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Preface

The increasing intensity of the subsurface usage for energy storage, energy
“production”, energy waste deposition, resource extraction, infrastructure and
many others as part of the ongoing technical development of a growing
world population requires a careful assessment of potential environmental
consequences to maintain our base of living. The strategies and scenarios re-
quired for a sustainable development can be devised and tested with the help
of numerical simulations using models of the underlying coupled physical,
chemical and biological processes.

Here, subsurface storage of energy carriers is selected as an example tech-
nology in this context. In particular, this book presents an introduction to
thermo-mechanical modelling of gas storage in salt caverns using the open-
source software OpenGeoSys (OGS ). The material is mainly based on work
done in the framework of the ANGUS+4 and NUMTHECHSTORE5 projects,
and is also the result of a close cooperation within the OGS community
(www.opengeosys.org). These voluntary contributions are highly acknow-
ledged.

In the context of subsurface usage in transforming energy systems, the
book features a general introduction to gas storage in rock salt formations,
the constitutive modelling of rock salt, and the coupling of heat transport
with solid mechanical problems. It contains several step-by-step guides on
how to set up models of both laboratory experiments and real-scale caverns
with OGS.

This book is intended primarily for graduate students and applied sci-
entists dealing with coupled problems in the subsurface, in particular those
interested in applying a freely available and customizable open-source simu-
lation framework in their research. As such, this book will be a valuable help
in the training of geomechanical modelling and provides an entry point to a
modelling tool which is expandable and highly flexible.

4 http://angusplus.de/en
5 http://www.ufz.de/index.php?en=37528
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viii Preface

This tutorial is the fourth volume in the Springer series Computational
Modeling of Energy Systems6 that presents applications of computational
modelling in energy sciences. Within this series, this volume opens up a sequel
of contributions on applying the simulation platform OGS to geotechnical ap-
plications in the energy sector based on work performed in close cooperation
with the Federal Institute for Geosciences and Natural Resources (BGR)7:

B Computational Geotechnics: Storage of Energy Carriers, this volume,
B Computational Geotechnics: Deep Geological Repositories, Nagel et al.

(2018*).

It was proceeded by three tutorials in the series covering the topic geo-
thermal energy

B Geoenergy Modeling I. Geothermal Processes in Fractured Porous Media8

(Böttcher et al., 2016),
B Geoenergy Modeling II. Shallow Geothermal Systems9 (Shao et al., 2016),
B Geoenergy Modeling III. Enhanced Geothermal Systems10 (Watanabe

et al., 2017).

and will also feature technical applications, such as

B Models of Thermochemical Heat Storage, Lehmann et al. (2017*).

These contributions are related to a similar publication series in the field
of environmental sciences, namely:

B Computational Hydrology I: Groundwater Flow Modeling11 (Sachse et al.,
2015),

B Computational Hydrology II12 (Sachse et al., 2017),
B OGS Data Explorer, Rink et al. (2017*),

(*approximate publication time).

Few books are without errors, and this book is likely no exception. Should
you discover errors that should be corrected, we would be grateful if you let
us know and help improve this book.

6 http://www.springer.com/series/15395
7 http://www.ufz.de/environmental-geotechnics
8 http://www.springer.com/de/book/9783319313337
9 http://www.springer.com/de/book/9783319450551
10 http://www.springer.com/de/book/9783319465791
11 http://www.springer.com/de/book/9783319133348
12 http://www.springer.com/de/book/9783319528083
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Chapter 1

Introduction

1.1 Energetic use of the subsurface

The rising energy demand of the growing world population is a significant
cause for environmental risks associated with harmful emissions, hazardous
waste, destructive land use, etc. This creates a pressing need to avoid or re-
solve conflicts between a continuing socio-technical development on the one
hand and the preservation of the natural basis of our existence on the other.
In order to build an ecologically, economically and socially sustainable future,
environmental, climate and energy policies are targeting measures such as the
decarbonisation of the energy system, resource efficiency and sustainability,
while maintaining energy security. Achieving these goals entails the growing
use of renewable energy sources and highly efficient energy conversion tech-
nologies. Current concepts of future energy systems and infrastructures link
natural and technical systems in an interactive manner. There is a strong need
for methods and tools to design and assess technological options for future
energy systems as well as their environmental impact. This holds particularly
true for technologies involving the geo-environment.

The increasing intensity of the subsurface usage for energy storage, energy
“production”, energy waste deposition, resource extraction, infrastructure and
many others requires novel science-based strategies for regulatory bodies,
businesses and stakeholders alike (Bauer et al., 2013; Kabuth et al., 2016).
Such strategies and scenarios can be developed and tested with the help
of numerical simulations using models of the underlying coupled physical,
chemical and biological processes.

Underground storage of energy carriers encompasses numerous geological
repositories such as rock caverns, salt caverns, porous formations, aquifers,
etc., as well as different forms of energy and energy carriers, namely thermal
energy, potential energy (compressed air) and chemical energy (hydrogen,
natural gas, oil).

1
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In this contribution, the focus is on gas storage in rock salt caverns in the
context of energy transitions to renewable sources. Fig. 1.1 gives an impres-
sion of a cavern field in a rock salt dome.

Fig. 1.1: Impression of a cavern field in a salt dome/diapir.

1.2 Geotechnical use of rock salt13

Interest in the mechanical behaviour of rock salt formations can on the one
hand be attributed to the mining of salt, and is on the other hand associated
with the formations’ increasing use for geotechnical applications (Minkley
et al., 2015b). The tight morphology of rock salt makes it an ideal mater-
ial for the storage of matter (Minkley et al., 2013, 2015a). Solution-mined
caverns in underground salt domes (Fig. 1.1) have been used for the storage
of strategic oil and gas reserves for decades. Salt rock is also under discus-
sion as a candidate repository formation for hosting nuclear and other types
of waste (Harris et al., 2015; Hunsche and Schulze, 1994; Li et al., 2015;
Pudewills et al., 1995; Xing et al., 2015). In the context of the transition
to volatile renewable energies, compressed air energy storage (CAES) in salt
caverns is discussed to mitigate fluctuations in wind energy for a continuous
and reliable electricity production (Greenblatt et al., 2007; Ibrahim et al.,
2008; Lund and Salgi, 2009; Lund et al., 2009; Ma et al., 2015; Safaei et al.,
2013). Finally, the cavern storage of hydrogen as a chemical energy carrier
produced electrolytically from renewable energy sources has gained scientific

13 For an extended version of this section, see Nagel et al. (2017).
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interest (Böttcher et al., 2017; Crotogino et al., 2010; Minkley et al., 2013;
Ozarslan, 2012).

The safety of salt mines as well as the long-term convergence behaviour of
salt caverns has been assessed based on thermo-mechanical models capturing
the inelastic behaviour of rock salt (Cristescu, 1985; Hunsche and Schulze,
1994; Lux, 1984; Lux and Rokahr, 1984; Ma et al., 2015; Pudewills, 2005;
Pudewills and Droste, 2003). Rock salt is a material exhibiting several modes
of creep and plasticity (Cristescu, 1994; Cristescu and Hunsche, 1998). Dif-
ferent, usually viscoplastic, salt models have been developed in the past in
order to represent the mechanical characteristics of rock salt under laborat-
ory and field conditions (Chan et al., 1994; Desai and Zhang, 1987; Hampel
et al., 2010; Heusermann et al., 1983; Jin and Cristescu, 1998; Minkley, 2004;
Minkley et al., 2001; Minkley and Mühlbauer, 2007). Lately, in the context
of the novel applications outlined above, an increased and broader interest
into the mechanical behaviour of rock salt due to a more intense use of the
subsurface for energy storage and conversion has developed. These novel ap-
plications also shift the focus of the analyses somewhat from the long-term
behaviour to short-term phenomena induced on the time scale relevant for
renewable energy applications (Li et al., 2015; Minkley et al., 2015a). For ex-
ample, while the time scales of pressure changes in caverns used for strategic
oil and gas reserves or seasonal energy storage concepts are on the order of
months and years, caverns of CAES power plants have to withstand signific-
ant pressure fluctuations several times a day or week (Böttcher et al., 2017;
Greenblatt et al., 2007).

Convergence can drastically reduce cavern volume (Wang et al., 2011).
Fluid percolation (Minkley et al., 2015a) and cracks induced by thermo-
mechanical loading (Sicsic and Bérest, 2014) are other aspects relevant
from both economic and safety perspectives necessitating stability analyses
(Heusermann et al., 2003; Lux, 1984; Ma et al., 2015). Material models are
a decisive factor for the reliability of any geotechnical safety assessment
(Kolymbas et al., 2016).

1.3 Gas storage in salt caverns

Bridging gaps in supply and demand ensuring continuity and predictabil-
ity of energy supply, providing black-start capabilities, coupling of differ-
ent energy sectors and increasing energy efficiency are among the pertinent
reasons to employ energy storage technologies. Energy storage furthermore
avoids over-dimensioning by making it possible to operate transmission and
distribution grids with lighter designs (Ibrahim et al., 2008). Operated for
so-called load levelling, it helps to reduce fluctuations, thereby making the
supply more predictable as well as assisting in power quality control (Ibrahim
et al., 2008). Depending on the operation mode, working gas, and intended
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system service, caverns can serve short-, medium- and long-term storage pur-
poses (Böttcher et al., 2017; Greenblatt et al., 2007). Cavern storage is—like
pumped hydropower—one of the few utility-scale storage options providing
capacities in the TWh range.

Potential energy can be stored in the form of compressed air in caverns.
The idea for CAES stems from the use of 60-70 % of the available power for
the compression of the combustion air in a standard gas turbine. “It therefore
seems possible, by separating the processes in time, to use electrical power
during off-peak hours (storage hours) in order to compress the air, and then
to produce, during peak hours (retrieval hours), three times the power for
the same fuel consumption by expanding the air in a combustion chamber
before feeding it into the turbines” (Ibrahim et al., 2008).

CAES can facilitate the integration and higher penetration of renewable
sources into current energy systems (Greenblatt et al., 2007; Safaei et al.,
2013). Its efficiency is largely determined by waste heat recovery and scalable
heat storage technologies (Safaei et al., 2013), and its economic feasibility
strongly depends on the design of the electricity market (Lund and Salgi,
2009).

Several CAES plants are under operation (Huntorf in Germany, McIn-
tosh in Alabama, USA) while others are in a planning or construction stage
(Greenblatt et al., 2007). Huntorf became operational as the first CAES plant
in 1978, consists of two salt caverns with a combined 310,000 m3 operated at
44-70 bar, and can provide up to 290 MW at full capacity for four hours at
a discharge flow rate of 417 kg/s (Safaei et al., 2013). McIntosh, operational
since 1991, has one salt cavern of 540,000 m3 with pressures of 45-74 bar
providing 110 MW at full capacity for 26 hours at an air discharge rate of
154 kg/s (Safaei et al., 2013).

Another way of storing energy in salt caverns is by using chemical en-
ergy carriers. Power-to-gas usually refers to the production of hydrogen (and
possibly the subsequent conversion to methane) from electricity. It is increas-
ingly discussed and tested internationally in the context of the transition
to sustainable energy systems and in conjunction with fuel cells or even a
hydrogen-based economy (Adamson, 2004; Gahleitner, 2013). Fig. 1.2 illus-
trates a number of usage chains for the hydrogen produced from renewable
energy.

In a system where hydrogen is produced in large quantities from renew-
able energies, large-scale storage options are required. It seems plausible to
transfer the experience from natural gas storage to the storage of hydro-
gen in salt caverns for different periods of time (Crotogino et al., 2010; Oz-
arslan, 2012). Competing storage technologies are available and a thorough
comparison—considering technical, economical and environmental aspects—
is required (Taylor et al., 1986). The results of current European projects
indicate that while many aspects require further R&D, cavern storage of
hydrogen is technically feasible, the geological prerequisites are met in many
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Fig. 1.2: Illustration of power-to-gas(-to-power) conversion chains.

countries, and it adds comparatively little cost to the overall hydrogen-centred
value chain; cf. http://hyunder.eu/.

1.4 Scope and structure of this tutorial

This tutorial-style book gives a concise introduction into the following aspects
of modelling and simulation of geotechnical gas storage in rock salt caverns:

. The basics of coupling thermal and mechanical problems in a continuum
setting along with the finite element implementation of the resulting ini-
tial boundary value problems, particularly in OpenGeoSys, are reviewed
in Chapter 2. This includes aspects of the Kelvin mapping.

. Chapter 2 also describes inelastic material models for capturing vis-
coelastic and viscoplastic features of rock salt deformation behaviour and
their fully implicit numerical integration in OpenGeoSys.

