
1

Parallel Algorithms for Computational Models of Geophysical Systems
By

Antonio Carrillo-Ledesma, Ismael Herrera* , and Luis M. de la Cruz
Instituto de Geofísica

Universidad Nacional Autónoma de México (UNAM)
Apdo. Postal 22-582, México, 14000 D.F.

Email: iherrera@unam.mx

Abstract
Mathematical models of many geophysical systems are based on the computational
processing of large-scale algebraic systems. The most advanced computational tools are
based on massively parallel processors. The most effective software for solving partial
differential equations in parallel intends to achieve the DDM-paradigm. A set of four
algorithms, the DVS-algorithms, which achieve it, and of very general applicability, has
recently been developed and here they are explained. Also, their application to problems
that frequently occur in Geophysics is illustrated.
Keywords: Computational-geophysics, Computational-PDEs, non-overlapping DDM,
BDDC; FETI-DP

Resumen
Los modelos matemáticos de muchos sistemas geofísicos requieren el procesamiento de
sistemas algebraicos de gran escala. Las herramientas computacionales más avanzadas
están masivamente paralelizadas. El software más efectivo para resolver ecuaciones
diferenciales parciales en paralelo intenta alcanzar el paradigma de los métodos de
descomposición de dominio, que hasta ahora se había mantenido como un anhelo no
alcanzado. Sin embargo, un grupo de cuatro algoritmos –los algoritmos DVS- que lo
alcanzan y que tiene aplicabilidad muy general se ha desarrollado recientemente. Este
artículo está dedicado a presentarlos y a ilustrar su aplicación a problemas que se presentan
frecuentemente en la investigación y el estudio de la Geofísica.

Keywords: Computational-geophysics, Computational-PDEs, non-overlapping DDM,
BDDC; FETI-DP

1. Introduction
Mathematical models of many systems of interest, including very important continuous
systems of Earth Sciences and Engineering, lead to a great variety of partial differential
equations (PDEs) whose solution methods are based on the computational processing of
large-scale algebraic systems. Furthermore, the incredible expansion experienced by the
existing computational hardware and software has made amenable to effective treatment
problems of an ever increasing diversity and complexity, posed by scientific and
engineering applications [PITAC, 2006].
Parallel computing is outstanding among the new computational tools and, in order to
effectively use the most advanced computers available today, massively parallel software is
required. Domain decomposition methods (DDMs) have been developed precisely for
effectively treating PDEs in parallel [DDM Organization, 2012]. Ideally, the main objective
of domain decomposition research is to produce algorithms capable of ‘obtaining the global

2

solution by exclusively solving local problems’, but up-to-now this has only been an
aspiration; that is, a strong desire for achieving such a property and so we call it ‘the DDM-
paradigm’. In recent times, numerically competitive DDM-algorithms are non-overlapping,
preconditioned and necessarily incorporate constraints [Dohrmann, 2003; Farhat et al,
1991; Farhat et al, 2000; Farhat et al, 2001; Mandel, 1993; Mandel et al, 1996; Mandel and
Tezaur, 1996; Mandel et al, 2001; Mandel et al, 2003; Mandel et al, 2005; J. Li et al, 2005;
Toselli et al, 2005], which pose an additional challenge for achieving the DDM-paradigm.

Recently a group of four algorithms, referred to as the ‘DVS-algorithms’, which fulfill the
DDM-paradigm, was developed [Herrera et al , 2012; L.M. de la Cruz et al, 2012; Herrera
and L.M. de la Cruz et al , 2012; Herrera and Carrillo Ledesma et al , 2012]. To derive them
a new discretization method, which uses a non-overlapping system of nodes (the derived-
nodes), was introduced. This discretization procedure can be applied to any boundary-value
problem, or system of such equations. In turn, the resulting system of discrete equations can
be treated using any available DDM-algorithm. In particular, two of the four DVS-
algorithms mentioned above were obtained by application of the well-known and very
effective algorithms BDDC and FETI-DP [Dohrmann, 2003; Farhat et al , 1991; Farhat et
al, 2000; Farhat et al, 2001; Mandel et al, 1993; Mandel et al, 1996; Mandel and Tezaur,
1996; Mandel et al, 2001; Mandel et al, 2003; Mandel et al, 2005; J. Li et al, 2005; Toselli
et al, 2005]; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The
other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were
obtained by application of two new algorithms that had not been previously reported in the
literature [Herrera et al, 2011; Herrera et al, 2010; Herrera et al, 2009; Herrera et al, 2009;
Herrera, 2008; Herrera, 2007]. As said before, the four DVS-algorithms constitute a group
of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-
paradigm [Herrera et al , 2013; L.M. de la Cruz et al, 2012].

Both, BDDC and FETI-DP, are very well-known [Dohrmann, 2003; Farhat et al, 1991;
Farhat et al, 2000; Farhat et al, 2001; Mandel et al, 1993; Mandel et al, 1996; Mandel and
Tezaur, 1996; Mandel et al, 2001]; and both are highly efficient. Recently, it was
established that these two methods are closely related and its numerical performance is
quite similar [Mandel et al, 2003; Mandel et al, 2005]. On the other hand, through
numerical experiments, we have established that the numerical performances of each one of
the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and
DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the
performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-
FETI-DP, and in all such numerical experiments the DVS algorithms have performed
significantly better.

Each DVS-algorithm possesses the following conspicuous features:

• It fulfills the DDM-paradigm;
• It is applicable to symmetric, non-symmetric and indefinite matrices (i.e.,

neither positive, nor negative definite); and
• It is preconditioned and constrained, and has update numerical efficiency.

Furthermore, the uniformity of the algebraic structure of the matrix-formulas that define
each one of them is remarkable.

3

This article is organized as follows. In Section 2 the basic definitions for the DVS
framework are given; here we define the set of ‘derived-nodes’, internal, interface, primal
and dual nodes, the ‘derived-vector-space’, among others. Section 3 is devoted to define the
new set of vector spaces that conforms the DVS framework; the Euclidean inner product, is
also defined here. In Section 4 the ‘transformed-problem’ on the derived-nodes is explained
in detail, and this is our starting point to define the DVS algorithms. Section 5 presents a
summary of the four DVS-algorithms: DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and
DVS-DUAL. In Section 6 we give the numerical procedures we use to fulfilling the DDM-
paradigm, and we explain in detail the implementation issues. Finally, in Section 7 we show
some numerical results obtained after the application of the DVS-algorithms in the solution
of several boundary values problems of interest in Geophysics. We studied examples for a
single-equation, for the cases of symmetric, non-symmetric and indefinite problems. We
also present results for an elasticity problem, where a system of PDE equations is solved.

