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Abstract  
Mathematical models of many geophysical systems are based on the computational 
processing of large-scale algebraic systems. The most advanced computational tools are 
based on massively parallel processors. The most effective software for solving partial 
differential equations in parallel intends to achieve the DDM-paradigm. A set of four 
algorithms, the DVS-algorithms, which achieve it, and of very general applicability, has 
recently been developed and here they are explained. Also, their application to problems 
that frequently occur in Geophysics is illustrated.  
Keywords: Computational-geophysics, Computational-PDEs, non-overlapping DDM, 
BDDC; FETI-DP  
 
Resumen  
Los modelos matemáticos de muchos sistemas geofísicos requieren el procesamiento de 
sistemas algebraicos de gran escala. Las herramientas computacionales más avanzadas 
están masivamente paralelizadas. El software más efectivo para resolver ecuaciones 
diferenciales parciales en paralelo intenta alcanzar el paradigma de los métodos de 
descomposición de dominio, que hasta ahora se había mantenido como un anhelo no 
alcanzado. Sin embargo, un grupo de cuatro algoritmos –los algoritmos DVS- que lo 
alcanzan y que tiene aplicabilidad muy general se ha desarrollado recientemente. Este 
artículo está dedicado a presentarlos y a ilustrar su aplicación a problemas que se presentan 
frecuentemente en la investigación y el estudio de la Geofísica.  
 
Keywords: Computational-geophysics, Computational-PDEs, non-overlapping DDM, 
BDDC; FETI-DP  
 
1. Introduction 
Mathematical models of many systems of interest, including very important continuous 
systems of Earth Sciences and Engineering, lead to a great variety of partial differential 
equations (PDEs) whose solution methods are based on the computational processing of 
large-scale algebraic systems. Furthermore, the incredible expansion experienced by the 
existing computational hardware and software has made amenable to effective treatment 
problems of an ever increasing diversity and complexity, posed by scientific and 
engineering applications [PITAC, 2006].  
Parallel computing is outstanding among the new computational tools and, in order to 
effectively use the most advanced computers available today, massively parallel software is 
required. Domain decomposition methods (DDMs) have been developed precisely for 
effectively treating PDEs in parallel [DDM Organization, 2012]. Ideally, the main objective 
of domain decomposition research is to produce algorithms capable of ‘obtaining the global 
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solution by exclusively solving local problems’, but up-to-now this has only been an 
aspiration; that is, a strong desire for achieving such a property and so we call it ‘the DDM-
paradigm’. In recent times, numerically competitive DDM-algorithms are non-overlapping, 
preconditioned and necessarily incorporate constraints [Dohrmann, 2003; Farhat et al, 
1991; Farhat et al, 2000; Farhat et al, 2001; Mandel, 1993; Mandel et al, 1996; Mandel and 
Tezaur, 1996; Mandel et al, 2001; Mandel et al, 2003; Mandel et al, 2005; J. Li et al, 2005; 
Toselli et al, 2005], which pose an additional challenge for achieving the DDM-paradigm.  
 
Recently a group of four algorithms, referred to as the ‘DVS-algorithms’, which fulfill the 
DDM-paradigm, was developed [Herrera et al , 2012; L.M. de la Cruz et al, 2012; Herrera 
and L.M. de la Cruz et al , 2012; Herrera and Carrillo Ledesma et al , 2012]. To derive them 
a new discretization method, which uses a non-overlapping system of nodes (the derived-
nodes), was introduced. This discretization procedure can be applied to any boundary-value 
problem, or system of such equations. In turn, the resulting system of discrete equations can 
be treated using any available DDM-algorithm. In particular, two of the four DVS-
algorithms mentioned above were obtained by application of the well-known and very 
effective algorithms BDDC and FETI-DP [Dohrmann, 2003; Farhat et al , 1991; Farhat et 
al, 2000; Farhat et al, 2001;  Mandel et al, 1993; Mandel et al, 1996; Mandel and Tezaur, 
1996; Mandel et al, 2001; Mandel et al,  2003; Mandel et al,  2005; J. Li et al, 2005; Toselli 
et al, 2005]; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The 
other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were 
obtained by application of two new algorithms that had not been previously reported in the 
literature [Herrera et al, 2011; Herrera et al, 2010; Herrera et al, 2009; Herrera et al, 2009; 
Herrera, 2008; Herrera, 2007 ]. As said before, the four DVS-algorithms constitute a group 
of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-
paradigm [Herrera et al , 2013; L.M. de la Cruz et al, 2012].  
 
Both, BDDC and FETI-DP, are very well-known [Dohrmann, 2003; Farhat et al, 1991; 
Farhat et al, 2000; Farhat et al, 2001;  Mandel et al, 1993; Mandel et al, 1996; Mandel and 
Tezaur, 1996; Mandel et al, 2001]; and both are highly efficient. Recently, it was 
established that these two methods are closely related and its numerical performance is 
quite similar [Mandel et al, 2003; Mandel et al, 2005]. On the other hand, through 
numerical experiments, we have established that the numerical performances of each one of 
the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and 
DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the 
performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-
FETI-DP, and in all such numerical experiments the DVS algorithms have performed 
significantly better.  
 
Each DVS-algorithm possesses the following conspicuous features:  

• It fulfills the DDM-paradigm;  
• It is applicable to symmetric, non-symmetric and indefinite matrices (i.e., 

neither positive, nor negative definite); and  
• It is preconditioned and constrained, and has update numerical efficiency.  

Furthermore, the uniformity of the algebraic structure of the matrix-formulas that define 
each one of them is remarkable. 
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This article is organized as follows. In Section 2 the basic definitions for the DVS 
framework are given; here we define the set of ‘derived-nodes’, internal, interface, primal 
and dual nodes, the ‘derived-vector-space’, among others. Section 3 is devoted to define the 
new set of vector spaces that conforms the DVS framework; the Euclidean inner product, is 
also defined here. In Section 4 the ‘transformed-problem’ on the derived-nodes is explained 
in detail, and this is our starting point to define the DVS algorithms. Section 5 presents a 
summary of the four DVS-algorithms: DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and 
DVS-DUAL. In Section 6 we give the numerical procedures we use to fulfilling the DDM-
paradigm, and we explain in detail the implementation issues. Finally, in Section 7 we show 
some numerical results obtained after the application of the DVS-algorithms in the solution 
of several boundary values problems of interest in Geophysics. We studied examples for a 
single-equation, for the cases of symmetric, non-symmetric and indefinite problems. We 
also present results for an elasticity problem, where a system of PDE equations is solved. 
  
