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1 Introduction
This report is the result of a 10 week mini-project collaboration between Schlum-
berger Abingdon Technology Center and University of Oxford Mathematical Institute.
The objective was to investigate nonlinear solvers in reservoir simulation in prac-
tice, running experiments to test different approaches. Schlumberger develops two
reservoir simulators used by major oil companies around the globe: ECLIPSE [16]
and INTERSECT [18]. They contain massive code bases with sophisticated reservoir
models, and it would not be feasible to implement and test new nonlinear techniques
directly in the software for this project.

To enable experimentation with nonlinear solvers, we have therefore implemented
a replica of the simplest black oil model available in ECLIPSE E300. This was still
a tremendous task for a project of this length, and was successful thanks to the use
of scientific toolkits Firedrake [13] and PETSc [4].

Solving nonlinear equations is a process consisting of several subcomponents. Fig-
ure 1 shows how much time is spent in the basec Newton solver’s major components
for a five hour INTERSECT simulation run. A choice of solver is effectively a choice
of how much work to allocate to the different subcomponents. Such choices are prob-
lem specific, and should be guided by experience of the properties of the problem.
This experience is effectively achieved through experimentation.

With our mini-simulator, a vast design space for composition of different nonlinear
solvers is readily available to us via PETSc. The outcome of experiments show that
we can reduce the number of nonlinear iterations required in our test models by 10%.
This is achieved using the a nonlinear Krylov method NGMRES, preconditioned with
the basic Newton method [19, 5].

The test cases considered have not been difficult enough to capture the hardest
challenges experienced in industry. We have found that our test cases create nonlinear
equations starting in the quadratic regime of Newton’s method, which is incredibly
difficult to improve upon. Noting that NGMRES already brings an improvement in
these regimes is very promising. To further make use of our mini-simulator, we want
to design test problems that cause problems for the basic Newton solver of the nature
observed in practical applications.

Other techniques have also been tried. Quasi-Newton and preconditioner lagging
have the potential to save time when employed in a sophisticated fashion. Applying
these naively has not proved successful for the test cases considered. From our exper-
iments we hypothesise that preconditioner lagging has potential to reduce timings if
employed in a clever fashion.

The work from this report has resulted in several bug fixes and a feature con-
tribution to the Firedrake and PETSc project. This has enabled preconditioner
lagging on composite preconditioners, nonlinear solver composition of Newton and
Quasi-Newton, and the improvement of NGMRES-accelerated Newton in stagnating
regimes.
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Figure 1: Example timing simulation from INTERSECT [18]. Novel nonlinear tech-
niques can move some of the work done by the linear solver to other, more scalable
components.

2 Governing equations
The equations solved by our reservoir model are from Schlumberger’s ECLIPSE reser-
voir simulator [15, 16]. We consider the simplest case, a black oil model where no
components can change phase. A derivation of the equations can be found in [10].
ECLIPSE solves the system using finite volume methods, whilst our formulation is
written in the finite element framework. Using zero-order discontinuous Galerkin ele-
ments and the same numerical flux approximation, they result in the same numerical
system. The equivalence of the two methods is described for the diffusion equation
in appendix B.

2.1 Assumptions
We model the flow in the reservoir using three immiscible components: oil, gas and
water. Each component corresponds to one phase in our fluid model; liquid, vapour
and water respectively. In the oil industry this is sometimes referred to as a dead oil,
dry gas-system. Capillary pressures are also omitted.

Let the reservoir be denoted as Ω ⊂ R3 throughout. The primary variables of the
system are component molar densities mo,mg,mw of oil, gas and water, and pressure
p. Their dimensions are mol

L3 and M
LT2 . Together with the properties in table 1 we

can fully describe the system. Expressions for properties depending on the primary
variables are given in appendix A.
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Property Symbol Dependencies Dimension

Porosity ϕ p -
Phase molar density bα p mol

L3

Darcy velocity vα mα, p
L
T

External source/sink σα mα, p
mol
L3T

Absolute permeability tensor K - L2

Relative permeability krα mα, p -
Dynamic viscosity µα p M

LT
Mass density ρα p M

L3

Gravity g - L
T2

Saturation Sα mα, p -

Table 1: Overview of the reservoir properties of our model, including their dimension
and dependency on pressure p and molar densities mα. α = o, g, w. Wells are modelled
using σα.

