A Beginner’s Guide to Mathematica

Preliminary Edition

Martha L. Abell, James P. Braselton, and
Lorraine M. Braselton
©2002



Mail To:

Jim Braselton

Department of Mathematics and Computer Science
P.O. Box 8093

Georgia Southern University
Statesboro, GA 30460-8093

Name:
Street:
City:
State:
Zip:
E-Mail:
Telephone:
ltem Licenses without Licenses with
media media (CD)
Calculus: A Direct @ $5.00 @ $6.50= $
Approach
A Beginner's Guide to @ $6.00 @ $7.50= $
Mathematica
A Beginner's Guide to @ $6.00 @ $7.50= %
Maple
Total: =$
Please make check payable to Jim Braselton
Number Password
CDA: 20426102211246
ABG Math: 13151621072124
ABG Maple: 15112541081612




Contents

Preface 7
AboutA BeghnersGuide . . . . . . ... o 7
CostofABeghnersGuide. . . . . . . . . . . . ... ... 7
1 Getting Started with Mathematica 9
1.1 Running Mathematica. . . . . . . ... ... ... ... ...... 9
Five Basic Rules of MathematicaSyntax . . . . . ... ... ... 13

1.2 LoadngPackages. . . . . . . . . . . 14

1.3 Getting Help from Mathematica . . . . .. ... ... ....... 15

1.4 Numerical Calculations and Built-In Functions . . . . . . ... .. 20
1.4.1 Numerical Calculations. . . . .. ... ........... 20
1.4.2 Built-inConstants . . . . . ... ... ... 22
143 Built-InFunctions .. . ... ... .. ... ... ... . 23

15 TheBascs. . . . . . . . . . i 26
1.5.1 Elementary Operations on Functions of a Single Variable . . . 26
1.5.2 Elementary Parametric and PolarPlots. . . . . .. .. .. 39
1.5.3 Three-Dimensional and Contour Plots; Graphing Equations . 43

1.6 Exercises . . . . . . . . . 49

2 Cadculus 51
21 LIMItS . . .. 51

2.1.1 ComputingLimits .. .. ... .. ... ........... 52
212 One-SidedLimits . . . . ... ... ... .. ........ 55



2.2

2.3

2.4

2.5

2.6

2.7

CONTENTS

Differential Calculus. . . . . . .. ... ... ... ... ..., 57
2.2.1 Definition of the Derivative . . . . . . ... ... ...... 57
222 TangentLines. . . ... ... .. ... ... .. ... 63
2.2.3 The First Derivative Test and Second Derivative Test. . . 68
2.2.4 Antidifferentiation .. . . ... .. ... ... oL 72
Integrd Calculus . . . . . .. ... 75
231 Area . ... 75
2.3.2 TheDefiniteIntegral . . . ... ... ... ......... 80
2.3.3 Approximating Definite Integrals ... . . . ... ... ... 84
234 Area . ... 87
235 Arclength. ... ... ... ... . ... . ... ... 93
2.3.6 SolidsofRevolution. . . . ... ... ... ......... 97
SEIES . . . 103
2.4.1 Introduction to Sequences and Series . . . ... ... .. 103
242 ConvergenceTests... . . .. .. ... ... .. 108
243 AlternatingSeries. .. . . .. ... 111
244 PowerSeries. . . . . ... 112
2.4.5 Taylorand MaclaurinSeries. . . . .. ... ........ 115
246 TaylorsTheorem . . . . . . . ... ... ... .. ..... 120
247 OtherSeries. . . . . . . . . 123
Multi-Variable Calculus . . . . . . .. . ... ... 124
2.5.1 Limits of Functions of Two Variables . . . . ... ... .. 124
2.5.2 Partial and Directional Derivatives. .. . . . . ... ... .. 128
253 lteratedIntegrals ... ... ... .. ... ... ...... 143
VectorCalculus. . . . . ... ... 153
2.6.1 Basic OperationsonVectors. . . . . . .. ... ...... 153
2.6.2 \Vector-ValuedFunctions . . . . ... ... ... ...... 159
26.3 Linelntegrals . . .. ... .. .. .. ... .. ... ... 166
2.6.4 Surfacelntegrals .... . .. .. ... ... L. 170

Exercises . . . . . . .. e 174



CONTENTS 5

3 Linear Algebra 179
3.1 LinearSystemsof Equations . . . . . .. ... ... ... ... . 179
3.2 Matrix Operations. . . . . . . . . . . 187
3.3 Determinants. . . . . . ... 189

3.31 Inverses . . . . ... 190

3.3.2 Linear Systems of Equations. . . . . . ... ... ... .. 193
3.4 Eigervaluesard Eigervectors. . . . . . . . ... 197
35 EXeICiSeS . . . . . . e 200

4 Differential Equations 203

4.1 First-Order Differential Equaions . . . . . ... ... ... ..... 203
4.1.1 SeparableEquations. . .. ... ... .. ......... 203
4.1.2 LinearEquations . .. ... ... ... ... .. ... . 207
4.1.3 Nonlinear Equations . . . . ... ... ........... 212
4.1.4 NumericalMethods. . . . . ... ... ... ........ 216

4.2 Second-Order Linear Equations . . . . . . ... ... ....... 221
421 BasicTheory. . . . .. .. ... . .. ... 221
4.2.2 Constant Coefficients. . . . ... ... ... ... ..... 222
4.2.3 Undetermined Coefficients. . . . . . ... ... ... ... 225
4.2.4 Variation of Parameters. . . . . . .. ... ... L. 229

4.3 Higha-Orde Linea Equations. . . . . . . . ... .. .. ...... 231
431 BasicTheory. . .. ... ... .. . .. . ... .. ..... 231
4.3.2 Constant Coefficients. . . . . ... ... ... ... .... 232
4.3.3 Undetermined Coefficients. . . . . . ... .. ... .... 236
4.3.4 Nonlinear Higher-Order Equations .. . . . . .. ... ... 246

4.4 SystemsofEquations. . . . .. .. ... ... oo 246
441 LinearSystems . ... . . ... ... 246
4.4.2 Nonhomogeneous Linear Systems ... . . .. ... .. .. 257
4.4.3 NonlinearSystems ... . . . . ... ... ... ... ..., 259

4.5

EXercises . . . . . . .. e 270



CONTENTS



Preface

About A Beginnea’s Guide

A Begnner's Guideis written for those students in education, mathematics, science,
and engineering degree programs that require them to take calculus, differential equa-
tions, and linear algebra and is the ideal resource for those students who are required
or desire to use Mathematica in the introductory calculus, differential equations, and
linear algebra courses. ConsequerlBeghner’s Guidds especially appropriate and
written for students enrolled in these courses.

1. The text takes advantage of only those functions frequently used by beginning
users and least likely to be adjusted in subsequent editions of the software. Occa-
sionally, some code is presented to perform more sophisticated routines without
much expanation. You should adjust these functions for your own purposes.

2. Each chapter concludes with several exercises. The exercises are designed to
help you become more familiar with the mathematics as well as the computer
algebra system.

Many subject-specific Mathematica texts are available for the more specialized areas of
studies that students encounter in upper-division undergraduate and graduate courses.

A Beghner’s Guideis especially useful for students enrolled at institutions that use
both Mathematicaand Maple Edtions of A Beghner's Guidefor both Maple and
Mathematicaare available. The examples in each edition are nearly identical, while
the software specific edition discusses the particular computer algebra system.

Cost of A Beginna’s Guide

If you are a student enrolled in a mathematics course at Georgia Southern University,
Statesboro, Georgia, there is no cost to Adkeghner’'s Guide Otherwise, if you are
located within the United States, the cost of usinBeghner’'s Guideis $6.00. Please
include your e-mail address with your $6.00 so we can thank you when we receive it.
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8 CONTENTS

If you are not located within the continental United States, the cost of UsiBggin-

ner's Guideis a colorful postcard mailed with a pretty stamp from your area of the
world. Please include your e-mail address on your postcard so we can thank you when
we receive it. Please send your $6.00, if located within the United States, or postcard,
if not located within the United States, to

Jim Braselton

Department of Mathematics

PO. Box 8093

Georgia Southern University
Statesboro, Georgia 30460-8093

Funds received are used for scholarships. Postcards are displayed around our offices.
In advance, we thank you for participating in the honor system. Contact us directly to
make arrangements to distribudeBeghnner’'s Guideto groups.

Remember thaA Begnner's Guideis a work in progress. Please mail comments,
errors, and suggestions for improvement to the above address or by e-aifrto
bras@svns2. cc. gasou. edu. Although this is @reliminary Editionof A Be-
ginner’'s Guide seveal individuals have already offered feedback on various drafts.
Thank you all for the time you have spent examink@egnner’s Guide

Martha Abell

James Braselton
Lorraine Braselton
Statesboro, Georgia

February, 2002



Chapter 1

Getting Started with
Mathematica

We begin by introducing the essentials of Mathematica. The examples presented are
taken from algebra, trigonometry, and calculus topics that you are familiar with to assist
you in becoming acquainted with the Mathematica computer algebra system.

We assume that Mathematica has been correctly installed on the computer you are
using. If you need to install Mathematica on your computer, please refer to the docu-
mentation that came with the Mathematica software package.

1.1 Running Mathematica

Let’s begin our Mathematica session by starting Mathematica. Start Mathematica on
your computer system. If you are not already in Mathematica or cannot start it, look
for a folder or directory titled "Mathematica”. Once you have located the Mathematica
folder (or directory) open it. The directory typically looks like that shown in Figure 1.1.
Using Windows or Macintosh mouse or keyboard commands, activate the Mathematica
program by clicking or double-clicking appropriately.

O [ Mathematica BE
& items, 25.07 GE available

Adddns Configuration Docurnzntation Executables Installer Log File

7
Fefiematics Registration SystemFiles

Figure 1.1: The Mathematica folder on a typical computer.
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With some operating systenENTER eval-
uates commands aRETURN yields a new

line

10 CHAPTER 1. GETTING STARTED WITH MATHEMATICA

'
=

Figure 1.2: A two-dimensional plot

Remark. ThroughoutA Begnner's Guide we assume that you are working in Mathe-
matica. If you are not working in Mathematica, locate the Mathematica folder or di-
rectory as described previously and start the Mathematica program. Ask for assistance
from your instructor or lab assistants, if necessary, to start the Mathematica program.

Once Mathematica has been started, computations can be carried out immediately.
Mathematica commands are typed and the black horizontal line is replaced by the
command, which is then evaluated by pressitgiTER. Note hat pressingENTER

or RETURN evaluates commands and pressBigIFT-RETURN vyields a new line.
Output is displayed below input. We illustrate some of the typical steps involved in
working with Mathematica in the calculations that follow. In each case, we type the
command and pre&NTER. Mathematica evaluates the command, displays the result,
and inserts a new horizontal line after the result. For example, entering

In[1] : = N[, 50]
Qut [ 1] = 3.141592653589793238462643383279502884197169399375106
2.09749446

returns a 50-digit approximation af

The next calculation can then be typed and entered in the same manner as the first. For
example, entering

In[2]:= Solve[x"3-2x +1 ==0]

aut[2]= {{x -1}, {x»% (-1-+/5)}, {x»% (-1++/5)}}

solves the equatior® — 2x + 1 = 0 for x. Subsequent calculations are entered in the
same way. For example, entering

In[3]:= Plot [{Sin[x], 2Cos[2X]}, {X, O, 3x},
Pl ot Styl e- > {GayLevel [0], GrayLevel [0.5]}]

graphs the functiong = sinx andy = 2 cos2x and on the interval0, 37] shown in
Figure 1.2. Similarly, entering
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Figure 1.3: A three-dimensional plot

Iiﬂ Edit Cell Format Input Kernel find Window Help

New 8N

Open... *®0

Close wW

Save S

Save As... 43S

Save As special... 4

Open Special...

Import...
AlgebraicManipulation

pasiccalculations

Notebooks 4 Basiclnput
BasicTypesetting
CompleteCharacters
InternationalCharacters

. N NotebookLauncher
Printing Settings »
Quit 8Q

Figure 1.4: The file menu

In[4]:= Plot3D[Sin[x +Cos[yll, {X, O, 4x}, {y, O, 4nx},
Pl ot Poi nt s- > {30, 30}]

graphs the functioz = sin(x + cosy)) for 0 < x < 47 and O< y < 4x in Figure 1.3.

You can also enter input using tiRalettes that are accessed from thde menu. (See
Figure 1.4.) Two palettes are shown in Figure 1.5.

You can change how your input and output appear in your Mathematica notebook by
going toCell under the menu and selecti@pnvert To, Display As, Default Input
FormatType, Default Output FormatType, or Default Inline FormatType as shown

in Figure 1.6. Portions dhputForm or StandardForm can be selected, copied, and
pasted elsewhere in your Mathematica notebook. Additional adjustments can be made
from the Format menu. (See Figure 1.7.) This book includes real input and output from
Mathematica. Appearances of input and output may vary depending on the version of
Mathematica used, the fonts used to display input and output, the quality of the monitor,
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Expand|[m] - a
Factor[m] % ﬁn_
Together[m] _ v, n
Apart(m] fldll:l ,m
Cancel [H]
Simpli fy [m] J’"-.ﬂn By am
FullZimplify[m] a
TrigExpand[m] - =
TrigFactor[m] ; " .D: "
TrigReduce [m]
ExpToTrig[m] (gg] | o]
TrigToExp[m] e | o|e| ®
FPowerExpand|[m] w | = s | =
ComplexExpand [ m] = |#£|2|z|=
= v [u[n
o |G|y d| e
Elxnle|z|a
gv| e
oz d]e|x
flau|Tlale
AE|E(E D
m(m IR
Figure 1.5: Two palettes that can be used to enter input

(IR Format  Input  Kernel

Find Window Help Help

ConvertTo
Display As
Defaul{:input FormatType

Inputform
rdForm
TraditionalForm

Default Qutput FormatType 3
Default Inline FormatType »
Cell Properties »
Cell Grouping »
Divide Cell iz 1]
Merge Cells {raEm

Animate Selected Graphics Y
Play Sound

Rerender Graphics

Rerender and Save Graphics

Make Standard Size
Align Selected Graphics...

Cell Size Statistics...

Figur

e 1.6: Available input and output display options
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lm’ Input_Kernel Find W
style »
Screen Style Environment  p
Printing Style Environment p

Show Expression {r3#E
Option Inspector... 30
Remove Options...

Style Sheet »
Edit Style Sheet...

Font

Face

Size

Text Color
Background Color

Text Alignment
Text Justification
Word Wrapping
Cell Dingbat
Horizontal Lines

rYyvvy  vvvww

Show Ruler

Show ToolBar

Show Page Breaks
Magnification »

Figure 1.7: Additional formatting options

and the resolution and type of printer used to print the Mathematica worksheet: the
results displayed on your computer may not be physically identical to those shown
here.

Mathematica sessions are terminated by by sele®inigy from theFile menu, or by
using a keyboard shortcut as with other applications. They can be saved by referring to
Savefrom theFile menu.

Remark.Input and text regions in notebook interfaces can be edited. Editing input
can create a notebook in which the mathematical output does not make sense in the
sequence it appears. It is also possible to simply go into a notebook and alter input
without doing any recalculation. This also creates misleading notebooks. Hence, com-
mon sense and caution should be used when editing the input regions of notebooks.
Recalculating all commands in the notebook will clarify any confusion.

In order for the Mathematica user to take full advantage of the capabilities of this soft-
ware, an understanding of its syntax is imperative. The goAlBéghner's Guides to
introduce the reader to the Mathematica commands and sequences of commands most
frequently used by beginning users in calculus, linear algebra, and differential equa-
tions courses. Although all of the rules of Mathematica syntax are far too numerous to
list here, knowledge of the following five rules equips the beginner with the necessary
tools to start using the Mathematica program with little trouble.

Five Basic Rules of Mathematica Syntax

1. The arguments of functions are given in brackets [...].
2. Every word of a built-in Mathematica function begins with a capital letter.

3. Multiplication is represented by:aor space between characters . E/&ex*y
or 2x yto evaluate 2y not2xy.
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| Help Browser ==
((GoTo ][5.0.1 | Close

{ Built-in Functions @ Add-ons ) The Mathematica Book

(O Getting Started/Demos () Other Information ) Master Index

‘Workingwithédd-ors | Introduction B[ _ | TheStandard Add-on Packane

Algebra Packages
Standard Packages M| |Algebra Calculus Packages
MathLink Library » Calculus
Programming in Mthersath || DiscrateMsth
Extra Utilities » Geometry
Graphics

il

Discrete Mathernatics Packagy
Graphics and Genmetr, Pach
Lineat Aloebira Packapes
IMiscellaneous Packages

vrvvw
D]
D]

m The Standard Add-on Packages

The Mathematica system containg a large nutaber of built-in functions. Most versions of Mathemanica
also include a collection of standard add-on packages that define many additional functions in areas such
as algpbra, caloulus, graphics, discrets and numerical mathernatics, number theory, and statistics. This book
describes those functions

Beyond the standard add-on packages, there is now an rmmense number of specialized add-ons available
for Mathematica. 3ore of these add-ons are distributed by Wolfrar Research,; see
http://www.wolfram. com/addons or contact Wolfrar Research for a current listing. harny
add-ons are available through the MathSowrce electronic library at

http: //www.wol fram. com/mathsource

Algebra Caleulus
DiscreteMath Geornetny
Graphics LingarAlzebra
Mizcellansous HNuraberTheory
Humericalhath 8 imlistics
Urtilities

Directories of standsrd add-on packages [

The standard add-on parkages are divided into several directories, each cormesponding o a different fopic. 15
[100° - [ii] [«]»

Figure 1.8: Standard Mathematica packages

4. Powers are denoted by a ~. Enfe8*x"3) " (1/3) to evaluate(8x3)V3 =
8Y3(x3)V3 = 2x instead oBx" 1/ 3, which returns8x/ 3.

5. Mathematica follows the order of operatianactly. Thus, entering 1+x) ~ 1/ x
returns@ while ( 1+x) " ( 1/ x) returns(1 + x)Vx.
Remark.If you get no response or an incorrect response, you may have entered
or executed the command incorrectly. In some cases, the amount of memory
allocated to Mathematica can cause a crash; like people, Mathematica is not
perfect and some errors can occur.

1.2 Loading Packages

Mathematica’s modularity, which gives Mathematica a great deal of flexibility, helps
minimize Mathematica’s memory requirements. Nevertheless, although Mathematica
contains many built-in functions that are loaded immediately when called, some other
functions are contained in packages that must be loaded separately.

We access Mathematica’s help facility from the menu to view a list of the available
package groups shown in Figure 1.8.

A particularly useful group of packages is contained in@raphics directory. (See
Figure 1.9.)

Weillustrate the use of thEi | | edPl ot package, which is contained in t@gaphics
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| Help Browser ==
((GoTo |[5.05 | CBack | [close |
(3 Built-in Functions @ Add-ons 3 The Mathematica Book
(3 Getting Started/Demos (O Other Information O Master Index
"Workingwithédd-ors Introduction | _ | TheStandard éod-on Packags
= |Algebra Packages 5|

Standard Packages  B| |Algebra M| |Calculus Packages
MathLink Library » Calculus » Dizcrete Mathermatics Packay
Programming in Mathersath || DiscreteMath b || Braphics srdGenmetry Packel—| |
Extra Wilities »| | Geometry B| 2| Lineardlgebra Packages [

Graphics | = [ Misoellanenus Packages -

m Graphics and Geometry Packages

The Graphics packages offer log, polar, emor, scatter, vector field, surface of revolution,
three-dirensional contour, and implicit plots. Funetions inelude maps for wisualizing coraplex functions of
complex nurbers, and bar and pie chars for visualizing data. Mathematica's built-in graphics am enhanced
by arrow, legend, and eolor directives, and by two-dimensional spline primitives and three-dimensional
shape primitives. There are functions for the stellation and geodesation of regular polvhedra animation of a
sequence of graphics, and support for the 3-Script file format. The Geametry packages provide functions
giving the characteristics of regular polygons and polyhedra and rofation in two and three dimensions.

= This rauses each Graphics package 10 be loaded a8 functions from the package are
needed.

In[1]:=<<Graphics" ]

mHere is a pie chart of the distribntion of cerfain Mathemanca users by field.

In[2]=({styles = Hap[Hue. Range[0. 10]/10 .7]:

Showlegend[

PieChart[ {29. 20. 16. 16. 6. 4. 3. Z. 1. 1. 4}.
PieStyle ->» styles. PieLabels -> Join[
{"Engineering”. "Physical Sciences”.
"Computer Sciences”, "Hathematical Sciences”}

[100°e ] [«]»

D]

Figure 1.9: A description of the standd&dtaphics andGeometry packages

directory. (See Figure 1.10.)

Wefirst load the functions contained in tlBaphics directory and then udéi | | ed-
Pl ot to shade the region between the graphg efsinx andy = cosx on the interval
[0, 27] shown in Figure 1.11.

In[5]:= << Graphics*

In[6]:

FilledPlot [{Sin[x], Cos[x]}, {X, 0, 2x},
Aspect Rati o- > Aut omati c]

1.3 Getting Help from Mathematica

Becoming competent with Mathematica can take a serious investment of time. Hope-
fully, messages that result from syntax errors are viewed lightheartedly. Ideally, instead
of becoming frustrated, beginning Mathematica users will find it challenging and fun to
locate the source of errors. Frequently, Mathematica’s error messages indicate where
the error(s) has (have) occurred. In this process, it is natural that one will become more
proficient with Mathematica.

As we have seen previously, you can access Mathematica'’s help facility directly from
the menu (see Figures 1.12 and 1.13).

From the main help window, you can search a variety of topics, as illustrated in Figures
1.14 and 1.15.
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| Help Browser ==
[ Go To ]|Graph\cs‘F\HenD\nt‘ | [ Back ] [ Close ]
(2 Built-in Functions @ Add-ons {2 The Mathematica Book
() Getting Started/Demos () Other Information (3 Master Index
Workingwithadd-ons  b| |Introduction M Z|Animation =
=|&rgColors —

Standard Packages » Algebra M |arrow
MathLink Library | |Calculus M| |Colors
Programring in Metherrath| | DiscreteMath H—{ComplexMap — (-
Extra Utilities #| = Geometry M= [ContourPlot3D el

Graphics M= |FilledPlot hl

m Graphics“FilledPlot™

FilledPlot[f, plot fusing the variable x with the space between the

{x, amin, onax)] cwve and the horizontal axis filled
FilledPlot[{f, ; F; plotthe f,, filling the space between each successive
¢ oo be (%, Xmin, xmax)] pair of curves with a different color

Genersting filled plots
= This loacs the package

m1]:=<< Graphics FilledPlot" ]
m Here is a basic fill between the curve and the axds.

mz]:-FilledPlot[Sin[x]. {x. 0. 2 Pi}] ]

1

]

1007w [ii] [«]»

Figure 1.10: A description of thEilledPlot package

Figure 1.11yy = sinx andy = cosx on the interval0, 2]

NN Help

Registration...
Find in Help... ir#F

Why the Beep?.. {#H

Rebuild Help Index

Figure 1.12: Accessing Mathematica help from the menu
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O Help Browser 2 =|
[GoTo ]H | [close |
® Built-in Functions (3 Add-ons (3 The Mathematica Book
() Getting Started/Demos ) Other Information O Master Index
Murrerical Computation
Algebraic Computation [
Methermetical Functions B
Lists and Matrices  p
Graphics and Sound b | - [
Prograrmming 51
[ J100°,  Jii] [«]»
Figure 1.13: The main help window
O Help Browser 2 =|
[(coTo ][Pawer | (Back ] _close |
@ Built-in Functions ) Add-ons {3 The Mathematica Book
(3 Getting Started/Demos (r Other Information » Master Index

Basic Arithmetic » Log
Algebraic Computation » Matheretical Constarts — p
Matherretical Functions b Numerical Functions b Power ()
Lists and Matrices B Random Numbers M [Sart
3
]

Nurerical Computation b

Graphics and Sound

Elementary Functions »|
Factorial Related »

(D
@
)

D

Programming

Power

mx~y gives x 1o the power y.

