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oriGinal paper

Resumen

En la actualidad los métodos de descomposición 
de dominio (DDM, por sus siglas en inglés) más 
eficientes como instrumento de paralelización 
son los métodos sin traslape (non-overlapping). 
Su alta eficiencia es debida a la independencia 
muy significativa que logran los problemas 
locales planteados en subdominios que no 
se traslapan. Sin embargo, los métodos de 
discretización estándar que habían usado hasta 
ahora los DDM, aún los sin traslape, utilizan 
sistemas de nodos en que algunos de ellos 
son compartidos por varios subdominios de 
la descomposición. Ésta es una característica 
limitativa del estado del arte actual de este 
tipo de procedimientos y, muy probablemente, 
mayores niveles de independencia de los 
problemas locales podrían lograrse si se le 
eliminara. I. Herrera y sus colaboradores 
han atacado este problema, para lo cual han 
introducido una nueva manera de formular los 
DDM que no tiene esta limitación: el método 
DVS. Un rasgo conspicuo de esta forma de 
abordar la descomposición de dominio es que 
se utiliza un método nuevo de discretización 
de las EDPs, también introducido en la línea de 
investigación a la que pertenece este artículo, 
conocido con el nombre de ‘discretización sin 
traslape’ (non-overlapping discretization), 
en el cual cada nodo de la discretización 
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pertenece a uno y solo uno de los subdominios 
de la descomposición del dominio. Aunque 
los métodos DVS ya se han desarrollado 
considerablemente, para que rindan frutos 
plenamente es indispensable contar con códigos 
que permitan su implementación eficiente. A 
eso precisamente está dedicado este artículo: 
presentar y poner a prueba software de tales 
características. El software aquí reportado 
muestra que los algoritmos DVS son los más 
adecuados para desarrollar software que 
permita la aplicación efectiva de equipo de 
cómputo avanzado, altamente en paralelo, 
a la solución de las ecuaciones diferenciales 
parciales de los modelos de la ciencia y la 
ingeniería. Aunque el software que aquí se 
presenta trata específicamente problemas 
de elasticidad lineal, los algoritmos DVS son 
muy eclécticos y pueden ser aplicados a una 
gran diversidad de ecuaciones diferenciales 
parciales, después de que las mismas han 
sido discretizadas. Además, ahora se continúa 
con trabajo adicional de investigación para 
desarrollar códigos de propósito general 
basados en los algoritmos DVS.

Palabras clave: Software en paralelo para EDPs, 
procesamiento en paralelo de elasticidad, 
cómputo de alto rendimiento, HPC, elasticidad 
estática, cómputo en paralelo, métodos de 
descomposición de dominio.
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Abstract

At present, the most efficient domain 
decomposition methods (DDM) are non-
overlapping methods. The improved efficiency 
of such methods is due to the significant 
independence achieved by local problems 
when the subdomains are non-overlapping. 
However, standard discretizations applied 
up to now in non-overlapping DDMs use 
systems of nodes in which some of the nodes 
are shared by more than one subdomain of 
the domain decomposition. This is a limiting 
feature of the present state-of-the-art in these 
techniques and apparently further increases 
of the independence of local problems should 
be expected if this limiting characteristic was 
eliminated. In previous work, I. Herrera and 
co-workers have developed a new approach 
to domain decomposition methods: the ‘DVS 
framework’ that addresses this problem 
introducing a new discretization method, the 
‘non-overlapping discretization method’, in 
which a non-overlapping system of nodes is 
used in the discrete formulation of the problem. 

Although the DVS algorithms have already 
been developed significantly, to profit from 
such advances it is essential to have available 
effective codes that permit their efficient 
implementation. As a further contribution in 
this line of research, in this paper we present 
and test software of such characteristics. The 
results here reported indicate that the DVS 
algorithms are very suitable for developing 
software that permits to apply effectively the 
most advanced hardware in parallel available 
at present to the solution of partial differential 
equations. Although the software here reported 
specifically treats static elasticity only, the DVS-
algorithms are very eclectic and can be applied 
to a great diversity of problems after they have 
been discretized. Additional research work is 
being carried out oriented to develop general 
purpose codes based on the DVS algorithms.

Key words: Parallel software for PDEs, parallel 
processing of elasticity, high performance 
computing, HPC, elastostatics, parallel 
computing, domain decomposition methods 
(DDM).

Introduction

Mathematical models occurring in science 
and engineering, lead to systems of partial 
differential equations (PDEs) (Herrera and 
Pinder, 2012), whose solution methods are 
based on the computational processing of 
large-scale algebraic systems and the advance 
of many areas, particularly Earth Sciences, 
depends on the application of the most powerful 
computational hardware to them (Presiden’ts 
Information Technology Advisoty Committee, 
2005).

Parallel computing is outstanding among 
the new computational tools, especially at 
present when further increases in hardware 
speed apparently have reached insurmountable 
barriers.

As it is well known, the main difficulties 
of parallel computing are associated with the 
coordination of the many processors that carry 
out the different tasks and the information-
transmission. Ideally, given a task, these 
difficulties disappear when such ‘a task is 
carried out with the processors working 
independently of each other’. We refer to this 
latter condition as the ‘paradigm of parallel-
computing software’.

The emergence of parallel computing 
prompted on the part of the computational-

modeling community a continued and 
systematic effort with the purpose of harnessing 
it for the endeavor of solving the mathematical 
models of scientific and engineering systems. 
Very early after such an effort began, it 
was recognized that domain decomposition 
methods (DDM) were the most effective 
technique for applying parallel computing to 
the solution of partial differential equations 
(DDM Organization 1988-2014), since such an 
approach drastically simplifies the coordination 
of the many processors that carry out the 
different tasks and also reduces very much 
the requirements of information-transmission 
between them (Toselli and Widlund, 2005)
(Farhat et al., 2000).