. The simulation of rock laboratory-type element tests (isothermal and
non-isothermal triaxial tests) used for the basic assessment of material
behaviour as well as for parameter identification in existing constitutive
models is described in Chapter 3.

http://hyunder.eu/
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. Finally, a near real-world complexity example of setting up a fully
coupled thermo-mechanical analysis of hydrogen storage in a salt cav-
ern is provided in Chapter 4. Based on an initially defined scenario, iso-
thermal and non-isothermal analyses are compared with respect to their
predictions.

In this context, “tutorial-style” implies that the necessary basic theoretical
background is provided without dwelling on too much details to be found
elsewhere, and that the simulation examples are presented with the intention
of being reproducible for somebody who has not worked with OpenGeoSys
before. For this purpose, input files are explained where necessary as well
as provided online14, and a step-by-step approach with try-it-yourself fea-
tures is taken in various examples of differing complexity. All simulations are
down-sised from more complex analyses so that they can be run on standard
computers in a short time and require no special features without sacrificing
their practical relevance.

Where appropriate, references are made to the new version of OpenGeo-
Sys, OGS-6, which is currently becoming available for the kind of analyses
described in this book.

14 https://docs.opengeosys.org/books

https://docs.opengeosys.org/books


Chapter 2

Basics of thermo-mechanics and
inelasticity

Rock salt can undergo large inelastic deformations over extended periods of
time. Many analyses, however, refer to time intervals and mechanical loads
that cause deformations for which the small-strain assumption remains valid.
Here, we restrict ourselves to such small-strain settings and postpone analyses
under finite deformations to a follow-up contribution (compare also Fig. 2.1).

OGS mainly offers the analysis types 3D, 2D plane strain and axisym-
metric. In the sequel, a general tensorial notation is chosen for the field
equations while finite element concepts are presented in a three-dimensional
setting only. For special considerations in the context of lower-dimensional
or analyses relying on special symmetries, we refer the reader to standard
textbooks (Bathe, 2014; Zienkiewicz et al., 2005-2006), the benchmark book
series (Kolditz et al., 2012, 2016, 2014) or the source code documentation of
OGS15.

OGS offers the possibility to couple mechanical analyses to thermal, hy-
draulic and chemical processes using either sequential or monolithic schemes.
Here, the focus is on thermo-mechanical couplings.

2.1 Governing equations

In a finite-strain setting, the material is mapped to different geometrical
configurations as it deforms and evolves over time. The two most relevant
configurations are the current and the reference configuration, cf. Fig. 2.1. The
different configurations lead to a multitude of stress and strain measures. In a
small-strain setting, we assume that the reference configuration (often taken
as the undeformed state for convenience) changes only very slightly. Thus,
particles are assigned only their reference coordinates, now designated by x,
and field gradients are evaluated exclusively with respect to those coordinates.

15 https://doxygen.opengeosys.org/

7
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Fig. 2.1: Material points move from their reference placement X to their cur-
rent placement x, both of which are connected by the displacement vector u.
Neighbouring material points define material line elements represented by dX
and dx in the reference and current configurations, respectively. Curvilinear
(XI , xi) and Cartesian (ZI , zi) coordinate lines define local basis systems
for the geometrical description of the motion problem. For further details,
see Haupt (2002); Holzapfel (2000); Hutter and Jöhnk (2004).

The relevant strain measure is the small-strain tensor ε = sym gradu, the
relevant stress measure the Cauchy stress tensor σ. The initial boundary
value problem is thus defined on a (reference) domain Ω as indicated in Fig.
2.2.

To perform a basic thermo-mechanical analysis in a quasistatic small-strain
setting we employ the local (PDE) forms of the equilibrium conditions (de-
rived from the balance of momentum) and the heat conduction equation
(derived from the balance of energy)
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Fig. 2.2: Domain Ω with prescribed displacements ū on the Dirichlet bound-
ary ∂Ωu and prescribed tractions t̄ on the Neumann boundary ∂Ωt. Similar
boundaries can be defined for the thermal problem, where a given temperat-
ure T̄ is prescribed on the Dirichlet boundary ∂ΩT and a normal heat flux
q̄n is prescribed on the Neumann boundary ∂Ωq.

0 = divσ + %b (2.1)

0 = %cp
∂T

∂t
+ divq (2.2)

together with the boundary and initial conditions

u = ū ∀x ∈ ∂Ωu (2.3)

σ · n = t̄ ∀x ∈ ∂Ωt (2.4)

T = T̄ ∀x ∈ ∂ΩT (2.5)

− q · n = q̄n ∀x ∈ ∂Ωq (2.6)

u(t = 0) = u0 ∀x ∈ Ω (2.7)

T (t = 0) = T0 ∀x ∈ Ω (2.8)

where the boundary domains fulfill the conditions

∂Ω = ∂Ωu ∪ ∂Ωt = ∂ΩT ∪ ∂Ωq
∅ = ∂Ωu ∩ ∂Ωt = ∂ΩT ∩ ∂Ωq

In preparation of a finite element implementation, Eqs. (2.1) and (2.2) are
cast into their weak forms. For that purpose we introduce the function ansatz
and test spaces

Va
u = {v ∈ H1(Ω) : v= ū ∀x ∈ ∂Ωu }

V aT = {v ∈ H1(Ω) : v = T̄ ∀x ∈ ∂ΩT }
Vt
u = {v ∈ H1(Ω) : v=0 ∀x ∈ ∂Ωu }

V tT = {v ∈ H1(Ω) : v = 0 ∀x ∈ ∂ΩT }

With u ∈ Va
u, T ∈ V aT , vu ∈ Vt

u and vT ∈ V tT we find the weak forms
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Ω

σ : gradvu dΩ =

∫
∂Ωt

t̄ · vu dΓ +

∫
Ω

b · vu dΩ (2.9)

∫
Ω

%cp
∂T

∂t
vT dΩ −

∫
Ω

q · grad vT dΩ =

∫
∂Ωq

qnvT dΩ (2.10)

As will be outlined in Section 2.4, a uni-directional staggered coupling
scheme will be used to solve the coupled problem given by Eqs. 2.9 and 2.2.
Non-linear constitutive equations for the stresses (cf. Section 2.3) motivate
an incremental-iterative approach. Based on a known solution at time t, the
solution in the next time increment t+∆t will be determined iteratively by a
Newton-Raphson scheme. For that purpose, a linearisation of Eq. 2.9 is per-
formed around the current state identified by the (global Newton) iteration
counter i, leading to the linearised weak form∫
Ω

gradvu :
dσ

dε

∣∣∣∣
i

:∆εi+1 dΩ =

∫
∂Ωt

t̄t+∆t · vu dΓ +

∫
Ω

bt+∆t · vu dΩ −
∫
Ω

σi : gradvu dΩ

(2.11)

where

C =
dσ

dε
(2.12)

is the fourth order constitutive stiffness tensor.
In the present coupling scheme and for the constitutive assumptions made

here, no such step is necessary for Eq. 2.10.

2.2 Finite element implementation and the Kelvin
mapping

The Kelvin mapping of tensorial quantities

Commonly, the transition to a standard matrix–vector notation in the context
of finite element implementations is performed by replacing three-dimensional
symmetric second-order tensors by six-dimensional vectors (using engineering
shear strains γij = 2εij) and three-dimensional fourth-order tensors by 6× 6
matrices. This Voigt mapping leads to a different treatment of, e.g., stresses
and strains and does not preserve tensor norms. Here, the Kelvin mapping
will be preferred which introduces a new 6D basis {EI} such that the tensor
character of all quantities is preserved.
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In terms of implementation, OGS-5 is set up using the Voigt mapping with
only a few material models integrated with an experimental Kelvin mapping
scheme. The integration relies on appropriate transformation routines for
both mappings. OGS-6 is entirely designed both in its core and in the imple-
mented constitutive models using the Kelvin mapping.

One possible way of arriving at the Kelvin mapping is to consider the
eigenvalue problem of fourth-order tensors in analogy to the more familiar
version for second-order tensors. Without going into details, which can be
found in Nagel et al. (2016), the super-symmetric fourth-order symmetry
projection tensor Is with the property Is :A = symA can be written in a
Cartesian basis {ei} and by using I = ei ⊗ ei as

Is = I�I =
1

2
[ei ⊗ ej ⊗ ei ⊗ ej + ei ⊗ ej ⊗ ej ⊗ ei] (2.13)

an has the six eigentensors (Itskov, 2009):

M1 = e1 ⊗ e1 M4=
1√
2

(e1 ⊗ e2 + e2 ⊗ e1)

M2 = e2 ⊗ e2 M5=
1√
2

(e2 ⊗ e3 + e3 ⊗ e2) (2.14)

M3 = e3 ⊗ e3 M6=
1√
2

(e1 ⊗ e3 + e3 ⊗ e1)

These eigentensors can be viewed as the basis of the Kelvin mapping.
Instead of simply reordering tensor coordinates as done in the Voigt mapping,
the Kelvin mapping proceeds from the introduction of a new 6D basis {EI}
based on the original 3D basis {ei} (compare Mehrabadi and Cowin (1990))
by setting

EI = MI(Is) ∀I = 1, . . . , 6 (2.15)

In other words, this basis is identical to the eigentensors of the symmetry
projection tensor Is, compare Eq. (2.14).

Thus, exemplary tensors with the necessary symmetries can equivalently
be written in the various bases

A = Aijei ⊗ ej = AIEI with AI = A :EI (2.16)

A = Aijklei ⊗ ej ⊗ ek ⊗ el = AIJEI ⊗EJ with AIJ = EI :A :EJ
(2.17)

At this stage, we introduce the following short-hand for the vector of tensor
coordinates AI of a second-order tensor in the Kelvin basis: A. Similarly, the
matrix of tensor coordinates AIJ of a fourth-order tensor in the Kelvin basis
will be abbreviated by A.
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One can see that, similar to the Voigt mapping, the coordinates of second-
and fourth-order tensors can now be represented as six-dimensional vectors
and matrices. However, the tensor character of all quantities is still preserved.
Note further, that the coordinates of the Kelvin mapping of a fourth-order
tensor A⊗A simply follow from the coordinate matrix of the dyadic product
of the Kelvin mapped vectors. Thus, the same notation can be employed in
both cases.

For numerical implementation, the coordinates of the Kelvin-mapped
stress and strain tensors can now be used in a vector format

σij → σ =
[
σ11 σ22 σ33

√
2σ12

√
2σ23

√
2σ13

]T
(2.18)

εij → ε =
[
ε11 ε22 ε33

√
2ε12

√
2ε23

√
2ε13

]T
(2.19)

which have the same structure regardless of whether they are stresses or
strains. This has the important consequence that tensor norms are preserved
when using the Kelvin mapping. This further simplifies the implementation
of constitutive models as it makes any distinction of stress- or strain-type
quantities entering mathematical operations obsolete (Nagel et al., 2016).

Finite element implementation

The domain of interest is split into standard finite elements characterised by a
set of nodal shape functions Na(x). The sought solution vector u (for a more
uniform notation we write u even though no Kelvin mapping is performed on
the original vector u) in a point is approximated by

u ≈ ũ =

nn∑
a

Naûa = Nû (2.20)

where
û =

[
û1

1 · · · û
nn
1 û1

2 · · · û
nn
2 û1

3 · · · û
nn
3

]T
(2.21)

is the nodal displacement vector of the element containing the point at which
u is evaluated, N is the element matrix of shape functions and nn is the num-
ber of nodes of said element. In the isoparametric concept employed here, the
position vector x and the test function v are approximated likewise. Similarly,
the B-matrix containing the gradients of the shape functions can be intro-
duced to enable the calculation of strain vectors from the nodal displacements
(for details see, e.g., Zienkiewicz et al. (2005-2006)):

ε = sym gradu = Bû and sym grad v = Bv̂ (2.22)

with the slightly modified B-matrix
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B0 =



N1
,1 . . . Nnn

,1 0 · · · 0 0 · · · 0
0 · · · 0 N1

,2 . . . N
nn
,2 0 · · · 0

0 · · · 0 0 · · · 0 N1
,3 . . . Nnn

,3[
N1
,2 . . . Nnn

,2

]
/
√

2
[
N1
,1 . . . Nnn

,1

]
/
√

2 0 · · · 0
0 · · · 0

[
N1
,3 . . . Nnn

,3

]
/
√

2
[
N1
,2 . . . Nnn

,2

]
/
√

2[
N1
,3 . . . Nnn

,3

]
/
√

2 0 · · · 0
[
N1
,1 . . . Nnn

,1

]
/
√

2


(2.23)

Substitution of these relations into Eq. (2.11) allows the elimination of the
arbitrary nodal values v̂ of the test functions and produces the equation
system for each elemental domain Ωe:∫
Ωe

BTCiBdΩ ∆ûi+1 =

∫
∂Ωe

t

NTt̄
t+∆t

dΓ +

∫
Ωe

NT%bt+∆t dΩ −
∫
Ωe

BTσi dΩ

(2.24)

The integral on the left-hand side defines the stiffness matrix K, the right-
hand side defines the residual vector ψ such that the linearised system reads

Ki∆ûi+1 = ψi (2.25)

The contributions of all elements are assembled into the global problem which
is then solved for the vector of unknown displacement increments ∆ûi+1.