2.-DVS Framework: A Summary
The ‘derived-vector-space framework (DVS-framework)’ is applied to the discrete system
of equations that is obtained after the partial differential equation, or system of such
equations, has been discretized. The procedure is independent of the method of
discretization that is used. Thus, the DVS-framework’s starting point is a system of linear
algebraic equations that is referred to as the ‘original problem’:

 Au f=
⌢⌢ ⌢

 (2.1)

However, in the DVS setting one does not work with the set of nodes originally used for
discretizing the problem the original-nodes’ (Figure 1). Instead, one uses an auxiliary set of
nodes: the ‘derived-nodes’. Each one of such nodes has the property that it belongs to one
and only one subdomain of the coarse mesh.

Indeed, generally after a coarse-mesh has been introduced, some original-nodes belong to
more than one subdomain of the coarse-mesh (Figure 2), which is inconvenient for
achieving the DDM-paradigm. Therefore, in the DVS-framework, each original-node that
belongs to more than one subdomain is divided into as many new nodes –the derived-nodes
(Figure 3) - as subdomains it belongs to. Then, the derived-nodes so obtained are
distributed into the coarse-mesh subdomains so that each derived-node is assigned to one
and only one subdomain of the coarse-mesh (Figure 4). Once this has been done, a
convenient notation is

4

Figure 1. The ‘original nodes’

to label each derived-node by a pair of natural numbers: the first one indicating the
original-node from which it derives and the second one, the subdomain to which it is
assigned.

Figure 2. The original nodes in the coarse-mesh

5

Figure 3. The mitosis

The real-valued functions defined in the set of derived-nodes constitute a vector-space: the
‘derived-vector-space’, W . This space becomes a finite-dimensional Hilbert-space when it
is supplied with the inner-product that is usually introduced when dealing with real-valued
functions defined in a set of nodes; this is referred to as the Euclidean inner-product.

Figure 4. The derived-nodes distributed in the coarse-mesh

6

Afterwards, a new problem (referred to as the ‘transformed problem’) is defined in the
derived-vector-space, which is equivalent to the original system of discrete equations.
Thereafter, all the numerical and computational work is carried out in the DVS-space.

Before leaving this Section, we dwell a little further on the meaning of a coarse-mesh. By
it, we mean a partition of Ω into a set of non-overlapping subdomains, { }1,..., EΩ Ω , such

that for each 1,...,Eα = , αΩ is open and:

1

E

 and α β α
α =

Ω ∩ Ω = ∅ Ω ⊂ Ω∪ (2.2)

Where αΩ stands for the closure of αΩ . The set of ‘subdomain-indices’ will be

 { }ˆ 1,...,EΕ ≡ (2.3)

ˆ αΝ , 1,...,Eα = , will be used for the subset of original-nodes that correspond to nodes

pertaining to αΩ . As usual, nodes will be classified into ‘internal’ and ‘interface-nodes’: a

node is internal if it belongs to only one partition-subdomain closure and it is an interface-
node, when it belongs to more than one. For the application of dual-primal methods,
interface-nodes are classified into ‘primal’ and ‘dual’ nodes. We define:

• ˆ ˆ
ΙΝ ⊂ Ν as the set of internal-nodes;

• ˆ ˆ
ΓΝ ⊂ Ν as the set of interface-nodes;

• ˆ ˆ ˆ
π ΓΝ ⊂ Ν ⊂ Ν as the set of primal-nodes1; and

• ˆ ˆ
∆Ν ⊂ Ν as the set of dual-nodes.

The set of primal-nodes is required to be a subset of ˆ
ΓΝ and, in principle, could be

otherwise chosen arbitrarily. However, the algorithms considered by domain decomposition
methods are iterative-algorithms and their rate of convergence depends crucially on the

selection of the set̂πΝ . Thus, criteria for selecting ̂πΝ have been studied extensively (see

[Toselli et al, 2005], for detailed discussions of this topic). Each one of the following two

families of node-subsets is disjoint: { }ˆ ˆ,Ι ΓΝ Ν and { }ˆ ˆ ˆ, ,πΙ ∆Ν Ν Ν . Furthermore, these node

subsets fulfill the relations:

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ and π πΙ Γ Ι ∆ Γ ∆Ν = Ν ∪ Ν = Ν ∪ Ν ∪ Ν Ν = Ν ∪ Ν (2.4)

Throughout our developments the original matrix A

⌢
 is assumed to be non-singular (i.e., it

defines a bijection of �W into itself). The following assumption (‘axiom’) is also adopted in
throughout the DVS-framework: “When the indices ˆp α∈ Ν and ˆq β∈ Ν are internal

original-nodes, while α β≠ , then ˆp α∈ Ν and ˆq β∈ Ν are unconnected”. We recall that

1
In order to mimic standard notations, we should have used Π instead of the low-case π . However, the modified

definitions given here yield some convenient algebraic properties.

7

unconnected means:
 0pq qpA A= =

⌢ ⌢
 (2.5)”

3.- The Derived-Vector Space (DVS)
In order to have at hand a sufficiently general framework, we consider functions defined on
the set Χ of derived-nodes whose value at each derived-node is a dD vector− . The
numerical applications that will be discussed in this paper correspond to two possible
choices of d : when the application refers to a single partial differential equation (PDE),

1d = , and for the problems of elasticity that will be considered, which are governed by a
three-equations system, 3d = .

Independently of the chosen value for d , the set of such functions constitute a vector
space, W , referred to as the ‘derived-vector space’. When u W∈ , we write (),u p α for

the value of u at the derived-node (),p α . We observe that, in general, (),u p α itself is a

d vector− and we adopt the notation (), ,u p iα , 1,...,i d= . for the i th− component of

(),u p α . When 1d = the index i is irrelevant and, in such a case, will deleted throughout.

For every pair of functions, u W∈ and w W∈ , the ‘Euclidean inner product’ is defined to
be
 () ()

(),

, ,
p

u w u p w p
α

α α
∈Χ

= ∑i ⊙ (3.1)

Here, () (), ,u p w pα α⊙ stands for the inner-product of the dD vectors− involved; thus,

 () () () ()
1

, , , , , ,
n

i
i

u p w p u p i w p iα α α α
=

≡∑⊙ (3.2)

A fundamental property of the derived-vector spaceW , is that it constitutes a finite
dimensional Hilbert-space with respect to the Euclidean inner-product.

Let 'W W⊂ be a linear subspace and assume Μ ⊂ Χ is a subset of derived-nodes. Then,
the notation ()'W Μ will be used to represent the vector subspace of 'W , whose elements

vanish at every derived-node that does not belong to Μ . Furthermore, corresponding to
each local subset of derived-nodes, αΧ , there is a ‘local subspace of derived-vectors’, Wα ,
which is defined by

 ()W W Xα α≡ (3.3)

Clearly, when u W Wα∈ ⊂ , (), 0u p β = whenever β α≠ . We observe that

 1 ... EW W W= ⊕ ⊕ (3.4)
A derived-vector u W∈ is said to be continuous when (),u p α is independent of α . The

set of continuous vectors constitute the linear subspace, 12W .

