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Abstract. One of the main problems for applying the highly parallelized
supercomputers available today to computational physico-mathematical mod-
eling of science and engineering is to develop software capable of effectively
solving in parallel partial differential equations or systems of such equations. For
this purpose much work on domain decomposition methods has been done.
Recently, I. Herrera introduced a new ‘non-overlapping discretization method’
that for the application of domain decomposition methods has many advantages
over standard methods of discretization. Based on theoretical grounds, some of
these advantages have been indicated in previous publications. This paper,
however, is devoted to present numerical evidences of such advantages and
some of the outstanding parallelization-efficiencies that are feasible when
domain decomposition methods are applied to the discrete system derived using
non-overlapping discretization methods.
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1 Introduction

Partial differential equations (PDEs) and systems of such equations are very important in
science and engineering since their basic models are constituted by such equations [1].
Due to this fact progress in many fields of engineering and science heavily depends on
the effective application of advanced computational tools to the solution of PDEs [2].

For this purpose much work on domain decomposition methods has been done
[3–10]. In general, after a PDE has been discretized the effective application of parallel
computing reduces to efficiently treating the matrix-equation that the discretization
method yields. Recently, I. Herrera [11–17] introduced a new ‘non-overlapping dis-
cretization method’ that for the application of domain decomposition methods has many
advantages over standard methods of discretization. Methods of this class have the
conspicuous feature that each node of the fine-mesh belongs to one and only one
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subdomain of the domain decomposition. Based on theoretical grounds, some of these
advantages have been indicated in previous publications. This paper, however, is devoted
to present numerical evidences of such advantages and some of the outstanding
parallelization-efficiencies that are feasible when domain decomposition methods are
applied to the discrete system derived using non-overlapping discretization methods.

Non-overlapping discretization methods have a wide range of applicability; in part,
this stems from their axiomatic formulation. They are applicable to symmetric matrices -
independently of whether or not they are (positive) definite- as well as to non-symmetric
matrices. A general procedure developed in this line of research [11] permits trans-
forming standard discretizations -defined on overlapping systems of nodes-, indepen-
dently of the problems that originated them, into non-overlapping discretizations. Such
a procedure is applicable to symmetric and non-symmetric matrices, as well as
positive-definite or non-positive-definite ones. Because of all this, non-overlapping
discretizations -and the concomitantDVS-algorithms- have arisen high expectations as a
means for harnessing highly parallelized supercomputers to the task of solving the
partial differential equations of science and engineering, but up to recently no software
based on non-overlapping discretizations was available on which such expectations
could be tested.

Recently, software based on non-overlapping discretizations has been carefully
coded and applied using highly parallelized supercomputers [13] and tests for the DVS
version of BDDC was carried out yielding parallelization-efficiencies close to 100 %.
Such results constitute important evidences, which confirm that software based on non-
overlapping discretizations is most efficient for applying highly parallelized super-
computers to resolve boundary-value problems of partial differential equations. Up to
now only the case of symmetric and positive-definite matrices has been fully devel-
oped; however, the non-overlapping discretization method is also applicable to sym-
metric and non-symmetric matrices and the results so far obtained indicate that its
development is a very worthwhile endeavor ahead.

This paper is devoted to present a summary of recent numerical experiments that
verify the high parallelization efficiencies theoretically predicted. In particular, to avoid
repetitions here the method is not explained in detail, but extensive background
material on the DVS methodology is given in the references [11–17].

2 Non-overlapping Discretizations and DVS-Algorithms

In summary, this methodology consists of

I. A general method for transforming standard overlapping discretizations into
non-overlapping ones;

II. Procedures to accelerate convergence:
a. Restrictions and
b. Preconditioning;

III. Definition of four DVS-algorithms; and
IV. Developing critical routes to construct highly efficient parallelization codes.
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As said before, for the application of DDMs the non-overlapping discretization
methods have many advantages over standard methods of discretization, because the
matrix-equations they yield are better suited to be treated in parallel. The concomitant
algorithms so obtained are known as DVS-algorithms. They are four; the construction
of two of them is similar to BDDC and FETI-DP, albeit an essential difference is that
the starting matrix-equation is obtained by application of a non-overlapping dis-
cretization. As for the other two, to our knowledge they are fully independent of
previous developments reported in the literature. The DVS-algorithms also benefit of
many algebraic properties that have been systematically established in previous work
of this line of research [11–17].