 
2.-DVS Framework: A Summary  
The ‘derived-vector-space framework (DVS-framework)’ is applied to the discrete system 
of equations that is obtained after the partial differential equation, or system of such 
equations, has been discretized. The procedure is independent of the method of 
discretization that is used. Thus, the DVS-framework’s starting point is a system of linear 
algebraic equations that is referred to as the ‘original problem’:  

 Au f=
⌢⌢ ⌢

 (2.1) 

However, in the DVS setting one does not work with the set of nodes originally used for 
discretizing the problem the original-nodes’ (Figure 1). Instead, one uses an auxiliary set of 
nodes: the ‘derived-nodes’. Each one of such nodes has the property that it belongs to one 
and only one subdomain of the coarse mesh.  
 
Indeed, generally after a coarse-mesh has been introduced, some original-nodes belong to 
more than one subdomain of the coarse-mesh (Figure 2), which is inconvenient for 
achieving the DDM-paradigm. Therefore, in the DVS-framework, each original-node that 
belongs to more than one subdomain is divided into as many new nodes –the derived-nodes 
(Figure 3) - as subdomains it belongs to. Then, the derived-nodes so obtained are 
distributed into the coarse-mesh subdomains so that each derived-node is assigned to one 
and only one subdomain of the coarse-mesh (Figure 4). Once this has been done, a 
convenient notation is  
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Figure 1. The ‘original nodes’ 

 
 
to label each derived-node by a pair of natural numbers: the first one indicating the 
original-node from which it derives and the second one, the subdomain to which it is 
assigned.  
 
 

 
Figure 2. The original nodes in the coarse-mesh 
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Figure 3. The mitosis  

 
The real-valued functions defined in the set of derived-nodes constitute a vector-space: the 
‘derived-vector-space’, W . This space becomes a finite-dimensional Hilbert-space when it 
is supplied with the inner-product that is usually introduced when dealing with real-valued 
functions defined in a set of nodes; this is referred to as the Euclidean inner-product.  
 
 

 
Figure 4. The derived-nodes distributed in the coarse-mesh 
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Afterwards, a new problem (referred to as the ‘transformed problem’) is defined in the 
derived-vector-space, which is equivalent to the original system of discrete equations. 
Thereafter, all the numerical and computational work is carried out in the DVS-space.  
 
Before leaving this Section, we dwell a little further on the meaning of a coarse-mesh. By 
it, we mean a partition of Ω  into a set of non-overlapping subdomains, { }1,..., EΩ Ω , such 

that for each 1,...,Eα = , αΩ  is open and:  

 
1

E

 and α β α
α =

Ω ∩ Ω = ∅ Ω ⊂ Ω∪  (2.2) 

Where αΩ  stands for the closure of αΩ . The set of ‘subdomain-indices’ will be  

 { }ˆ 1,...,EΕ ≡  (2.3) 

ˆ αΝ , 1,...,Eα = , will be used for the subset of original-nodes that correspond to nodes 

pertaining to αΩ . As usual, nodes will be classified into ‘internal’  and ‘interface-nodes’: a 

node is internal if it belongs to only one partition-subdomain closure and it is an interface-
node, when it belongs to more than one. For the application of dual-primal methods, 
interface-nodes are classified into ‘primal’  and ‘dual’  nodes. We define:  
 

• ˆ ˆ
ΙΝ ⊂ Ν  as the set of internal-nodes;  

• ˆ ˆ
ΓΝ ⊂ Ν  as the set of interface-nodes;  

• ˆ ˆ ˆ
π ΓΝ ⊂ Ν ⊂ Ν  as the set of primal-nodes1; and  

• ˆ ˆ
∆Ν ⊂ Ν  as the set of dual-nodes.  

 

The set of primal-nodes is required to be a subset of ˆ
ΓΝ  and, in principle, could be 

otherwise chosen arbitrarily. However, the algorithms considered by domain decomposition 
methods are iterative-algorithms and their rate of convergence depends crucially on the 

selection of the set̂πΝ . Thus, criteria for selecting ̂πΝ  have been studied extensively (see 

[Toselli et al, 2005], for detailed discussions of this topic). Each one of the following two 

families of node-subsets is disjoint: { }ˆ ˆ,Ι ΓΝ Ν  and { }ˆ ˆ ˆ, ,πΙ ∆Ν Ν Ν . Furthermore, these node 

subsets fulfill the relations:  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ and π πΙ Γ Ι ∆ Γ ∆Ν = Ν ∪ Ν = Ν ∪ Ν ∪ Ν Ν = Ν ∪ Ν  (2.4) 

 
Throughout our developments the original matrix A

⌢
 is assumed to be non-singular (i.e., it 

defines a bijection of �W  into itself). The following assumption (‘axiom’) is also adopted in 
throughout the DVS-framework: “When the indices ˆp α∈ Ν  and ˆq β∈ Ν  are internal 

original-nodes, while α β≠  , then ˆp α∈ Ν  and ˆq β∈ Ν  are unconnected”. We recall that 

                                                 
1
In order to mimic standard notations, we should have used Π  instead of the low-case π . However, the modified 

definitions given here yield some convenient algebraic properties.  
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unconnected means:  
 0pq qpA A= =

⌢ ⌢
 (2.5)” 

 
 
3.- The Derived-Vector Space (DVS)  
In order to have at hand a sufficiently general framework, we consider functions defined on 
the set Χ  of derived-nodes whose value at each derived-node is a dD vector− . The 
numerical applications that will be discussed in this paper correspond to two possible 
choices of d : when the application refers to a single partial differential equation (PDE), 

1d = , and for the problems of elasticity that will be considered, which are governed by a 
three-equations system, 3d = .  
 
Independently of the chosen value for d , the set of such functions constitute a vector 
space, W , referred to as the ‘derived-vector space’. When u W∈ , we write ( ),u p α  for 

the value of u  at the derived-node ( ),p α . We observe that, in general, ( ),u p α  itself is a 

d vector−  and we adopt the notation ( ), ,u p iα , 1,...,i d= . for the i th−  component of 

( ),u p α  . When 1d =  the index i  is irrelevant and, in such a case, will deleted throughout.  

 
For every pair of functions, u W∈ and w W∈ , the ‘Euclidean inner product’ is defined to 
be  
 ( ) ( )

( ),

, ,
p

u w u p w p
α

α α
∈Χ

= ∑i ⊙  (3.1) 

Here, ( ) ( ), ,u p w pα α⊙  stands for the inner-product of the dD vectors−  involved; thus,  

 ( ) ( ) ( ) ( )
1

, , , , , ,
n

i
i

u p w p u p i w p iα α α α
=

≡∑⊙  (3.2) 

A fundamental property of the derived-vector spaceW , is that it constitutes a finite 
dimensional Hilbert-space with respect to the Euclidean inner-product. 
 
