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This article concludes the development and summarizes a new approach to dual-primal domain decomposi-
tion methods (DDM), generally referred to as “the multipliers-free dual-primal method.” Contrary to standard
approaches, these new dual-primal methods are formulated without recourse to Lagrange-multipliers. In this
manner, simple and unified matrix-expressions, which include the most important dual-primal methods that
exist at present are obtained, which can be effectively applied to floating subdomains, as well. The derivation
of such general matrix-formulas is independent of the partial differential equations that originate them and
of the number of dimensions of the problem. This yields robust and easy-to-construct computer codes. In
particular, 2D codes can be easily transformed into 3D codes. The systematic use of the average and jump
matrices, which are introduced in this approach as generalizations of the “average” and “jump” of a function,
can be effectively applied not only at internal-boundary-nodes but also at edges and corners. Their use yields
significant advantages because of their superior algebraic and computational properties. Furthermore, it is
shown that some well-known difficulties that occur when primal nodes are introduced are efficiently handled
by the multipliers-free dual-primal method. The concept of the Steklov–Poincaré operator for matrices is
revised by our theory and a new version of it, which has clear advantages over standard definitions, is given.
Extensive numerical experiments that confirm the efficiency of the multipliers-free dual-primal methods are
also reported here. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2009
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I. INTRODUCTION

Nowadays, parallel computing is the most effective means for increasing computational speed.
In turn, DDM is most efficient for applying parallel-computing to the solution of partial differ-
ential equations. Since the time when the international community began to intensively study
DDM, attention has shifted from overlapping to nonoverlapping methods, mainly because they
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are more effective for many problems [1]. In particular, it is easier to apply parallel computers
to them and to develop the corresponding codes. A direct application of such an approach yields
the Schur-complement method, which corresponds to formulating Dirichlet problems in each one
of the subdomains, and another one, which corresponds to formulating Neumann problems: the
nonpreconditioned FETI method. The performance of these methods, however, usually is not
satisfactory and can be drastically improved by applying appropriate preconditioners [2, 3].

Some of the most efficient preconditioned nonoverlapping methods are obtained by using the
Neumann method as a preconditioner of the Schur complement method; or, conversely, using
the Schur complement method as a preconditioner of the Neumann method. This gives rise to a
class of methods that in this article is generically called the “round-trip methods,” since one goes
from the space of continuous functions to another space having continuous normal derivatives
and back; or the same, but in reverse order. When the Schur complement method is precondi-
tioned with the Neumann method, a procedure that is known in the scientific literature as the
Neumann–Neumann method is obtained, while the preconditioned FETI is obtained when the
Neumann method is preconditioned with the Schur complement method. For a thorough and well-
documented review of these methods, the reader is referred to [2], where a broad bibliography is
revised.

More recently, the dual-primal FETI methods were introduced [4], in which a relatively small
number of continuity constraints across the interfaces are enforced, and they have been very suc-
cessful because they enhance in a rather significant manner the condition number of the matrices
involved in the problems and accelerate the convergence rates.

The treatment of round-trip algorithms, until recently, had been done with recourse to Lagrange
multipliers exclusively. However, Herrera and Yates, in a sequence of articles, have introduced a
multipliers-free formulation of FETI and dual-primal methods [5–7]. Actually, the whole series
constitutes a “general theory of partial differential operators acting on discontinuous functions
and of matrices acting on discontinuous vectors.”

The theory of partial differential operators acting on discontinuous functions is based on exten-
sive previous work that culminated, and was presented in an integrated form, in the first paper of
the series we are referring to [5] where the interested reader can find further references to it. In
the second article [6], the general ideas and the theoretical background that permits formulating
a very general class of substructuring methods without recourse to Lagrange multipliers were
introduced. The results of that article were developed working in finite-dimensional function
spaces. On the contrary, the third article introduced an approach that permits carrying out the
domain decomposition directly in the matrices themselves, independently of the function-spaces
from which they derive [7]. This is a conspicuous feature of the methodology there introduced,
which also extended the procedures to include dual-primal methods and developed the matrices
in a more explicit manner.

In the present fourth article of the series, we continue working directly on the matrices, using
the approach introduced in the third article [7]. The contributions contained herein are multiple;
the following should be highlighted:

1. Explicit matrix-formulas are developed for the algorithms, which are expressed in terms of
the Schur complement matrices exclusively and, therefore, in terms of the internal-boundary-
node value of the vectors involved.

2. The generality of such formulas permits unifying the formulation of the different methods,
which are classified broadly into one-way (Schur complement and nonpreconditioned FETI
methods) and round-trip methods (Neumann–Neumann and preconditioned FETI).
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3. There is a significant simplification in the development of the codes that are required for the
implementation of the algorithms. The algorithms are derived directly from the problem-
matrices, independently of the partial differential equations that originated them and the
number of dimensions of the problem.

4. The robustness of the codes so obtained. When the matrix-formulas here supplied are used,
by simple substitutions parallel-processing codes can be developed for any system that is
governed by linear differential equations, or by systems of such equations, that are symmet-
ric and non-negative. For example, for the numerical experiments presented in Section XVI,
2D codes were easily transformed into 3D codes. This property is, to a large extent, due to
the fact that the derivations of such matrix-formulas are independent of the problems from
which they stem. In standard treatments the space-dimension is defined from the start.

5. The average and jump matrices a and j , respectively, which were introduced in [7] and have

been used extensively, exhibit superior algebraic and computational properties. In partic-
ular, the j operator is the optimal choice for the B operator of the FETI methods [2]. In

numerical experiments that have been carried out, very significant reductions in the number
of iterations were achieved when the matrix j was used instead of standard B operators [7].

These matrices are generalizations of the “average” and “jump” of a function, which can be
effectively applied at the discrete level (i.e., to vectors), not only at internal-boundary-nodes
but also at edges and corners.

6. Very effective means for treating floating subdomains are developed in this article. This is
especially relevant, since there are applications of great importance in which they occur, as in
problems that are formulated in terms of Laplace, biharmonic, or static-elasticity operators.

7. As it is well known, the parallel implementation of dual-primal methods is impaired by
the introduction of primal-nodes. When the multipliers-free formulation of this series of
papers is applied, such a handicap is explicitly expressed and procedures for reducing it to
a minimum are given (see Appendix D).

8. Extensive numerical results that confirm experimentally the efficiency of the multipliers-free
dual-primal methods are also reported here.

9. Finally, the multipliers-free formulation of this kind of methods implies a new interpretation
of the Steklov–Poincaré operator for matrices that is presented here, in Section IX.

Although this article is based on developments introduced in the previous articles of the series
[5–7], a significant number of modifications and new theoretical developments were required,
which are presented in Sections II to VI. The multipliers-free formulation of the general problem
here treated is first introduced in Section VII. The Green–Herrera formulas, which have had a
significant role in theory of partial differential operators acting on discontinuous functions, are
extended to matrices, in Section VIII. Then, a new interpretation of Steklov–Poincaré operator
emerges from this extension of Green–Herrera formula, which is given in Section IX. A for-
mulation of the problem treated in terms of Schur-complement matrices exclusively, is given in
Section XI, while Section X is preparatory to it. One-way and round-trip algorithms are discussed
in Sections XII and XIII, respectively. The procedure for effectively treating floating subdomains,
which is based on a generalization of the Schur-complement matrix, is introduced in Section
XIV, while Section XV is devoted to explain an effective procedure for inverting such a general-
ized Schur-complement matrix. Section XVI is devoted to implementation issues and numerical
results, while the conclusions of this article are summarized in Section XVII. Several details that
are required for the implementation of the algorithms are presented in the Appendices A to D.
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II. NODES AND THEIR CLASSIFICATION

Let the set of “original nodes” be � ≡ {1, . . . , d}, while the family {�1, . . . , �E} ⊂ � is a cover
of �; i.e.,

� =
E⋃

α=1

�α (2.1)

We also consider pairs p ≡ (p, α), such that p ∈ � and α ∈ {1, . . . , E}. Then, we define

�̄ ≡ {p = (p, α)
∣∣p ∈ �α

}
(2.2)

And, for every p ∈ �,

Z(p) ≡ {α ∈ {1, . . . , E}|(p, α) ∈ �̄} (2.3)

while the multiplicity of p, m(p), will be the cardinality of Z(p). The pairs p ≡ (p, α) that

belong to �̄ are said to be “derived nodes.” We distinguish two classes of original nodes: when
m(p) = 1, p ∈ � is said to be an “interior original node” and when m(p) > 1, it is said to be
a “(internal-)boundary original node”; the sets of interior original nodes and boundary original
nodes, which are disjoint, will be denoted by �I and �� , respectively. Similarly, we distinguish
two classes of derived nodes: p ≡ (p, α) ∈ �̄ is said to be an interior (derived) node, or a
boundary (derived) node, depending on whether the multiplicity of p is equal or greater than 1,
respectively. The sets of interior (derived) nodes and of boundary (derived) nodes will be denoted
by I and �, respectively.