3 Transforming a Discretization into a Non-overlapping One

In this Section, the general procedure for transforming a standard discretization method
into a non-overlapping one is outlined. Consider the partial differential equation, or
system of such equations:

Lu ¼ fX ð1:1Þ

subjected to certain boundary conditions. Then, a mesh (‘the fine-mesh’) is introduced
and a standard (overlapping) method is applied. In this manner ‘the original dis-
cretization’ is obtained:

MU ¼ F ð1:2Þ

Thereafter, a domain-decomposition (or, coarse-mesh) is introduced. Generally,
when this is done some of the nodes of the fine-mesh are shared by more than one
subdomain. The procedure for transforming such an overlapping system of nodes into a
non-overlapping one is summarized in Figs. 1a–d to 4. The non-overlapping nodes of
Fig. 1d is the system that is used thereafter in the sequel and are referred to as derived-
nodes. Furthermore, the symbol X is used for the total set of derived-nodes, and the
functions defined on X are the derived-vectors. The general procedure for transforming
the original overlapping-discretization into the non-overlapping one, consists essen-
tially in defining an equivalent problem in the space of derived-vectors (DVS). The
reader is referred to [11–13] for details.

The non-overlapping decomposition of X is given by the family of subsets
Xa � Xaja ¼ 1; . . .;Ef g, which for each a ¼ 1; . . .;E; is constituted by the derived-
nodes that belong to �Xa and are defined by

Xa � p; að Þjp 2 �Xa
� � ð1:3Þ
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Clearly,

X ¼
[E
a¼1

Xa andXa \Xb ¼ ;;when a 6¼ b ð1:4Þ

Given an original-node p 2 X
_
, the set of ‘heirs of p0 is defined to be:

Z pð Þ � p; að Þj p; að Þ 2 Xf g ð1:5Þ

The multiplicity m pð Þ of p 2 X
_
, is the cardinality of Z pð Þ; i.e., the number of heirs

that p has. Additional notation and definitions are given in the Appendix, which may be
complemented by those of the list of References.

4 The “Derived Vector-Space (DVS)”

Any function, real-valued or vector-valued, defined on the whole set X
_

of original-

nodes is an original-vector and W
_

stands for the vector-space constituted by such
vectors. Similarly, any function, real-valued or vector-valued, defined on the whole set

Fig. 1. Transformation of the nodes into a non-overlapping system
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X of derived-nodes is a derived-vector and W stands for the vector-space constituted by
such vectors. The value of a derived-vector at a node p; að Þ is written as u p; að Þ. When
the value itself is a vector, u p; a; ið Þ denotes the i� th component of such a vector,
which is a real-number.

Assume K � X is any subset of derived-nodes. Then, the notation W Kð Þ is used to
represent the vector subspace of W , whose elements vanish at every derived-node that
does not belong to K. Corresponding to each local subset of derived-nodes Xa,
a ¼ 1; . . .; or E, there is a ‘local subspace of derived-vectors’, defined by
Wa � W Xað Þ � W . The space W is the direct sum of the family of subspaces
W1; . . .;WE

� �
; i.e.,

W ¼ W1 � . . .�WE ð1:6Þ

This is an important property, because it implies that every u 2 W can be written
uniquely as

u ¼ u1 þ . . .þ uE;with ua 2 Wa; a ¼ 1; . . .;E ð1:7Þ

For every pair of vectors, u 2 W and w 2 W , the ‘Euclidean inner product’ is
defined to be

u � w �
X
p;að Þ2X

u p; að Þ � w p; að Þ ¼
XE
a¼1

X
p2�Xa

u p; að Þ � w p; að Þ ð1:8Þ

Here, the symbol � stands for the standard inner-product of Rn - vectors. When
n ¼ 1, Eq. (1.8) reduces to

u � w ¼
X
p;að Þ2X

u p; að Þw p; að Þ ¼
XE
a¼1

X
p2�Xa

u p; að Þw p; að Þ ð1:9Þ

We observe that the definition of Euclidean inner product is independent of the
BVP considered, although it depends on the meshes that are introduced; both, the fine
and coarse meshes.