Let 'W W⊂  be a linear subspace and assume Μ ⊂ Χ  is a subset of derived-nodes. Then, 
the notation ( )'W Μ will be used to represent the vector subspace of 'W , whose elements 

vanish at every derived-node that does not belong to Μ . Furthermore, corresponding to 
each local subset of derived-nodes, αΧ , there is a ‘local subspace of derived-vectors’, Wα , 
which is defined by  

 ( )W W Xα α≡  (3.3) 

Clearly, when u W Wα∈ ⊂ , ( ), 0u p β =  whenever β α≠ . We observe that  

 1 ... EW W W= ⊕ ⊕  (3.4) 
A derived-vector u W∈  is said to be continuous when ( ),u p α  is independent of α . The 

set of continuous vectors constitute the linear subspace, 12W .  
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The orthogonal complement (with respect to the Euclidean inner-product) of 12W W⊂ is 

11W W⊂ . Then 11 12W W W= ⊕ . Two projection-matrices :a W W→  and :j W W→  are 

here introduced; they are the projection-operators, with respect to the Euclidean inner-
product on 12W and 11W , respectively. When u W∈ , one has  

 
11 11

11 12

12 12

u ju W
u u u  with 

u au W

≡ ∈= + 
≡ ∈

 (3.5) 

the vectors ju  and au are said to be the ‘jump’ and the ‘average’ of u , respectively. 

Therefore, 11W  is the ‘zero-average’ subspace, while 12W  is the ‘zero-jump’ subspace.   

Original-nodes are classified into ‘internal’  and ‘interface-nodes’: a node is internal if it 
belongs to only one subdomain-closure of the coarse-mesh, and it is an interface-node 
when it belongs to more than one of such closure-subdomains. Some subspaces, significant 
for our developments, are listed next:  
• ( )IW W≡ Ι ;  

• ( )W WΓ ≡ Γ ;  

• ( )W Wπ π≡ ;  

• ( )W W∆ ≡ ∆ ;and  

• ( )W WΠ ≡ Π .  

 
At present, numerically competitive algorithms need to incorporate restrictions and to this 
end, in the DVS-framework, a ‘restricted subspace’ rW W⊂  is selected. In the 

developments that follow, it is assumed that: 
 rW W aW WπΙ ∆≡ + +  (3.6) 

The matrix 
ra  will be the projection-operator on rW . We observe that when ( )u W WΙ ∆∈ + , 

one has 
ra u u= . We also notice that  

 W W W W W WπΙ Γ Ι ∆= ⊕ = ⊕ ⊕  (3.7) 

 
4.- The Transformed Problem  
The transformed-problem consists in finding u W∈  such that  

 0taA u f  and ju= =  (4.1) 

Where:  

 
1

E
tA Aα

α =
≡∑  (4.2) 

and 

 ( ) ( ),
pq pq

pq pq

A
A A  with A

s p q

α
α α α δ

≡ ≡
⌢

⌢ ⌢ ⌢
  (4.3) 

together with  
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 ( ) ( ) ( )
( ) ( )1

1, ,
, ,

, , ,

E

pq

 when m p q = 0
m p q  and s p q

m p q  when m p q 0 
α

α
δ

=

≡ ≡ 
≠

∑  (4.4) 

The function ( ),m p q  is said to be the ‘multiplicity’  of the pair ( ),p q .  The ‘derived-nodes’ 

are created after a coarse-mesh has been introduced, by dividing the original-nodes as 
explained in the Overview (Section 2), and then with each ‘derived-node’ we associate a 

unique pair of numbers ( ),p α  such that ˆα ∈Ε  and ˆp α∈ Ν . In what follows, we identify 

derived-nodes with such pairs. 
 
Then, in order to incorporate the constraints, we define  
 ( ) ( ) ( )rW W W aWπ≡ Ι + ∆ +  (4.5) 

then, the matrix : r rA W W→  defined by  

 
r t rA a A a≡  (4.6) 

has the property that  

 
taAa aA a=  (4.7) 

Hence, Eq.(4.1) is replaced by  
 0aAu f  and ju= =  (4.8) 

For matrices and vectors the following notation is adopted:  

 

( )

u
u  for any u W 

A A u
A ; 

A A u
u  for any u W

uπ

Π

∆ΠΠ Π∆

Ι∆Π ∆∆

  
≡ ∈     ≡        ≡ ∈ Π 
 

 (4.9) 

where the matrices  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

: :

: :

r r r r

r r r r

A W W ,  A W W

A W W ,  A W W
ΠΠ Π∆

∆Π ∆∆

Π → Π ∆ → Π

Π → ∆ ∆ → ∆
 (4.10) 

furthermore,  

 

( ) ( )
( ) ( )

( )
( )

( ) ( )( ) ( )( )

t t r t

r tr t r t r

t t r t

     A      A a     A
A ,  A

a Aa A  a A a

A     A     A a  ,   A A

π

ππ ππ

π

ΙΙ Ι Ι∆
ΠΠ Π∆

∆Ι

∆Π ∆∆∆Ι ∆ ∆∆

   
   ≡ ≡
     

  

≡ ≡

 (4.11) 

The matrix :A W W→ will be referred to as the ‘transformed-matrix’. We observe that 
tA A= when π = ∅ .  

 
In turn, the transformed problem of (4.8) can be reduced, see [Herrera et al, 2010; Herrera 
et al, 2009; Herrera, 2008; Herrera, 2007; Farhat et al, 2000] for details, into the following 
problem, which is expressed in terms of the values of the solution at dual nodes− , 
exclusively: “Find ( )u W∆ ∈ ∆ that satisfies  
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 0aSu f  and ju∆ ∆∆
= =  (4.12)” 

Here, ( )f aW
∆

∈ ∆  and the ‘Schur-complement matrix with constraints’ are defined by  

 ( ) 1
f f A A f

−

∆Π ΠΠ∆ ∆ Π
≡ −  (4.13) 

and  

 ( ) 1
S A A A A

−

∆∆ ∆Π ΠΠ Π∆
≡ −  (4.14) 

respectively. 
  
