothing but R;, and h
stands for h;,,;., which is not affected by the previous rotations. The next rotation
will then consist in eliminating that element h in position j+2, j+ 1. This is achieved
by the rotation F,., defined by

G = r/(r2+ h2)1/2,
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Note that the successive rotations F; must also simultaneously be applied to the right
side Be,.

Thus, after k steps of the above process, we have achieved the following decomposi-
tion of Hg:
QH =R,
where Qy is (k+1)x(k+1) and is the accumulated product of the rotation matrices

» while R, is an upper triangular matrix of dimension (k+ 1) x k, whose last row is
zero. Since Qy is unitary, we have:

) J(y) =||Be;— Hw |l = | Q[ Bes — Hiy| = || g — Ry,

where g, = Q,Be, is the transformed right-hand side. Since the last row of R, is a zero
row, the minimization of (9) is achieved by solving the upper triangular linear system
whch results from removing the last row of R, and the last component of g,. This
provides y, and the approximate solution x, is then formed by the linear combination
(8).

We claimed earlier that it is possible to obtain the residual norm of the approximate
solution x, while performing the above factorization, without explicitly computing x;.
Indeed, notice that from the definition of J(y), the residual norm is nothing but J(y,)
which, from (9), is in turn equal to ||g — Riyi||. But by construction of y;, this norm
is the absolute value of the last component of g,. We have proved the following.

PrOPOSITION 1. The residual norm of the approximate solution x, is equal to the
(k+1)st component of the right-hand side g, obtained by premultiplying Be, by the k
successive rotations transforming Hy into an upper triangular matrix.

Therefore, since g is updated at each step, the residual norm is available at every
step of the QR factorization at no extra cost. This is very useful in the practical
implementation of the algorithm because it will prevent us from taking unnecessary
iterations while allowing us to avoid the extra computation needed to obtain x
explicitly.

Next we describe an efficient implementation of the last step of GMRES. If we
can show that we can obtain the residual vector as a combination of the Arnoldi vectors
vy, **, U, and Av,, then after step m we do not need v,,,. Note that computing ,,,+,
and its norm costs (2m+1) N multiplications, so elimination of its computation is a
significant saving. Assume that the first m —1 Arnoldi steps have already been per-
formed, i.e. that the first m —1 columns of H,, are available as well as the first m
vectors v, i =1, -+, m. Since we will not normalize v; at every step, we do not have
explicitly the vectors v; but rather the vectors w; = u,v; where u; are some known scaling
coeflicients.

All we need in order to be able to compute x,, is the matrix H,, and the vectors
Uy, * *, Um Since the vectors v, i=1,- -+, m, are already known, we need compute
only the coefficients h;,,, i=1,---, m+1. Noting that h;,, = (Av,, v;), for i=m we
see that these first m coefficients can be obtained as follows:

1. Compute Av,, and

2. Compute the m inner-products (Av,, v;), i=1,---, m.

Clearly, the scaling coefficients u; must be used in the above computations as v;,
i=1,---, m, are only available as w; = u;v;, where w; = | w;|. This determines the mth
column of H,, except for the element hpps1,m We wish to compute this coefficient
without having to compute w,,,,. By definition and the orthogonality of the v;’s
2

= | Av P~ 5, B

(10) h%n+l,m=

m
Avm - 2 hi,mvi
i=1
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Hence the last coefficient can be obtained from the h;,,’s, i=1, - - -, m, and the norm
of Av,,
Now we will show how to compute the residual vector r,, = f — Ax,, from the v,’s,

i=1,---,m and Av,. This computation is necessary only when restarting. From (6)
the residual vector can be expressed as

(11) 'm= m+1[Bel—Hmym]'

If we define t=[t,, t,," * *, tms1]” = Bey— H,ym, then

m m 1
tm = ( ) ti”i) il 1Umir = ( > ti”i) Ll P
i=1 i=1

m+1,m

I:Avm._- Z hi,mvi]
i=1

m
=—th+—1" Av,+ ¥ (- tm+1hi,m/hm+1,m)vi'
m+1,m i=1

It is to be expected that for large m, the alternative expression (10) for h,,.y m
would be inaccurate as the orthogonality of the vectors v, on which it is based, is
likely to be lost [11]. Moreover, in the restarted GMRES, the computation of r,, by
(11) may be more time consuming than the explicit use of r,, = f — Ax,,. Therefore, it
is not recommended to use the above implementation when m is large.

