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Ideally, DDMs seek what we call the DDM-paradigm: ‘‘constructing the global solution by solving local

problems, exclusively’’. To achieve it, it is essential to disconnect the subdomain-problems. In FETI-DP

such disconnection is achieved by formulating the method in a product function-space that contains

discontinuous functions. However, FETI-DP uses an indirect formulation based on Lagrange-multipliers.

BDDC uses instead a more direct formulation, but does not work directly in a space of discontinuous

functions, either. Another fact difficult to overcome is: at present competitive algorithms need to

incorporate constraints that prevent full disconnection of the subdomains. This paper is devoted to

explain a direct (primal) approach to DDMs in which all the numerical work is done in a product-space

(the derived-vector space), which supplies a unified setting for non-overlapping DDMs and can be used

to formulate and discuss in a general and systematic manner the theory of DDMs for non-symmetric

problems. Furthermore, in this realm four general-purposes preconditioned algorithms with constraints

applicable to non-symmetric matrices, which achieve the DDM-paradigm, have been obtained. Two of

them have been identified as DVS-versions of BDDC and FETI-DP. The uniformity of the matrix-formulas

expressing such algorithms should be highlighted.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models of many systems of interest, including
very important continuous systems of Engineering and Science,
lead to a great variety of partial differential equations whose
solution methods are based on the computational processing of
large-scale algebraic systems. Furthermore, the incredible expan-
sion experienced by the existing computational hardware and
software has made amenable to effective treatment problems of
an ever increasing diversity and complexity, posed by engineering
and scientific applications.

Parallel computing is outstanding among the new computa-
tional tools, especially at present when further increases in
hardware speed apparently have reached insurmountable bar-
riers. As it is well known, the main barriers for enhancing the
efficiency of parallel computing are the difficulties associated
with the coordination of the many processors that carry out the
different tasks and also those associated with the information-
transmission between them. Ideally, given a task, these difficul-
ties disappear when procedures for carrying out that task are
available such that the parallel processors work independently of
each other. Thus, we will say that a parallel-processing algorithm
ll rights reserved.

rera).
fulfills the ‘paradigm of parallel computing’ when the tasks
assigned to different processors are independent of each other.

The emergence of parallel computing during the last 20 or 30
years, prompted on the part of the computational-modeling com-
munity a continued and systematic effort with the purpose of
harnessing it for the endeavor of solving boundary-value problems
(BVPs) of partial differential equations [1]. Very early after such an
effort began, it was recognized that domain decomposition methods
(DDM) were the most effective technique for applying parallel
computing to the solution of partial differential equations, since
such an approach drastically simplifies the coordination of the many
processors that carry out the different tasks and also reduces very
much the requirements of information-transmission between them.
Ideally, DDMs intend producing algorithms such that ‘‘the global

solution is obtained by solving local problems defined separately in
each subdomain of a coarse-mesh – the domain-decomposition’’; in
what follows, such a condition is referred to as the ‘DDM-paradigm’.
When the DDM-paradigm is satisfied full parallelization can be
achieved by assigning each subdomain to a different processor.

When intensive DDM research began much attention was given to
overlapping DDMs, but soon after attention shifted to substructuring
methods in non-overlapping partitions, known as non-overlapping

DDMs. This evolution seems natural when the DDM-paradigm is
taken into account: it is easier to uncouple the local problems when
the domain decomposition is non-overlapping. At present, however,
numerically competitive algorithms need to incorporate constraints,
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such as continuity on primal-nodes [2–6]. This poses an additional
challenge for fulfilling the DDM-paradigm [7], which has been difficult
to overcome.

Most of the work done in DDM refers to symmetric and
positive definite problems. At present it is generally accepted
that the most effective non-overlapping DDMs are BDDC and
FETI-DP. The finite-element tearing and interconnecting method
(FETI), was introduced by Farhat [8,9] and later modified by the
introduction of dual-primal constraints [10–12], which originated
the FETI-DP method. As for the balancing domain decomposi-
tion (BDD), it was originally introduced by Mandel [13,14] and
more recently modified by Dohrmann who incorporated con-
straints in its formulation [3,4]; this resulted in BDDC (BDD with
constraints).

To achieve full disconnection of the local problems, FETI is
formulated in a product space of functions, W (see p.133 of [2]),
which contains discontinuous functions. However, FETI does not
work directly in such a space; instead, it avoids working in it by
resourcing to an indirect approach based on Lagrange-multipliers.
On the other hand, BDDC is more direct and does not resort to
Lagrange multipliers, but it does not work in a product-space
either in spite of the fact that it is there where full disconnection
of the local problems is achieved (in Section 10, this point is
further discussed). Thus, until the line of research here reported
started to appear a direct treatment in a product-space had not
been presented.

In standard approaches to DDMs two different processes can
be identified: numerical discretization of partial differential
equations and the design of strategies for achieving the DDM-
paradigm: ‘‘solving the global BVP by solving local BVPs, exclu-
sively’’. Standard DDM-frameworks generally do not separate
these two processes and the difficulties associated with one and
the other are combined. In particular, they work in linear spaces
of functions.

However, discretization methods are a particular topic of
numerical methods for partial differential equations that has
received intensive attention since the development of electronic
computers started and, at present, effective discretization meth-
ods are available almost for any well-posed BVP. Once a BVP has
been discretized, parallelizing the processing of the resulting
discrete system is essentially a purely algebraic problem.

Several years ago, Herrera and a research group at the National
University of Mexico (UNAM) started a line of research [15–20]
whose goal has been to fully develop a direct approach in which
the work is done in a product-space and, furthermore, the
discretization process and the domain decomposition procedures
are thoroughly separated. The present paper is part of that line of
research and is devoted to explain briefly (summarize) some of
the most important results obtained so far.

A purely algebraic product-space – the derived-vector space

(DVS) – has been constructed, which contains ‘‘continuous and
discontinuous vectors’’ (i.e., algebraic images of continuous and
discontinuous functions, respectively) and is very suitable for
treating the discrete systems obtained by discretization of BVPs of
a single equation, or systems of such equations. The DVS con-
stitutes a finite-dimensional Hilbert-space with respect to a
suitable inner-product whose definition is independent of the
algebraic system of equations to be parallelized. Therefore, this
DVS-framework is applicable to any symmetric, non-symmetric
and non-definite (positive) matrix. Furthermore, this setting is
suitable for both direct (primal) formulations, without recourse to
Lagrange-multipliers, and indirect (dual) formulations, with
recourse to Lagrange-multipliers. Another finding has been that,
in the DVS-framework, four domain-decomposition algorithms
preconditioned and subjected to constraints are possible; corre-
sponding to two primal and two dual formulations. One primal
and one dual algorithm of that set can be interpreted as versions
of BDDC and of FETI-DP, respectively. However, nothing similar to
the other two algorithms has been identified in the literature,
albeit in the DVS setting these four formulations are closely
related and can be easily derived from each other. The nomen-
clature adopted for the DVS-algorithms is DVS-BDDC, DVS-FETI-DP,

DVS-PRIMAL and DVS-DUAL.
The DDM-paradigm is achievable using each one of the four

DVS-algorithms and the numerical procedures that can be used to
achieve it are explained in Section 8 of this paper. Work is
underway to produce codes that can be used to operate efficiently
some of the massively parallelized computers available today
[21]. The numerical efficiency has been tested comparing stan-
dard FETI-DP with the DVS version of FETI-DP [16,17] and the
results indicate that their performances are not significantly
different. Comparisons presented in Section 9 of this paper
between different DVS-algorithms also indicate that their numer-
ical performances are similar. The numerical equivalence
between FETI-DP and BDDC is well-known by now [22,23].