8

The orthogonal complement (with respect to the Euclidean inner-product) of 12W W⊂ is

11W W⊂ . Then 11 12W W W= ⊕ . Two projection-matrices :a W W→ and :j W W→ are

here introduced; they are the projection-operators, with respect to the Euclidean inner-
product on 12W and 11W , respectively. When u W∈ , one has

11 11

11 12

12 12

u ju W
u u u with

u au W

≡ ∈= + 
≡ ∈

 (3.5)

the vectors ju and au are said to be the ‘jump’ and the ‘average’ of u , respectively.

Therefore, 11W is the ‘zero-average’ subspace, while 12W is the ‘zero-jump’ subspace.

Original-nodes are classified into ‘internal’ and ‘interface-nodes’: a node is internal if it
belongs to only one subdomain-closure of the coarse-mesh, and it is an interface-node
when it belongs to more than one of such closure-subdomains. Some subspaces, significant
for our developments, are listed next:
• ()IW W≡ Ι ;

• ()W WΓ ≡ Γ ;

• ()W Wπ π≡ ;

• ()W W∆ ≡ ∆ ;and

• ()W WΠ ≡ Π .

At present, numerically competitive algorithms need to incorporate restrictions and to this
end, in the DVS-framework, a ‘restricted subspace’ rW W⊂ is selected. In the

developments that follow, it is assumed that:
 rW W aW WπΙ ∆≡ + + (3.6)

The matrix
ra will be the projection-operator on rW . We observe that when ()u W WΙ ∆∈ + ,

one has
ra u u= . We also notice that

 W W W W W WπΙ Γ Ι ∆= ⊕ = ⊕ ⊕ (3.7)

4.- The Transformed Problem
The transformed-problem consists in finding u W∈ such that

 0taA u f and ju= = (4.1)

Where:

1

E
tA Aα

α =
≡∑ (4.2)

and

 () (),
pq pq

pq pq

A
A A with A

s p q

α
α α α δ

≡ ≡
⌢

⌢ ⌢ ⌢
 (4.3)

together with

9

 () () ()
() ()1

1, ,
, ,

, , ,

E

pq

 when m p q = 0
m p q and s p q

m p q when m p q 0
α

α
δ

=

≡ ≡ 
≠

∑ (4.4)

The function (),m p q is said to be the ‘multiplicity’ of the pair (),p q . The ‘derived-nodes’

are created after a coarse-mesh has been introduced, by dividing the original-nodes as
explained in the Overview (Section 2), and then with each ‘derived-node’ we associate a

unique pair of numbers (),p α such that ˆα ∈Ε and ˆp α∈ Ν . In what follows, we identify

derived-nodes with such pairs.

Then, in order to incorporate the constraints, we define
 () () ()rW W W aWπ≡ Ι + ∆ + (4.5)

then, the matrix : r rA W W→ defined by

r t rA a A a≡ (4.6)

has the property that

taAa aA a= (4.7)

Hence, Eq.(4.1) is replaced by
 0aAu f and ju= = (4.8)

For matrices and vectors the following notation is adopted:

()

u
u for any u W

A A u
A ;

A A u
u for any u W

uπ

Π

∆ΠΠ Π∆

Ι∆Π ∆∆

  
≡ ∈     ≡        ≡ ∈ Π 
 

 (4.9)

where the matrices

() () () ()
() () () ()

: :

: :

r r r r

r r r r

A W W , A W W

A W W , A W W
ΠΠ Π∆

∆Π ∆∆

Π → Π ∆ → Π

Π → ∆ ∆ → ∆
 (4.10)

furthermore,

() ()
() ()

()
()

() ()() ()()

t t r t

r tr t r t r

t t r t

 A A a A
A , A

a Aa A a A a

A A A a , A A

π

ππ ππ

π

ΙΙ Ι Ι∆
ΠΠ Π∆

∆Ι

∆Π ∆∆∆Ι ∆ ∆∆

   
   ≡ ≡
     

  

≡ ≡

 (4.11)

The matrix :A W W→ will be referred to as the ‘transformed-matrix’. We observe that
tA A= when π = ∅ .

In turn, the transformed problem of (4.8) can be reduced, see [Herrera et al, 2010; Herrera
et al, 2009; Herrera, 2008; Herrera, 2007; Farhat et al, 2000] for details, into the following
problem, which is expressed in terms of the values of the solution at dual nodes− ,
exclusively: “Find ()u W∆ ∈ ∆ that satisfies

10

 0aSu f and ju∆ ∆∆
= = (4.12)”

Here, ()f aW
∆

∈ ∆ and the ‘Schur-complement matrix with constraints’ are defined by

 () 1
f f A A f

−

∆Π ΠΠ∆ ∆ Π
≡ − (4.13)

and

 () 1
S A A A A

−

∆∆ ∆Π ΠΠ Π∆
≡ − (4.14)

respectively.

5.- The DVS-Algorithms
Generally two kinds of approaches are distinguished: primal –these are direct
approaches, which do not resort to Lagrange multipliers- and dual –indirect approaches
that use Lagrange multipliers-. However, when DDMs are formulated using a setting as
general as that supplied by the DVS-framework, such a distinction is irrelevant. The
feature that is conspicuous for different options is the information that the algorithm
seeks. Indeed, four algorithms will be obtained by seeking successively for the vectors:
u∆ , 1S jSu−

∆ , jSu∆ and Su∆ . However, in the presentation that follows we stick to the

‘primal vs. dual-algorithms’ classification.

5.1 Primal Formulations

THE DVS VERSION OF BDDC
This is a primal algorithm which seeks directly for u∆ . Pre-multiplying Eq.(4.12) by

1aS−
, one gets:

 1 1 0aS aSu aS f and ju− −
∆ ∆∆

= = (5.1)

In [Farhat et al, 2000], it was shown that Eq.(5.1) is equivalent to Eq.(4.12). This
equation is the DVS-version of BDDC.

THE DVS-PRIMAL ALGORITHM
For this algorithm, the sought-information is:
 1S jSu−

∆ ∆≡ −v (5.2)

Applying aS to Eq.(5.2) it is seen that 0aS ∆ =v . Furthermore,

 () ()1 1 1 0j S f j S aS S jS u ju− − −
∆ ∆ ∆∆∆

+ = + = =v (5.3)

Therefore
 1 0j jS f and aS−

∆ ∆∆
= − =v v (5.4)

Eq.(5.4) does not define an iterative algorithm. In order to obtain such an algorithm, we

11

project on 1jS−
∆W , to obtain:

 1 1 1 0S jS j S jS jS f and aS− − −
∆ ∆∆

= − =v v (5.5)

This algorithm is referred to as the ‘DVS-primal algorithm’. The solution is given by

 ()1u a S f−
∆∆ ∆

= +v (5.6)

We observe that we could have written 1u S f−
∆∆ ∆

= +v instead of Eq.(5.6). However,

the application of the projection operator a is important when ∆v and 1S f−

∆
 are not

computed with exact arithmetic, as it is the case when using numerical methods, because
when it is applied it replaces 1S f−

∆ ∆
+v by the continuous-vector closest (with respect

to the Euclidean distance) to it.