We choose a set �π ⊂ �� and define the sets:⎧⎪⎪⎨⎪⎪⎩
I ≡ {p = (p, α) ∈ �̄|p ∈ �I

}
π ≡ {p = (p, α) ∈ �̄|p ∈ �π

}
� ≡ {p = (p, α) ∈ �̄|p ∈ �� − �π

} (2.4)

Clearly, � = � − π . Furthermore, we define � ≡ I ∪ π and observe that

�̄ = I ∪ π ∪ � = � ∪ � and ∅ = � ∩ � = π ∩ � = π ∩ I = � ∩ I (2.5)

The sets π and � are the sets of primal and “dual” (derived) nodes, respectively. We observe that
� = �, when π = ∅.

III. VECTORS AND CONTINUOUS VECTORS

Notice that every real-valued function defined either in � or in �̄ is a vector (so, they will be
referred to indistinctly as functions or vectors). The linear spaces D̃(�) and D̃(�̄) will be con-
stituted by the functions (vectors) defined in � and in �̄, respectively. Similarly, D̃(�) ⊂ D̃(�̄)

and D̃(�) ⊂ D̃(�̄) will be the linear subspaces of D̃(�̄) whose elements vanish outside � and
�, respectively. The subspaces D̃(I), D̃(π), and D̃(�), of D̃(�̄), are defined similarly. Then,

D̃(�̄) = D̃(�) ⊕ D̃(�) (3.1)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Here, and in what follows, the symbol ⊕ stands for the direct sum of two linear spaces; thus,
Eq. (3.1) is fulfilled if and only if {

D̃(�̄) = D̃(�) + D̃(�)

{0} = D̃(�) ∩ D̃(�)
(3.2)

Therefore, vectors of D̃(�̄) can be uniquely represented as

u = (u�, u�) = u� + u�, with u� ∈ D̃(�) and u� ∈ D̃(�) (3.3)

The natural immersion of D̃(�) into D̃(�̄), denoted by τ : D̃(�)→ D̃(�̄), is defined for every
�
u ∈ D̃(�) by (

τ
�
u
)(

q
) = �

u(p), ∀q ∈ Z(p) ⊂ �̄ (3.4)

More explicitly, this yields (
τ

�
u
)
(p,α)

= �
u(p), ∀(p, α) ∈ �̄ (3.5)

The image τD̃(�) of D̃(�) under τ : D̃(�)→D̃(�̄) constitutes a linear subspace of D̃(�̄). We
define

D̄(�̄) ≡ τD̃(�) ⊂ D̃(�̄) (3.6)

Vectors belonging to D̄(�̄) will be said to be “continuous vectors.” According to Eq. (3.5),
continuous vectors are characterized by the fact that their value at any derived node, (p, α), is
independent of α and only depends on the original node, p, from which it derives. Clearly, the
mapping τ : D̃(�)→D̄(�̄) is a bijection; this permits defining τ−1 : D̄(�̄)→D̃(�), which has
the property that, for any u ∈ D̄(�̄), one has(

τ−1u
)
(p) = u(p, α), ∀p ∈ � and α ∈ Z(p) (3.7)

IV. THE EUCLIDEAN INNER PRODUCTS

The “Euclidean inner product,” which is the only one to be considered in the first part of this
article, is defined to be{

�
u • �

w ≡∑p∈�

�
u(p)

�
w(p), ∀�

u,
�
w ∈ D̃(�)

u • w ≡∑p∈�̄ u(p)w(p) =∑q∈�

∑
p∈Z(q) u(p)w(p), ∀u, w ∈ D̃(�̄)

(4.1)

The methods described in this article are not restricted, in their applicability, to a single differen-
tial equation, but they are equally applicable to systems of differential equations, such as those
occurring in elasticity. A proper treatment in our scheme of those systems requires introducing
vector-valued functions. In such cases,

�
u(p) and u(p) are themselves vectors and, when defining

the Euclidean inner product, Eq. (4.1) must be replaced by{
�
u • �

w ≡∑p∈�

�
u(p) 
 �

w(p), ∀�
u,

�
w ∈ D̃(�)

u • w ≡∑p∈�̄ u(p) 
 w(p) =∑q∈�

∑
p∈Z(q) u(p) 
 w(p), ∀u, w ∈ D̃(�̄)

(4.2)
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Here, the symbol 
 stands for the inner product of the vector space where the vectors
�
u(p) and

u(p) lie.

Two auxiliary matrices are introduced next; they are:
�
m : D̃(�) → D̃(�) and m : D̃(�̄) →

D̃(�̄), which are defined, for each
�
u ∈ D̃(�) and each u ∈ D̃(�̄), by

�
m

�
u(p) = m(p)

�
u(p), ∀p ∈ �

mu(p) = m(p)u(p), ∀p = (p, α) ∈ �̄ (4.3)

Both of them are diagonal matrices. The values at the main diagonals of
�
m and m are the

multiplicities m(p). Simple results whose proofs are straightforward are as follows:

τ
�
m

�
u = mτ

�
u and τ

�
m

−1�
u = m−1τ

�
u, ∀�

u ∈ D̃(�) (4.4)

Together with

mD̄(�) = D̄(�) = m−1D̄(�) (4.5)

Lemma 4.1. When
�
u,

�
w ∈ D̃(�), each one the following relations holds:

�
u • �

m
�
w = τ

(�
u
) • τ

(�
w
)

�
u • �

w = τ
(�
u
) • m−1τ

(�
w
)} , ∀�

u,
�
w ∈ D̃(�) (4.6)

Proof. We write u ≡ τ
�
u and w ≡ τ

�
w, and then apply Eqs. (4.1) and (4.2), together with

Eq. (3.4), to obtain

u • w =
∑
p∈�

∑
q∈Z(p)

u(q)w(q) =
∑
p∈�

m(p)
�
u(p)

�
w(p) = �

u • �
m

�
w (4.7)

This shows the first relation of Eq. (4.6). Then, applying such a relation with
�
w replaced by

�
m

−1 �
w the second one is obtained.

Corollary 4.1. Let u ∈ τD̃(�) = D̄(�̄) be such that for some
�
u ∈ D(�) it fulfills

�
u • �

w = u • τ
(�
w
)
, ∀�

w ∈ D(�) (4.8)

Then

u = m−1τ
(�
u
) = τ

(�
m

−1�
u
)

(4.9)

Proof. In view of the second relation in Eq. (4.6) one has

�
w • �

u = τ
(�
w
) • m−1τ

(�
u
)
, ∀�

w ∈ D̃(�), (4.10)

which implies (
u − m−1τ

(�
u
)) • w = 0, ∀w ∈ τD̃(�) = D̄(�) (4.11)

Then Corollary (4.1) is clear, since both u and m−1τ(
�
u) belong to D̄(�).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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V. VECTOR SUBSPACES. THE AVERAGE AND JUMP MATRICES

Two matrices a : D̃(�̄)→ D̃(�̄) and j : D̃(�̄)→ D̃(�̄) are now introduced, which are defined

by

au = ProjD̄u and j = I − a (5.1)

Here, I is the identity matrix and the projection on D̄ is taken with respect to the Euclidean inner
product. The matrices a and j are referred to as the “average and the “jump” matrices. Clearly,

I = a + j and

D̄(�̄) ≡ aD̃(�̄) (5.2)

Furthermore, j is also a projection; indeed, it is the projection on the orthogonal complement

of D̄; in particular, jD̄(�̄) = {0}. The following properties should be noticed: a and j are both

symmetric, non-negative, and idempotent. Furthermore,

aj = ja = 0 (5.3)

The construction of the matrix a is relatively simple [previous paper]. Writing

a ≡ (a(i,α)(j ,β)

)
(5.4)

Then,

a(i,α)(j ,β) = 1

m(i)
δij , ∀α ∈ Z(i) and ∀β ∈ Z(j) (5.5)

An expression for the matrix j follows from Eq. (5.1), but its action on any vector is easily

obtained using:

ju = u − au, ∀u ∈ �̄ (5.6)

The following subspaces are now introduced:

D̃11(�̄) ≡ jD̃(�̄) ⊂ D̃(�)

D̃12(�̄) ≡ D̄(�̄) = aD̃(�̄)

}
and

{
D̃11(�) ≡ jD̃(�) = D̃11(�̄)