Although, two DVS-algorithms can be interpreted as DVS
versions of BDDC and FETI-DP, at least two very important
differences of the new versions should be highlighted: the DVS-
versions are applicable to non-symmetric matrices and, also, they
achieve the DDM-paradigm. As it is well-known, certain number
of applications of FETI-DP and BDDC have been made to non-
symmetric and indefinite problems (see, for example, [6,24–27]),
but all them have been case specific, while the DVS-algorithms
are generic algorithms that can be applied independently of the
origin of the problem. As a matter of fact, once the discretized
problem is known the very same matrix-formulas can be blindly

applied (in the sense that the formulas indicate with precision the
operations that have to be performed) to the discrete systems
originated by a single partial differential equation, or a system of
such equations, which in turn may be formally symmetric, non-
symmetric or indefinite. Furthermore, this framework can be used
to formulate and discuss in a systematic manner a general theory
of DDMs for non-symmetric and indefinite problems, as it has
been started to do in the work here summarized.

About the other difference mentioned above, standard versions
of FETI-DP and BDDC do not achieve the DDM-paradigm [7] and their
applicability to operate efficiently the huge massively parallelized
computers that exist today is hindered by this fact. On the other
hand, because the DVS-algorithms do achieve the DDM-paradigm (as
it is shown in Section 8) they are very suitable for that purpose.

The organization of the paper follows. In Section 3, the problem
to be treated is introduced. Section 2 motivates derived-nodes, while
Sections 4 and 5 are devoted to study them and derived-vectors,
respectively. The equivalent problem in the derived-vector space is
given in Section 6, and Section 7 is devoted to the (preconditioned)
DVS-algorithms with constrains derived from it. In Section 8, where
the numerical procedures are explained, it is shown that the DVS-
algorithms satisfy the DDM-paradigm. The numerical results
reported in this paper are given in Section 9, while Section 10 is
devoted to compare the DVS-framework with standard DDMs.
Finally, the conclusions of the paper are presented in Section 11.
To simplify the presentation, many of the definitions required have
been collected in an Appendix at the end of the paper.
2. A non-overlapping system of nodes

The ‘derived vector space framework (DVS-framework)’ starts
with the system of linear equations that is obtained after the
partial differential equation or system of such equations has been
discretized, independently of the discretization method used. This
system of discrete equations is referred to as the ‘original-problem’



Fig. 1. The ‘original nodes’.

Fig. 2. The original nodes in the coarse-mesh.

Fig. 3. The mitosis.

Fig. 4. The derived-nodes distributed in the coarse-mesh.
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and the nodes used in this process are referred to as the ‘original-

nodes’ (Fig. 1). In domain decomposition methods (DDMs) it is
standard to introduce a domain-partition, called coarse-mesh.
Generally, some of the original-nodes belong to more than
one partition-subdomain (Fig. 2). So, although the domain-
decomposition is non-overlapping the partition of the nodes is
overlapping.

It would be advantageous for achieving the DDM-paradigm, if
each node would belong to one and only one partition-subdomain,
and in the DVS-framework a new set of nodes – the ‘derived-nodes’ –

that enjoy this property is introduced. This new set of nodes is
obtained by dividing each original-node (Fig. 3) in as many pieces as
required to assign one and only one node-piece to each one of the
subdomains (Fig. 4). Then, such node-pieces (called: ‘derived-nodes’)
are identified by means of an ordered-pair of numbers: the label of
the original-node, it comes from, followed by the partition-subdomain

label, it was assigned to. A ‘derived-vector’ is simply defined to be
any real-valued function1 defined in the whole set of derived-nodes;
the set of all derived-vectors constitutes a linear space: the ‘derived-

vector space (DVS)’. Then, for each pair of derived-vectors an inner-
product (the Euclidean inner-product’) is defined in the usual
manner: as the product of their components summed over all the
derived-nodes. The DVS constitutes a finite-dimensional Hilbert-
space, with respect to such an inner-product. We observe that this
inner-product definition is independent of the system-matrix, which
has not even mentioned thus far.

A new problem, the DVS-problem, defined in the derived-vector

space that is equivalent to the original problem, is introduced. Of
course, the matrix of this new problem is different to the original-

matrix, which is only defined in the original-vector space, and
the theory supplies a formula for deriving it [15]. From there on,
in the DVS-framework, all the work is done in the derived-vector
space and one never goes back to the original vector-space. In a
systematic manner, this framework led to the construction of four
preconditioned DVS-algorithms: two primal formulations (i.e., direct
1 For the treatment of systems of equations, vector-valued functions are

considered, instead.
formulations that do not use Lagrange multipliers) and two dual

formulations (i.e., indirect formulations that do use Lagrange
multipliers). Soon after [15], the first primal formulation was
recognized to be a version of the BDDC (the balancing domain

decomposition with constraints of Mandel and Dohrmann), while the
first dual formulation was recognized to be a version of the FETI-DP
(the dual-primal finite element tearing and interconnecting of Farhat).
Therefore, the notation that will be used for them here is:
(a)
 The DVS-version of BDDC;

(b)
 The DVS-version of FETI-DP;

(c)
 DVS-primal algorithm; and

(d)
 DVS-dual algorithm.
All these algorithms are preconditioned and are formulated in
vector-spaces subjected to constraints; so, they are precondi-
tioned and constrained algorithms.
3. The original problem

It will be assumed that the system of linear algebraic equa-
tions:

_
A_u ¼

_
f ð3:1Þ

is the discretized version of a boundary-value problem (BVP)
corresponding to a (linear) partial differential equation, or system
of such equations. We observe that the developments that follow
are independent of both, the specific BVP considered and the
discretization method used; so, both of them will remain unspe-
cified throughout. Instead, we adopt a set of assumptions
(axioms) under which our results (the DVS-framework) will be
applicable. The system of algebraic equations of Eq. (3.1) will be
referred to as the ‘original problem’ and will be the starting point
of our discussions. In this system, the ‘original matrix’

_
A and the
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‘original vectors’_u and
_
f are:

_
A �

_
Aij

� �
, _u � _uj

� �
,
_
f �

_
f j

� �
with i,j¼ 1,. . .,N ð3:2Þ

here, N is the number of ‘original nodes’.
Let O be the domain of definition of the continuous problem,

before discretization. Then, it is assumed that a coarse-mesh is
introduced, which constitutes a non-overlapping domain decom-
position of O. This is a family {O1,y,OE} of sub-domains of O that
fulfills the relations

Oa \Ob ¼ | and O� [
E

a ¼ 1
Oa ð3:3Þ

here, Oa stands for the closure of Oa. Furthermore, it is assumed
that the sets of numbers:

N̂� 1,. . .,Nf g and Ê� 1,. . .,Ef g ð3:4Þ

label the original nodes and the partition-subdomains, respec-

tively. The real-valued functions defined in N̂¼ 1,:::,Nf g constitute

a vector-space that will be denoted by W
_

and referred to as the

‘original vector-space’. The notation N̂
a
, a¼1,...,E, will be used for

the subset of original-nodes that pertain to Oa. Original-nodes will
be classified into ‘internal’ and ‘interface-nodes’: a node is internal

if it belongs to only one partition-subdomain closure and it is an
interface-node, when it belongs to more than one. Furthermore,
for the development of domain decomposition methods with
constraints it will be necessary to choose a subset of interface-

nodes: the set of primal nodes. Interface-nodes that are not primal
are said to be dual-nodes.