In summary, a constitutive equation for the stresses is required to correctly
calculate the residual vector ψi on the right-hand side of Eq. (2.24) as well

as the usually solution dependent Ci-matrix containing the material moduli
in an algorithmically consistent manner (Simo and Hughes, 1998).

For similar finite element schemes in a finite-strain setting see, e.g., Bathe
(2014); Görke et al. (2010, 2012); Zienkiewicz et al. (2005-2006). For an ex-
tension of the Kelvin mapping to the finite-strain context refer to Nagel et al.
(2016).

2.3 Integration of inelastic constitutive models

General aspects

In order to determine the stresses σi and the stiffness tensor Ci or, more
accurately, their coordinate matrices in Kelvin mapping σi and Ci from
Eq. (2.24), constitutive relations are required.

In the linear elastic case, stress follows directly—independent of loading
path and rate—from strain and the stiffness matrix has constant entries,
rendering Eq. (2.24) linear. The tensorial relations for linear elasticity (using
the Lamé constants)
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σ = λ (ε : I)I + 2µε (2.26)

C = λI⊗ I + 2µI� I (2.27)

hold independent of the particular tensor basis (i.e., also for the Kelvin
mapping) and translate into the following Kelvin-mapped tensor coordinate
matrices:

σ =



2µε11 + λtr ε
2µε22 + λtr ε
2µε33 + λtr ε

2µ
√

2ε12

2µ
√

2ε23

2µ
√

2ε13

 = λ(ε · I)I + 2µε (2.28)

C =


2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

 (2.29)

Considering general inelastic material models, these constitutive relation-
ships follow from a set of differential and algebraic equations (DAEs) of vary-
ing non-linearity. In other words, stresses don’t follow in an explicit manner
from total strains and the stiffness matrix is no longer constant.

Integration algorithm

In order to efficiently solve the non-linearities a local Newton-Raphson pro-
cedure is introduced consistent with its global equivalent. Local in this con-
text refers to performing the stress integration in each integration point of
the quadrature rule employed to numerically approximate the integrals in
Eq. (2.24) by sums. Global refers to the entire equation system (2.25) as-
sembled over all finite elements of the domain. More details on the following
can be found in Nagel et al. (2017) and the references therein.

The differential-algebraic equation system necessary for the integration of
the stress increments is compactly written as

0 = r(z, εi) (2.30)

where r represents the residual vector describing the evolution equations for
stresses and internal variables, as well as constraints (e.g., the consistency
condition in elasto-plasticity). Note that in the local iterations to solve the
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above equation system, εi from the global iteration is considered fixed. The
state vector z contains the stress vector as well as the constitutive model’s
internal state variables (κk, κk):

z = (σT, κT
k , κk)T (2.31)

The evolution equations most often involve rates in the form of first order
time derivatives. Considering the general ordinary differential equation

ẏ = f(y) , (2.32)

time discretisation of the rate quantities in the functionals is based here on
a generalised single step scheme. We write for a time step in the interval
[t, t+∆t]

yt+∆t = yt +∆t
[
α f t+∆t + (1− α) f t

]
(2.33)

which includes the schemes

α =

0 Euler forward (explicit)
0.5 Crank-Nicolson
1 Euler backward (implicit)

(2.34)

With this relationship, a rate of change at time t+∆t can be approximated
based solely on known quantities and the unknown primary variable at time
t+∆t:

ẏt+∆t =
yt+∆t

α∆t
− yt

α∆t
− 1− α

α
f t (2.35)

Note that for α = 0, the above relationship cannot be used directly but the
rate at time t is used directly and exclusively. A Taylor series expansion of
the differential-algebraic system yields the iteration procedure for the local
stress integration

− rj =
∂r

∂z

∣∣∣∣
j

∆zj+1 (2.36)

It shall be mentioned here that the resulting solution update can be dampened
by a factor αLS determined from a line-search procedure

zj+1 = zj + αLS∆z
j+1 (2.37)

where αLS ∈ (0, 1] would be the most common but not the only choice.
Line-search algorithms are motivated by either the acceleration of conver-
gence or the achievement of convergence itself in regions where the standard
Newton-Raphson algorithm would diverge. Numerous methods are available
to determine the value of αLS (Jeremic, 2001; Seifert and Schmidt, 2008;
Zienkiewicz et al., 2005-2006).

Once the iteration has converged, we find the consistent tangent matrix
for the global iteration using the total differential of r and the fact that the
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first entry in z is always σ:

dr

dεt+∆t
=

∂r

∂εt+∆t
+

(
∂r

∂z

∣∣∣∣
t+∆t

)
dz

dεt+∆t
= 0 (2.38)

The first entry of the solution dz/dεt+∆t to the resulting linear system(
∂r

∂z

∣∣∣∣
t+∆t

)
dz

dεt+∆t
= − ∂r

∂εt+∆t
(2.39)

is the sought tangent matrix Ci. Thus, the tangent modulus matrix can be
computed with very little extra effort based on the already known Jacobian
from the local stress-update procedure and is automatically consistent with
the integration algorithm chosen. The latter point is of importance for achiev-
ing the best possible convergence of the global problem (Simo and Hughes,
1998; Zienkiewicz et al., 2005-2006).

2.4 Thermo-mechanical coupling in OGS

When considering applications such as nuclear waste storage, CAES, etc.,
thermal fields influence the material behaviour of the rock salt by lowering
elastic moduli and viscosity parameters or by increasing healing rates, as
outlined in Nagel et al. (2017). For a general thermo-mechanical coupling, a
monolithic scheme is conceivable where the coupling matrices result from the
dependence of one PDE on the primary variable of the other:(

Kuu KuT
KTu KTT

)(
∆u
∆T

)
=

(
ψ
u

ψ
T

)
(2.40)

A monolithic THM scheme is used, for example, to simulate freezing processes
in OGS-6. In general, mechanical work can be partially dissipated into heat
and thus lead to local temperature changes. However, for the strain rates
and boundary conditions relevant here, the coupling to temperature fields
can be described as uni-directional, i.e. the temperature distribution affects
the mechanical problem but not the other way around. Therefore, an efficient
solution technique is to couple the thermal and mechanical initial boundary
value problems (IBVP) in a staggered/partitioned fashion. In other words,
with %cp the volumetric isobaric heat capacity and λ the thermal conductivity
tensor, the PDE-system

PDE 1: 0 = %cp
∂T

∂t
− div (λ gradT ) (2.41)

PDE 2: 0 = divσ(u, T ) + %b = 0 (2.42)
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is addressed by an algorithm which solves the PDE governing one of the
primary variables (temperature and displacement) while keeping the other
fixed and iterating until convergence. Choosing an FE residual formulation
this may be illustrated by

KTT∆T = ψ
T
− f(u) at fixed u ↔ Kuu∆u = ψ

u
− f(T ) at fixed T

where the residuals may be modified by source term-like contributions from
the other coupled processes. In case of the one way coupling considered here,
i.e. KTu = O, the thermal IBVP is solved first, followed by the solution of
the mechanical IBVP without any further iteration between both processes
necessary. Details on weak forms of coupled problems and possible implement-
ations can be found in standard references, e.g. Lewis and Schrefler (1998).
For a detailed overview on coupling strategies in numerical simulations, we
refer the reader to Markert (2013).

The inclusion of temperature-dependent material parameters and thermal
strains will be an inherent part of the material models and algorithms used
below.

2.5 Constitutive models

Thermal process

In addition to ḣ = cpṪ , only one other constitutive relation is required to
close Eq. (2.2) by connecting the temperature field with the heat flux vector.
It is here taken simply as the linear Fourier’s law:

q = −λ gradT (2.43)

Mechanical process

Linear elasticity is insufficient to describe the deformation behaviour of rock
salt under most practically relevant loading conditions. Viscoelastic and vis-
coplastic material models represent the more appropriate choice. Various ma-
terial models are available in OGS for that purpose (Kolditz et al., 2012, 2016,
2014; Nagel et al., 2017), e.g. Norton and various BGR creep laws (Hunsche
and Schulze, 1994), the LUBBY2 (Heusermann et al., 1983, 2003) and a
variant of the Minkley material model (Minkley et al., 2001; Minkley and
Mühlbauer, 2007). These models follow different concepts in calculating the
creep strain rate as well as its temperature dependence:
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Norton ε̇cr = A

(
σeff

σ0

)n
σD

σeff

BGRa ε̇cr =
3

2
A

(
σeff

σ0

)n
exp

(
− Q

RT

)
σD

σeff

BGRb ε̇cr =
3

2

[
A1

(
σeff

σ0

)n1

exp

(
− Q1

RT

)
+

A2

(
σeff

σ0

)n2

exp

(
− Q2

RT

)]
σD

σeff

LUBBY2 See Eqs. (2.44)–(2.51)

Minkley See Eqs. (2.52)–(2.61)

Here, we focus on the latter two which both capture stress- and temperature-
dependent transient and stationary creep phases as indicated by their rhe-
ological analogues depicted in Fig. 2.3. Additionally, the Minkley model can
describe plastic effects which include strain hardening and softening as well
as dilatancy (Minkley et al., 2001; Minkley and Mühlbauer, 2007).

(a) LUBBY2 (b) Minkley

Fig. 2.3: Rheological models of the LUBBY2 and the Minkley material mod-
els.

LUBBY2

The following set of equations describes the temperature-dependent LUBBY2
model (compare Fig. 2.3a):

σ = KM(e− 3αT∆T )I + 2GM

[
εD − εD

M − εD
K

]
(2.44)

ε̇D
K =

1

2ηK
(σD − 2GKε

D
K) (2.45)

ε̇D
M =

1

2ηM
σD (2.46)

where the viscosities and (visco)elastic moduli are functions of both stress
and strain (Böttcher et al., 2017; Du et al., 2012)
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ηM = ηM0 exp(m1σeff/σ0) exp[Q(Tref − T )/(RTTref)] (2.47)

ηK = ηK0 exp(m2σeff/σ0) (2.48)

GK = GK0 exp(mGσeff/σ0) (2.49)

KM = KM0 +mKT(T − Tref) (2.50)

GM = GM0 +mGT(T − Tref) (2.51)

with σeff =

√
3

2
σD :σD

For more details on the implementation, see Nagel et al. (2017).

Minkley

The Minkley model as implemented in OGS and indicated in Fig. 2.3b is
described by the following set of equations:

σ = KM(e− eP − 3αT∆T )I + 2GM

(
εD − εD

P − εD
K − εD

M

)
(2.52)

ε̇D
K =

1

2ηK
(σD − 2GKε

D
K) (2.53)

ε̇D
M =

1

2ηM
σD (2.54)

ε̇D
P = λ

∂GF

∂σ
:PD (2.55)

ėP = λ
∂GF

∂σ
:PS : I (2.56)

ε̇P eff =

√
2

3
ε̇D

p : ε̇D
p (2.57)

F = 0 (2.58)

Again, the model is characterised by stress and temperature dependencies of
viscosities and elastic moduli:

ηM =
ηM0 exp[Q(Tref − T )/(RTTref)]

sinh

[
m

(
σeff

σ0

)n] (2.59)

KM = KM0 +mKT(T − Tref) (2.60)

GM = GM0 +mGT(T − Tref) (2.61)

The yield function in Eq. (2.58) and the plastic potential required for
Eqs. (2.55) and (2.56) were taken as Mohr-Coulomb types with corner
smoothing:
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F =


I1
3

sinφ+
√
J2

(
cos θ − 1√

3
sinφ sin θ

)
− c cosφ |θ| < θT

I1
3

sinφ+
√
J2 (A−B sin 3θ)− c cosφ |θ| ≥ θT

(2.62)

where c and φ are the cohesion and friction angle, respectively, and

A =
1

3
cos θT

[
3 + tan θT tan 3θT +

1√
3

sign θ(tan 3θT − 3 tan θT) sinφ

]
(2.63)

B =
1

3

1

cos 3θT

[
sign θ sin θT +

1√
3

sinφ cos θT

]
(2.64)

The plastic potential differs from the yield surface in order to more accurately
estimate dilatancy, but has an analogous structure:

GF =


I1
3

sinψ +
√
J2

(
cos θ − 1√

3
sinψ sin θ

)
|θ| < θT

I1
3

sinψ +
√
J2 (A′ −B′ sin 3θ) |θ| ≥ θT

(2.65)

where ψ is the dilatancy angle. A′ and B′ follow from Eqs. (2.63), (2.64)
by substituting the friction angle with the dilatancy angle. Hardening or
softening is here by a smoothly differentiable law which captures hardening,
followed by softening up to a defined residual cohesion (compare also Fig. 3.8):

c = cres + (c0 − cres)

(
1 +A1 sin

εP eff

A2

)(
1− 1

1 + exp [−B1(εP eff −B2)]

)
(2.66)

For more details on the implementation, see Nagel et al. (2017). The imple-
mentation of the LUBBY2 and Minkley models is verified against analytical
solutions in Kolditz et al. (2016, 2014); Nagel et al. (2017).

