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Abstract

Mathematical models of many geophysical systems @ged on the computational
processing of large-scale algebraic systems. Thst mavanced computational tools are
based on massively parallel processors. The mdsttee software for solving partial
differential equations in parallel intends to aeleiehe DDM-paradigm A set of four
algorithms, theDVS-algorithms which achieve it, and of very general applicapilhas
recently been developed and here they are explaisd, their application to problems
that frequently occur in Geophysics is illustrated.

Keywords: Computational-geophysics, Computatior@EBR, non-overlapping DDM,
BDDC; FETI-DP

Resumen

Los modelos matematicos de muchos sistemas gesissguieren el procesamiento de
sistemas algebraicos de gran escala. Las herrasi@umputacionales mas avanzadas
estan masivamente paralelizadas. El software méstived para resolver ecuaciones
diferenciales parciales en paralelo intenta alcaretaparadigma de los métodos de
descomposicion de dominigue hasta ahora se habia mantenido como un anbelo
alcanzado. Sin embargo, un grupo de cuatro algositrHos algoritmos DVS que lo
alcanzan y que tiene aplicabilidad muy general @edésarrollado recientemente. Este
articulo esta dedicado a presentarlos y a ilustraplicacién a problemas que se presentan
frecuentemente en la investigacion y el estudiladg&eofisica.

Keywords: Computational-geophysics, Computatior@EBR, non-overlapping DDM,
BDDC; FETI-DP

1. Introduction

Mathematical models of many systems of interestluging very important continuous

systems of Earth Sciences and Engineering, leaa doeat variety of partial differential

equations (PDEs) whose solution methods are baseatieocomputational processing of
large-scale algebraic systems. Furthermore, theediade expansion experienced by the
existing computational hardware and software hadem@menable to effective treatment
problems of an ever increasing diversity and comiple posed by scientific and

engineering applications [PITAC, 2006].

Parallel computing is outstanding among the new mdational tools and, in order to

effectively use the most advanced computers aveailaolay, massively parallel software is
required. Domain decomposition methods (DDMs) haeen developed precisely for
effectively treating PDEs in parallel [DDM Organiian, 2012]. Ideally, the main objective

of domain decomposition research is to producerglhgos capable obbtaining the _global
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solution by exclusively solving locgroblems, but up-to-now this has only been an
aspiration; that is, a strong desire for achiexdngh a property and so we calttite DDM-
paradigm’. In recent times, numerically competitive DDM-aligloms arenon-overlapping
preconditionedand necessarily incorporatmnstraints[Dohrmann, 2003; Farhat et al,
1991; Farhat et al, 2000; Farhat et al, 2001; Maid®3; Mandel et al, 1996; Mandel and
Tezaur, 1996; Mandel et al, 2001; Mandel et al,2200andel et al, 2005; J. Li et al, 2005;
Toselli et al, 2005], which pose an additional tdrade for achieving thBDM-paradigm

Recently a group of four algorithms, referred tates'DVS-algorithms, which fulfill the
DDM-paradigm was developed [Herrera et al , 2012; L.M. de lazCet al, 2012; Herrera
and L.M. de la Cruz et al , 2012; Herrera and @Qartedesma et al , 2012]. To derive them
a new discretization method, which uses a non-apprhg system of nodes (therived-
nodey, was introduced. This discretization procedune loa applied to any boundary-value
problem, or system of such equations. In turnyéselting system of discrete equations can
be treated using any available DDM-algorithm. Inrtigalar, two of the fourDVS-
algorithms mentioned above were obtained by application ef wrell-known and very
effective algorithms BDDC and FETI-DP [DohrmannQ230 Farhat et al , 1991; Farhat et
al, 2000; Farhat et al, 2001; Mandel et al, 1993@ndel et al, 1996; Mandel and Tezaur,
1996; Mandel et al, 2001; Mandel et al, 2003; Madred al, 2005; J. Li et al, 2005; Toselli
et al, 2005]; these will be referred to as EWS-BDDCandDVS-FETI-DPalgorithms. The
other two, which will be referred to as tb&/S-PRIMALandDVS-DUALalgorithms, were
obtained by application of two new algorithms that not been previously reported in the
literature [Herrera et al, 2011; Herrera et al, @0Herrera et al, 2009; Herrera et al, 2009;
Herrera, 2008; Herrera, 2007 ]. As said before fthwe DVS-algorithmsconstitute a group
of preconditioned and constrained algorithms that, the first time, fulfill the DDM-
paradigm[Herrera et al , 2013; L.M. de la Cruz et al, 2012

Both, BDDC and FETI-DP, are very well-knoWybohrmann, 2003; Farhat et al, 1991;
Farhat et al, 2000; Farhat et al, 2001; Mandel,et993; Mandel et al, 1996; Mandel and
Tezaur, 1996; Mandel et al, 2001dnd both are highly efficient. Recently, it was
established that these two methods are closelyeteland its numerical performance is
quite similar [Mandel et al, 2003; Mandel et al,080 On the other hand, through
numerical experiments, we have established thatuheerical performances of each one of
the members oDVS-algorithmsgroup PVS-BDDC DVS-FETI-DRE DVS-PRIMALand
DVS-DUAL are very similar too. Furthermore, we have cdro@it comparisons of the
performances of the standard versions of BDDC d@adlHbP with DVS-BDDCandDVS-
FETI-DP, and in all such numerical experiments the DVSorilgms have performed
significantly better.