The absolute permeability K is a diagonal matrix where the entries represent rock
permeability along the three axes respectively.

2.2 Strong and weak formulation
The porous media flow model we use is derived from mass balance principles and
a Darcy approximation for the flow. We work in a standard right-hand Cartesian
coordinate frame, and set g = (0, 0,−g)T . Note that ECLIPSE uses a left-hand
frame, where the positive z-direction is downward. For a given initial configuration
in Ω, find p,mα, α = g, o, w such that

∂ϕmα

∂t
+∇ · (bαvα) = σα Mass balance (1a)

vα = −K
krα
µα

(∇p− ραg) Darcy flow (1b)∑
α

Sα = 1 Volume constraint (1c)

∂bαvα
∂n

= 0 No normal flow through ∂Ω. (1d)

One could use the volume constraint to eliminate one of the mα’s. Reservoir
simulators approach this in different ways: ECLIPSE E300 leaves it explicitly, whilst
INTERSECT eliminates one primary variable [16, 17]. An argument for keeping all
variables is that it gives the nonlinear solver a larger navigation space. One can take
paths towards the root that leave the manifold defined by the constraint. As our
simulator wants to replicate its behaviour, we have left the constraint in explicitly.
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To solve the system, a finite volume discretisation is used. We formulate it in
an equivalent weak sense, using piecewise constant discontinuous Galerkin elements
(P0

DG). Background reading on the discontinuous Galerkin methods may be found in
[14], including higher order examples for porous media flow.

We express the semi-discrete set of equations here. The resulting system of ODEs
is solved using a fully implicit backward Euler scheme. For a given structured grid Ωh

of Ω, define Γint to be the set of interior facets. Define the mobility for a fluid to be
λα = bαkrα

µα
. Let Vh = (Vg,Vo,Vw,Vp) be the P0

DG space on Ωh. Find (mg,mo,mw, p) ∈
Vh such that∫
Ω

∂ϕmα

∂t
v dx+

∫
Γint

K̃λ̃α

(
∇̃p+ ρ̃αg

)
(v+ − v−) ds =

∫
Ω

σαv dx ∀v ∈ Vα, α = g, o, w

(2a)∫
Ω

(
1−

∑
α

Sα

)
v dx = 0 ∀v ∈ Vp. (2b)

The terms v+, v− refer to the limit value on a facet, taken from adjacent cells Ω+,Ω−

respectively. Let n̂ denote the positive unit normal for the facets. We approximate
the flux across facets with an upwind Goudunov method, by setting

K̃ =
1

2

(
K+ +K−

K+ ◦K−

)
n̂ where ◦ is the Hadamard product, (3a)

λ̃α =

{
λ−
α Φα < 0

λ+
α Φα ≥ 0

Φα = ∇̃p+ ρ̃αg, (3b)

∇̃p =
p+ − p−

∥h+ − h−∥
h denotes cell centres, (3c)

ρ̃α =
Sα

+ρ+α + Sα
−ρ−α

Sα
+Sα

− a saturation weighed average. (3d)

The permeability and mass density approximations can cause division by zero prob-
lems. For mass density, this is taken care of by taking the arithmetic average in the
absence of a phase in two adjacent cells. For permeability, the face is considered
impermeable, and K̃ := 0.

3 Implementation
A significant part of this project was spent setting up an environment to experiment
with different approaches when solving the discretised equations. We call the imple-
mentation Oildrake. It is written in Python and built on top of Firedrake [13] and
PETSc [4, 3, 9].