Furthermore, a simple viscoplastic regularisation of the Perzyna type can
be employed (de Borst and Heeres, 2002; Heeres et al., 2002; Wang et al.,
1997): we allow stress states with F > 0 by introducing a regularisation
viscosity ηreg and set

ε̇P =
〈ζ(F )〉
ηreg

∂GF

∂σ
(2.67)

A typical formulation for ζ(F ) is

ζ(F ) =

(
F

C

)n
(2.68)
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where—to normalise F— a common choices for C is the initial yield stress.
For the sake of simplicity, n = 1 and C = GM were chosen here so that the
consistency condition in Eq. (2.58) is replaced by

ληreg = 〈ζ(F )〉 =
〈F 〉
GM

(2.69)

Note that a rate-independent formulation is recovered for ηreg = 0.
Viscoplastic regularisation works by a load-transfer mechanism: if deform-

ation starts to localise in a finite band of element-width, the increase of the
deformation rate in that band in conjunction with the viscous law causes a
stiffening of the band and thus a preferential deformation of adjacent ele-
ment layers (Niazi et al., 2013). This mechanism prevents excessive localisa-
tion. Mathematically, this rate-dependence yields a positive-definite tangent
operator and hence a well-posed, regularised problem (Forest et al., 2004).

Coupling
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(b) Minkley

Fig. 2.4: Results of a simulated simple shear creep test for the LUBBY2 model
and the Minkley model. About half-way through the test, a temperature jump
was imposed causing an immediate change in the elastic response visible as a
jump in the shear strain curve (red), a significant hydrostatic pressure (blue)
due to isochoric confinement of the sample, as well as an increased creep rate.
Details and parameters used can be found in Nagel et al. (2017).
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In addition to the process coupling (compare also Section 2.4) via the effect
of thermal expansion16 included in Eqs. (2.44) and (2.52), the temperature
field influences the material behaviour by altering the elastic and creep prop-
erties through a temperature-dependent parameterisation of the constitutive
models, cf. Eqs. (2.47)–(2.51) and (2.59)–(2.61).

In a stress-controlled simple shear test, for which an analytical solution
can easily be found, all effects can be illustrated, as shown in Fig. 2.4 for
both the Minkley and the LUBBY2 material models.

16 Other such coupling effects like heat of dissipation, thermoelastic or entropic effects
are neglected here.



Chapter 3

Simulation of laboratory tests

The input files of all subsequent examples can be found on the OGS website
https://docs.opengeosys.org/books. In the sequel, we will describe se-
lected input files and keywords relevant to the specific examples. More com-
plete and automatically updated keyword descriptions are available online
under the link https://svn.ufz.de/ogs/wiki/public/doc-auto for OGS-
5 and https://doxygen.opengeosys.org/index.html for OGS-6. Further-
more, some descriptions will be repeated for the different examples as this
redundancy helps to clarify the use of the keywords.

Note that as usual in finite element codes no units are given in the input
files. It is the user’s responsibility to use a self-consistent unit system, e.g.
the units of viscosities must match the time units (MPa d and d), the units
for length and stresses need to match (MPa = N/mm2 and mm), etc.

Instructions on how to download, compile and link OGS against external
libraries can be found at https://docs.opengeosys.org. For meshing and
general pre-processing, you can choose from a number of options

B OGS Data Explorer (https://docs.opengeosys.org/docs)
B GINA (https://teambeam.bgr.de/my/drive#!folder=68)
B MeshIt (Cacace and Blöcher, 2015)
B Gmsh (http://gmsh.info/)

For post-processing, the open-source software Paraview is recommended
which is to be found at http://www.paraview.org/.

3.1 Non-isothermal triaxial creep test

In this example, the LUBBY2 model described in Sec. 2.5 will be used to sim-
ulate a non-isothermal triaxial creep test with inhomogeneous temperature
and strain/stress fields. The boundary conditions are chosen for illustration
and do not represent a particular experimental set-up.
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To set up a sequentially coupled TM analysis, the two relevant processes
need to be defined in the process file, see Listing 3.1.

Listing 3.1: Sequential coupling between a heat transport problem and a
deformation problem in the PCS file of OGS-5.

#PROCESS
$PCS_TYPE
HEAT_TRANSPORT

#PROCESS
$PCS_TYPE
DEFORMATION

#STOP

Geometry and boundary conditions

Fig. 3.1: A cylindrical sample of radius
R = 30 mm and height H = 120 mm
is assumed to rest on a frictionless
platen. The top of the sample is loaded
by a vertical traction (i.e. not by a
rigid platen so that bending modes
may occur), while a confining pressure
p is imposed on the lateral surface.
The top and bottom of the sample can
be heated while the lateral surface is
either heated in the same way as the
other platens (case 1) or is maintained
at ambient temperature (case 2).

The cylindrical sample (Fig. 3.1) is modelled using axisymmetry, i.e. a 3D
problem is simulated using a 2D mesh. The mesh file includes an appropriate
keyword (Listing 3.2).
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Listing 3.2: Making a 2D mesh axisymmetric in the MSH file. Note that
”;” comments a line in an OGS-5 input file.

#FEM_MSH
$AXISYMMETRY
$NODES
341

;num x y z
0 0 0 0
1 7.5 0 0
...
$ELEMENTS
300

;num mat_id el_type node list
0 0 quad 0 1 2 3
1 0 quad 3 2 4 5
...

The boundary conditions indicated in Fig. 3.1 are given by a series of
ramp-and-hold profiles (compare Fig. 3.2):

r = 0 : symmetry ∀t ∈ [0, tend]

r = R: σrr(t) = −plat

(
t− 〈t− t0〉

t0

)
∀t ∈ [0, tend]

T (t) =

T0 +∆T

(
〈t− t1〉 − 〈t− t2〉

t2 − t1

)
T0

∀t ∈ [0, tend]

z = 0 : uz(t) = 0 ∀t ∈ [0, tend]

T (t) = T0 +∆T

(
〈t− t1〉 − 〈t− t2〉

t2 − t1

)
∀t ∈ [0, tend]

z = H: σzz(t) = −ptop

(
t− 〈t− t0〉

t0

)
∀t ∈ [0, tend]

T (t) = T0 +∆T

(
〈t− t1〉 − 〈t− t2〉

t2 − t1

)
∀t ∈ [0, tend]

where 〈 〉 are the Macauley brackets.The values for the constants appearing
in the boundary conditions are given in Table 3.1.

plat / MPa ptop / MPa ∆T / K t0 / d t1 / d t2 / d

5 12 50 0.05 20 21

Table 3.1: Parameterisation of boundary conditions.

Initial conditions are given in the *ic file in OGS-5, Dirichlet boundary
conditions in the BC file and Neumann boundary conditions in the ST file.
All of them are assigned to geometric entities defined in the GLI file such as
points, polylines, surfaces or the entire domain. We leave it to the reader to
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Fig. 3.2: Radial confining stress, axial stress and temperature curves applied
as boundary conditions via a series of ramp-and-hold curves in the triaxial
test with parameters from Table 3.1.

check the GLI file for this example17 in which the polylines named BOTTOM,
TOP, OUTER and INNER define the bottom, top and outer surfaces as well
as the axis of symmetry for the axisymmetric mesh.

The only initial condition necessary here defines the initial temperature.

Listing 3.3: Initial condition for the temperature in the IC file.

#INITIAL_CONDITION
$PCS_TYPE
HEAT_TRANSPORT

$PRIMARY_VARIABLE
TEMPERATURE1

$GEO_TYPE
DOMAIN

$DIS_TYPE
CONSTANT 313

#STOP

As seen in Listing 3.3, the heat transport process is assigned an initial
condition for its primary variable temperature18 on the entire solution domain
of a constant value of 313 K.

The syntax to define boundary conditions is very similar. Here, we select
two examples from the BC file.

17 More information under https://svn.ufz.de/ogs/wiki/public/doc-auto.
18 The number indicates the possibility to account for local thermal non-equilibrium
and hence several temperatures at a given point.

https://svn.ufz.de/ogs/wiki/public/doc-auto


27

Listing 3.4: Selected Dirichlet boundary conditions defined in the BC file.

#BOUNDARY_CONDITION
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_Y1

$GEO_TYPE
POLYLINE BOTTOM

$DIS_TYPE
CONSTANT 0

#BOUNDARY_CONDITION
$PCS_TYPE
HEAT_TRANSPORT

$PRIMARY_VARIABLE
TEMPERATURE1

$GEO_TYPE
POLYLINE TOP

$DIS_TYPE
CONSTANT 313

$TIM_TYPE
CURVE 3

...
#STOP

In Listing 3.4, the constraint on the vertical displacement at the sample
bottom (z = 0) is shown along with a temperature boundary condition at the
sample top. The distribution type ($DIS_TYPE) CONSTANT refers to the spatial
homogeneity along the geometrical entity, while the time type ($TIM_TYPE) in
the temperature boundary condition indicates a multiplicative scaling of the
given value of 313 K by the time-dependent curve number 3, which we shall
explain shortly, in order to define the boundary condition T (t), see Figs. 3.1
and 3.2.

Source terms are usually defined in balance equations as supply terms
per unit volume of a domain, while Neumann boundary conditions arise in
the weak from from surface fluxes associated with the balanced quantity.
While this distinction is strictly adhered to in OGS-6, Neumann boundary
conditions are defined in OGS-5 input files under the tag source term and
are assigned the distribution type CONSTANT_NEUMANN.
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Listing 3.5: Selected Neumann boundary condition defined in the ST file.

#SOURCE_TERM
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_X1

$GEO_TYPE
POLYLINE OUTER

$DIS_TYPE
CONSTANT_NEUMANN -5.0

$TIM_TYPE
CURVE 1

...
#STOP

The confining pressure defined at r = R in Listing 3.5 carries a negative
sign as the traction vector points against the positive radial coordinate dir-
ection. It is again scaled by a time-dependent curve (Fig. 3.2).

These curves are given in the RFD file and automatically numbered con-
secutively starting at 1.

Listing 3.6: Selected Dirichlet boundary condition defined in the ST file.

;confining pressure
#CURVES
; time factor

0.0 0.0
0.05 1.0
1.e6 1.0

;top pressure
#CURVES

0.0 0.0
0.05 1.0
1.e6 1.0

;temperature
#CURVES

0.00e+00 1.0
20 1.0
21 1.16
1.e6 1.16

#STOP

The value pairs defined in these curves (Listing 3.6) define at which point
in time which factor is multiplied to the boundary condition to obtain its
current value. In between the time points, OGS interpolates linearly creating
piecewise linear functions.
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Material properties

GM0 / MPa KM0 / MPa ηM0 / MPa d GK0 /MPa ηK0 / MPa d

9.54·103 2.78·104 4.03·107 6.27·104 1.66·105

m1 / MPa−1 m2 / MPa−1 mG / MPa−1 mGT / MPa K−1 mKT / MPa K−1

-0.327 -0.267 -0.254 -21.141 -25.265

Q / J mol−1 Tref / K αT / K−1 cp / J kg−1K−1 λ / W mm−1K−1

1.6·104 313 2.8·10−5 920 648

% / kg mm3 Tref / K αT / K−1

2.04·10−6 313 2.8·10−5

Table 3.2: Temperature-independent material parameters for the LUBBY2
model; Eqs. (2.44)–(2.51). Parameters from Heusermann et al. (1983, 2003).
Parameters describing the temperature dependence of the elastic properties
taken from reference (Sriapai et al., 2012), and of the stationary creep rate
following (Du et al., 2012).

The above material properties are given int he solid properties (MSP) file.

Listing 3.7: The solid properties (MSP) file. Note that there are no manual
line breaks (indicated here by \\) in the actual file.