EachDVS-algorithmpossesses the following conspicuous features:
* It fulfills the DDM-paradigm
* It is applicable to symmetric, non-symmetric andefinite matrices (i.e.,
neither positive, nor negative definite); and
» Itis preconditioned and constrained, and has @pdaterical efficiency.
Furthermore, the uniformity of the algebraic stanetof the matrix-formulas that define
each one of them is remarkable.



This article is organized as follows. In Sectiontl2 basic definitions for the DVS
framework are given; here we define the set ofiv@del-nodes’, internal, interface, primal
and dual nodes, the ‘derived-vector-space’, amahgrs. Section 3 is devoted to define the
new set of vector spaces that conforms the DVSdvemnk; the Euclidean inner product, is
also defined here. In Section 4 the ‘transformeabf@m’ on the derived-nodes is explained
in detail, and this is our starting point to defitie DVS algorithms. Section 5 presents a
summary of the four DVS-algorithms: DVS-BDDC, DV&H-DP, DVS-PRIMAL and
DVS-DUAL. In Section 6 we give the numerical proaegs we use to fulfilling the DDM-
paradigm, and we explain in detail the implementatssues. Finally, in Section 7 we show
some numerical results obtained after the apptinati the DVS-algorithms in the solution
of several boundary values problems of interese@ophysics. We studied examples for a
single-equation, for the cases of symmetric, nanfagtric and indefinite problems. We
also present results for an elasticity problem, nelgesystem of PDE equations is solved.

2.-DVS Framework: A Summary

The ‘derived-vector-space framework (DVS-framewotk)applied to the discrete system
of equations that is obtained after the partiafedéntial equation, or system of such
equations, has been discretized. The procedurendependent of the method of
discretization that is used. Thus, the DVS-framdvgostarting point is a system of linear
algebraic equations that is referred to asahginal problem’

Au=f (2.1)

However, in theDVS setting one does not work with the set of nodegimaily used for
discretizing the problem thariginal-nodes’(Figure 1). Instead, one uses an auxiliary set of
nodes: thederived-nodes’ Each one of such nodes has the property thatiohgs to one
and only one subdomain of thearse mesh

Indeed, generally after @arse-meslinas been introduced, sormagginal-nodesbelong to
more than one subdomain of tlw®arse-mesh(Figure 2), which is inconvenient for
achieving theDDM-paradigm Therefore, in thddVS-frameworkeachoriginal-nodethat
belongs to more than one subdomain is dividedastmany new nodes —tderived-nodes
(Figure 3) - as subdomains it belongs to. Then, deeved-nodesso obtained are
distributed into thecoarse-mesksubdomains so that eaderived-nodes assigned to one
and only one subdomain of thewarse-mesh(Figure 4). Once this has been done, a
convenient notation is
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Figure 1. Theoriginal nodes’

to label eachderived-nodeby a pair of natural numbers: the first one inti@a the
original-node from which it derives and the second one, the sof@in to which it is

assigned.
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Figure 2. Theoriginal nodesin thecoarse-mesh
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Figure 3. Thamitosis

The real-valued functions defined in the setlefived-nodegonstitute a vector-space: the
‘derived-vector-space’'w . This space becomes a finite-dimensional Hilbpaeg when it
is supplied with the inner-product that is usuatiyoduced when dealing with real-valued
functions defined in a set of nodes; this is reféno as th&uclidean inner-product
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Figure 4. Thalerived-nodeslistributed in theeoarse-mesh
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Afterwards, a new problem (referred to as tnansformed problen)’is defined in the
derived-vector-spagewhich is equivalent to the original system ofcdéte equations.
Thereatter, all the numerical and computationalkwsrcarried out in th®VS-space

Before leaving this Section, we dwell a little fuet on the meaning of @arse-meshBy
it, we mean a partition of2 into a set of non-overlapping subdomai{@,l,...,QE} , such

that for eachor =1,...,E, Q_, is open and:

E _—
Q,nQ,=0andQ O JQ, (2.2)
a=1
WhereQ , stands for the closure &, . The set ofsubdomain-indiceswill be
E={1,...E} (2.3)

N, a=1,...E, will be used for the subset ofiginal-nodesthat correspond to nodes
pertaining toQ . As usual, nodes will be classified irtoternal’ and‘interface-nodes’ a

node isinternal if it belongs to only one partition-subdomain clos and it is amterface-
node when it belongs to more than one. For the apjptisaof dual-primal methods,
interface-nodesre classified intgprimal’ and‘dual’ nodes. We define:

« N, ON as the set dhternal-nodes

« N ON as the set dfterface-nodes

« N,ON,ON as the set gfrimal-node$; and
« N, ON as the set adual-nodes

The set ofprimal-nodesis required to be a subset d§fr and, in principle, could be

otherwise chosen arbitrarily. However, the algonshconsidered bgtomain decomposition
methodsare iterative-algorithms and their rate of conesxe depends crucially on the

selection of the s&,,. Thus, criteria for selectin@l” have been studied extensively (see
[Toselli et al, 2005], for detailed discussionstluit topic). Each one of the following two
families of node-subsets is disjoir{ﬂil,,lilr} and{N, : N”,NA} . Furthermore, these node

subsets fulfill the relations:

A

N=N,ON,=N,ON, 0N, andN, =N_O

=

A (2.4)

Throughout our developments theginal matrix é is assumed to be non-singular (i.e., it

defines a bijection oV into itself). The following assumptiorakiom’) is also adopted in
throughout theDVS-framework “When the indicespON? and qON’ are internal

original-nodes while a # 8 , then pON® and qON* are unconnected”. We recall that

1In order to mimic standard notations, we shouldehasedl1 instead of thdow-case 7T. However, the modified
definitions given here yield some convenient algabproperties.
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unconnected means:

Aoa = Ap=0 (2.5)°

3.- The Derived-Vector Space (DVS)

In order to have at hand a sufficiently generateavork, we consider functions defined on
the set X of derived-nodesnvhose value at eactierived-nodeis a dD - vector. The
numerical applications that will be discussed irs thaper correspond to two possible
choices ofd: when the application refers to a single partiffiecential equation (PDE),
d =1, and for the problems of elasticity that will bensidered, which are governed by a
three-equations systerd,= 3.