 
 
5.- The DVS-Algorithms 
Generally two kinds of approaches are distinguished: primal –these are direct 
approaches, which do not resort to Lagrange multipliers- and dual –indirect approaches 
that use Lagrange multipliers-. However, when DDMs are formulated using a setting as 
general as that supplied by the DVS-framework, such a distinction is irrelevant. The 
feature that is conspicuous for different options is the information that the algorithm 
seeks. Indeed, four algorithms will be obtained by seeking successively for the vectors: 
u∆ , 1S jSu−

∆ , jSu∆  and Su∆ . However, in the presentation that follows we stick to the 

‘primal vs. dual-algorithms’ classification.  
 
 
5.1 Primal Formulations 
 
THE DVS VERSION OF BDDC  
This is a primal algorithm which seeks directly for u∆ . Pre-multiplying Eq.(4.12) by 

1aS−
, one gets: 

 1 1 0aS aSu aS f  and ju− −
∆ ∆∆

= =  (5.1) 

In [Farhat et al, 2000], it was shown that Eq.(5.1) is equivalent to Eq.(4.12). This 
equation is the DVS-version of BDDC.  
 
 
THE DVS-PRIMAL ALGORITHM  
For this algorithm, the sought-information is:  
 1S jSu−

∆ ∆≡ −v  (5.2) 

Applying aS to Eq.(5.2) it is seen that 0aS ∆ =v . Furthermore,  

 ( ) ( )1 1 1 0j S f j S aS S jS u ju− − −
∆ ∆ ∆∆∆

+ = + = =v  (5.3) 

Therefore 
 1 0j jS f  and aS−

∆ ∆∆
= − =v v  (5.4) 

Eq.(5.4) does not define an iterative algorithm. In order to obtain such an algorithm, we 
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project on 1jS−
∆W , to obtain:  

 1 1 1 0S jS j S jS jS f  and aS− − −
∆ ∆∆

= − =v v  (5.5) 

This algorithm is referred to as the ‘DVS-primal algorithm’. The solution is given by  

 ( )1u a S f−
∆∆ ∆

= +v  (5.6) 

We observe that we could have written 1u S f−
∆∆ ∆

= +v  instead of Eq.(5.6). However, 

the application of the projection operator a  is important when ∆v  and 1S f−

∆
 are not 

computed with exact arithmetic, as it is the case when using numerical methods, because 
when it is applied it replaces 1S f−

∆ ∆
+v  by the continuous-vector closest (with respect 

to the Euclidean distance) to it.  
 
 
5.2 Dual Formulations 
 
THE DVS VERSION OF FETI-DP  
For this algorithm the sought-information is defined to be: jSuλ∆ ∆≡ − . This algorithm can 

be easily derived from the DVS-primal formulation that has just been presented. We 

observe that 
1S λ−

∆ ∆=v , Sλ ∆∆ = v , in view of Eq.(5.2), and 0aλ ∆ = . This permits 

transforming Eq.(5.5) into  
 1 1 0S jS jS S jS jS f  and aλ λ− −

∆ ∆∆
= =  (5.7) 

Applying 1S−  to the first of these equations, it is obtained:  

 1 1 0jS jS jS jS f  and aλ λ− −
∆ ∆∆

= =  (5.8) 

As for Eq.(5.6), it becomes:  

 ( )1u aS f jλ−
∆ ∆∆

= −  (5.9) 

 
 
THE DVS-DUAL ALGORITHM  
In this algorithm, the sought-information is: Suµ ∆∆

≡ . Then, 1u S µ−
∆ ∆

= . Replacing this 

in Eq.(5.1), one gets:  
 1 1 1 0aS a SaS f  and jSµ µ− − −

∆ ∆∆
= =  (5.10) 

Finally, multiplying by S  the first of these equalities, it is obtained:  

 1 1 1 0SaS a SaS f  and jSµ µ− − −

∆ ∆∆
= =  (5.11) 

When µ
∆

 is known, u∆  can be recovered by means of  

 ( )1u aS f µ−
∆ ∆∆

= +  (5.12) 
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A comment similar to that made immediately after Eq.(5.6), goes here: we have 
applied the projection matrix  a  , in Eq.(5.12)  because we are assuming that exact 

arithmetic generally will not be used. 
  
6.- Numerical Procedures Fulfilling the DDM-Paradigm  
Summarizing, the preconditioned DVS-algorithms with constraints are:  
 1 1 0;aS aSu aS f   and ju  DVS - BDDC− −

∆ ∆∆
= =  (6.1) 

 ( )
1 1

1

0;jS jS jS jS f   and a  DVS - FETI - DP

                       where u aS f j

λ λ

λ

− −
∆ ∆∆

−
∆ ∆∆

= =

= −
 (6.2) 

 ( )
1 1 1

1

0;S jS j S jS jS f   and aS   DVS - PRIMAL

                    where u aS f jS

− − −
∆ ∆∆

−
∆∆ ∆

= =

= −

v v

v
 (6.3) 

 
( )

1 1 1 1

1

0;SaS a SaS aS jS f   and jS     DVS - DUAL

                            where u aS f

µ µ

µ

− − − −

∆ ∆∆

−
∆ ∆∆

= =

= +
 (6.4) 

 
 
6.1- Comment on the DVS Numerical Procedures  
The outstanding uniformity of the formulas given in Eqs.(6.1) to (6.4) yields clear 
advantages for code development, especially when such codes are built using object-
oriented programming techniques. Such advantages include:  

I.  The construction of very robust codes. This is an advantage of the DVS-algorithms, 
which stems from the fact the definitions of such algorithms exclusively depend on 
the discretized system of equations, obtained after discretization of the partial 
differential equations considered (referred to as the original problem), but which is 
otherwise independent of the problem that motivated it. In this manner, for example, 
essentially the same code was applied to treat 2-D and 3-D problems; indeed, only the 
part defining the geometry had to be changed, and that was a very small part of it; 

II.  The codes may use different local solvers, which can be direct or iterative solvers; 
III.  Minimal modifications are required for transforming sequential codes into parallel 

ones; and  
IV.  Such formulas also permit developing codes which fulfill the DDM-paradigm; i.e., in 

which “the solution of the global problem is obtained by exclusively solving local 
problems”. 

This last property makes the DVS-algorithms very suitable as a tool to be used in the 
construction of massively-parallelized software, so much needed for efficiently 
programming the most powerful parallel computers available at present. In the next 
Subsection, procedures for constructing codes possessing Property IV are explained with 
some detail.  
 