= Matheraatical fanction (see Section A.3.10)
 Exmct mtional ruuraber Tesults are given when possible for tats of the form n™™
wFor complex murabers x and y, Powes gives the principal value of ¢ &
® (@ by ~e iz antomatically cotrerted o @ ¢ Bre only if © iz an integer,
®(a~B) e is automatically converted 1o @~ (B ¢) only if ¢ is an infeger,
et the Mathematica book: Section 1.1.1

m3ee also. Sgrt, Exp, PowerExpand PowerMod, Log.

> Further Examples

]

[100° w Jii] [«]»

Figure 1.14: Help regardingower

17
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| Help Browser EIB
[ Go To ”Using the Help Browser | Close

(3 Built-in Functions (3 Add-ons ) The Mathematica Book

@® Getting Started/Demos (3 Other Information ) Master Index

System Information

Usingthe Help Browser (1
Registration

Tour of Mathematica k{2
Farmula Galler: =

m Using the Help Browser

Looking Things Up
# Type a word in the text field to the right of the Go To bufton. For instance, if the Built-in Functions
1adio button is selected, type the name of a iathematica object

» Click Go To fo see a notebook about the itemn in the text field. The notebook appears at the bottom of
the help browser.

# Click the Back button to see the last notebook that was displayed.

Browsing Different Documents

# Click one of the racio buttons near the top of the browser to show a new set of categories in the left
columm.

Unless the Master Index is selected, the Go To button links only fo ifems uncer the selected radio
Dbutton,

The Master Index lets you search for any topic in all the racio button categories.

The Feur Columns of Items

Inany of the four colwmms, cLick an item.

Clicking an item may lead to subitems that will appear in the next colurun to the right

Clicking an item with no subltems displays a notebook at the bottom of the help browser.

A3 you click the items n the colwmns, the text field at the top shows what you would need fo type fo
ook up that item.

Other Things You Can Do

A ]

# FEvaluate input in the help browser
1 J100% ~ [ul] [«]»

Figure 1.15: The Mathematica Help browser
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You can obtain inline help using eith@ror ??. Generally,?Command returns basic
information regarding the syntax @onmand while ??Comrand returns the basic
syntax as well as a list of associated options. For example, entering

In[7]:= ?Pl ot

"Pl ot [f, x, xm n, xmax]gener at esapl ot of
fasaf uncti onof xf r onxm nt oxmax. Pl ot |
f1,f2, ..., x, xm n, xmax]pl ot ssever al
functionsfi."

returns the basic syntax for tf ot function. Similarly, enterin@Pl ot 3D returns
the basic syntax for thiel ot 3D function while entering?Pl ot 3D returns the basic
syntax and options for thél ot 3D function.

2P1lot3D Nl

Plot3D (£, {x, wmin, wmax}, {y, ymin, ymax}] gemerates s thres-
dimensional plot of £ as = function of x and y. Flot3D|
(£ s}, {x, wmin, smax}, {y, ymin, ymax}] generates
a thres-dimensional plot in which the height of the
surface is specified by £, and the shading is specified by =.

27 Plot3D 9]

PlotaD (£, {x, smin, xmax}, {v, ymin, ymax}] generates a three-
dimensional plot of £ as & function of x and y. Plot3D|
{£ =}, {x, =min, smax}, {v, ymin, ymax}] gensrates
a three-dimensional plot in vhich the height of the
surface is specified by £, and the shading is specified by s=.

Attributes [Flot3D] = {Holdall, Frotected)} 3

Options [Flot3D] =
{rmbientLight -+ GrayLewel[0], AspectRatio —» Butomatic,
Bxes -= True, AxesEdge -» Butomatic, AxesLabel -» None,
AxesStyle -> Butomatic, Background -- Automakic,
Boxed -» True, EowRatios -+ (1, 1, 0.4},
BoxStyle -» Automatic, ClipFill -» Butomatic,
ColorFunction -» Butomatic, Colorfutput -» Butematic,
Compiled -» True, DefaultColor —» Bubomabic,
Epilog -» {}, FaceGrids —» None, HiddenSurface -» True,
ImageSize -» Butomatic, Lighting -= True,
LightSources -» {{{1., 0., 1.}, R3BColer[l, O, 0]},

{{1., 1., 1.}, RGBColor[0, 1, 0]},

{{0., 1., 1.}, RGBCslor[0, 0, 1]}}, Mesh -» True,
MeshStyle -> Butomatic, Plot3Matrix -» Rutomatic,
ElotLabel -» Home, FlotPoinks —» 15,

PlotRange -» Butomatic, PlotRegion -» Butomatic,

Brolog -» {}, Shading -» True, SphericalRegion -» False,
Ticks -» Rutomatic, ViewCenter —» Butomatic,

ViewPoint -» {1.3, -2.3090999090990993, 2.},

ViewVertical -» {0., 0., 1.}, DefaultFont :» SDefaultFont,
DisplayFunction i+ §DisplayFunction,

FormatType :» $FormatType, TextStyle :» $TextStyle} B

The Help Browser offers additional tutorial and assistance for beginners iGahe
ting Started/Demossection. Many beginners find the topics included inToer of
Mathematica particularly useful.
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O Help Browser BB
[ Go To ”Mathematu:a as a Calculator |[ Back ][ Close ]

(3 Built-in Functions {3 Add-ons ) The Mathematica Book

@ Getting Starteds/Demos (3 Other Information ) Master Index

Swstem Information B IMathermaticaas aCalculstor

Power Cornputing with Mt

i

Lsingthe Help Broveser Aeoessi ng Algorithms in Matt
Reqgistration Matheratical Knowledge in
Building Up Cx

Tour of Mathematica B[ [Handling Data
Farmula Galler) > | Visuslizstion with Mathermatiq >

Mathematica as a Calculator Tl

You can use Mafiermaica just like a caloulator: you type in quesions, and Maematica prints
back answers

Hereisasimple computation. Press totell AMfesremasezto evaluate the input yvou have
given.

620

3656158440062976

Mahemarczautomaticaly handles numbers of any size
6~ 200

4268252238 1202740079697489 15187 73732342089745354499420405
47007803511292054061973920100721303407570072068 1281546667
6129830954465240517595242364015591919845376

Y ou can enter computations in stan dard mat hematical notation, using palettes o fromn the keyboard
Huowthis warks is discussed below.

6200
4268252238 12027400706974801518773732342088745354480420405

47907893511292954961973901907213934075709729651281546667
61298309544652405175952423840155019 19845376

AN

] J100°. w [u] [«]»

1.4 Numerical Calculations and Built-In Functions

1.4.1 Numerical Calculations

The basic arithmetic operations (addition, subtraction, multiplication, and division) are
performed in the natural way with Mathematica. Mathematiczciselyfollows the
standard order of operations.

. "aplusb”is entered az + b.

. "aminusb” is entered as;a — b.

1
2
3. "atimesb’ is entered as = b.
4

. "adivided byb” is entered asa/b. Gererally, if a andb are integersa/b results
in the reduced fraction.

5. "araised to the powdr” is entered asa " b.

Example 1. Calculate (a) 12£542; (b) 3231-9876; (c)(—23)(76); (d) (22341(832748(387281;

(e) X7 and(f) 122,
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Solution. These calculations are carried out in Figure 1.16. In (f), Mathematica sim-
plifies the quotient because the numerator and denominator have a common factor of
5. In each case, the input is typed and then evaluated by prdsSingR. O

Od———F7—r—r——rthaplnh=—"—1+—"—-FH8

1

[ ]
m Example 1

121 + 642

663

3231 - 9876

-6645

-2376

-1748

22341 832748 387281
7205139570198108

467 /31
467

21

12315/ 35

2463
7

|
|
|
|
|
|

Al LA L4 L4 LA LA Ll LA Ld Ld oLd L

S 4D T

[100°e il [«]¢

Figure 1.16: Arithmetic operations carried out in Mathematica.

The terma”™ = ¥a" = ({/a)" is entered aa” (n/ m . Forn/m= 1/2, the command
Sqrt[ a] can be used instead. Usually, the result is returned in unevaluated form but
N can be used to obtain numerical approximations to virtually any degree of accuracy.
With N[ expr, n] , Mathematica yields a numerical approximatioregpr to n dig-

its of precision, if possible. At other timeS§j npl i fy can be used to produce the
expected results.

Example 2. Compute (a)V27 and (b)V 82 = 823,

Solution. (a) Mathematica automatically simplifig®27 = 3v/3.
In[8]:= Sgrt [27]
Qut[8]= 3 /3

We us Nto obtain an approximation Of2_7 N[ number] returns a numerical approxi-

mation ofnumber
In[9]:= N[Sqrt [27]]

Qut[9] = 5.19615
(b) Mathematica automatically simplified &

In[10]: = 8" (2/ 3)
out[10] = 4
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When computing odd roots of negative numbers, Mathematica’s results are surprising
to the novice. Namely, Mathematica returns a complex number. We will see that this
has important consequences when graphing certain functions.

Example 3. Calculate (a)} (—%71)2 and (b)(- g)m

Solution. (a) Because Mathematica follows the order of operatibn®7/ 64) " 2/ 3
first compute§—27/64)?> and then divides the result by 3.

In[11]:

(-27/64)"2/ 3
ut[11]= 223

4096

(b) On the other hand,- 27/ 64) " ( 2/ 3) raises—27/64 to the 23 power. Mathe-
. . . e 27\23

matica does not automatically simplify Z/)

In[12]: = (9-27/ 64)" (2/ 3)
- 2 423
it[12]= 7% (-1)

However, when we uslK, Mathematica returns the numerical version of the principal

root of(—g—zl)m.

In[13]: = N[ (-27/64)" (2/3)]
Qut[13] = -0.28125 + 0. 487139 i

To obtain the result

2
(_2_7)”3_ [ =27 _(_§)2_3
64) 64| "\ 4) 16’

which would be expected by most algebra and calculus students, we lo&the
al Onl y package that is contained in tMiscellaneousdirectory. Then,

In[14]:= << M scel | aneous' Real Onl y*

In[15]:= (-27/64)" (2/3)
Qut[15] = 16
returns the result/d.6. O

1.4.2 Built-in Constants

Mathematica has built-in definitions of many commonly used constants. In particular,
e ~ 2.71828 is denoted bk, 7 ~ 3.14159 is denoted bRi , andi = -1 is denoted
by | . Usually, Mathematica performs complex arithmetic automatically.

Example 4. Entering

In[16]: = N[e, 501
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Qut[16] = 2.718281828459045235360287471352662497757247093699959
7. 496696760000000000000000000000000000000000000000 108

returns a 50 digit approximation ef Enteing

In[17]:= N[x, 25]
Qut[17] = 3.141592653589793238462643

returns a 25 digit approximation af Enteing

In[18]:= (3+i) (4-1)
11 7
Q,It[18]—ﬁ+17

performs the divisioni3 + i)/ (4 — i) and writes the result in standard form.

1.4.3 Built-In Functions

Mathematica contains numerous mathematical functions.

Functions frequently encountered by beginning users include the exponential func-
tion, Exp[ x] ; thenatural logarithmlog[ x] ; the abstute value functionAbs|[ x] ;

the trigonometric functionsi n[ x], Cos[ x], Tan[ x], Sec[ x], Csc[x], and

Cot [ x] ; the inverse trigonometric functiods cSi n[ x] , Ar cCos[ x] ,ArcTan[ x],
ArcSec[ x] ,ArcCsc[ x] , andAr cCot [ x] ; the hyperbolic trigopnometric functions

Si nh[ x] , Cosh[ x] ,andTanh[ x] ; and tteir inverseg\r cSi nh[ x] , Ar cCosh|[ x] ,
andAr cTanh[ x] . Generally, Mathematica tries to return an exact value unless oth-
erwise specified witi\.

Several examples of the natural logarithm and the exponential functions are given next.
Mathematica often recognizes the properties associated with these functions and sim-
plifies expressions accordingly.

Example 5. Entering

In[19]:= N[Exp[-5]]
Qut[19] = 0. 00673795 N[ nunber] returns a numerical approxi-

mation ofnumber

L 5 .
returns an approximation ef® = 1/€>. Entering Exp[x] computes*. EnterE to compute

I n[20]:
Qut [ 20]

Log[Exp[3]] e~ 2.718.

3 Log[ x] computes Ix. Inx and € are
- i i = nx =

computes Ined = 3. Enterlng inverse functions (le* x and €

x) and Mathematica uses these proper-

In[21]:= Exp[Log[4]1] ties when simplifying expressions involving

Qut[21]= 4 these functions.

compute€"* = 4. Entering

In[22]:= Abs[-n]
Qut[22]=
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computes — x| = . Entering Abs[ x] returns the absolute vall

In[23]:= Abs[(3+2i)/ (2-9i)]
13
85

Qut [ 23]

computed(3 + 2i)/(2 — 9i)|. Enteing

In[24]:= Sin[n/ 12]
-1++/3
Qut[24] =
[24] 2 V2

computes the exact value of éil12). Although Mathematica cannot compute the

N[ nurber] returns a numerical approxi-eXact value of tan 1000, entering

mation ofnumber

In[25]:= N[Tan[1000]]
Qut [ 25] = 1.47032

returns an approximation of tan 1000. Similarly, entering

In[26]:= N[ArcSin[1/3]]
Qut [ 26] = 0. 339837

returns an approximation of sih(1/3) and entering

In[27]:= ArcCos[2/31//N
Qut[27] = 0.841069

returns an approximation of cd$2/3).

Mathematica is able to apply many identities that relate the trigonometric and expo-
nential functions using the functiofis i gExpand, Tri gFact or, Tri gReduce,
Tri gToExp, andExpToTri g.

In[28]:= ?Tri gExpand

"Tri gExpand [expr Jexpandsouttri gononetric
functionsi nexpr."

In[29]:= ?TrigFactor

"TrigFactor [expr ]factorstrigononetricfunctions
i nexpr."

I n[30]:= ?Tri gReduce

"Tri gReduce [expr Jrewr it esproduct sandpower s
of tri gononetricfunctionsi nexprinterns
of trigononetricfunctionsw t hconbi nedar gurments. "

In[31]:= ?Tri gToExp

"Tri gToExp [expr Jconvertstrigononetricfunctions
i nexprtoexponential s."

In[32]:= ?ExpToTrig

"ExpToTri g[expr ]convertsexponenti al si nexpr
totrigononetricfunctions.™”
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Example 6. Mathematica does not automatically apply the identity sincos x = 1.
In[33]:= Cos[x]"2+Sin[x] 2
Qut[33] = Cos[x]%+Sin[x]?

To apply the identity, we us&i npl i fy. Gererally, Si npl i f y[ expressi on]
attempts to simplifyexpression

In[34]:= Sinplify[Cos[Xx] 2+Sin[x] 2]
Qut[34]=1

UseTri gExpand to multiply expressions or to rewrite trigonometric functions. In
this case, entering

In[35]:= TrigExpand[Cos [3x]]
Qut[35] = Cos[x]®-3 Cos[x] Sin[x]?

writes cos & in terms of trigonometric functions with argument We use thelri -
gReduce function to convert products to sums.

In[36]:= TrigReduce[Si n[3x] Cos[4X]]
Qut [ 36] = % (-Sin[x]+Sin(7 x])

We ue Tr i gExpand to write

In[37]:= TrigExpand[Cos[2x]]
Qut[37]= Cos[x]?-Sin[x]?

in terms of trigonometric functions with argumext We useExpToTri g convert
exponential expressions to trigonometric expressions.

In[38]:= ExpToTrig[l/ 2 (Exp[x] + EXp[-x1)1
Qut [ 38] = Cosh[x]

Similarly, we useTr i gToExp to convert trigonometric expressions to exponential
expressions.

In[39]:= TrigToEXp[Sin[x]]
1 . N .
Qut[39] = 5 (e7 * el x)

Usually, you can us8i npl i f y to apply elementary identities.

In[40]:= Sinplify[Tan[x] 2 +1]

Qut [ 40] = Sec[x]?
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1.5 The Basics

Beginning users of Mathematica typically need to acquire the ability to define, manip-
ulate, and graph functions quickly. We illustrate how to perform these operations in the
context of several examples from algebra, trigonometry, and calculus. Selected topics
from calculus are discussed in more detail in Chapter 2. More sophisticated graphing
techniques than those discussed here are introduced as they are needed.

Be careful to enter expressions precisely because Mathematica follows the order of
operations in the standard order. Enteringdefines the symbol "xy”. On the other
hand, enteringk y or x*y denotes the product of andy, xy. Smilarly, entering
(1+x) " 1/ x computes

(1+x)?
X

while entering( 1+x) ~ ( 1/ x) computes
(1 +x)Yx

because Mathematica follows the order of operatimrestly.

For begnners, translations from standard mathematical notation to Mathematica can
be particularly problematic when trigonometric functions are involved. For example,
the expression sixt means that giver, squarex, and canpute the sine of the result. It

is entered in Mathematica usit®j n[ x" 2] . On the other hand, the expressionsin
means that giver, conpute the sine ok, and square the result. The expression is
entered in Mathematica usit®j n[ x] " 2.

1.5.1 Elementary Operations on Functions of a Single Variable

In Mathematica, an elementary function of a single variapte,f(x) = expressioninx
is typically defined using the form

f[x_] =expression in x.
Once the functiory = f(x) has been defined, a basic graph is generatedrlith :
Plot[f[x],{Xx, a, b}]

graphsy = f(x) fora< x<h.
Example 7. Entering

In[41]:= Expand[(2x +1) (3x -1) (x -1)]
Qut[41]=1-2 x-5 x?+6 x°
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Figure 1.17: A basic graph df(x) = 6x3 — 5x> — 2x+ 1for -1 < x < 3/2

expands(2x + 1)(3x — 1)(x — 1) = 6x3 — 5x2 — 2x + 1. Entering

In[42]:= f[x.]=6Xx"3-5x"2-2x+1
Qut[42]=1-2 x-5 x?+6 x°

definesf(x) = 6x3 —5x¢ — 2x + 1 and

In[43]:= Plot [f [x], {x, -1, 3/ 2}]

graphsf(x) = 6x3 — 5x% — 2x + 1 for -1 < x < 3/2 in Figure 1.17.

For details regardind®l ot and its options ente?PPl ot or ??Pl ot or access help

from the menu. (See Figure 1.18.) Frequently uBedt options are illustrated in the
following examples.

Equations are solved witBol ve:
Sol ve[ | hs==r hs, X]
attempts to solve the equatittms = rhsfor x;
Sol ve[ {system of equations}, {vari abl es}]

attempts to solveystem of equatiorfer variables In Mathematica, be sure to plac@member to include a semi-colon if you
adouble equals sigr=E€) between the left and right-hand side of each equation.  wish to suppress the result.

Example 8. Graphg(x) = %-

Solution. In Mathematica, the square root functioy, is represented bysqr t [ x] .
We ddine g(x) and then graply(x) for —10 < x < 10 with Pl ot in Figure 1.19. similarly, the absolute value functiohd, is
Observe that we obtain numerous error messages, although the resulting plot apgeareed bpos[ x] .
We havechoser{-10, 10] because it is a typ-
ical first choice for many students.
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| Help Browser ==

((GoTo ][Piat | CBack | [close |

@ Built-in Functions ) Add-ons ) The Mathematica Book

(O Getting Started/Demos () Other Information ) Master Index

Nurrerical Computation  b|=| 2D Plots #| = |[Plot

AloebraicComputation B 3D Plots M T |ListPlat

Mathermatical Functions B |Contour Plots ¥ [ParametricPlot

Lists and Matrices [d Density Plots 13

Graphics and Sound  |—Sound Generation H — —
[~ [Combinations 3l

Programmming [0 >

Flot

mElot[f, {x, amin, wmax}] generales a plot of fas a function of x from xmin to xmax
wPLot[{f,, fa, - }s (X, Xmin, onax}] plos several funstions f,

= Plot evaluates its argureents ik a non-standard way (see Section A.4.2), Tou should use Evaluats o
evalnate the functinn to be plotted if this can safely be dome before specific rterical values are supplied

® Flot has the same options a8 Graphics, with the following additions:

Compiled True whether 1o cotapile the function to plat

MaxEend 10. maximumn bend between segments

FlotDivision 20. oA Fubdivision factor in satapling

PlotFoinkts 25 initial naraber of sataple points

PlotStyle Automatic graphics directives o specify the style
for each cure

® Plot uses the defanlt setting Axes -> True

 P1ot iitially svaluates fat a nuriber of equally spaced sarple points specified by PlotPoints. Then
it nses an adaptive algorithin o choose additional sataple points, atterapting to produce a curwe in which
the bend between successive segtnents is 1ess than MaxBend. It aubdivides a given interral by a factor of
atmoat PlotDivision -

» Yom should realize that with the fingte rnber of sarvle voints used it is vossible for 21 ot 40 s
[100° - i}

[«]»

Figure 1.18: Thé?l ot help window

reasonable. Notice that the plot is only shownf@& < x < 2, not-10 < x < 10 as
requested

I n[44]:

g[x-]1 =Sgrt [4-x"2]1/ (x"2-1)
V4 -x2

-1 +x2

In[45]:= Plot [g[x], {x, -10, 10}1

Qut [ 44]

Plot ::"plnr" : "g[x] is not a machine-size real
nunber atx = -9.99999916666666699" . "

Plot ::"plnr" : "g[x] is not a machine-size real
nunberatx = -9.18866016854168421" . "

Plot ::"plnr" : "g[x] is not a machine-size real
nunber atx = -8.30382400281252586" . "
General ::"stop" : "FurtheroutputofPlot :: plnr
wi Il be suppressed during this calculation.”

Proceeding more carefully, we find the domaing¢f). The domain ofg(x) consists
of the values ok where the radicand is nonnegat&ed the denominator is not equal
to zero. We solve? — 1 = 0 with Sol ve. To sove 4- x> = 0 we usel nequal -

i tySol ve, which is contained in thé nequal i t ySol ve package located in the
Algebra directory.