5 Matrix Notations

Linear transformations of the space W into itself, and also of W
_

into itself, are con-
sidered in the non-overlapping discretizations theory. There is a one-to-one corre-
spondence between such linear transformations and matrices. For matrices such as M,

occurring in Eq. (1.2), which transform W
_

into itself, we use the notation:

M � Mpq
� �

;where p; q 2 X
_
: ð1:10Þ
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Matrices such as a matrix A that will be introduced later, which transforms W into
itself, we use the notation:

A � A p;að Þ q;bð Þ
� �

;where p; að Þ; q; bð Þ 2 X ð1:11Þ

6 Immersion of the Original-Vector Space

Some derived-vectors will be said to be continuous. A derived-vector u is continuous
when for every p, u p; að Þ is independent of a. The subset of continuous vectors,
W12 � W , constitutes a linear subspace of W .

Furthermore, there is a one-to-one mapping (see [11]) called the natural immersion,

R : W
_ ! W , of W

_
into W , and defined by the condition that, for every u 2 W

_
, one has

Ru
_

� �
p; að Þ ¼ u

_
pð Þ; 8 p; að Þ 2 X ð1:12Þ

In addition, RW
_ ¼ W12. Therefore, R : W

_ ! W , when restricted to W12 has the an

inverse R�1 : W12 ! W
_
. Essentially what is done in the DVS-method is to formulate an

equivalent problem in W12 and then apply R�1 : W12 ! W
_

to obtain the solution in the
original-space.

To complete the scheme the orthogonal complement of W12 is introduced, so that
the relation

W ¼ W11 �W12 ð1:13Þ

is fulfilled. Here, W11 is the above mentioned orthogonal-complement subspace.
The projections a and j, on W12 and W11 respectively, are introduced. Clearly,

I ¼ jþ a ð1:14Þ

since a and j are complementary projections.

Using these results it can be seen that every derived-vector, u 2 W , can be written
in a unique manner as:

u ¼ u11 þ u12with
u11 � ju 2 W11

u12 � au 2 W12

(
ð1:15Þ

Furthermore,

j ¼ I� a ð1:16Þ
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An explicit expression for a is:

a ¼ a p;að Þ q;bð Þ
� �

with a p;að Þ q;bð Þ ¼
dpqdab
m qð Þ ð1:17Þ

7 The Non-overlapping Discretization with Constrains

In the development of the non-overlapping discretization methodology and the DVS-
algorithms a general procedure for transforming any standard (overlapping) dis-
cretization into a non-overlapping one was introduced, which is briefly explained in
this Section, for further details see [11–13], where additional references are given.

Although such a procedure has a wide range of applicability, including symmetric
and non-symmetric matrices, there is an assumption that the original-matrix M of
Eq. (1.2) must fulfill and is here stated. To this end, we define

dapq � 1; if p; q 2 �Xa

0; otherwise

�
; a ¼ 1; . . .;E; and ð1:18Þ

together with

m p; qð Þ �
XE
a¼1

dapq ð1:19Þ

The function m p; qð Þ is the ‘multiplicity of the pair p; qð Þ’, which can be zero, when
the pair p and q do not occur simultaneously in any subdomain-closure. The general
procedure for transforming a standard (overlapping) discretization into a
non-overlapping one can be applied whenever the original-matrix M � Mpq

� �
fulfills

the following condition:

m p; qð Þ ¼ 0 ) Mpq ¼ 0 ð1:20Þ

The non-overlapping discretization with constraints has the form

aAu ¼ f and ju ¼ 0 ð1:21Þ

where f and u are derived-vectors. As for a and j they are the projection-matrices on

the subspaces of continuous-vectors and zero-average-vectors, respectively. The matrix
A is defined by:

A � a0At ð1:22Þ

Above, a0 is the projection on the subspace W 0 � W , which the DVS-method
introduces to accelerate convergence and can be defined by:
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W 0 � W Ið Þ �W Dð Þ � aW pð Þ ð1:23Þ

The matrix At, the matrix A total is a block-diagonal matrix that is derived from the
original matrix M; each one of its blocks Aa, a ¼ 1; . . .;E, Aa : Wa ! Wa, transforms
Wa into itself. Such block-matrices Aa are similar to restrictions of the original matrix
M, but they are already defined in the subspaces Wa of the derived-vector space. The
full expression of At is:

At �
XE
a¼1

Aa ð1:24Þ

Its detailed expression, in terms of the original matrix M of Eq. (1.2), is given in [11].

8 The Preconditioned DVS-Algorithms with Constrains

Direct application of Eq. (1.21) is not sufficiently efficient, in spite that a
constrained-space formulation has already been incorporated in it. Thus, to enhance
parallelization efficiency, in this Section we review the incorporation of the Schur-
complement, as well as preconditioning. Finally, the four DVS-algorithms obtained in
this manner will be listed and briefly explained.

In general, the right-hand member of Eq. (1.21) is written as: f ¼ f
D
þ f

P
. When

f
P
¼ 0, the DVS-algorithms are easier to write and, furthermore, the transformation of

cases when f
P
6¼ 0 into others in which f

P
¼ 0 is straightforward. Thus, in what

follows the formulas will be written under the assumption that f
P
¼ 0. Then, the basic

Schur-complement formulation is:

aSuD ¼ f
D
and juD ¼ 0 ð1:25Þ

complemented by

uP ¼ � A
PP

� �	 1
A
PD

uD ð1:26Þ

Here, in general, in the DVS approach, the Schur-complement is defined by:

S � A
DD

� A
DP

A
PP

� �	 1
A
PD

ð1:27Þ

We recall that this Schur-complement definition already incorporates constraints.
Four preconditioned DVS-algorithms with constraints have been obtained [11–13];

two of them can be derived by applying BDDC and FETI-DP using for that purpose a
non-overlapping discretization, while other two are derived following a fully inde-
pendent path [11]. One feature that characterizes each one of these algorithms is the
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sought-information; in this context, the sought-information is a piece of information -
the most computationally-expensive to obtain- such that once it has been obtained the
complementary information (i.e., remaining information required to get the full solution
of the problem)- is easy and non-computationally-costly to gather (see [11] for addi-
tional details).

8.1 The DVS-BDDC Algorithm

This algorithm follows by application of aS�1 as a preconditioner to the Schur-com-
plement formulation of Eq. (1.25). In this algorithm the sought information is uD, and
the algorithm that we get for it is:

aS�1aSuD ¼ aS�1f
D
and juD ¼ 0 ð1:28Þ

while the complementary information fulfills Eq. (1.26), which for completeness here
we repeat:

uP ¼ � A
PP

� �	 1
A
PD

uD ð1:29Þ

8.2 The DVS-PRIMAL Algorithm

We set vD � �S	 1jSuD and the algorithm consists in searching for a function vD 2 WD,

which fulfills

S�1jSjvD ¼ S�1jSjS�1f
D
and aSvD ¼ 0 ð1:30Þ

Once vD 2 W Dð Þ has been obtained, then

uD ¼ a S�1f
D
� vD

� �
ð1:31Þ

8.3 The DVS-FETI-DP Algorithm

In this case the sought information is k � �jSuD, which is denoted by k. Thus, the

algorithm is: “Given f
D
2 aWD, find k 2 WD such that

jSjS	 1k ¼ jSjS	 1f
D
and ak ¼ 0 ð1:32”Þ
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Once k 2 WD has been obtained, uD 2 aWD is given by:

uD ¼ aS	 1 f
D
þ k

� �
ð1:33Þ

8.4 The DVS-Dual Algorithm

The sought information is SuD, which is denoted by l. Then, we seek for l 2 W Dð Þ
such that

SaS�1al ¼ SaS�1f
D
and jS�1l ¼ 0 ð1:34Þ

Once l 2 W Dð Þ has been obtained, uD 2 W Dð Þ is given by:

uD ¼ aS�1l ð1:35Þ

Remark 1. In these algorithms the matrices to be iterated are:aS�1aS, S�1jSj, jSjS�1

and SaS�1a, respectively, and it should be observed that the action of each one of them
on any derived-vector yields a vector that fulfills the restriction corresponding to each
one of the Eqs. (1.28), (1.30), (1.32)and (1.34), respectively. This property is necessary
for any iterative algorithm.