#SOLID_PROPERTIES
$DENSITY
1 2.04e-06

$CREEP_BURGERS
;G_K0 , m_G , eta_K0 , m_2 , G_M0 , K_M0 , \\
eta_M0 , m_1 m_GT m_KT T_ref B Q
6.2667 e4 -2.54e-1 1.66e5 -2.67e-1 9.5420E+003 2.7798E+004 \\
4.03e7 -3.27e-1 -21.1405 -25.265 313 1.0 16000

$THERMAL
EXPANSION 2.8e-05
CAPACITY
1 920

CONDUCTIVITY
1 648

$GRAVITY_CONSTANT
0.0

#STOP

The key word $CREEP_BURGERS invokes the LUBBY2 formulation. The
parameter names and values given in Listing 3.7 correspond to Table 3.2.
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Note that the order of the values is fixed and must not be altered. The first
number for $DENSITY, CAPACITY and CONDUCTIVITY indicates a particular
functional relationship, 1 meaning simply a constant value which is then
given as the second number. The final keyword indicates that gravity has
been switched off in this example.

Without showing the respective input files it should be mentioned that two
more files are necessary to run a TM analysis in OGS-5: the fluid properties
(MFP) file must define basic thermal and hydraulic properties of the pore
fluid. Even though no flow analysis is performed as would be done for a full
THM scenario, this feature enables the simulation of a porous medium with
effective thermal properties, when the presence of the fluid has no mechanical
consequences but fluid properties can follow their own equations of state.
Thus, solid and fluid properties such as thermal conductivity may follow
their own temperature-dependent constitutive functions, and the effective
properties are determined by a homogenisation step.

The MMP file then defines certain properties of the solid–fluid mixture, i.e.
the porous medium. Among others, it defines the porosity of the solid. Here,
the porosity is given as 0, such that the fluid properties become irrelevant for
the thermal analysis due to the volume fraction-based averaging process.
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Numerical settings

Listing 3.8: Numerical settings in the NUM file.

#NUMERICS
$PCS_TYPE
HEAT_TRANSPORT

$LINEAR_SOLVER
; method error_tolerance max_iterations theta precond storage
; 2 5 1.0e-14 5000 1.0 100 4 ; internal
; 4 5 1.0e-18 15000 1.0 2 4 ; LIS

805 6 1.0e-15 15000 1.0 2 4 ; PARDISO
$ELE_GAUSS_POINTS
3

#NUMERICS
$PCS_TYPE
DEFORMATION

$LINEAR_SOLVER
; method error_tolerance max_iterations theta precond storage
; 2 5 1.0e-14 5000 1.0 100 4 ; internal
; 4 5 1.0e-18 15000 1.0 2 4 ; LIS

805 6 1.0e-15 15000 1.0 2 4 ; PARDISOSO
$ELE_GAUSS_POINTS
3

$NON_LINEAR_ITERATIONS
; method error_type max_iterations relaxation convergence_control

NEWTON BNORM 20 0.0 1.0e-6

$ADDITIONAL_NEWTON_TOLERANCES
1.e+10 1.0e-3 1.0e+10

$PLASTICITY_TOLERANCE
1.e-14

#STOP

Two sets of numerical settings are included in the NUM file (Listing 3.8): The
first for heat transport, the second for the mechanical process. Depending on
how you build OGS, different linear solvers and solver libraries are available.
If linking against the Intel MKL library19, the direct Pardiso solver can be
used. It is invoked by the line starting with 805. If linking against the Lis
iterative solver libary20, the line starting with 4 is appropriate. The settings
in this example invoke the BiCGStab solver with an ILU preconditioner. One
can also use internal OGS solvers (first line starting with a 2) without linking
against third party solver libraries; however, we recommend one of the former
options. Both MKL Pardiso and Lis make use of OpenMP: by changing the
environment variable OMP_NUM_THREADS you can determine how many threads
are to be used in parallel for solving the linear system.

By including $NON_LINEAR_ITERATIONS, OGS performs a Newton-Raphson
iterations to obtain the displacement solution where the user typically sets

19 https://software.intel.com/en-us/intel-mkl
20 http://www.ssisc.org/lis/

https://software.intel.com/en-us/intel-mkl
http://www.ssisc.org/lis/
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the maximum number of iterations (here 20) and a tolerance value for con-
vergence control (here 1·10−6). This value corresponds to a relative residual
norm (compare Eq. (2.25)). Should one require other convergence settings,
the keyword $ADDITIONAL_NEWTON_TOLERANCES allows the user to set toler-
ances for (in that order) the norms of the absolute residual, the absolute
displacement increment and the relative displacement increment. A global
Newton loop converges only if all tolerance settings are met. Here, the abso-
lute displacement increment and the relative residual are checked while the
high values given for the remaining criteria render them irrelevant. Note that
absolute norms are sensitive to the dimension (units) of the problem studied,
while relative norms are not. In some cases, such as load-free or idling phases,
absolute criteria may be required for convergence rather than relative criteria.
Which tolerance values to choose thus may depend on problem dimension,
time stepping, non-linearity, desired accuracy in relation to computing time,
and a number of other factors. If no experience for a particular problem type
is available, the effect of tolerance settings on the results must be studied
in order to determine suitable values. For more information see also Bathe
(2014); Zienkiewicz et al. (2005-2006) and others.

Finally, the keyword $PLASTICITY_TOLERANCE specifies the tolerance for
the norm of the residual from the local stress-update algorithm, see Eq. (2.36).
Note that the precision of the local solution directly affects both precision
and convergence of the global problem.

Time stepping

Listing 3.9: Time stepping defined in the TIM file.

#TIME_STEPPING
$PCS_TYPE

DEFORMATION
$TIME_STEPS

20 0.005
9 0.1
18 0.5
10 1.0
10 0.1
18 0.5
20 1.0
10 5.0

$TIME_END
120.0

$TIME_START
0

#STOP

Fixed time stepping is chosen for this problem. The TIM file (Listing 3.9)
contains a list of (number of time steps; time-step length)-pairs as well as the
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end time. The simulation stops as soon as either all time steps are used up
or once the end time is reached. One time-stepping entry is sufficient here, as
equal time-stepping schemes and widths were chosen for both subproblems.

Output

Listing 3.10: Output quantities defined in the OUT file.

#OUTPUT
$NOD_VALUES

DISPLACEMENT_X1
DISPLACEMENT_Y1
STRESS_XX
STRESS_XY
STRESS_YY
STRESS_ZZ
STRAIN_XX
STRAIN_XY
STRAIN_YY
STRAIN_ZZ
TEMPERATURE1

$GEO_TYPE
DOMAIN

$DAT_TYPE
PVD

$TIM_TYPE
STEPS 1

#STOP

Several sets of output tasks can be defined simultaneously for a simulation
in the OUT file (Listing 3.10). They can have different file formats, different
frequencies; they can be defined for separate processes and on different geo-
metric entities. Here, we output some standard quantities in the nodes of a
finite element mesh21, namely on the entire domain. The output is performed
after every time step (STEPS 1) and in ParaViewData format. The latter im-
plies the creation of a series of VTU files for each time step with their time
sequence information collected in the PVD file.

Note in passing the following convention for axisymmetric analyses fol-
lowed in OGS-5: as the mesh-file is set up in (x, y) coordinates corresponding
to the cylinder coordinates (r, z), displacements in these directions are re-
ferred to as x and y. For stress and strain output, the following convention
is used: (x, y, z)↔ (r, φ, z).

21 Integration point quantities such as stresses and strains are extrapolated to the
nodes for output.
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Simulation results

(a) t = t0,
T (R) = T (t)

(b) t = t1,
T (R) = T (t)

(c) t = t2,
T (R) = T (t)

(d)
t = 100 d,
T (R) = T (t)

(f) t = t0,
T (R) = T0

(g) t = t1,
T (R) = T0

(h) t = t2,
T (R) = T0

(i) t = 100 d,
T (R) = T0

Fig. 3.3: Triaxial creep test simulated using the LUBBY2 material model
with either a homogeneous temperature field (top row) or a heterogeneous
temperature field (bottom row). The mesh is plotted in the deformed state,
where displacements have been magnified by a factor of 40. The black box
shows the undeformed state for comparison.
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At the end of loading (t = t0) the sample is compressed mainly elastically.
Following the top right node, i.e. the perimeter of the sample top (”the top
edge”), this step is apparent by the rapid axial displacement in Fig. 3.4.
During the subsequent creep phase, the two characteristic creep stages are
observed: a primary, transient creep phase with a decreasing rate lasting
roughly 10 days, followed by a secondary, stationary creep phase at constant
rate. The behaviour in the subsequent stages differs strongly depending on
the lateral temperature boundary condition (Fig. 3.3).

In case 1, where the lateral boundary is subjected to the same temperat-
ure boundary condition as the top and bottom boundaries, i.e. T (R) = T (t),
a homogeneous temperature field develops after the heating process. The
temperature increase of 50 K throughout the sample leads to a large and ho-
mogeneous volumetric expansion. The sample increases significantly in both
height and radius (Fig. 3.3c) and does so homogeneously. Because the volume
increase is homogeneous, the shear stress state does not change. Hence, the
subsequent creep phase remains entirely stationary albeit at a higher rate
due to the temperature-induced viscosity decrease throughout the sample
(Fig. 3.4).

In case 2, the lateral boundary is maintained at the initial temperature,
T (R) = T0, leading to the development of a highly heterogeneous temperat-
ure field (Fig. 3.3). Thermal expansion is limited to the vicinity of the top and
bottom surfaces, resulting in a much lower overall volume increase. Further-
more, the differential thermal expansion leads to a distortion of the sample’s
geometry (Figs. 3.3h and 3.3i). This affects the deviatoric stress state, initi-
ating a small primary creep phase after the heating step (Fig. 3.4). Because
the sample remains cool in large parts, the average viscosity increase is lower
compared to case 1 and the increase in the compression rate is accordingly
less significant.

a

TASK: The user can experiment with the interplay of boundary condi-
tions, time curves, time stepping, mesh density, and numerical settings
to develop a feel for the right settings. Analytical solutions are one pos-
sibility to quantify errors depending on the discretisation, convergence
criteria etc. Possible test cases can be found in Nagel et al. (2017).
Another possible variation that we leave for practice is the modification
of the boundary conditions to no-slip conditions (ur(z = 0) = ur(z =
H) = 0 to observe the typical barreling of the samples (compare also
Kolditz et al. (2016)).
For convenience, three different mesh files were added to the input file
collection (Fig. 3.5) but others are of course possible. Note, if the dimen-
sions of the mesh file are changed, the geometry in the GLI file must be
adapted accordingly.
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Fig. 3.4: Axial displacement of the top left node, i.e. the point (or line) located
at r = R and z = H.

Fig. 3.5: Three meshes are available for the simulation.

3.2 Triaxial test with plasticity

In this example, the Minkley model described in Sec. 2.5 will be used to
simulate an isothermal multi-step triaxial compression test with relaxation
phases. The material behaviour is significantly more non-linear than the pre-
vious example. As the test is isothermal, the PCS file simply contains the
DEFORMATION process. No boundary or initial conditions need to be defined
for the temperature field and no MFP file is necessary.
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Geometry and boundary conditions

Fig. 3.6: A cylindrical sample of
radius R = 30 mm and height
H = 120 mm is assumed to rest
between two high-friction platens
(”glued contact”). The top of the
sample is loaded by a vertical dis-
placement uz(t), while a confining
pressure plat(t) is imposed on the
lateral surface.

The boundary conditions plotted in Fig. 3.7 are ∀t ∈ [0, tend]:

r = R : σrr(t) = −p1

(
t− 〈t− t0〉

t0

)
−∆p

(
〈t− t5〉 − 〈t− t6〉

t6 − t5

)
z = 0 : uz = 0

ur = 0
z = H : ur = 0

uz(t) = −u0

(
〈t− t0〉 − 〈t− t1〉

t1 − t0

)
+∆u1

(
〈t− t2〉 − 〈t− t3〉

t3 − t2

)
uz(t) =−∆u1

(
〈t− t4〉 − 〈t− t5〉

t5 − t4

)
−∆u2

(
〈t− t6〉 − 〈t− t7〉

t7 − t6

)
where 〈 〉 are the Macauley brackets. The values for the constants appearing
in the boundary conditions are given in Table 3.3.

The geometric input is similar to the previous example. However, no
axisymmetry condition is applied in this case to not enforce symmetry con-
straints on shear band formation. Hence, a two-dimensional mesh is used in
conjunction with the plane strain assumption. This also implies a change in
boundary conditions on the “left” polyline: it no longer represents a sym-
metry axis (ur = 0) but the opposing lateral boundary. As such it needs to
be assigned the appropriate traction boundary condition.

In summary, a series of ramp-and-hold profiles with the following charac-
teristics is performed, compare Fig. 3.7:

- Application of a radial confining stress of
−4 MPa within 2 days.