In[46]: = << Al gebra‘ | nequalitySol ve
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15

10

Figure 1.19: Mathematica attempts to choose an appropriate viewing window

10

Figure 1.20: A good graph af(x)

In[47]:= Solve[x"2-1==0]
Qut[47]= {{x->-1}, {x=>1}}

In[48]:= InequalitySolve[4-x"2>=0, Xx]
Qut[48]= -2 <x <2

We conclude that the domainjs2,-1) U (-1,1) U (1, 2].

We now usePl ot to graphg(x) for -2 < x < 2 in Fgure 1.20. We use thEl o-
t Range option to specify that the-values displayed correspond+@ < x < 2 and
they-values displayed correspond+d0 < y < 10.

In[49]:= Plot [g[Xx], {X, -2, 2}, Pl ot Range- > {-10, 10}]

Of course, vertical lines are never the graphs of functions. In this example, the vertical
lines correspond to the vertical asymptates 1 andx = —1 of g(x). O

Example 9. Solve

y-1
2y+6

X
X2



30 CHAPTER 1. GETTING STARTED WITH MATHEMATICA

for x andy.

Solution. We illustrate several techniques. First, we & ve to solve the system
for x andy.

In[50]:= Solve[{x==y-1, X"2==2y +6}]
Qut[50]= {{y—->-1, x>-2}, {y->5,x->4}}

By hand, we solve each equation foand obtairy = x+ 1 andy = %(x2 —6). Then,

%(x2—6)=x+1

1,
=X=-X-4=0
2

X*—-2x-8=0
X=-4Hx+2)=0

sox = 4 orx = —2. We perform the same steps using Mathematica @ithpl i fy
andFact or .

Remark.Si npl i f y[ expr essi on] attempts to simplifexpressionFact or [ expr essi on]
attempts to factoexpression

In[51]:= s1=Sinmplify[l/2(x"2-6) - (x+1)]
2

Qut[51] = 747x+X7

In[52]:= Factor [s1]

Qut[52] = > (-4 +X) (2+X)

We also illustrate using th8ol ve function to solve%(x2 -6)=x+1.

In[53]:= xval s =Solve[l/2(Xx"2-6) == (X +1)]1
Qut[53] = {{x-> -2}, {x->4}}

Finally, we usePl ot to graphy = x+ 1 andy = %(x2 — 6) togetherfor-3 < x <5
in Figure 1.21. We illustrate the use of tReot St yl e andAspect Rat i o options.
Pl ot Styl e->{GrayLevel [ 0], GrayLevel [ 0. 3] } specifies that the first plot
be generated in black and the second in gispect Rat i o- >Aut omat i ¢ speci-
fies that the plot be generated to scale.

In[54]:= Plot [{x+1, 1/2(x"2-6)}, {X, -3, 5},
Pl ot Styl e- > {G ayLevel [0], GrayLevel [0. 3]},
Aspect Rati o- > Aut omati c]

In the figure, we see that+ 1 > %(x2 — 6) for —2 < x < 4. Thus, the area of the region
bounded by the graphs gf= x+ 1 andy = %(x2 -6)is

f:: [(x+ 1) - %(x2 - 6)] dx.

Generallyl ntegrate[ f[x], {x, a, b}] attempts to evaluatf,jlb f(x)dx. Thus,
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Figure 1.21: Graphs of = x + 1 andy = 3(x* - 6)

31
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1 2 3 4 5
Figure 1.22: Graph of (x)

In[55]:= Integrate[(x +1) -1/2(x"2-6), {X, -2, 4}1]
Qut[55]= 18

computesf_“2 [(x+1) - 02 - 6)| dx=18. O
Example 10. Graph

f(x) = (1 +xY*
forO<x <5.
Solution. The domain off (x) is (0, c0). After definingf(x), we useP| ot to graphf(x)
for 0 <x = 5in Hgure 1.22.

In[56]:= f[x.]=(1+x)" (1/x)
Qut[56] = (1+x)

x|

In[57]:= Plot [f [x], {x, 0, 5}, Pl ot Range-> {0, 5},
Aspect Rati o- > Aut omati c]

Even thoughf(x) is undefined ifx = 0, Mathematica does not complain when we

instruct it to begin the plot at = 0. In the plot, we see that= 0 does not appear to
Tabl e[a[ k], {k, n, m}] generates the D@ an asymptote and appears as though imf (x) exigs. We uséTabl e to compute
SequUeNce,, 8,1, 8,z - 8y 1r 8- the value off (x) for x = 1, /10,.. ., 1/100000- values of "near” x = 0.

In[58]:= Tabl e[{10" (-k)// N, f [10" (-k)// N1}, {k, O, 5}]
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out[58]= ({1., 2.}, (0.1, 2.59374},
(0. 01, 2.70481},
(0. 001, 2. 71692},
{0.0001, 2. 71815},
(0. 00001, 2.71827}}

Notice that the function values appear to be getting closer 402.718. In fact, in
calculus, we learn that

lim@+xY* =e.
x-0*

Mathematica is able to calculate this limit with m t . Lim t[f[x], x- >a attempts to compute

lim,_,, f(x)

X—a

In[59]:
Qut [ 59]

Limt [f[x], x->0]
e

O

Example 11. Let f(x) = 6x° — 5x% — 2x + 1. (a) Evaluatef (2) and f(1). (b) Compute
and simplify '{0="D " (c) Find lim, o "3 (d) Solvef(x) = 0. (€) Graphf (x).
(f) Graph f(x) together with the line tangent to the graphfgk) at the point withx-
coordinatex = 1. (g) Find f’(x). (h) Solvef’(x) = 0 exactly and numerically. (i) Find

[ foodx () Evaluate[™>, f(x) dx

Solution. After defining f (x), we conpute f(2) and f(1).

In[60]:= f[x.]=6Xx"3-5x"2-2x+1

Qut[60]= 1-2 x-5 x?+6 x°
In[61]:= f[2]

Qut[61] = 25

In[62]:= f[1]

Qut[62]= 0

We canpute "*P="D naming the resuts 1.

In[63]:=s1l=(f[1+h]-f[1])/h
2 3
Qut [ 63] = 1-2 (1+h)-5 (r:_ll-+h> +6 (1+h)

s1 is then simplified withSi npl i f y and named 2.

In[64]:= s2=Sinmplify[sl]
Qut[64]= 6+13 h+6 h?

The limit of s2 ash —» 0 is conputed withLi mi t .

In[65]:= Limt[s2, h->0]
Qut[65]= 6

Note that the entire computation can be combined into a single command.



f’ [ x] computesdy/dx= f’'(x).
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Figure 1.23: Graph of (x)

IN[66]:= Limt[(f[l+h]-f[1])/h, h->0]
Qut[66]= 6

UsingFact or , we seehat the zeros of (x) arex = 1/3, 1, and-1/2.

In[67]:= Factor [f [x]]
Qt[67]= (-1+x) (L+2 x) (-1+3 Xx)

We oonfirm by solvingf(x) = 0 with Sol ve.

In[68]:= Sol ve[f [x] ==0]

Qut [ 68] = {{X%*%}, {x»%}, {x->1}}

A badc graph off(x) is generated witll ot in Figure 1.23.
In[69]:= Plot[f[x], {x, -1, 3/2}]

Because (1) = 0 and the sipe of the line tangent to the graphfak) at the point with
x-coordinatex = 1 is 6, an guation of the line tangent to the graphfak) at the point
(1,0)isy—0=6(x—1) ory = 6(x—1). Wegraphf(x) andy = 6(x — 1) with Pl ot in
Figure 1.24.

In[70]:= Plot [{f [x], 6(x-1)}, {Xx, -3/2, 3/2},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0.31}1]

We find f’(x) with ’ .

In[71]:= df =f’"[x]
Qut[71]= -2-10 x +18 x?

We u Sol ve to find thatf’(x) = 0 if x =  + 5+/61 and name these valué0.
In[72]:= df 0 = Sol ve[f’'[x] ==0]

Qut[72] = {{xﬁ% (5-+/61)}, {xﬁ% (5++/61)}}

N[ number] returns an approximation of\We then useN to obtain approximations of the exact values.

number

In[ 73] : = N[df O]
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Figure 1.24: Graphs off(x) andy = 6(x — 1)

Qut[73]= {{x > -0.156125},
(x >0.711681})

. 3
Finally, we usd nt egr at e to evaluatef f(x)dxandf_ﬂ2 f(x)dx. I ntegratef[x],x]
evaluate [ f(x),dx
In[74]: = Integrate[sf [x],);] gratef[x].x, a, b]
ut[74]= x -x2 -2 X 3 X b
EXX e computef’ () dx

In[75]:= i10=Integratel[f [x], {x, -1/2, 1/ 3}]

1625
Qut[75] = S92

In[76]:= NI[i 0]
Qut [ 76] = 0. 626929

The results indicate thaft f(x)dx= 3x* - 33 -2+ x+C andf_jﬁ f(x) dx= 1525
0.6269.

O 2

Example 12. Let
t3
fit)= 5——.
©=p 1
(a) Compute and simplify lig,, w (b) Computef’(t) and f”(t). (c) Graph
ft), f'(t), andf”(t).
Solution. After defining f (t), we conputew, naning the resuls1.

In[77]:= f[t.1=t"3/ (t"2-1)

t3
QTN =
In[78]:= sl=(f[t +h1-f[t])/h
__t3 . (het)B
OJt [ 78] - —l+t2 -1+ (h+t)

h

attempts

to

while Inte-

attempts

to



D f[x],x] computes
D f[x], {x, n}] computesf™(x).

();
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sl is simplified withToget her. (Toget her[fracti on] writes complex frac-
tions as a single fraction.)

In[79] : = s2 = Toget her [s1]
-h2-3 ht-31t2+h?2t2:2 h t3+t4
Qut[79
[79] (-1+t?) (-1+h®+2 ht +t?)

Li mi t is used to compute ligy {="0 Theresultisf’(t).

In[80]:= Limt[s2, h->0]

B 2 14
Qut [ 80] L*tz
(-1+t2)

We obtain the same result usifigget her and’ in df .

In[81]:= df =f’[t]1// Toget her

_ 2,14
out[81] = L*tz
(-1+t2)

We solvef’(t) = 0 with Sol ve.

In[82]: = Sol ve[df ==0]
Qut[82]= {{t -0}, {t -0}, {t -3}, {t >+/3}}

We canpute and simplifyf(t) with Toget her and’ ’ and th& useSol ve to solve
f(t) = 0.
In[83]:= d2f =f” [t ]// Toget her

3
utsg= 2B )
(-1+t2)

| n[ 84] .= Sol ve [d2f ==0]

ut[84]= {{t -0}, {t >-i V3}, {t »i V3}}

Finally, we usePl ot to graphf(t), f’(t), andf”(t) together in Figure 1.25, illustrating
the use of thé’l ot Range, Pl ot St yl e, andAspect Rat i o options.

In[85]:= Plot [{f [t], df, d2f},
{t, -6, 6}, Pl ot Range- > {-5, 5}, PlotStyle->
{GrayLevel [0], Dashi ng[{0.01}1, GrayLevel [0. 3]},
Aspect Rati o- > Aut omati c]

Be especially careful when manipulating trigopnometric functions.

Example 13. Let f(6) = sin29 + 2cos, 0 < 0 < 2. (a) Sdve f’(8) = 0. (b) Graph
f(0) and f’(0).

Solution. After defining f (6), we useD to computef’(8) and theé useSol ve to solve
f’(6) = 0.

In[86]:= f[6.] =Sin[26] +2Cos[6]
Qut[86]= 2 Cos[e] +Sin[2 6]
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Figure 1.25: Graphs dfi(t), f'(t), andf”(t)

In[87]:= df =D[f [6], €]
Qut[87]= 2 Cos[2 6] -2 Sin[e]
In[88]:= Solve[df ==0, 8]

Solve :: "ifun" : "lInversefunctionsarebei ngused
bySol ve, so sone solutions may not be found."

5
anrssl= {{s- -7} {e- o} {o 2}
Notice that-z/2 is not between 0 and2 Moreover,n/6 and5z/6 arenot the only

solutions of f’(§) = O between 0 and2 Proceeding by hand, we use the identity
cosd = 1 - 2sirf 6 and factor:

2cos20-2sind=0
1-2sirf6—-sind=0
2sifd+sing—1=0
(2sinf — 1)(sind+1) =0

so sing = 1/2 or sind = —1. Because we are assuming that @ < 2r, we obtain the

solutionsf = 7/ 6, 51/6, or 3t/2. We perform the same steps with Mathematica.  expression /.

x->y+ repl aces

all occurrences of x in

In[89]:= sl =TrigExpand[df]

Qut[89]= 2 Cos[6]?-2 Sin[e] -2 Sin[e]?
In[90]:= s2=s1/. Cos[e]"2->1-Sin[e]" 2
Qut[90]= -2 Sin[o] -2 Sin[e]?+2 (1-Sin[o]?)

In[91]: = Factor [s2]
Qut[91]= -2 (1+Sin[e]) (-1+2 Sin[o])

Finally, we graphf (6) and f’(6) with Pl ot in Figure 1.26. Note that the plot is drawn
to scale because we include the opthspect Rat i o- >Aut onati c.

expressionby y.



38 CHAPTER 1. GETTING STARTED WITH MATHEMATICA

N

[y

Figure 1.26: Graphs off(8) and f’(6)

In[92]:= Plot [{f [e], df }, {6, O, 27},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 3]},
Aspect Rati o- > Aut omati c]

O

If Sol ve is unsuccessful in solving an equation or numerical results are desired,
Fi ndRoot [ equati on, { x, a}] attempts to numerically solvequationfor x near
X~ a.

Example 14. Find the first three nonnegative solutions<ct tanx.

Solution. We attempt to solvex = tanx with Sol ve.

In[93]:= Solve[x == Tan[x], x]

Sol ve :: "tdep" : "Theequati onsappeartoi nvol ve
transcendent al functi onsof t hevari abl esi n
anessenti al | ynon - al gebrai cway. "

Qut [ 93] = Solve[x ==Tan[x], X]

We net graphy = x andy = tanx together in Figure 1.27.

In[94]:= Plot [{x, Tan[x]1}, {X, O, 4x}, Pl ot Range- > {-4nx, 4r},

o Pl ot Styl e- > {GrayLevel [0], G ayLevel [0.31}1]
Remember that vertical lines are never the

graphs of functions. In this case, the reprdn the graph, we see that= 0 is a soltion. This is confirmed withFi ndRoot .
sent the vertical asymptotes at odd multiples
of /2.
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Figure 1.27y = x andy = tanx

I n[95] : = Fi ndRoot [x == Tan[x], {x, 0}]
Qut[95]= {x->0.}

The second solution is near 4 while the third solution is near 7. UsingdRoot
together with these initial approximations locates the second two solutions.

In[96] : = Fi ndRoot [x == Tan[x], {X, 4}]
Qut[96] = {x > 4.49341}

I n[97]: = Fi ndRoot [x == Tan[Xx], {X, 7}]
Qut[97] = {x »7.72525}

1.5.2 Elementary Parametric and Polar Plots

To graph the parametric equatioxs: x(t),y = y(t),a<t < b, use
ParanmetricPlot[{x[t],y[t]},{t,a, b}]
(see Figure 1.28) and to graph the polar functiear(6), @ < 0 < 3, use
Pol arPlot[r[theta], {theta, al pha, beta}].

(See Figure 1.29.) Thieol ar Pl ot function is contained in th& aphi cs package
which is located in th&raphics directory.

Example 15. Graph the parametric equations

X=t+sin

y=t+sind’ —2r =t =2
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O Help Browser HE
(6o To_][ParametricPiat | (Cpack ] _close |

@ Built-in Functions (3 Add-ons () The Mathematica Book

() Getting Started/Demos {J Other Information O Master Index

Nurrerical Computation B[ =[2D Plots M Plot

Algebraic Cormputation 30 Plots 13 ListPlot

ParametricPlot
Lists and Matrices Censity Plots

14
PMethermatical Functions — p| | Contour Plats
4
Graphics and Sound |

f— Sound Generation
[ [Combinations
-

Prograririing |3

ParametricPlot

® ParametricPlot({f,, fy 1, {2, pman, prax}] produces a parametric plot with x and ¥ coordinates
£, and £, generatec a3 a function of §

® ParametricPlot[{{f,, Iy} (s 8)r - )¢ (5 toin, pmax)] plots several parametric curves

B ParametricPlot evaluates its arguments in a non-standard way (see Section A 42) You should use
Ewvaluate fo evaluate the function to be plotted if this can safely be done before specific numerical
values are supplied.

u The options that can be given for ParametricPlot are the same as for Plot.
B ParametricPlot has the default option setting Axes -> True

® ParametricPlot Ietuns a Graphics object.

mSee the Mathemanca book: Section 1.9.10

mSee also: ContourPlot.

m Related packages: Graphics  ImplicitPlot”, Graphics FlotField™ .

I Further Examples

v ]

[100%  Tii] [«]»

Figure 1.28: Mathematica’s help for parametric plots

O Help Browser ) =|
[ Go To ]|Graph\cs‘5raphics‘ | [ Back ] [ Close ]
{J Built-in Functions @ Add-ons {2 The Mathematica Book
(3 Getting StartedsDemos (3 Other Information O Master Index
workingwithéod-ons | Introduction 4 Graphics
Graphics3D

Standard Packages B |4lgebra ¥ [ImplicitPlot 1=
MathLink Library » Calculus 13 Legend
Prograrnrming in Mathernat | | Discreterath M MultiplelistPlat — —
Extra Utilities »| = |Geometry M|~ |ParametricPlot30 [~

Graphics M~ |PlotField hd

PolarPlot[f, generate a polar plotof radins ras a function of angle
{t, tmin, bmax}]  ifiom pminto frax
PolarFlet[{f; , f5 generate several polar plots together on the same graph
e oo bo {8, tmin, pmax} ]
PolarlistPlot[fr; , generatea polar plotof mdii ry, rp,
ECRPR | at equally spaced angles

Polsr plots
= This plots an ellipse and a limacon on the same graph

5l:=-PolarPlot[ {4/{2 + Cos[t])., 4 Cos[t] - 2}. 1
{t. 0. 2 Pi}]

]

[100% w Tin] [«]»

Figure 1.29: Mathematica’s help for polar plots
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Figure 1.30:(x(t), y(t)), —2r <t < 2r

Solution. After definingx andy, we usePar anet ri cPl ot to graph the parametric

equations in Figure 1.30.

In[98]:= x[t_]=t +Sin[2t];
y[t-1=t+Sin[3t];
Par anetri cPl ot [
{X[t1, y[t1}, {t, -2x, 25}, Aspect Rati o- > Automatic]

In calculus we learn that

_dy dy/dt

y = dx ~ dx/dt

and Yy’

Ly ddyy_dviat
T dx  dx\dx) T dx/dt’

For illustrative purposes, we perform these computations usiagdSi npl i fy. We
computedx/dtanddy/dtin dx anddy, respectivelyy’ = dy/dxis formed indydx.

In[99]:= dx =x"[t]
dy =y’'[t]

dydx =dy/ dx
Qut[99]= 1+2 Cos[2 t]

Qut[99]= 1+3 Cos[3 t]
_1+3 Cos[3t]
Qut[99] = 1+2 Cos[2 t]

Next, we compute and simplifgy/dt in d2ydx.
I n[100] : = d2ydx = Si npl i fy [D[dydx, t 1]
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Figure 1.31: Graph af = cos(8r/3)

-15 Sin[t]+4 Sin[2t]-3 (3 Sin[3t]+Sin[51t])
(1+2 Cos[2 t])?

Qut [100] =

Finally,y” = d?y/d» is computed and simplified id2y dx2.

In[101] : = d2ydx2 = Si npl i fy[d2ydx/ dx] ) ]
Qut[101] = - Sinft]+4 Sin[2t]-3 (3 Sin[3t]+Sin[51t])

(1+2 Cos[2 t])3

Example 16. Graphr = cos(86/3) for 0 < 6 < 6.

Solution. After loading theGr aphi c¢s package and defining we usePol ar Pl ot
to graph the polar equation in Figure 1.31.

In[102] : = << G aphi cs' G aphi cs’

r [e.] =Cos[8e/3];
Pol ar Pl ot [r [6], {®, O, 6z}, Aspect Rati o- >Automatic]

In calculus, we learn that the length of the graph of the polar equatierf (6), ¢ <

0<pBis
5 dr\2
_ 2
L_f(I r +(_d6) dé

Weiillustrate how this computation can be carried out with Mathematica.
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After computingdr/dé in dr , we conpute and simplifyr2 + (dr/d§)? in s1.

In[103]:= dr =r’"[6]
8 860
Qut[103]= -z Sin[—]

In[104]:= sl =Sinplify[r[6e] 2+dr" 2]

Qut [ 104] = % (73-55 005[1639])

We then computd. = foeﬂ \/r? +(dr/df)*dd in s2. However, he result is given in
terms of theEl | i pti cE function, a function not typically encountered by beginning
users.

In[105]:= s2=Integrate[Sqrt [s1], {6, O, 6m}]
Qut[105] = 12 EIIipticE[f%}

Nis used to obtain a more meaningful approximation.

In[106] : = N[s2]
Qut [ 106] = 36. 3669

1.5.3 Three-Dimensional and Contour Plots; Graphing Equations

An elementary function of two variablez,= f(x,y) = expressioninxand,ys typi-
cally defined using the form

fIx_,y_]=expression in x and vy.
Once a function has been defined, a basic graph is generateBlvaitt8D:

Plot3D f[x,y],{x, a, b}, {y,c,d}]
graphsf(x,y)fora<x<bandc<y=<d.
For details regardingPl ot 3D and its options ente?PPl ot 3D or ??PI ot 3D. (See
Figure 1.32.) Frequently used options are illustrated in the following examples.
Graphs of several level curvesoE f(X,y) are generated with

ContourPlot[f[x,y],{x,a, b}, {y,c,d}].

For details regardingont our Pl ot and its options ent&tCont our Pl ot or??Cont our Pl ot .
(See Figure 1.33.)
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| Help Browser ==

((GoTo ][PiotaD | CBack | [close |

@ Built-in Functions ) Add-ons ) The Mathematica Book

(O Getting Started/Demos () Other Information ) Master Index

Nureerical Comnputation }ﬂZD Flots #| =|Plot3D

AloebraicComputation B30 Plots M T |ListPlat3D

Mathermatical Functions B |Contour Plots ¥| [ParametricPlot30

Lists and Matrices [d Density Plots 13

Graphics and Sound  |—Sound Generation H — —
[~ [Combinations 3l

Programmming [0 >

Plot3D

» BlotaD[f, {x, wmin, xmax), {y, ymin, ymax}] generates a fuee-dimensional plot of fas a function
of xand y.

mPlot3D[{f, &}, (X, Xmun, xmax), {y, ymin, ymax}] genemates a tuee-cinensional plot in which the
height of the swiface is specified by ¥ and the shading is specified by .