When a DDM is applied, firstly a 
discretization of the mathematical model is 
carried out in a fine-mesh and, afterwards, 
a coarse-mesh is introduced, which properly 
constitutes the domain-decomposition. The 
‘DDM-paradigm’, a paradigm for domain 
decomposition methods concomitant with 
the paradigm of parallel-computing software 
(Herrera et al., 2014), consists in ‘obtaining 
the global solution by solving local problems 
exclusively’ (a local problem is one defined 
separately in a subdomain of the coarse-mesh). 
Stated in a simplistic manner, the basic idea is 
that, when the DDM-paradigm is satisfied, full 
parallelization can be achieved by assigning 
each subdomain to a different processor. 
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When intensive DDM research began much 
attention was given to overlapping DDMs, but 
soon after attention shifted to non-overlapping 
DDMs. When the DDM-paradigm is taken into 
account, this evolution seems natural because 
it is easier to uncouple the local problems when 
the subdomains do not overlap. However, even 
in this kind of methods different subdomains 
are linked by interface nodes that are shared 
by several subdomains and, therefore, non-
overlapping DDMs are actually overlapping 
when seen from the perspective of the 
nodes used in the discretization. So, a more 
thorough uncoupling of the local problems and 
significant computational advantages should 
be expected if it were possible to carry out the 
discretization of the differential equations in 
a ‘non-overlapping system of nodes’ (Herrera 
et al., 2014); i.e., a set of nodes with the 
property that each one of them belongs to one 
and only one subdomain of the coarse-mesh 
(this is the mesh that constitutes a domain 
decomposition). In (Herrera et al., 2014), as 
in what follows, discretization methods that 
fulfill these conditions are referred to as non-
overlapping discretizations.

In a line of research, which this paper 
belongs to, I. Herrera and co-workers 
addressed this problem and to cope with 
it have developed a framework -the ‘DVS-
framework’- thoroughly formulated using a 
non-overlapping discretization of the original 
partial differential equations. Due to the 
properties of non-overlapping discretizations 
in such algorithms the links between different 
processors are very much relaxed, and also the 
required information-transmission between 
them is reduced. Such properties, as well as 
preliminary analysis of the algorithms, indicate 
that they should be extremely adequate to 
program the treatment of partial differential 
equations occurring in science and engineering 
models by the highly parallelized hardware 
of today. Although the DVS-algorithms have 
already been significantly developed and 
some examples have been previously treated 
(Herrera et al., 2014 and Carrillo-Ledesma et 
al., 2013),  up to now no software that took 
full advantage of the DVS-algorithms had been 
developed. Clearly, to profit fully from such 
advances it is essential to develop software, 
carefully coded, which permit applying 
effectively the DVS-algorithms to problems 
of interest in science and engineering. As a 
further contribution to these advances, in this 
paper, for the first time we present and test 
software of such characteristics.

Overview of DVS-software

The derived-vector-space framework (DVS-
framework) deals with the matrix that is 
obtained after the partial differential equation 
(PDE), or system of such equations, has 
been discretized by means of a standard 
discretization procedure (i.e., an overlapping 
discretization). The resulting discrete system of 
equations is referred to as the original-system.

The DVS-procedures follow the next steps: 

1. The partial differential equation, or 
system of such equations, is discretized by any 
standard method that satisfies the axioms of 
the theory (here stated in section how to build 
non-overlapping discretizations) in a mesh 
-called the fine-mesh- to obtain a discrete 
problem that is written as

 =MU F (2.1)

This is called the original-problem, while 
the nodes of the fine-mesh are called original-
nodes. The notation 



X  will be used for the whole 
set of original-nodes; any function defined on 
the set 



X  by definition is an original-vector. 
Finally, the notation 



W  will be used for the 
linear space spanned by the original-vectors, 
which in turn is called original-vector space;

2. A coarse-mesh is introduced, which 
constitutes a non-overlapping decomposition 
of the problem-domain. The system of original-
nodes turns out to be overlapping with respect 
to the coarse-mesh;

3. A system of non-overlapping nodes (the 
derived-nodes), denoted by X, is constructed 
applying the procedure explained in previous 
articles (see also preliminary notions and 
notations). The functions defined in the whole 
set X are by definition the derived-vectors and 
the notation W is used for the whole linear 
space of derived-vectors, which constitutes the 
derived-vector space; 

4. The theory of the DVS-framework supplies 
a formula that permits transforming the 
original-discretization into a non-overlapping 
discretization. Applying this formula the 
non-overlapping discretization is obtained. 
This is another discrete formulation that is 
equivalent to the original-problem, except that 
it constitutes a non-overlapping discretization; 
and



I. Herrera and I. Contreras

42      Volume 55 number 1

5. Thereafter, each one of the coarse-mesh 
subdomains is assigned to a different processor 
and the code is programmed separately in each 
one of the processors. 

The theoretical DVS-framework is very 
elegant; in it, the algebraic operations can 
be carried out systematically and with great 
simplicity. Furthermore, many simplifying 
algebraic results have been obtained in previous 
work (Herrera et al., 2014 and Herrera and 
Yates, 2011). To optimize the communications 
and processing time a purely algebraic critical-
route is defined, which profits much from such 
algebraic results previously obtained. Then, 
this algebraic critical-route is transformed into 
a computational code using C++ and several 
well-established computational techniques 
such as MPI.

Following the steps indicated above, in 
the present paper software for problems of 
isotropic elastic solids in equilibrium has been 
developed and tested experimentally. The high 
parallelization efficiency of the software so 
obtained has been verified experimentally. To 
be specific, only the DVS-BDDC algorithm has 
been implemented for this problem. However, 
by simple combinations of the routines already 
developed the other DVS-algorithms can be 
implemented.