Independently of the chosen value fdr, the set of such functions constitute a vector
space,W, referred to as th&lerived-vector space’'When ulJW, we write u( p,a) for

the value ofu at thederived-node( p,a). We observe that, in general( p,a) itself is a
d - vector and we adopt the notation( p,a,i), i =1,...d . for the i —th component of

u( p,a) . Whend =1 the indexi is irrelevant and, in such a case, will deletedughout.

For every pair of functions) JWand wlJW, the'Euclidean inner productis defined to
be

uw= > u( pa)o w pa) (3.1)
(p.a)OX
Here,u( p,a)© W pa) stands for the inner-product of tis® — vectors involved; thus,
u(pa)ow(pa)= ZU(pa w( pa.) (3.2)

A fundamental property of theerived- vector spac® , is that it constitutes a finite
dimensionaHilbert-spacewith respect to th&uclidean inner-product

Let W'JW be a linear subspace and assuvhél X is a subset oflerived-nodesThen,
the notationW'(M )will be used to represent the vector subspac#/bf whose elements
vanish at everylerived-nodethat does not belong tM . Furthermore, corresponding to

eachlocal subset of derived-nodé€’, there is dlocal subspace of derived-vectorsV® ,
which is defined by

we=w( x) (3.3)
Clearly, whenu OW® O W, u( p, ) =0 whenever # a . We observe that
W=W0O..0W (3.4)

A derived-vectoruOW is said to beontinuouswhen u( p,a@) is independent ofr. The
set ofcontinuous vectorsonstitute the linear subspate,, .



The orthogonal complement (with respect to the ileah inner-product) of\,, O Wis
W, OW. ThenW =W, 0 W,. Two projection-matricesa:W —~ W and j:W - W are

here introduced; they are the projection-operatatit) respect to thdzuclidean inner-
producton W, andW,, , respectively. Whem W, one has

W, = jubW,
U, =aull W,

the vectorslg and au are said to be thgump’ and the‘average’of u, respectively.

u=u,+u, With{ (3.5)

Therefore W, is the‘zero-average'subspace, whil®\,, is the‘zero-jump’subspace.

Original-nodesare classified intdinternal’ and‘interface-nodes’ a node ignternal if it
belongs to only one subdomain-closure of doarse-meshand it is aninterface-node
when it belongs to more than one of such closubel@mains. Some subspaces, significant
for our developments, are listed next:

© W =w(l);

= W=w(r);

. W,=W(7);

« W, =W(A);and
o W, =w(n).

At present, numerically competitive algorithms néedncorporateestrictionsand to this
end, in the DVS-framework a ‘restricted subspace’'wW, O W is selected. In the

developments that follow, it is assumed that:
W =W+ aW + VY (3.6)
The matrixglr will be the projection-operator oW, . We observe that whet_mD(V\( + V\g) ,

one hasa' u= u. We also notice that

W=WOW=wo wo W (3.7)

4.- The Transformed Problem
Thetransformed-problenconsists in findingu JW such that

aAu= fand ju=0 (4.1)
Where: - )
A=Y A (4.2)
and ”
A" =(A,) with &, = Q’”—Fj(é'*) (4.3)
together with



L,whennf p ¢ =0

m(p’q)zgdgq and § phE{m(pq),whenr(] P (

The functionm( p, g) is said to be thenultiplicity’ of the pair(p,q). The'derived-nodes’

are created after eoarse-meshas been introduced, by dividing tbeiginal-nodesas
explained in the Overview (Section 2), and therhvaach'derived-node’we associate a

unique pair of numbergp,a) such thata OE and pON?. In what follows, we identify
derived-nodesvith such pairs.

(4.4)

Then, in order to incorporate the constraints, ene

W, =W(I)+WA)+_awn) (4.5)
then, the matrixA:W - W defined by
A=a Ad (4.6)
has the property that
aAa= aA ¢ (4.7)

Hence, Eq.(4.1) is replaced by
aAu= fand ju=0 (4.8)

For matrices and vectors the following notatioadepted:

u (g”j for any U W

A _A AN
éz(znnzrmj; ;A (4-9)
ZAnZan gs(: j for any u V\(n)

ey

where the matrices

(4.10)

furthermore,

e (a) d(4) af T la(a) (4.12)

a.=( (4), (4),4) a=((4)

The matrix AW - Wwill be referred to as thtransformed-matrix’ We observe that

A= Awhenmr=0.

o

In turn, thetransformed problenof (4.8) can be reduced, see [Herrera et al, 2BEdrera
et al, 2009; Herrera, 2008; Herrera, 2007; Farhat,&000] for details, into the following
problem, which is expressed in terms of the valoéghe solution atdual— nodes,

exclusively: “Findu, DW/(A)that satisfies



asy = f and ju=0 (4.12)"

Here,iA DQW(A) and théSchur-complement matrix with constraings’e defined by

— -1
iA EiA _é‘An (=Ar|r|) _fr| (4'13)
and
-1
S=A,~ A.(A) A, (4.14)
respectively.