® Plot3D evaluates ity arguwments in a non-standard way (see Section A.4.2). You showld use Evaluate
to evaluate the function to be plotted if this can safely be done before specific numerical values are

supplied
® Plot3D has the same options as SurfaceGraphics, with the following additions:
Compiled True whether to compile the function to plot
FlotFPoints 15 the number of sample points in each
direction

» P1otaD has the default option sefting Axes = True.

® Plot3D rehums a Sur faceGraphics object

u The function Fshowld give a real number for all values of x and y at which it is evaluated. There will be
holes in the final surface at any values of x and y for which fdoes not yield a real number value.

nlf Lighting->False and no shading function s is specified the swface is shaded accowding o Z
Leight. The shading is determined by the option ColoxrFunction, the default is gray levels. -
[100° - ] [«]»

Figure 1.32: Thé?l ot 3D help window

Example 17. Let

2
00y =

(a) Calculatef (1, -1). (b) Graphf(x,y) and several contour plots &fx, y) on a region
containing(0, 0).

Solution. After defining f(x, y), we ewaluatef (1, -1) = —-1/5.

In[107]):= f[x, y.]1=X"2y/ (X4 +4y"2)

x2 y
Qut[107]= —/———
[ ] x4 +4 y?
In[108]:= f[1, -1]
1
1 = _=
out[108]= ¢

Next, we useP| ot 3D to graphf(x,y) for -1/2 < x < /2 and-1/2 <y < 1/2in
Figure 1.34. We illustrate the use of tAres, Boxed, andPl ot Poi nt s options.

In[109]: = Pl ot3D[f [x, y1, {x, -1/ 2, 1/ 2}, {y, -1/ 2, 1/ 2},
Axes- > Aut onat i ¢, Boxed- > Fal se, Pl ot Poi nt s-> {50, 50}]

Two contour plots are generated wiflont our Pl ot . The second illustrates the use of
thePl ot Poi nt s, Fr ame, Cont our Shadi ng, Axes, andAxesOri gi n options.
(See Figure 1.35.)
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®ContourFlok[f, {X, xum, mmaxy, {y, ymm, ymaxi] generates a conbour plot of Fas a function of x
and y.

mContourPletevaluates its arguments in a non-standard vay (see Section A 4 23 You shomld use
Evaluate to evaluate the function f0 be ploted if this can safely be done before specific rumerical
walues are supplisd

mContourPlot has the same options as ContourGraphies, with the following additinns:

Compiled True whether to compile the function fo plot

FlotFoints 15 the nuraber of points in each direction

at which o sample the function

®ContourPlot has the default option setiing Frame - True,

= ContourFlot retums a Contourdraphics object, with the MeshRange option set

m3ee the iMathemation book: Section 19.6

w3ee also DensityPlot

m Related packages: Graphics” ContourPlot3D”, Graphics® ImplicitPlot”
Graphics' FlotField", Graphics ComplexMap”.

ST

I Further Faammnles
[} {100~ [il] [«]»

Figure 1.33: TheCont our Pl ot help window

s

Figure 1.34: Three-dimensional plot &x, y)
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Figure 1.35: Two contour plots df(x, y)

In[110]: = ContourPl ot [f [Xx, Y1, {x, -1/2, 1/ 2}, {y, -1/ 2, 1/ 2},
Pl ot Poi nt s- > {50, 50}]

In[111]:= ContourPl ot [f [X, y]1, {x, -1/ 2, 1/ 2},
{y, -1/ 2, 1/ 2}, Pl ot Poi nt s- > {60, 60}, Frane- > Fal se,
Cont our Shadi ng- > Fal se, Axes- > Aut onati c,
AxesOrigi n-> {0, 0}1]

O

Cont our PI ot is especially useful when graphing equations. The graph of the equa-
tion f(x,y) = C, whae C is a constant, is the same as the contour plat ef f(x,y)
corresponding t&€. That is, tke graph off(x,y) = C is the same as the level curve of

z = f(x,y) corresponding ta = C.

Example 18. Graph the unit circlex? + y? = 1.

Solution. We first graphz = x> + y? for -4 < x < 4 and—4 < y < 4 with Pl ot 3Din
Figure 1.36.

In[112]:= Plot3D[x 2 +Yy" 2, {x, -4, 4}, {y, -4, 4}1]

The graph of + y? = 1 is thegraph ofz = x? + y? corresponding ta = 1. We use
Cont our PI ot together with theCont our s option to graph this equation in Figure
1.37.

In[113]:= ContourPlot [Xx"2+y"2, {x, -3/2, 3/2}, {y, -3/2, 3/ 2},
Cont our s- > {1}, Cont our Shadi ng- > Fal se]

Multiple graphs can be generated as well. As an illustration, we geaphy? = C for
C=1,4,and9in Figure 1.38.
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Figure 1.36: Three-dimensional plot o& x? + y?

0.5

-0.5

1.5

=1

Figure 1.37: The unit circles® + y?
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-4 -2 0 2 4

Figure 1.38: Graphs of +y? = 1,x> + y? = 4, andx? + y> = 9

In[114]: = ContourPl ot [X"2+Yy"2, {X, -4, 4}, {y, -4, 4},
Contours- > {1, 4, 9}, Cont our Shadi ng- > Fal se,
Pl ot Poi nt s- > {50, 50}]

O

We can usePar anet ri cPl ot 3D to generate graphs of surfaces defined parametri-
cally.

Example 19. A parametrization ofJmbilic Torus NC is given byr(s,t) = X(s, i +
y(s,0j+ s, 0k, -t <s<nx, - <t <x wheae
1 1 .
X= [7 + cos(és— 2t) +2 cos(§s+ t)] sins
1 1
y= [7 + cos(és— Zt) +2 cos(§s+ t)] Coss
and
. (1 (1
zZ= S|n(§s— Zt) + 25|n(§s+ t) .
Graph the torus.

Solution. We ddine x, y, andz

In[115]:= x[s, t.] = (7+Cos[1/3s-2t] +2Cos[1/3s+t])Sin[s];
yIs, t.1=(7+Cos[1l/3s-2t]1+2Cos[1l/3s+t]1)Cos[s];
zZ[s,t_]1=Sin[1/3s-2t]1+2Sin[l/3s+t];
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Figure 1.39: Umbilic torus

The torus is then graphed witPar amet ri cPl ot 3D in Figure 1.39. We illustrate
the use of thé’l ot Poi nt s option.

In[116]: = ParametricPl ot 3D[{x[s, t], y[s, t1, z[s, t]},
{s, -x, x}, {t, -x =}, Pl ot Poi nts-> {40, 40}]

1.6 Exercises

1. Solve

X-2y—-4=0
6x+2y-10=0

and confirm your result graphically.
2. (a) Graphy = xandy = x2. (b) Find the points at which the graphs intersect.

3. Letf(x) = 2x — x. (a) Glaph f(x) for -1 < x < 3 to scale. (b) Compute and
: : f(x+h)—f(x)
simplify =———>.

4. (a) Graply = sinxandy = cosx to scale for O< x < 2. (b) Find all intersection
pointsexadly.

5. (a) Find the points where the graphs/ef x— 1 andy = x> — x — 1 intersect. (b)
Graph the equations together to confirm your result.

6. Solve
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and confirm your result graphically.

7. Graphx = y® — 4y? + 3y andx = y° — y together. Locate akk andy-intercepts
and intersection points.



Chapter 2

Calculus

Chapter 2 introduces Mathematica’s calculus commands. The examples used to illus-
trate the various commands are similar to examples routinely done in three semester
calculus courses.

2.1 Limits

One of the first topics discussed in calculus is that of limits. Mathematica can be used
to investigate limits graphically and numerically. In addition, Mathematica uses the
command

Limi t[f[x], x- >a]

to find lim,_,, f(x), the limit of f(x) asx approaches the valag where a can be a finite
number, positive infinitydo), or negative infinity £ o). Mathematica usdsnfi nity
to represento.

Remark. To define a function of a single variablg(x) = expressioninxenerf [ x_] =expressi on i n x.
To generate a basic plot of= f(x) fora<x < b, enterPl ot [f[ x], {x, a, b}].

Example 20. Use a graph and table of values to investigatt;i{;ﬁ”;—&.

Solution. We clear all prior definitions off, definef (x) = 5"‘73" , and tlen graphf(x) d ear[f] clears all prior definitions of,
on the interval—r, 7] with Pl ot . if any. Clearing function definitions before
defining new ones helps eliminate any possi-

In[117]: = A ear [f] ble confusion and/or ambiguities.

f [x_.] =Sin[3x]/X;
Pl ot [f [X], {X, -7, 7}]
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1\/ 3

S0 on the interval -, 7.

Figure 2.1: Graph of (x)

From the graph shown in Figure 2.1, we might, correctly, conclude thgl‘,éiﬁﬁ](—3< =

3. Further evidence that lim, S"‘Ta‘ = 3 can be obtained by computing the values of
Randon{ Real , {a, b}] returns a "ran- f(X) for values ofx "near” 0. In the following, we us&andom to definexval s to be
dom” real number betweemandb. Because atable of 6 "random” real numbers. The first numbexinal s is between-1 and1,
we are generating "random” numbers, youﬁhe second betweenl/10 and 110, and so on.

results will differ from those obtained here.
In[118]: = xval s = Tabl e[Random[Real , {-1/ 10" n, 1/ 10" n}]1, {n, 0, 5}1

Qut[118] = {0.244954, 0. 0267254,
0. 00433248, -0. 000864136,
~0. 0000995605, 1. 833541075}

Map[ f, {x1,x2, x3, ..., xn}] returns We then usevlap to compute the value df(x) for eachxin xval s.

the set{f(x,), f(X,), ..., f(x,)}.
In[119]: = Map[f, xval s]

Qut[119] = {2. 73719, 2. 99679,
2.99992, 3.,
3.,3.)

From these values, we might again correctly deduce that s 1% = 3. Of course,

- 1 3( . . .
these results do not prove that Jing S£= = 3 but they are helpful in convincing us
that lim,_, SN = 3, O

X

2.1.1 Computing Limits

Some limits involving rational functions can be computed by factoring the numerator
and denominator.

Example 21. Compute
- 2X% + 25X + 72
x>-9/2 72 — 47X — 14x2"
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Solution. We ddinef r ac1 to be the rational expressie}{j,r%f"f‘lsz2 . We then attempt

to compute the value e}%_ if x = ~9/2 by usingRepl aceAl | (/. )to evaluate
fraclif x=-9/2 but see that it is undefined.

In[120]:= fracl = (2x"2 +25x +72)/ (72 -47x - 14x"2) ;
fracl/.x->-9/2
Power :: "infy" :
"I nfiniteexpressionl0 encountered."”
o ::"indet" : "Indeterm nateexpressi om0

I nterpretationBox [Conpl exI nfinity;
Directedinfinity[]] encountered."

Qut[120] = I ndeterm nate

Factoring the numerator and denominator viAtict or , Nurrer at or , andDenormi nat or,
we see that

- 2% +25¢+ 72 (X+8)(2x+9) i X+8
xo-92 72— 47X — 142~ x>-92 (8= TX) (2X+9)  x>-928 — 7X’

The fraction(x + 8)/(8 — 7x) is named r ac2 and the limit is evaluated by computing
the value off rac2 if x = -9/2.

In[121]: = Factor [Nunmerator [fracl]]
Qut[121]= (8+x) (9+2 x)

In[122]: = Factor [Denoni nat or [fracl]]

Qut[122]= -(9+2 x) (-8+7 Xx)
In[123]: = fr8ac2=Si mplify[fracl]
+ X
Qut[123] = 8-7 x Si npl i fy[ expression] attempts to
In[124]: = f7rac2/ . X=->-9/2 simplify expression
Qut[124] = 79

We cortlude that
2% +25x+72 7

im —— = —.
x>-912 72 — 47X — 14x%¢ 79
O

We can also use thiei mi t command to evaluate frequently encountered limits.
Limt[f[x],x->a]

attempts to compute lign,, f(x).

Thus, entering

In[125]:= Limit[(2X"2+25x +72)/ (72 - 47x - 14X 2), Xx- > -9/ 2]
Qut[125] = —o

. 2
computes lim, o, 22412 — 7/79
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Example 22. Calculate each limit: (a) lig, g5 525-220 - (b) lim, o S2; (c) lim, ., (1+ )";

(d) lim,_o €=2; (e)lim, ., e 2y/x; and(f) lim,_ . (& - -

X—00 (

Solution. In each case, we ude m t to evaluate the indicated limit. Entering

IN[126]:= Limit [(3x"2-7x -20)/ (21x" 2 + 14x - 35), x> -5/ 3]
Qut [ 126] 17

56
computes
im 3 - 7x-20 _17,
x>-5/3 21x? + 14x — 35 56’
and entering

In[127]:= Limt [Sin[x]/X, x->0]

Qut[127]= 1

computes
. sinx
lim — =1.
x-0 X

Mathematica represenss by | nf i ni t y. Thus, entering

In[128]:= Limt[(1+1/X) "X, X-> o]

Qut[128]= e
computes
1 X
lim (1+ —) =e.
X—00 X
Entering
In[129]:= Limit [(Exp[3x]-1)/x, x->0]
Qut[129]= 3
computes
_e¥-1
lim =3
x-0 X
Entering

In[130]:= Limt [Exp[-2X]Sqrt [X], X- > o]
Qut[130]= 0

Because Ix is undefined fox < 0, aright- computes lim, e >4/x = 0, and entering
hand limit is mathematically necessary, even

though Mathematicaki mi t function com- | n[131]:= Limit[1/ Log[x] -1/ (x -1), x->1]
putes the limit correctly without the distinc- 1 '
tion. Qut[131] = 2

Computes
Iim( t 1 )— =
wir\nx  x-1) 2
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We can often use thei m t command to compute symbolic limits.

Example 23. If $P is compounded times per year at an annual interest rate,dhe
value of the accounf, aftert years is given by

nt
A=(1+£) .
n

The formula for continuously compounded interest is obtained by taking the limit of
this expression as— co.

Solution. The formula for continuously compounded interest= P€!, is obtained
usingLi mi t.

In[132]:= Limt[p(l+r/n)"(n t), n->cw]
Qut[132]=¢e" ' p

2.1.2 One-Sided Limits

In some cases, Mathematica can compute certain one sided limits . The command
Limt[f[x],x->a, Direction->1]

attempts to compute lign,- f(x) while
Limt[f[x],x->a, Direction->-1]

attempts to compute lign . f(x).

Example 24. Compute (a) lim, . IXI/x; (b) lim
lim,_o eV

o XX (€) lim,y_ g €Y% and (d)

Solution. Even though lim, [X//x does not exist, lim, 4 [XI/x = 1 andlim, - [X/x =
-1, as we see usirlg m t together with thédi r ecti on->1 andDi r ecti on- >-
1 options, respectively.

In[133]:= Limt [Abs[x]/X, x->0]

Qut[133]=1
In[134]:= Limt [Abs[x]/X, x->0, Direction->-1]
Qut[134]=1
In[135]:= Limt [Abs[x]/ X, x->0, Direction->1]

Qut[135]= -1
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10

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

Figure 2.2: Graph of = e ¥* on the interva[-3/2, 3/2].

TheDi recti on->-1andDi recti on->1 options are used to calculate the correct
values for (c) and (d), respectively. For (c), we have:

In[136]:= Limt[1/X, X->0]
Qut[136] = o

In[137]:= Limt[1l/x, x->0, Direction->-1]
Qut[137]= »

In[138]:= Limt[1l/x, x->0, Direction->1]
Qut[138] = -

In[139]:= Limt [Exp[-1/x], x->0]
Qut[139]= 0

Similarly, for (d) we have:

In[140]:= Limt [Exp[-1/Xx], x->0, Direction->1]
Qut[140] = o

In[141]:= Limt [Exp[-1/x], x->0, Direction->-1]
Qut[141]= 0
We confirm these results by graphiyg= e V* with Pl ot in Figure 2.2.

In[142]:= Pl ot [Exp[-1/x], {x, -3/2, 3/ 2},
Pl ot Range- > {{-1, 1}, {0, 10}}]

O

TheLi mi t command together withtHai r ect i on- >1 andDi r ecti on- >- 1 op-

tions is a "fragile” command and should be used with caution because its results are
unpredictable, especially for the beginner. It is wise to check or confirm results using
a dfferent technique for nearly all problems faced by the beginner.
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2.2 Differential Calculus

2.2.1 Definition of the Derivative

Thederivative of y = f(x) is

im f(x+h) - f(x),

lim h (2.1)

provided this limit exists.

ThelLi nmi t command can be used along wghnpl i fy to compute the derivative
of a function using the definition of the derivative.

Remark. To define a function of a single variablx) = expressioninxenerf [ x_] =expressi on i n x.
To generate a basic plot of= f(x) fora<x < b, erterPl ot [ f[ X], {x, a, b}].

Example 25. Use the definition of the derivative to compute the derivative of (&) =
X+ Ux, (b) g(x) = /x+ L/4/xand (c)h(x) = sin .

Solution. For (a) and (b), we first defind andg, compute the difference quotient,
(f(x+ h) — f(x))/h, smplify the difference quotient witlsi npl i f y, anduseLi m t
to calculate the derivative.

In[143]:= f [x_.] =x+1/x;
sl=(f[x+h]-f[x])/h

h-1,.2
out [ 143] = %
In[144]):= s2 =Sinmplify[sl]
~1+h x+x2
Qut[144) = — =

In[145]:= Limt [s2, h->0]

R 2
Qut[145]= =

X

In[146]:= g[x.]1 =1/ Sqrt [x]
sl=(glx+hl-gIx])/h

1

Qut [ 146] = =

i, 1
Qut [ 146] = %
In[147]:= s2 = Toget her [s1]
Qut[1477= VX Vhex

h /X +h+x
In[148]: = Lim'lt [s2, h->0]

For (c), we defindrand the useTr i gExpand to simplify the difference quotient. We
useLi mi t to compute the derivative. The result indicates @e(sin ) = 2 CcOoS2X.
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In[149]:= h[x.] =Sin[2x];
s2=(h[x+h]-h[x1)/h

Qut[149]= ~S N2 X]+Sin(2 (hex)]

h
In[150]:= s2 =Tri gExpand[s2]
Qut[150] = = (2 Cos[h] Cos[x]? Sin[h] -2 Cos[x] Sin[x]+

h
2 Cos[h]? Cos[x] Sin[x]-2 Cos[x] Sin[h]? Sin[x]-
2 Cos[h] Sin[h] Sin[x]?)
In[151]:= s3 =Linit[s2, h->0]
Qut[151]= 2 Cos[2 Xx]

O

If the derivative ofy = f(x) exids atx = a, ageometric interpretation off’(a) is that
f’(a) is the slope of the line tangent to the graptyef f(x) at the pointa, f(a)).

To motivate the definition of the derivative, many calculus texts choose a valge of
X = a, and then draw the graph of the secant line passing through the gairfis))
and(a + h, f(a+ h)) for "small” values ofh to show that at approaches 0, the secant
line approaches the tangent line. An equation of the secant line passing through the
points(a, f(a)) and(a + h, f(a + h)) is given by
fa+h) - f(a) f(a+h) - f(a)

y—-f@@=——(x-a or y= h

@ih-a x—a) + f(a).

Example 26. If f(x) = 9 — 4x?, graph f(x) together with the secant line containing
(1, f(1)) and(1 + h, f(1 + h)) for various values of.

Solution. We ddine f(x) = 9 — 4x? andy(x, h) to be a function returning the line
containing(1, f(1)) and(1 + h, f(1 + h)).

In[152]:= f[x.]1 =9-4x"2;
yIx, h.l= (f[l+h]-f[11)/ h(x-1) +f[1];

In the following, we uséo to show the graphs of(x) andy(x,h) forh = 1,2,...,9.
The resulting animation can be played and controlled from the Mathematica menu.
(See Figure 2.3.)

In[153]:= Do[Plot [{f [X], YI[X, 1/ h]},
{x, -3, 3}, Pl ot Range- > {-10, 10}1],
{h, 1, 10}]

If instead the command is entered as

In[154]:= listofgraphics =Tabl e[Pl ot [{f [X], YI[X, 1/ h]}, {Xx, -3, 3},
Pl ot Range- > {-10, 10}, Di spl ayFuncti on->Ildentity],
{h, 1, 10}1

In[155]:= toshow="Partition[listofgraphics, 3]

I n[ 156] : = Show[G aphi csArray [t oshow] ]
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s«Chap2.nb

==

Infz]:= Do[Plot[{£[x]. ¥[x. 1 /h]}.
{x. -3, 3}. PlotRange -> {-10, 10}].
{h, 1, 10}]

[ CES T |

=D

[4]¥

Figure 2.3:

An animation

wi

wi

Figure 2.4: A graphics array
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the result is displayed as a graphics array. (See Figure 2.4.) O

The functionsD and’ are used to differentiate functions. Assuming that f(x) is
differentiable,

1. O f[x], x] computes and returng(x) = d f/dx

2. ' [ x] computes and returng(x) = d f/dx

3. f' ' [ x] computes and returnig?(x) = d?f/dx?, and

4. O f[x],{x, n}] computes and returng™(x) = d"f/dx".
Mathematica knows the numerous differentiation rules, including the product, quotient,
and chain rules. Thus, entering

I n[157]: = dear [f, g]

DIf [X19[x1, X]
Qut[157] = g[x] f'[x] +f [x] @ [x]
shows s tha $L(f(X) - g0 = f'(0g(x) + F(Xg (x); enteing

I n[ 158] : = Toget her [D[f [x]1/g[X], X]11
out[158] = 41X f 1x] —fzm 9’ [x]
g[x]

shows 8 thd dix(f(x)/ gx) = (f'gx) — F)g X))/ (g(X)?; and etering

I'n[159]: = DIf [g[x11, X]
Qut[159] = f'[g[x]] @ [x]

shows s tha Z(f (9(x) = ' (9(X) g' (0.

Example 27. Compute the first and second derivatives ofya) x* + 3x° — 3%, (b)
f(0) = 4C - 3x* - 108, (c)y = Ve* + e, and(d)y = (1 + U/x)*.

Solution. For (a) we useD.

In[160]:= D[x 4 +4/3x"3-3x"2, x]
Qut[160]= -6 x+4 x?+4 X3

In[161]:= D[x 4 +4/3x"3-3x"2, {X, 2}]
Qut[161]= -6 +8 x +12 x?

For (b), we first definef and the use’ together withFact or to calculate and factor
f'(x) and f”(x).

In[162]:= f [x.] =4x"5-5/2x"4-10x"3;
Fact or [f’[x]1]

Factor [f"[x]]
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Qut[162]= 10 x® (1+x) (-3+2 X)
Qut[162]= 10 x (-6-3 x +8 x?)