The standard discretization

Following the steps succinctly described in 
overview of DVS-software, software that 
constitutes a tool for effectively applying 
massively parallel hardware to isotropic 
elastic solids in equilibrium was constructed. 
In particular, it permits to treat the following 
boundary value problem (BVP): 

 ( )λ + + =⦁u u f∆∆

∆µ µ
Ω

 (3.1)

Subjected to the Dirichlet boundary 
conditions:

 u 0,  on = ∂Ω  (3.2)

By simple modifications of the code, other 
boundary conditions can also be accommodated.

The software that we have developed 
treats in parallel the discrete system of linear 
equations that is obtained when the standard 
discretization method used to obtain the 
original discretization of the Dirichlet BVP 
defined by Eqs. (3.1) and (3.2) is the finite 
element method (FEM). In particular, it was 
obtained applying the well-known variational 
principle: 

 
+ +{ }∫ ∫( )( )( ) :λ ⦁u ⦁w u w dx f ⦁wdx∆∆∆∆µ µ

Ω Ω Ω
=
 

  + +{ }∫ ∫( )( )( ) :λ ⦁u ⦁w u w dx f ⦁wdx∆∆∆∆µ µ
Ω Ω Ω

  (3.3)

with linear functions.

Such system of equations can be written as

 =MU F  (3.4)

Here, it is understood that the vectors U 
and F, are functions defined on the whole set 
of original-nodes of the mesh used in the FEM 
discretization, whose values at each node are 
3-D vectors. They can be written as U≡(Up)≡ 
(Upi) and F≡(Fp)≡ (Fpi). As for the matrix M, 
the notation

 M M Mpq piqj≡ ≡( ) ( )  (3.5)

is adopted. Above, the range of p and q is the 
whole set of original-nodes, while i and j may 
take any of the values 1, 2, 3.

Preliminary notions and notations 

The DVS-approach is based on non-overlapping 
discretizations, which were introduced during 
its development (Herrera et al., 2014). A 
discretization is non-overlapping when it 
is based on a system of nodes that is non-
overlapping; to distinguish the nodes of such a 
system from the original-nodes, they are called 
derived-nodes. In turn, a system of nodes is 
non-overlapping, with respect to a coarse-
mesh (or, domain-decomposition), if each one 
of them belongs to one and only one of the 
domain-decomposition subdomains. In the 
general DVS-framework, the derived-vector 
space (DVS) is constituted by the whole linear 
space of functions whose domain is the total 
set of derived-nodes and take values in n


 . In 

the present paper, where problems of elasticity 
that are governed by a system of three PDEs 
are treated, we take n = 3. Usually, when the 
basic mathematical model is governed by a 
single differential equation, n is chosen to be 
equal to 1. 

Generally, when the coarse-mesh is 
introduced some of the nodes of the fine-mesh 
fall in the closures of more than one subdomain 
of the coarse-mesh. When that is the case, a 
general procedure for transforming such an 
overlapping set of nodes into a non-overlapping 
one was introduced in previous papers (see 
Herrera et al., 2014). Such a procedure 
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consists in dividing each original-node into 
as many pieces as subdomains it belongs to, 
and then allocating one and only one of such 
pieces to each one of the subdomains. For a 
case in which the coarse-mesh consists of only 
four subdomains, this process is schematically 
illustrated in Figures 1 to 4.

Then, the final result is the system of non-
overlapping nodes shown in Figure 4. Each 
one of the non-overlapping nodes is uniquely 
identified by the pair (p, a), where p is the 
original-node it comes from and a is the 
subdomain it belongs to. Using this notation, 
for each fixed b = 1, ..., E, it is useful to define 
Xb ⊂ X as follows: The derived node (p, a) 
belongs to Xb, if and only if, a = b.

In what follows, the family of subsets{X1, 
..., XE} just defined will be referred to as the 
non-overlapping decomposition of the set of 
derived-nodes. This because this family of 
subsets of X possesses the following property: 

  and  when , 
E

1


α βΧ = Χ ∅ = Χ ∩Χ ≠α

α

α β

=

  
  (4.1)

An important property implied by Eq. (4.1) 
is that the derived-vector space, W, is the 
direct-sum of the following family of subspaces 
of W : {W1, ..., WE}; i.e.,

 W W W E= 1 ...⊕ ⊕  (4.2)

Here, we have written

 W W X Eα α α≡ =( ), ,...,1  (4.3)

The notation W(Xa), introduced previously 
(see, for example Herrera et al., 2014), is 
here used to represent the linear subspace 
of W whose vectors vanish at every derived-
node that does not belong to Xa. An important 
implication, very useful for developing codes in 
parallel, is that every derived-vector w∈W can 
be written uniquely in the form

 w w  with w W,
E

1
∑= ∈α

α

α α

=

 (4.4)

As it is customary in DDM developments, 
in the DVS-approach a classification of the 

Figures 1 to 4.
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nodes used is introduced. We list next the most 
relevant subsets of X used in what follows:

I internal nodes
G interface nodes
p primal nodes
D dual nodes
P ≡ I∪p ‘extended primal’ nodes
S ≡ I∪D ‘extended dual’ nodes

Also, we observe that each one of the 
following set-families are disjoint: {I, G}, {I, p, 
D}, {P, D} and {S, p}, while

 X I I= ∪ = ∪ ∪ = ∪ = ∪Γ Π Σπ π∆ ∆  
  (4.6)

Next, we highlight some of most important 
notation and nomenclature used in the DVS-
framework; for further details the reader 
is referred to previous works of this line of 
research (in particular (Herrera et al., 2014), 
where additional references are given). When 
considering any given derived-node, which is 
identified by the pair of numbers (p, a), the 
natural number p (which corresponds to an 
original-node) is called the ‘ancestor’ of the 
derived-node, while a (which ranges from 1 
to E) identifies the subdomain it belongs to. 
Furthermore, for every original-node p∈



X , 
the notation Z(p)⊂X will be used to represent 
the set of derived-nodes that derived from 
it. Then, the ‘multiplicity of p’, m(p), is the 
cardinality of Z(p).