Using the notations thus far introduced, the following assump-
tion is adopted:

Axiom 1. ‘‘When the indices pA N̂
a

and qAN̂
b

are internal, then p

and q are unconnected’’. We recall that unconnected means:
_
Apq ¼

_
Aqp ¼ 0, whenever aab ð3:5Þ
4. Derived-nodes

As said before, when a coarse-mesh is introduced some of the
nodes used in the original discretization belong to more than one
partition-subdomain and to overcome this inconvenience, in the
DVS-framework, another set of nodes is introduced: the ‘derived-

nodes’. The general developments are better understood, through
a simple example that we explain first.

Consider the set of 25 nodes used in the discretización of a
boundary-value problem shown in Fig. 1. We recall that the
developments that follow are independent of both, the BVP con-
sidered and the discretization method used. After such a discretiza-
tion is carried out a coarse-mesh that consists of four subdomains, as
shown in Fig. 2, is introduced. Thus, we have a set of nodes and a
family of subdomains, which are numbered using of the index-sets:
N̂� 1,:::,25f g and Ê� 1,2,3,4f g, respectively. Then, the sets of nodes
corresponding to such a non-overlapping domain decomposition is
actually overlapping, since the four subsets

N̂
1
� 1,2,3,6,7,8,11,12,13f g, N̂

2
� 3,4,5,8,9,10,13,14,15f g

N̂
3
� 11,12,13,16,17,18,21,22,23f g, N̂

4
� 13,14,15,18,19,20,23,24,25f g

ð4:1Þ

are not disjoint (see, Fig. 2). Indeed, for example:

N̂
1
\ N̂

2
¼ 3,8,13f g ð4:2Þ

In order to obtain a ‘‘truly’’ non-overlapping decomposition,
we replace the set of ‘original nodes’ by another set: the set of
‘derived-nodes’; a ‘derived node’ is defined to be a pair of numbers:
(p,a), where p corresponds a node that belongs to Oa. In symbols:
a ‘derived node’ is a pair of numbers (p,a) such that pAN̂a. We
denote by X the set of all derived nodes

X � p,að Þ
��aA Ê and pAN̂

an o
ð4:3Þ

We observe that the total number of derived-nodes is 36 (Fig. 3)
while that of original-nodes is 25. In order to minimize repetitions
in the developments that follow, where we deal extensively with
derived-nodes, the notation (p,a) is reserved for pairs such that
(p,a)AX; Then, we assign to each subdomain Oa a unique ‘local set

of derived-nodes’:

Xa
� p,að Þ
� �

ð4:4Þ

Taking a successively as 1, 2, 3 and 4, we obtain a family of
four subsets, {X1, X2, X3, X4}, Fig. 4, which is a truly disjoint

decomposition of the set of derived-nodes X, in the sense that
each one of the derived-nodes belongs to one and only one coarse-

mesh subdomains; i.e.,

X ¼ [
E

a ¼ 1
Xa and Xa

\ Xb
¼+, when aab ð4:5Þ

Of course, the cardinality (i.e., the number of members) of each
one of these subsets is 36/4 equal to 9. Given any p¼1,y,25, the
set of derived-nodes that derive from p is given by (see, Fig. 3)

ZðpÞ � p,að Þ
��pAOa

n o
ð4:6Þ

The ‘multiplicity’ m(p) of any original-node pAN̂ is defined to be
the cardinality of the set Z(p). A derived-node, (p,a), is classified as
internal, interface, primal and dual, depending on whether p is
internal, interface, primal and dual, respectively. The notations:
ICX, GCX, pCX and DCX are adopted for the corresponding
sets of derived-nodes, respectively. Furthermore, P� I[p.

The above discussion had the sole purpose of illustrating the
role played by derived nodes, as well as some notation to be used.
The formal developments were introduced and discussed in detail
in previous papers [15–20] (we draw mainly from [15]).
5. The ‘‘derived vector-space (DVS)’’

By a ‘derived-vector’ we mean a function defined in the set of
derived-nodes, X. In general the values of such functions, at each
derived-node, may be chosen to be vectors of Rn; the choice n¼1
(real-valued functions) permits treating single-equation problems
and n41 systems of partial differential equations.

The set of derived-vectors constitute a linear space W: the
‘derived-vector space’. Corresponding to each local subset of

derived-nodes X a, there is a ‘local subspace of derived-vectors’,
W aCW, which is defined by the condition that vectors of W a

vanish at every derived-node that does not belong to Xa. An
important property of the subspaces W a should be observed:

W ¼W1
� . . .�WE

ð5:1Þ

In words: the space W is the direct sum of the family of
subspaces {W1,y,WE}.

For every pair of vectors, uAW and wAW , the ‘Euclidean inner

product’ is defined to be

udw ¼
X

p,að ÞAX

u p,að Þ �w p,að Þ ð5:2Þ

here, the symbol � stands for the standard inner-product of
Rn-vectors; i.e.,

u p,að Þ �w p,að Þ �
Xn

i ¼ 1

u p,a,ið Þ �w p,a,ið Þ ð5:3Þ
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It should be observed that this definition of the Euclidean inner

product is independent of the original-matrix
_
A , which can be

non-symmetric or indefinite. When n¼1, members of the
derived-vector space are real-valued function. Then, Eq. (5.2)
reduces to

udw ¼
X

p,að ÞAX

u p,að Þ w p,að Þ ð5:4Þ

Another significant property of the derived-vector space W is
that it constitutes a finite dimensional Hilbert-space with respect
to the Euclidean inner product whose definition is independent of

the original-matrix
_
A , which can be non-symmetric or indefinite.

Due to this property the algorithms derived in the DVS-framework

are also applicable when the original-matrix
_
A is non-symmetric

or indefinite.
A derived-vector, u, is said to be ‘continuous’ when u p,að Þ is

independent of a, for every (p,a)AX. The subset of W12CW, of
continuous vectors, constitutes a linear subspace of W. The natural

injection, R : W
_

-W , of W
_

into W, is defined by the condition that,
for every_u AW

_

, one has

R_u
� �

p,að Þ ¼
_u ðpÞ, 8 p,að ÞAX ð5:5Þ

Clearly, R_u AW so defined is continuous for every _u AW
_

.
Furthermore, it can be seen that R : W

_

-W defines a bijection of
W
_

in W12; thus we write R�1 : W12-W
_

for the inverse of R, when
restricted to W12.