5.- The DVS-Algorithms

Generally two kinds of approaches are distinguishpdmal —-these are direct

approaches, which do not resort to Lagrange midtigl and dual —indirect approaches
that use Lagrange multipliers-. However, when DDdvis formulated using a setting as
general as that supplied by tB8/S-framework such a distinction is irrelevant. The
feature that is conspicuous for different optioasthe information that the algorithm

seeks. Indeed, four algorithms will be obtainedsbgking successively for the vectors:

u,, gl_jzs_%, igyA and Su, . However, in the presentation that follows welstiz the

‘primal vs. dual-algorithmstlassification.

5.1 Primal Formulations

THE DVS VERSION OF BDDC
This is a primal algorithm which seeks directly fog. Pre-multiplying Eq.(4.12) by

Q=S_1, one gets:
aS aSy=_aS f and_ju=0 (5.1)

In [Farhat et al, 2000], it was shown that Eq.(54)equivalent to Eq.(4.12). This
equation is the DVS-version of BDDC.

THE DVS-PRIMAL ALGORITHM
For this algorithm, theought-informations:

v,=-S" Sy (5.2)
Applying as to Eq.(5.2) it is seen thaSv, = 0. Furthermore,
é-(é—l_fA +!A):Ej(=s_l=a=sa +=81=4'§3_A,|:Ej,|:0 (5.3)
Therefore
jva=-js"f anda$,=0 (5.4)

Eq.(5.4) does not define an iterative algorithmotder to obtain such an algorithm, we
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project on jS™W,, to obtain:

S'iSk,=-S"|SjS | andag=0 (5.5)
This algorithm is referred to as tH2VS-primal algorithm: The solution is given by
u, =a(v, +S" 1, (5.6)

We observe that we could have writtap =v, + =S.'l _fA instead of Eq.(5.6). However,

the application of the projection operataris important wherv, and §'1_fA are not

computed with exact arithmetic, as it is the cabemwusing numerical methods, because
when it is applied it replaces, + 2—1 f, by the continuous-vector closest (with respect

to the Euclidean distance) to it.

5.2 Dual Formulations

THE DVS VERSION OF FETI-DP

For this algorithm theought-informations defined to beA, = ~]SU,. This algorithm can

be easily derived from th®VS-primal formulation that has just been presented. We
observe thatv, :§14A, Ay =V,, in view of Eq.(5.2), andad, =0. This permits
transforming Eq.(5.5) into

lln
Il —

jS[S'A,=_SiSjS f andig=0 (5.7)

Applying §1 to the first of these equations, it is obtained:
iSis'A, = jSiS’ f anda, =0 (5:8)
As for Eq.(5.6), it become_s:_ o
u, =as*( f, - id,) (5.9)

THE DVS-DUAL ALGORITHM
In this algorithm, thesought-informationis: x# =Su,. Then,u, :=S'1£1A. Replacing this
in Eq.(5.1), one gets:

as'au, = SaS_{ and jSy, =0 (5.10)
Finally, multiplying by S the first of these equalities, it is obtained:
sas’ w, = Sas f and j¥, =0 (5.11)

When y is known,u, can be recovered by means of

u, :a=S'l( f +£A) (5.12)
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A comment similar to that made immediately after Eq.(5.6), goes here: we have
applied the projection matrix a , in Eq.(5.12) because we are assuming that exact

arithmetic generally will not be used.

6.- Numerical Procedures Fulfilling the DDM-Paradign
Summarizing, the precondition&V S-algorithmswith constraints are:

aS'asy=_aS f and j=0; DVS-BDI (6.1)

(6.2)
where,=__a¥ ¢ 4j)
S'jSi,=S"jSjS' f anda§=0; DVS-PRIM
- - (6.3)
where,u= ==a[#_A f—_=y'§)
SaS’ a/, =_SaS5_aSjS ,f and’jg, =0;  DVS-Dl
= == - (6.4)

where = ==511$_A f A’A)

6.1- Comment on the DVS Numerical Procedures

The outstanding uniformity of the formulas given kgs.(6.1) to (6.4) yields clear
advantages for code development, especially wheh sodes are built using object-
oriented programming techniques. Such advantagasdie:

I. The construction of very robust codes. This is dwaatage of th®VS-algorithms
which stems from the fact the definitions of sudioeathms exclusively depend on
the discretized system of equations, obtained afiscretization of the partial
differential equations considered (referred to lesariginal problen), but which is
otherwise independent of the problem that motivatebh this manner, for example,
essentially the same code was applied to trea2dD3-D problems; indeed, only the
part defining the geometry had to be changed, laaidtas a very small part of it;

Il. The codes may use different local solvers, whiaghlmadirect or iterative solvers;

[ll.  Minimal modifications are required for transformisgquential codes into parallel
ones; and

IV. Such formulas also permit developing codes whidfilfthe DDM-paradigm i.e., in
which “the solution of the globgbroblem is obtained by exclusively solving local
problems”.

This last property makes the DVS-algorithms veritatlle as a tool to be used in the

construction of massively-parallelized software, souch needed for efficiently

programming the most powerful parallel computersilable at present. In the next

Subsection, procedures for constructing codes pssgg Property 1V are explained with

some detail.

All the DVS-algorithms of Egs.(6.1) to (6.4) arerdtive and can be implemented with
recourse to Conjugate Gradient Method (CGM), winenmatrix is definite and symmetric,
or some other iterative procedure such as GMRES®nwhat is not the case. At each
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iteration step, depending on tl¥/S-algorithmthat is applied, one has to compute the
action on alerived-vectoof one of the following matriceaS ™" aS, jSjS*, S*jSj or

SaS' & Such matrices in turn are different permutatiohthe matricesS, S

j . Thus, to implement any of the precondition@®S-algorithms one only needs to

separately develop codes capable of computing ¢henaof each one of the matric@,

, a and

s, aor j on an arbitrarylerived-vectarof w.