D̃12(�) ≡ aD̃(�)
(5.7)

And the following relations are here highlighted:

D̃11(�̄) = D̃11(�) is the orthogonal complement, with respect to the Euclidean inner product,
of D̃12(�̄);

D̃(�̄) = aD̃(�̄) ⊕ jD̃(�̄) = D̄(�̄) ⊕ jD̃(�̄) = D̃(I) ⊕ D̃11(�) ⊕ D̃12(�) (5.8)

D̃(�̄) = D̃11(�) ⊕ D̄(�̄) (5.9)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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D̃(�) = D̃11(�) ⊕ D̃12(�) (5.10)

Furthermore, D̃11(�) and D̃12(�) are orthogonal complements relative to D̃(�);

D̄(�̄) = D̃(I) ⊕ D̃12(�) (5.11)

au = u and ju = 0, ∀u ∈ D̃(I) (5.12)

aD̃(I) = D̃(I) and jD̃(I) = {0} (5.13)

And

D̄(�̄) =
{
u ∈ D̃(�̄)

∣∣∣ju = 0
}

=
{
u ∈ D̃(�̄)

∣∣∣au = u
}

D̃11(�) =
{
u ∈ D̃(�)

∣∣∣au = 0
}

=
{
u ∈ D̃(�)

∣∣∣ju = u
}

D̃12(�) =
{
u ∈ D̃(�)

∣∣∣ju = 0
}

=
{
u ∈ D̃(�)

∣∣∣au = u
}

(5.14)

It should also be noticed that, in view of the above relations, each u ∈ D̃(�̄) can be written
uniquely as

u = uI + u� = uI + u�1 + u�2 with uI ∈ D̃(I), u�1 ∈ D̃11(�) and u�2 ∈ D̃12(�) (5.15)

and

u = u� + u� = u� + u�1 + u�2 with u� ∈ D̃(�), u�1 ∈ D̃11(�) and u�2 ∈ D̃12(�)

(5.16)

VI. THE DUAL-PRIMAL SUBSPACE

For each k ∈ � = {E}, we define the “jump-matrix at k,” to be

j k ≡ (j k
(i,α)(j ,β)

)
(6.1)

where:

j k
(i,α)(j ,β) ≡

(
δαβ − 1

m(k)

)
δikδjk (6.2)

For any vecto v ∈ D̃(�̄) the condition that j kv = 0 is tantamount to

v(k, α) = v(k, β), ∀α, β ∈ Z(k). (6.3)

When j kv = 0, we say that v is continuous at the node k.

The “primal jump” matrix is defined to be

jπ ≡
∑
k∈�π

j k (6.4)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Introducing the symbol δπ
ij , defined by

δπ
ij ≡

{
1, if i, j ∈ �π

0, if i or j /∈ �π (6.5)

It is seen that

jπ
(i,α)(j ,β) =

(
δαβ − 1

m(i)

)
δij δ

π
ij . (6.6)

Then the “dual-primal” space, D̃DP (�̄), is defined to be

D̃DP (�̄) ≡
{
w ∈ D̃(�̄)

∣∣∣jπw = 0
}

⊂ D̃(�̄) (6.7)

In particular, D̃DP (�̄) = D̃(�̄) when �π = ∅. Observe that the projection aπ : D̃(�̄)→D̃DP (�̄)

is given by

aπ ≡ I − jπ (6.8)

Therefore,

aπ
(i,α)(j ,β) = 1

m(i)
δij δ

π
ij + δαβδij

(
1 − δπ

ij

)
(6.9)

In words, this equation says that aπ equals the identity matrix at every derived node except when
the node belongs to the set π of primal nodes, in which case it equals the average matrix as given
by Eq. (5.5). Similarly, Eq. (6.6) says that the primal jump operator jπ vanishes everywhere except

at primal nodes, where it equals the jump operator. Therefore, the dual-primal space D̃DP (�̄) is
the subspace of D̃(�̄) whose elements are continuous at every node belonging to π . We adopt
the notations

D̃DP
11 (�̄) ≡ jD̃DP (�̄) ⊂ D̃DP (�̄) and D̃DP

12 (�̄) ≡ aD̃DP (�̄) = D̃12(�̄) (6.10)

To prove that jD̃DP (�̄) ⊂ D̃DP (�̄), given w ∈ D̃DP (�̄) we compute the projection of jw on

D̃DP (�̄):

aπjw = (I − jπ
)
jw = jw − jπw = jw. (6.11)

VII. THE DISCONTINUOUS MULTIPLIERS-FREE FORMULATION

In the remaining of this article, several matrices will be considered.

Â : D̃(�)→D̃(�), At : D̃(�̄)→D̃(�̄) and A : D̃(�̄)→D̃DP (�̄) (7.1)

The matrix Â, At , and A will be referred to as the “original matrix,” the “total matrix” and the
“dual-primal matrix,” respectively. We write:

Â ≡ ( �

Apq

)
, where p, q ∈ � (7.2)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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It will be assumed throughout the article that:

1. Â : D̃(�)→D̃(�) is positive definite; and

2. Using the notation of Eq. (7.2),

�

Apq = 0, whenever p ∈ �I ∩ �α , q ∈ �I ∩ �β and α �= β (7.3)

3. The matrix At : D̃(�̄)→D̃(�̄) is positive definite and satisfies the condition:

�
w • �

A
�
u = τ

(�
w
) • Atτ

(�
u
)
, ∀�

u,
�
w ∈ D̃(�) (7.4)

This condition, Eq. (7.4), does not determine At uniquely.

4. For each α ∈ {1, . . . , E} there is defined a matrix Aα : D̃(�̄α)→D̃(�̄α) such that

At =
E∑

α=1

Aα (7.5)

A convenient procedure for constructing a matrix At fulfilling the above conditions is
given in Appendix A, proving thereby that there is always at least one such a matrix.

5. When At is given, the dual-primal matrix, A, is defined by

A ≡ aπAtaπ (7.6)

6. The dual-primal subspace of D̃(�̄) is defined to be

D̃DP (�̄) ≡ aπD̃(�̄) (7.7)

We observe that when π ⊂ �̄ is void, A = At and D̃DP (�̄) = D̃(�̄). Furthermore, the matrix

A defines a mapping A : D̃DP (�̄) → D̃DP (�̄), which is symmetric and positive definite. This
because

w • Au = w • aπAtaπu = w • Atu, ∀u, w ∈ D̃DP (�̄) (7.8)

Observe that A : D̃DP (�̄) → D̃DP (�̄) is positive definite and one-to-one, while A : D̃(�̄) →
D̃DP (�̄) is not. Furthermore:

D̄(�̄) = D̃12(�̄) = aD̃DP (�̄) ⊂ D̃DP (�̄)

D̃(�) ⊂ D̃DP (�̄), D̃11(�) ≡ jD̃(�) = jD̃DP (�̄) (7.9)

Definition 7.1. Let
�

f ∈ D̃(�). Then the “original problem” consists in searching for a function
�
u ∈ D̃(�) that satisfies

�

A
�
u = �

f (7.10)
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The “transformed problem” consists in searching for a function ũ ∈ D̃DP (�̄) that satisfies

aAũ = f̄ and j ũ = 0 (7.11)

where f̄ ∈ D̄(�̄) = D̃12(�̄) ⊂ D̃DP (�̄) is given by

f̄ ≡
(

f̄
�

f̄
�

)
≡ m−1τ

(
�

f

)
and f̄

�
= f̄

�2
(7.12)

Theorem 7.1. An equivalent formulation of the transformed problem is: search for a function
ũ ∈ D̃(�̄) that satisfies

aAt ũ = f̄ and j ũ = 0 (7.13)

Furthermore, a function ũ ∈ D̃(�̄) is the solution of the transformed problem if and only if

�
u ≡ τ−1(ũ) (7.14)

is the solution of the original problem.

Proof. start with, we prove that both formulations, mentioned earlier, of the transformed prob-
lem are equivalent. This can be seen using the fact that when j ũ = 0, then ũ ∈ D̃12(�̄) ⊂ D̃DP (�̄)

and also

aAt ũ = aaπAtaπ ũ = aAũ (7.15)

Recall now the definition of the transformation τ−1 : D̃12(�̄) → D̃(�) given in Section III and
assume that ũ ∈ D̃(�̄) is related to

�
u ∈ D̃(�) by Eq. (7.14). Then, we have

1. If
�
u ∈ D̃(�) is solution of the original problem, then ũ ≡ τ

(�
u
)

fulfills Eq. (7.13);

2. Conversely, Eq. (7.13) implies ũ ∈ D̄(�̄), so that τ−1 is well defined. Taking
�
u ∈ D̃(�)

given by Eq. (7.14), then following the above arguments in reverse order, it is seen that
�
u ∈ D̃(�) fulfills Eq. (7.10).