PETSc, the Portable, Extensible Toolkit for Scientific Computation, is used to
solve the nonlinear system arising at each timestep. It makes experiments with the
solvers easy: changing between sophisticated solvers may be done with command-line
options. For example running a PETSc program with the arguments -ksp_type gmres
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-pc_type ilu tells the software to solve a linear system using ILU(0)-preconditioned
GMRES. Changing to a direct LU-solver can be done by passing -ksp_type preonly
-pc_type lu instead. The options -snes_type newtonls and -snes_type qn tell
PETSc to use basic Newton and Quasi-Newton nonlinear solvers respectively.

Firedrake is an automated system for solving partial differential equations using
the finite element method. It is closely related to the FEniCS project [11], and uses
some of the same components for turning a high-level mathematical finite-element
language into efficient low-level code. It makes implementing the system of equations
easy, as the code written strongly resembles eq. (2). The high-level mathematical
formulation enables Firedrake to employ exact derivatives of the equations using
automatic differentiation [1]. Firedrake was chosen over FEniCS because we needed
support for hexahedra, which only Firedrake has at the time of writing.

3.1 Oildrake capabilities
We wish to experiment with nonlinear solvers, keeping other factors as close to
ECLIPSE E300 as possible. Notable capabilities and solver decisions are:

• Conforming rectangular cuboids in R3.

• FGMRES with the Constrained Pressure Residual (CPR) preconditioner [7].

• Fully implicit backward Euler time-discretisation.

• Adaptive heuristic timestepping based on the predicted saturation change.

• Anisotropic, heterogeneous permeability fields.

• Heterogeneous porosity fields.

• Changing the expressions of the properties in appendix A is easy, and the new
Jacobian is automatically generated.

• Single-connected wells modelled as point-source/sinks.

The component molar densities must be positive, and to prevent unconstrained solvers
from overshooting, we project any negative values into the feasible region after each
nonlinear step.

Oildrake can only run in serial at the moment. Firedrake and PETSc support
parallelism via MPI automatically, but this does not seem to work for Oildrake. A
debugging session is necessary to find out why.

The convergence criteria used in Oildrake is different from Schlumberger’s reservoir
simulators. We terminate based on the ℓ2-norms of the residuals, using the following
default values:

• Nonlinear solver: Relative tolerance = 10−8, absolute tolerance = 10−3, maxi-
mum iterations = 20.

5



• Linear solver: Relative tolerance = 10−5, absolute tolerance = 10−10, maximum
iterations = 20.

For E300, the convergence criteria is a custom max-norm on the residual the change
in saturations. In practice this terminates the solver much earlier than Oildrake, i.e.
Oildrake solves the equations to a tighter tolerance.

3.1.1 Validation against ECLIPSE

To ensure that the simulator works, we can compare it with ECLIPSE E300 on test
models. Figure 3 shows a selection of cells in a model with permeability field derived
from the SPE10 comparative solution project [8]. Both simulators predict the same
flow patterns.

The initial pressure is set to 250 bar in the whole reservoir. We start the system
in a highly unstable configuration, with three single phase layers water, oil and gas
on top of each other. Due to mass density differences, the fluids flow due to gravity.
Horizontal flow happens as a result of the heterogeneous permeability field shown in
fig. 2.

Figure 2: Permeability field for the SPE10Small model. It is highly varying, causing
flow rates to be very different between cells.

3.2 Discrete system and linearisation
Oildrake solves the semi-discrete system in eq. (2) using a backward Euler discretisa-
tion. For a reservoir with N cells, this results in a nonlinear system Fn : R4N → R4N

to be solved at each timestep.
The standard method to solve this system is Newton’s method. Most of the taken

by the nonlinear solver is spent finding the step direction given by the linearised
system.

Figure 4 shows the sparsity pattern of the Jacobian arising from backward Euler.
The different character of the pressure part of the system is the motivation behind
the Constrained Pressure Residual (CPR) preconditioner [7, 16].
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Figure 3: Gas inversion comparison between Oildrake and ECLIPSE, for select cells
in the SPE10Small model. The black striped curves are the ECLIPSE solutions,
which fit very well with our implementation. Note that the legend cells are given in
ECLIPSE ijk-ordering, where the k’s increases as we go down in the reservoir.
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Figure 4: Sparsity pattern of the Jacobian from SPE10Small at time 0.1. The first
1000 rows/columns represent mo, then comes mg, mw and p.