Therefore, next we present numerical proceduresdorputing the application of each one
of the matricesS, S, a andj, which fulfill the DDM-paradigm It will be seen that

onlyarequires exchange of information between derivedesobelonging to different

subdomains; actually, betweelerived-nodeghat are descendants of the sabniginal-
node(the exchange of information is minimal). As fpr=1 —a , once the action o has

been computed, no further exchange of informataquired.

6.2- Application of S
-1
From Eq.(4.13), we recall the definition of the matS= A, - A (=Aﬁr|) _A, - In order
to evaluate the action d6 on anyderived-vector we need to successively evaluate the

action of the following matrices_AnA, é:n, ém and AM. Nothing special is required

except for(énrl )_l. A procedure for evaluating the action of this mxatwhich fulfills the
DDM-paradigmis explained next.

We have
AII A\I A?I A:\ d
A == =7 =T == (6.5)
- A4, (A dA a

Let v JW, be an arbitrargerived-vectorand write

w=(A )y (6.6)

Then,w=w +w W is characterized by

a,,,,(A )w ={\L,,— A

=nn/)—=" =7

(fh )_l\i,} , subjected to"j w=0
) = = (6.7)
w =(4) {v -4, w)

and can obtained iteratively. Here,

13



ou(An)={A,- A (4) 4] (6.9

m s

and, witha” as the projection-matrix intd/ (77), j"=1-a".

We observe that fulfilling th&©DM-paradigm when computing the action c(f=,0\”)_l is
straightforward because

(A) = i(éﬁ)_l (6.9)

a=

is parallelizable. Once , W, (IT) has been obtained, to deriveone can apply:

vi=(4) (w-4,v.) 610)

this completes the evaluation 8f.

6.3- Application of §'1

We define
s=10A (6.11)
and observe that
>0m=X and Zn =0 (6.12)

Therefore, the matriA ™ can be written as:

(&) () ) ((87) (27,

A = (6.13)
= -1 -1 -1 —1
(47) (&%), ) (&) (4),
FurthermoreS: W - W fulfills
st=(AY), (6.14)
Another property that is relevant for the followidigcussion is:
W (2) =W(=) (6.15)
for anyv JW, let us write
w=A'v (6.16)
then, w,. fulfills
_l . .
am(é)y,,:lvﬂ—ﬁm (=A;z) ‘W , subjected tzdu,,:o (6.17)
Here, j" =1 -a’, where the matri>gr is the projection operator AN, , while
-1
on(8)=A,-A[A) A, 619
Furthermore, we observe that
t \1 _ a \1
(ézz) B Z:(=Azz) (6.19)

a=1
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In order to use Eq.(6.19) as a means of paralglizhe DVS-algorithms, however, the
detailed discussion of such procedures will be goteesxi separately [Herrera et al, 2013;

L.M. de la Cruz et al, 2013]. It is necessary thatlocal matriceségZ , be invertible. This

is granted whenA invertible inW,, which generally is achieved by taking a suffitign
large number oprimal-nodes

Eq.(6.17) is solved iteratively. Onee, has been obtained, we apply:
-1
_ t
v, =(A) (w-A v, (6.20)

AV
This procedure permits obtaining'lw in full; however, we only nee(ﬂé'l)Mw. We
observe that

(A7), w=(A"w), (6.21)
The vectoré’llvA can be obtained by the general procedure presatede. Thus, take
W= W, DV\[D W and

v=ATw, (6.22)
Therefore,
-1 -1
vV, =y, = (AL ) AV.=(4,) A,dv. (6.23)
6.4- Application of a and j .
We use the notation
a=(a,. ) (6.24)
then [Herrera et al, 2010]:
1 : .
o)) _@qj,mamz(o and0B0Z( ) (6.25)
while j =1-a therefore,
jw=w-aw forevery W V (6.26)

Therefore, only the evaluation obu requires exchange of information between
subdomains. In general, such numbers are very sfoakxample in application to single-
equation problem, when an orthogonal grid is usleely are at most4, for problems in
2D, and8 for problems in 3D.

As for the right hand-sides of Egs. (4.14), aliytlsan be obtained by successively applying
to iA some of the operators that have already been s$isdu Recalling Eq. (4.14), we

have

f,=(Rf) -A A (R (6.27)

=AN=nn
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The computation oRj does not present any difficulty and the evaluatibthe actions of

(éﬂn )_l and A, Wwere already analyzed.

7. — Numerical Results
Taking into account the general description of EnéS-framework given of Section 2, it
can be seen that each one of the DVS-algorithmsiguely defined by:

1. The original-matrix;

2. The partition of the set of original-nodes, whis induced by theoarse-mesh

that is applied; and

3. The set of constraints.
In turn, the original-matrix is determined by thertl differential equation, or system of
such equations, the discretization method chosdrnlafine-meshadopted. As explained
in Section 2, the partition of the set of origimmldes depends when tlfiee-meshhas
already been defined, on tlemarse-mesh(i.e., the domain decomposition) used. The

coarse-mesils constituted by a family of non-overlapping sum;kins{Ql,...,QE} of Q,

the domain of definition of the boundary-value peob to be solved. In all the examples
that are presented in this article, denstraintsare fully determined by thprimal-nodes
and consist in requiring continuity of therived-vectorat them.