- Application of −0.12 % axial strain within 2 days.
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- Hold all boundary conditions for 100 days.
- Reduction of the axial strain to −0.09 % within 2 days.
- Hold all boundary conditions for 100 days.
- Increase axial strain back to −0.12 % within 2 days.
- Increase radial confining stress to −8 MPa within 2 days.
- Increase axial strain to −0.32 % within 2 days.
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Fig. 3.7: Radial confining stress and global axial strain applied as bound-
ary conditions as a series of ramp-and-hold curves in the triaxial test with
parameters from Table 3.3.

p1 / MPa ∆p / MPa u0 / mm ∆u1 /mm ∆u2 / mm t0 / d

4 4 0.144 0.036 0.24 2

t1 / d t2 / d t3 / d t4 / d t5 / d t6 / d t7 / d
4 104 106 206 208 210 212

Table 3.3: Parameterisation of boundary conditions.

Material properties

The material parameters were chosen as given in Table 3.4. In particular,
the corresponding hardening/softening via the cohesion depending on plastic
strain is plotted in Fig. 3.8.
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GM / MPa KM / MPa ηM0 / MPa d GK0 /MPa ηK0 / MPa d m / MPa−n

1.2·104 1.8·104 10.0·1010 6.3·104 1.4·106 4.9

n c0 / MPa cres / MPa φ / ◦ ψ / ◦ ηreg / d

0.33 1.6 0.5 30.0 10.0 0.05/0.01/0.001

A1 A2 B1 B2 θT / ◦

0.4 10−3 3·103 4·10−3 28

Table 3.4: Material parameters for the Minkley model; Eqs. (2.52)–(2.59)
and (2.66). Information on parameter identification can be found in Hampel
et al. (2010). The parameters of the hardening/softening law were arbitrarily
chosen for illustration.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
εPeff / %
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/ M

Pa

Fig. 3.8: The hardening/softening law from Eq. (2.66) with the parameters
from Table 3.4.

The above material properties are given in the solid properties (MSP) file.
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Listing 3.11: The solid properties (MSP) file invoking the Minkley material
model. Note that there are no manual line breaks (indicated here by \\)
in the actual file.

#SOLID_PROPERTIES
$DENSITY
1 2.2E-6

$CREEP_MINKLEY
;G_K , mu_K , G_M , K_M , eta_M0 , m_vM , n_vM , c0, c_res , phi , psi , \\

thetaT , eta_reg , m_TG , m_TK , T_ref , B, Q, A1, A2, B1, B2
63.e3 14.e5 12.e3 18.e3 10.e10 4.9 0.33 1.6 0.5 20. 5. \\

28. 0.01 0.0 0.0 313. 1. 0. .4 1.e-3 3.e3 4.e-3
$GRAVITY_CONSTANT

0.0
#STOP

The key word $CREEP_MINKLEY invokes the Minkley formulation. The para-
meter names and values given in Listing 3.11 correspond to Table 3.4. Note
that the order of the values is fixed and must not be altered. The source code
may, however, change to include more or other parameters, potentially alter-
ing read functions. Thus, checking the code documentation and comments is
the safest way to keeping up-to-date input.

Numerics

Softening material behaviour is challenging for convergence. The interplay
between time-step size, hardening/softening parameters in Eq. (2.66), the
regularisation method (non-local, gradient, viscous) and parameters etc. is
very tight. The convergence behaviour can be drastically improved and the
time-step sizes increased when employing a line-search method.

a

TASK: The code version supplied with this tutorial does not feature
a line-search algorithm in the local stress-update procedure. A quick
sampling of the kind

αLS = argmin
∣∣∣∣r (zj + α∆zj+1

)∣∣∣∣ ∀α ∈ (0, 1] (3.1)

can, however, be readily implemented for given zj and ∆zj+1. The inter-
ested user can try to implement such a scheme themselves. The function
LocalNewtonMinkley in the source file rf_msp_new.cpp is a good start-
ing point.

In the subsequent examples, a viscoplastic approach is used to aid conver-
gence and regularise the problem in the presence of softening-induced local-
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isation phenomena. In the sequel, we will compare results obtained for three
different values of ηreg and discuss associated limitations of the approach.

3.2.1 Results
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Fig. 3.9: Stress-time and stress–strain curves for the triaxial compression test
using the Minkley material model. Plotted quantities represent the average
over the entire specimen.

Rate-dependent material effects which are mainly due to the Burgers-part
of the rheological model are visible in the stress–time curve plotted in the left
part of Fig. 3.9a. After compressive loading stops at day 4, stress relaxation
with a decreasing compressive axial stress takes place. Similarly, after partial
unloading at day 106, stress relaxation occurs with an increasing compressive
axial stress. These relaxation phases correspond to the vertical lines at 0.12 %
and 0.09 % axial compressive strain in the stress–strain diagramme, Fig. 3.9b.
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Another rate-dependent effect is visible during plastic loading itself and
has its origin in the viscoplastic regularisation performed in Eq. (2.67), see
the right part of Fig. 3.9a and Fig. 3.9b. The onset of plastic loading is visible
in Fig. 3.9b by the sudden change in slope around 0.05 % as well as 0.16 %
axial compression. Plasticity during re-loading occurs at a much higher stress
level of around 30 MPa compared to around 17 MPa during the initial loading
phase. This is due to the dependence of the yield function on hydrostatic
stress and the fact that during re-loading the radial confining stress has been
doubled.

Hardening is visible during the initial plastic loading. The overstresses
induced are only of minor importance in this phase except for the highest
viscosity (ηreg = 0.05 d). In the second plastic phase (re-loading), the trans-
ition to a softening material behaviour becomes apparent. In the nearly rate-
independent solution (ηreg = 0.001 d), the stress–strain curve qualitatively
reflects the behaviour of the hardening/softening law (compare Figs. 3.9b
and 3.8). Due to the tendency towards localisation in the softening regime,
the viscous overstresses induced by Eq. (2.67) become more significant de-
pending on the value of the viscosity ηreg. Once the second compression phase
is terminated at day 212, the viscous overstress relaxes (right part of Fig. 3.9a
and Fig. 3.9b) until the final stress values are quite similar at day 215 with
the exception again of the highest viscosity.

(a) ηreg = 0.001 d (b) ηreg = 0.01 d (c) ηreg = 0.05 d

Fig. 3.10: Dilatancy for a triaxial test simulated with the Minkley material
model. Deformed contour obtained by the displacement field scaled by a factor
of 20.

Viscoplastic regularisation does thus not only help to treat localisation
phenomena, but introduces an additional rate-dependence which alters the
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stress–strain(-rate) behaviour of the material and affects the peak stresses
as well as the total dissipated energy. The efficacy and consequences of the
approach depend on the manner in which boundary conditions are applied,
particularly the loading rate. Taken together, maintaining physical results in
terms of shear-band width, stress–strain behaviour, dissipated energy, etc.
for different sets of boundary conditions as well as a numerically favourable
setting is a challenging task and sometimes impossible. As an alternative,
micropolar, non-local or gradient-based approaches may be considered as
more suitable choices for regularising softening problems.

We now compare the spatial distribution of field variables associated with
the plastic response at the end of the simulation (day 215).

(a) ηreg = 0.001 d (b) ηreg = 0.01 d (c) ηreg = 0.05 d

Fig. 3.11: Cohesion for a triaxial test simulated with the Minkley material
model. Deformed contour obtained by the displacement field scaled by a factor
of 20.

Shear-band width as well as the peak values of the dilatancy differs for the
three simulations (Fig. 3.10). The overall angular pattern of the shear bands
is qualitatively consistent between the simulations. The tendency for local-
isation is clearly visible in the quasi rate-independent simulation (Fig. 3.10a).
The locally highest dilatancy values occur at the intersection between the op-
posing bands. Higher values for ηreg lead to an increasing spreading-out of the
plastic zone accompanied by significantly lower peak dilatancy values. The
overall sample develops a barrel-like shape with a smoother outer contour in
the highly viscoplastic cases.

In all simulations, the samples have softened significantly (Fig. 3.11), i.e.
the cohesion reached the residual value defined in the input file (cres =
0.5 MPa). Adjacent to the softened regions, the material is still in its peak-
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hardening state. The viscoplastic simulation shows a smoother distribution
of the cohesion field. The simulation with the highest viscosity value has de-
veloped no fully softened cross-section but has softened maximally only in
its central core (Fig. 3.11c, right). In contrast, two (ηreg = 0.01 d, Fig.3.11b)
respectively four (ηreg = 0.001 d, Fig.3.11a) continuous bands with only re-
sidual cohesion have developed in the other simulations.

Fig. 3.12 shows the resulting shear-band width, cohesion and dilatancy
field when using a significantly refined mesh consisting of 13,041 nodes instead
of 861 nodes. One can observe that the viscoplastic regularisation using ηreg =
0.01 d achieved a mesh-independent final result.

(a) coarse (b) fine

(d) coarse (e) fine

Fig. 3.12: Comparison of the resulting cohesion and dilatancy fields when a
coarse (861 nodes) and a fine mesh (13041 nodes) are used. Deformed contour
obtained by the displacement field scaled by a factor of 20.
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Similarly, the global stress–strain response for both meshes corresponds
well (Fig. 3.13).
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Fig. 3.13: Comparison of the resulting stress–strain curve when a coarse (861
nodes) and a fine mesh (13041 nodes) are used (ηreg = 0.01 d).

a

TASK: What is the influence of mesh-density in this example when us-
ing other values for ηreg? Use coarser and finer meshes to observe the
behaviour of localisation. Try to find suitable values for ηreg in these
simulations which allow the observation of shear bands and compare the
stress–strain behaviour on different meshes. Depending on your choice of
parameters it may be useful to solve the previous task first. Which para-
meters is the simulation most sensitive to and why? What is the result
when using only one element?





Chapter 4

Simulating Gas Storage in Salt Caverns

4.1 Scenario

Salt caverns are artificial cavities in salt formations, which are usually used
for long-term storage of hydrocarbons such as black oil or natural gas. At least
two facilities, located in MacIntosh, USA (PowerSouth Energy Cooperative)
and in Huntorf, Germany (Crotogino and Quast, 1981), employ salt caverns
in combination with compressed air energy storage (CAES).

Recently, salt caverns are being considered as promising storage sites for
power-to-gas-to-power (P2G2P) applications within the context of renewable
energy storage. In addition to compressed air, artificial methane or hydrogen
could be utilised as working gases.

Compared to traditional gas tanks located on the surface, underground
caverns have various advantages: the capacity (in terms of volume) of salt
caverns is much higher; the volume of salt caverns can easily exceed gas
tank volumes by factors of 100 to 1000. Furthermore, working pressures in
caverns can be about ten times higher than gas tank pressures22. Artificial
salt caverns are usually constructed by solution mining, a time-consuming
but relatively cheap process.

Cavern operation is characterised by pressure changes. Depending on the
cavern purpose, those pressure fluctuations can occur on a seasonal, weekly or
even daily basis. In this example, we consider a comparatively small cavern
used for short-term storage of hydrogen. Hydrogen is produced from fresh
water utilising electrolyzers. These devices use electrical energy to decompose
water molecules into oxygen and hydrogen in an endothermic reaction:

H2O(l) −−→ H2 +
1

2
O2, (4.1)

22 The exception being small-scale CAES using high-pressure cylinders made of ex-
pensive carbon-fibre composites holding up to 300 bars, where the cycle number is
limited by mechanical fatigue to a few tens of thousands (Ibrahim et al., 2008).
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In other words, hydrogen represents a possible energy storage medium to store
excess electricity by converting electrical energy into a chemical potential
(P2G). The process of electrolysis can be reversed in a fuel cell thus closing
the storage cycle (P2G2P). Theoretically, this exothermic oxidation releases
the same amount of energy as it took for the electrolyzer to decompose the
water molecules. In practice, both reactions suffer power losses, which can
be quantified by an efficiency factor η. The required power for charging the
cavern or the power released by discharging the cavern can be determined by

P = ηṁ∆H◦R/MH2
(4.2)

provided that the efficiencies are known. In (4.2), ṁ is the mass flux dur-
ing charging or discharging stages, MH2

is the molar mass of hydrogen and
∆H◦R = 285.9 kJ mol−1 is the reaction enthalpy of (4.1) for molecular hydro-
gen.

The following example covers a scenario, where a small hydrogen cavern is
used as part of an emergency energy storage of a factory or a small town. In
this scenario, the task is to bridge an unexpected energy gap in the network
that lasts for several days. Our cavern is preloaded with its maximum op-
eration pressure of pmax = 15 MPa. When the power breakdown occurs, the
stored hydrogen is discharged at a constant mass flux of ṁout = 0.1 kg s−1.
Assuming a combined efficiency of the entire discharging process (all energy
losses from friction, heat loss or fuel cell efficiencies combined) of ηout = 0.56,
this mass flux corresponds to a power of about Pout = 7.9 MW.