The subspace W11CW is defined to be the orthogonal com-
plement of W12, with respect to the Euclidean inner-product. In
this manner the space W is decomposed into two orthogonal
complementary subspaces: W11 and W12, which fulfill

W ¼W11 �W12 ð5:6Þ

Two matrices a : W-W and j : W-W are now introduced;

they are the orthogonal-projection operators, with respect to the
Euclidean inner-product, on W12 and W11, respectively. The first
one will be referred to as the ‘average operator’ and the second
one will be the ‘jump operator’. If uAW11, then au ¼ 0; i.e., vectors

of W11CW are ‘zero-average vectors’. We observe that in view of
Eq. (5.6), every derived-vector, uAW , can be written in a unique

manner as the sum of a zero-average vector plus a continuous

vector; indeed:

u ¼ u
11
þu

12
with

u
11
� juAW11

u
12
� auAW12

8<
: ð5:7Þ

Next, we define several subspaces of W that will be used in the
sequel. They are WI, WG, Wp, WD and WP; vectors that belong to
each one of these subspaces, vanish at every derived-node does
not belong to I,G, p, D and P, respectively. Furthermore, to specify
the restrictions used in the algorithms here discussed, a subspace
WrCW is introduced, which is assumed to have the property:

Wr �W I � a rWp �WD ð5:8Þ

here, a r stands for the projection operator on Wr. The linear
subspaces introduced above satisfy:

W ¼W I �WG ¼W I �Wp �WD and Wr ¼WP �WD ð5:9Þ

Thus far, only dual-primal restrictions have been implemen-
ted. In that case, Wr is defined by Wr �W IþaWpþWD.
6. The DVS-problem with constraints

A proof, of the following result as well a definition of the
matrix A : Wr-Wr here used, is given in Appendix ‘‘A’’ of [15].
‘‘A vector_u AW
_

is solution of the original problem, if and only
if, u’¼ R_u AW fulfills the equalities:

a Au’¼ f and ju’¼ 0 ð6:1Þ

The vector f � Rf̂
� �

AW12 �Wr , will be written as f � f
P
þ f

D
,

with f
P
AWP and f

D
AWD. We recall the definition of the natural

injection of Eq. (5.5).
We remark that this problem is formulated in W: the derived-

vector space. In what follows, the matrix A , when restricted to Wr

(i.e., A : Wr-Wr), is assumed to be invertible. In many cases this

can be granted when a sufficiently large number of primal-nodes,
adequately located, are taken. Let u’AWr be solution of it, then

u’AW12 �W necessarily, since j u’¼ 0, and one can apply the

inverse of the natural injection to obtain

û ¼ R�1u’ ð6:2Þ

Thereby, we observe that the mapping R�1 is only defined
when u’ is a continuous vector (i.e., u’AW12). The condition
u’AW12 can only be granted when no rounding errors are
present. Due to this fact, in numerical applications Eq. (6.2)
should be replaced by:

_u ¼ R�1au’ ð6:3Þ

Indeed, when u’ is not continuous, au’ is the continuous vector

closest to u’ (here, ‘closest’ is with respect to the Euclidean

distance).
Before finishing this Section we observe that Eq. (6.1) is a key

element of the DVS-framework, because it supplies a formulation
of the original-problem in the derived-vector space in which the
nodes have been partitioned into disjoint packages of nodes,
which in turn permit decomposing the matrix into fully indepen-
dent sub-matrices that can be processed in different processors
with negligible coordination and communication between them.
7. The DVS-algorithms with constraints

The matrix A of Eq. (6.1) can be written as (see [8,9]):

A ¼
A
PP

A
PD

A
DP

A
DD

0
@

1
A ð7:1Þ

Using this notation, we define the ‘Schur-complement matrix
with constraints’, by

S � A
DD
�A

DP
A�1

PP
A
PD

ð7:2Þ

Furthermore, in what follows:

f
D
� R

_
f

� �
D
�A

DP
A�1

PP
R
_
f

� �
P

ð7:3Þ

Then, in a simple and direct manner Eq. (6.1) is transformed
into

a SuD ¼ f
D

and juD ¼ 0 ð7:4Þ

together with

_u ¼ R � 1a I�A�1

PP
A
PD

� �
uDþA � 1

PP
R
_
f

� �
P

n o
ð7:5Þ

Generally, DDM-algorithms are classified into primal and dual

algorithms. The first of these classes includes those that are direct,
without recourse to Lagrange-multipliers, and the second one
those that use such multipliers. However, the DVS-framework

supplies a very general primal setting that permits including both
classes in it, but to do that the guidelines for their formulations
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are changed. Actually, each one of the algorithms is completely
determined by the sought-information; i.e., the information that
the algorithms seek for in an immediate manner. The sought-

information may be chosen in several alternative manners; all
what is required is that the solution of the DVS-problem can be
derived from it, in an inexpensive manner (computationally wise).

7.1. The DVS version of the BDDC algorithm

The sought-information is defined to be uDAWD. With this
choice a version of the DVS-BDDC algorithm is obtained [8]: Find
uDAWD such that

a S�1a SuD ¼ a S�1f
D

and juD ¼ 0 ð7:6Þ

Once uDAWD has been obtained,_u A
_
W solution of Eq. (3.1) is

given by

_u ¼ R � 1a I�A�1

PP
A
PD

� �
uDþA � 1

PP
R
_
f

� �
P

n o
ð7:7Þ

7.2. The DVS version of FETI-DP algorithm

The sought-information is chosen to be l ��j S u. With this

choice a version of the DVS-FETI-DP algorithm is obtained [15]:

Given f
D
AaWD, find lAWD such that

j S jS�1l ¼ j S j S�1f
D

and al ¼ 0 ð7:8Þ

Once lA jWD has been obtained, uDAaWD is given by:

uD ¼ aS�1 f
D
�l

� �
ð7:9Þ

Then, Eq. (7.7) can be applied to obtain _u A
_
W solution of

Eq. (3.1).

7.3. The DVS primal-algorithm

The sought-information is chosen to be vD � S�1j Su. This

algorithm consists in searching for a derived-vector vDAWD,

which fulfills

S�1j S jvD ¼�S�1j S jS�1f
D

and a SvD ¼ 0 ð7:10Þ

Once vDAS�1j SWD has been obtained, then

uD ¼ a S�1f
D
þvD

� �
ð7:11Þ

and Eq. (7.7) can be applied to obtain_u A
_
W solution of Eq. (3.1).

7.4. The DVS dual-algorithm

The sought-information is chosen to be m � Su. This algorithm

consists in searching for a function mAWD, which fulfills

S a S�1am ¼ S a S�1f
D

and j S�1m ¼ 0 ð7:12Þ

Once mAa S�1WD has been obtained, uDAaWD is given by:

uD ¼ a S�1m
D

ð7:13Þ

and Eq. (7.7) can be applied to obtain_u A
_
W solution of Eq. (3.1).
8. Numerical procedures

The numerical experiments were carried out with each one of
the four preconditioned DVS-algorithms with constraints enum-
erated in Section 7; they are:

a S�1a SuD ¼ a S�1f
D

and juD ¼ 0; DVS-BDDC ð8:1Þ
j S jS�1l ¼ j S jS�1f
D

and al ¼ 0;DVS-FETI-DP ð8:2Þ

S�1j S jvD ¼ S�1j S jS�1f
D

and a SvD ¼ 0; DVS-PRIMAL-2 ð8:3Þ

and

S a S�1am ¼ S a S�1a SjS�1f
D

and j S�1m ¼ 0; DVS-DUAL-2 ð8:4Þ

8.1. Comments on the DVS numerical procedures

The outstanding uniformity of the formulas given in Eqs. (8.1)–
(8.4) yields clear advantages for code development, especially
when such codes are built using object-oriented programming
techniques. Such advantages include:
I.
 The construction of very robust codes. This is an advantage of
the DVS-algorithms, which stems from the fact the definitions
of such algorithms exclusively depend on the discretized
system of equations (which will be referred to as the original

problem) that is obtained by discretization of the partial
differential equations considered, but that is otherwise inde-
pendent of the problem that motivated it. In this manner, for
example, essentially the same code was applied to treat 2-D
and 3-D problems; indeed, only the part defining the geome-
try had to be changed, and that was a very small part of it;
II.
 The codes may use different local solvers, which can be direct
or iterative solvers;
III.
 Minimal modifications are required for transforming sequen-
tial codes into parallel ones; and
IV.
 Such formulas also permit to develop codes in which ‘‘the
global-problem-solution is obtained by exclusively solving
local problems’’.