Remark 2. The application of the projection-operator a at the end, in Eqs. (1.31),
(1.33) and (1.35), would be unnecessary if the algorithms of Eqs. (1.30), (1.32) and
(1.34), for the the vectors vD, k and l would yield exact results; however, their results
are only approximate and therefore the application of a, which furthermore is very
cheap, significantly improves the precision.

9 Elementary Pieces of DVS-Software and Critical Coding
Routes

The DVS-algorithms are domain-decomposition algorithms. As most of this kind they
are iterative algorithms and can be implemented with recourse to Conjugate Gradient
Method (CGM), when the matrix is definite and symmetric, or some other iterative
procedure such as GMRES, when that is not the case. At each iteration step, depending
on the DVS-algorithm that is applied, one has to compute the action on a derived-vector
of one of the following matrices: aS	 1aS, jSjS	 1, S	 1jSj or SaS	 1a. In turn, such

matrices are different permutations of S, S	 1, a and j. Thus, a code for implementing

any of the DVS-algorithms can be easily developed when codes for carrying out the
action of each one of such matrices are available.
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In the absence of constraints the matrices S and S	 1 are block-diagonal and, for its
implantation in parallel, each block can be allocated to a different processor. However,
when constraints are introduced they are weakly coupled. Such a coupling occurs only
when the matrix a is applied; the application j is equivalent to an application of a, since

ju � u� au. Because of these facts it has been possible to develop optimized routes of

general applicability for its parallel implementation that are coded independently in
each one of the processors of the parallel hardware. These properties have permitted us
to obtain the outstanding parallelization-efficiencies that are reported in the Section on
numerical results (see Table 1).

10 Application to Elasticity Problems

As an illustration of the methods described in previous Sections, in this one the non-
overlapping discretization method will be applied to a system of linear partial differ-
ential equations; namely, the system that governs the equilibrium of isotropic elastic
solids, whose detailed treatment was explained in the Ph.D. thesis of Iván Contreras
[17].

In particular, the following boundary-value problem will be treated:

kþ lð Þrr � uþ lDu ¼ f
X

ð1:36Þ

Subjected to the Dirichlet boundary conditions:

u ¼ 0; on @X ð1:37Þ

Other boundary conditions can also be accommodated.
The software that we have developed treats in parallel the discrete system of linear

equations that is obtained when the standard discretization method used to obtain the
original discretization of the Dirichlet BVP defined by Eqs. (1.36) and (1.37) is the
finite element method (FEM). In particular, it was obtained applying the well-known
variational principle:

Z
X

kþ lð Þ r � uð Þ r � wð Þþ lru : rwf gdx ¼
Z
X
f
X
�wdx ð1:38Þ

In particular, linear functions were used.
Such system of equations can be written as

MU ¼ F ð1:39Þ

Here, it is understood that the vectors U and F, are functions defined on the whole
set of original-nodes of the mesh used in the FEM discretization, whose values at each

node are 3� D vectors. They can be written as U � Up

� �
� Upi

� �
and

F � Fp

� � � Fpi
� �

. As for the matrix M, the notation
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M � M
pq

� �
� Mpiqj

� � ð1:40Þ

is adopted. Above, the range of p and q is the whole set of original-nodes, while i and j
may take any of the values 1; 2; 3.