In reservoir simulation, FGMRES right preconditioned with CPR proves to be
very effective. It is a composite multiplicative preconditioner. The first stage pre-
conditioner is a Schur type approximation to the “pressure”-part of our equations
eq. (1c). It applies one V-cycle of algebraic multigrid (AMG) to the approximate
Schur complement, updating the pressure variables. The second stage uses a ILU(0)
preconditioner on the whole system. Solving for the Newton step direction using
FGMRES+CPR takes 5-10 iterations on average in our tests. All parts of the linear
solver scale well in size and cores, apart from the AMG setup [2]. Reducing the AMG
setup costs is important for practical problems, since they are increasingly solved on
many-core systems.

For all our tests, we have used the Quasi-IMPES Schur approximation. In the
preconditioning literature, this makes the inner CPR similar to a SIMPLE-type pre-
conditioner [20].

4 Test problems
For this project, we set up a series of gas inversion tests. They all use cell discretisa-
tions where ∆x = 20,∆y = 10,∆z = 2, representative for reservoir simulation cases
used in practice.

The four tests used are

• SPE10Small: 10× 10× 10 cells. Based on the SPE10 permeability field.

• Hetero: 24× 24× 24. Smoothly varying permeability field, as shown in fig. 5

• Hetero25k: 20× 32× 40. Smoothly varying permeability field.
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• Hetero100k: 30× 50× 70. Smoothly varying permeability field.

Starting the system with only gas in the bottom third, water in the top third and oil
in the middle starts the flow immediately due to gravity and mass density differences.

The simulations are started with a timestep length of 0.1 days, and we use the
same default settings as E300 for the adaptive timestepping with a saturation change
target.

Figure 5: Permeability field for the Hetero model. The field is generated from a
Fourier-like series with higher oscillation in the z-direction to simulate varying layers
in a real reservoir.

Running preliminary tests with basic Newton indicates that the problems we have
set up do not cause much trouble for the solver. Figure 6 show the residual norm
vs number of Newton iterations for a selection of timesteps on the SPE10Small and
Hetero models.
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Figure 6: Running basic Newton on the test cases show that we lie in the quadratic
regime for most timesteps. Beating Newton here is difficult, so setting up more
difficult problems will be important in the future.
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Table 2 shows the relative time taken from different components of a basic Newton
solver. More than half the time in the linear solver is spent setting up the precon-
ditioner. The test problems in this report are not very difficult for the linear solver,
taking on average 5-7 linear steps per Newton iteration. For more difficult linear
problems, the relative time spent in the linear solver is bound to increase against
function evaluation, Jacobian assembly and preconditioner setup.

Operation Share (%)
Linear solver 47
PC setup 29
Jacobian assembly 41
Function evaluation 10
Projection 2

Table 2: Share of time spent in different operations of a basic Newton solver. More
than half the time of the linear solver is spent on the CPR preconditioner assembly.
The numbers are taken from the Hetero100k model. The linear solver share decreases
with the size of the problem.

5 Solver experiments
The intention of Oildrake is to easily test new solver techniques on reservoir models.
With PETSc as a solver backend, this can be done setting options before running the
simulation.

The efficiency of solvers is problem-specific. There is a given amount of work
needed to be done, and different approaches basically move the work to other sub-
components. For example, lagging the preconditioner may decrease the number of
preconditioner setups, at the expense of running more Krylov iterations.

In this section, we show the result of two approaches: preconditioner lagging and
NGMRES with Newton as a preconditioner. The subsections show what options tell
PETSc to use the solvers. In addition, any linear solver settings must be passed to
the Newton component.

Lagging the preconditioner is an example of a tactic of reducing accuracy of single
iterations to see if what one can get away with. NGMRES on the other hand is used
a nonlinear Krylov method used to accelerate each Newton step, making each step
more efficient.