5.2 Dual Formulations

THE DVS VERSION OF FETI-DP
For this algorithm the sought-information is defined to be: jSuλ∆ ∆≡ − . This algorithm can

be easily derived from the DVS-primal formulation that has just been presented. We

observe that
1S λ−

∆ ∆=v , Sλ ∆∆ = v , in view of Eq.(5.2), and 0aλ ∆ = . This permits

transforming Eq.(5.5) into
 1 1 0S jS jS S jS jS f and aλ λ− −

∆ ∆∆
= = (5.7)

Applying 1S− to the first of these equations, it is obtained:

 1 1 0jS jS jS jS f and aλ λ− −
∆ ∆∆

= = (5.8)

As for Eq.(5.6), it becomes:

 ()1u aS f jλ−
∆ ∆∆

= − (5.9)

THE DVS-DUAL ALGORITHM
In this algorithm, the sought-information is: Suµ ∆∆

≡ . Then, 1u S µ−
∆ ∆

= . Replacing this

in Eq.(5.1), one gets:
 1 1 1 0aS a SaS f and jSµ µ− − −

∆ ∆∆
= = (5.10)

Finally, multiplying by S the first of these equalities, it is obtained:

 1 1 1 0SaS a SaS f and jSµ µ− − −

∆ ∆∆
= = (5.11)

When µ
∆

 is known, u∆ can be recovered by means of

 ()1u aS f µ−
∆ ∆∆

= + (5.12)

12

A comment similar to that made immediately after Eq.(5.6), goes here: we have
applied the projection matrix a , in Eq.(5.12) because we are assuming that exact

arithmetic generally will not be used.

6.- Numerical Procedures Fulfilling the DDM-Paradigm
Summarizing, the preconditioned DVS-algorithms with constraints are:
 1 1 0;aS aSu aS f and ju DVS - BDDC− −

∆ ∆∆
= = (6.1)

 ()
1 1

1

0;jS jS jS jS f and a DVS - FETI - DP

 where u aS f j

λ λ

λ

− −
∆ ∆∆

−
∆ ∆∆

= =

= −
 (6.2)

 ()
1 1 1

1

0;S jS j S jS jS f and aS DVS - PRIMAL

 where u aS f jS

− − −
∆ ∆∆

−
∆∆ ∆

= =

= −

v v

v
 (6.3)

()

1 1 1 1

1

0;SaS a SaS aS jS f and jS DVS - DUAL

 where u aS f

µ µ

µ

− − − −

∆ ∆∆

−
∆ ∆∆

= =

= +
 (6.4)

6.1- Comment on the DVS Numerical Procedures
The outstanding uniformity of the formulas given in Eqs.(6.1) to (6.4) yields clear
advantages for code development, especially when such codes are built using object-
oriented programming techniques. Such advantages include:

I. The construction of very robust codes. This is an advantage of the DVS-algorithms,
which stems from the fact the definitions of such algorithms exclusively depend on
the discretized system of equations, obtained after discretization of the partial
differential equations considered (referred to as the original problem), but which is
otherwise independent of the problem that motivated it. In this manner, for example,
essentially the same code was applied to treat 2-D and 3-D problems; indeed, only the
part defining the geometry had to be changed, and that was a very small part of it;

II. The codes may use different local solvers, which can be direct or iterative solvers;
III. Minimal modifications are required for transforming sequential codes into parallel

ones; and
IV. Such formulas also permit developing codes which fulfill the DDM-paradigm; i.e., in

which “the solution of the global problem is obtained by exclusively solving local
problems”.

This last property makes the DVS-algorithms very suitable as a tool to be used in the
construction of massively-parallelized software, so much needed for efficiently
programming the most powerful parallel computers available at present. In the next
Subsection, procedures for constructing codes possessing Property IV are explained with
some detail.

All the DVS-algorithms of Eqs.(6.1) to (6.4) are iterative and can be implemented with
recourse to Conjugate Gradient Method (CGM), when the matrix is definite and symmetric,
or some other iterative procedure such as GMRES, when that is not the case. At each

13

iteration step, depending on the DVS-algorithm that is applied, one has to compute the

action on a derived-vector of one of the following matrices:
1aS aS−

, 1jS jS− , 1S jS j− or

1SaS a−
. Such matrices in turn are different permutations of the matrices S ,

1S−
, a and

j . Thus, to implement any of the preconditioned DVS-algorithms, one only needs to

separately develop codes capable of computing the action of each one of the matrices S ,
1S−
, a or j on an arbitrary derived-vector, of W .

Therefore, next we present numerical procedures for computing the application of each one

of the matrices S ,
1S−
, a and j , which fulfill the DDM-paradigm. It will be seen that

onlya requires exchange of information between derived-nodes belonging to different

subdomains; actually, between derived-nodes that are descendants of the same original-
node (the exchange of information is minimal). As for j I a= − , once the action of a has

been computed, no further exchange of information is required.

6.2- Application of S

From Eq.(4.13), we recall the definition of the matrix () 1
S A A A A

−

∆∆ ∆Π ΠΠ Π∆
≡ − . In order

to evaluate the action of S on any derived-vector, we need to successively evaluate the

action of the following matrices A
Π∆

, 1A−

ΠΠ
, A

∆Π
 and A

∆∆
. Nothing special is required

except for () 1
A

−

ΠΠ
. A procedure for evaluating the action of this matrix, which fulfills the

DDM-paradigm is explained next.

We have

t t r

r t r t r

A A A A a
A

A A a A a A a

π π

π ππ π ππ

ΙΙ Ι ΙΙ Ι

ΠΠ
Ι Ι

  
  ≡ =

   
   

 (6.5)

Let W∈v , be an arbitrary derived-vector, and write

 () 1
w A

−

ΠΠ
≡ v (6.6)

Then, w w w WπΙ= + ∈ is characterized by

() (){ }
() { }

1

1

0A w A A , subjected to j w

w A A w

π
ππ πππ π

ππ

σ
−

ΙΠΠ Ι ΙΙ

ΙΙ ΙΙ Ι

= − =

= −
∼

v v

v
 (6.7)

and can obtained iteratively. Here,

14

 () (){ }1
A A A A Aππ ππ π π

σ
−

ΠΠ Ι ΙΙ Ι
≡ − (6.8)

and, with aπ
 as the projection-matrix into ()rW π , .j aπ π≡ Ι −

We observe that fulfilling the DDM-paradigm when computing the action of () 1
A

−

ΙΙ
 is

straightforward because

 () () 11

1

E

A Aα

α

−−

ΙΙ ΙΙ
=

=∑ (6.9)

is parallelizable. Once ()rWπ π∈v has been obtained, to derive Ιv one can apply:

 () ()1
A w A ππ

−

Ι ΙΙΙ Ι
= −v v (6.10)

this completes the evaluation of S .