For (c) we usesi npl i fy together withD to calculate and simplify’ andy”.

In[163]:= D[Sqrt [Exp[2x] + Exp[-2x11, X]
_ -2 X 2 x
Qut [ 163] %

In[164]:= D[Sqrt [Exp[2X] + ExXp[-2x11, {X, 2}1//Sinmplify
Ve? X, e X (1:6 e e X

(1+e* %)?

out [ 164]

By hand, (d) would require logarithmic differentiation. The second derivative would
be particularly difficult to compute by hand. Mathematica quickly computes and sim-
plifies each derivative.

In[165]:= Sinmplify[D[(1+1/x)"x, x11]

out [ 165] = (1+1)" (-1+(@1+x) Log[1+1])
1+x
In[166]:= Sinmplify[D[(1+1/x)"x, {X, 2}1]
O ) (“1ex-2x (1+x) Log[l+i]ex (1+x)2 Log[1+%}2)
Qut [ 166] = Lx?

O

The command/ap[ f, | i st] applies the functiofi to each element of the lisi st .
Thus, if you are computing the derivatives of a large number of functions, you can use
Map together withD.

Remark. A built-in Mathematica function ithreadableif f [ | i st] returns the same
resultasdvap[ f, | i st]. Many familiar functions likedbandl nt egr at e are thread-
able.

Example 28. Compute the first and second derivatives ofxsinosx, tanx, sinx,
cos!x, andtarr® x.

Solution. Notice that lists are contained in braces. Thus, entering
In[167]:= Map[D[#, x]1&,
{Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x], ArcTan[x]}]

_ L« ) 1 1 1
Qut[167] = { Cos [x], Sln[x],Sec[x],m, W’1+x2}

computes the first derivative of the three trigonometric functions and their inverses
while entering

In[168]: = Map[D[#, {x, 2}1&
{Sin[x1, Cos[x], Tan[x], ArcSin[x], ArcCos[x], ArcTan[x]}]

Qut[168]= {-Sin[x], -Cos[x], 2 Sec[x]? Tan[x], ;3/2
(1-x2)
~ X ~ 2 X }
(1-x2)¥2" (14x2)?
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computes the second derivative of the three trigopnometric functions and their inverses.
Becausdis threadable, the same results are obtained with

In[169]: = D[
{Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x], ArcTan[x]},
X]
Qut[169] = { Cos[x], -Sin[x], Sec[x]?, ! .- ! , ! }
VI k2 VI x? 1k
In[170]: = D[
{Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x], ArcTan[x]},
{X, 2}1
Qut[170] = {-Sin[x], -Cos[x], 2 Sec[x]? Tan[x], W
X 2 X }
T1-x)¥TP (14x2)2

Implicit Differentiation

If an equation contains two variablesandy, implicit differentiation can be carried
out by explicitly declaring to be a function ok, y = y(x), andusingD or by using the
Dt command.

Example 29. Findy' = dy/dxif (a) cos(e?) = x and (b) In(x/y) + 5xy = 3y.

Solution. For (a) we illustrate the use dd. Notice that we are careful to specifically
indicate thaty = y(x). First we differentiate with respect to

In[171]:= s1 =D[Cos[Exp[X Yy[X]11] -X, X]
Qut[171] = BoxData(-1-€* YIXI SinfeX YXI1 (y[x] +x y' [x]))

and then we solve the resulting equationyoe dy/dxwith Sol ve.

In[172]: = Sol ve[sl ==0, y’[x]1]

X yIxX] X yIx] X yIX] ginrex VIX]
Qut[172] = BoxData ({{y’ [X] - - Gsele ] (1+f Sinfe ] YIXT) oy,

For (b), we useDt . When singDt , we interpretDt [ x] = LandDt [ y] = ¥ = dy/dx
Thus, entering

In[173]:- s2 =Dt [Log[x/y] +5x y—3y]
Dt [Xx] x Dt[y]
y (T,_Z_L>

Qut[173]= 5y Dt [x] -3 Dt [y] +5 x Dt [y] + L

In[174]:= s3 =s2/. {Dt [x]->1, Dt [y]->dydx}
dydx x

oy
X

3y
Qut[174] = -3 dydx +5 dydx x+5 y +
In[175]:= Sol ve[s3 == 0, dydx]

_ y (1+5 xvy)
Qut[175] = dedX*‘x (-1-3 y+5 x y)”
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-10

Figure 2.5:f(x) together with its tangent &1, f(1))

shows s that f In (x/y) + 5xy = 3y,

y = dy  (1+5xyy
T dx (5xy-3y-1)x

2.2.2 Tangent Lines

If f’(a) exists, we interpretf’(a) to be the slope of the line tangent to the graph of
y = f(x) at the poinfa, f(a)). An equation of the tangent is given by

y-f(@=f@x-a o y=f@x-a+f@

Example 30. Find an equation of the line tangent to the grapli©ed = 9 — 4x? at the
point (1, f(1)).

Solution. After defining f, we sedhat f(1) = 5 andf’(1) = -8

In[176]:= f [x_.]1 =9-4x"2;
f 1]

f7[1]
Qut[176]= 5
Qut[176]= -8

so an equation of the line tangentyte= f(x) at the point(1,5)isy-5= -8(x- 1) or
y = —8x+ 13. We can visualize the tangent(at f(1)) with Pl ot . (See Figure 2.5.)

In[177]:= Plot [{f [x], f"[11(x-1) +f [1]}, {Xx, -3, 3},
Pl ot Styl e- > {GrayLevel [0], G ayLevel [0. 31},
Pl ot Range- > {-10, 10}]
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0= sthap2nb=— HH

In(14)= Po[Plot[{f[x]. £'[al (x -a) +£[al}. {z. -3. 3}.
PlotStyle -> {GrayLevel[0]. GrayLevel[.3]}. PlotRange —> (-10. 10}].
{a. -2, 2, 4/49}]
10

H

3 2 = 1 B
2.5
-
7.5
-10

= S00EAET100% [l DE

Figure 2.6: An animation

In addition, we can view a sequence of lines tangent to the graph of a function for
a s@uence ofx values usingo. In thefollowing, we useDo to generate graphs of

y = f(x) andy = f’(a)(x — a) + f(a) for fifty equally spaced values @ between-3

and 3. (See Figure 2.6.)

In[178]:= Do[Plot [{f [x], f'[a]l(x-a) +f[al}, {X, -3, 3}, PlotStyle->
{GrayLevel [0], GrayLevel [0. 3]}, Pl ot Range- > {-10, 10}1,
{a, -2, 2, 4/ 49}]

On the other hand,

In[179]: = listof graphics =Table[
Pl ot [{f [x], f'[al(x-a) +f [al}, {X, -3, 3}, PlotStyle->
{GayLevel [0], G ayLevel [0. 31}, Pl ot Range- > {-10, 10},
Di spl ayFunction->ldentity], {a, -2, 2, 4/8}1;
toshow=Partitionflistofgraphics, 3];
Show[G aphi csArray [t oshow] ]

graphsy = f(x) andy = f’(a)(x—a) + f(a) for nine equally spaced valuesabetween
—3 and 3 and displays the result as a graphics array. (See Figure 2.7.)

In the graphs, notice that where the tangent lines have positive siopg £ 0), f(x)
is increasing while where the tangent lines have negative slbje (< 0), f(x) is
decreasing. O

Parametric Equations and Polar Coordinates

For theparametric equations = f(t),y=gt)}, t 1,

3 Q _dy/dt  g()

y= dx dx/dt  ft)

and

_d?%y  ddy didudy/dx

y T @ dxdx  dx/dt
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Figure 2.7:f(x) together with various tangents
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If {x= f(t),y = g(t)} has a tangent line at the poifft(a), g(a)), parametric equations
of the tangent are given by

x=f@+tf'(a and y=9@ +tg'(a). (2.2)
If g'(a) # 0, we can eliminate the parameter from (2.2)

x-f@ y-9@

'@  dJg@
y- 9@ = gi; ~ @)

and obtain an equation of the tangent line in point-slope form.

In[180]:=1 =Sol ve[x[a] +t x'[a] ==cCX, t]

r =Solve[y[a] +t y'[a]l ==cy, t]

Qut[180] = BoxData ({{t - - Cy[ix}”}})
-Cy +yl[a]
Qut [ 180] = BoxDat R A Ak
[180] = BoxData({{t - v ia] Iay!

Example 31 (The Cycloid). Thecycloid has parametric equations
X =1t -sint and y=1-cost.

Graph the cycloid together with the line tangent to the graph of the cycloid at the point
(X(a), y(@) for various values o0& between-2r and 4.
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Solution. After definingx andy we us€ to computedy/dtanddx/dt We thex com
putedy/dx= (dy/dt/(dx/dt) andd?y/dxX.

In[181]:= x[t_.1=t -Sin[t];
ylt-1=1-Cos[t];
dx = x"[t]

dy =y’[t]
dydx = dy/ dx

Qut[181]= 1 - Cos [t ]
Qut[181]= Sinft]

Sinft
Qut[181] = ﬁ
In[182]: = dypdtl= Si mpl i fy[D[dydx, t11
In[183]: = seconddt]e_ri v = Si nplify[dypdt/dx]
ut[183]= -——

(-1+Cos[t])

We then usePar anet ri cPl ot to graph the cycloid for2r < t < 4x, naming the
resulting grapip1.

In[184]:= pl =ParanetricPlot [{x[t], Y[t1}, {t, -2x, 4x},
Pl ot Styl e- > {{GrayLevel [0], Thi ckness[0.011}},
Di spl ayFuncti on->Ildentity];

Next, we useTabl e to definet opl ot to be 40 tangent lines (2.2) using equally
spaced values af between-2r and 4r. We thengraph each lin¢ opl ot and name
the resulting grapp2. Finally, we showpl andp?2 together with theshow function.
The resulting plot is shown to scale because the lengths afahdy-axes are equal and
we include the optiodspect Rat i o- >1. In the graphs, notice that on intervals for
whichdy/dxis defineddy/ dxis a decreasing function and, consequemtly/dx < 0.
(See Figure 2.8.)

In[185]:= toplot =Tabl e[
{x[a] +t x’[a], y[al+t y’'[al}, {a, -2x, 4x, 6x/ 39}];
p2 = Paranetri cPl ot [Eval uat e[t opl ot ],
{t, -2, 2}, PlotStyl e- > G ayLevel [0.5],
Di spl ayFuncti on->Ildentity];
Show[pl, p2, Aspect Rati o->1, Pl ot Range- > {-3, 3n},
Di spl ayFuncti on- > $Di spl ayFuncti on]

O

Example 32 (Orthogonal Curves). Two linesL, andL, with slopesm, andm,, re-
spectively, areorthogonal if their slopes are negative reciprocafs; = -1/m,. Ex-
tended to curves, we say that the cur@sandC, areorthogonal at a point of inter-
section if their respective tangent lines to the curves at that point are orthogonal.

Show that the family of curves with equatiof + 2xy — y?> = C is orthogonal to the
family of curves with equatiog? + 2xy — x* = C.
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Figure 2.8: The cycloid with various tangents

Solution. We bain by definingeql andeq?2 to be the left-hand sides of the equations
X2 + 2xy — y? = C andy? + 2xy — X* = C, respectively.

IN[186]:= eql=X"2+2Xx y-Yy~2;
eq2 =y 2+2x y-x"2;

We thenuseDt to differentiate andsol ve to findy = dy/dx Because the derivatives

are negative reciprocals, we conclude that the curves are orthogonal. We confirm this
graphically by graphing several members of each family v@tmt our Pl ot and
showing the results together. (See Figure 2.9.)

In[187]:= BoxData({sl = Dt [eql]/. {Dt [x]- > 1, Dt [y]l- > dydx}, Solve[sl ==
0, dydx1})

Qut[187]= 2 x+2 dydx x+2 y -2 dydx y

out[187] = {{dydx »7%}}

In[188]:= BoxData({s2 = Dt [eq2]/. {Dt [x]- > 1, Dt [y]l- > dydx}, Solve[s2 ==
0, dydx1})
Qut[188]= -2 x+2 dydx x+2 y+2 dydx y

Qut [ 188] = {{ddeA—%}}
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Figure 2.9:x% + 2xy — y? = C andy? + 2xy — x? = C for various values o€

I n[189]: = cpl = Cont our Pl ot [eql, {x, -5, 5}, {y, -5, 5},

Cont our Shadi ng- > Fal se, Cont our Styl e- > G aylLevel [0],
Frame- > Fal se, Axes- > Autonmatic, AxesOri gi n-> {0, 0},
Di spl ayFuncti on->Identity, Pl ot Poi nts->60];

cp2 = Cont our Pl ot [eq2, {x, -5, 5}, {y, -5, 5},
Cont our Shadi ng- > Fal se, Cont our Styl e- > G aylLevel [0. 4],
Frame- > Fal se, Axes- > Autonmati c, AxesOri gi n-> {0, 0},
Di spl ayFuncti on->Identity, Pl ot Poi nts->60];

Show[cpl, cp2, D spl ayFuncti on->$Di spl ayFuncti on]

2.2.3 The First Derivative Test and Second Derivative Test

Examples 30 and 31 illustrate the following properties of the first and second derivative.

Theorem 1. Let y= f(x) be continuous oifa, b] and differentiable orga, b).

1. If f/(x) = Ofor all x in (a, b), then f(X) is constant orja, b].
2. If f/(x) > Ofor all xin (a, b), then f(x) is increasing ora, b].

3. If f/(x) < Ofor all x in (a, b), then f(x) is decreasing offia, b.

For the seond derivative, we have the following theorem.
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Theorem 2. Let y= f(x) have a second derivative @a, b).

1. If f”(x) > Ofor all x in (a, b), then thegraph of f(x) is concave up ofa, b).
2. If f”(x) < Ofor all x in (a, b), then thegraph of f(x) is concave down o, b).

The critical points correspond to those points on the graphyof f(x) where the
tangent line is horizontal or vertical; the numiyet ais acritical number if f’(a) =0

or f’(x) does not exist ik = a. Theinflection points correspond to those points on the
graph ofy = f(x) where the graph of = f(x) is neither concave up nor concave down.
Theorems 1 and 2 help establish the First Derivative Test and Second Derivative Test.

Theorem 3 (First Derivative Test). Let x = a be acritical number of a function y
f(x) continuous on an open interval | containing=xa. If f(x) is differentiable on I,
except possibly at x a, f(a) can be classified as follows.

1. If f/(x) changes from positive to negative atxa, then {a) is arelative maxi-
mum.

2. If f/(x) changes from negative to positive atxa, then {a) is arelative mini-
mum.

Theorem 4 (Second Derivative Test)Let x = a be acritical number of a function
y = f(X) and suppose thatfx) exists on an open interval containing=xa.

1. If f”(a) < 0, then f(a) is a relative maximum.
2. If f7(x) > 0, then f(a) is a relative minimum.

Example 33. Graphf(x) = 3x> — 5x°.

Solution. We begin by definingf (x) and then computing and factorirfigfx) and f”’(x).

In[190]:= f [x_.] =3x"5-5x"3;
dl = Factor [f"[Xx]]

d2 = Factor [f " [Xx]]
Qut[190]= 15 (-1+x) x2 (1+X)
Qut[190]= 30 x (-1+2 x?)

By inspection, we see that the critical numbersaee 0, 1, and-1 while f”(x) = 0
if x =0, ¥/2, or—1/+/2. Of course, these values can also be found Bihve as
done nextircns andi ns, respetively.

In[191]:= cns = Sol ve[dl == 0]

ins =Sol ve[d2 == 0]
Qut[191]= {{x - -1}, {X—>0{, {XeO},l{Xel}}

Qut[191] = {{x >0}, {x97ﬁ}, {xaﬁ}}
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Figure 2.10: Graphs of’(x)I/ f/(x) and|f” (X)I/ T (X)

We find the critical and inflection points by usirhg (Repl aceAl | ) to conpute f(x)

for each value ok in cns andi ns, respectively. The result means that the critical
points are(0, 0), (1, —2) and(-1, 2); the inflection points are0, 0), (1/v/2,-7v2/8),
and (-1//2,7/2/8). We also see thaf”’(0) = 0 0 Theorem 4 cannot be used to
classify f(0). On theother hand,f”(1) = 30 > 0 andf”(-1) = —30 < 0 so by
Theorem 4f (1) = -2 is arelative minimum and (-1) = 2 is arelative maximum.

In[192]:= cps = {x, f [x]}/ .cns
f”[x1/.cns

ips={x, f[x]1}.ins
Qut[192]= {{-1, 2}, {0, O}, {O, O}, {1, -2}}
Qut[192] = {-30, 0, 0, 30}

Qut[192] = {0, 0}, { ! 1 !

1

“ave e e

We can graphically determine the intervals of increase and decrease by noting that if
') > 0 (f'(x) < 0), I/ F/(x) = L (1 f’l T/(x) = —1). Similarly, the intervals for
which the graph is concave up and concave down can be determined by noting that if
f700 > 0 (f7(x) < 0), 1Tl £7(x) = 1 (If” (Xl f7(x) = —1). We usePl ot to graph
[0l £/(x) and|f”())I/ f”(X) in Figure 2.10.

In[193]:= Plot [{Abs[d1l]1/d1l, Abs[d2]/d2}, {x, -2, 2},
Pl ot Styl e- > {G ayLevel [0], GrayLevel [0. 3]},
Pl ot Range- > {-2, 2}]

From the graph, we see th&t(x) > 0 for x in (—co,-1) U (1,00), f’(x) < O for
X in (=1,1), f/(x) > 0 for x in (-1/v/2,0) U (/V/2, ), and f”(x) < 0 for x in
(=00, -1/4/2) U (0, 1/+/2). Thus, the graph of () is

e increasing and concave down fom (—oo, —1),

e decreasing and concave down fan (-1, -1/ V2),
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Figure 2.11:f(x)for-2<x<2and-4<y<4

e decreasing and concave up foin (-1+/2,0),
e decreasing and concave down fdn (O, 1V2),
e decreasing and concave up fain (1/v/2, 1), and

e increasing and concave up foin (1, o).

We also see thaf(0) = 0 is reither a relative minimum nor maximum. To see all
points of interest, our domain must contaith and 1 while our range must contai2
and 2. We choose to gragtix) for -2 < x < 2; we choose the range displayed to be
-4 <y =<4 (SeeFigure 2.11.)

In[194]:= Pl ot [f [x], {X, -2, 2}, Pl ot Range- > {-4, 4}]
U

Remember to be especially careful when working with functions that involve odd roots.
Example 34. Graphf(x) = (x — 2)%3(x + 1)V3,

Solution. We beagin by defining f(x) and then computing and simplifyin§ (x) and
f”(x) with’ andSi npl i fy.

In[195]:= f[x.1=(Xx-2)"(2/3) (x+1)" (1/3);
dl=Sinplify[f’[x]]

d2 =Sinplify[f”[x]]
X

Qut [19] (-2+x)¥3 (14x)%3

out[195] = -

(-2+x)%3 (1+x)%3

By inspection, we see that the critical numberssaee 0, 2, and-1. We cannot use
Theorem 4 to classifif (2) and f(-1) becausef”’(x) is undefined ifx = 2 or—1. On
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Figure 2.12:f(x) for -2 < x < 3

the other handf”(0) < 0 sof(0) = 223 is a relative maximum. By hand, we make a
sign chart to see that the graphfak) is

e increasing and concave up Ofco, —1),

e increasing and concave down 61, 0),

decreasing and concave down@n2), and

e increasing and concave down (&) co).

Hence, f(-1) = 0 is reither a relative minimum nor maximum whilg2) = 0 is a
relative minimum by Theorem 3. To graglix), we load theReal Onl y package and
then usePl ot to graphf(x) for -2 < x < 3 in FHgure 2.12.

In[196] : = << M scel | aneous* Real Onl y*
f [0]

Pl ot [f [x1, {X, -2, 3}]
Qut[196]= 2%3

2.2.4 Antidifferentiation

F(x) is anantiderivative of f(x) if F’(x) = f(x). The synbol

ff(x)dx

means "find all antiderivatives df(x)”. Because all antiderivatives of a given function
differ by a constant, we usually find an antiderivatik€x), of f(x) and the write

f f(x)dx=F(x) +C,
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whereC represents an arbitrary constant. The command
Integrate[ f[x], x]

attempts to computf f(x)dx In the @ame way a® can differentiate many functions,

I nt egr at e can antidifferentiate many functions. However, antidifferentiation is a
fundamentally difficult procedure so it is not difficult to find functiofix) for which

the command nt egr at e[ f [ X] , X] returns unevaluated.

Example 35. Evaluate each of the following antiderivatives: fai‘?e” *dx, (b) f x? cosx dx,
(©) [*V1+xdx (d) [ XX2-dx and(e) [ S™dx

X—x2+x-1

Solution. Entering

In[197]:= Integrate[l/x"2 Exp[l/x], x]
Qut[197] = -ex

shows s tha [ e”*dx = —e¥* + C. Notice that Mathematica does not automatically
include the arbitrary constanf. When @mputing several antiderivatives, you can
useMap to applyl nt egr at e to a list of antiderivatives. However, becauset e-

gr at e is threadablelap[ | nt egr at e[ #, X] & | i st] returns the same result as
Integrate[list, x],whichwe illustrate to compute (b), (c), and (d).

In[198]:= Integrate[{x" 2 CosI[x],
X"2 Sqrt[1+x° 2], (X"2-x+2)] (X"3-x"2+x-1)},
X1
Qut[198]= {2 x Cos[x] -2 Sin[x]+x? Sin[x],
X ﬁ)_ArcSinh[xJ

1+x2 (—+ 8

5" 2 , ~ArcTan[x] +Log[-1+x]}

For (e), we see that there is not a "closed form” antiderivativ§ éi[(‘—xdx and the result
is given in terms of a definite integral, thae integral function:

L
Si(x):f sint ;.
o ¢t

In[199]:= Integrate[Sin[x]/Xx, x]
Qut[199] = Sinlntegral [x]

O

Usually, the first antidifferentiation technique discussed is the methadsabstitu-
tion. Suppose thaE(x) is an antiderivative of (x). Given

f f (9(x) g'(¥) dx,
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we letu = g(x) so thatdu = ¢’(x) dx. Then,

ff(g(x))g’(x)dx:ff(u)du:F(u)+C=F(g(x))+C,

whereF (x) is an antiderivative of (x). After masteringu-substitutions, thantegration

by parts formula,
fudv= uv—fvdu, (2.3)

Example 36. Evaluate[ 2*v4* - 1dx

is introduced.

Solution. We ug | nt egr at e to evaluate the antiderivative. Notice that the result is
verycomplicated.