We observe that the multiplicity of p is 
defined as a property of each original-node, 
p. There is another kind of multiplicity that is 
used in the DVS-framework, which is defined 
as a property of each pair (p, q) of original-
nodes and is also used in the DVS-framework 
theory. To introduce it, we define

   
 

 if  p,q
0, otherwise 

 = 1,...,E; and 
1,

,pqδ α≡
∈Ω




α α
 

  (4.7)

Then, the multiplicity of the pair (p, q) 
-written as m(p, q)- is defined to be

 m p q pq

E

( , ) ≡
=
∑δα

α 1

 
  (4.8)

When u is a derived-vector, so that u 
is a function defined on X, u(p, a) stands 

for the value of u at the derived-node (p, 
a). In particular, in applications of the DVS-
framework to elasticity problems, those values 
are -vectors and the real-number u(p, a, i) - i 
= 1, 2, 3- will be the i−th component of the 
vector u(p, a). The derived-vector space is 
supplied with an inner product, the ‘Euclidean 
inner-product’, which using the above notation 
for every pair of derived-vectors, u and w, is 
defined by

 
u w u p i w p i u p i w p i, , , , , , , ,

ip ip

E

1

3

, 1

3

,1

⦁ ∑∑ ∑∑∑α α α α( ) ( ) ( ) ( )≡ =
α αα( ) ( )=∈Χ =∈Χ= α

         

u w u p i w p i u p i w p i, , , , , , , ,
ip ip

E

1

3

, 1

3

,1

⦁ ∑∑ ∑∑∑α α α α( ) ( ) ( ) ( )≡ =
α αα( ) ( )=∈Χ =∈Χ= α

 (4.9)

For the parallelization of the algorithms the 
relation

 
u w u w , whenever u w W,

E

1

⦁ ⦁∑= ∈α α

α

α α α

=

 

  (4.10)

will be useful, because the vector-components 
corresponding to different subdomains will 
be handled by different processors when 
implementing them.

Let p∈


X , be an original-node and u∈W 
a derived-vector. Then, u∈W is said to be 
‘continuous at p’ when u(p, a) is independent of 
a, and it is said to be of ‘zero-average at p’ when

 u p
Z p

( , )
( )

α
α

=
∈
∑ 0  (4.11)

When the corresponding properties are 
satisfied for every p∈



X , the derived-vector 
u is simply said to be ‘continuous’ or ‘zero-
average’. The linear subspaces W12 and W11 of 
W, are constituted by the continuous and the 
zero-average vectors of W, respectively. These 
two subspaces are orthogonal complements 
of each other. The matrices a  and j  are the 

orthogonal projections on W12 and on W11, 
respectively. They satisfy:

 a j I+ =  (4.12)

where I  is the identity matrix. For any w∈W, 

the explicit evaluation of v aw≡  is given by:
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v p

m p
w p

p Z p
( , )

( )
( , )

( , ) ( )
α β

β
≡

∈
∑1

  (4.13)

Using this equation, the evaluation of jw  is 

also straight forward, since Eq. (4.12) implies 

 jw w aw= −  (4.14)

The natural injection of 


W  into W, written 

as R:


WgW, is defined for every u W� �∈  by 

 Ru p u p ,  p, , α α( )( ) ( ) ( )= ∀ ∈Χ  (4.15)

When u W� �∈ , Ru W12
( ) ∈  necessarily. We 

observe that RW W12
 = . Furthermore, it can 

be seen that R has a unique inverse in W12; 
i.e., R W W:1

12



→−  is well-defined.

How to build non-overlapping discretiza-
tions

This Section explains how to transform a 
standard (overlapping) discretization into 
a non-overlapping discretization. The DVS 
procedure here explained permits transforming 
an overlapping discretization into a non-
overlapping discretizations and yields directly 
preconditioned algorithms that are subjected 
to constraints. It can be applied whenever the 
following basic assumption is fulfilled: 

 = =m p q M( , ) 0 0pq⇒  (5.1)

Here, the symbol ⇒ stands for the logical 
implication and it is understood that M is the 
matrix occurring in Eq. (2.1).

We define the matrix a ' by its action on any 

vector of W: when u∈W, we have

 a u u u auI' = + +  (5.2)

We observe that the action of a can be 

carried out by applying the operator at the 
primal-nodes exclusively. Then, we define the 
‘constrained space’ by

 W a Wr ≡ '  (5.3)

Clearly, W r⊂W is a linear subspace of W and 
for any u∈W, a 'u is the projection of u, on W r.

Now, we define

 
s p q

, when m p q

m p q , when m p q
,

1 , 0

, , 0
( )

( )
( ) ( )

≡
=

≠






  
  (5.4)

For g = 1, ..., E, we define the matrices

 M M  with M
M

s p q
 

,pq pq
pq

pqδ( ) ( )≡ ≡γ γ γ γ

  (5.5)

Next, we define the matrices:

 
A A  with A Mp q p q pq, , , , , ,δ δ( )≡ ≡γ

α β
γ

α β
γ γ

α γ β γ( )( ) ( )( ) ( ) ( )   
  (5.6)

and

 A At
E

≡
=
∑ γ

γ 1

 (5.7)

Then, we define

 A a A at≡ ' '  (5.8)

The following result was shown in previous 
papers (Herrera et al., 2014):

Theorem 5.1.- Let U W∈  and u∈W be 

related by u =RU, while f ∈W12 is defined by

 f R m F1
( )≡ −

 (5.9)

Here, m  is a diagonal matrix that transforms 


W  into itself, whose diagonal-values are m(p), 
while here its inverse is denoted by m 1


−

. Then, 
the discretized version of static elasticity of 
Eq.: (3.4):

 MU F=  (5.10)

is fulfilled, if and only if

 a Au f  and ju 0= =  (5.11)
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Proof.- See for example (Herrera et al., 
2014).