6.3- Application of S -1-1-1-1

We define
 Σ ≡ Ι ∪ ∆ (6.11)
and observe that
 and π πΣ ∪ = Χ Σ ∩ = ∅ (6.12)

Therefore, the matrix
1A−
 can be written as:

() ()
() ()

() ()
() ()

1 11 1

1

1 1 1 1

A AA A
A

A A A A

π

π ππ

− −− −

− ΣΣ ΣΠΠ Π∆

− − − −

∆Π ∆∆ Σ

  
  = =
     

   

 (6.13)

Furthermore, :S W W∆ ∆→ fulfills

 ()1 1S A− −

∆∆
= (6.14)

Another property that is relevant for the following discussion is:
 () ()rW WΣ = Σ (6.15)

for any W∈v , let us write

1w A−≡ v (6.16)

then, wπ fulfills

 () () 1

0t rA w A A w , subjected to jπ πππ π π
σ

−

ΣΣ ΣΣ
= − =v v (6.17)

Here, r rj a≡ Ι − , where the matrix
ra is the projection operator on rW , while

 () () 1
tA A A A Aππ ππ π π

σ
−

Σ ΣΣ Σ
≡ − (6.18)

Furthermore, we observe that

 () ()1 1

1

E
tA Aα

α

− −

ΣΣ ΣΣ
=

=∑ (6.19)

15

In order to use Eq.(6.19) as a means of parallelizing the DVS-algorithms, however, the
detailed discussion of such procedures will be presented separately [Herrera et al, 2013;
L.M. de la Cruz et al, 2013]. It is necessary that the local matrices, Aα

ΣΣ
, be invertible. This

is granted when A invertible in rW , which generally is achieved by taking a sufficiently

large number of primal-nodes.

Eq.(6.17) is solved iteratively. Once πv has been obtained, we apply:

 () ()1
tA w A ππ

−

Σ ΣΣΣ Σ
= −v v (6.20)

This procedure permits obtaining
1A w−

 in full; however, we only need ()1A w−

∆∆
. We

observe that

 () ()1 1A w A w− −
∆∆∆ ∆

= (6.21)

The vector
1A w−

∆ can be obtained by the general procedure presented above. Thus, take

w w W W∆∆≡ ∈ ⊂ and

1A w−

∆≡v (6.22)

Therefore,

 () ()1 1

.t t t rA A A A aπ ππ π

− −

Ι ∆ Σ ΣΣ Σ ΣΣ Σ
+ = = − = −v v v v v (6.23)

6.4- Application of a and j .

We use the notation

 ()()(), ,i ja a α β= (6.24)

then [Herrera et al, 2010]:

 ()() () () (), ,

1
,iji ja i and j

m iα β δ α β= ∀ ∈ Ζ ∀ ∈ Ζ (6.25)

while j a= Ι −

therefore,

 ,jw w aw for every w W= − ∈ (6.26)

Therefore, only the evaluation of au requires exchange of information between

subdomains. In general, such numbers are very small; for example in application to single-
equation problem, when an orthogonal grid is used, they are at most: 4 , for problems in
2D, and 8 for problems in 3D.

As for the right hand-sides of Eqs. (4.14), all they can be obtained by successively applying
to f

∆
 some of the operators that have already been discussed. Recalling Eq. (4.14), we

have

 () ()1f R f A A R f−

∆ ∆Π ΠΠ∆ Π
≡ −

⌢ ⌢
 (6.27)

16

The computation of R f
⌢

 does not present any difficulty and the evaluation of the actions of

() 1
A

−

ΠΠ
 and A

∆Π
 were already analyzed.

7. – Numerical Results
Taking into account the general description of the DVS-framework given of Section 2, it
can be seen that each one of the DVS-algorithms is uniquely defined by:

1. The original-matrix;
2. The partition of the set of original-nodes, which is induced by the coarse-mesh
that is applied; and
3. The set of constraints.

In turn, the original-matrix is determined by the partial differential equation, or system of
such equations, the discretization method chosen and the fine-mesh adopted. As explained
in Section 2, the partition of the set of original-nodes depends when the fine-mesh has
already been defined, on the coarse-mesh (i.e., the domain decomposition) used. The
coarse-mesh is constituted by a family of non-overlapping subdomains { }1,..., EΩ Ω of Ω ,

the domain of definition of the boundary-value problem to be solved. In all the examples
that are presented in this article, the constraints are fully determined by the primal-nodes
and consist in requiring continuity of the derived-vectors at them.

Several codes were developed to treat the examples, which were written in C++ language,
using the MPI library for the communications. In the computational implementations, the
methods of solution used to treat the original-problems are: CGM, when such a linear
system is symmetric and positive-definite and GMRES when the discrete system is non-
symmetric or indefinite. Both are applied with a tolerance of 10-6. Each DVS-algorithm was
applied to each one of the examples considered, except for that referring to elasticity.

The results obtained for Examples 1 to 5 are summarized in Tables 1 to 5, respectively. In
them, the acronym dof stands for to the number of degrees of freedom of the original
problem, but it should be mentioned that the procedures used to treat such examples are
such that the nodes that lie on the external boundary do not contribute to the dof . The
notation to indicate the meshes that were adopted is as follows: In 2D cases, we use
(n×m)×(q×r), where (n×m) refers to the coarse-mesh, while (q×r) to the fine-mesh; and
similarly, in 3D cases, we use (n×m×p) × (q×r ×s), where (n×m×p) define the coarse-
mesh and (q×r ×s) the fine-mesh. The constrains are imposed on the primal nodes, in all of
our experiments the primal nodes were located at vertex in 2D and at edges in 3D of the
subdomains, this coinciding with the algorithm “D” in [Toselli et al, 2005].

Each Table contains at most ten columns. The first four indicate respectively: 1) the meshes
used, 2) the number of subdomains of the coarse-mesh, 3) the dof, and 4) the number of
primal-nodes used. The figures appearing in columns 5 to 9 correspond to the number of
iterations that were required for convergence of each one of the algorithms applied.
Columns 9 and 10 were only included in Table 3. For Example 3, in order to cover a wide
range of values of the Peclet-number, the diffusion coefficient in Eq.(7.3), ν , was varied
and the tenth column in Table 3 indicates the different values of ν for which the

17

corresponding boundary-value problem was solved. Furthermore, the results obtained when
the DVS-algorithms were applied were compared with those obtained in [Da Conceição et
al, 2006] for the same problem, using the standard version of BDDC.

7.1 Application of the DVS-algorithms to a Single-Equation
The applicability of the DVS-algorithms is wide, as previously said it can be applied to
general equation systems. In Section 3, it was announced that in this paper we present
examples for which d , the number of equations of the system, is one and three. In this
Subsection the examples for which 1d = will be discussed, leaving for the next Subsection
the treatment of static-elasticity models, for which 3d = .