Several codes were developed to treat the examplesh were written in C++ language,
using the MPI library for the communications. Ire tbtomputational implementations, the
methods of solution used to treat tbeginal-problemsare: CGM, when such a linear
system is symmetric and positive-definite and GMR#&n the discrete system is non-
symmetric or indefinite. Both are applied with &tance of 18. EachDVS-algorithmwas
applied to each one of the examples considere@pe¢far that referring to elasticity.

The results obtained for Examples 1 to 5 are sunzethin Tables 1 to 5, respectively. In
them, the acronyndof stands for to the number of degrees of freedorthebriginal

problem but it should be mentioned that the proceduresl us treat such examples are
such that the nodes that lie on the external baynda not contribute to thelof . The

notation to indicate the meshes that were adoedsifollows: In 2D cases, we use
(nxm)x(gxr), where(nxm) refers to thecoarse-meshwhile (gxr) to thefine-mesh and
similarly, in 3D cases, we ugaxmxp) x (gxrxs), where(hxmxp) define thecoarse-
meshand (gxr xs) the fine-meshThe constrains are imposed on the primal nodesl] iof
our experiments the primal nodes were located déxen 2D and at edges in 3D of the
subdomains, this coinciding with the algorithm “D"[Toselli et al, 2005].

Each Table contains at most ten columns. Thefbrgtindicate respectively: 1) the meshes
used, 2) the number of subdomains of tharse-mesh3) thedof, and 4) the number of
primal-nodesused. The figures appearing in columns 5 to 9espond to the number of
iterations that were required for convergence ofheane of the algorithms applied.
Columns 9 and 10 were only included in Table 3. BExample 3, in order to cover a wide
range of values of the Peclet-number, the diffusioefficient in Eq.(7.3)V, was varied
and the tenth column in Table 3 indicates the wbfie values ofv for which the
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corresponding boundary-value problem was solvedhEtmore, the results obtained when
the DVS-algorithms were applied were compared withse obtained in [Da Conceicao et
al, 2006] for the same problem, using the standarsion of BDDC.

7.1 Application of the DVS-algorithms to a Single-Equaibn

The applicability of theDVS-algorithmsis wide, as previously said it can be applied to
general equation systems. In Section 3, it was amred that in this paper we present
examples for whichd , the number of equations of the system, is onethrek. In this
Subsection the examples for whidr=1 will be discussed, leaving for the next Subsection
the treatment of static-elasticity models, for whit=3.

Four boundary value problems corresponding to glesiaquation will be presented. The
first two are symmetric and positive definite boandvalue problems, whose definition

involves the Laplace differential operator. Theesttwo correspond to advection-diffusion
transport, and the corresponding boundary-valueblpnes are non-symmetric and

indefinite. The discretization methods used in thigsection are based on central finite
differences (CFD), which are directly applicablehte symmetric problems. To apply CFD
to the advection-diffusion problems it was necegsdarstabilize the advection-diffusion

differential-operator and to this end artificiaffdsion was incorporated.

Despite the simplicity of the examples presentetthi;n Subsection, they are very important
because a wide range of geophysical systems gseetoi similar problems [Herrera and
Pinder, 2012]. The diversity of physical interptetas of the boundary-value problems
here discussed is enormous. All the differentiaérapors involved can be classified as
advection-diffusion operators, since Laplace omeras obtained from the general
advection-diffusion differential-operator when ttransport-velocity vanishes. Transport
processes of heat and solutes occur in a greatsdivef geophysical systems. However,
the physical processes governed by such diffelesmiaations go far beyond transport
phenomena.
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Example 1. Poisson equation in two-dimensions.
-Au=27r? sin(7mx) sin(zzny |, ( %, yO[- Lx[- 1]t ,r¢

(7.2)
u=00n0Q

DVS- DVS- DVS DVS

PARTITION SUBDOMAINS DOF PRIMALS soDC | FETDP | PRIMAL | DUAL

(2x2) X (2x2) 4 9 1 1 1 1 1

(4x4) X(4x4) 16 225 9 1 5 5 4

(6x6) X (6x6) 36 1225 25 8 8 8 7

(8x8) X (8x8) 64 3969 49 10 10 10 9
(10x10) X (10x10) 100 9801 81 11 11 12 10
(12x12) X (12x12) 144 20449 121 12 11 12 11
(14x14) X (14x14) 196 38025 169 12 12 12 11
(16x16) X (16x16) 256 65025 225 13 11 13 11
(18x18) X (18x18) 324 104329 289 13 11 13 11
(20x20) X (20x20) 400 159201 361 13 11 13 11
(22x22) X (22x22) 484 233289 441 13 12 14 11
(24x24) X (24x24) 576 330625 529 13 12 13 11
(26x26) X (26x26) 676 455625 625 13 12 14 11
(28x28) X (28x28) 784 613089 729 13 12 14 11
(30x30) X (30x30) 900 808201 841 13 12 14 11

Table 1. Number of iterations made by the four DV&lgorithms. The primal nodes
were located at the vertices of subdomains.

We can see from Table 1, that the four algorithradfgom very well as the number of
subdomains and the degrees of freedom (dof) ameased. In this example, the DVS-
DUAL algorithm presents the best performance, méogiionly 11 iterations from 1212
until 30x30 subdomains, and the same number of dof. Allradigoorithms show similar
behavior. The numerical solution of this example ba seen in the Figure 5.

Figure 5 The numerical solution for the 2D caseelwee use n=4.
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Example 2. Similar to Example 1, but it is formelhin a 3D domain.