In[200]:= Integrate[2"x Sgrt [4"x -1], X]
21X /1. 4%
2 Log[2] +Log[4]
1 Log[2] Log[2]
2' Log[4)’ L *logay ? ] Log(4]|/

(V-1+4% Log[2] (2 Log[2] +Log[4]))

Qut [ 200] = - (ZX V1 -4* Hypergeometric2F1]

Proceeding by hand, we let= 2*. Then, du = 2X In2dxor, equivalently,ﬁdu =
2%dx

In[201] : = D[2" x, X]
Qut[201] = 2* Log([2]

so [ 2V 4 - 1dx= 35 [ Vu? - 1du. We nowusel nt egr at e to evaluatef Vu? — 1du

In[202]:= sl =Integrate[Sqrt [u"2-1], u]
Qut[202] = % u \/—l+u2—% Log [u+~/-1+u?]

and then’ . (Repl aceAl | )to replaceu with 2*.

In[203]:=s1 /.u->2"x
Qut[203] = 271X /-1 + 22 h% Log [2* +~/-1+22 X|

Clearly, proceeding by hand results in a significantly simpler antiderivative than using
I nt egr at e directly. |
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2.3 Integral Calculus

2.3.1 Area

In integral calculus courses, the definite integral is frequently motivated by investigat-
ing the area under the graph of a positive continuous function on a closed interval. Let
y = f(X) be a non-negative continuous function on an intefeab] and letn be a
positive integer. If we dividé¢a, b] into n subintervals of equal length and [eq{_l, xk]
denote théth subinterval, the length of each subintervakis- a)/n andx, = a+ kb%a.

The area bounded by the graphsyoE f(x), X = a, x = b, andthe y-axis can be
approximated with the sum

3 hx) 22, 2.4)

k=1

wherex* € [%_1, %]. Typically, we takex* = X_; = a+ (k— 1)22 (the left endpoint
of thekth subinterval)x * = x,_, = a+ kb—;"" (the right endpoint of th&th subinterval),
orx* = 3 (X 1 +%) = a+ 3(2k— 1)22 (the midpoint of thekth subinterval). For
these choices o *, (2.4) becomes

b-a < b-a
BN (a+ k- DT) (2.5)
k=1
n
b-a f(a+ kb_—a), and 2.6)
n n
k=1
b-a f(a+ Lok 1)b;a), 2.7)
n & 2 n

respectively. Ify = f(x) is increasing ona, b], (2.5) is an under approximation and
(2.6) is an upper approximation: (2.5) corresponds to an approximation of the area us-
ing n inscribed rectangles; (2.6) corresponds to an approximation of the areanusing
circumscribed rectangles. yf= f(x) is decreasing ofm, b], (2.6) is an under approxi-
mation and (2.5) is an upper approximation: (2.6) corresponds to an approximation of
the are usingn inscribed rectangles; (2.5) corresponds to an approximation of the area
usingn circumscribed rectangles.

In the following example, we define the functidnsf t suni f [ x], a, b, n] ,m ddl esun{ f[ x], &, b, n],
andri ght sun{ f[x], a, b, n] to compute (2.5), (2.7), and (2.6), respectively, and

| eftbox[f[x],a, b,n],m ddl ebox[f[x], a, b, n],andrightbox[f[Xx], a,b, n]

to generate the corresponding graphs. After you have defined these functions, you can

use them with functiong = f(x) that you define.

Remark. To define a function of a single variablg(x) = expressioninxenerf [ x_] =expressi on i n Xx.
To generate a basic plot of = f(x) fora<x < b, enterPl ot [f[ X], {x, a, b}].

Example 37. Let f(x) = 9 — 4x2. Approximate the area bounded by the graply ef
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0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 2.13:f(x) for0 < x < 3/2

f(x), x = 0,x = 3/2, and they-axis using (a) 100 inscribed and (b) 100 circumscribed
rectangles. (c) What is the exact value of the area?

Solution. We begin by defining and graphing= f(x) in Figure 2.13.

In[204]:= f[x.]1 =9-4x"2;
Pl ot [f [x]1, {X, 0, 3/ 2}]

The first derivative,f’(x) = —8x is negative on the interval sb is decreasing on
[0,3/2]. Thus, an approximation of the area using 100 inscribed rectangles is given by
(2.6) while an approximation of the area using 100 circumscribed rectangles is given
by (2.5). After defininind ef t sum ri ght sum andni ddl esum these alues are
computed using ef t sumandr i ght sum Theuse ofrmi ddl esumis illustrated as

N[ nurtber] returns a numerical approxi-well. Approximations of the sums are obtained with

mation ofnumber
In[205]: = leftsum[f_, a., b, n_.] :=Mdul e[{},

(b-a)/n Sum[f/.x->a+ (k-1)(b-a)/n, {k, 1, n}11;
rightsum[f_ a., b, n.] :=Mdul e[{},

(b-a)/n Sumf/.x->a+k((b-a)/n, {k, 1, n}11;

m ddl esum[f _, a_, b_, n_] := Modul e[{},

(b-a)/n Sum[f/.x->a+1/22k-1)(b-a)/n, {k, 1, n}11;

In[206]:= 1100 =1 eftsum[f [x], O, 3/2, 100]

N[l 100]

r100 =ri ght sum[f [x], 0, 3/ 2, 100]
N[r100]

mL00 = ni ddl esum[f [x], O, 3/ 2, 100]
N[n1L00]

362691
40000

Qut [ 206] =
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Qut [ 206] =

Qut [ 206] =

Qut [ 206] =

Qut [ 206] =

out [ 206] =

9. 06728

357291
40000

8. 93228

720009
80000

9. 00011

77

Observe that these three values appear to be close to 9. In fact, 9 is the exact value of

the area of the region bounded Yy f(x), x = 0, x = 3/2, and they-axis. To help us

see why this is true, we defihef t box, m ddl ebox, andr i ght box, and then use it is not important that you understand the
these functions to visualize the situation using 4, 16, and 32 rectangles in Figurgntax of these three functions at this time.

2.14,

I n[207]: =

In[208]: =

leftbox[f_ a., b, n, opts__] :=
Modul e[{z, p1, recs, | s},
z[k.1=a+ (b-a)k/n;
pl =Plot [f, {X, a, b},
Pl ot Styl e- > {{Thi ckness [0. 01], GrayLevel [0.31}},
Di spl ayFunction->1ldentity];
recs = Tabl e[Rect angl e[
{z[k -11, 0}, {z[k], f/.x->z[k-11}1, {k, 1, n}1;
Is=Table[Line[{{z[k-11, 0}, {z[k-1], f/.x->z[k-11},
{z[kl, f/.x->z[k-11}, {z[kl, 0}}1, {k, 1, n}I;
Show[G aphi cs[{G ayLevel [0. 8], recs}],
Graphics[ls], pl, opts, Axes->Automati c,
Di spl ayFuncti on->$Di spl ayFunction]]

ri ghtbox[f_ a, b, n, opts__] :=
Modul e[{z, p1, recs, | s},
z[k.] =a+ (b-a)k/n;
pl="Plot [f, {X, &, b},
Pl ot Styl e- > {{Thi ckness [0. 01], GrayLevel [0.31}},
Di spl ayFuncti on->ldentity];
recs = Tabl e[Rect angl e[
{z[k -11, 0}, {z[k1, f/.x->2z[k1}1, {k, 1, n}1;
|s =Table[Line[{{z[k -11, 0}, {z[k-11, f/.x->2z[k]},
{z[kl, f/.x->2z[k1}, {z[k]l, 0}}1, {k, 1, n}1;
Show[G aphi cs[{G ayLevel [0. 8], recs}],
Graphics|ls], pl, opts, Axes- > Autonati c,
Di spl ayFuncti on- > $Di spl ayFunction]]

Once you have entered the code, you can use
them to visualize the process for your own
functionsy = f(x).
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In[209]:= m ddl ebox[f_, a., b, n, opts___] :=
Modul e[{z, pl, recs, | s},
zlk.] =a+ (b-a)k/n;
pl="Plot [f, {X, &, b},
Pl ot Styl e- > {{Thi ckness[0.01], G- ayLevel [0.3]}},
Di spl ayFunction->ldentity];
recs = Tabl e[Rectangl e[{z [k - 1], 0},
{z[kl, f/.x->1/2(z[k-11 +z[k1)}1, {k, 1, n}1;
|'s =Tabl e[Li ne[
{{z[k -11, 0}, {z[k-11, f/.x->1/2(z[k-11 +z[K1)},
{z[kl, f/.x->1/2(z[k -1]1 +z[k1)}, {z[k], O}}1,
{k, 1, n}1;
Show[G aphi cs[{GrayLevel [0. 8], recs}],
Graphics|[ls], pl, opts, Axes- > Automati c,
Di spl ayFuncti on->$Di spl ayFunction]]

I n[ 210] : = sonegr aphs = {{l eftbox[f [Xx], O, 3/2, 4,
Di spl ayFunction->1ldentity], m ddl ebox[f [x], O,
3/ 2, 4, Di spl ayFuncti on->Ildentity], rightbox[
f [x], 0, 3/ 2, 4, Di spl ayFunction->Ildentity]},
{l eftbox [f [x], O, 3/ 2, 16, Di spl ayFunction->ldentity],
m ddl ebox [f [x], O, 3/ 2,
16, Di spl ayFunction->Identityl, rightbox[
f [x]1, 0, 3/ 2, 16, Di spl ayFunction->ldentityl},
{l eftbox [f [x], O, 3/ 2, 32, Di spl ayFunction->ldentity],
m ddl ebox [f [x], 0, 3/ 2, 32,
Di spl ayFuncti on->1ldentity], rightbox[f [x],
0, 3/ 2, 32, Di spl ayFunction->ldentityl}};
Show[G aphi csArray [sonmegraphs]]

Notice that as increases, the under approximations increase while the upper approxi-
mations decrease.

These graphs help convince us that the limit of the sum asc of the areas of the
inscribed and circumscribed rectangles is the same. We compute the exact value of
(2.5) with | ef t sum evalwate and simplify the sum witBi npl i fy, and canpute

the limit asn — co with Li mi t , We e that the limitis 9.

In[211]:= Is =1 eftsum[f [x], O, 3/ 2, n]
Is2=Sinmplifyl[ls]

Limt[ls2, n->ow]
27 (n-n®-n (L+n)+% n (1+n) (1+2n))

Qut[211] = - 6
[ ] 53
_ 2
Qut[211] = 9 (-1+3 I’]2+4 n<)
4 n
Qut[211]= 9

Similar calculations are carried out for (2.6) and again we see that the limit is 9. We
conclude that the exact value of the area is 9.
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Figure 2.14:f(x) with 4, 16, and 32 rectangles

In[212]:= rs =rightsum[f [x], O, 3/ 2, n]
rs2=Sinmplifyf[rsi]

Limt[rs2, n->ow]
27 (-n¥+¢n (1+n) (1+2 )

Qut[212]= -
[ ! 2 nd
1 2
Qut[212] = 9 (-1-3 nz+4 n<)
4 n
Qut[212]= 9

For illustrative purposes, we confirm this result withddl esum
In[213]:= s = m ddl esum[f [x], 0, 3/ 2, n]
nms2 =Sinplify[ns]

Limt[ns2, N- > ]
27 (n-4n*-2n L+n)+2n (1+n) (1+2n))

Qut[213]= - g

9
8 n

Qut[213]= 9+
Qut[213]= 9

2
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2.3.2 The Definite Integral

In integral calculus courses, we formally learn thatdkénite integral of the function
y=f(x)fromx=atox=bhis

b n
fa f(x) dx = |'P'|To; f (%) A%, (2.8)

provided that the limit exists. In (2.8P = {a = X, < X; <X, < --- <X, =Db}isa
partition of[a, by, IP| is thenorm of P,

IPl = max{x, — x_,lk=1,2,...,1,

AX = % = X1 andX € [Xe 1 %]-

The Fundamental Theorem of Calcuusvides the fundamental relationship between
differentiation and integration.

Theorem 5 (The Fundamental Theorem of Calculus).Suppose thaty f(x) is con-
tinuous ona, b].
1. IFFx) = [ f(t)dt, then F is an antiderivative of f: fx) = f(x).

2. If G is any antiderivative of f, theﬁdb f(x) dx = G(b) — G(a).

Mathematica'd nt egr at e command can compute many definite integrals. The com-
mand

Integrate[f[x],{x, a, b}]

attempts to computgb f(x) dx. Because integration is a fundamentally difficult proce-
dure, it is easy to create integrals for which the exact value cannot be found explicitly.
In those cases, udd to obtain an approximation of its value or obtain a numerical
approximation of the integral directly with

Nl ntegrate[f[x],{x, a, b}].

Example 38. Evaluate (a)fl4 (32 + 1) /y/xdx (b) fom xcosx?dx; (c) [ € sin? 2x dx
d f 2e dx and(e) [° {udu

Solution. We evaluate (a)-(c) directly with nt egr at e.

In[214]:= Integrate[ (x"2+1)/Sqrt [x], {X, 1, 4}]
Qut[214] = %

In[215]:= Integrate[x Cos[Xx" 21, {x, 0, Sqrt [n/ 2]1}]
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Qut[215]= =

In[216]:= Integrate[Exp[2x]1Sin[2x]" 2, {X, 0, x}]

2
Qut [ 216] = 7%+es

For (d), the result returned is in terms of teeor function, Er f [ x] , that is cfined
by the integral

Erf[x \/_ f “dt.

In[217]:= Integrate[2/Sgrt [x] Exp[-x"2], {X, 0, 1}]
Qut[217]= Erf [1)]

We us Nto obtain an approximation of the value of the definite integral.

In[218]:= Integrate[2/ Sqrt [x] Exp[-x"21, {x, 0, 1}1//N
Qut[218] = 0.842701

(e) Recall that Mathematica does not return a real number when we compute odd roots
of negative numbers so the following result would be surprising to many students in an
introductory calculus course because it contains imaginary numbers.

In[219]:= Integrate[u” (1/3), {u, -1, 0}]
Qut[219] = 43_1 (-1)Y3

Therefore, we load thBeal Onl y package contained in thidiscellaneousdirectory
so that Mathematica. returns the real-valued third roat of

In[220] : = << M scel | aneous* Real Onl y*

In[221]:= Integratef[u” (1/3), {u, -1, 0}]
Qut [ 221] 3

4
O

Improper integrals are computed usingt egr at e in the same way as other definite
integrals.

Example 39. Evaluate (a)fO '”de (o) [ e*"2 dx (c) [~ e @) ;" Z5=dx
(e)f2 Voo dx, and(f) [© o1—dx

Solution. (a) This is an improper integral because the integrand is discontinuous on the
interval[0, 1] but we e that the improper integral converges-th

In[222]:= Integrate[Log[x]/Sqgrt [x], {X, O, 1}]
Qut[222] = -

(b) This is an improper integral because the interval of integration is infinite but we see
that the improper integral converges to 2.
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In[223]:= Integrate[2/Sqrt [x] Exp[-Xx"2], {X, -o, ®}]
Qut[223]= 2
(c) This is an improper integral because the integrand is discontinuous on the interval

of integration and because the interval of integration is infinite but we see that the
improper integral converges #62.

In[224]:= Integrate[l/ (x Sqrt [xX"2-11), {X, 1, »}]
Tt
Qut[224] = 5

(d) As with (c), this is an improper integral because the integrand is discontinuous on
the interval of integration and because the interval of integration is infinite but we see
that the improper integral divergesde

Integrate(i/(x~2.2"4). (x. 0. Infinity}l

i
w1 Inkegral sl ~ dues neb converge un [0, =).

[

(e) Recall that Mathematica does not return a real number when we compute odd roots
of negative numbers so the following result would be surprising to many students in an
introductory calculus course because it contains imaginary numbers.

In[225]:= Integrate[l/ (x -3)" (2/ 3), {x, 2, 4}]
Qut[225]= 3-3 (-1)V3

Therefore, we load thBeal Onl y package contained in thdiscellaneousdirectory
so that Mathematica returns the real-valued third root-ef3.

I n[226] : = << M scel | aneous* Real Onl y*

In[227]:= Integrate[l/ (x -3)" (2/ 3), {x, 2, 4}1]
Qut[227]= 6

(f) In this case, Mathematica warns us that the improper integral diverges.

H a1« Integrate[1/{x"2+2-6), (¥, -Infinity, Infinity}] "

To help us understand why the improper integral diverges, we note thaﬁt@é{ =

s (x2 ~ ) and

1 1 1 1 1 X—2
fx2+x—6dx_f§(x—2_x+3)dx_ Eln(x+3)+c

In[228]:= Integrate[l/ (X"2 +X -6), X]
Out[228]:% Log[72+x}7% Log[3 +Xx]
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Hence the integral is improper because the interval of integration is infinite and because
the integrand is discontinuous on the interval of integration so

o 1 -4 1
o X+ X-—6 oo X+ X—6
0
1
+f ———— dXx+
33X +X-6

Evaluating each of these integrals,

Integrate[1/{

Integrate[is(

I

«
[ ax
Prrrrr

Inteqratefi/(

ax

[

Integrate[i/

l“ ! dx
ly =Baxexd

Tategeata[1/(z

IRaT-B).

= Logl=2ex] - = Legl3+x]
- B

2 Zez-B).

-
[ ER—
ey

Integrate[i/(z~@- 3z

dun

TARaT-B)

Integrate[d/(z* z

(z°2.2-8),

“Zez-6).

(z. -Imtimity. -4)]

= 1|

{=z. -3, 0)]

{x. 0. 20

<z 2030

{z. 3. Intinity)]

gral ol = dees net senverge on (3,

I

-3 1

Ziv_e¥
4 X+X—-6

(2.9)

2 3 o
1 1 1
0 X+X—-6 2 X+X-6 3 X+X-6

we conclude that the improper integral diverges because at least one of the improper
integrals in (2.9) diverges.

O

In many cases, Mathematica can help illustrate the steps carried out when computing
integrals using standard methods of integration likeubstitutions and integration by

parts.

Example 40. Evaluate (a)feeg X\/ﬁ dxand (b)foﬂl4 xsin 2 dx

Solution. (@) We letu = Inx. Then,du = fdxso [ i dx= [ Ldu= [*u?dy

which we evaluate with nt egr at e.

In[229]: =
Qut [ 229] =

Integrate[l/ Sqrt [ul, {u, 1, 3}]

2+2 /3

To evaluate (b), we letl = x = du = dxanddv = sindx= v = —% cos X.

The new lower limit of integration is 1 be-
cause ifx = e u = Ine = 1. The new upper
limit of integration is 3 because ¥ = €,
u=1Ine’=3.
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In[230]:

u=xX;
dv =Sin[2x];

In[231]: = du =DI[x, x]

v =Integrate[Sin[2x], x]
Qut[231]=1
Qut[231] = —% Cos [2 x]

In[232]:= vldu
Qut [ 232] = -5 Cos [2 X]

The results mean that

7l 4 1 nl4 1 /4
f xsin 2xdx= ——xcos?k] + —f cos X dx
0 2 o 2o

1 7l 4
=0+—f cos X dx.
2 Jo

The resulting indefinite integral is evaluated witht egr at e

In[233]:= u v-Integrate[v du, x]

Qut[233] = -3 x Cos[2 X] +% Sin[2 x]
In[234]:= Integrate[x Sin[2x], X]

out[234] = ‘1—1 (-2 x Cos[2 x] +Sin[2 x])

and the definite integral is evaluated witht egr at e.

H Integrate[s Sin[Zz], (x. O, Pi/4)] i ‘ ‘

2.3.3 Approximating Definite Integrals

Because integration is a fundamentally difficult procedure, Mathematica is unable to
compute a "closed form” of the value of many definite integrals. In these cases, numer-
ical integration can be used to obtain an approximation of the definite integralMsing
together withl nt egr at e or NI nt egr at e.

Example 41. Evaluate
% 2
f e cosx®dx.
0

Solution. In this case, Mathematica is unable to evaluate the integral Mithe-
grate.

In[235]:= il=Integrate[Exp[-x"2] Cos[x" 31, {x, 0, =« (1/3)}]
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3

OJt[235]=J e Cos [x3]dx
0

An approximation is obtained witN.

In[236]:= N[i1]
Qut[236] = 0. 701566

Instead of usingd nt egr at e followed by N, you can useéNl nt egr at e to numeri-
cally evaluate many integrals.

NI ntegrate[f[x], {X, a, b}]

attempts to approxima’tﬁab f(x) dx. Thus, entering

In[237]:= Nintegrate[Exp[-x"2] Cos[x" 31, {X, 0, =~ (1/3)}]
Qut[237] = 0.701566

returns the same result as that obtained ukimigegr at e followed by N. O

In some cases, you may wish to investigate particular numerical methods that can be
used to approximate integrals. If needed you can redefine the funttefrissum

m ddl esum andr i ght sumthat were discussed previously. In addition we define
the functionssi mpson, which implements Simpson’s rule, abhd apezoi d, which
implements the trapezoidal rule, in the following example that can be used to investi-
gate approximations of definite integrals using those numerical methods.

Example 42. Let

f(x) = e—(><—3)2 Cog4(x-3))

(a) Graphy = f(x) on the interval1,5]. Use (b) Simpson’s rule with = 4, (c) the
trapezoidal rule wittm = 4, and (d) the midpoint rule witm = 4 to gpproximate

fls f(x) dx.

Solution. We ddine f, and tken graphy = f(x) on the interval[1, 5] with Pl ot in
Figure 2.15.

In[238]:= f [x] =Exp[-(x-3)"2Cos[4(x-3)11;
Pl ot [f [x]1, {X, 1, 5}]

After definingsi npson andt r apezoi d,

In[239]:= sinmpson([f_ a, b, n_.] :=Mdul e[{z, h},

h=(b-a)/n;

z[k.]=a+h k;

fo=f/.x->z[0];

fn=f/.x->z[n];

h/3 (fO+fn)+

h/3 Sum[(3+ (-1)" (k+1))f /. x->z[k], {k, 1, n-1}]

1
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1.5

Figure 2.15:f(x)forl < x<5

In[240]:= trapezoid[f_ a, b, n_.] :=Mdul e[{z, h},
h=(b-a)/n;
z[k.]=a+h k;
fo=f/.x->2z[0];
fn=f/.x->z[n];
h/2 (fO+fn) +h Sum[f /. x->z[k], {k, 1, n-1}]
]

Be sure to redefinei ddl esumifyou have We use these functions amd ddl esum which was defined earlier, to approximate

. . 5 . .
not already used it during your current Mathfl f(x) dxusingn = 4 rectangles. In each casid,s used to evaluate the sum.
ematica session before executing the follow-
ing commands. In[241]:= sl =sinmpson[f [x], 1, 5, 4]

N[s1]
tl=trapezoid[f [x], 1, 5, 4]
N[t 1]
ml = mi ddl esum[f [x1, 1, 5, 4]

N[l ]
Qut[241] = % g4 CosI8]
Qut[241] = 6.9865
Qut[241]= 1+2 e Ps[4] , g4 Cos(8]
Qut[241] = 6.63468

Cos[2] 9 Cos[6]

Qut[241]=2 e 4 +2 e 4
Qut[241] = 2.44984

(2+8 e @s04])

W[k

We obtain an accurate approximation of the value of the integral udiimg egr at e.