Four boundary value problems corresponding to a single-equation will be presented. The
first two are symmetric and positive definite boundary-value problems, whose definition
involves the Laplace differential operator. The other two correspond to advection-diffusion
transport, and the corresponding boundary-value problems are non-symmetric and
indefinite. The discretization methods used in this Subsection are based on central finite
differences (CFD), which are directly applicable to the symmetric problems. To apply CFD
to the advection-diffusion problems it was necessary to stabilize the advection-diffusion
differential-operator and to this end artificial diffusion was incorporated.

Despite the simplicity of the examples presented in this Subsection, they are very important
because a wide range of geophysical systems give rise to similar problems [Herrera and
Pinder, 2012]. The diversity of physical interpretations of the boundary-value problems
here discussed is enormous. All the differential operators involved can be classified as
advection-diffusion operators, since Laplace operator is obtained from the general
advection-diffusion differential-operator when the transport-velocity vanishes. Transport
processes of heat and solutes occur in a great diversity of geophysical systems. However,
the physical processes governed by such differential-equations go far beyond transport
phenomena.

18

Example 1. Poisson equation in two-dimensions.

() () () [] []22 sin sin , , 1,1 1,1 , 4

 0

u n nx ny x y n

u on

π π π2−∆ = ∈ − × − =
= ∂Ω

 (7.1)

PARTITION SUBDOMAINS DOF PRIMALS
DVS-
BDDC

DVS-
FETI-DP

DVS
PRIMAL

DVS
DUAL

(2x2) X (2x2) 4 9 1 1 1 1 1

(4x4) X(4x4) 16 225 9 1 5 5 4

(6x6) X (6x6) 36 1225 25 8 8 8 7

(8x8) X (8x8) 64 3969 49 10 10 10 9

(10x10) X (10x10) 100 9801 81 11 11 12 10

(12x12) X (12x12) 144 20449 121 12 11 12 11

(14x14) X (14x14) 196 38025 169 12 12 12 11

(16x16) X (16x16) 256 65025 225 13 11 13 11

(18x18) X (18x18) 324 104329 289 13 11 13 11

(20x20) X (20x20) 400 159201 361 13 11 13 11

(22x22) X (22x22) 484 233289 441 13 12 14 11

(24x24) X (24x24) 576 330625 529 13 12 13 11

(26x26) X (26x26) 676 455625 625 13 12 14 11

(28x28) X (28x28) 784 613089 729 13 12 14 11

(30x30) X (30x30) 900 808201 841 13 12 14 11

Table 1. Number of iterations made by the four DVS algorithms. The primal nodes
were located at the vertices of subdomains.

We can see from Table 1, that the four algorithms perform very well as the number of
subdomains and the degrees of freedom (dof) are increased. In this example, the DVS-
DUAL algorithm presents the best performance, requiring only 11 iterations from 12×12
until 30×30 subdomains, and the same number of dof. All other algorithms show similar
behavior. The numerical solution of this example can be seen in the Figure 5.

Figure 5 The numerical solution for the 2D case, here we use n=4.

19

Example 2. Similar to Example 1, but it is formulated in a 3D domain.

() () () () [] [] []23 sin sin sin , , , 1,1 1,1 1,1 , 4

 0

u n nx ny nz x y z n

u on

π π π π2−∆ = ∈ − × − × − =
= ∂Ω

 (7.2)

Table 2. Number of iterations made by the four DVS algorithms. The primal nodes

were located at edge.

In Table 2, we observe a similar performance of the algorithms as in the two-dimensional
case. One more time the DVS-DUAL algorithm presents a little better behavior with
respect all others.

Example 3. The boundary-value problem treated is:

() [] [] ()

() ()
()

1

2

0; , 0,1 0,1 , 1,3

0, ,
,

1, ,

u b u x y b

x y
u x y

x y

ν

ψ
ψ

•− ∆ + ∇ = ∈ × ≡

∈= 
∈

 (7.3)

This is an advection-diffusion transport problem in 2D, for which the differential operator
is not self-adjoint.

Figure 6, ∂Ω

PARTITION SUBDOMAINS DOF PRIMALS
DVS-
BDDC

DVS-
FETI-DP

DVS-
PRIMAL

DVS-
DUAL

(2x2x2) X (2x2x2) 8 27 7 1 1 1 1

(3x3x3) X (3x3x3) 27 512 80 4 4 4 3

(4x4x4) X (4x4x4) 64 3375 351 5 4 4 3

(5x5x5) X (5x5x5) 125 13824 1024 6 5 6 5

(6x6x6) X (6x6x6) 216 42875 2375 7 6 7 5

(7x7x7) X (7x7x7) 343 110592 4752 7 6 7 5

(8x8x8) X (8x8x8) 512 250047 8575 8 6 8 5

(9x9x9) X (9x9x9) 729 512000 14336 8 6 8 6

(10x10x10) X (10x10x10) 1000 970299 22599 9 6 9 6

20

This example is very interesting because it contains diffusion and advection terms, which
are common in several complex geophysics phenomena. In this example, the Péclet number
is defined as /e b L νΡ = , where L is a characteristic length (in this case L = 1). We also

define a local Péclet number as /he b h νΡ = . Using these definitions, fixing the global

partition to h=1/512, and the varying the viscosity from 0.01 to 0.0001, we have that the
Péclet number varies from 316 to 316,227, and the local Péclet number varies from 0.617 to
617. In this case the linear system is non-symmetric, therefore we choose the GMRES
method with a tolerance of 10-6.

Table 3. Comparison of the DVS-algorithms against the BDDC implemented in

[Mandel et al, 1996].

In Table 3 presents the results that the DVS-algorithms yielded and compares them with
those obtained in [Da Conceição et al, 2006]. We observe that, with fixed coarse and fine
meshes, as the viscosity coefficient is reduced, so that the Péclet number increases,
generally the iterations required for convergence reduce. Increasing the Péclet number
implies that the effect of the advection term enlarges, and the numerical solution generally
becomes unstable. However, the performance of the discretization strategy based on CFD
combined with stabilization of the numerical-scheme by means of artificial viscosity is
resilient to Péclet-number variations. For comparison purposes, the examples presented
here were chosen to be the same as those presented in [Da Conceição et al, 2006], where
the standard BDDC algorithm was applied with the same set of constraints; namely, the
same set of subdomains and vertex nodes were chosen to be primal. As can be seen in Table
3, when the comparison criterion is based on the number of iterations required for
convergence, the observed performance of the DVS-algorithms in these examples is slightly
better than that of the standard BDDC algorithm. Finally, an illustration of the kind of
numerical solution obtained is shown in Figure 7.