VIII. GREEN–HERRERA FORMULA FOR MATRICES

In what follows we shall write

A ≡
(

A
��

A
��

A
��

A
��

)
(8.1)

The notation here is such that{
A

��
: D̃(�)→D̃(�), A

��
: D̃(�)→D̃(�)

A
��

: D̃(�)→D̃(�), A
��

: D̃(�)→D̃(�)
(8.2)
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12 HERRERA AND YATES

And the following definitions are introduced

L ≡
(

A
��

A
��

0 0

)
and R ≡

(
0 0
A

��
A

��

)
(8.3)

Furthermore, we notice the identity:

R = aR + jR (8.4)

Which implies, since A = AT , that

L + aR + jR = LT + RT a + RT j (8.5)

The identity:

L + aR − RT j = LT + RT a − jR (8.6)

which follows from Eq. (8.5), will be referred to as “Green-Herrera formula for matrices”.
We notice that the ranges of L and R are contained in D̃(�) and D̃(�), respectively, whereas

those of aR and jR are contained in D̃12(�) and D̃11(�), respectively; so, the ranges of L, aR,

and jR are linearly independent. Furthermore, for any function v ∈ D̃DP (�̄) one has(
L + aR − RT j

)
v = 0 (8.7)

if and only if

Lv = 0, aRv = 0 and jv = 0 (8.8)

To establish the equivalence between Eqs. (8.7) and (8.8), one can use the facts that the ranges
of L and aR are linearly independent, together with the equation:(

jv
) • RT jv = (jv

) • A
��

jv = (jv
) • Ajv = 0 (8.9)

which implies jv = 0. This, because A is positive definite on D̃DP (�̄).

IX. THE STEKLOV–POINCARÉ OPERATOR

In this Section, we use the following notation:

•
û ≡ au and [[u]] ≡ ju (9.1)

Then
•
û ∈ D̄(�̄), while [[u]] belongs to D̃11(�) ⊂ D̃(�). The Green–Herrera formula of Eq. (8.6),

is equivalent to:

w • Lu +
•
ŵ • aRu − [[u]]jRw = u • Lw +

•
û • aRw − [[w]]jRu, ∀u, w ∈ D̃(�̄) (9.2)
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Now, Green–Herrera formulas were originally introduced for partial differential operators acting
on discontinuous functions [5]; they can be applied to any such an operator when it is linear. Eq.
(8.6), on the other hand, is intended as an extension of such kind of formulas to matrices acting
on discontinuous vectors and it has interest to compare Eq. (9.2) with Green–Herrera formulas
for partial differential operators. To this end it is useful to introduce the following notation[[

R
]]

≡ −aR and
•
R̂ ≡ −jR (9.3)

Using it, Eq. (9.2) is

w • Lu + [[u]] •
•
R̂ w −

•
ŵ •

[[
R
]]

u = u • Lw + [[w]] •
•
R̂ u −

•
û •

[[
R
]]

w, ∀u, w ∈ D̃(�̄)

(9.4)

There is a straightforward correspondence between Eq. (9.4) and what is obtained for differential
operators (see [8,9] for general results and many illustrations). For Laplace operator, for example,
they are

∫
�

wLudx +
∫

�

⎧⎨⎩[[u]]
•

∂̂w

∂n
−

•
ŵ

[[
∂u

∂n

]]⎫⎬⎭ dx =
∫

�

uLwdx +
∫

�

⎧⎨⎩[[w]]
•

∂̂u

∂n
−

•
û

[[
∂w

∂n

]]⎫⎬⎭ dx

(9.5)

The following correspondence between the bilinear functionals involved in both equations, stem
by comparison of Eqs. (9.4) and (9.5):∫

�

wLudx ↔ w • Lu

∫
�

[[u]]
•

∂̂w

∂n
dx ↔ [[u]] •

•
R̂ w∫

�

•
ŵ

[[
∂u

∂n

]]
dx ↔

•
ŵ •

[[
R
]]

u (9.6)

For partial differential operators and in particular for Laplace operator, the Poincaré–Steklov
operator is associated with the jump of the normal derivative and the bilinear functional∫

�

•
ŵ

[[
∂u

∂n

]]
dx (9.7)

Hence, at the matrix level the Steklov–Poincaré operator is associated with the bilinear from:

•
ŵ •

[[
R
]]

u = w • aRu, ∀u, w ∈ D̃(�̄) (9.8)

Or more simply, with the matrix aR. Thus, we define the Steklov–Poincaré operator to be the
matrix aR.

Correspondences similar to those of Eq. (9.6) can be established in general; applications include
the governing system of equations of linear elasticity and many other problems [8], which cover a
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14 HERRERA AND YATES

great variety of scientific and engineering systems. This definition of the Steklov–Poincaré oper-
ator differs from conventional interpretations that have been presented by many authors (compare
for example with [2], pp 3 and 4, or [3], pp 3, 46, and 47,), but it is more adequate in several respects;
a basic advantage of the new definition is that when it is used the Steklov–Poincaré operator for
matrices is a linear operator, a property that is not enjoyed by conventional definitions.

X. APPLICATION OF THE GREEN–HERRERA FORMULA
TO THE TRANSFORMED PROBLEM

In [6] and [7] Green–Herrera formula was applied to the transformed problem. The next theorem
contains such results.

Theorem 10.1. Let f̄ ∈ D̄(�̄) = D̃12(�̄) be defined by Eq. (7.10), then a ṽ ∈ D̃(�̄) satisfies(
L + aR − RT j

)
ṽ = f̄ (10.1)

If and only if, ṽ is the solution of the transformed problem.

Proof. Let ũ ∈ D̃(�̄) be the solution of the transformed problem and assume ṽ ∈ D̃(�̄)

fulfills Eq. (10.1). Then(
L + aR − RT j

)
ũ =

(
L + aR

)
ũ = aAũ = f̄ (10.2)

To prove the converse, define w ≡ ṽ − ũ. Then,(
L + aR − RT j

)
w = 0 (10.3)

Using the results of Section VIII, Eq. (8.8) it is seen that ṽ = ũ + w fulfills

Aṽ =
(
L + aR

)
ṽ =

(
L + aR

)
ũ = aAũ = f̄ and j ṽ = j ũ = 0 (10.4)

XI. FORMULATION IN TERMS OF SCHUR COMPLEMENT MATRICES

It is advantageous to transform the problem we are considering into one in which the right-hand
side of Eq. (10.1) belongs to D̃(�). This is achieved by subtracting the auxiliary vector

uP ≡ A−1

��
f̄

�
(11.1)

We notice that Eq. (11.1) implies

(uP )� = 0 (11.2)

Therefore, juP = 0. Defining u ≡ ũ − uP , then Eq. (10.1) becomes(
L + aR − RT j

)
u = f̄

�2
− aA

��
A−1

��
f̄

�
≡ f

�2
(11.3)
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Here, f
�2

∈ D̃12(�) is defined as indicated in Eq. (11.3), which in view of Eq. (8.8) is equivalent
to

Lu = 0, aRu = f
�2

and ju = 0 (11.4)

The “harmonic functions space,” is defined to be

D ≡ {u ∈ D̃(�̄)|Lu = 0
}

(11.5)

Hence, the problem of Eq. (11.3) can be stated as: Find a harmonic vector (i.e., such that u ∈ D)
that satisfies (

aR − RT j
)

u = f
�2

(11.6)

Some important properties of harmonic functions are listed next.

A. Harmonic functions are characterized by their dual-values. Indeed, if u ∈ D, then

u� = −A−1

��
A

��
u� (11.7)

B. Every harmonic function u ∈ D belongs to D̃DP (�); i.e., D ⊂ D̃DP (�);
C. When u ∈ D,

Au = Ru = Su (11.8)

where S is the “dual-primal Schur complement matrix,” defined by

S ≡ A
��

− A
��

A−1

��
A

��
(11.9)

D. Furthermore, the matrix S defines a transformation, S : D̃(�)→D̃(�), of D̃(�) into itself,
which is symmetric and positive definite.

In the next theorem we show that Eq. (11.6) can be replaced by(
aS − Sj

)
u� = f

�2
(11.10)

Therefore, when harmonic functions are used, our problem can be stated as follows:
“Find a harmonic function, u ∈ D, whose dual-values satisfy Eq. (11.10).”
This formulation will be referred to as the “dual-values formulation.” Furthermore, using

arguments similar to those of Section VIII, it can be shown that Eq. (11.10) is equivalent to

aSu� = f
�2

and ju� = 0 (11.11)

Theorem 11.1. Let u ≡ u� + u� ∈ D. Then, Eqs (11.6), (11.10), and (11.11) are equivalent.