The tests on Oildrake show that NGMRES with nonlinear preconditioning per-
forms better than basic Newton, whilst naive preconditioner lagging does worse for
the test cases considered.

A Quasi-Newton (QN) solver was also tested as part of this project. The idea
behind it is to trade more nonlinear iterations for solving the same matrix system.
QN assembles the Jacobian at a given step, and then does rank-one updates to ap-
proximate the linear system in consecutive steps. For problems where basic Newton
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is stagnant over several iterations, QN can replace these expensive steps with much
cheaper ones. Using nonlinear solver composition, we can use QN to take us cheaply
closer to the correct solution, before falling back to Newton with its great convergence
properties. In the test cases considered, basic Newton is already in the quadratic
regime, so this trade did not pay off.

5.1 Application specific timings
In interpreting the results from Oildrake, we stress that the relative runtime of dif-
ferent subcomponents of the solvers can’t be mapped to performance in ECLIPSE or
INTERSECT. The most important results to take from these runs are the number of
calls to different subcomponents of the solvers. These numbers can give an indication
of how the new approaches will do in the industry simulators.

The two main differences to ECLIPSE and INTERSECT are

1. Parallelism: Industry simulators are run in parallel, but these tests have been
done in serial. Some components scale well in parallel, others don’t. For large
problems, we want to shift work from nonscalable to scalable subproblems.

2. Evaluation and assembly: Oildrake’s Jacobian assembly and function evaluation
has not been optimised to the same degree as industry simulators.

The run time per operation varies between runs in Oildrake. Caching and other
activity on the computer are two causes for this.

5.2 NGMRES preconditioned with basic Newton
Petsc options: -snes_type ngmres -snes_ngmres_restart_fm_rise
-snes_npc_side right -npc_snes_type newtonls

Basic Newton forgets its iteration history, and will only use information at the
current step to decide where to move forward. Nonlinear GMRES will also use the
insight of previous iterations to accelerate convergence. It is suggested in [19] that
NGMRES preconditioned with an application specific nonlinear solver can improve
convergence.

Algorithm 1 describes the NGMRES algorithm as it is implemented in PETSc.
We won’t go in to the sufficiency requirements in the iteration update, but refer to
the PETSc documentation.

Preliminary tests with NGMRES showed stagnation for certain timesteps. The
cause was that the Newton preconditioner wanted to step in a direction that signif-
icantly increased the residual, while NGMRES hindered this step. A Newton step
increasing the residual may be an attempt to move out of a stagnation area, from
which convergence can go more rapidly.

This was dealt with by resetting the Krylov subspace after such an attempt, which
improved the performance of the algorithm for our test problems. One can tell PETSc
to do this by passing the option -snes_ngmres_restart_fm_rise. The feature was

11



Algorithm 1 Right-preconditioned NGMRES
procedure NGMRES(F, xi, . . . , xi−m+1)

xM
i = M(xi−1) ▷ M is the preconditioner

FM
i = F (xM

i )

minimize
∥∥∥F ((1−∑i−1

k=i−m αi

)
xM
i +

∑i−1
k=i−m αkxk

)∥∥∥
2

over {αi−m, . . . αi−1}

xA
i =

(
1−

∑i−1
k=i−m αi

)
xM
i +

∑i−1
k=i−m αkxk

xi+1 = xA
i or xM

i if xA
i is insufficient.

end procedure

contributed as part of this mini-project, and should be available in releases after
version 3.6.0.

Tables 3 and 4 show that accelerating the Newton steps with NGMRES indeed
reduces the number of nonlinear solves needed per timestep. The main cost is extra
function evaluations, but overall the time savings are greater in our tests.