PARTITION
SUB-

DOMAINS
DOF PRIMALS

DVS-
BDDC

DVS-
FETI-

DP

DVS-
PRIMAL

DVS-
DUAL

BDDC ν

(8x8) X (64x64) 64 261121 49 12 11 11 11 12 0.01
(8x8) X (64x64) 64 261121 49 8 8 8 7 9 0.001
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.0001
(8x8) X (64x64) 64 261121 49 7 7 7 7 9 0.00001

(16x16) X (32x32) 256 261121 255 19 17 17 18 20 0.01
(16x16) X (32x32) 256 261121 255 14 14 13 13 17 0.001
(16x16) X (32x32) 256 261121 255 13 13 13 13 15 0.0001
(16x16) X (32x32) 256 261121 255 13 13 13 13 16 0.00001
(32x32) X (16x16) 1024 261121 961 33 29 29 31 33 0.01
(32x32) X (16x16) 1024 261121 961 26 25 25 25 30 0.001
(32x32) X (16x16) 1024 261121 961 25 25 25 25 28 0.0001
(32x32) X (16x16) 1024 261121 961 25 25 25 26 29 0.00001
(64x64) X (8x8) 4096 261121 3969 53 52 53 59 52 0.01
(64x64) X (8x8) 4096 261121 3969 46 46 46 47 53 0.001
(64x64) X (8x8) 4096 261121 3969 45 47 45 47 53 0.0001
(64x64) X (8x8) 4096 261121 3969 45 47 45 48 54 0.00001

21

Figure 7 The numerical solution for 0.01ν = .

The relative-residual decay for a coarse mesh (16×16) and several fine meshes is presented
in Figure 8. We consider in these computations b=(1,3) and 0.00001ν = , in such a way that

3.16 5e eΡ = + . We observe that the best convergence is obtained when the fine mesh is
increased, and the convergence slows when the dof occurring in the subdomains is reduced.

Figure 8. Relative residual decay for the local mesh (16×16).

22

Example 4. The boundary-value problem treated is:

() [] [] []

()
0; , , 0,1 0,1 0,1 , (1,1,1)

, , exp()

u b u x y z b

u x y z x y z

•−∆ + ∇ = ∈ × × =

= + + ∂Ω

 on

 (7.4)

This is an advection-diffusion transport problem in 3D, for which the differential operator
is not self-adjoint.

Table 4. Number of iterations made by the four DVS algorithms. The primal nodes
were located at edges of the subdomains.

The diffusion and advection-diffusion differential-operator appears in the equations of the
examples presented above. They are very important in natural and industrial phenomena.
For example, the flow and transport of solutes in subsurface groundwater, the movement of
aerosol and trace gases in the atmosphere, mixing of fluids in processes of crystal growth,
among many other important applications [Tood, 1980; Pinder et al, 2006; Herrera et al,
1969; Herrera et al, 1973; Herrera et al, 1977; Herrera G.S. et al, 2005; L.M. de la Cruz et
al, 2006]. In all our examples, we have shown that the DVS-algorithms obtain the
numerical solution efficiently on parallel machines. In this respect, we remark that for
advection-diffusion problems the matrices of the discrete linear systems are non-symmetric.

7.2- Application to a System-Equations
We use the DVS-framework to solve a Dirichlet boundary value problem, where
displacements are zero over the boundary of the elastic body that occupies the domain Ω
of the physical space. Over each one of such subdomains is solved a local problem by
FEM, using linear functions as basis. On each node α of the mesh is defined a vector
valued function uα with each component identified as uα i for i = 1,2,3.
Because our operators are symmetric and positive definite, we use CGM as an iterative
procedure to solve those linear systems of equations that we have defined in the DVS
framework.
The code used in the previous section, which was originally developed to solve a single
equation using finite differences, was adapted for solving systems of equations with FEM.
We added the corresponding functionality in order to be able to solve systems of equations,
in this case the elasticity problem.

PARTITION SUBDOMAINS DOF PRIMALS
DVS-
BDDC

DVS-
FETI-DP

DVS-
PRIMAL

DVS-
DUAL

(2x2x2) X (2x2x2) 8 27 7 4 3 3 4

(3x3x3) X (3x3x3) 27 512 80 7 5 6 5

(4x4x4) X (4x4x4) 64 3375 351 9 6 7 6

(5x5x5) X (5x5x5) 125 13824 1024 10 7 8 7

(6x6x6) X (6x6x6) 216 42875 2375 11 7 9 8

(7x7x7) X (7x7x7) 343 110592 4752 12 8 10 8

(8x8x8) X (8x8x8) 512 250047 8575 |13 8 11 8

(9x9x9) X (9x9x9) 729 512000 14336 14 8 11 9

(10x10x10) X (10x10x10) 1000 970299 22599 15 9 12 9

23

Example 5. A system of partial differential equations in three-dimensions has also been
treated. This is the system of differential equations of static elasticity; namely:
 () , in u u fλ µ µ

Ω
+ ∇∇ + ∆ = Ωi (7.5)

which was subject to the following Dirichlet boundary conditions:
 0, on u = ∂Ω (7.6)
The domain of study for our numerical experiments is a homogeneous isotropic linearly
elastic unitary cube. In all of our experiments the primal nodes were located at edges of the
subdomains, which is enough for tA not being singular.

We consider constant coefficients λ and µ equal to one. With these conditions we have a
problem that has analytical solution, and is written as follows:
 ()sin sin sin ,sin sin sin ,sin sin sinu x y z x y z x y zπ π π π π π π π π= (7.7)

The Tables 5, summarizes the numerical results obtained using the DVS methods with a

tolerance of 710− .

Table 5. Results for DVS Algorithms

8. Conclusions
Mathematical models of many geophysical systems lead to a great variety of partial
differential equations (PDEs) whose solution methods are based on the computational
processing of large-scale algebraic systems [Herrera and Pinder, 2012]. Parallel computing
is outstanding among the new computational tools and, in order to effectively use the most
advanced computers available today, massively parallel software is required. Domain
decomposition methods (DDMs) have been developed precisely for effectively treating
PDEs in parallel [DDM Organization, 2012]. What domain decomposition methods ideally
intend to do has been summarized in this paper in the “DDM-paradigm” : to develop
algorithms that ‘obtain the global solution by exclusively solving local problems’.

In conclusion, in this paper:
1. We have presented a non-overlapping discretization method (the DVS-discretization) -in
the sense that it uses a system of nodes such that each one of them belongs to one and only
one subdomain of the coarse-mesh- applicable to a wide class of well-posed boundary
problems associated with elliptic systems of equations. In particular, the differential
operators may be symmetric, non-symmetric or indefinite (non-positive-definite);

2. Four algorithms –the DVS-algorithms [Herrera et al, 2011]-, which were derived using
the DVS-discretization and achieve the DDM-paradigm have been explained. Two of them

PARTITION SUBDOMAINS DOF PRIMALS
DVS-
BDDC

DVS-
FETIDP

DVS-
PRIMAL

DVS-
DUAL

(5x5x5) X (5x5x5) 125 41,472 1,024 8 7 9 9

(6x6x6) X (6x6x6) 216 128,625 2,375 8 8 10 10

(7x7x7) X (7x7x7) 343 331,776 4,752 8 8 11 11

(8x8x8) X (8x8x8) 512 750,141 8,575 8 8 12 12

24

are the result of using the BDDC and FETI-DP algorithms after applying DVS-
discretization to the boundary value problem considered. The other two are obtained when
two new algorithms, which had not been reported previously in the literature, were used
instead;

3. Numerical procedures that permit achieving the DDM-paradigm with each one of the
DVS-algorithms have been also presented;

4. Codes were developed and applied to several boundary values problems that occur in the
modeling of certain geophysical phenomena, such as transport of solutes by both, free-
fluids and fluids in a porous medium. We also present results for a static elasticity problem,
which thereby illustrates the application of the algorithms to systems of differential
equations; and

5. Besides their attractive parallelization properties, in the numerical examples the DVS-
algorithms exhibited significantly improved numerical performance with respect to
standard versions of BDDC and FETI-DP.