This last property must be highlighted, because it makes the
DVS-algorithms very suitable as a tool to be used in the construc-
tion of massively parallelized software, which is needed for
efficiently programming the most powerful parallel computers
available at present. Thus, procedures for constructing codes
possessing Property IV are outlined and analyzed next.

All the DVS-algorithms of Eqs. (8.1) to (8.4) are iterative and can
be implemented with recourse to Conjugate Gradient Method (CGM),
when the matrix is definite and symmetric, or some other iterative
procedure such as GMRES, when that is not the case. At each iteration
step, one has to compute the action on a derived-vector of one of the

following matrices: a S�1a S , j S jS�1, S�1j S j or S a S�1a , depending

on the DVS-algorithm that is applied. Such matrices in turn are

different permutations of the matrices S , S�1, a and j . Thus, to

implement any of the preconditioned DVS-algorithms, one only needs
to separately develop codes capable of computing the action of one of

the matrices S , S�1, a or j on an arbitrary vector of W, the derived-

vector-space. Therefore, next we separately explain how to compute

the application of each one of the matrices S and S�1. As for a and j ,

as it will be seen, their application requires exchange of information
between derived-nodes that are descendants of the same original-node

and that is a very simple operation for which such exchange of
information is minimal.

8.2. Application of S

From Eq. (7.2), we recall the definition of the matrix S :

S � A
DD
�A

DP
A�1

PP
A
PD

ð8:5Þ
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In order to evaluate the action of S on any derived-vector, we

need to successively evaluate the action of the following matrices

A
PD

, A � 1

PP
, A

DP
and A

DD
. Nothing special is required except for

A � 1

PP
, which is explained next.

We have

A
PP
�

A
II

A
Ip

A
pI

A
pp

0
@

1
A¼ A t

II
A t

Ip
a r

a rA t

pI
a rA t

pp
a r

0
@

1
A ð8:6Þ

Let wAW , be an arbitrary derived-vector, and write

v � A�1

PP
w ð8:7Þ

Then, vpAWðpÞ is characterized by

spp A
PP

� �
vp ¼wp�A

pI
A� 1

II
w

I
, subjected to jpvp ¼ 0 ð8:8Þ

and can obtained iteratively. Here,

spp A
PP

� �
� A

pp
�A

pI
A� 1

II
A

Ip

n o
ð8:9Þ

and, with ap as the projection-matrix into Wr(p),

jp � I�ap ð8:10Þ

We observe that the computation in parallel of the action of
A�1

II
is straightforward because

A�1

II
¼
XE

a ¼ 1

Aa
II

� ��1
ð8:11Þ

Once vpAWrðpÞ has been obtained, to derive v
I

one can apply:

v
I
¼ A�1

II
w

I
�A

Ip
vp

� �
ð8:12Þ

This completes the evaluation of S .

8.3. Application of S -1

We define

S� I [D ð8:13Þ

A property that is relevant for the following discussion is:

WrðSÞ ¼WðSÞ ð8:14Þ

Therefore, the matrix A�1 can be written as:

A�1
¼

A�1
� �

PP
A�1
� �

PD

A�1
� �

DP
A�1
� �

DD

0
B@

1
CA¼ A�1

� �
SS

A�1
� �

Sp

A�1
� �

pS
A�1
� �

pp

0
B@

1
CA ð8:15Þ

Then, S : WD-WD fulfills

S�1
¼ A�1
� �

DD
ð8:16Þ

For any wAW , let us write

v � A�1w ð8:17Þ

Then, vp fulfills

spp A
� �

vp ¼wp�A
pS

A t

SS

� ��1
wS, subjected to j rvp ¼ 0 ð8:18Þ

here, j r
� I�a r , where the matrix a r is the projection operator on

Wr, while

spp A
� �
� A

pp
�A

pS
A t

SS

� ��1
A
Sp

ð8:19Þ

Furthermore, we observe that

A t

SS

� ��1
¼
XE

a ¼ 1

Aa
SS

� ��1
ð8:20Þ
Eq. (8.18) is solved iteratively. Once vp has been obtained, we
apply:

vS ¼ A t

SS

� ��1
wS�A

Sp
vp

� �
ð8:21Þ

This procedure permits obtaining A�1w in general; however,
what we need only is A�1

� �
DD

w. We observe that

A�1
� �

DD
w ¼ A�1wD

� �
D

ð8:22Þ

The vector A�1wD can be obtained by the general procedure
presented above. Thus, take w �wDAWD �W and

v � A�1wD ð8:23Þ

Therefore,

v
I
þvD ¼ vS ¼� A t

SS

� ��1
A
Sp

vp ¼� A t

SS

� ��1
A t

Sp
a rvp ð8:24Þ

Using Eq. (8.20), these operations can be fully parallelized.
However, the detailed discussion of such procedures will be
presented separately [21].

8.4. Application of a and j .

We use the notation

a ¼ a i,að Þ j,bð Þ
� �

ð8:25Þ

Then [16]:

a i,að Þ j,bð Þ ¼
1

mðiÞ
dij, 8aAZ ið Þ and 8bAZ jð Þ ð8:26Þ

While

j ¼ I�a ð8:27Þ

Therefore,

jw ¼w�aw, for every wAW ð8:28Þ

As for the right hand-sides of Eqs. (7.6), (7.8), (7.10) and (7.12),
all they can be obtained by successively applying to f

D
some of

the operators that have already been discussed. Recalling
Eq. (7.3), we have

f
D
� R

_
f

� �
D
�A

DP
A�1

PP
R
_
f

� �
P

ð8:29Þ

The computation of R
_
f does present any difficulty and the

evaluation of the actions of A�1

PP
and A

DP
were already analyzed.