11 Numerical Results

In the numerical experiments that were carried out to test the DVS-software, the
boundary-value problem for static elasticity introduced in Sect. 10 was treated. Only
the DVS-BDDC algorithm was tested. The elastic material was assumed to be
homogeneous; so, the Lamé parameters were

assumed to be constant and their values were taken to be

k ¼ Em
1þ mð Þ 1� 2mð Þ ¼ 29:6412
 109

N
m2

l ¼ E
2 1þ mð Þ ¼ 27:3611
 109

N
m2

ð1:41Þ

These values correspond to a class of cast iron whose Young modulus, E, and
Poison ratio, m, are (for further details about such a material see, http://en.wikipedia.
org/wiki/Poisson’s_ratio):

Table 1. Numerical Results

Number of
Subdomains.
¼
Number of
processors

DoF. Nodes
by
Subdomain

Primal
Nodes

Processing
Time
in seconds

Parallel
efficiency
pmin
pmax

� s
� �


 100

Speed
up

s ¼ TðpminÞ
TðpmaxÞ

Norm
of
error
ek k1

8 22,244,625 941,192 583 14,959 1 1 0.0263

27 21,904,152 274,625 2,312 5,882 75 % 2.543 0.018

64 22,244,625 117,649 5,211 2,676 70 % 5.59 0.029

125 21,904,152 59,319 9,184 1,212 79 % 12.342 0.011

216 22,936,119 35,937 14,525 703 79 % 21.280 0.010

343 22,244,625 21,952 20,628 406 86 % 36.845 0.010

512 23,641,797 13,824 27,391 242 97 % 61.814 0.011

729 23,287,176 10,648 36,800 183 90 % 81.74 0.010

1000 23,641,797 8,000 46,899 136 88 % 109.992 0.009

1331 22,936,119 5,832 57,100 96 94 % 155.823 0.010

1728 20,903,613 4,096 66,671 89 78 % 168.078 0.009

2197 21,904,152 3,375 80,352 64 85 % 233.734 0.008

2744 22,244,625 2,744 94,471 51 86 % 293.313 0.009
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E ¼ 68:95
 109
N
m2 and m ¼ 0:26 ð1:42Þ

The domain X � R3 that the homogeneous-isotropic linearly-elastic solid consid-
ered occupies is a unitary cube. The boundary-value problem considered is a Dirichlet
problem, with homogeneous boundary conditions, whose exact solution is:

u ¼ sin px sin py sin pz; sin px sin p y sin pz; sin px sin py sinpzð Þ ð1:43Þ

The fine-mesh that was introduced consisted of 193ð Þ3¼ 7; 189; 057 cubes, which
yielded 194ð Þ3¼ 7; 301; 384 original-nodes.

The coarse-mesh consisted of a family of subdomains X1; . . .;XEf g, whose
interfaces constitute the internal-boundary C. The number E of subdomains was varied
taking successively the values 8, 27, 64, 125, 216, 343 and 512 and so on up to 2; 744 .
The total number of derived-nodes and corresponding number of degrees-of-freedom
are around 7:5
 106 and 22:5
 106, respectively. The constraints that were imposed
consisted of continuity at primal-nodes; in every one of the numerical experiments all
the nodes located at edges and vertices of the coarse mesh were taken as primal-nodes.
In this manner, the total number of primal-nodes varied from a minimum of 583 to a
maximum of 94; 471. Thereby, it should be mentioned that these conditions granted
that at each one of the numerical experiments the matrix A was positive definite and
possessed a well-defined inverse.

All the codes were developed in C ++ and MPI was used. The computations were
performed at the Mitzli Supercomputer of the National Autonomous University of
Mexico (UNAM), operated by the DGTIC. All calculations were carried out in a
314-node cluster with 8 processors per node. The cluster consists 2.6 GHz Intel Xeon
Sandy Bridge E5-2670 processors with 48 GB of RAM.

As it was exhibited in the analysis of the operations, the transmission of infor-
mation between different processors exclusively occurs when the average-operators a
and a0 are applied. In a first version of the software reported in the present paper such
exchange of information was carried out through a master-processor, which is time
expensive. However, the efficiency of the software (as a parallelization tool) improved
very much when the participation of the master-processor in the communication and
exchange of information process was avoided. In its new version, the master-processor
was eliminated altogether. A Table 1, above, summarizes the numerical results.