~Au =377’ sin(7mx) sin(zzny) sifny ,( x y, 0[- 1x[- 1x[- 11 ,m (7.2)

u=00noQ
DVS- DVS- DVS- DVS-
PARTITION SUBDOMAINS DOF PRIMALS 8obC | FETLDP | PRIMAL | DUAL
(2x2x2) X (2x2x2) 8 27 7 1 1 1 1
(3x3x3) X (3x3x3) 27 512 80 4 4 4 3
(4x4x4) X (4x4x4) 64 3375 351 5 4 4 3
(5x5x5) X (5x5x5) 125 13824 1024 6 5 6 5
(6x6x6) X (6x6x6) 216 42875 2375 7 6 7 5
(7XTXT) X (7XTX7) 343 110592 4752 7 6 7 5
(8x8x8) X (8x8x8) 512 250047 8575 8 6 8 5
(9x9x9) X (9x9x9) 729 512000 14336 8 6 8 6
(10x10x10) X (10x10x10 1000 970299 22599 9 6 9 6

Table 2. Number of iterations made by the four DV&lgorithms. The primal nodes
were located at edge.

In Table 2, we observe a similar performance ofalggrithms as in the two-dimensional

case. One more time the DVS-DUAL algorithm preseamtsittle better behavior with
respect all others.

Example 3. The boundary-value problem treated is:
—vAu+beOu=0; (xyO[0,4x[0,] b=( 1}
0, (x,y)t
u(x y)z{ (x.y) g,

1 (x,y)0¢,

(7.3)

This is an advection-diffusion transport problen?, for which the differential operator
is not self-adjoint.

L&

1=
I
iy

(1.3)

Figure 6,0Q
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This example is very interesting because it costdiffusion and advection terms, which
are common in several complex geophysics phenontemlais example, the Péclet number

is defined asPe=||l L/v, where L is a characteristic length (in this chse 1). We also

define a local Péclet number &8, =| b h/v. Using these definitions, fixing the global

partition to h=1/512, and the varying the viscodrym 0.01 to 0.0001, we have that the
Péclet number varies from 316 to 316,227, anddbal IPéclet number varies from 0.617 to
617. In this case the linear system is non-symmethierefore we choose the GMRES
method with a tolerance of £0

DVS-

SUB- DVS- DVS- DVS-
PARTITION DOMAINS DOF PRIMALS BDDC FE‘IF')I PRIMAL DUAL BDDC v
(8x8) X (64x64) 64 261121 49 12 1 1 1 12 0.01
(8x8) X (64x64) 64 261121 49 8 8 8 7 9 0.001
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.0001
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.00001
(16x16) X (32x32) 256 261121 255 19 17 17 18 20 0.01
(16x16) X (32x32) 256 261121 255 14 14 13 13 17 0.001
(16x16) X (32x32) 256 261121 255 13 13 13 13 15 0.0001
(16x16) X (32x32) 256 261121 255 13 13 13 13 16 0.00001]
(32x32) X (16x16) 1024 261121 961 33 29 29 31 33 0.01
(32x32) X (16x16) 1024 261121 961 26 25 25 25 30 0.001
(32x32) X (16x16) 1024 261121 961 25 25 25 25 28 0.0001
(32x32) X (16x16) 1024 261121 961 25 25 25 26 29 0.00001]
(64x64) X (8x8) 4096 261121 3969 53 52 53 59 52 0.01
(64x64) X (8x8) 4096 261121 3969 46 46 46 47 53 0.001
(64x64) X (8x8) 4096 261121 3969 45 47 45 47 53 0.0001
(64x64) X (8x8) 4096 261121 3969 45 47 45 48 54 0.00001

Table 3. Comparison of the DVS-algorithms againstite BDDC implemented in
[Mandel et al, 1996].

In Table 3 presents the results that DS-algorithmsyielded and compares them with
those obtained in [Da Conceicéo et al, 2006]. Weeole that, with fixedoarseandfine
meshes as the viscosity coefficient is reduced, so ttte Péclet number increases,
generally the iterations required for convergeneduce. Increasing the Péclet number
implies that the effect of the advection term eggr and the numerical solution generally
becomes unstable. However, the performance of igwetization strategy based on CFD
combined with stabilization of the numerical-schelmemeans of artificial viscosity is
resilient to Péclet-number variations. For comparipurposes, the examples presented
here were chosen to be the same as those preserji@a Conceicdo et al, 2006], where
the standard BDDC algorithm was applied with thmeaset of constraints; namely, the
same set of subdomains and vertex nodes were ctmbeprimal. As can be seen in Table
3, when the comparison criterion is based on thembar of iterations required for
convergence, the observed performance oDW¥i8-algorithmsan these examples is slightly
better than that of the standard BDDC algorithrmaly, an illustration of the kind of
numerical solution obtained is shown in Figure 7.
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Figure 7 The numerical solution for=0.01.

The relative-residual decay for a coarse meskx{6p and several fine meshes is presented
in Figure 8. We consider in these computations 8¥@ndv =0.0000, in such a way that
Pe=3.16e+ 5. We observe that the best convergence is obtantesh the fine mesh is
increased, and the convergence slows when theagafring in the subdomains is reduced.

0.01

0.0001

le-06

le-08

le-10

le-12

le-14

Figure 8. Relative residual decay for the local Im@$x16).
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Example 4. The boundary-value problem treated is:

—Au+b-0u=0; (xy30[04x[03x[ O} b= (1,1 (7.4)

u(x y, 2 = exp(x+ y on oQ

This is an advection-diffusion transport problem3D, for which the differential operator
Is not self-adjoint.