In[242]:= Nintegrate[f [x], {X, 1, 5}]
Qut[242] = 3.761
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Figure 2.16y = sinx andy = cosx on the interval0, 2r]

Notice that withn = 4 rectangles, the midpoint rule gives the best approximation.
However, as increases, Simpson’s rule gives a better approximation as we see using
n = 50 rectangles.

I n[243]: = sinpsonIf [x1, 1, 5, 501//N
trapezoid[f [x], 1, 5, 50]//N

m ddl esum[f [x], 1, 5, 501//N
Qut [ 243] = 3.76445

Qut[243] = 3.7913
Qut [ 243] = 3.74623

2.3.4 Area

Suppose thay = f(x) andy = g(x) are continuous ofi, b] and thatf(x) > g(x) for
a < x < b. Then, thearea of the region bounded by the graphsyof f(x), y = g(X),
Xx=a,andx=Dbis

b
A:f [f) —g(x)] dx. (2.10)

Example 43. Find the area between the graphsyoft sinx andy = cosx on the
interval[0, 2r].

Solution. We graphy = sinx andy = cosx on the interval0, 2] in Figure 2.16. The
graph ofy = cosx s gray.

In[244]:= Plot [{Sin[x], Cos[x]1}, {X, O, 2x},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 31},
Aspect Rati o- > Automatic]

To find the upper and lower limits of integration, we must solve the equatiox sin
cosx for x.

In[245]: = Sol ve[Si n[x] == Cos [X], X]
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Solve :: "ifun" : "Inversefunctionsarebei ngused
bySol ve, so sone sol utions may not be found."

Set ::"wite" : "TagPower in DownVal ues [
Power ] is Protected."

autf2as]= {{x > 27} {x- 7))

Thus, for 0< x < 2r, sinx = cosx if X = n/4 orx = 57/4. Hence, the area of the
region between the graphs is given by

/4 5/ 4 on
A= f [cosx — sinX] dx+f [sinx — cosx] dx+f [cosx — sinX] dX.
0 nl4 5rl 4

(2.11)
Notice that if we take advantage of symmetry we can simplify (2.11) to
5n/ 4
A= Zf [sinx — cosx] dx. (2.12)
nl4
We evaluate (2.12) with nt egr at e to see that the area is/2.
In[246]:= 2 Integrate[Sin[x] - Cos[X], {X, /4, 5x/ 4}]
Qut[246] = 4 2
O

In cases when we cannot calculate the points of intersection of two graphs exactly, we
can frequently us€i ndRoot to approximate the points of intersection.

Example 44. Let
p(x) = 1—30x5—3x4+1b<3—18x2+12x+1
and

qx) = —4x° + 28x* — 56x + 32,

Approximate the area of the region bounded by the grapipsanfdq.

Solution. After definingp andg, we graph them on the interv@t-1, 5] in Figure 2.17
to obtain an initial guess of the intersection points of the two graphs.

In[247]:= p[x.1 =3/10x"5-3x"4+11x"3-18x"2 +12x +1;
q[x-1 = -4x" 3 +28x" 2 - 56X +32;
Plot [{p[x], g[x1}, {X, -1, 5}, Pl ot Range- > {-15, 20},
Pl ot Styl e- > {G ayLevel [0], GayLevel [0.3]1}]

The x-coordinates of the three intersection points are the solutions of the equation
px) = q(x). Although Mathematica can solve this equation exactly, approximate solu-
tions are more useful for the problem and obtained WwithdRoot .
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20
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-15

Figure 2.17:p andq on the interva[-1, 5]

In[248] : = Fi ndRoot [p[x] ==q[x1, {X, 1}]
Fi ndRoot [p[x] ==q[X], {X, 2}]

Fi ndRoot [p[x] == q[X1, {X, 4}]
Qut[248] = {x > 0.772058}

Qut[248] = {x - 2.29182}
Qut[248] = {x - 3. 86513}

AllthreeFi ndRoot commands can be combined together if weMsp as illustrated
next.

In[249]:= intpts = Map[Fi ndRoot [p[X] == q[x]1, {X, #}1& {1, 2, 4}]
Qut[249] = {{x - 0.772058}, {x —»2.29182},
{x > 3.86513}}
In[250]:= intpts[[1, 1, 211
Qut [ 250] = 0. 772058

Using the roots to the equatigiix) = q(x) and the graph we see thptx) = q(x) for
0.772< x < 2.292 andg(x) = p(x) for 2.292 < x < 3.865. Hence, an approximation of
the area bounded hyandq s given by the sum

2.292 3.865
f [pO) — g1 dx+ f [G00 — p()] dx.
0.772 2292

These two integrals are computed withnt egr at e.

In[251]:= intone =N ntegrate[p[x] -q[x],
{X,intpts[[1, 1, 211, intpts[[2, 1, 2]11}]

inttwo =N ntegrate[q[x] -pI[x],
X, intpts[[2, 1, 211, intpts[[3, 1, 2]11}]
Qut[251] = 5.26912
Qut [ 251] = 6. 92599
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and added to see that the area is approximateloR2

In[252]:= intone +inttwo
Qut[252] = 12. 1951

Parametric Equations

If the curve,C, defined parametrically by = x(t), y = y(t), a < t < bis a nonnegative
Graphically,y is a function ofx, y = yx), if continuous function ok andx(a) < x(b) the area under the graph Gfand above the
the graph ofy = y(x) passes the vertical lineX-axis is

test. x(b)

b
ydx= f y(t)X' (t)dt.

X(@)

Example 45 (The Astroid). Find the area enclosed by thstroid x = sin’t, y =
cos’t,0<t < 2r.

Solution. We begin by definingx andy and then graphing the asteroid witar a-
nmetri cPl ot in Figure 2.18.

In[253]:= x[t_.1=Sin[t] 3;
y[t_1=Cos[t]" 3;
ParanetricPl ot [

{X[t1, yI[tl1}, {t, 0, 2x}, Aspect Rati o- > Automatic]

Observe thax(0) = 0 andx(/2) = 1 and thegraph of the asteroid in the first quadrant
is given byx = sin’t, y = cos’t, 0 < t < /2. Hence, the area of the astroid in the first
quadrant is given by

7l 2 7l 2
f yX (t)dt = 3f si‘t cod't dt
0 0

and the total area is given by

7/ 2 7/ 2 3
A= 4f yt)x' () dt = 3[ sirftcod'tdt = i 1178
0 0

which is computed with nt egr at e and then approximated witk

In[254]:= area=4 Integrate[y[t] X [t], {t, O, n/ 2}]

Qut [ 254] 38—”

I n[ 255] : = N[area]
Qut[255]= 1.1781
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Figure 2.18: The astroid = sin’t,y = co$t,0<t < 2r

Pdar Coordinates

For problems involving "circular symmetry” it is often easier to work in polar coor-
dinates. The relationship betweény) in rectangular coordinates arid 6) in polar
coordinates is given by

X =r cosf y =rsing

and

r’=x2+y>  tand =

X I<<

If r = f(0) is continuous and non-negative for< 6 < 8, then thearea A of the region
enclosed by the graphs oE f(6), 0 = a, andf = 8 is

1 5 1,
A_éfa[f(e)] de_éfarde.

Example 46. TheLemniscate of Bernoulliis given by

(@ + yz)2 =a (¥ -y?),

wherea s a constant. (a) Graph the Lemniscate of Bernoudli#f 2. (b) Find the area
of the region bounded by the Lemniscate of Bernoulli.
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Figure 2.19: The Lemniscate

0.5 1 1.5 2

Figure 2.20: The portion of the Lemniscate in quadrant 1

Solution. This problem is much easier solved in polar coordinates so we first convert
the equation from rectangular to polar coordinates withand then solve for with
Sol ve.

In[256]:= lofb=(X"2+y"2)"2==2"2(X"2-y"2);
topolar =lofb/. {x->r Cos[t], y->r Sin[t]}
Qut[256] = (r2 Cos[t]2+r2 Sin[t]2)®==a® (r?2 Cos[t]2-r2 Sin[t]?)

In[257]:= Sol ve[topolar, r1//Simplify
Qut[257]= {{r -0}, {r 0}, {r >-a /Cos[2 t]}, {r »a ~/Cos[2 t]}}

These results indicate that an equation of the Lemniscate in polar coordinetes is
a’cosd. The graph of the Lemniscate is then generated in Figure 2.19 &sing

| ar Pl ot , which is contained in th&x aphi cs package located in th&raphics
directory.

I n[ 258] : = << Graphi cs' Graphi cs’
Pol arPl ot [{-2 Sqrt [Cos[2t 1], 2Sgrt [Cos[2t 11}, {t, O, 2x}]

The portion of the Lemniscate in quadrant one is obtained by graphin@ cos26,
0<0<nl4.

I n[259]: = Pol ar Pl ot [2Sqrt [Cos[2t 1], {t, O, n/ 4}]
Then, taking advantage of symmetry, the area of the Lemniscate is given by
1 7l 4 7l 4 7l 4
A=2-—f r2d9=2f r2d0=2f a?cos ¥ dg = a2,
—nl4 0 0

which we calculate with nt egr at e.



2.3. INTEGRAL CALCULUS 93

In[260]:= Integrate[2 a2 Cos[2 t], {t, 0, n/ 4}]
Qut[260] = a?

2.3.5 ArcLength

Lety = f(x) be a function for whichf’(x) is continuous on an intervgé, b]. Then the
arc length of the graph ofy = f(x) from x = ato x = bis given by

L= fb ‘/(%’)Z + 1dx (2.13)

The resulting definite integrals used for determining arc length are usually difficult to
compute because they involve a radical. In these situations, Mathematica is helpful
with approximating solutions to these types of problems.

Example 47. Find the length of the graph of

1
Y=8"

from (a)x =1tox =2 and (b) fromx = -2 tox = -1.

Solution. With no restrictions on the value &f \/? = |x|. Notice that Mathematica

. . N 2 .
does not automatically algebraically smph{f(%’) + 1 because Mathematica does
not know ifx is positive or negative.

In[261]:= y[x_.1 =x"4/8+1/ (4Xx"2);
il=Factor [y'[X] 2+1]
(1+x2)2 (1-x2+x%?2
4 x8
In[262]:= i2 =Power Expand[Sqrt [i 1]]
Qut [ 262] = (1 +x2) (13-x2 +x%4)
2 X Power Expand[ expr] simplifies radicals
In fact, for (b),x is negative so in the expressioexpr .

Qut [ 261] =

2 238

1/(¢+1°  1x+1

Mathematica simplifies

1 (x5+1)2_}x6+1
2 X 2 8

and correctly evaluates the arc length integral (2.13) for (a).
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Figure 2.21x = V2t%,y = 2t - 3t3

In[263]:= Integrate[Sqrt [y [x]1 2 +1], {X, 1, 2}]
33
Qut[263] = 16

For (b), we compute the arc length integral (2.13).

In[264]:= Integrate[Sqrt [y [x]1 2 +1], {X, -2, -1}]

Qut [ 264] = %

As we expect, both values are the same. O

Parametric Equations

C is smoothiif both x'(t) andy'(t) are con- If the smooth curveC, defined mrametrically byx = x(t), y = y(t), t € [a,b] is
tinuous on(a, b and not simultaneously zerotraversed exactly once afcreases fromh = atot = b, the ardength ofC is given by
fort € (a,b).

(2.14)
Example 48. Find the length of the graph af= V22, y = 2t - 1t3, -2 <t < 2.

Solution. For illustrative purposes, we graph= V2t?,y = 2t - 13 for -3 <t < 3 (in
black) and-2 <t < 2 (in thick black) in Figure 2.21.

In[265]:= x[t_1=t"2 Sgrt [2];y[t-]1 =2t -1/2t"3;
pl =ParanetricPlot [{x[t], y[t]},
{t, -3, 3}, DisplayFunction->ldentity];
p2 = ParanetricPlot [{x[t], y[t]}, {t, -2, 2}, PlotStyle->
Thi ckness [0. 011, Di spl ayFunction->Ildentity];
Show[p1l, p2, Di spl ayFuncti on->$Di spl ayFuncti on,
Pl ot Range- > Al | ]
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Mathematica is able to compute the exact value of the arc length (2.14) although the
result is quite complicated.

In[266]:= Factor [X'[t]1"2+Yy'[t]" 2]

Qut [ 266] = % (4-4t+31%) (4+41t+312)

In[267]:= il=Integrate[2 Sgrt [xX'[t]1"2+y [t] 2], {t, 0, 2}]

on[zs7]=% (96 \/5—(32i
Je (1+% (2-4i V2)] J1+

i ArcSinh| /% (2+4i ﬁ)]_u% (2-4i ﬁ)])/

(2+4 i ~2) BlipticE|

N| -

(24 v2)"* (71+é (2-4i V2)))-
;(lﬁi
2+4 0 /2

Je 1+% (2-41 v2)) \/1+%

i ArcSinh| /% (2+4 i \/E)],—l+% (2-4i V2)]
Je (1+% (2-4i V2)) Ju

i ArcSinh| % (2+4 i ﬁ)],fué (2-4i \E)])/

(2+4 i ~2) ElipticF|

+

(32 i

(2+4 i ~2) BlipticF|

N| =

(24 v2)™* (71+1

g (2-4 ﬁ))))

A more meaningful approximation is obtained wittor usingNl nt egr at e.

In[268]:= N[i 1]

Qut[268] = 13.7099 - 1.1842410°%° i

In[269]:= Nintegrate[2 Sgrt [x'[t]"2+y'[t]1 2], {t, O, 2}]

Qut[269] = 13.7099

We conclude that the arc length is approximately713 O
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Figure 2.22r =6for0< 6 < 10r

Polar Coordinates

If the smooth polar curv€ given byr = f(6), @ < 6 < §is traversed exactly once s
increases fronx to 8, the arc &€ngth ofC is given by

L= ff ‘/(%)Z r2do (2.15)

Example 49. Find the length of the graph of=6, 0 < 6§ < 10r.

Solution. We bagin by definingr and then graphing with Pol ar Pl ot in Figure
2.22.

In[270] : = << Graphi cs* G aphi cs’
rit.]=t;
Pol ar Pl ot [r [t], {t, O, 10x}, Aspect Rati o- > Aut omati c]
Using (2.15), the length of the graphofs given byfolo’r V1+ 6%d6. The exact value
is computed witH nt egr at e
In[271]:= ev=Integrate[Sqrt [r'[t]1"2+r [t] 2], {t, 0, 107}]
Qut[271]= 5 & /1 + 100 n2+% ArcSinh[10 ]
and then approximated with

In[272] : = N[ev]
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Figure 2.23gx)forO=x=n

Qut [ 272] = 495. 801

We conclude that the length of the graph is approximately.895 O

2.3.6 Solids of Revolution
Volume

Lety = f(x) be a non-negative continuous function[anb]. Thevolume of the solid
of revolution obtained by revolving the region bounded by the graphs sf f(x),
X = a, X = b, andthex-axis about the-axis is given by

b
V = nf [f(x)]? dx. (2.16)

If 0 < a < b, thevolume of the solid of revolution obtained by revolving the region
bounded by the graphs gf= f(x), x = a, x = b, andthe x-axis about the/-axis is
given by

b
V= Zyrf x f(x) dx (2.17)

Example 50. Let g(x) = xsir?x. Find the volume of the solid obtained by revolving
the region bounded by the graphsyof g(x), x = 0, X = &, andthe x-axis about (a) the
x-axis; and (b) the-axis.

Solution. After definingg, we graphg on the interval0, 7] in Figure 2.23.

In[273]:= g[x.1 =x Sin[x]"2;
Pl ot [g[X], {X, 0, xr}, Aspect Rati o- > Automatic]

The volume of the solid obtained by revolving the region aboutxtheis is given by
(2.16) while the volume of the solid obtained by revolving the region abouy-thes
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is given by (2.17). These integrals are computed Wit egr at e and namedvol
andyvol , respectivelyNis used to approximate each volume.

In[274]:= xvol =Integrate[x g[x]1" 2, {X, 0, w}]

N[xvol ]

Qut[274] = % 7 (-60 7+32 7°)

Qut[274] = 9. 86295
In[275]:= yvol =Integrate[2 x x g[X], {X, 0, 7}]

N[yvol ]
1

Qut[275]= 5 n (-6 n+4 %)

Qut [ 275] = 27. 5349

We can useéPar anet ri cPl ot 3D to visualize the resulting solids by parametrically
graphing the equations given by

X = r cost
y =rsint
z=g(r)

for r between 0 andr andt between—n and x to visualize the graph of the solid
obtained by revolving the region about tix@xis and by parametrically graphing the
equations given by

X=r
y = g(r) cost
z=g(r)sint

for r between 0 andr andt between—-n andx to visualize the graph of the solid

obtained by revolving the region about thexis. (See Figures 2.24 and 2.25.) In
this case, we identify the-axis as they-axis. Notice that we are simply using polar
coordinates for the andy-coordinates, and the height above #eplane is given by

z = g(r) because is replacingx in the new coordinate system.

In[276]:= ParanetricPlot3D[{r, g[r]Cos[t], glr1Sin[tl},
{r, 0, nr}, {t, 0, 25}, Pl ot Poi nts-> {30, 30}]

In[277]:

ParanetricPlot3D[{r Cos[t],r Sin[tl, g[rl}, {r, O, x},
{t, 0, 2x}, Pl ot Poi nts-> {30, 30}]

We now demonstrate a volume problem that requires the method of disks.
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3~

Figure 2.24:g(x) revolved about the-axis

Figure 2.25:9(x) revolved about thg-axis
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1.5

0.5

2 3 4 5

Figure 2.26:f(x)for1 < x<5

Example 51. Let
f (X) - ef(X73) cod4(x-3)] .

Approximate the volume of the solid obtained by revolving the region bounded by the
graphs ofy = f(x), x = 1, x = 5, and thex-axis about the--axis.

Solution. Proceeding as in the previous example, we first define and dgraphthe
interval[1, 5] in Figure 2.26.

In[278]:= f [x.] =Exp[-(Xx-3)"2 Cos[4(x-3)11;:
Pl ot [f [x], {X, 1, 5}, Aspect Rati o- > Automatic]

In this case, an approximation is desired so weNlset egr at e to approximate the
integralV = ff;r[f(x)]2 dx.

In[279]:= Nintegrate[n f [x]"2, {X, 1, 5}]
Qut[279] = 16. 0762

In the same manner as beforgr anmet ri cPl ot 3D can be used to visualize the
resulting solid by graphing the set of equations given parametrically by

X=r
y = f(r)cost
z= f(r)sint

for r between 1 and 5 artcbetween 0 ands2 In this case, polar coordinates are used
in they,z-plane with the distance from theaxis given byf(x). Beauser replacesx
in the new coordinate systerfix) becomed (r) in these equations. See Figure 2.27

In[280]:= ParanetricPlot3D[{r, f[r]Cos[t], f[r1Sin[t]},
{r, 1, 5}, {t, 0, 2x}, Pl ot Poi nts-> {45, 35}]
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Figure 2.27:f(x) revolved about th&-axis

Surface Area

Lety = f(x) be a non-negative function for whicti(x) is continuous on an interval
[a, bl. Then thesurface areaof the solid of revolution obtained by revolving the region
bounded by the graphs gf= f(x), Xx = a, x = b, andthe x-axis about the-axis is

given by
b 2
SA=27rf f0,/ 1+ [f'(0] dx. (2.18)

Example 52 (Gabriel's Horn). Gabriel’'s Horn is the solid of revolution obtained by
revolving the area of the region boundedyby 1/x and thex-axis forx = 1 about the
x-axis. Show that the surface area of Gabriel's Horn is infinite but that its volume is
finite.

Solution. After defining f(x) = 1/x, we usePar anet ri cPl ot 3D to visualize a
portion of Gabriel's Horn in Figure 2.28.

In[281]:= f [x.] =1/x;
ParanetricPl ot 3D[{r, f[r]1Cos[t], f[r]1Sin[t]},
{r, 1, 103}, {t, O, 2x}, Pl ot Poi nts- > {40, 40},
Vi ewPoi nt - > {-1. 509, -2.739, 1.294}]
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Figure 2.28: A portion of Gabriel's Horn

Using (2.18), the surface area of Gabriel's Horn is given by the improper integral
SA—anm} 1+1dx—27rlimf|-:L 1+£dx
- 1 X )(4 - Lo 1 X )(4 ’

In[282]:= stepl=Integrate[2 x f[x] Sqrt [1+f'[x]1" 2], {Xx, 1, capl }]
Integrate :: "gener" : "Unabl et ocheckconver gence"

Qut[282]= - (-V2+ArcSinh[l])+
l1+ 1 . (_1+capl2 ArcSinh[capIz})
capl * ~/1+capl?

In[283]:= Limt [stepl, capl - > w]
Qut[283]= «

On the other hand, using (2.16) the volume of Gabriel's Horn is given by the improper

integral
| _ L1
SA=27rf —de=7rllmf —zdx,
1 X Lo J1 X

which converges ta.

In[284]:= stepl=Integrate[x f [X] 2, {x, 1, capl }]

Qut[284]= n- ———
capl

In[285]:= Linit [stepl, capl - > ]

Qut[285] =
In[286]:= Integrate[x f [x] 2, {X, 1, «}]
Qut[286] =
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2.4 Series

2.4.1 Introduction to Sequences and Series

Sequences and series are usually discussed in the third quarter or second semester of
introductory calculus courses. Most students find that it is one of the most difficult
topics covered in calculus. Aequenceis a function with domain consisting of the
positive integers. Theerms of the sequencfa, | area,, a,, a,, .... Thenth term is

a,, the(n+ Dsttermisa,,,. If lim__a, =L, we saythat{an} convergesto L. If

{a,} does not convergda,} diverges We can often prove that a sequence converges

by applying the following theorem.

Theorem 6. Every bounded monotonic sequence converges. A sequence{a,} is monotonic if{a,} is in-
creasing &,,, = &, for all n) or decreasing
In particular, Theorem 6 gives us the following special cases. (Bn,1 = &, foralln).

1. If {a,} has positive terms and is eventually decreasfag, converges.

2. If {a,} has negative terms and is eventually increagigconverges.

After you have defined a sequence, Usbl e to compute the first few terms of the
sequence.

1. Table[a[n],{n, 1, n}] returnsa,, a,, as, ..., &,

2. Tabl e[a[ n], {n, k, n}] returnsa,, a1, 8,2, ..., 8y,
Example 53. Let

Show that lim_, _ a, = 0.

Solution. We remark that the symbal! in the denominator o&,, represents thiacto-
rial sequence

n=n-mn-1)-nN-2)----- 2-1.

We beyin by defininga,, and then computing the first few terms of the sequence with
Tabl e.