3.3. Comparison with other methods. From the previous description of GMRES,
it is not clear whether or not this algorithm is more effective than GCR or ORTHODIR.
Let us examine the computational costs of these three methods. We will denote by
NZ the number of nonzero elements in A. We will evaluate the cost of computing the
approximation x;, by GMRES. There are several possible implementations but we will
refer to the one described in the previous section. If we neglect the cost of computing
¥ Which is the solution of a least squares problem of size k, where k is usually much
less than N, the total cost of computing x, by GMRES can be divided in two parts:

¢ The computation of the Arnoldi vectors v;,,, for j=1,2,- - -, k. The jth step in
this loop requires (2j+ 1) N + NZ multiplications, assuming that the vectors v; are not
normalized but that their norms are only computed and saved. The last step requires
only (k+1) N multiplications instead of (2k+1)N, i.e. kN fewer multiplications than
the regular cost, as was shown in the previous section. Hence, the total number of
mutiplications for this part is approximately k(k+2)N+kNZ—kN =
k(k+1)N+kNZ.

e The formation of the approximate solution x,+ V,y, in step 3 requires kN
multiplications.

The k steps of GMRES therefore require k(k +2) N + kNZ multiplications. Divid-
ing by the total number of steps k, we see that each step requires (k+2)N+NZ
multiplications on the average. In [5], it was shown that both GCR and ORTHODIR
require on the average 3(3k+ 5) N+ NZ multiplications per step to produce the same
approximation x;. Therefore with the above implementation GMRES is always less
expensive than either GCR or ORTHODIR. For large k savings will be nearly 3.

The above comparison concerns the nonrestarted GMRES algorithm. Note that
the notation adopted in [5] for the restarted versions of GCR and ORTHODIR differs
slightly from ours in that GCR(m) has m + 1 steps in each innerloop, while GMRES(m)
has only m steps. Hence GMRES(m) is mathematically equivalent to GCR(m —1).
When we restart GMRES, we will need the residual vector after the m steps are
completed. The residual vector can be obtained either explicitly as f— Ax,, or, as will
be described later, as a linear combination of Av,, and the v;’s,i=1, - - -, m. Assuming
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the latter, we will perform (m + 1) N extra multiplications. This will increase the average
cost per step by (1+1/m)N to (m+3+1/m) N + NZ. The corresponding cost per step
of the restarted GCR and ORTHODIR is ¥(3m+5) N+ NZ. Thus GMRES(m) is more
economical than GCR(m —1) for m> 1. Note that the above operation count for
GCR(m —1) and ORTHODIR(m —1) does not include the computation of the norm
of the residual vector which is required in the stopping criterion while for GMRES,
we have shown earlier that this norm is available at every step at no extra cost. This
remark shows that in fact the algorithms require the same number of operations when
m=1.

For GMRES(m), it is clear that all we need to store is the v;’s, the approximate
solution, and vector for Av, which means (m+2)N storage locations. For large m,
this is nearly half the (2m + 1) N storage required by both GCR and ORTHODIR. The
comparison of costs is summarized in the following table in which GCR(m —1) and
GMRES(m) are the restarted versions of GCR and GMRES, using m steps in each

innerloop. Note that the operation count of ORTHODIR(m — 1) is identical with that
of GCR(m—1) [5].

TABLE 1
Method Multiplications Storage
GCR(m—1) [(3m+5)/2])N+NZ 2m+1)N
GMRES(m) (m+3+1/m)N+NZ (m+2)N

3.4. Theoretical aspects of GMRES. A question often raised in assessing iterative
algorithms is whether they may break down. As we showed in the introduction, GCR
can break down when A is not positive real, i.e. when its symmetric part is not positive
definite. In this section we will show that GMRES cannot break down, regardless of
the positiveness of A.