The preconditioned DVS-algorithms with 
constraints

There are four DVS-algorithms (Herrera et al., 
2014), and two of them are the DVS-BDDC 
and the DVS- FETI-DP. These are DVS versions 
of the well-known BDDC (Dohrmann, 2003), 
(Mandel et al., 2005) and FETI-DP (Farhat and 
Roux, 1991), (Farhat et al., 2000). As for the 
other two, nothing similar had been reported 
in the literature prior to the publication of the 
DVS-algorithms. By now, it is well known that 
BDDC and FETI-DP are closely related and the 
same can be said of the whole group of four 
DVS-algorithms.

The DVS-Schur-complement is defined by 

 S A A A A
1∼( )≡ −

Π ΠΠ Π∆∆ ∆ ∆
 (6.1)

We also define

 f f A A f
1∼( )≡ −

Π ΠΠ Π∆∆∆
 (6.2)

Then, writing u ≡ uP + uD it has been shown 
(Herrera et al., 2014) that Eq. (5.11) is fulfilled 
if and only if

 aSu f ,   ju  0= =∆ ∆ ∆  (6.3)

and

 u A f A u
1∼ ( )( )= −Π ΠΠ Π Π ∆∆∆

 (6.4)

The general strategy followed in the DVS 
approach, is to find uD∈W(D) first and then 
apply Eq. (6.4) to obtain the remaining part, 
uP∈W(P), of u. For this strategy to be effective 

it is essential that the application of A
1( )ΠΠ  

be computationally cheap. Different DVS-
algorithms are derived by seeking different 
pieces of information such that uD∈W(D) can 
be derived from it in a computationally-cheap 
manner. In particular, the four DVS-algorithms 

mentioned before seek for: uD, jSu , S jSu1∼
∆
 

and Su , respectively. Drawing from (Herrera 

et al., 2014), they are here listed.

The DVS-BDDC algorithm

This algorithm seeks for uD. It is:

 aS aSu aS f and ju= =1 1 0  (6.5)

The DVS-primal-algorithm

We set S jSu1∼≡v∆ ∆  and the algorithm 

consists in searching for a function vD∈WD, 

which fulfills:

 S jS j S jS jS f   and aS 01 1 1= =− − −v v
∆∆ ∆

  (6.6)

Once vD∈W(D) has been obtained, then

 u a S f v= +( )−1
∆ ∆ ∆

 (6.7)

The DVS-feti-dp algorithm

This algorithm seeks for jSu . Thus, the 

algorithm is: “Given fD∈a 'WD, find lD∈WD such 

that 

 jS jS jS jS f   and a 01 1∼ ∼λ λ= − =
∆

 (6.8)

Once l∈WD has been obtained, uD∈ a 'WD 
is given by:

 u aS f1∼ λ( )= +
∆∆

 (6.9)

The DVS-dual-algorithm

In this case one seeks for µ Su  using the 
relation:

 SaS a SaS f and jS= =1 1 1 0µ µ   
  (6.10)

Once mD∈W(D) has been obtained, 
uD∈W(D) is given by:

 u S= 1µ  (6.11)

The elementary pieces of DVS-software

All the DVS-algorithms are iterative algorithms 
and can be implemented with recourse to 
Conjugate Gradient Method (CGM), when the 
matrix is definite and symmetric, as is the case 
of elasticity problems here considered, or some 
other iterative procedure such as GMRES, when 
that is not the case. At each iteration step, 
depending on the DVS-algorithm that is applied, 
one has to compute the action on an arbitrary 
derived-vector of one of the following matrices: 
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aS aS1 , jS jS 1, S jS j1  or SaS a1 . In turn, such 
matrices are different permutations of S, S 1, 

a and j. Thus, a code for implementing any 

of the DVS-algorithms can be easily developed 
when codes for carrying out the action of each 
one of such matrices are already available.

To produce such codes will be the goal of 
the next Section, while the remaining of this 
one is devoted to obtain some auxiliary results 
that will be used there and were previously 
presented in (Herrera et al., 2014). The first 
one of such results is:

 ∼
S A A a A a a A' ' 't t t t1( )≡ −

Π ΠΠ Π∆∆ ∆ ∆

  
  
  (7.1)

The second one is: When w∈W, the 
following identity holds

 ∼ ∼S w A w1 1( )= ∆ ∆
 (7.2)

Here the notation 
∼A w1( )∆ ∆

 stands for the 

component on W(D) of 
∼A w1 ∆ .

The third and fourth results required refer 
to the pseudo-inverses that occur in Eqs. (7.1) 
and (7.2). They are:

Let w∈W r(P) and 


v A w
1( )≡

ΠΠ , then

     







a A A A A v w A A w and jv' ,   0t
I

t
II
t

I
t

I
t

II
t

I
1 1 1( )( ) ( )− = − =

ππ π π π π π π 

     







a A A A A v w A A w and jv' ,   0t
I

t
II
t

I
t

I
t

II
t

I
1 1 1( )( ) ( )− = − =

ππ π π π π π π  (7.3)

together with

 


v A w A vI II
t

I I
t1 ( )( )= −
π π  (7.4)

Let w∈W r and 
v A w1≡ , then

  
 

a A A A A v w A A w and jv' ,   0t t t t t t1 1( )( ) ( )− = − =
ππ π π π π π π∑ ∑∑ ∑ ∑ ∑∑ ∑ 

  

  

 

a A A A A v w A A w and jv' ,   0t t t t t t1 1( )( ) ( )− = − =
ππ π π π π π π∑ ∑∑ ∑ ∑ ∑∑ ∑

 (7.5)

together with

 


v A w A vt t1( ) ( )= −
π π∑ ∑∑ ∑ ∑  (7.6)

These two results permit applying iterative 
algorithms, in which the CGM is used, when 

the actions of 


A
1( )ΠΠ
 and 

A 1
, respectively, 

are computed.