Nonlinear solves Linear solves Residual evaluations
Test Newton NGMRES Newton NGMRES Newton NGMRES
SPE10 854 769 6030 5278 1037 1721
Hetero 1113 991 6333 5534 1349 2218
Hetero25k 1719 1531 10000 8642 2095 3438
Hetero100k 2740 2479 15906 14003 3317 5535

Table 3: Comparison of number of operations using basic Newton and NGMRES.
NGMRES reduces the number of nonlinear iterations by about 10%, at the expense
of increasing the number of residual evaluations by 60%-70%. There is one precondi-
tioner assembly per nonlinear solve.
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Test Total time Linear PC Setup Residual Jacobian
SPE10 Basic 73.2 14.1 6.5 14.5 41.6
SPE10 NGMRES 75.6 11.5 5.5 21.6 36.2
Hetero Basic 457.9 180.6 108.6 57.8 210.4
Hetero Hetero25k 465.9 166.1 97.6 93.4 187.7
Hetero25k Basic 1282.4 552.4 331.7 145.8 558.8
Hetero25k NGMRES 1253.4 490.5 297.2 235.6 496.4
Hetero100k Basic 8832.5 4179.3 2524.1 866.9 3610.8
Hetero100k NGMRES 8554.7 3643.0 2218.9 1410.6 3312.0

Table 4: Run time comparison of different parts of the nonlinear solvers in seconds.
NGMRES reduces runtime for large problems. As the problems get larger, the savings
from reducing the number of nonlinear iterations needed are greater than the cost of
extra function evaluations.
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5.3 Preconditioner lagging
PETSc option: -snes_preconditioner_lagging <number>

The preconditioner setup is costly and does not scale as well as other solver com-
ponents. This motivates the attempt to set up the preconditioner, then reuse it for
later linear systems.

In our tests, lagging the preconditioner significantly reduces the number of PC set
ups. Tables 5 and 6 show the results of setting up the preconditioner every second
and third nonlinear iteration. The extra number of linears used is less than twice the
reduction in number of PC set ups. Running in serial with Oildrake, the extra cost
of linear and nonlinear steps was larger than the savings in PC set ups.

The lagged preconditioner usually performed better in later Newton iterations.
We hypothesise that the step lengths are shorter at these iterations, so the lagged
preconditioner approximates the current step better. Making preconditioner lagging
decisions based on the length of the previous nonlinear step may preserve sufficient
accuracy. We did not have time to test this in Oildrake.

The first lagged preconditioner can often take more than 100 iterations. In our
tests, we capped them at 20 per Newton step. As a result, the number of nonlinears
needed per step has increased, as can be seen in table 5.

Test Nonlinears Linears PC Setups Residuals
SPE10 Basic 854 6030 854 1037
SPE10 Lag 2 863 7604 479 1046
SPE10 Lag 3 868 9158 354 1051
Hetero Basic 1113 6333 1113 1349
Hetero Lag 2 1159 11066 660 1395
Hetero Lag 3 1282 15388 508 1518
Hetero25k Basic 1719 10000 1719 2095
Hetero25k Lag 2 1804 16895 1028 2180
Hetero25k Lag 3 2016 23666 811 2392
Hetero100k Basic 2740 15906 2740 3317
Hetero100k Lag 2 2910 28571 1626 3488
Hetero100k Lag 3 3367 41910 1364 3945

Table 5: Comparison of number of operations using basic Newton and preconditioner
lagging. Lagging the preconditioner once decreases the PC setups by about 40%. In
the SPE10 case, it increases the number of linears by 26%. In the Hetero-tests, the
linears required increased by 70%-80%.

14



Test Total time Linear PC Setup Residual Jacobian
SPE10 Basic 73.7 14.6 6.5 14.4 41.9
SPE10 Lag 2 73.9 13.3 3.8 14.7 42.7
SPE10 Lag 3 73.2 13.6 2.8 14.6 42.3
Hetero Basic 476.5 188.2 113.0 58.0 220.5
Hetero Lag 2 492.4 197.2 66.3 60.1 224.9
Hetero Lag 3 583.5 246.7 53.4 66.6 258.4
Hetero25k Basic 1385.6 589.4 350.5 147.2 617.3
Hetero25k Lag 2 1454.3 620.5 210.7 153.0 653.7
Hetero25k Lag 3 1585.6 707.5 159.8 168.6 677.2
Hetero100k Basic 8894.0 4109.0 2488.7 834.4 3774.2
Hetero100k Lag 2 9740.6 4608.7 1504.0 886.6 4066.4
Hetero100k Lag 3 11509.1 5621.6 1236.8 999.1 4687.5