9. Numerical results

All the partial differential equations treated had the form:

�ar2uþ b
-
Uruþcu¼ f ðxÞ; xAO

u¼ gðxÞ; xA@O

O¼
Yd

i ¼ 1

ai,bi

� �
ð9:1Þ

where a,c are constants, while b¼ b1,:::,bdimð Þ is a constant vector
and dim¼ 2,3. In the applications we present, n is equal to the
number of degrees of freedom (dof) of the original problem; we
use linear functions and only one of them is associated with each
original node. As for the original problems treated, they have the
standard form of Eq. (3.1):

A
_
Uu
_
¼ f

_
ð9:2Þ

They were obtained by discretization of three different differ-
ential equations, in two and three dimensions, of the above
boundary value problem with a¼1. The selection of the primal



Table 1

Symmetric .2-D Eps¼1 e�6

Subdomains Dof Primal DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual

(2	2) 	 (2	2) 4 9 1 2 1 2 1

(4	4) 	 (4	4) 16 225 9 7 7 6 5

(6	6) 	 (6	6) 36 1225 25 9 9 7 6

(8	8) 	 (8	8) 64 3969 49 10 10 9 7

(10	10) 	 (10	10) 100 9801 81 11 11 10 8

(12	12) 	 (12	12) 124 20,449 121 12 11 13 9

(14	14) 	 (14	14) 196 38,025 169 12 12 13 12

(16	16) 	 (16	16) 256 65,025 225 13 12 14 12

(18	18) 	 (18	18) 324 104,329 289 13 13 15 13

(20	20) 	 (20	20) 400 159,201 361 13 13 15 14

(22	22) 	 (22	22) 484 233,289 441 13 14 15 16

(24	24) 	 (24	24) 576 330,625 529 14 14 15 15

(26	26) 	 (26	26) 676 455,625 625 14 14 15 15

(28	28) 	 (30	30) 784 613,089 729 14 14 15 15

(30	30) 	 (30	30) 900 808,201 841 15 14 15 15

Table 2

Non-symmetric 2-D Eps¼1 e�6

Subdomains Dof Primal DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual

(2	2) 	 (2	2) 4 9 1 2 1 2 1

(4	4) 	 (4	4) 16 225 9 8 6 6 6

(6	6) 	 (6	6) 36 1225 25 10 8 8 7

(8	8) 	 (8	8) 64 3969 49 12 10 9 9

(10	10) 	 (10	10) 100 9801 81 13 12 9 10

(12	12) 	 (12	12) 124 20,449 121 14 12 10 11

(14	14) 	 (14	14) 196 38,025 169 15 13 11 11

(16	16) 	 (16	16) 256 65,025 225 15 14 11 12

(18	18) 	 (18	18) 324 104,329 289 16 14 11 12

(20	20) 	 (20	20) 400 159,201 361 16 15 12 12

(22	22) 	 (22	22) 484 233,289 441 17 16 12 12

(24	24) 	 (24	24) 576 330,625 529 17 16 12 13

(26	26) 	 (26	26) 676 455,625 625 17 16 13 13

(28	28) 	 (30	30) 784 613,089 729 18 17 13 13

(30	30) 	 (30	30) 900 808,201 841 18 17 13 13
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constraints is crucial for the performance of the algorithms. In the
numerical examples they were chosen according to Algorithm ‘‘D’’
of Toselli and Widlund (p. 173 of [2]). Choosing b ¼ 0 symmetric
matrices were obtained, which corresponds to the choices c¼1
and to c¼0, respectively; in this latter case, the differential
operator treated is the Laplacian. The choices b ¼ 1,1ð Þ and
b ¼ 1,1,1ð Þ, with c¼0, yield non-symmetric matrices. As for the
right-hand side, the following choices were made:
�
 For the Laplacian operator

f � sinðnpxÞ sinðnpyÞ, in 2D

f � sinðnpxÞ sinðnpyÞ sinðnpzÞ, in 3D

(
ð9:3Þ
�
 Other differential operators

f � expðxyÞ 1�x2�y2
� �

,in 2D

f � expðxyzÞ yz 2þxyzð Þþx3 y2þz2
� �� �

, in 3D

(
ð9:4Þ
Discretization was accomplished using central finite differ-
ences, but streamline artificial viscosity was incorporated in the
treatment when ba0. The DQGMRES algorithm was implemen-
ted for the iterative solution of the non-symmetric problems. The
restrictions used were continuity on the primal nodes. The numer-
ical results that were obtained are reported in six tables that
follow. Tables 1–3 refer to 2D problems while Tables 4–6 to 3D
problems.
10. Comparisons with standard BDDC and FETI-DP

The DVS-framework has been developed with the sole inten-
tion of contributing to further the effective application of parallel
hardware to the solution of partial differential equations, espe-
cially elliptic equations but order to evaluate the possible merits
of the formulations discussed in this paper, it is mandatory to
compare them with well-established algorithms such as BDDC
and FETI-DP, as we do in this Section. As seen in previous pages,
the DVS-framework yields, in addition to a non-standard setting
for DDMs non-standard algorithms as well. Therefore, these two
aspects will be included in the comparisons that follow.

We think the relation between the DVS-framework and the
FETI-DP setting is easy to understand, because it can be summar-
ized as follows:

‘‘FETI is formulated in a product space of functions, W (see
p.133 of [2]), which contains discontinuous functions. However,
FETI does not work directly in such a space; instead, it avoids
working in it by resourcing to Lagrange-multipliers. On the
contrary, the DVS-framework precisely consists in constructing
a product space – called derived-vector space and denoted by
W – in a discrete (finite-dimensional) setting, which contains



Table 3

Laplacian 2-D Eps¼1 e�6

Subdomains Dof Primal DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual

((2	2) 	 (2	2) 4 9 1 1 1 1 1

(4	4) 	 (4	4) 16 225 9 4 3 5 5

(6	6) 	 (6	6) 36 1225 25 7 6 6 8

(8	8) 	 (8	8) 64 3969 49 7 7 7 7

(10	10) 	 (10	10) 100 9801 81 8 8 9 8

(12	12) 	 (12	12) 124 20,449 121 8 9 10 9

(14	14) 	 (14	14) 196 38,025 169 9 9 10 9

(16	16) 	 (16	16) 256 65,025 225 9 9 10 9

(18	18) 	 (18	18) 324 104,329 289 9 9 10 9

(20	20) 	 (20	20) 400 159,201 361 9 9 10 10

(22	22) 	 (22	22) 484 233,289 441 9 9 10 10

(24	24) 	 (24	24) 576 330,625 529 10 9 11 10

(26	26) 	 (26	26) 676 455,625 625 10 9 11 11

(28	28) 	 (30	30) 784 613,089 729 10 10 11 11

(30	30) 	 (30	30) 900 808,201 841 10 10 11 11

Table 4

Symmetric 3-D Eps 1 e�6 Number of iterations

Partition Subdomains Dof Primals DVS-BDDC DVS-Primal DVS-FETI-DP DVS-dual

(2	2	2)	 (2	2	2) 8 27 7 2 2 2 2

(3	3	3)	 (3	3	3) 27 512 80 4 4 3 3

(4	4	4)	 (4	4	4) 64 3375 351 5 5 4 3

(5	5	5)	 (5	5	5) 125 13,824 1024 6 5 4 3

(6	6	6)	 (6	6	6) 216 42,875 2375 6 6 4 4

(7	7	7)	 (7	7	7) 343 110,592 4752 7 6 4 4

(8	8	8)	 (8	8	8) 512 250,047 8575 8 7 5 6

(9	9	9)	 (9	9	9) 8019 512,000 14,336 8 8 7 7

(10	10	10)	 (10	10	10) 10,000 970,299 22,599 8 8 8 8
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‘‘continuous and discontinuous vectors’’ (i.e., algebraic images of
continuous and discontinuous functions, respectively) and explor-
ing the consequences of working directly in it.