All the DVS-algorithms of Eqs.(6.1) to (6.4) are iterative and can be implemented with 
recourse to Conjugate Gradient Method (CGM), when the matrix is definite and symmetric, 
or some other iterative procedure such as GMRES, when that is not the case. At each 
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iteration step, depending on the DVS-algorithm that is applied, one has to compute the 

action on a derived-vector of one of the following matrices: 
1aS aS−

, 1jS jS− , 1S jS j−  or 

1SaS a−
. Such matrices in turn are different permutations of the matrices S , 

1S−
, a  and 

j . Thus, to implement any of the preconditioned DVS-algorithms, one only needs to 

separately develop codes capable of computing the action of each one of the matrices S , 
1S−
, a or j on an arbitrary derived-vector, of W .  

 
Therefore, next we present numerical procedures for computing the application of each one 

of the matrices S , 
1S−
, a  and j , which fulfill the DDM-paradigm. It will be seen that 

onlya requires exchange of information between derived-nodes belonging to different 

subdomains; actually, between derived-nodes that are descendants of the same original-
node (the exchange of information is minimal). As for j I a= − , once the action of a  has 

been computed, no further exchange of information is required.  
 
 
6.2- Application of S

 
 

From Eq.(4.13), we recall the definition of the matrix ( ) 1
S A A A A

−

∆∆ ∆Π ΠΠ Π∆
≡ − . In order 

to evaluate the action of S  on any derived-vector, we need to successively evaluate the 

action of the following matrices A
Π∆

, 1A−

ΠΠ
, A

∆Π
 and A

∆∆
. Nothing special is required 

except for ( ) 1
A

−

ΠΠ
. A procedure for evaluating the action of this matrix, which fulfills the 

DDM-paradigm is explained next.  
 
We have  

 
          

  

t t r

r t r t r

A A A A a
A

A A a A a A a

π π

π ππ π ππ

ΙΙ Ι ΙΙ Ι

ΠΠ
Ι Ι

  
  ≡ =

   
   

 (6.5) 

Let W∈v , be an arbitrary derived-vector, and write  

 ( ) 1
w A

−

ΠΠ
≡ v  (6.6) 

Then, w w w WπΙ= + ∈  is characterized by  

 
( ) ( ){ }
( ) { }

1

1

0A w A A , subjected to j w

w A A w

π
ππ πππ π

ππ

σ
−

ΙΠΠ Ι ΙΙ

ΙΙ ΙΙ Ι

= − =

= −
∼

v v

v
 (6.7) 

and can obtained iteratively. Here,  
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 ( ) ( ){ }1
A A A A Aππ ππ π π

σ
−

ΠΠ Ι ΙΙ Ι
≡ −  (6.8) 

and, with aπ
 as the projection-matrix into ( )rW π ,  .j aπ π≡ Ι −   

We observe that fulfilling the DDM-paradigm when computing the action of ( ) 1
A

−

ΙΙ
 is 

straightforward because  

 ( ) ( ) 11

1

E

A Aα

α

−−

ΙΙ ΙΙ
=

=∑  (6.9) 

is parallelizable. Once ( )rWπ π∈v  has been obtained, to derive Ιv  one can apply:  

 ( ) ( )1
A w A ππ

−

Ι ΙΙΙ Ι
= −v v  (6.10) 

this completes the evaluation of S .  

 
 

6.3- Application of S -1-1-1-1 

We define  
 Σ ≡ Ι ∪ ∆  (6.11) 
and observe that  
   and  π πΣ ∪ = Χ Σ ∩ = ∅  (6.12) 

Therefore, the matrix 
1A−
 can be written as:  

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 11 1

1

1 1 1 1

A AA A
A

A A A A

π

π ππ

− −− −

− ΣΣ ΣΠΠ Π∆

− − − −

∆Π ∆∆ Σ

  
  = =
     

   

 (6.13) 

Furthermore, :S W W∆ ∆→  fulfills  

 ( )1 1S A− −

∆∆
=  (6.14) 

Another property that is relevant for the following discussion is:  
 ( ) ( )rW WΣ = Σ  (6.15) 

for any W∈v , let us write  

 
1w A−≡ v  (6.16) 

then, wπ  fulfills  

 ( ) ( ) 1

0t rA w A A w , subjected to jπ πππ π π
σ

−

ΣΣ ΣΣ
= − =v v  (6.17) 

Here, r rj a≡ Ι − , where the matrix 
ra  is the projection operator on rW , while  

 ( ) ( ) 1
tA A A A Aππ ππ π π

σ
−

Σ ΣΣ Σ
≡ −  (6.18) 

Furthermore, we observe that  

 ( ) ( )1 1

1

E
tA Aα

α

− −

ΣΣ ΣΣ
=

=∑  (6.19) 



15 
 

In order to use Eq.(6.19) as a means of parallelizing the DVS-algorithms, however, the 
detailed discussion of such procedures will be presented separately [Herrera et al, 2013; 
L.M. de la Cruz et al, 2013]. It is necessary that the local matrices, Aα

ΣΣ
, be invertible. This 

is granted when A  invertible in rW , which generally is achieved by taking a sufficiently 

large number of primal-nodes.  
 
Eq.(6.17) is solved iteratively. Once πv  has been obtained, we apply:  

 ( ) ( )1
tA w A ππ

−

Σ ΣΣΣ Σ
= −v v  (6.20) 

This procedure permits obtaining 
1A w−

 in full; however, we only need ( )1A w−

∆∆
. We 

observe that  

 ( ) ( )1 1A w A w− −
∆∆∆ ∆

=  (6.21) 

The vector 
1A w−

∆  can be obtained by the general procedure presented above. Thus, take 

w w W W∆∆≡ ∈ ⊂  and  

 
1A w−

∆≡v  (6.22) 

Therefore,  

 ( ) ( )1 1

.t t t rA A A A aπ ππ π

− −

Ι ∆ Σ ΣΣ Σ ΣΣ Σ
+ = = − = −v v v v v  (6.23) 

 
 
6.4- Application of a  and j .  

We use the notation  

 ( )( )( ), ,i ja a α β=  (6.24) 

then [Herrera et al, 2010]:  

 ( )( ) ( ) ( ) ( ), ,

1
,iji ja  i  and j  

m iα β δ α β= ∀ ∈ Ζ ∀ ∈ Ζ  (6.25) 

while j a= Ι −
 
therefore,  

 ,jw w aw  for every  w W= − ∈  (6.26) 

Therefore, only the evaluation of au requires exchange of information between 

subdomains. In general, such numbers are very small; for example in application to single-
equation problem, when an orthogonal grid is used, they are at most: 4 , for problems in 
2D, and 8  for problems in 3D.  
 