Table 6: Run time comparison of different parts of the nonlinear solvers in seconds.
The relative PC setup costs on small problems in serial are never large enough to
justify the additional linear iterations needed.
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6 Summary
Investigations into nonlinear solvers for reservoir simulation has been done using our
mini-simulator Oildrake. It is currently replicating the simpler settings of ECLIPSE
E300, and is easily extensible. The software gives the user easy access to novel
mathematical techniques for solving nonlinear equations via PETSc, which can guide
decisions for further study and implementation in industry applications.

Accelerating the nonlinear Newton solver with NGMRES reduces the number of
nonlinear iterations by 10%. The tests considered in the report are shown to lie
in the quadratic regime of Newton’s method. That NGMRES can still improve the
convergence in these regimes is very encouraging for further study on harder problems.
The next step following up on this project should be to test cases with wells, and to
introduce phase changes to the hydrocarbons.

The CPR preconditioner works very well on the linearised systems we have consid-
ered, but the setup phase is costly and does not scale as well as the other components.
The number of setups can be reduced by lagging the preconditioner. From our ex-
periments, we hypothesise that lagging decisions made based on previous nonlinear
step lengths can save setup time without reducing its effect much.

In addition to designing more difficult test cases, there are four areas that deserve
consideration.

1. MPI is supposed to work out of the box with Firedrake. This is not the case
for Oildrake, so the toolchain must be debugged.

2. The convergence criteria used in the industry solvers do not follow the PETSc
residual tolerance model. We should rethink our approach to make it more
similar to ECLIPSE or INTERSECT.

3. Nonlinear instabilities, for example around wells, can be better dealt with in a
localised manner. A domain decomposition solver that can do this is Nonlin-
ear Additive Schwarz (NASM) [6]. PETSc supports this solver, and Firedrake
support will be implemented soon, giving us the opportunity to test NASM on
reservoir models in Oildrake.

4. Phases appearing and disappearing in cells activates and deactivates parts of
the equations in the Schlumberger’s simulators. This is a question of how to
deal with variables at constraint boundaries, which may be approached as a
complementarity problem [12].
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A Properties and input values
The input values used for the experiments in this report are given in the same units
as ECLIPSE’s “metric” setting. These cause the units of the accumulation and flux
terms to differ, so the flux term must be multiplied by a conversion factor. The factor
is called a Darcy constant, and is defined as CDarcy = 8.52702 × 10−3cPm2/day/bar
[15]. We note that “day” is not an SI unit.

Symbol Value ×10x Units
ρosc 8.0 2 kg/m3

ρgsc 9.907 -1 kg/m3

ρwsc 1.022 3 kg/m3

M o 1.20 2 kg/kmol
M g 2.5 1 kg/kmol
Mw 1.8025 1 kg/kmol
g 9.80665 -5 m2kg/bar

(a) Physical constants.

Symbol Value ×10x Units
pref 2.5 2 bar
Bw

pref 1.03 0 -
µw
ref 3.0 -1 cP
Cw 0.0 0 1/bar
C 4.1 -5 1/bar

Crock 5.3 -5 1/bar
(b) Reservoir specific input values.

Table 7: Input values used when calculating the value of the properties listed in this
section. Water is considered incompressible.

A.1 Properties
The expressions used for the properties of the fluids from table 1 are listed here.
Our experiments have been run with the constant values in table 7. For further
explanation of the physical meaning of the following properties, see [10].