Proof. The equivalence between Eqs. (11.10) and (11.11) was already established; thus, it
is enough to prove that Eqs (11.6) and (11.11) are equivalent. This is immediate because, when
u ∈ D, Eq. (11.6) is equivalent to the transformed problem since

aAu = aSu� and ju = j(u� + u�) = ju� (11.12)
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16 HERRERA AND YATES

In what follows these results will be used to derive a wide variety of nonoverlapping domain
decomposition methods, which permit obtaining the boundary-values, u� ∈ D̃(�). Once u� is
known, u� ∈ D̃(�) is obtained by means of Eq. (11.7).

XII. ONE-WAY METHODS

As we have done up to now, in this Section and the following one we deal with the case when the
matrix A : D̃(�̄)→D̃(�̄) is positive definite, leaving for Sections XIV and XV the extension of
the procedures here described to the case when that condition is not fulfilled.

When A is positive definite, so is S : D̃(�)→D̃(�) and we define the energy inner product;

(•, •), on D̃(�), by:

(u, w) ≡ w • Su, ∀u, w ∈ D̃(�) (12.1)

Writing u = u� + u� and w = w� + w�, we notice that

(u�, w�) = w • Au, ∀u, w ∈ D (12.2)

Problem 1. This problem consists in searching for a function u� ∈ D̃12(�) such that it satisfies

aSu� = f
�2

(12.3)

This formulation, which is based on Eq. (11.11), is suitable for the application of the conju-
gate gradient method (CGM) using the Euclidean inner product, because the matrix aS defines a

transformation D̃12(�) into itself:

aS : D̃12(�)→D̃12(�) (12.4)

And furthermore, the matrix aS is symmetric and positive definite on D̃12(�). The DDM so
obtained is essentially the well-known Schur complement method. However, our formulation
allows the possibility of including primal nodes, something that is not usually considered.

A multipliers-free version of the nonpreconditioned FETI method can be derived from
Eq. (11.10) if uFT

� ∈ D is defined as:

uFT
� ≡ u� − S−1f

�2
(12.5)

Then, (
aS − Sj

)
uFT

� = SjS−1f
�2

, (12.6)

which is fulfilled if and only if

aSuFT
� = 0 and juFT

� = −jS−1f
�2

. (12.7)
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We define the subspace D̃22(�) ⊂ D̃(�) by

D̃22(�) ≡
{
w ∈ D̃(�)|aSw = 0

}
(12.8)

This subspace is the orthogonal complement, in D̃(�) and with respect to the energy inner product,
of D̃12(�).

Problem 2. This problem consists in searching for a function uFT
� ∈ D̃22(�) such that

juFT
� = −jS−1f

�2
(12.9)

Then, the Neumann or nonpreconditioned FETI formulation of the problem is obtained
multiplying Eq. (12.9) by S−1. It is defined to be:

Find a uFT
� ∈ D̃22(�) such that

S−1juFT
� = −S−1jS−1f

�2
(12.10)

An important property of the Neumann formulation of Eq. (12.10) is that the matrix S−1j ,

when applied to any vector v ∈ D̃(�), yields a vector S−1jv ∈ D̃22(�), so that S−1j : D̃22(�)→
D̃22(�) is a transformation of D̃22(�) into itself. Furthermore, the matrix S−1j is self-adjoint and

positive definite on D̃22(�), with respect to the energy inner product. Indeed:

S(S−1j) = j (12.11)

And the matrix j , which is symmetric, is in addition positive definite on D̃22(�). This latter

assertion can be seen as follows; when u ∈ D̃22(�)

ju = u − au and au • Su = 0 (12.12)

So that

ju • Sju = u • Su + au • Sau (12.13)

Hence,

ju = 0 ⇒ u • Su + au • Sau = ju • Sju = 0 ⇒ u • Su = 0 ⇒ u = 0 (12.14)

Taking this into account, it is seen that Eq. (12.10) is suitable for the application of the Conjugate
Gradient Method CGM using the energy inner product. Furthermore, our formulations allow for
the possibility of including primal nodes; i.e. π �= ∅.

XIII. ROUND-TRIP METHODS

In this Section, we present two round-trip algorithms; namely, the Neumann–Neumann algorithm
and the preconditioned FETI algorithm.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



18 HERRERA AND YATES

A. The Neumann–Neumann Algorithm

The Schur-complement iterative procedure is:
Find a u ∈ D̃12(�) such that

aS−1aSu� = aS−1f
�2

(13.1)

Eq. (13.1) is equivalent to Eq. (12.3) because when this latter equation is multiplied by aS−1a

Eq. (13.1) is obtained, and aS−1a is positive definite on D̃12(�). This equation is suitable for

the application of CGM using the energy inner product, because when u ∈ D̃12(�), then
aS−1aSu ∈ D̃12(�); so the matrix aS−1aS defines a transformation, aS−1aS : D̃12(�)→D̃12(�),

of D̃12(�) into itself, which is self-adjoint and positive definite with respect to the energy inner
product. This latter assertion can be seen by observing that the matrix SaS−1aS is symmetric and
positive definite. Notice, thereby, that Eq. (13.1) is a preconditioned version of Eq. (11.3), with
aS−1 as a preconditioner.

B. The Preconditioned FETI Algorithm

The preconditioned FETI procedure is:
Find a u ∈ D̃22(�) such that

S−1jSjuFT = −S−1jSjS−1f
�2

(13.2)

Eq. (13.2) is equivalent to Eq. (12.9) because when this latter equation is multiplied by S−1jSj

Eq. (13.2) is obtained, and S−1jSj : D̃22(�)→ D̃22(�) is nonsingular. As a matter of fact, this

matrix defines a transformation of D̃22(�) into itself that is self-adjoint and positive definite with
respect to the energy inner product, as can be seen using the following facts: when u ∈ D̃22(�),
then S−1jSju ∈ D̃22(�) and, furthermore, the matrix

S
(
S−1jSj

)
= jSj (13.3)

is symmetric and positive definite on D̃22(�). Therefore, Eq. (13.2 is suitable for applying the
CGM using the energy inner product, and then the matrix to be iterated is S−1jSj : D̃22(�)→
D̃22(�). When carrying out such a procedure, the following identity

S−1jSj = I − S−1jSa (13.4)

may be useful. Eq. (13.4) is a way of expressing the following result: When u ∈ D̃22(�), the

S−1jSju = u − S−1jSau (13.5)

which in turn follows from

u = S−1S
(
au + ju

) = S−1jS
(
au + ju

)
, ∀u ∈ D̃22(�) (13.6)
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A similar identity is fulfilled by the matrix aS−1aS : D̃12(�)→D̃12(�); it is:

aS−1aS = I − aS−1jS (13.7)

Eqs. (13.4) and (13.7) are relevant when applying CGM and when carrying out the condition
number analysis.

XIV. THE LAPLACIAN-LIKE CASE

This Section is devoted to extend the theory of the preceding Sections to the case when A is not
positive definite and when, correspondingly, the Schur-complement matrix, S, lacks that property.

The null subspace of S : D̃(�) → D̃(�) will be denoted by NS ; so NS ⊂ D̃(�). Furthermore,

E ⊂ D̃(�) will be the range of the matrix S : D̃(�)→D̃(�). Then,

D̃(�) = NS ⊕ E (14.1)

This follows because NS and E are orthogonal complements with respect to the Euclidean inner
product. The matrices IC

S
: D̃(�)→NS and IR

S
: D̃(�)→E denote the projection-matrices, with

respect to the Euclidean inner product, on NS and E, respectively; i.e., for any u ∈ D̃(�), IC

S
u

and IR

S
u are such projections.