PARTITION

SUBDOMAINS

DOF

PRIMALS

DVS-
BDDC

DVS-
FETI-DP

DVS-
PRIMAL

DVS-
DUAL

(2x2x2) X (2x2x2)

8

27

7

4

3

3

(3x3x3) X (3x3x3)

27

512

80

7

(4x4x4) X (4x4x4)

64

3375

351

9

(5x5x5) X (5x5x5)

125

13824

1024

10

(6x6x6) X (6x6X6)

216

42875

2375

11

6

7
8
9

(7X7XT) X (7X7X7)

343

110592

4752

12

10

(8x8x8) X (8x8x8)

512

250047

8575

113

11

(9x9x9) X (9x9x9)

729

512000

14336

14

5

6

7
7
8
8
8

11

IS
© | | |0 [~ |@ |9

(10x10x10) X (10x10x10

1000

970299

22599

15

9

12

©

Table 4. Number of iterations made by the four DVSalgorithms. The primal nodes
were located at edges of the subdomains.

The diffusion and advection-diffusion different@berator appears in the equations of the
examples presented above. They are very impontangiural and industrial phenomena.
For example, the flow and transport of solutesulbssirface groundwater, the movement of
aerosol and trace gases in the atmosphere, miXifigids in processes of crystal growth,
among many other important applications [Tood, 198@der et al, 2006; Herrera et al,
1969; Herrera et al, 1973; Herrera et al, 1977rétarG.S. et al, 2005; L.M. de la Cruz et
al, 2006]. In all our examples, we have shown tteg DVS-algorithmsobtain the
numerical solution efficiently on parallel machinds this respect, we remark that for
advection-diffusion problems the matricg#sthe discrete linear systems are non-symmetric.

7.2- Application to a System-Equations

We use theDVS-frameworkto solve a Dirichlet boundary value problem, where
displacements are zero over the boundary of thatielaody that occupies the domdih

of the physical space. Over each one of such suanhsms solved a local problem by
FEM, using linear functions as basis. On each nod# the mesh is defined a vector
valued functionu, with each component identified ag fori=1,2,3

Because our operators are symmetric and positifiaitde we use CGM as an iterative
procedure to solve those linear systems of equatibat we have defined in the DVS
framework.

The code used in the previous section, which wagnaily developed to solve a single
equation using finite differences, was adaptedstiving systems of equations with FEM.

We added the corresponding functionality in oradebe able to solve systems of equations,
in this case the elasticity problem.
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Example 5. A system of partial differential equatoin three-dimensions has also been
treated. This is the system of differential equagiof static elasticity; namely:

(A+u)00u+ppu=f_,inQ (7.5)
which was subject to the following Dirichlet boungaonditions:
u=0, onoQ (7.6)

The domain of study for our numerical experimest@aihomogeneous isotropic linearly
elastic unitary cube. In all of our experiments pinenal nodes were located at edges of the

subdomains, which is enough fgt‘ not being singular.
We consider constant coefficientsand (4 equal to one. With these conditions we have a
problem that has analytical solution, and is wnités follows:
u= (sinnxsinny STz, SINT X SiAT y SIvT 2 ,SUT X Sim y SIn )z (7.7)
The Tables 5, summarizes the numerical resultsirdatausing the DVS methods with a

DVS- | DVS- | DVS- DVS-
PARTITION SUBDOMAINS DOF PRIMALS BDDC |FETIDP | PRIMAL DUAL
(5X5x5) X (5X5x5) 125 41,472 1,024 8 7 9 9
(6x6x6) X (6x6x6) 216 128,625 2,375 8 8 10 10
(TXTXT) X (TXTXT) 343 331,776 4,752 8 8 11 11
(8x8x8) X (8x8x8) 512 750,141 8,575 8 8 12 12

tolerance ofl0™’.

Table 5. Results for DVS Algorithms

8. Conclusions

Mathematical models of many geophysical systemsd l@aa great variety of partial
differential equations (PDEs) whose solution methe@de based on the computational
processing of large-scale algebraic systems [Hemad Pinder, 2012]. Parallel computing
is outstanding among the new computational toots amorder to effectively use the most
advanced computers available today, massively Iparabftware is required. Domain
decomposition methods (DDMs) have been developedigaly for effectively treating
PDEs in parallel [DDM Organization, 2012]. What damdecomposition methods ideally
intend to do has been summarized in this papehén*DDM-paradigm”: to develop
algorithms thatobtain the_globalsolution by exclusively solving logatoblems!

In conclusion, in this paper:

1. We have presentednan-overlapping discretizatiomethod (theDVS-discretization-in

the sense that it uses a system of nodes suckablatone of them belongs to one and only
one subdomain of theoarse-meshapplicable to a wide class of well-posed boundary
problems associated with elliptic systems of equmsti In particular, the differential
operators may be symmetric, non-symmetric or imitefi(non-positive-definite);

2. Four algorithms —th®VS-algorithmgHerrera et al, 2011] which were derived using
the DVS-discretizatiorand achieve thBDM-paradigmhave been explained. Two of them
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are the result of using the BDDC and FETI-DP aljpons after applyingDVS-
discretizationto the boundary value problem considered. Therdthe are obtained when
two new algorithms, which had not been reportediiptesly in the literature, were used
instead,;

3. Numerical procedures that permit achieving Ei@gM-paradigmwith each one of the
DVS-algorithmehave been also presented,

4. Codes were developed and applied to severaldaoyivalues problems that occur in the
modeling of certain geophysical phenomena, suckraassport of solutes by both, free-
fluids and fluids in a porous medium. We also pnésesults for a static elasticity problem,
which thereby illustrates the application of theyaithms to systems of differential

equations; and

5. Besides their attractive parallelization progsitin the numerical examples tB&/S-
algorithms exhibited significantly improved numerical perfante with respect to
standard versions of BDDC and FETI-DP.
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