As for the right hand-sides of Eqs. (4.14), all they can be obtained by successively applying 
to f

∆
 some of the operators that have already been discussed. Recalling Eq. (4.14), we 

have  

 ( ) ( )1f R f A A R f−

∆ ∆Π ΠΠ∆ Π
≡ −

⌢ ⌢
 (6.27) 
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The computation of R f
⌢

 does not present any difficulty and the evaluation of the actions of 

( ) 1
A

−

ΠΠ
 and A

∆Π
 were already analyzed.  

 
7. – Numerical Results  
Taking into account the general description of the DVS-framework given of Section 2, it 
can be seen that each one of the DVS-algorithms is uniquely defined by: 

1. The original-matrix; 
2. The partition of the set of original-nodes, which is induced by the coarse-mesh 
that is applied; and  
3. The set of constraints. 

In turn, the original-matrix is determined by the partial differential equation, or system of 
such equations, the discretization method chosen and the fine-mesh adopted. As explained 
in Section 2, the partition of the set of original-nodes depends when the fine-mesh has 
already been defined, on the coarse-mesh (i.e., the domain decomposition) used. The 
coarse-mesh is constituted by a family of non-overlapping subdomains { }1,..., EΩ Ω  of Ω , 

the domain of definition of the boundary-value problem to be solved. In all the examples 
that are presented in this article, the constraints are fully determined by the primal-nodes 
and consist in requiring continuity of the derived-vectors at them.  
 
Several codes were developed to treat the examples, which were written in C++ language, 
using the MPI library for the communications. In the computational implementations, the 
methods of solution used to treat the original-problems are: CGM, when such a linear 
system is symmetric and positive-definite and GMRES when the discrete system is non-
symmetric or indefinite. Both are applied with a tolerance of 10-6. Each DVS-algorithm was 
applied to each one of the examples considered, except for that referring to elasticity.  
 
The results obtained for Examples 1 to 5 are summarized in Tables 1 to 5, respectively. In 
them, the acronym dof  stands for to the number of degrees of freedom of the original 
problem, but it should be mentioned that the procedures used to treat such examples are 
such that the nodes that lie on the external boundary do not contribute to the dof . The 
notation to indicate the meshes that were adopted is as follows: In 2D cases, we use 
(n×m)×(q×r), where (n×m) refers to the coarse-mesh, while (q×r) to the fine-mesh; and 
similarly, in 3D cases, we use (n×m×p) ×  (q×r ×s), where (n×m×p) define the coarse-
mesh and (q×r ×s) the fine-mesh. The constrains are imposed on the primal nodes, in all of 
our experiments the primal nodes were located at vertex in 2D and at edges in 3D of the 
subdomains, this coinciding with the algorithm “D” in [Toselli et al, 2005]. 
 
Each Table contains at most ten columns. The first four indicate respectively: 1) the meshes 
used, 2) the number of subdomains of the coarse-mesh, 3) the dof, and 4) the number of 
primal-nodes used. The figures appearing in columns 5 to 9 correspond to the number of 
iterations that were required for convergence of each one of the algorithms applied. 
Columns 9 and 10 were only included in Table 3. For Example 3, in order to cover a wide 
range of values of the Peclet-number, the diffusion coefficient in Eq.(7.3), ν , was varied 
and the tenth column in Table 3 indicates the different values of ν  for which the 
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corresponding boundary-value problem was solved. Furthermore, the results obtained when 
the DVS-algorithms were applied were compared with those obtained in [Da Conceição et 
al, 2006] for the same problem, using the standard version of BDDC.  
 
 
7.1 Application of the DVS-algorithms to a Single-Equation  
The applicability of the DVS-algorithms is wide, as previously said it can be applied to 
general equation systems. In Section 3, it was announced that in this paper we present 
examples for which d , the number of equations of the system, is one and three. In this 
Subsection the examples for which 1d =  will be discussed, leaving for the next Subsection 
the treatment of static-elasticity models, for which 3d = .  
 
Four boundary value problems corresponding to a single-equation will be presented. The 
first two are symmetric and positive definite boundary-value problems, whose definition 
involves the Laplace differential operator. The other two correspond to advection-diffusion 
transport, and the corresponding boundary-value problems are non-symmetric and 
indefinite. The discretization methods used in this Subsection are based on central finite 
differences (CFD), which are directly applicable to the symmetric problems. To apply CFD 
to the advection-diffusion problems it was necessary to stabilize the advection-diffusion 
differential-operator and to this end artificial diffusion was incorporated.  
 
Despite the simplicity of the examples presented in this Subsection, they are very important 
because a wide range of geophysical systems give rise to similar problems [Herrera and 
Pinder, 2012]. The diversity of physical interpretations of the boundary-value problems 
here discussed is enormous. All the differential operators involved can be classified as 
advection-diffusion operators, since Laplace operator is obtained from the general 
advection-diffusion differential-operator when the transport-velocity vanishes. Transport 
processes of heat and solutes occur in a great diversity of geophysical systems. However, 
the physical processes governed by such differential-equations go far beyond transport 
phenomena.  
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Example 1. Poisson equation in two-dimensions.  

 
( ) ( ) ( ) [ ] [ ]22 sin sin ,  , 1,1 1,1 ,  4

     0  

u n nx ny x y n

u on

π π π2−∆ = ∈ − × − =
= ∂Ω

  (7.1) 

PARTITION SUBDOMAINS DOF PRIMALS 
DVS-
BDDC 

DVS-
FETI-DP 

DVS 
PRIMAL 

DVS 
DUAL 

(2x2) X (2x2) 4 9 1 1 1 1 1 

(4x4) X(4x4) 16 225 9 1 5 5 4 

(6x6) X (6x6) 36 1225 25 8 8 8 7 

(8x8) X (8x8) 64 3969 49 10 10 10 9 

(10x10) X (10x10) 100 9801 81 11 11 12 10 

(12x12) X (12x12) 144 20449 121 12 11 12 11 

(14x14) X (14x14) 196 38025 169 12 12 12 11 

(16x16) X (16x16) 256 65025 225 13 11 13 11 

(18x18) X (18x18) 324 104329 289 13 11 13 11 

(20x20) X (20x20) 400 159201 361 13 11 13 11 

(22x22) X (22x22) 484 233289 441 13 12 14 11 

(24x24) X (24x24) 576 330625 529 13 12 13 11 

(26x26) X (26x26) 676 455625 625 13 12 14 11 

(28x28) X (28x28) 784 613089 729 13 12 14 11 

(30x30) X (30x30) 900 808201 841 13 12 14 11 

Table 1. Number of iterations made by the four DVS algorithms. The primal nodes 
were located at the vertices of subdomains. 