Construction of the DVS-software

All the DVS-algorithms presented in the Section 
on the preconditioned DVS-algorithms with 
constraints are iterative, as is the case with 
most DDM algorithms, and to implement them 
it is only necessary to develop parallelized 
codes capable of computing the action of 
each one of the matrices S , S 1, a or j on an 
arbitrary derived-vector, as it was foreseen in 
(Herrera et al., 2014).

In the code here reported, all system-of-
equations’ solutions that were non-local were 
obtained with the help of the CGM algorithm. 
Due to this fact, actually the following 
subprograms were required: S , S 1 and (a S 1

a S )-1. Furthermore, the application of

 
∼

S A A a A a a A' ' 't t t t1( )= −
Π ΠΠ Π∆∆ ∆∆  (8.1)

requires to compute the action of 


a A a' 't 1( )ΠΠ  
which is non-local. Thus, an efficient subprogram 
to carry-out this operation efficiently in parallel 
was required and was developed.

The communications required by DVS-
algorithms are very easy to analyze. Indeed, 
when a different processor is allocated to each 
one of the coarse-mesh subdomains (i.e., to the 
subsets of derived-nodes, Xa, a = 1, ..., E, of 
the non-overlapping partition of X) –as it was 
done in the work here reported– transmission 
of information between different processors 
occurs only when the global Euclidean inner-
product is computed, or either the matrix a  
or the matrix a ' is applied. Furthermore, in 
these operations the amount of information 
transmitted is very small.

In a first tentative version of the 
software, a master-processor was also used. 
However, using such a master-processor as 
a communications center is very time-costly 
and when the master-processor is not used 
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as a communications center the work done by 
it is so small that it can be eliminated easily. 
When this is done, the performance of the 
DVS-algorithm became extremely good as it 
is explained and discussed in the Section on 
Numerical Results.

Only the DVS-BDDC algorithm was 
implemented. Although the implementation 
of the other three DVS-algorithms is very 
similar, and their expected parallel efficiency 
as well, their implementation would have taken 
additional time and effort that we preferred to 
save for future work.

Construction of the local DVS-software

A fundamental property of At, as defined by 
Eq. (5.7) is that it is block-diagonal, in which 
each one of the blocks is A , for each a = 1, 
..., E, is a linear-transformation of Wa into 
itself. This property simplifies very much the 
parallelization of the codes to implement the 
DVS-algorithms.

To this end, each one of the subsets Xa of 
the non-overlapping decomposition of X, is 
assigned to a different processor and the set of 
processors is numbered accordingly. The fact 
that every vector w∈W can be written in a 
unique manner as

 w w with w W
E

=
=1

,    (9.1)

is used for this purpose. The processor g 
handles only the wg component of every vector 
w∈W. Then, all the operations of the processor 
g transform wg into a vector that also belongs 
to Wg; even the operators a and a ' transform 
wg into a vector of Wg, except that a and a ' 
require information from of a few neighboring 
processors. However, it is important to make 
sure that such information be updated at the 
time it is gathered.

When evaluating the action on a vector of 
any of the matrices considered, processor g will 
be responsible of constructing the g component 
of such a vector; in particular, (S 1w)g , ( )

γ

S w1
, 

(aw)g, or ( jw)g, depending on the matrix that 
is being applied. In what follows it is assumed 
that, from the start, the nodes of the set Xg 
have been classified into I: internal, p: primal, 
and D: dual. Other node-classes of Xg that will 
be considered are: P: extended-primal, and S: 
extended-dual. Without any further notice, the 
following relation will also be used:

       Wg ≡ Wg(I)⊕Wg(p)⊕Wg(D) =
          Wg (P) ⊕Wg(D)= Wg(S)⊕Wg(p) 
  (9.2)

The application of a, a ' and j

To start with, we evaluate (aw)g when w∈Wg. 
As it will be seen, the application of a to any 
vector of Wg requires exchange of information 
between processor g and other processors. 
Indeed, recalling Eq. (4.13) we have

 aw aw p
m p

w p
p Z p

( ) = =( , )
( )

( , )
( , ) ( )

1  (9.3)

Thus, this operation requires information 
from the processors that possess derived-nodes 
belonging to Z(p); therefore, its computation 
involves communications between different 
processors, which may slow the processing. 
In view of Eq. (9.3), it is clear that except for 
this exchange of information, the evaluation 
of (aw)g, is very simple. Once aw,has been 
obtained, the relation jw = w − aw,can be used 
to compute the action of j. As for the action 
of a ', we recall that a ' is obtained when the 
application of a is restricted to primal-nodes.

Before going ahead, some final comments 
are in order. The application of a, and hence 
that of a ', also requires transmission of 
information between the processors. Thus, 
for enhancing the efficiency of the codes it is 
essential that the application procedures be 
designed with great care. As it will be seen, 
with a few exceptions, all the exchange of 
information required when the DVS-algorithms 
are implemented is when the transformations 
a and a ' are applied.

The DVS-software for S 1
 and S 1

It should be observed that in view of the 
definition of the matrix A  and the submatrices 
occurring in the following decomposition:

 A

A A A

A A A

A A A

II I I

I

I

γ

γ

π

γ γ

π

γ

ππ

γ

π

γ

γ

π

γ

π

γ

=



















∆

∆

∆∆∆

 (9.4)
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for any they transform vectors of W(Xg) into 
vectors of W(Xg). Therefore, the local matrix Q  
is defined to be

 Q A  (9.5)

where A  is the matrix defined in how to build 
non-overlapping discretizations, by Eq. (5.6). 
In this equation the index g is omitted in the 
definition of Q , because g is kept fixed. Due 
to the comments already made, it is clear that 
Q  is a well-defined linear transformation of 
Wg into itself. In particular, when wg∈Wg, the 
computation of (Q wg)g can be carried out in an 
autonomous manner, at processor g, without 
exchange of information with other processors. 
This is a fundamental difference with a , a ' and 
j , and implies that at each processor either the 
matrix Q  is constructed, or internal software 
capable of evaluating its action on any vector 
of Wg is made available.