Initially, we assume that the first m Arnoldi vectors can be constructed. This will
be the case if h;,;#0, j=1,2,---, m. In fact if hj.,;,,#0, the diagonal element
Fit1j+1 Of R;j;, obtained from the above algorithm satisfies:

- (22 1/2
Tiarjr1 = (Ga1r = S B ji1) = (r* + hjipj4) 2> 0.

Hence, the diagonal elements of R,, do not vanish and therefore the least squares
problem (9) can always be solved, establishing that the algorithm cannot break down
if by ;#20,j=1,---,m.

Thus the only possible potential difficulty is that during the Arnoldi process we
encounter an element h;., ; equal to zero. Assume that this actually happens at the jth
step. Thensince h;, ; = 0 the vector v;., cannot be constructed. However, from Arnoldi’s
algorithm it is easily seen that we have the relation AV, = V;H; which means that the
subspace K; spanned by V; is invariant. Notice that if A is nonsingular then H; whose

spectrum is a part of the spectrum of A is also nonsingular. The quadratic form (5)
at the jth step becomes

J(y)=|Bvi = AViy| = ||Bv. = V;Hy| = || Vi[Bes — Hy]l| = || Be; — Hyl.

Since H; is nonsingular the above function is minimum for y=H;'Be, and the
corresponding minimum norm is zero, i.e., the solution x; is exact.

To prove that the converse is also true assume that x; is the exact solution and
that x;, i=1,2,--+,j—1are not,i.e. ;=0but r,#0 for i=0,1,---,j—1. Then r,=0
and from Proposition 1 we know that the residual norm is nothing but sjef_lgj_., i.e.
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the previous residual norm times s;. Since the previous residual norm is nonzero by
assumption, we must have s; = 0 which implies h;.,; =0, i.e. the algorithm breaks down
and 1;,, =0 which proves the result.

Moreover, it is possible to show that #;,, =0and §;#0i=1,2,- - -, j is equivalent
to the property that the degree of the minimal polynomial of the initial residual vector
ro= 1, is equal to j. Indeed assume the degree of the minimal polynomial of v, is j.
This means that there exists a polynomial p; of degree j, such that p;(A)v, =0, and p;
is the polynomial of lowest degree for which this is true. Therefore K., =
span{v,, Av,, ..., A'v;} is equal to K,. Hence the vector #,, which is a member of
K;.1=K; and is orthogonal to K; is necessarily a zero vector. Moreover, if 9; =0 for
i =j then there exists a polynomial p; of degree i such that p;(A)v, = 0 which contradicts
the minimality of p;

To prove the converse assume that 9., =0 and 9;#0 i=1,2,- - -, j. Then there
exists a polynomial p; of degree j such that p;(A)v, = 0. Moreover, p; is the polynomial
of lowest degree for which this is true, otherwise we would have #;,, =0, for some
i <j by the first part of this proof which is a contradiction.

PropPosITION 2. The solution x; produced by GMRES at step j is exact if and only
if the following four equivalent conditions hold:

® (1) The algorithm breaks down at step j.

* (2) 6]’+1 =0.

* (3) hjyy;=0.

¢ (4) The degree of the minimal polynomial of the initial residual vector r, is equal

toj.

This uncommon type of breakdown is sometimes referred to as a “lucky” break-
down in the context of the Lanczos algorithm. Because the degree of the minimal
polynomial of v, cannot exceed N for an N-dimensional problem, an immediate
corollary follows.

CoRroOLLARY 3. For an N X N problem GMRES terminates in at most N steps.