We start by noticing a fact that will be used in the sequel; namely,

NS ∩ D̃12(�) = {0} (14.2)

This is clear, since S is positive definite in the linear space of continuous vectors. We observe

furthermore that Eq. (14.2) implies that j , which is non-negative on D̃(�), is positive definite on

NS .
We next introduce the following definitions and results. In them, the orthogonality relations

and projections are understood to be with respect to the Euclidean inner product:

D̃w
11(�) ≡ jNS ⊂ jD̃(�) = D̃11(�) (14.3)

The space D̃w
12(�) ⊂ D̃(�) is defined to be the orthogonal complement of D̃w

11(�);
The matrices jw : D̃(�) → D̃w

11(�) and aw : D̃(�) → D̃w
12(�), are defined to be the

projection-matrices on D̃w
11(�) and D̃w

12(�), respectively;

I = aw + jw (14.4)

Every u ∈ D̃(�) will be written as

u = uw
11 + uw

12, where uw
11 ≡ jwu ∈ D̃w

11(�) and uw
12 ≡ awu ∈ D̃w

12(�) (14.5)

When u ∈ NS , one has

u = ju + au, where ju ∈ D̃w
11(�) and au ∈ D̃12(�) ⊂ D̃w

12(�) (14.6)
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Also

jwu = ju and awu = au (14.7)

Therefore,

D̃w
11(�) + D̃12(�) ⊃ NS (14.8)

When u ∈ NS and jwu = 0, then u = 0. This because, when Eqs. (14.6) and (14.7) hold,

so that jwu = 0 implies u ∈ D̃12(�); and recalling Eq. (14.2), NS ∩ D̃12(�) = {0};
As a Corollary of 8 one has:

D̃w
12(�) ∩ NS = {0} (14.9)

S is positive definite on D̃w
12(�), by virtue of Eq. (14.9).

The matrix M : D̃(�)→D̃(�), defined by

M ≡ S + jw (14.10)

is symmetric and positive definite on D̃(�).

Proof. Let u ∈ D̃(�), then

u • Mu = u • Su + u • jwu ≥ 0 (14.11)

and the equal sign holds only when

Su = 0 and jwu = 0 (14.12)

Eq. (14.2) implies u = 0, by 8.

aM = aS (14.13)

because jw is the projection on D̃w
11(�) ⊂ D̃11(�). Hence, ajw = 0.

The equation (
aM − Mj

)
u = f

�2
(14.14)

is equivalent to

aMu = f
�2

and ju = 0 (14.15)

which, when Eq. (14.13) is applied, reduces to

aSu = f
�2

and ju = 0 (14.16)
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To finish this Section, we observe that the matrix M can be thought as a generalization of the
Schur-Complement matrix. Indeed M = S, when NS = {0}, and the multipliers-free dual-primal
methods, in their most general form, can be unified as follows:

ONE-WAY METHODS

Schur−Complement

aMu� = aSu� = f
�2

FETI method

M−1juFT
� = −M−1jM−1f

�2

ROUND-TRIP METHODS

Neumann−Neumann

aM−1aMu� = aM−1f
�2

Preconditioned−FETI

M−1jMjuFT = −M−1jMjM−1f
�2 (14.17)

In particular, the use of M is not required when applying the Schur-complement method.
As for nomenclature:

a. jwu is the “weak jump” of the function u ∈ D̃(�) and

b. D̃w
12(�) is the space of weakly continuous functions.

XV. THE INVERSE OF THE MATRIX M

Some of the multipliers-free dual-primal methods, summarized in Eq. (14.17), require the inverse
of the matrix M; so, in this Section we present a procedure for deriving it.

We start with an auxiliary result: The bilinear form w•IC

S
u, with u, w ∈ D̃w

11(�), is symmetric
and positive definite.

Proof. The symmetry is clear. Furthermore,

u • IC

S
u ≥ 0 (15.1)

since IC

S
is a projection. Thus, we only need to prove that when u ∈ D̃w

11(�),

IC

S
u = 0 ⇒ u = 0 (15.2)

Now, when u ∈ D̃w
11(�), one has

u = jv, for some v ∈ NS (15.3)

The condition IC

S
u = 0 implies that

w • jv = 0, ∀w ∈ NS (15.4)

Recall that j is positive definite on NS ; hence, Eq. (15.4) implies that v = 0, which in view of

Eq. (15.3) implies u = 0.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



22 HERRERA AND YATES

The above auxiliary result implies that IC

S
: D̃w

11(�)→NS possesses an inverse to be denoted

by l : NS →D̃w
11(�). Then,

IC

S
lu = u, ∀u ∈ NS (15.5)

Another matrix to be used is kw : D̃(�)→D̃w
11(�). For every u ∈ D̃(�), It is defined by

kwu ≡ lI C

S
u (15.6)

This defines kwu uniquely, since IC

S
u ∈ NS . Furthermore, we observe that in view of Eq. (15.5),

it has the following property: for every u ∈ D̃(�) one has

IC

S
kwu = IC

S
lIC

S
u = IC

S
u (15.7)

Therefore,

w • kwu = w • u, ∀w ∈ NS (15.8)

To obtain M−1 : D̃(�)→D̃(�), given u ∈ D̃(�), write v = M−1u. Then:(
S + jw

)
v = u (15.9)

Applying IC

S
to this equation, and using Eq. (15.7), one gets:

IC

S
jwv = IC

S
u = IC

S
kwu (15.10)

We observe that jwv ∈ D̃w
11(�) and kwu ∈ D̃w

11(�). Thus, from Eq. (15.10) it follows that

jwv = kwu (15.11)

Since IC

S
: D̃w

11(�)→NS is one-to-one. By substitution of this result, Eq. (15.9) becomes

Sv + kwu = u or Sv = u − kwu (15.12)

Now, define

IR

S
≡ I − IC

S
, D̃R(�) ≡ IR

S
D̃(�), vR ≡ IR

S
v and vC ≡ IC

S
v (15.13)

Then, v = vR + vC , with vR ∈ D̃R(�) and vC ∈ NS . Application of IR

S
to Eq. (15.12) yields

SvR = IR

S

(
u − kwu

)
(15.14)

Furthermore, S : D̃R(�)→D̃R(�) is one-to-one. Indeed, vR ∈ D̃R(�) is the unique solution of(
S + IC

S

)
vR = IR

S

(
u − kwu

)
(15.15)
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since the matrix S + IC

S
is nonsingular. In summary:

vR =
(
S + IC

S

)−1
IR

S

(
u − kwu

)
(15.16)

Once vR ∈ D̃R(�) is available, Eq. (15.11) can be used to obtain

vC =
(
jw
)−1 (

kwu − jwvR
)

(15.17)

Here, (jw)−1 : D̃w
11(�)→NS is the inverse of jw : NS →D̃w

11(�).

A last observation is that the Schur complement of the matrix(
A

��
A

��

A
��

A
��

+ IC

S

)
(15.18)

is

S + IC

S
= IC

S
+ A

��
− A

��
A−1

��
A

��
(15.19)

This may be may be used when applying (S + IC

S
)−1. When π = ∅, the action of (A + IC

S
)−1 on

any vector can be computed by solving local problems exclusively.

XVI. IMPLEMENTATION ISSUES AND NUMERICAL RESULTS

The problems that were implemented are of the general elliptic form

Lu = −∇ ·
(
a∇u

)
+ cu = f (16.1)

With homogeneous Dirichlet boundary conditions. In particular, the Poisson equation was
included (a = I and c = 0), which corresponds to the Laplace differential operator. The problem-

domain was taken to be
↔
�⊂ R

n, with n = 2, 3. Although the algorithms were all tested with n = 3,
the results shown in this article are for the case n = 2; the 3D results will be presented in a separate
article, where the attention focus will be the computational efficiency and extensive comparisons
with more standard approaches will be carried out.

The family of subdomains {↔
�1, . . . ,

↔
�E} is assumed to be a partition of

↔
�. Each one of such

subdomains is in turn discretized by the FEM, using a linear basis, {φ1, . . . , φd} on the entire
↔
�. On the other hand, the set � ≡ {1, . . . , d} will be used to identify the nodes associated with
{φ1, . . . , φd}, and the family {�1, . . . , �E} of subsets of � is defined by the condition that p ∈ �α

if and only if the node associated with p belongs to the closure of
↔
�α .