In view of Eq. (9.4), the matrix Q will be 
written in two forms

 
Q

Q Q

Q Q

Q

Q

Q Q Q

Q Q

Q Q

Q

Q

Q Q Q

II I

I

I

I

II I

I

I

I( ( ((
=

















































=















































π

π ππ π

π

π

π

π π∆ ππ

∆

∆

∆ ∆ ∆∆

∆

∆

∆∆ ∆

) ) ) )  

  (9.6)

The following expressions, which are clear 
in view of Eq. (9.6), will be used in the sequel:

 Q
Q Q

Q Q

Q Q

Q Q
=













=
















∑∑ ∑

∑

ΠΠ Π

Π Π

π

π ππ

∆

∆ ∆

 (9.7)

Here:

 

Q
Q Q

Q Q
Q

Q

Q
II I

I

I

ΠΠ Π
≡














≡














π

π ππ π

,

QQ Q Q Q Q
IΠ

≡ ( ) ≡ ( )
π
,

∆

∆

∆∆∆∆∆∆∆

∆
 (9.8)

and

 

Q
Q Q

Q Q
Q

Q

Q
II I

I

I

∑∑ ∑
≡














≡














,
π

π

π

QQ Q Q Q Q
Iπ π π ππ ππ∑

≡ ( ) ≡ ( ),

∆ ∆∆

∆

∆

∆
 (9.9)

A. The Local DVS-software for S

Let wD∈W, and recall Eq. (7.1); then:

 
∼

Sw Q w Q A a Q w'
1( )( ) = −

γ Π ΠΠ Π∆∆ ∆ ∆ ∆ ∆ 
  (9.10)

In this equation the meaning of the 
terms Q w  and Q w  are clear since 

both Q  and Q  are well-defined linear 

transformations of Wg into itself. Something 

similar happens when the operator 


A
1( )ΠΠ  

is applied to a Q w' , since this is also a 

global linear transformation. It must also be 
understood that, when it is applied, the local 

vector a Q w'( )  has already been stored 

at processor g and at each one of the other 
processors. Due to the global character of 

the operator 


A
1( )ΠΠ  special software was 

developed for it.

A.1. The local DVS-software for A
ΠΠ( )1

The local software that was developed is based 
on the next formula:

“Let wP∈W r(P) and vP = A
ΠΠ( )1

wP , then

    

 

a A A A A v w A A w and jv' ,   0t
I

t
II
t

I
t

I
t

II
t

I
1 1( )( ) ( )− = − =

ππ π π π π π π 

 
    

 

a A A A A v w A A w and jv' ,   0t
I

t
II
t

I
t

I
t

II
t

I
1 1( )( ) ( )− = − =

ππ π π π π π π

  (9.11)
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together with

 


v A w A vI II
t

I I
t1 ( )( )= −
π π  (9.12)

To apply this formula iteratively, at each 
processor g it was necessary to develop local 
software capable of carrying out the following 
operations:

 
 

a Q Q Q Q v w a Q Q w' '
I II I I II I

1 1( ) ( )−







= −
ππ π π π π π

 

  (9.13)

and, once convergence has been achieved, the 
following autonomous operation is carried out:

 


v Q w Q vI II I I

1 ( )( )= −
π π  (9.14)

We see here that except for a ' all the linear 
transformations involved are autonomous and 
can be expressed by means of local matrices 
defined in each processor. In the DVS-software 
that is the subject of this paper, such matrices 
were not constructed but we recognize that in 
some problems such an option may be more 
competitive,

B. The Local DVS-Software for S 1

The local software that was developed is based 
on the next formula: “When wD∈W(D), then 

 ∼ ∼S w A w1 1( )= ∆ ∆
 (9.15)

Therefore, if v∈W r is defined by the 
condition Av w=  and it is written in the form 
v = vI + vD + vp, then ∼S w v1 = ∆. A more explicit 
form of the condition v∈W r is jv = 0. This 
latter condition together with the equation 
Av w=  gives rise to a global problem whose 
solution, in the parallel software we have 
developed, was based on the iterative scheme: 
“Let wD∈W(D) and 

∼ ∼v S w A w1 1( )≡ =∆ ∆ ∆∆ , 
then at processor g:

     
( ) ( )−









 = − =

ππ π π π π πΣ ΣΣ Σ Σ ΣΣ

 

v va Q Q Q Q a Q Q w , and j  ' ' 0
1 1

 

    
( ) ( )−









 = − =

ππ π π π π πΣ ΣΣ Σ Σ ΣΣ

 

v va Q Q Q Q a Q Q w , and j  ' ' 0
1 1

 (9.16)

Once vp has been obtained, vD is given by

 

∼
∼

S w v Q w Q v1
1( ) ( )= = −



π π∑∑ ∑∑ ∑∆ ∆
∆

  (9.17)

At processor g that is being considered, Eqs. 
(9.16) and (9.17) are:

     
( ) ( )−









 = − =

ππ π π π π πΣ ΣΣ Σ Σ ΣΣ

 

v va Q Q Q Q a Q Q w , and j  ' ' 0
1 1

 

     
( ) ( )−









 = − =

ππ π π π π πΣ ΣΣ Σ Σ ΣΣ

 

v va Q Q Q Q a Q Q w , and j  ' ' 0
1 1

  (9.18)

and

 
∼

v Q w Q v
1( ) ( )= −



π π∑∑ ∑ ∑∆
∆

  
  (9.19)

respectively.

C. Applications of the Conjugate Gradient 
Method (CGM)

There are three main instances in which 
CGM was applied: i) to invert A ; ii) to invert 
A; iii) to solve iteratively the global equation 
–such equation may be: either Eq. (6.5), Eq. 
(6.6), Eq. (6.8) or Eq. (6.10), depending on the 
DVS-algorithm that is applied-. Furthermore, 
it should be mentioned that the inverses of 
the local-matrices: 

Ι Ι
Q  and Q  can either be 

obtained by direct or by iterative methods; in 
the DVS-software here reported, this latter 
option was chosen and CGM was also applied 
at that level.