A consequence of Proposition 2 is that the restarted algorithm GMRES (m) does
not break down. GMRES (m) would therefore constitute a very reliable algorithm if
it always converged. Unfortunately this is not always the case, i.e. there are instances
where the residual norms produced by the algorithm, although nonincreasing, do not
converge to zero. In [5] it was shown that the GCR (m —1) method converges under
the condition that A is positive real and so the same result is true for GMRES (m).
It is easy to construct a counter-example showing that this result does not extend to
indefinite problems, i.e. that the method may not converge if the symmetric part of A
is not positive definite. In fact it is possible to show that the restarted GMRES method
may be stationary. Consider GMRES (1) for the problem Ax = f, where

0 1 1
R AT

which we considered in the introduction. The approximate solution x, minimizes the
residual norm ||f— Az|| where z is a vector of the form z=a f It is easily seen that
x,=0. Therefore the algorithm will provide a stationary sequence. Note that this is
independent from the problem of breakdown. In fact GMRES will produce the solution
in two steps but GMRES (1) never will.

Since the residual norm is minimized at every step of the method it is clear that
it is nonincreasing. Intuitively, for m large enough the residual norm will be reduced
by a sufficiently small ratio as to ensure convergence. Thus we would expect
GMRES (m) to be convergent for sufficiently large m. However, note that ultimately
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when m = N, the result is trivial, i.e. the method converges in one step. Thus, we will
not attempt to show that the method GMRES (m) converges for sufficiently large m.
On the other hand it is useful to show that if A is nearly positive real, i.e. when it has
a small number of eigenvalues on the left half plane, then m need not be too large
for convergence to take place.

In order to analyse this convergence, we let P, be the space of all polynomials
of degree =m and let o represent the spectrum of A. The following result was established
in [5] for the GCR algorithm and is a simple consequence of the optimality property.

PROPOSITION 4. Suppose that A is diagonalizable so that A= XDX ™' and let
(12) e™=min max|p(a;)|.

pEP,,p(0)=1 Neo
Then the residual norm provided at the mth step of GMRES satisfies

[ 7msall = K(X)g(m)" ol
where k(X)) = | X ||| X"|.

When A is positive real with symmetric part M, the following error bound can
be derived from the proposition, see [5]:

lrmll =[1—a/B1™?|r,

with @ = (Amin(M))?, B = Amax(ATA). This proves the convergence of the GMRES (m)
for all m when A is positive real [5].

When A is not positive real the above result is no longer true but we can establish
the following explicit upper bound for ™.

THEOREM S. Assume that there are v eigenvalues A4, A, - - -, A, of A with nonpositive
real parts and let the other eigenvalues be enclosed in a circle centered at C with C >0
and having radius R with C > R. Then

R m—v v |A—I\| [D]v [R]m—u
(m)s - ! | 2 _
(13) £ o [C] j‘—‘r}"l"jal),(Nil—_—-Il |A,| “Ld C
where
D= max |\,—A| and d=min |
i=1,v;j=v+1,N i=1,v

Proof. Consider the particular class of polynomials defined by p(z)=r(z)q(z)
where r(z) =(1—2z/A)(1—z/A,) - - (1—z/A,) and q(z) is an arbitrary polynomial of
degree =m — v, such that q(0) =1. Clearly, since p(0)=1 and p(A;,)=0, i=1,---, v,
we have

(m)
e™= max |p(4)|= max |r(r)| max |q(x)]-

It is easily seen that

- v = Ayl
,max Iyl = max T =
Moreover, by the maximum principle, the maximum of |q(z)| for z belonging to the
set {A;}j—,+1,~ is no larger than its maximum over the circle that encloses that set.
Taking the polynomial g(z) =[(C —z)/ C]""” whose maximum modulus on the circle
is (R/C)™™" yields the desired result. O
A similar result was shown by Chandra [3] for the symmetric indefinite case. Note
that when the eigenvalues of A are all real then the maximum of the product term in

=(D/d)".
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the second part of inequality (13) satisfies

max | =l _ m A= An]

Jj=v+1,N j_; IA,I i=1 IAII

where Ay is the largest eigenvalue of A. A simple consequence of the above theorem
is the following corollary.