It is relatively straightforward to see that the conceptual
framework is greatly simplified in this latter approach. In this
respect it is important to distinguish, in the procedures for solving
partial differential equations using highly parallelized hardware,
two different aspects: discretization of partial differential equa-
tions and designing strategies for achieving the DDM-paradigm:
‘‘solving the global BVP by solving local BVPs, exclusively’’.
Standard frameworks generally do not separate these two pro-
cesses and the difficulties associated with one and the other are
combined. In the DVS-framework, on the contrary, these two
processes are clearly separated and one works directly with the
finite system of discrete equations that has been obtained after
discretization.

To illustrate in a more specific and direct manner the advan-
tages that the DVS-framework yields, we compare next the
standard version of BDDC with its DVS-version:

10.1. The Standard Bddc

The notation of the standard BDDC [3–6,10] will be used here:

M�1Su¼M�1f ð10:1Þ

where S and the preconditioner M�1 are

S¼
XN

i ¼ 1

Ri
T
SiRi and M�1

¼
XN

i ¼ 1

RT
iSi
�1Ri ð10:2Þ
respectively. Furthermore, N is the number of subdomains and for
each i¼1,...,N

Si ¼ Ai
GG�Ai

GI Ai
II

� ��1
Ai

IG, for each i¼ 1,. . .,N ð10:3Þ

Ri:G-Gi is the restriction operator from G into Gi; when
applied to a function defined in G, it yields its restriction to Gi.
As for Ri, Ri : G-Gi is given by Ri �DiRi. Here, Di¼diag{di} is a
diagonal matrix defining a partition of unity. Substituting S and
M�1 in Eq. (10.1), we obtain

XN

i ¼ 1

Di
�1Ri

� �T
Si
�1Di

�1Ri

 ! XN

i ¼ 1

Ri
T
SiRi

 !
u

¼
XN

i ¼ 1

Di
�1Ri

� �T
Si
�1Di

�1Ri

 !
f ð10:4Þ

This equation is to be compared with our Eq. (9.1). For the purpose
of comparison, the vectors u and f of Eq. (10.4) can be identified with

vectors u and f of our original space, W. Furthermore, we apply our

natural injection, R : W-W , defined by Eq. (5.5), to Eq. (9.1) and pre-
multiply the resulting equation also by the natural injection, with u

and f
D

replaced by Ru and Rf , respectively. In this manner we obtain

RaS�1aSRu ¼ aS�1Rf ð10:5Þ

We have verified that indeed Eqs. (10.4) and (10.5) are
equivalent.



Table 5

Non-symmetric 3-D Eps 1 e�6 Number of iterations

Partition Subdomains Dof Primals DVS-BDDC DVS-PRIMAL DVS-FETI-DP DVS-dual

(2	2	2)	 (2	2	2) 8 27 7 3 2 2 2

(3	3	3)	 (3	3	3) 27 512 80 6 4 4 4

(4	4	4)	 (4	4	4) 64 3375 351 7 6 5 5

(5	5	5)	 (5	5	5) 125 13,824 1024 8 7 5 5

(6	6	6)	 (6	6	6) 216 42,875 2375 10 7 6 6

(7	7	7)	 (7	7	7) 343 110,592 4752 11 8 6 6

(8	8	8)	 (8	8	8) 512 250,047 8575 11 9 7 7

(9	9	9)	 (9	9	9) 8019 512,000 14,336 12 10 8 8

(10	10	10)	 (10	10	10) 10,000 970,299 22,599 13 11 9 9

Table 6

Laplacian 3-D Eps 1 e�6 Number of iterations

Partition Subdomains Dof Primals DVS-BDDC DVS-primal DVS-FETI-DP DVS-dual

(2	2	2)	 (2	2	2) 8 27 7 1 1 1 1

(3	3	3)	 (3	3	3) 27 512 80 3 2 2 2

(4	4	4)	 (4	4	4) 64 3375 351 1 1 2 2

(5	5	5)	 (5	5	5) 125 13,824 1024 5 4 5 4

(6	6	6)	 (6	6	6) 216 42,875 2375 6 6 5 6

(7	7	7)	 (7	7	7) 343 110,592 4752 6 6 6 6

(8	8	8)	 (8	8	8) 512 250,047 8575 7 7 8 8

(9	9	9)	 (9	9	9) 8019 512,000 14,336 8 9 9 9

(10	10	10)	 (10	10	10) 10,000 970,299 22,599 10 10 10 10
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10.2. Comparison of the Standard and DVS Versions of Bddc

The DVS-framework, and therefore also the DVS-version of
BDDC, starts with the matrix that is obtained after the problem
has been discretized and for its application does not require any
information about the system of partial differential equations
from which it originated. Throughout all the developments it is
assumed that the dual-primal Schur-complement matrix S , defined

in Section 7, Eq. (7.2), is non-singular.
When comparing the DVS-BDDC with the standard BDDC we

encountered some substantial differences. For example, when the
inverses of the local Schur-complements exist, which is granted by
choosing the primal-nodes adequately, in the DVS framework the
inverse of S t is given by (see [5,6]):

S t
� ��1

¼
XN

a ¼ 1

Sa
� ��1

ð10:6Þ

A similar relation does not hold for the BDDC algorithm.
Indeed, in this latter approach, we have instead:

S¼
XN

a ¼ 1

R
T

aSaRa ð10:7Þ

and

ðSÞ�1a
XN

a ¼ 1

R
T

aSaRa

� ��1
ð10:8Þ

even when the inverses of the local Schur-complements exist
and no restrictions are used.

The origin of this problem, encountered in the BDDC formulation,
may be traced back to the fact that the BDDC approach does not work
directly in the product space. Indeed, one frequently goes back to
degrees of freedom associated with the original nodes. This is done by
means of the restriction operators Ri:G-Gi which can be interpreted
as transformations of the original vector-space into the product vector-

space (or, derived vector-space). If the algorithm of Eq. (10.4) is
analyzed from this point of view, it is seen that it repeatedly goes
from the original vector-space to the product-space (or derived vector-

space) and back. For example, consider the expression:

XN

i ¼ 1

Di
�1Ri

� �T
Si
�1Di

�1Ri

 ! XN

i ¼ 1

Ri
T
SiRi

 !
u

¼
XN

i ¼ 1

Di
�1Ri

� �T
Si
�1Di

�1Ri

 ! XN

i ¼ 1

Ri
T
SiRiu

 !
ð10:9Þ

occurring in Eq. (10.4). After starting with the vector u in the original

vector-space, we go to the derived-vector space with Riu and remain
there when we apply Si. However, we go back to the original vector-

space when R
T

i is applied. A similar analysis can be made of the term

Di
�1Ri

� �T
Si
�1Di

�1Ri: ð10:10Þ

Summarizing, in the operations indicated in Eq. (10.9) four trips
between the original vector space and the derived-vector space were
made, two one way and the other two in the way back. In the DVS-

framework, on the other hand, from the start the original problem is
transformed into one defined in derived-vector space, where all the
work is done afterwards, and then such trips become unnecessary.
Thereby, the matrix formulas are simplified and so is code develop-
ment. The unification and simplification achieved in this manner,
permits producing more effective and robust software. This explains
in part, why the DVS-BDDC algorithm achieves the DDM-paradigm in
spite of the fact that standard versions of it do not.