Numerical Results

In the numerical experiments that were carried 
out to test the DVS-software, the boundary-
value problem for static elasticity introduced in 
the standar discretization was treated. In this 
paper only the DVS-BDDC algorithm has been 
tested. Work is underway to test the other DVS-
algorithms, albeit similar results are expected 
for them. The elastic material was assumed to 
be homogeneous; so, the Lamé parameters 
were assumed to be constant and their values 
were taken to be
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These values correspond to a class of cast 
iron (for further details about such a material 
see, http://en.wikipedia.org/wiki/Poisson’s_
ratio) whose Young modulus, E, and Poison 
ratio, v, are:

 E N
m

and v= =68 95 0 262. .x10   9  
  

The domain W⊂R3 that the homogeneous-
isotropic linearly-elastic solid considered 
occupies is a unitary cube. The boundary-value 
problem considered is a Dirichlet problem, with 
homogeneous boundary conditions, whose 
exact solution is:

 u = (sinpxsinpysinpz, sinpxsinpysinpz, sinpxsinpysinpz)
  (10.1)

The fine-mesh that was introduced consisted 
of (193)3 = 7,189,057 cubes, which yielded 
(194)3 = 7,301,384 original-nodes.

The coarse-mesh consisted of a family of 
subdomains {W1, ..., WE}, whose interfaces 
constitute the internal-boundary G. The 
number E of subdomains was varied taking 
successively the values 8, 27, 64, 125, 216, 
343, 512 and so on up to 2,744. The total 

 Number of DoF. Nodes Primal Processing Parallel Speed up Norm of
 Subdomains  by Nodes Time efficiency  error
 =  Subdomain  in seconds 
 Number of
 processors 

 8 22,244,625 941,192 583 14,959 1 1 0.0263
 27 21,904,152 274,625 2,312 5,882 75% 2.543 0.018
 64 22,244,625 117,649 5,211 2,676 70% 5.59 0.029
 125 21,904,152 59,319 9,184 1,212 79% 12.342 0.011
 216 22,936,119 35,937 14,525 703 79% 21.280 0.010
 343 22,244,625 21,952 20,628 406 86% 36.845 0.010
 512 23,641,797 13,824 27,391 242 97% 61.814 0.011
 729 23,287,176 10,648 36,800 183 90% 81.74 0.010
 1000 23,641,797 8,000 46,899 136 88% 109.992 0.009
 1331 22,936,119 5,832 57,100 96 94% 155.823 0.010
 1728 20,903,613 4,096 66,671 89 78% 168.078 0.009
 2197 21,904,152 3,375 80,352 64 85% 233.734 0.008
 2744 22,244,625 2,744 94,471 51 86% 293.313 0.009

number of derived-nodes and corresponding 
number of degrees-of-freedom are around 7.5 x 
106 and 2.5 x 106, respectively. The constraints 
that were imposed consisted of continuity at 
primal-nodes; in every one of the numerical 
experiments all the nodes located at edges 
and vertices of the coarse mesh were taken as 
primal-nodes. In this manner, the total number 
of primal-nodes varied from a minimum of 583 
to a maximum of 94,471. Thereby, it should be 
mentioned that these conditions granted that 
at each one of the numerical experiments the 
matrix A was positive definite and possessed a 
well-defined inverse.

All the codes were developed in C++ 
and MPI was used. The computations were 
performed at the Mitzli Supercomputer 
of the National Autonomous University of 
Mexico (UNAM), operated by the DGTIC. All 
calculations were carried out in a 314-node 
cluster with 8 processors per node. The cluster 
consists 2.6 GHz Intel Xeon Sandy Bridge E5-
2670 processors with 48 GB of RAM.

As it was exhibited in the analysis of the 
operations, the transmission of information 
between different processors exclusively 
occurs when the average-operators a and a ' 
are applied. In a first version of the software 
reported in the present paper such exchange 
of information was carried out through a 
master-processor, which is time expensive. 
However, the efficiency of the software (as a 
parallelization tool) improved very much when 

Table 1. Numerical Results

p
p
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• x100
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T p
T p
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the participation of the master-processor in the 
communication and exchange of information 
process was avoided. In its new version, the 
master-processor was eliminated altogether. 
A Table summarizing the numerical results 
follows.

It should be noticed that the computational 
efficiency is very high, reaching a maximum 
value of 96.6%. Furthermore, the efficiency 
increases as the number of processors 
increases, a commendable feature for software 
that intends to be top as a tool for programming 
the largest supercomputers available at 
present.

Conclusions

1. This paper contributes to further develop 
non-overlapping discretization methods and 
the derived-vector approach (DVS), introduced 
by I. Herrera and co-workers (Herrera et al., 
2014), (Herrera and Rosas-Medina, 2013), 
(Carrillo-Ledesma et al., 2013), (Herrera 
and Yates, 2011), (Herrera, 2007), (Herrera, 
2008), (Herrera and Yates, 2010) and (Herrera 
and Yates, 2011);

2. A procedure for transforming overlapping 
discretizations into non-overlapping ones has 
been presented;

3. Such a method is applicable to symmetric 
and non-symmetric matrices;

4. To illustrate the procedures that are 
needed for constructing software based on 
non-overlapping discretizations, software 
suitable to treat problems of isotropic static 
elasticity has been developed; and

5. The software so obtained has been 
numerically tested and the high efficiency, 
as a parallelization tool, expected from DVS 
software has been experimentally confirmed. 

The main general conclusion is that the DVS 
approach and non-overlapping discretizations 
are very adequate tools for applying highly 
parallelized hardware to treat the partial 
differential equations occurring in systems of 
science and engineering.
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