COROLLARY 6. Under the assumptions of Proposition 4 and Theorem 35,
GMRES (m) converges for any initial vector x, if

m> v Log [%K(X)”"]/Log [g]

A few comments are in order. First note that, in general, the upper bound (13) is
not likely to be sharp, and so convergence may take place for m much smaller than
would be predicted by the result. Second, observe that the minimal m that ensures
convergence is related only to the eigenvalue distribution and the condition number
of X. In particular, it is independent of the problem-size N. Third, it may very well
happen that the minimal m would be larger than N, in which case the information
provided by the corollary would be trivial since the method is exact for m = N.

4. Numerical experiments. In this section we report a few numerical experiments
comparing the performances of GMRES with other conjugate gradient-like methods.
The tests were performed on a VAX-11/780 using double precision corresponding to
a unit round off of nearly 6.93 x 10 *¥. The GMRES (k) algorithm used in the following
tests computes explicitly the last vector v.,, of each outer iteration, i.e. it does not
implement the modification described at the end of § 3.2.

The test problem was derived from the five point discretization of the following
partial differential equation which was described in H. Elman’s thesis [5]:

—(bu,)x— (cuy) +du,+(du) +eu,+(eu),+fu=g
on the unit square, where
b(x,y)=e"7,  c(x,y)=e"d(x,y)=B(x+y),
e(x,y)=y(x+y) and f(x,y)=1/(1+x+y)

subject to the Dirichlet boundary conditions u =0 on the boundary. The right-hand
side g was chosen so that the solution was known to be xe™ sin (7x) sin (7y). The
parameters B and vy are useful for changing the degree of symmetry of the resulting
linear systems. Note that the matrix A resulting from the discretization remains positive
real independent of these parameters.

We will denote by n the number of interior nodes on each side of the square and
by h=1/(n+1) the mesh size. In the first example we took n=48, y=50 and g=1.
This yielded a matrix of dimension N =2304. The system was preconditioned by the
MILU preconditioning applied on the right, i.e. we solved AM~'(Mx) = f where M
was some approximation to A™' provided by an approximate LU factorization of A
see [5]. The process was stopped as soon as the residual norm was reduced by a factor
of £ = 107%. The following plot compares the results obtained for GCR (k), GMRES (k),
and ORTHOMIN (k) for some representative values of k.

The plot shows that ORTHOMIN (k) did not converge for k=1 and k=5 on
this example. In fact, we observed that it exhibited the same nonconverging behaviour
for all values of k between 1 and 5. Another interesting observation is that GMRES (5)
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performed almost as well as GCR (1). Note that the value k = 5 yielded the best possible
result that was obtained for all reasonable choices of k and similarly GCR (1) correspon-
ded to the best possible performance for GCR (k).
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It is worth pointing out that for moderate accuracy (¢ =107%), GMRES (5) was
slightly better than GCR (1). Finally, we should indicate that the reason why
ORTHOMIN performed so badly in this example is that the preconditioned system is
not positive real. The MILU preconditioning seems to be more prone to such
peculiarities than the simpler ILU preconditioning. In fact for this example
ORTHOMIN (1) performed very well when the ILU preconditioning was used.

In the next test we took n=18 which yielded a matrix of smaller dimension
N =324, and y=50., B = —20. The main purpose of this experiment was to show that
there are instances where using a large parameter m is important. Here again we used
the MILU preconditioning and the stopping tolerance was £ = 10~°. This example was
more difficult to treat. ORTHOMIN (k) diverged for all values of k between 1 and
10. Also GCR (1), GCR (2) and GCR (3) diverged as well as their equivalent versions
GMRES (k), k=2, 3, 4. The process GMRES (k) started to converge with k=15 and
improved substantially as k increased. The best performance was realized for larger
values of k. The following plot shows the results obtained for GMRES (5), GMRES (20)
and ORTHOMIN (10). In order to be able to appreciate the gains made by GMRES (20)
versus its equivalent version GCR (19), we also plotted the results for GCR (19). Note
that we saved nearly 25% in the number of multiplications but also almost half the
storage which was quite important here since we needed to keep 22 vectors in memory
versus 39 for GCR (19).
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