Bα is the formation volume factor, and is used to calculate phase molar density
and mass density.
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Bα is given by interpolation using table 8 α = o, g (4)

Bw =
Bw

pref

1 +X + X2

2

X = C · (p− pref ) (5)

bα =
bαsc
Bα

bαsc =
ραsc
Mα

(6)

Sα =
mα

bα
(7)

µα is given by interpolation using table 8 α = o, g (8)

µw =
µw
pref

1 +Xv +
X2

v

2

Xv = Cv · (p− pref ) (9)

ρα =
ραsc
Bα

in cells (10)

ρα,ij =
Sα,iρα,i + Sα,jρα,j

Sα,i + Sα,j

on facets (11)

krα = Sα (12)

ϕ = φ ·
(
1 +Xr +

X2
r

2

)
Xr = Crock · (p− pref ) (13)

The mass densities on facets are calculated using a saturation weighted average. One
needs to be careful if the saturation in both adjacent cells is zero. In this case, take
ρα,ij =

ρα,i+ρα,j

2
.

Setting relative permeabilities equal to the saturations is an oversimplification.
Better approximations use a quadratic dependence, possibly with a “critical satura-
tion” where krα is zero for saturations smaller than this value.

p Bo(p) µo(p)

50 1.18 0.8
600 1.08 1.6

p Bg(p) µg(p)

50 2.05× 10−2 1.4× 10−2

600 3.9× 10−3 2.5× 10−2

Table 8: Oil and gas interpolation tables used to calculate formation volume factors
and viscosities.

B Finite Volumes as a Discontinuous Galerkin scheme
Schlumberger discretises their reservoir models using finite volumes. In this report
we use a discontinuous Galerkin finite element formulation so that Firedrake[13] and
the UFL language [1] may be employed. The piecewise constant DG formulation is
equivalent to the finite volume approach. To see this, consider the following PDE on
Ω ⊂ Rn with homogeneous Neumann BCs:

∂u

∂t
−∆u = 0. (14)
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For the following, let {Ωi | i ∈ I} be a partition creating a structured grid of Ω, for
some index set I. Define τij = Ωi∩Ωj, and let Γint denote the union of all the interior
facets. N (i) is the set of indices j so that |τij| > 0. Let Vh be a P0

DG space with basis
{ϕi = 1Ωi

| i ∈ I}.
Our P0

DG approximation u =
∑

i∈I uiϕi of eq. (14) satisfies∫
Ω

∂u

∂t
v dx+

∫
Γint

u+ − u−

∥h+ − h−∥
(v+ − v−) ds = 0 ∀v ∈ Vh. (15)

For a given ordering of I, the notation u+ and u− is used denote the limit value of u
taken from the two cells that share a given facet facet. h denotes the center points
of the cells.

The P0
DG formulation comes from the cell-wise weak form of eq. (14). u must

satisfy∫
Ωi

∂u

∂t
v dx+

∫
Ωi

∇u · ∇v dx−
∫
∂Ωi

v
∂u

∂n
ds = 0 ∀i ∈ I, v ∈ Vh. (16)

On the interior facets the flux is not defined, so we choose a flux approximation and
set ∫

∂Ωi

v
∂u

∂n
ds :=

∑
j∈N (i)

∫
τij

v|i
u|j − u|i

∥h|j − h|i∥
ds. (17)

For our P0
DG space Vh, v is piecewise constant and ∇v = 0 in each cell. Hence, eq. (16)

becomes ∫
Ωi

∂u

∂t
v dx−

∑
j∈N (i)

∫
τij

vi
uj − ui

∥hj − hi∥
ds = 0 ∀i ∈ I, v ∈ Vh. (18)

We now sum over I in eq. (18), and note that each interior facet is visited twice.
With the “+”,“-” style ordering of I, this yields the P0

DG formulation eq. (17).
If we instead consider eq. (18) in its own right, we get

∂ui

∂t
|Ωi| −

∑
j∈N (i)

uj − ui

∥hj − hi∥
|τij| = 0 ∀i ∈ I. (19)

This is exactly the finite volume formulation of eq. (14) with the flux approximation
∂u
∂n

∣∣
τij

=
uj−ui

hij
.
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