It should be noticed that the computational efficiency is very high, reaching a
maximum value of 96.6 %. Furthermore, the efficiency increases as the number of
processors increases, a commendable feature for software that intends to be top as a
tool for programming the largest supercomputers available at present.
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12 Conclusions

The non-overlapping discretization method originally introduced by I. Herrera is new
procedure for discretizing partial differential equations, or systems of such equations.
For the application of highly parallelized hardware to the resulting discrete-problem the
non-overlapping discretization method has many advantages over standard methods of
discretization.

Based on theoretical grounds, in previous publications some of these advantages
had been indicated. However, for the first time experimental evidences of such out-
standing parallelization-efficiencies are exhibited in this paper. There are DVS-algo-
rithms concomitant to the non-overlapping discretization method. Here, one of them –

the DVS-BDDC algorithm- was used to carry out such numerical experiments.
These results constitute a confirmation that the non-overlapping discretization

method and its concomitant DVS-algorithms are very effective tools for harnessing
parallelized supercomputers to the task of solving the partial differential equations of
science and engineering:

1. Using them very high parallelization effectiveness, close to 100 %, is feasible;
2. The range of its applicability is very wide since there is a general procedure for

transforming standard discretizations into non-overlapping discretizations inde-
pendently of the problems that originated them;

3. Up to now only the case of symmetric and positive-definite matrices has been fully
developed;

4. However, the non-overlapping discretization method is also applicable to sym-
metric and non-symmetric matrices and the results so far obtained indicate that its
development is a worthwhile endeavor ahead.

This paper has been mainly devoted to present experimental evidences of the
effectiveness of the methodology, but extensive references to the background material
have been included.

Acknowlegement. We thank DGTIC-UNAM for the significant support we received to perform
the computational experiments presented in Table 1.

Appendix

Here some of the notation used is recalled. The non-overlapping domain-
decomposition is X1; . . .;XEf g. The symbol X is used for the total set of derived-
nodes. The labels p, q, etc. are reserved for denoting the original-nodes whose range is
the set 1; . . .;Nf g of natural-numbers, while the labels a, b, etc. are reserved for the
subdomains of the coarse-mesh, whose range is the set 1; . . .;Ef g. Derived-nodes are
identified by pairs: p; að Þ, p being the original-node it derives from and a the subdo-
main it belongs to. The non-overlapping decomposition of the total set of derived-
nodes is given by the family of subsets Xa � Xaja ¼ 1; . . .;Ef g, which for each a ¼
1; . . .;E; is constituted by the derived-nodes that belong to �Xa; i.e., they are defined by
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Xa � p; að Þjp 2 �Xa
� � ð1:44Þ

and satisfy:

X ¼
[E
a¼1

Xa and Xa \Xb ¼ ;;when a 6¼ b ð1:45Þ

Given any original-node p 2 X
_
, the set of heirs of p is defined to be

Z pð Þ � p; að Þj p; að Þ 2 Xf g ð1:46Þ

The multiplicity m pð Þ of p 2 X
_
, is the number of heirs of p.

In DVS developments derived-nodes are classified into interior, interphase, primal
and dual nodes. A derived-node is: interior, when its multiplicity is one and it is
interphase, otherwise. In the DVS-methodology some interphase-nodes are chosen to
be primal and, when they are not primal, they are said to be dual-nodes. The symbols
used are:

(i) I is the set of interior-nodes;
(ii) C is the set of interphase-nodes;
(iii) p is the set of primal-nodes; and
(iv) D is the set of dual-nodes.

These subsets of derived-nodes fulfill the following identities:

X ¼ I[C ¼ I[ p[D ¼ P[D ¼ R[ p ð1:47Þ

and

; ¼ I\C ¼ I\ p ¼ p\D ¼ P\D ¼ R\ p ð1:48Þ

Two more subsets of derived-nodes are significant in non-overlapping discretiza-
tion methods: the classes of extended-primal and extended-dual derived-nodes that are
denoted by P and R respectively, and are defined by

P � I[ p and R � I[D ð1:49Þ
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