 
We can see from Table 1, that the four algorithms perform very well as the number of 
subdomains and the degrees of freedom (dof) are increased. In this example, the DVS-
DUAL algorithm presents the best performance, requiring only 11 iterations from 12×12 
until 30×30 subdomains, and the same number of dof. All other algorithms show similar 
behavior. The numerical solution of this example can be seen in the Figure 5. 
 

 
 

Figure 5 The numerical solution for the 2D case, here we use n=4. 
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Example 2. Similar to Example 1, but it is formulated in a 3D domain.  

 
( ) ( ) ( ) ( ) [ ] [ ] [ ]23 sin sin sin ,  , , 1,1 1,1 1,1 ,  4

     0  

u n nx ny nz x y z n

u on

π π π π2−∆ = ∈ − × − × − =
= ∂Ω

 (7.2) 

 

 
Table 2. Number of iterations made by the four DVS algorithms. The primal nodes 

were located at edge. 
 
 
In Table 2, we observe a similar performance of the algorithms as in the two-dimensional 
case. One more time the DVS-DUAL algorithm presents a little better behavior with 
respect all others. 
 
Example 3. The boundary-value problem treated is:  

 

( ) [ ] [ ] ( )

( ) ( )
( )

1

2

0; , 0,1 0,1 , 1,3

0, ,
,

1, ,

u b u x y b

x y
u x y

x y

ν

ψ
ψ

•− ∆ + ∇ = ∈ × ≡

∈= 
∈

   

  
  

  (7.3) 

This is an advection-diffusion transport problem in 2D, for which the differential operator 
is not self-adjoint.  
 

 
Figure 6, ∂Ω  

 

PARTITION SUBDOMAINS DOF PRIMALS 
DVS-
BDDC 

DVS-
FETI-DP 

DVS- 
PRIMAL 

DVS- 
DUAL 

(2x2x2) X (2x2x2) 8 27 7 1 1 1 1 

(3x3x3) X (3x3x3) 27 512 80 4 4 4 3 

(4x4x4) X (4x4x4) 64 3375 351 5 4 4 3 

(5x5x5) X (5x5x5) 125 13824 1024 6 5 6 5 

(6x6x6) X (6x6x6) 216 42875 2375 7 6 7 5 

(7x7x7) X (7x7x7) 343 110592 4752 7 6 7 5 

(8x8x8) X (8x8x8) 512 250047 8575 8 6 8 5 

(9x9x9) X (9x9x9) 729 512000 14336 8 6 8 6 

(10x10x10) X (10x10x10) 1000 970299 22599 9 6 9 6 
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This example is very interesting because it contains diffusion and advection terms, which 
are common in several complex geophysics phenomena. In this example, the Péclet number 
is defined as /e b L νΡ = , where L is a characteristic length (in this case L = 1). We also 

define a local Péclet number as /he b h νΡ = . Using these definitions, fixing the global 

partition to h=1/512, and the varying the viscosity from 0.01 to 0.0001, we have that the 
Péclet number varies from 316 to 316,227, and the local Péclet number varies from 0.617 to 
617. In this case the linear system is non-symmetric, therefore we choose the GMRES 
method with a tolerance of 10-6.  

 
Table 3. Comparison of the DVS-algorithms against the BDDC implemented in 

[Mandel et al, 1996]. 
 
In Table 3 presents the results that the DVS-algorithms yielded and compares them with 
those obtained in [Da Conceição et al, 2006]. We observe that, with fixed coarse and fine 
meshes, as the viscosity coefficient is reduced, so that the Péclet number increases, 
generally the iterations required for convergence reduce. Increasing the Péclet number 
implies that the effect of the advection term enlarges, and the numerical solution generally 
becomes unstable. However, the performance of the discretization strategy based on CFD 
combined with stabilization of the numerical-scheme by means of artificial viscosity is 
resilient to Péclet-number variations. For comparison purposes, the examples presented 
here were chosen to be the same as those presented in [Da Conceição et al, 2006], where 
the standard BDDC algorithm was applied with the same set of constraints; namely, the 
same set of subdomains and vertex nodes were chosen to be primal. As can be seen in Table 
3, when the comparison criterion is based on the number of iterations required for 
convergence, the observed performance of the DVS-algorithms in these examples is slightly 
better than that of the standard BDDC algorithm. Finally, an illustration of the kind of 
numerical solution obtained is shown in Figure 7.  

PARTITION 
SUB- 

DOMAINS 
DOF PRIMALS 

DVS-
BDDC 

DVS-
FETI-

DP 

DVS-
PRIMAL 

DVS-
DUAL 

BDDC ν  

(8x8) X (64x64) 64 261121 49 12 11 11 11 12 0.01 
(8x8) X (64x64) 64 261121 49 8 8 8 7 9 0.001 
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.0001 
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.00001 

(16x16) X (32x32) 256 261121 255 19 17 17 18 20 0.01 
(16x16) X (32x32) 256 261121 255 14 14 13 13 17 0.001 
(16x16) X (32x32) 256 261121 255 13 13 13 13 15 0.0001 
(16x16) X (32x32) 256 261121 255 13 13 13 13 16 0.00001 
(32x32) X (16x16) 1024 261121 961 33 29 29 31 33 0.01 
(32x32) X (16x16) 1024 261121 961 26 25 25 25 30 0.001 
(32x32) X (16x16) 1024 261121 961 25 25 25 25 28 0.0001 
(32x32) X (16x16) 1024 261121 961 25 25 25 26 29 0.00001 
(64x64) X (8x8) 4096 261121 3969 53 52 53 59 52 0.01 
(64x64) X (8x8) 4096 261121 3969 46 46 46 47 53 0.001 
(64x64) X (8x8) 4096 261121 3969 45 47 45 47 53 0.0001 
(64x64) X (8x8) 4096 261121 3969 45 47 45 48 54 0.00001 
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Figure 7 The numerical solution for 0.01ν = . 

 
The relative-residual decay for a coarse mesh (16×16) and several fine meshes is presented 
in Figure 8. We consider in these computations b=(1,3) and 0.00001ν = , in such a way that 

3.16 5e eΡ = + . We observe that the best convergence is obtained when the fine mesh is 
increased, and the convergence slows when the dof occurring in the subdomains is reduced.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Relative residual decay for the local mesh (16×16). 
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Example 4. The boundary-value problem treated is:  

 
( ) [ ] [ ] [ ]

( )
0; , , 0,1 0,1 0,1 , (1,1,1)

, , exp( )

u b u x y z b

u x y z x y z

•−∆ + ∇ = ∈ × × =

= + + ∂Ω

   
 on 

  (7.4) 

This is an advection-diffusion transport problem in 3D, for which the differential operator 
is not self-adjoint.  
 