Using these definitions together with those given in what follows, the multipliers-free
dual-primal method presented in this article was applied. The original problem is then to
solve:

�

A u = �

f (16.2)
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where

�

Aij =
∫

�

(
∇φi · a · ∇φj + cφiφj

)
dx and

�

f i =
∫

�

f φidx (16.3)

We define the matrix Aα : D̃(�α)→D̃(�α), for each α ∈ {1, . . . , E}, by:

Aα
ij =

∫
�α

(∇φi · a · ∇φj + cφiφj

)
dx, i, j ∈ �α (16.4)

The matrix At : D̃(�̄)→D̃(�̄) is:

At ≡
E∑

α=1

Aα (16.5)

Then, the assumptions of Section VII are fulfilled.
All the algorithms summarized in Eq. (14.17) were implemented using the CGM in the manner

indicated in Appendix B. An important result is that their implementations are direct and straight-
forward; thus, for example 2D computational codes were easily transformed into 3D codes. What
is required is the applications of the matrices a, j , M , and M−1, to different vectors and all them

can be computed in parallel. For the matrices a and j this is clear by virtue of Eqs. (5.5) and (5.6),

while for the other two matrices, it is explained next.
We start with the case when At is nonsingular (i.e., c > 0) and M = S. Then, two different

situations can be distinguished. First, when no primal nodes are incorporated the parallelization
of the algorithm stems from the fact that A−1 = (At)−1 = ∑E

α=1(A
α)−1, and the application of

each (Aα)−1 gives rise to a local problem whose parallel processing is straightforward. Second,
when primal nodes are incorporated the parallel processing can be carried out as it is indicated
in Appendix C. On the other hand, when At is singular the procedures of Sections XIV and XV,
together with those of Appendix D, lead to an algorithm in which the difficulties for its fully par-
allel processing have been minimized. These difficulties are primarily associated with the matrix
(jwα • jwβ) of Eq. (D8), which couples several subdomains; however, the dimension of such a

matrix is small compared with the number of degrees of freedom of the whole problem.
As for the numerical experiments presented in this Section, in all cases we considered homo-

geneous Dirichlet boundary conditions, u = 0 on ∂�, where � is the unit square. Then, each one
of our model problems was discretized using a uniform mesh, after which the domain decom-
position procedure was introduced and the number of subdomains was successively increased.
The numerical results are summarized in Table I. The effective condition number, “r ,” has been
estimated for each one of these numerical experiments. For the roundtrip algorithms “r” is very
close to λmax because λmin ≈ 1. The best performance is exhibited by the Schur roundtrip, when
it is applied to the Laplace operator (Poisson equation), which yields r ≤ 1.98863. This value
is competitive with the results obtained when some of the most efficient domain decomposition
methods available at present are applied to this kind of problems (see, for example, [2]). For the
other model problems, the roundtrip algorithms yield r ≤ 8.54265 and r ≤ 18.7389, correspond-
ing to the Schur dual-primal and FETI dual primal, respectively. As for the one-way algorithms,
the most interesting numerical result correspond to the one-way dual-primal FETI, which con-
verges in 52 iterations. This quadruples the number of iterations required by the FETI roundtrip.
However, the computational effort needed in each iteration is much smaller than that of the FETI
roundtrip and, therefore, in some problems it could be competitive with it.
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TABLE I. Numerical results.

PETI-DP SCHUR DP SCHUR DP SCHUR SCHUR FETI

Round-trip One
N M #Subdomains #DoF #Primal #Iterations Round-trip Laplace way

2 30 4 3,481 1 5 5 12 14 5 12
3 30 9 7,921 58 8 8 18 23 5 23
4 30 16 14,161 87 10 10 25 31 6 29
5 30 25 22,201 116 12 12 30 40 8 38
6 30 36 32,041 145 13 13 35 47 10 40
7 30 49 43,681 175 13 13 39 54 11 45
8 30 64 57,121 203 13 14 45 62 11 49
9 30 81 72,361 232 13 13 50 69 11 50

10 30 100 89,401 261 13 13 55 77 11 51
11 30 121 108,241 290 13 13 59 84 11 52
12 30 144 128,881 319 13 13 64 92 11 53
13 30 169 151,321 348 13 13 69 100 11 54
14 30 196 175,561 377 13 13 73 107 10 53
15 30 225 201,601 406 13 13 78 114 10 53
16 30 256 229,441 435 13 13 82 123 10 54
17 30 289 259,081 464 13 13 87 131 10 54
18 30 324 290,521 493 13 13 92 139 10 54
19 30 361 323,761 522 13 13 97 147 10 54
20 30 400 358,801 551 13 13 101 154 10 52
21 30 441 395,641 580 13 12 108 162 10 52
22 30 484 434,281 609 13 12 111 169 10 54
23 30 529 474,721 638 13 12 118 176 10 52
24 30 576 516,961 667 13 12 119 185 10 52
25 30 625 561,001 696 13 12 124 192 10 52
26 30 676 606,841 725 13 12 129 199 10 52
27 30 729 654,481 754 13 12 135 207 10 52
28 30 784 703,921 783 13 12 140 215 10 52
29 30 841 755,161 812 13 12 143 223 10 52
30 30 900 808,201 841 13 12 148 230 10 52

XVII. CONCLUSIONS

It has been shown that dual-primal DDMs can be formulated without recourse to Lagrange mul-
tipliers and a multipliers-free formulation of such methods has been developed. This approach
yields simple unified matrix-expressions, in terms of a generalized Schur-complement matrix,
which are given in Eq. (14.17). Such formulas include the most important dual-primal methods
that exist at present, here grouped into two broad classes: one-way and round-trip methods. The
new approach also permits treating effectively floating subdomains. As said in the Introduction, a
significant simplification in the code-development of the algorithm implementations is achieved
in this manner. A conspicuous feature, which contributes to the robustness exhibited by such
codes, is that the derivation of the matrix-formulas is independent of the partial differential equa-
tions that originate them and of the number of dimensions of the problem; in particular, 2D

codes can be easily transformed into 3D codes. In the theory here developed, two matrices were
introduced -the average and jump matrices-, which by themselves represent a significant contribu-
tion because they possess superior algebraic and computational properties. In particular, the jump
operator is the optimal choice for the B operator of the FETI methods [2], as was explained in [7].
These matrices correspond to generalizations of the “average” and “jump” of a function, which
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can be effectively applied at the discrete level (i.e., to vectors), not only at internal-boundary-nodes
but also at edges and corners. As it is well-known, the parallel implementation of dual-primal
methods is impaired by the introduction of primal-nodes. When the multipliers-free formulation
developed in this series of articles is applied, such a handicap is expli-citly expressed and pro-
cedures for reducing it to a minimum are given in Appendix XVII of this article. The concept
of Steklov–Poincaré operator for matrices was also revised and a new version of it, which has
clear advantages over standard definitions, was given. The research on which this article is based
includes also extensive numerical experiments that confirm the efficiency of the multipliers-free
dual-primal methods and they are here reported.

Finally, it should be mentioned that all these results stem from a “general theory of partial
differential operators acting on discontinuous functions, and of matrices acting on discontinuous
vectors,” which has been developed through a long time span [5–7] (see [5], for references corre-
sponding to previous years). Contrary to standard formulations in which discontinuous functions
are treated as an anomaly that requires remediation by means of Lagrange multipliers, the analysis
in this theory is carried out directly on function and vector spaces of discontinuous functions and
vectors.

A APPENDIX 1: CONSTRUCTION OF THE MATRIX A

This Appendix is devoted to give a procedure for constructing a matrix At : D̃(�̄)→ D̃(�̄) that
satisfies the condition of Eq. (7.4) and we start by giving this condition a more explicit form.

Recall that d is the cardinality of �. Then observe that the set of vectors {e1, . . . , ed} ⊂ D̃(�)

is a basis of D̃(�), when for each i ∈ �, ei is defined by

ei ≡ (δi1, . . . , δid) (A1)

Here, as in what follows δij is the Kronecker delta. The natural immersion of this set is
{τ(e1), . . . , τ(ed)} ⊂ D̃(�̄), where

τ(ei)(j ,α) = δij , ∀(j , α) ∈ �̄ (A2)

When Eq. (7.4) is applied to this latter set of vectors, a condition equivalent to it is obtained; it is:∑
α∈Z(i)

∑
β∈Z(j)

At
(i,α)(j ,β) = �

Aij , ∀i, j ∈ � (A3)

Here, for matrices such as At : D̃(�̄)→D̃(�̄), we use the following notation:

At ≡ (At
(i,α)(j ,β)

)
, with (i, α), (j , β) ∈ �̄ (A4)

Then, for each α ∈ {1, . . . , E} and each pair i, j ∈ �, we define the symbol δα
ij , by

δα
ij ≡ 1, if i, j ∈ �α

δα
ij ≡ 0, if i or j /∈ �α (A5)
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Furthermore, the “multiplicity m(i, j) of the pair (i, j),” is defined to be

m(i, j) ≡
E∑

α=1

δα
ij (A6)

Using this notation, the condition of Eq. (7.3) is:

m(i, j) = 0 ⇒ �

Aij = 0 (A7)

The total matrix At : D̃(�̄)→D̃(�̄) is now defined by

At
(i,α)(j ,β) ≡ 0, if m(i, j) = 0

At
(i,α)(j ,β) ≡ 1

m(i,j)

�

Aij δα
ij δαβ , if m(i, j) �= 0

}
∀(i, α), (j , β) ∈ �̄ (A8)

It is straightforward to verify that At , so defined, satisfies the condition of Eq. (A3). Indeed, using
Eq. (A6) one has:

∑
α∈Z(i)

∑
β∈Z(j)