After five days, the cavern pressure has dropped below a predetermined
threshold value pmin = 8.5 MPa, thus the discharging process is stopped.
However, the gap in the energy network remains and has to be bridged by
other means, thus the cavern cannot be recharged.

Another five days later, surplus energy is available again and the refilling
process of the cavern can be started. Here, the charging speed is limited by
the hydrogen production rate. In our case, the cavern operator uses three
electrolyzers with an individual production rate of V̇ = 670 m3 h−1 at stand-
ard conditions. The maximum mass flux for this set-up is ṁ = 0.05 kg s−1,
thus it requires 10 d to restore the initial cavern pressure.

Here, we use OpenGeoSys to investigate the effect of this scenario on the
host rock of the cavern. For that purpose, we will cover two different ap-
proaches. At first, an isothermal example (4.3) will only consider the effects
of the pressure drop in the cavern. The pressure change has no influence
on the gas temperature and is thus only governed by the mass flux. In the
second example (4.4), the thermodynamic effects accompanying the gas pres-
sure changes are considered. A thermo-mechanical analysis will be performed
to study how the resulting temperature variation influences the material prop-
erties of and the stress fields in the host rock.
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4.2 General set-up

In this section, the general definitions of the model set-up for both examples
are described. The reader may find additional information on the various
input files in the previous chapter, pages 23ff.

Cavern geometry

With a volume of about 10 000 m2, the salt cavern in this example is relat-
ively small. Its geometry is idealised and can be described as a cylinder with
hemispherical ends. The cavern has a radius of 6 m and a length of 92 m, as
measured at the centre line.

The model domain of this example represents the surrounding host rock
of our salt cavern. Basically, this domain is represented by a cylinder with a
radius of 250 m, a height of 294 m containing the cavity in its centre. The top
of the domain is located at a depth of −1000 m below the surface.

To spatially discretise this set-up for numerical analysis, we make use of
the advantage that the geometry of both cavern and domain cylinder is rota-
tionally symmetric around a central axis. Therefore, the entire model domain
can be reduced to a planar representation consisting of only a few thousand
elements, described in cylindrical coordinates, see Fig. 4.1. This approach
is commonly used, but it is limited to analyses of single caverns in forma-
tions which are circumferentially homogeneous around the axis of symmetry.
In contrast, considering the interactions of multiple caverns in cavern fields
requires a three-dimensional discretisation. The size, shape, location, and
connectivity of those elements is defined in the MSH-file. For this example, the
corresponding mesh file and all other input files are available on the OGS
website https://docs.opengeosys.org/books. For more info on meshing,
see the introductory section of Chapter 3 on page 23.

In order to apply boundary conditions and to define locations for result
output, the GLI-file defines geometrical entities such as points, polylines, or
surfaces. Listing 4.1 shows an example of how points and polylines are defined.
In our example, we define three polylines TOP, BOT, and RIGHT to represent the
outer surface of the model domain, two polylines TOP_LEFT and BOT_LEFT for
the symmetry axis, and one polyline CAVERN for the cavern wall. The points
B to F are defined for output reasons only. The location of these geometrical
objects as well as a schematic of the entire domain is illustrated in Fig. 4.1.

https://docs.opengeosys.org/books
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Fig. 4.1: Schematic view with boundary conditions (left) as well as the spatial
discretisation (right) of the cavern model.

Listing 4.1: Cavern geometry.

#POINTS
0 0.000e+00 -1.000e+06 0.000e+00 $NAME P_0
...
122 0.000e+00 -1.294e+06 0.000e+00 $NAME P_122
123 2.500e+05 -1.294e+06 0.000e+00 $NAME P_123
124 2.500e+05 -1.147e+06 0.000e+00 $NAME P_124
125 2.500e+05 -1.000e+06 0.000e+00 $NAME P_125
...

#POLYLINE
$NAME
TOP

$POINTS
0
125
...

Initial conditions

As mentioned before, the history of the stress state is not taken into account
in this example. A hydrostatic stress distribution is assumed to characterize
the initial state of the cavern. This condition can be applied via initial condi-
tions. Here, however, it will be generated directly during the first time steps.
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Therefore, the initial state is given by zero-stress and zero-strain conditions,
which do not need to be defined explicitly in the IC-file.

Boundary conditions

In the BC-file, Dirichlet boundary conditions are specified. For the deformation
process, Dirichlet boundary conditions define the displacements imposed on
the model domain.

Since our model domain is described as axisymmetric, displacements at the
symmetry axis are allowed in axial (vertical) direction only. The example do-
main is joined to this axis by two polylines, TOP_LEFT and BOT_LEFT (Fig. 4.1)
which are separated by the cavern. Thus, for each of these polylines, an indi-
vidual boundary condition has to be specified. At the bottom of the domain,
represented by the polyline BOT, displacements in the vertical direction are
suppressed.

To assign a Dirichlet boundary condition, the following keywords are re-
quired: #BOUNDARY_CONDITION initializes a new block where the Dirichlet-
condition is specified. $PCS_TYPE refers to the name of the process for which
the boundary condition is required. $PRIMARY_VARIABLE specifies which of
the primary variables of a process is to be assigned a boundary value.
The location, at which the boundary value is applied is specified by the
$GEO_TYPE-keyword. This may refer to POINT(s), POLYLINE(s), or SURFACE(s).
The $DIS_TYPE-keyword refers to how the boundary value is distributed spa-
tially over the specified subdomain. The most common distribution types are
CONSTANT and LINEAR. In this example, the Dirichlet boundary conditions
are constant over both time and location. Thus, as shown in Listing 4.2, the
distribution type CONSTANT was chosen, followed by the actual Dirichlet value
(0.0 in this case).
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Listing 4.2: Three displacement constraints for an axisymmetric cavern
problem.

#BOUNDARY_CONDITION
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_X1
$GEO_TYPE
POLYLINE TOP_LEFT

$DIS_TYPE
CONSTANT 0.0

#BOUNDARY_CONDITION
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_X1

$GEO_TYPE
POLYLINE BOT_LEFT

$DIS_TYPE
CONSTANT 0.0

#BOUNDARY_CONDITION
$PCS_TYPE
DEFORMATION
$PRIMARY_VARIABLE
DISPLACEMENT_Y1

$GEO_TYPE
POLYLINE BOT

$DIS_TYPE
CONSTANT 0.0

Note that although this example is described and computed in cylinder co-
ordinates, the names of the keywords does not deviate from Cartesian prob-
lems. Thus, DISPLACEMENT_X1 refers to radial, while DISPLACEMENT_Y1 refers
to the axial direction in this 2D example corresponding to the mesh file.

Source terms

The ST-file defines boundary conditions of the Neumann type. For the deform-
ation process, it allows to apply tractions at specific geometrical entities.

In our example, a constant stress in the vertical direction is applied to the
top of the domain acting as an overburden pressure. The top of the model
domain is located at a depth of z = −1000 m in a rock salt dome with a
density of %salt = 2040 kg m−3. This salt formation is covered by solid rock
with an average density of %rock = 2500 kg m−3. The interface between rock
salt and solid rock is located at z = −800 m, thus the overburden stress can
be found to be about σa = −23.62 MPa.

Similarly to the Dirichlet-boundary conditions in the BC-file, the Neumann-
conditions are assigned by a code-block initialised by the keyword
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#SOURCE_TERM. Within this code-block, the keywords $PCS_TYPE,
$PRIMARY_VARIABLES, and $GEO_TYPE can be used in the same way as de-
scribed in the previous section. For the distribution type, a new option CON-

STANT_NEUMANN distributes the boundary value evenly over the speficied geo-
metry in the sense of a traction distribution. The following listing shows the
assignment for the overburden stress.

Listing 4.3: Constant overburden loading at the top of the domain.

#SOURCE_TERM
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_Y1

$GEO_TYPE
POLYLINE TOP

$DIS_TYPE
CONSTANT_NEUMANN -2.362248e+01

$TIM_TYPE
CURVE 1

Note here that the specified value of σa = −23.62 MPa is constant over the
polyline TOP, but the temporal distribution is specified by a scaling function.
The use of such a scaling function is enabled by the keyword $TIM_TYPE.
All such functions are defined in the RFD-file (see below), and specific scaling
functions are referred by a successive number (order of appearance in the
RFD-file). Thus, CURVE 1 refers here to the first scaling function defined in
the RFD-file. The resulting Neumann-value assigned to the specified geometry
is simply the product of the value given by $DIST_TYPE and the value of the
scaling function at a certain time. In our example, a scaling function is used
as a ramp for all Neumann-type boundary conditions in order to apply their
values gradually over time during the first time steps. This measure is taken
in order to ensure a faster convergence of the numerical solver.

To achieve a hydrostatic stress state, a linear load following the lithostatic
pressure gradient is applied to the right boundary of the domain (Fig. 4.1).
This linear distribution is obtained by introducing the distribution type LIN-
EAR_NEUMANN, as shown in the following example, Listing 4.4:
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Listing 4.4: Linearly increasing lithostatic pressure at the right boundary
of the domain.

#SOURCE_TERM
$PCS_TYPE
DEFORMATION

$PRIMARY_VARIABLE
DISPLACEMENT_X1
$GEO_TYPE
POLYLINE RIGHT

$DIS_TYPE
LINEAR_NEUMANN 2
125 -2.362248e+01
123 -2.9506126e+01

$TIM_TYPE
CURVE 1

The number following the distribution-type option refers to the number
of supporting points of the desired boundary value distribution. From the
next line on, OpenGeoSys expects a list of points and corresponding values.
Those points are specified using the point-ID as given in the GLI-file, (first
column of the #POINTS list, see Listing 4.1). The number of rows of that
list must be equal to the number of supporting points as specified after the
LINEAR_NEUMAMNN-statement. It is possible to assign multiple sections with
different slopes of the distribution function by including more than two points
in this list.

In this example, we only need two points specifying the start and end
values of our lithostatic stress. Node number 125 refers to the top right,
while node number 123 refers to the bottom right corner of the domain. For
all nodes located on polyline RIGHT, a value is assigned that was interpolated
linearly between the specified start and end values.

To keep this example simple, the construction stage of the cavern is not
considered, and the initial pressure in the cavern corresponds to the max-
imum loading pressure pmax = 15 MPa. The definition of the cavern pressure
is applied to the polyline CAVERN, as shown in Listing 4.5. In contrast to
the polylines TOP or RIGHT, some parts of that polyline are not parallel to
any coordinate axis. Thus, the new subkeyword DISPLACEMENT_N is used,
which refers to a traction boundary condition that acts perpendicular to the
specified geometry (”pressure boundary condition”).
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Listing 4.5: Assigning the cavern pressure.

#SOURCE_TERM
$PCS_TYPE

DEFORMATION
$PRIMARY_VARIABLE
DISPLACEMENT_N
$GEO_TYPE
POLYLINE CAVERN
$DIS_TYPE
CONSTANT_NEUMANN -1.0

$TIM_TYPE
CURVE 2

In order to obtain more realistic results, the excavation process of the cav-
ern construction could be taken into account. Methods to consider this cav-
ern excavation for OpenGeoSys-simulations are described in Böttcher et al.
(2017); Görke et al. (2012).

Time discretisation

The definition of the temporal discretisation is specified in the TIM-file. A
keyword #TIME_STEPPING opens a new block containing all specifications de-
fining the time-stepping scheme of a process.

If multiple processes are coupled, an individual time-stepping scheme can
be defined for each process by the $PCS_TYPE-subkeyword. We use fixed time
steps in this example, where the time-step length is linked to the defined
mass flux in the cavern. In Fig. 4.2, two different time-stepping schemes are
plotted in conjunction with the mass flux of the working gas. Both schemes
have in common that whenever the mass flux changes, time-step sizes are
reduced. Scheme A is a simpler approach, while scheme B is more adapted
to the boundary conditions and thus consists of even more time steps defined
in the time stepping file.

The parameters of scheme A are given in Listing 4.6.
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Fig. 4.2: Time step lengths of scheme A (black, dashed) and scheme B (blue,
dash-dotted) versus loading mass flux (red, solid) in the cavern.

Listing 4.6: Temporal discretisation.