 
Table 4. Number of iterations made by the four DVS algorithms. The primal nodes 
were located at edges of the subdomains. 
 
The diffusion and advection-diffusion differential-operator appears in the equations of the 
examples presented above. They are very important in natural and industrial phenomena. 
For example, the flow and transport of solutes in subsurface groundwater, the movement of 
aerosol and trace gases in the atmosphere, mixing of fluids in processes of crystal growth, 
among many other important applications [Tood, 1980; Pinder et al, 2006; Herrera et al, 
1969; Herrera et al, 1973; Herrera et al, 1977; Herrera G.S. et al, 2005; L.M. de la Cruz et 
al, 2006]. In all our examples, we have shown that the DVS-algorithms obtain the 
numerical solution efficiently on parallel machines. In this respect, we remark that for 
advection-diffusion problems the matrices of the discrete linear systems are non-symmetric.  
 
 
7.2- Application to a System-Equations  
We use the DVS-framework to solve a Dirichlet boundary value problem, where 
displacements are zero over the boundary of the elastic body that occupies the domain Ω  
of the physical space. Over each one of such subdomains is solved a local problem by 
FEM, using linear functions as basis.  On each node α of the mesh is defined a vector 
valued function uα  with each component identified as   uα i   for i = 1,2,3. 
Because our operators are symmetric and positive definite, we use CGM as an iterative 
procedure to solve those linear systems of equations that we have defined in the DVS 
framework.  
The code used in the previous section, which was originally developed to solve a single 
equation using finite differences, was adapted for solving systems of equations with FEM. 
We added the corresponding functionality in order to be able to solve systems of equations, 
in this case the elasticity problem.  

PARTITION SUBDOMAINS DOF PRIMALS 
DVS-
BDDC 

DVS-
FETI-DP 

DVS- 
PRIMAL 

DVS- 
DUAL 

(2x2x2) X (2x2x2) 8 27 7 4 3 3 4 

(3x3x3) X (3x3x3) 27 512 80 7 5 6 5 

(4x4x4) X (4x4x4) 64 3375 351 9 6 7 6 

(5x5x5) X (5x5x5) 125 13824 1024 10 7 8 7 

(6x6x6) X (6x6x6) 216 42875 2375 11 7 9 8 

(7x7x7) X (7x7x7) 343 110592 4752 12 8 10 8 

(8x8x8) X (8x8x8) 512 250047 8575 |13 8 11 8 

(9x9x9) X (9x9x9) 729 512000 14336 14 8 11 9 

(10x10x10) X (10x10x10) 1000 970299 22599 15 9 12 9 
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Example 5. A system of partial differential equations in three-dimensions has also been 
treated. This is the system of differential equations of static elasticity; namely: 
 ( ) ,  in u u fλ µ µ

Ω
+ ∇∇ + ∆ = Ωi  (7.5) 

which was subject to the following Dirichlet boundary conditions: 
 0,  on u = ∂Ω  (7.6) 
The domain of study for our numerical experiments is a homogeneous isotropic linearly 
elastic unitary cube. In all of our experiments the primal nodes were located at edges of the 
subdomains, which is enough for tA not being singular.  

We consider constant coefficients λ and µ  equal to one. With these conditions we have a 
problem that has analytical solution, and is written as follows: 
 ( )sin sin sin ,sin sin sin ,sin sin sinu x y z x y z x y zπ π π π π π π π π=  (7.7) 

The Tables 5, summarizes the numerical results obtained using the DVS methods with a 

tolerance of 710− .  
 

Table 5. Results for DVS Algorithms 
 
 
8. Conclusions  
Mathematical models of many geophysical systems lead to a great variety of partial 
differential equations (PDEs) whose solution methods are based on the computational 
processing of large-scale algebraic systems [Herrera and Pinder, 2012]. Parallel computing 
is outstanding among the new computational tools and, in order to effectively use the most 
advanced computers available today, massively parallel software is required. Domain 
decomposition methods (DDMs) have been developed precisely for effectively treating 
PDEs in parallel [DDM Organization, 2012]. What domain decomposition methods ideally 
intend to do has been summarized in this paper in the “DDM-paradigm” : to develop 
algorithms that ‘obtain the global solution by exclusively solving local problems’.  
 
In conclusion, in this paper:  
1. We have presented a non-overlapping discretization method (the DVS-discretization) -in 
the sense that it uses a system of nodes such that each one of them belongs to one and only 
one subdomain of the coarse-mesh- applicable to a wide class of well-posed boundary 
problems associated with elliptic systems of equations. In particular, the differential 
operators may be symmetric, non-symmetric or indefinite (non-positive-definite);  
 
2. Four algorithms –the DVS-algorithms [Herrera et al, 2011]-, which were derived using 
the DVS-discretization and achieve the DDM-paradigm have been explained. Two of them 

PARTITION SUBDOMAINS DOF PRIMALS 
DVS-
BDDC 

DVS-
FETIDP 

DVS-
PRIMAL  

DVS-
DUAL 

(5x5x5) X (5x5x5) 125 41,472 1,024 8 7 9 9 

(6x6x6) X (6x6x6) 216 128,625 2,375 8 8 10 10 

(7x7x7) X (7x7x7) 343 331,776 4,752 8 8 11 11 

(8x8x8) X (8x8x8) 512 750,141 8,575 8 8 12 12 
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are the result of using the BDDC and FETI-DP algorithms after applying DVS-
discretization to the boundary value problem considered. The other two are obtained when 
two new algorithms, which had not been reported previously in the literature, were used 
instead;  
 
3. Numerical procedures that permit achieving the DDM-paradigm with each one of the 
DVS-algorithms have been also presented;  
 
4. Codes were developed and applied to several boundary values problems that occur in the 
modeling of certain geophysical phenomena, such as transport of solutes by both, free-
fluids and fluids in a porous medium. We also present results for a static elasticity problem, 
which thereby illustrates the application of the algorithms to systems of differential 
equations; and  
 
5. Besides their attractive parallelization properties, in the numerical examples the DVS-
algorithms exhibited significantly improved numerical performance with respect to 
standard versions of BDDC and FETI-DP.  
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