In summary, some of the advantages of the DVS-framework as a
setting for domain decomposition methods are:
1.
 It constitutes a unique setting for non-overlapping domain
decomposition methods that is applicable to any well-posed
boundary-value problem of an elliptic partial differential
equation, or system of such equations. All what is required is
that, after discretization, the system matrix satisfy Axiom 1,
Eq. (3.5). Hence, the conceptual unification achieved is very
significant;
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2.
 Such a setting has permitted formulating a family of four
algorithms of general applicability: the DVS-algorithms. For
member of that family possesses the following properties: the
very same algorithm is applicable to a single-equation and to a
system of equations. When applied to a matrix, the condition
of being symmetric positive-definite is not required;
3.
 The DVS-framework can be applied independently of the
methods and function-spaces used in the discretization. Also,
the DDM-formulations may be primal-formulations (without
Lagrange multipliers) and dual-formulations (with Lagrange
multipliers). In particular, both FETI-DP and BDDC are formu-
lated in the same setting;
4.
 Furthermore, the four DVS-algorithms can be implemented with
codes that achieve the DDM-paradigm. To our knowledge this is
the first time that the DVS-paradigm has been achieved [7].
11. Conclusions

In this paper, the main purpose of domain decomposition
methods has been summarized by means of the DDM-paradigm:
‘‘to solve the global BVP by solving local boundary-value problems
(BVPs), exclusively’’. Also, arguments have been presented sus-
taining the view that in order to achieve it, it is necessary to
completely disconnect the local problems from each other. This
requires formulating the problems in a product space that con-
tains discontinuous functions.

At present, of the two most effective DDMs, FETI-DP method is
indeed formulated in a product function space. However, FETI
does not work directly in such a space of discontinuous
functions, because it avoids doing so by recourse to Lagrange-
multipliers. As for BDDC, although it is a more direct formulation
its setting is not a space of discontinuous functions, as it was
explained with some detail in Section 10. On the other hand,
standard formulations of DDMs address simultaneously the
problems of numerical discretization and parallel processing, in
spite of the fact that effective discretization methods are available
for almost any BVP.

In view of the above, a line of research has been carried out to
explore an approach in which non-overlapping DDMs are formu-
lated in a purely algebraic space that contains both ‘‘continuous and
discontinuous vectors’’ (i.e., algebraic images of continuous and
discontinuous functions) and the most important results so far
obtained in it are summarized in the present paper. They are:
�
 A purely algebraic setting – the derived-vector space – has been
constructed, which contains ‘‘continuous and discontinuous
vectors’’ (i.e., algebraic images of continuous and discontin-
uous functions, respectively);

�
 The derived-vector space is a finite dimensional Hilbert space with

respect to an inner product whose definition is independent of the
system-matrix considered. In particular, the (non-singular)
system-matrix may be any; i.e., symmetric, non-symmetric and
indefinite (non-positive-definite). Therefore, this finite dimen-
sional Hilbert space supplies a unified setting for non-
overlapping DDMs that simplifies much not only their formulation
but the methods themselves. Furthermore, this framework can be
used to formulate and discuss in a general and systematic manner
the theory of DDMs for non-symmetric and indefinite problems,
as it has been started to do in the work here summarized;

�
 The processes of numerical discretization and parallel algo-

rithms construction, which in standard settings are mixed,
have been thoroughly separated;

�
 A unified theory of non-overlapping DDMs has been obtained,

which permits treating single-partial-differential-equations
and systems of such equations that may be non-symmetric or
indefinite (non-positive-definite);

�
 In the setting of the derived-vector space four algorithms

(the DVS-algorithms) of general applicability have been devel-
oped. For each one of them, the following is true: the very
same algorithm is applicable a single-differential equation and
to a system of differential equations independently of whether
it is symmetric, non-symmetric or indefinite; furthermore,
independently of the method used in the discretization of
the BVP;

�
 Each one of the DVS-algorithms achieves the DDM-paradigm, in

the sense that, for its implementation, codes can be developed
that solve the global BVP by solving local BVPs, exclusively
(this is shown in Section 8). In particular, standard versions of
FETI-DP and BDDC do not achieve the DDM-paradigm [7] and
their applicability to operate efficiently the huge massively
parallelized computers that exist today is hindered by this fact.
On the other hand, because the DVS-algorithms do achieve the
DDM-paradigm (as it is shown in Section 8) they are very
suitable for that purpose.

A further remark is timely; at present effective discretiza-
tion methods are available for almost any well-posed BVP,
while domain decomposition methods are a more specialized topic
whose study has not been as extensive. Therefore, the availability
of DDMs that can be applied to the discrete system independently
of the discretization method used is especially valuable.

The answers to the questions opened by the line of research
here presented are, however, far from exhausted. Much more
numerical experiments and analysis are being carried out to
answer many of the questions still opened.
Algorithm nomenclature
�
 Primal #1 - DVS-BDDC.

�
 Primal #2 - DVS-Primal.

�
 Dual #1 - DVS-FETI-DP.

�
 Dual #2 - DVS-Dual.
Appendix. On Notations

General
1.
 Original-problem, the original discretized version of the problem;

2.
 Original-node is any node that was used to obtain the original

discretized version of the boundary-value problem;

3.
 Original-vector is any function defined in the whole set of

original-nodes;

4.
 N̂� 1,:::,Nf g and Ê� 1,:::,Ef g sets of natural numbers used to

label the original-nodes and the subdomains of the coarse-

mesh, respectively;

5.
 N̂

a
� N̂, a¼1,...,E, the subset of N̂ corresponding to nodes of

Oa;

6.
 Derive-node is an ordered pair of numbers such that the first

one labels an original-node and the second one labels any of
the subdomains of the coarse-mesh to which the original-node
pertains;
7.
 X is the whole set of derived-nodes;

8.
 XaCX, a¼1,y,E, the set of derived-nodes associated with Oa;

9.
 For each original node p, Z(p)CX, is the set of derived-nodes

that derived from p;

10.
 ICX, GCX, pCX and DCX, represent sets of derived-nodes;

namely, they are internal, interface, primal and dual derived-
nodes, respectively;
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11.
 P� I[p;

12.
 A derived-vector is any function (scalar or vector-valued)

defined in X;

13.
 The derived-vector space, W, is the whole set of derived-

vectors;

14.
 For every pair of vectors, uAW and wAW , the ‘Euclidean

inner product’ is defined to be

udw ¼
X

p,að ÞAX

u p,að Þw p,að Þ

In applications to systems of equations, u p,að Þ itself is a vector
and this equation is replaced by

udw ¼
X

p,að ÞAX

u p,að Þ �w p,að Þ

here, u �w means the inner product of the vectors involved;

15.
 The DVS-problem, is a problem formulated in the derived-

vector space, which is equivalent to the original-problem;

16.
 WaCW, a¼1,...,E, the set of derived-vectors, which vanish at

each derived-node that is not associated with Oa;

17.
 A derived-vector u, is continuous when its value u p,að Þ is

independent of a, at every derived-node (p,a);

18.
 W12CW is the linear subspace constituted by continuous

derived-vectors;

19.
 a is the orthogonal-projection matrix on the subspace of

continuous vectors;

20.
 A derived-vector u, has zero-average when au ¼ 0 and the

linear subspace W11CW is constituted by all zero-average
derived-vectors;
21.
 j is the orthogonal-projection matrix on the subspace of zero-
average derived-vectors.
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