Acknowledgement. The authors express their gratitude to Alberto Rosas-Medina e Iván
Contreras-Trejo, both PhD students of the Earth-Sciences Graduate Program at UNAM, for
having permitted us to reproduce some numerical results of their research work.

References

PITAC, 2005, Computational Science: Ensuring america’s competiveness, Report to the
President of the United States, President Information, Technology Advisory Committee,
Executive Office of the President of the United States, June.

DDM Organization, 2012, Proceedings of 21 International Conferences on Domain
Decomposition Methods. www.ddm.org.

Mandel J., 1993, Balancing domain decomposition, Commun. Numer. Methods Engrg.
233-241.

Mandel J. and Brezina M., 1996, Balancing domain decomposition for problems with
large jumps in coefficients, Math. Comput. 65, pp 1387-1401.

Farhat Ch. and Roux F., 1991, A method of finite element tearing and interconnecting
and its parallel solution algorithm, Internat. J. Numer. Methods Engrg. 32:1205-1227.

Mandel J. and Tezaur R., 1996, Convergence of a substructuring method with Lagrange
multipliers, Numer. Math 73(4): 473-487.

25

Farhat C., Lessoinne M. LeTallec P., Pierson K. and Rixen D., 2001, FETI-DP a dual-
primal unified FETI method, Part I: A faster alternative to the two-level FETI method,
Int. J. Numer. Methods Engrg. 50, pp 1523-1544.

Farhat C., Lessoinne M. and Pierson K., 2000, A scalable dual-primal domain
decomposition method, Numer. Linear Algebra Appl. 7, pp 687-714.

Mandel J. and Tezaur R., 2001, On the convergence of a dual-primal substructuring
method, SIAM J. Sci. Comput., 25, pp 246-258, 2001.

Dohrmann C.R., 2003, A preconditioner for substructuring based on constrained energy
minimization, SIAM J. Sci. Comput. 25(1):246-258.

Mandel J. and C. R. Dohrmann, 2003, Convergence of a balancing domain
decomposition by constraints and energy minimization, Numer. Linear Algebra Appl.,
10(7):639-659, 2003.

Mandel J., Dohrmann C.R. and Tezaur R., 2005, An algebraic theory for primal and
dual substructuring methods by constraints, Appl. Numer. Math., 54: 167-193.

J. Li and O. Widlund, 2005, FETI-DP, BDDC and block Cholesky methods, Int. J.
Numer. Methods Engrg. 66, 250-271.

Toselli A. and O. Widlund, , 2005, Domain decomposition methods- algorithms and
Theory, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005,
450p.

Herrera I. and Alberto A. Rosas-Medina, 2013, The Derived-Vector Space Framework
and Four General Purposes Massively Parallel DDM Algorithms, Engineering Analysis
with Boundary Elements, in press.

L.M. de la Cruz and Herrera I., 2013, Generic and Parallel Software based on DVS
algorithms for engineering, Submitted at Advances in Engineering Software.

Herrera I., L.M. de la Cruz, Carrillo-Ledesma A., Rosas-Medina A. and Contreras, I.,
2012, Foundations of the DVS-framework: Theory and algorithms, Memoria No.8 del
Grupo de Modelación Matemática y Computacional del Instituto de Geofísica, UNAM.

Herrera, I., Carrillo-Ledesma A. & Rosas-Medina A., 2012, “Four general purposes
massively parallel DDM algorithms”, Available as Memoria No.7 del Grupo de
Modelación Matemática y Computacional del Instituto de Geofísica, UNAM.

Herrera, I., Carrillo-Ledesma A. & Rosas-Medina Alberto, 2011, A brief overview of
non-overlapping domain decomposition methods”, Geofísica Internacional, Vol. 50(4),
pp 445-463.

26

Herrera, I. & Yates R. A., 2009, The multipliers-free dual primal domain decomposition
methods for non-symmetric Matrices, NUMER. METH. PART D. E. 2009, DOI
10.1002/Num. 20581.

Herrera, I. & Yates R. A., 2010, The multipliers-free domain decomposition methods,
NUMER. METH. PART D. E. 26: 874-905 July 2010, DOI 10.1002/num. 20462.

Herrera I. and R. Yates, 2009, Unified multipliers-free theory of dual-primal domain
decomposition methods, NUMER. METH. PART D. E. Eq. 25:552-581, May 2009,
(Published on line May 13, 08) DOI 10.1002/num. 20359.

Herrera, I., 2008, New formulation of iterative substructuring methods without
Lagrange Multipliers: Neumann-Neumann and FETI, NUMER METH PART D E 24(3)
pp 845-878, DOI 10.1002 NO. 20293.

Herrera, I., 2007, Theory of differential equations in discontinuous piecewise-defined-
functions, NUMER METH PART D E, 23(3), pp 597-639, DOI 10.1002 NO. 20182.

Da Conceição, D. T. Jr., 2006, Balancing domain decomposition preconditioners for
non-symmetric problems, Instituto Nacional de Matemática Pura e Aplicada, Agência
Nacional do Petróleo PRH-32, Rio de Janeiro, May. 9.

Herrera I. and G.F. Pinder, 2012, Mathematical modeling in science and engineering:
An axiomatic approach, Wiley, 243p.

Todd, D.K., 1980, Groundwater hydrology, 2nd ed. Wiley.

Pinder, G.F. and M.A. Celia, 2006, Subsurface hydrology, Wiley, 468p.

Herrera I. and G.E. Figueroa V., 1969, A correspondence principle for the theory of
leaky aquifers, Water Resources Research, Vol. 5, NO. 4, P. 900.

Herrera, I. and Rodarte, L., 1973, Integrodifferential equations for systems of leaky
aquifers and applications, Part 1: The nature of approximate Theories, Water Resources
Research, 9(4), pp. 995-1005.

Herrera, I. and Yates, R., 1977, Integrodifferential equations for systems of leaky
aquifers. Part 3. A numerical method of unlimited applicability, Water Resources
Research, 13(4), pp. 725-732.

Herrera G.S. and G.F. Pinder, 2005, Space-time optimization of groundwater quality
sampling networks, WATER RESOURCES RESEARCH, VOL. 41, W12407, 15 PP.

L.M. de la Cruz and E. Ramos, 2006, Mixing with time dependent natural convection,
Int. Comm. in Heat and Mass Transfer, Vol. 33/2, pp 191-198.