At
(i,α)(j ,β) = 1

m(i, j)

�

Aij

E∑
α=1

E∑
β=1

δα
ij δαβ = 1

m(i, j)

�

Aij

E∑
α=1

δα
ij =�

Aij (A9)

The matrix At just defined also satisfies the Condition 4 of Section VII. Indeed, for each

γ = 1, . . . , E, define Aγ : D̃(�̄)→D̃(�̄) by

{
(Aγ )(i,α)(j ,β) ≡ 1

m(i,j)

�

Aij δ
γ

ij δγβδγα , if m(i, j) �= 0

(Aγ )(i,α)(j ,β) ≡�

Aij= 0, if m(i, j) = 0
(A10)

Then

At =
E∑

γ=1

Aγ (A11)

The proof of this latter relation follows. When m(i, j) �= 0, one has

E∑
γ=1

(Aγ )(i,α)(j ,β) = 1

m(i, j)

�

Aij

E∑
γ=1

δ
γ

ij δγβδγα = 1

m(i, j)

�

Aij δα
ij δαβ = At

(i,α)(j ,β) (A12)

And when m(i, j) = 0:

E∑
γ=1

(Aγ )(i,α)(j ,β) = 0 = At
(i,α)(j ,β) (A13)
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B APPENDIX 2: CGM IMPLEMENTATION OF THE ROUND-TRIP ALGORITHMS

The CGM version to be applied in what follows is given next.
“Let u0 be given (or u0 = 0) and set r0 = b − Au0, p0 = r0. For n = 0, 1, . . . let:

αn = (pn, pn)

(pn, Apn)

un+1 = un + αnpn

rn+1 = rn − αnApn

βn = (rn+1, rn+1)

(rn, rn)

pn+1 = rn+1 + βnpn

Go to 1′′ (B1)

Here, (•, •) is the energy inner product.

A. Neumann–Neumann: According to Eq. (13.1), as well as (14.17), the equation to be solved
is:

aS−1aSu� = aS−1f
�2

= aS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

)
(B2)

We observe that

aS−1f
�2

= aS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

) ∈ D̃12(�) (B3)

The algorithm is as follows:
Let

u0 = 0 (B4)

and set

p0 = r0 = aS−1f
�2

= aS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

)
(B5)

Then, for n = 0, 1, . . ., do:

αn = pn • Spn

pn • SaS−1aSpn

un+1 = un + αnpn

rn+1 = rn − αnaS−1aSpn

βn = rn+1 • Srn+1

rn • Srn

pn+1 = rn+1 + βnpn

Go to 1 (B6)
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B. Preconditioned FETI CGM Implementation: According to Eq. (13.2), as well as (14.17),
the equation to be solved is:

S−1jSjuFT = −S−1jSjS−1f
�2

= −S−1jSjS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

)
(B7)

We observe that

−S−1jSjS−1f
�2

= −S−1jSjS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

) ∈ D̃22(�) (B8)

The algorithm is as follows:
Let u0 = 0 and set

p0 = r0 = −S−1jSjS−1f
�2

= −S−1jSjS−1
(
f̄

�2
− aA

��
A−1

��
f̄

�

)
Then, for n = 0, 1, . . ., do:

αn = pn • Spn

pn • jSjpn

un+1 = un + αnpn

rn+1 = rn − αnS−1jSjpn

βn = rn+1 • Srn+1

rn • Srn

pn+1 = rn+1 + βnpn

Go to 1 (B9)

As a last remark of this Appendix, it should be noticed that in the execution of these algorithms,
most of the work goes into the computation of Sv and S−1v for certain vectors v. In the Neumann–
Neumann case, each iteration of the CGM method requires two applications of S (namely Spn

and Srn+1) and one application of S−1 (i.e., S−1(aSpn)). The preconditioned FETI case, on the
other hand, requires three applications of S (namely, Spn, Sjpn, and Srn+1) and one application

of S−1 (i.e., S−1(jSjpn)). Consequently, the Neumann–Neumann is somewhat more efficient in

this respect. More thorough comparisons of the computational efficiency of the algorithms here
presented, among themselves and with other well-established procedures, are underway and will
appear in a forthcoming article.

C APPENDIX 3: PARALLEL COMPUTATION OF A−1
�� AND S−1

This Appendix is devoted to discuss procedures that can be applied to compute in parallel the
action, on any vector, of the matrices A−1

��
and S−1. We will show that such a computation yields

a problem, which is similar but much smaller than the original problem and, therefore, any of the
multipliers-free methods described in this article is suitable for treating it.
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Given w ∈ D̃DP (�̄), let v ∈ D̃DP (�̄) be such that v ≡ A−1

��
w. Then

A
��

v ≡
(

A
II
A

Iπ
A

π I
A

ππ

)(
vI

vπ

)
=
(

wI

wπ

)
(C1)

We define the matrix S� : D̃(π)→D̃(π) by

S� ≡ At

ππ
− At

π I
A−1

II
At

Iπ
(C2)

Then, vπ ∈ D̃(π) is the solution of

aπS�vπ = wπ − A
π I

A−1

II
wI together with jπvπ = 0 (C3)

While

vI = A−1

II

(
wI − A

Iπ
vπ

)
(C4)

Observe that when Eq. (C3) is solved iteratively, then in the process only local problems have
to be solved.

As for S−1 : D̃(�) → D̃(�), given w� ∈ D̃(�) let v� ∈ D̃(�) be such that v� ≡ S−1w�.
Then

aπSv� = w�, together with jπv� = 0 (C5)

This can also be written as

Av = aπAtv = w�, together with jπv� = 0 (C6)

Here, v = v� + vπ + vI ∈ D is the harmonic extension of v�. This harmonic extension
v ∈ D ⊂ D̃(�̄) is uniquely determined by Eq. (3.6), and so is v� ∈ D(�), which is equivalent to

aπStv = w�, together with jπv� = 0 (C7)

Furthermore, we observe that Eq. (C7) can be treated iteratively, solving only local problems, by
any of the multipliers-free methods introduced in this article. However, due to the small number
of degrees of freedom involved the Schur-complement method is usually satisfactory.

D APPENDIX 4: COMPUTATION OF ICS , jW ,( jW )−1, AND kW

Let {w1, . . . , wdN } ⊂ NS be a linearly independent basis of NS . Here, dN is the dimension of the
null-space NS . Then, for every u ∈ D̃(�) one has

IC

S
u =

dN∑
α=1

Cαw
α (D1)
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where the set of coefficients {C1, . . . , CdN
} is the solution of the system of equations

dN∑
α=1

Cαw
α • wβ = u • wβ , β = 1, . . . , dN (D2)

If the basis {w1, . . . , wdN } is orthonormal, then the matrix-system, in Eq. (D2), is the identity
matrix.

On the other hand, for every u ∈ D̃(�) one has

jwu =
dN∑
α=1

bαjwα (D3)

where the set of coefficients {b1, . . . , bdN
} is the solution of the system of equations

dN∑
α=1

bαjwα • jwβ = u • jwβ , β = 1, . . . , dN (D4)

As for (jw)−1 : D̃w
11 →NS , let t ∈ D̃w

11(�) and v ≡ (jw)−1t ∈ NS . Then

v =
dN∑
α=1

cαw
α (D5)

Furthermore, using jv = jwv = t ,

jwα • v = wα • jv = wα • t , ∀α = 1, . . . , dN (D6)

Therefore,

dN∑
α=1

cαjwα • jwβ = t • wβ , β = 1, . . . , dN (D7)

Observe that the square-matrix, dN × dN :

(jwα • jwβ) (D8)

is symmetric and positive definite in the space RdN . Therefore, application of Eqs. (D4) and (D7)
yields the families of coefficients {b1, . . . , bdN

} and {c1, . . . , cdN
}, respectively. Thereby, we men-

tion that a criterion for the corner selection when applying dual-primal methods can be derived
from the structure of the matrix of Eq. (D8). As a matter of the minimal cardinality of the set of
such corners is dN . This problem has been discussed previously by Lesoinne [10].

On the other hand, given any u ∈ D̃(�) one has

kwu ∈ D̃w
11(�) = jNS ⊂ D̃11(�) (D9)
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Therefore,

kwu =
dN∑
α=1

dαjwα (D10)

Using Eqs. (15.8) and (D9), it is seen that

jwβ • kwu = wβ • kwu = wβ • u, β = 1, . . . , dN (D11)

Hence,

dN∑
α=1

dαjwα • jwβ = u • wβ = Cβ , β = 1, . . . , dN (D12)

The authors express their gratitude to Antonio Carrillo and Alberto Rosas students at UNAM,
for their support in several aspects of the work done for this article.
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