#TIME_STEPPING
$PCS_TYPE
DEFORMATION

$TIME_STEPS
5 0.2
3 1
3 2
10 0.2
6 0.5
10 0.2
6 0.5
10 0.2
6 0.5
15 1
5 2
10 5
$TIME_END
100

$TIME_START
0.0

#STOP

a

TASK: You can find both time step schemes in individual TIM-files in
the input file directory. Use both schemes and compare their effect on the
simulation results. Then, try to find better schemes. What other model
parameters need to be considered besides the time-dependent boundary
conditions when selecting a time-step size?
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4.3 Isothermal model set-up

In this part of the example, we consider only the effects of cavern pressure
drop and ignore the temperature variations due to expanding gases. When
temperature is constant, the cavern pressure is determined by gas mass only.
At atmospheric levels, the ideal gas law is sufficient to obtain the pressure of
a gas. However, since the pressures in cavern operations are one to two orders
of magnitude higher, this idealised concept cannot be applied. Therefore, we
use the equation of state for real gases proposed by Peng and Robinson

p =
RT

vm − b
− a

v2
m + 2bvm − b2

(4.3)

where vm is the molar volume of the gas, R is the universal gas constant, and
a and b are substance-specific parameters. For the definition of a and b, we
refer to the original publication (Peng and Robinson, 1976). Since the mass
flux is known in our example, molar volume as function of time can be found
by

vm (t) =
VcavMH2

m (t)
(4.4)

with cavern volume Vcav and molar mass of hydrogen MH2
. From (4.3) and

(4.4), the pressure evolution inside the cavern can be determined for the iso-
thermal case (see Fig. 4.3). This pressure function, written as a time series,
serves as the scaling function for our previously defined Neumann-Boundary
condition for the cavern pressure. In Listing 4.5, we referred to the second
curve in the RFD-file for this purpose. The concept of this scaling function
definition in the RFD-file is fairly simple: A new scaling function is initialised
by the #CURVE-keyword, followed by a table with two columns. The first of
these columns contains a time point, the second one contains the correspond-
ing value of the scaling function. Values between given points in time are
interpolated linearly. Listing 4.7 exemplarily illustrates the scaling function
for the cavern pressure.
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Listing 4.7: Example for a scaling function in the RFD-file.

; curve 2
#CURVES
0.00 0.0000000
1.00 15.0000000
9.90 15.0000000
10.00 14.8256211
...
15.00 8.1791913
15.10 8.2147679
15.20 8.2485267
...
20.00 8.9195730
20.10 9.0151044
20.20 9.1088953
...
30.00 16.0063734
30.10 15.9748615
30.20 15.9443362
...
99.80 15.0000000
99.90 15.0000000
100.0 15.0000000
10000 15.000000

Material properties

To describe rock-salt behaviour, the LUBBY2 material model described in
Section 2.5 by Eqs. (2.44)–(2.51). The same parameters as given in Table 3.2
are used, see Listing 4.8 as well as Listing 3.7.

Listing 4.8: Solid properties for the isothermal cavern simulation.

#SOLID_PROPERTIES
$DENSITY
1 2.04e-06

$CREEP_BURGERS
;G_K0 , m_K , eta_K0 , mv_K G_M0 , K_M0 , eta_M0 , \\

mvM m_GM m_KM T_ref B Q
6.2667 e4 -2.54e-1 1.66e5 -2.67e-1 9.5420E+003 2.7798E+004 4.03e7 \\
-3.27e-1 0.0 0.0 313 1.0 0.0

$GRAVITY_RAMP
1 9.81

In contrast to the laboratory test examples from Section 3, the size of the
cavern model is so large that the gravity field has a significant influence on
the stress state throughout the domain. In order to apply this gravity load
gradually over the first time steps, the keyword $GRAVITY_RAMP is used. The
succeeding specifications define the scaling function in the RFD-File (1), as
well as the magnitude of gravitational acceleration (9.81 m s−2).
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Fig. 4.3: Cavern pressures when temperature (black, dash-dotted) is either
ignored (blue, dashed) or considered (red, solid).

4.4 Non-isothermal model set-up

For the non-isothermal simulation, a heat transport process needs to be added
to the simulation. Refer to Listing 3.1 in Section 3.1 on page 24 regarding
the necessary set-up.

Initial conditions

The initial temperature was derived from the geothermal gradient. In the
considered depth of z = −1100 m, the temperature is assumed to be T =
313 K. The thermal gradient within the model domain is ignored, thus the
initial temperature is evenly distributed over the entire domain for the sake
of simplicity.

Listing 4.9: Assigning the initial temperature in the domain.

#INITIAL_CONDITION
$PCS_TYPE
HEAT_TRANSPORT

$PRIMARY_VARIABLE
TEMPERATURE1

$GEO_TYPE
DOMAIN

$DIS_TYPE
CONSTANT 313
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Boundary conditions

For the non-isothermal example, the boundary condition specification is ex-
tended by the Dirichlet boundary condition for the heat transport process.
Since the gas temperature is changing, it is specified by a scaling function
CURVE 3, defined in the RFD-file. In this case, the scaling function consists of
the actual temperature values, which are multiplied by the value defined in
the BC-file, (see Listing 4.10). The temperature time series was obtained using
a simplified analytical method proposed by Xia et al. (2015), which assumes
that the gas density at a given time step is constant and that heat con-
duction process in the rock salt occurs very fast. The resulting temperature
curve is plotted over time in Fig. 4.3. One can notice that the temperat-
ure drops from 313 K to 288 K during discharge. During the idling period,
the temperature recovers almost to its initial value due to the heat backflow
from the rock salt. When the cavern is recharged, the temperature rises due
to gas compression to almost 334 K. After the recharge stage is completed,
the temperature equalises to initial conditions within several days. Using this
temperature curve, the corresponding gas pressure was calculated using (4.3).
In the same way as in the isothermal case, it is defined as scaling function
CURVE 2 in the RFD-file.

Listing 4.10: Temperature boundary condition for the non-isothermal cav-
ern example.

#BOUNDARY_CONDITION
$PCS_TYPE
HEAT_TRANSPORT

$PRIMARY_VARIABLE
TEMPERATURE1

$GEO_TYPE
POLYLINE CAVERN

$DIS_TYPE
CONSTANT 1

$TIM_TYPE
CURVE 3

Material properties

The MSP-file changes compared to Listing 4.8 by adding parameters for the
temperature dependence as well as the heat transport process; compare also
Listing 3.7.



61

Listing 4.11: Temperature-dependent material parameters.

$CREEP_BURGERS
;G_K0 , m_K , eta_K0 , mv_K G_M0 , K_M0 , eta_M0 , \\

mvM m_GM m_KM T_ref B Q
6.2667 e4 -2.54e-1 1.66e5 -2.67e-1 9.5420E+003 2.7798E+004 4.0333 e7
\\
-3.27e-1 -21.1405 -25.265 313 1.0 16000

$THERMAL
EXPANSION 2.8e-05
CAPACITY
1 920

CONDUCTIVITY
1 648

$GRAVITY_RAMP
1 9.81

For other settings regarding the coupled process, such as solvers, time
stepping etc., please refer to Section 3.1.
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Fig. 4.4: Radial displacement as well as radial components of stress and strain
tensors versus time, plotted at the centre of the cavern wall (point D).

4.5 Comparison of results

To visualise the simulation results, we consider the entire domain, a profile
at the level of the cavern centre (polyline SECTION), and a single point at the
cavern wall at the same elevation (point D), cf. Fig. 4.1.

The radial displacement of the cavern wall is shown in Fig. 4.4a. At the very
beginning of the simulation, this displacement grows rapidly and is directed
towards the cavern centre. Within the first day, this displacement results
primarily from elastic deformations. For the remaining nine days prior to
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Fig. 4.5: Third principal stress over time at point D.

the pressure drop, the deformation rate decreases but does not yet reach the
steady-state (secondary) creep phase.

This behaviour is caused by the simplified initial conditions of the ex-
amples. This issue can be circumvented in two ways: either by the assignment
of initial stress and internal variable fields using initial conditions, or by a
shift of the beginning of the simulation towards earlier times such that the
entire history of the cavern (including the solution mining or excavation pro-
cess) or a relevant part of it are included in the simulation (Böttcher et al.,
2017). Finding a suitable initial stress and material state may require simu-
lating part of the history, which is why the latter option is often preferred.
The former option, however, should be applied when obtaining these res-
ults by history simulations is very time consuming and a stored initial state
renders a re-calculation unnecessary. This requires consistent data fields of
stresses, strains, necessary internal variables and temperatures over the entire
simulation domain.

With the beginning discharging stage, the radial displacement towards the
centre line is growing due to the pressure drop in the cavern. The resulting
displacements are similar in both isothermal and non-isothermal examples,
but the displacement amplitude between discharged and recharged stages is
larger in case of the isothermal simulation, although the pressure amplitude
of the boundary condition is slightly smaller when temperature variations are
ignored (compare Fig. 4.3).

The reason for this behaviour is the thermal contraction or expansion of
the material in the non-isothermal case. When working gas is discharged,
temperature drops and the rock salt contracts. Considering the radial strain,
Fig. 4.4b shows the effect of material contraction more clearly. From t =
10 d, the radial strain rate is negative in the non-isothermal case due to
contraction. Similarly, during gas injection, the temperature rise leads to
thermal expansion in the heated region, thereby increasing the radial strain.
Taken together, both mechanisms explain the apparent “phase-shift” between
the strain curves in the isothermal and non-isothermal cases in Fig. 4.4b.
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(a) Isothermal, t = 15 d (b) Non-isothermal, t = 15 d

(c) Isothermal, t = 30 d (d) Non-isothermal, t = 30 d

Fig. 4.6: Third principal stress around the cavern for the isothermal case (a,
c) and the non-isothermal case (b, d).

Contraction and expansion furthermore influence the stress fields; in
Fig. 4.5, the third principal stress amplitude is shown to grow when con-
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sidering thermal effects; this effect of more higher and lower stress peaks is
also visible in Fig. 4.6, which compares the distribution of the third principal
stress in the vicinity of the cavern at discharged and recharged stages for
both scenarios. The direct influence of temperature can be observed when
comparing Fig. 4.7 to Fig. 4.8. When the principal stresses are plotted along
the cross-section of the domain at the cavern centre (polyline SECTION, see
Fig. 4.1), one can observe that the effect is restricted to the vicinity of the
cavern wall (up to about r = 5 m); with increasing distance from the wall,
differences between isothermal and non-isothermal examples are decreasing
(Fig. 4.7).
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Fig. 4.7: The profiles of principal stresses in the vicinity of the cavern wall
when the cavern is fully discharged (t = 15 d, a) and when its fully recharged
(t = 30 d, b).

Likewise, Fig. 4.8 shows comparable trends for the temperature profile.
Large temperature amplitudes can be found only adjacent to the cavern wall.
From r = 6.25 m, the temperature amplitudes drop below ∆T = 1 K.

For a first evaluation of structural safety, one can apply a Mohr-Coulomb
failure criterion. Structural failure will occur when shear stresses exceed a
predefined failure envelope. The shear strength of the material grows linearly
with mean stress σm = 1/3 trσ and is defined as

τm = c− σm tanφ (4.5)

where c and φ are the cohesion and the angle of inner friction, respectively.
For the defined material model, c and φ are constants given by c = 8.218 and
φ = 44.654◦. The maximal shear stress at a point can be found by

τmax =
1

2
(σI − σIII) . (4.6)

The failure ratio
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Fig. 4.8: Temperature profile at different points in time in the vicinity of the
cavern wall.

FR =
τmax

τm
(4.7)

is an inverse safety factor and indicates the material condition in terms of
the distance to structural failure. Small values of FR represent safe conditions
below the failure envelope. At FR = 1, structural failure occurs. In Fig. 4.9,
the failure ratio is plotted over the hydrostatic pressure p = −σm for point
D at the centre of the cavern wall. In both isothermal and non-isothermal
examples, the failure ratio is similar, remaining safely below FR = 0.4, so
structural failure does not occur according to this criterion.

A more detailed study of this and other relevant safety criteria accom-
panied with cyclic cavern loading patterns can be found in (Böttcher et al.,
2017).
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Fig. 4.9: Failure ratio as quotient of shear strength τm and maximum shear
stress τmax for both isothermal and non-isothermal examples, plotted at the
entre of the cavern wall.





Chapter 5

Closing remarks

This book gave an introduction into the thermo-mechanical modelling of rock
salt in general, and of gas storage in salt caverns in particular. There are many
topics that were not discussed here but that are very relevant: fracturing, fluid
percolation, the influence of realistic three-dimensional geometries, safe cav-
ern abandonment, etc. For now, we refer the reader to the wealth of literature
cited here and referenced in those citations.

OpenGeoSys is constantly growing with new material models, processes,
and features becoming available. We would like to encourage a regular visit to
www.opengeosys.org. There, you can also find examples on how to include
a coupling to fluid flow in the simulations, which we did not address here.

Last but not least, any active participation is greatly appreciated. If you
would like to extend the software, implement other, better models, don’t
hesitate to download the source code, extend it, and send us a pull-request
via GitHub. How to do that? Find out at—you guessed it—https://docs.

opengeosys.org/docs.
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