In[287]:= a[n_.] =50"n/n!;
af ewmt ernms = Tabl e[a[n], {n, 1, 10}]

N[af ewt er ns]
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2.5x10%°
2x10%°
1. 5x10%°
1x10%°

5x10°

4 6 8 10

Figure 2.29: The first few terms af,

2500 781250 7812500 195312
Qut[287] = {50, 1250, 6 9 500,

3 3 3 ' 9
9765625000 61035156250 3051757812500
63 ' 63 ' 567 '

15258789062500}

567

Qut[287] = {50., 1250., 20833. 3,
260417., 2. 60417 108,
2.17014107, 1. 5501 108,
9.68812 108, 5.3822910°,
2.6911410%%)

The first few terms increase in magnitude. In fact, this is further confirmed by graphing
the first few terms of the sequence withst Pl ot in Figure 2.29. Based on the graph
and the values of the first few terms we might incorrectly conclude that the sequence
diverges.

In[288]:= ListPlot [afewterns]
However, notice that

— 50 an+1 _ 50
L R L a, n+1
Because 5Qn + 1) < 1 for n > 49, we conclude that the sequence is decreasing
for n > 49. Because it has positive terms, it is bounded below by 0 so the sequence
converges by Theorem 6. Let=lim __ a,. Then,

lim = |im —50
N—-oo an+1 - N—oo ng—olan
L=Im——-L
n-oco N 4+

When we graph a larger number of terms, it is clear that the limit is 0. (See Figure
2.30.) In fact, it is a good exercise to show that for any real value lirh X = 0.

N—-o0 ﬁ
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2.5x10%°
2x10%°
1. 5x10%°
1x10%°
5x10%°
15405060 7o

Figure 2.30: The first 75 terms &

In[289] : = ListPlot [Eval uate[Tabl e[a[k], {k, 1, 75}111

]
An infinite seriesis a series of the form
Z a, (2.19)
k=1
where{a, } is a sequence. Thath partial sum of (2.19) is
n
%=Zak=al+a2+---+an. (2.20)
k=1

Notice that the partial sums of the series (2.19) form a seqL{ep;}cMerce, we say that

the infinite series (2.19onvergesto L if the sequence of partial sun{rsh} converges
to L and write

ZakzL.

k=1

The infinite series (2.19)ivergesif the sequence of partial sums diverges. Given the
infinite series (2.19),
Sunfalk], {k, 1, n}]

calculates theath partial sum (2.20). Isomecases, if the infinite series (2.19) con-
verges,

Sunfal[ K], {k, 1, Infinity}]
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can compute the value of the infinite sum. You should think ofS8amfunction as a
"fragile” command and be certain to carefully examine its results.

Example 54. Determine whether each series converges or diverges. If the series con-
verges, findts sum. (a)£;2; (-1 (b) T2, 25 (€) Zioark
Solution. For (a) we conpute thenth partial sum (2.20) irsn with Sum

In[290]:= sn=Sum[(-1)" (k +1), {k, 1, n}]
Qut [ 290] = % 1- (1"

Notice that the odd partial sums are 1:
1 2n+1+1 1
Sy = E((_l) M) = §(1+1) =1
while the even partial sums are 0:
1 el 1
=5 ((p™t+1) = 5(‘“ 1) =0.
We confirm that the limit of the partial sums does not exist withm t . Mathematica’s

result indicates that it cannot determine the limit.

In[291]:= Limt [sn, n-> o]
Qut[291]= Limt [% (1-(-1)"), n>o]

However, when we attempt to compute the infinite sum 8ilm Mathematica is able
to determine that the sum diverges.

In[292]:= Sum[ (-1)" (k +1), {k, 1, «}]
Sum:: "div" : "Sundoesnotconverge."

©

Qut[292] = Z (~1)yk+1L
k=1

Thus, the series diverges.

For (b), we have delescoping seriedJsing partial fractions,

K
e R e e I astl
- 3/ \2 4) (3 5 n-2 n/ \n-1 n+1) 7
we see that thath partial sum is given by
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We perform the same steps with Mathematica ussagnandLi mi t .

In[293]:= sn=Sum[l/ (k-1) -1/ (k+1), {k, 2, n}]

-1+n 2+3n
Qut[293] = : 2+n) (i++n> :

In[294]:= Apart [sn]
1

3 1
Qtl294]= 5 -5 " 1Ton

In[295]: = %i mt[sn, n->w]

Qut[295] = 2

(c) A series of the forny)>,ark is called ageometric series We conpute thenth
partial sum of the geometric series wiam

In[296]:= sn=Sumla r "k, {k, 0, n}]

_ 1+n
Qut [ 296] ;jwlli*rr)
-1+

When usingLi ni t to determine the limit of, asn - oo, we se that Mathematica
returns the limit unevaluated because Mathematica does not know the value of

In[297]:= Limt[sn, n-> o]

_ 1+n
Qit[207]= Limt[2 LT

1ot ,n—>oo]

In fact, the geometric series divergegif> 1 and conerges iflr| < 1. Observe that if
we simply compute the sum wigkum Mathematica returna/(1 — r) which is correct
if [r] < 1 but ircorrect if|r| = 1.
In[298]:= Sumla r"k, {k, 0, »}]

a
Qut[298] =
However, the result of entering

In[299]:= Sum[ (-5/3) "k, {k, 0, ©}]

Sum:: "div" : "Sundoesnot converge."
® 5 k

Qut [ 299] = Z(’g)
k=0

is correct because the serigs, (—%)k is geometric withr| = 5/3 > 1 and, conse-
quently, diverges. Similarly,

I n[ 300] :
Cut [ 300]

sSum9 (1/10)°k, {k, 1, o}]
1

is correct becausgy’ 9(%))k is geometric witha = 9/10 andr = 1/10 so the series
converges to

a 9/10

ir 1-Uw0 -
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2.4.2 Convergence Tests

Frequently used convergence tests are stated in the following theorems.

Theorem 7 (The Divergence Test)Let} . ; a, be an infinite series. lfm,_, & # 0,
then}”, a diverges.

Theorem 8 (The Integral Test). Let )}, a, be an infinite series with positive terms.
If f(x) is a decreasing continuous function for whictk)f= a, for all k, then}; , a,
and [ f(x) dxeither both converge or both diverge.

Theorem 9 (The Ratio Test). Let ), ; 8, be an infinite series with positive terms and

letp = lim,,, %=.

1. Ifp<1, Y, a converges.
2. Ifp>1, 3}, a diverges.

3. If p = 1, the Rdio Test is inconclusive.
Theorem 10 (The Root Test).Let Y ; & be aninfinite series with positive terms and
letp =1lim,_ /3.

1. Ifp< 1,32, a converges.

2. Ifp>1, 32,8 diverges.

3. Ifp = 1, the Poot Test is inconclusive.

Theorem 11 (The Limit Comparison Test). Let )7 ; a, and },.2, b, be infinite se-
ries with positive terms and let & lim %k. If 0 <L < oo, theneither both series

converge or both series diverge.

Example 55. Determine whether each series converges or divergei;ml + %)k
00 o] 00 1)2 00 k e +
(b) Dy & (©) Tt % (@) T Sy @ T (259)° (0 Tty 20l

Solution. (a) UsingLi m t, we e that the limit of the terms is + 0 so theseries
diverges by the the Divergence test, Theorem 7.

In[301]:= Limt[(1+1 k) k, k->w]

Qut[301]= e

It is a very good exercise to show that the limit of the terms of the seriebyshand.
LetL = lim, (1+ %)k Take the logarithm of each side of this equation and apply
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L'H Gpital’s rule:

1k
InL = lim In(1+E)

k—o0

InL = lim kln(1+ %)

k= oo
In(1+1
InL = lim M
k- oo =
K
11
. 141 K2
InL = lim kil
k=00 —ie
InL = 1.

Exponentiating yields = €'t = e! = e. (b) A series of the fornyy, & is called
a p-series Let f(x) = x°P. Then, f(x) is continuous and decreasing for= 1 and

f(k) = k-P. Then,
fooxfpdx— o0, if p=1
1 “lup-1,ifp>1

so thep-series converges f > 1 anddiverges ifp < 1. If p = 1, the serieg}2; % is
called theharmonic series

In[302]:
Qut [ 302]

sl =Integrate[x” (-p), {X, 1, »}]

1
_ -p
If [Re[p]>1, 71+p,£x dx |

(c) Let f(x) = x- 3. Then, f(k) = k- 3™ ¥ and f(x) is decreasing fox > 1/ In 3.

In[303]:= f[x.]=x 3" (-X);
Fact or [f’[x1]
Qut[303]= -3* (-1+x Log[3])

In[304]:= Solve[-1+Xx Log[3] ==0]

_ 1
Qut[3041= {{x > g5}

Usingl nt egr at e, we see that the improper integrgf” f(x) dx converges.

In[305]:= ival =Integrate[f [x], {X, 1, ®}]

NIi val ]

_ 1+Log[3]
Qut [ 305] = W

Qut[305] = 0.579592
Thus, by the Integral test, Theorem 8, we conclude that the series converges. Note that
when applying the Integral test, if the improper integral converges its valuet the

value of the sum of the series. In this case, we see that Mathematica is able to evaluate
the sum withSumand the series converges t643

In[306]:= Sumik 3" (-k), {k, 1, w}]
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Qut [ 306] = g

(d) If &, contains factorials, the Ratio test is a good first test to try. After defiajng
we compute

[(k+1)!7?
lim A1 = lim [2(k+1)]

k—oo k—o0 M
& e]

_im & - (k+ D (2K
Tl KoK (2k+2)
(k+12)? o k+D 1

WL kDK D 22kt D) 4

Because M < 1, the series converges by the Ratio test. We confirm these results with
Mathematica.

Remark.UseFul | Si npl i fy instead ofSi mpl i fy to simplify expressions involv-
ing factorials.

In[307]:= alk.1 = (k!')~2/ (2k)! ;
sl=FullSinmplify[a[k +11/a[k]]

1+k
Qut [ 307] = 5K
In[308]:= Limt[sl, k->w]
th[308]=4l

We illustrate that we can approximate the sum usiendSumas follows.

In[309]:= ev =Sumla[k], {k, 1, »}]

Qut [309] = % (9+2 /3 n)

I n[ 310] : = N[ev]
Qut[310] = 0. 7364

(e) Because

Iimk( )k—nm _1og
koo V\4k+1) ~ kow dk+1 4 7

the series converges by the Root test.
In[311]:= afk.] = (k/ (4k +1))"k;

Limtrarkl” (1/ k), k= > o]

Qut[311] = 41—1

As with (d), we can approximate the sum wittandSum
In[312]:= ev = Sumla[k], {k, 1, »}]

Qut[312]= S a[k]

In[313]: = N[ev]
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Qut [ 313] = 0. 265757

(f) We use the Limit Comparison test and compare the seriiﬁg& = YRt
which diverges because it ispaseries withp = 1. Because

2vVk+1
. (Vk+1)(2k+1)
0< lim (@l

k=00 =

k

:1<00

and the harmonic series diverges, the series diverges by the Limit Comparison test.

In[314]:= a[k.]1 = (2Sqrt [k]1 +1)/ ((Sgrt [k] +1) (2k +1));
brk.1 =1/k;
Limt [a[k]/b[k], k-> ]

Qut[314]= 1
O
2.4.3 Alternating Series
An alternating seriesis a series of the form
D=Dracor Y (-1l (2.21)
k=1 k=1

where{a,} is a sequence with positive terms.

Theorem 12 (Alternating Series Test).If {a} is decreasing antim, ,, a, = 0, the
alternating serieg2.21)converges.

The alternating series (2.2tpnverges absolutelyf }'}° ; a, converges.

Theorem 13. If the alternating serie$¢2.21)converges absolutely, it converges.

If the alternating series (2.21) converges but does not converge absolutely, we say that
it conditionally converges

Example 56. Determine whether each series converges or diverges. If the series con-
verges, determine whether the convergence is conditional or absolut,@,ﬁ‘lf’;\}%k+1

(b) T (DR AL (0) iy (-1 (14 3

Solution. (a) Becaus¢l/k} is decreasing and k — 0 ask — o, the seies converges.

The series does not converge absolutely because the harmonic series diverges. Hence,
Dkt % which is called thalternating harmonic series converges conditionally.

We see thatttis series converges to In 2 wium

In[315]:= af[k.] = (-1)" (k+1)/k;
Sumia[k], {k, 1, ®}]
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Qut [ 315] = Log[2]
(b) We test for absolute convergence first using the Ratio test. Because

((k+1)+2)!

 FRD(k DIy k+2
— 00 4k(k!)2 —00 ( + )

In[316]:= a[k.] = (k+1)!/ 4"k (k') 2);
sl=FullSinmplify[a[k +1]1/a[k]]

Limt[sl, k->w]
2+k

4 (1+k)?

Qut[316]= 0

Qut[316] =

the series converges absolutely by the Ratio test. Absolute convergence implies conver-
gence so the series converge. (c) Becausg,linil + %)k =e lim (-D<(1+ %)k

does not exist, so the series diverges by the Divergence test. We confirm that the limit
of the terms is not zero withi mi t .

In[317]:= afk-1 = (-1)" (k+1) (1 +1/Kk)"k;
Sumfafkl, {k, 1, «}]
Sum:: "div" : "Sundoesnotconverge."

Qut[317] = Za[k]
k=1

In[318]:= Limt [a[k], k-> ]

1 k
—_— H 3 +k
out[318]= Linit [(-1)* (1+E),k—>oo]

2.4.4 Power Series

Let x, be a number. A power seriesin- x, is a series of the form

(e

Zak(x—xo)k. (2.22)

k=0

A fundamental problem is determining the valuesxpff any, for which the power
series converges.

Theorem 14. For the power serief2.22) exadly one of the following is true.

1. The power series converges absolutely for all values of x. The interval of con-
vergence ig—oco, c0).
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2. There is a positive number r so that the series converges absolutghritxx <
Xy+r. The sefes may or may not converge a&xx,—r and x= X,+r. The irterval
of convergence will be one @fy — 1, Xo + 1), [ =1, X+ 1), (X = 1, %o + 1], Or

[% =1 % +1].
3. The series converges only iExx,. The irterval of convergence |{9<0}

Example 57. Determine the interval of convergence for each of the following power
. o (=K o o 2
series. (@RiZo g (0) Tio 1005 X — DX (0) Ty 7 (x - 4"

Solution. (a) We test for absolute convergence first using the Ratio test. Because

Dokl
(2(k+1)+1)!
(=1¥
(2k+1)!

lim ¥=0<1
Kk—o0

X2k+l

=M kT Dk 3

In[319]:= a[x, k1= (-1)"k / 2k +1)!x" (2k +1);
sl=FullSimplify[alx, k+11/a[x, k11

Linit[sl, k- > ]
X2
t[319]= - —
[319] 6+10 k +4 k?
Qut[319]= 0

for all values ofx, we mnclude that the series converges absolutely for all values of
x; the interval of convergence i6-o0, ). In fact, we will see later that this series
converges to Sir:

o GO e 1 1, 15
smx_;(i.x —X—§X3+aX—ﬁX+---,

which means that the partial sums of the series converge 10 &raphically, we can
visualize this by graphing partial sums of the series together with the graph sinx.
Note that the partial sums of a series are a recursively defined funstiens,_, + a,,

S = a,. We wse this observation to defineto be thenth partial sum of the series.
We use the formp[ x_, n_] : =p[ X, n] =. . . so that Mathematica "remembers” the
partial sums computed. That is, onpex, 3] is computed, Mathematica need not
recompute[ x, 3] when computing| x, 4] .

In[320]: = O ear [p]

plx., 0] =a[0];
pIX-, n.] :=p[X, n] =p[X, n-1] +al[x, n]
In[321]:= p[x,32]

5
X X
Qut[321] = x - = + 755

In Figure 2.31 we graplp,(X) = Y¢_o é;i)lk)! x%+1 together withy = sinx for n = 1,

5, and 10. In the graphs, notice thatragicreases, the graphs pf(x) more closely
resemble the graph gf= sinx.
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-6 -4 -2 2 v
[

2 \

-3 \

Figure 2.31y = sinx together with the graphs qf,(x), ps(x), andp;,(xX)

In[322]:= Plot [{Sin[x], p[x, 11, p[x, 51, p[x, 101}, {X, -2x, 2rx},
Pl ot Range- > {-m, x}, Aspect Rati o- > Aut omati c,
Pl ot Styl e- > {G ayLevel [0], G ayLevel [0. 3],
Dashi ng[{0.01}], {G ayLevel [0. 3], Dashing[{0.01}1}}1

(b) As in (a), we test for absolute convergence first using the Ratio test. Because

| foagr (= Dk 0,if x=1
lim n = (k+ DIx—-1] = )
kooo|  oog(X=1) 1000 co,if X #1

In[323]:= a[x, k-] =k!/1000"k (x-1)"k;
sl=FullSinplify[a[x, k+11/a[x, k11

Limt[sl, k->wm]
Qut [ 323] = (A+k) ((1+x)

000
Qut [ 323] = I ndeterm nate

Be careful of your interpretation of the result of theni t command because Math-
ematica does not consider the case 1 sparately: ifx = 1 the limit is 0. Because
0 < 1 the series converges by the Ratio test.

The series converges onlyxf = 1; the interval of convergence {4}. You should
observe that if you graph several partial sums for "small” values, gbu might in-
correctly conclude that the series converges. (c) Use the Ratio test to check absolute
convergence first:

2kt k+1
—(XxX-4) |
—00 —(X— ) —00
vk

By the Ratio test, the series converges absolutelixi#4 < 1. We solve this inequality
for xwith | nequal i t ySol ve toseethat@ -4/ < 1if7/2<x < 9/2.

In[324]:= a[x_, k.1=2"k /Sgrt [k] (x-4)"k;
sl=FullSinmplify[Abs[a[x, k+1]/alx, k111

Limt[sl, k->w]
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Qut[324] = 2 Abs| l% (-4+%) ]

Qut[324]= 2 Abs[-4 +X]
In[325] : = << Al gebra‘ | nequal i t ySol ve*

I nequal itySol ve[2 Abs[x -4] < 1, x]

Qut [325] = ;<x<§

We checkx = 7/2 andx = 9/2 sparately. I = 7/2, the series becomﬁ‘;l(—l)k%(,
which converges conditionally.

In[326]:= Sinplifyl[alx, k1/.x->7/2]
(1)K
vk
On the other hand, ¥ = 9/2, the series i$};2; %( whichdiverges. We conclude that
the interval of convergence /2, 9/2).

Qut[326] =

In[327]:= Sinmplify[a[x, k1/.x->9/2]

Qut[327] = VLF

2.4.5 Taylor and Maclaurin Series

Lety = f(x) be a function with derivatives of all orders»at= x,. TheTaylor series
for f(x) aboutx = x, is

o fK
3 kgx") (x— %) (2.23)

k=0

TheMaclaurin seriesfor f(x) is the Taylor series fof (x) aboutx = 0. If y = f(x) has
derivatives up to at least orderatx = x,, thenth degreeTaylor polynomial for f(x)
aboutx = X, is

£
P = > kEXo) (x=x)". (2.24)

n
k=0

Thenth degreeMaclaurin polynomial for f(x) is thenth degree Taylor polynomial for
f(x) aboutx = 0. Generally, finding Taylor and Maclaurin series using the definition is
atedious task at best.

Example 58. Find the first few terms of (a) the Maclaurin series and (b) the Taylor
series about = n/4 for f(x) = tanx.
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Solution. (a) After definingf(x) = tanx, we useTabl e together with/ . andD to
computef ®(0)/k! fork =0, 1,..., 8.

In[328]:= f [x_.] =Tan[X];
Tabl e[
{k, DIf [x]1, {X, k}1, DIf [x], {x, k}1/.x->0}, {k, 0, 8}]
Qut[328] = {(0, Tan[x], 0}, {1, sec[x]2, 1}, {2, 2 Sec[x]? Tan[x], 0},
{3, 2 secx]*+4 Sec[x]? Tan[x]?, 2},

{4, 16 Sec[x ]4 Tan[x] +8 Sec[x]? Tan[x]3, 0},
{5, 16 Sec[x]®+88 Sec[x]* Tan[x]?+16 Sec[x]? Tan[x]% 16},
{6, 272 Sec[x]® Tan[x]+
416 Sec[x]* Tan[x]®+32 Sec[x]? Tan[x]®, 0},
{7, 272 Sec[x]® +2880 Sec[x]® Tan[x]?+
1824 Sec[x]* Tan[x]*+64 Sec[x]? Tan[x]®, 272},
{8, 7936 Sec[x]® Tan[x] +24576 Sec[x]® Tan[x]3+
7680 Sec[x]4 Tan[x]®+128 Sec[x]? Tan[x]’,
o))

Using the values in the table, we apply the definition to see that the Maclaurin series is

f90) 17 ,
é i 7x3+ x5+ﬁx ...

For (b), we repeat (a) using= n/4 instead ok = 0

In[329]:= f [x_.] =Tan[X];
Tabl e[
{k, DIf [x1, {x, k}1, DIf [x1, {x, k}1/.x->n=/ 4}, {k, 0, 8}]
Qut[329] = {{0, Tan[x], 1}, {1, sec[x]2, 2}, {2, 2 Sec[x]? Tan[x], 4},
{3, 2 secix]*+4 Sec[x]? Tan[x]?, 16},

{4, 16 Sec[x }4 Tan[x] +8 Sec[x]? Tan[x]3, 80},
{5, 16 Sec[x]®+88 Sec[x]* Tan[x]?+16 Sec[x]? Tan[x]%, 512},
{6, 272 Sec[x]® Tan[x]+
416 Sec[x]* Tan[x]®+32 Sec[x]? Tan[x]°, 3904},
{7, 272 Sec[x]® +2880 Sec[x]® Tan[x]?+
1824 Sec[x]* Tan[x]*+64 Sec[x]? Tan[x]®, 34816},
{8, 7936 Sec[x]® Tan[x] +24576 Sec[x]® Tan[x]3+
7680 Sec[x]4 Tan[x]®+128 Sec[x]? Tan[x]’,
354560} }

and then apply the definition to see that the Taylor series about/4 is

i f(ki(gxo) (x—xo)kz 1+2(x— %)+2(x— %)2+ g(x— %)3+

k=0

E)( _7'()4 64( 7r)5 244( 71)6

377 T\ g T g
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From the series, we can see various Taylor and Maclaurin polynomials. For example,
the third Maclaurin polynomial is

1
Ps(X) = X + éxa

and the 4th degree Taylor polynomial abaut 7/4 is

p4(X)=1+2(x—%)+2(x_f)z+§(x_f)3+

10 4
4) "3 4 _( ﬂ)'

373

The command
Series[f[x],{x, x0, n}]

computes (2.23) to (at least) order— 1. Because of th®©-term in the result that
represents the terms that are omitted from the power serie¥pexpanded about
the pointx = X, the resuliof entering aser i es command is not a function that can
be evaluated ik is a particular number. We remove the remaind®2+) germ of the
power serieSer i es[ f [ x], { X, x0, n}] with the commandNor mal and can then
evaluate the resulting polynomial for particular valuesof

Example 59. Find the first few terms of the Taylor series fbfx) aboutx = x,. (a)
f(x) =cosx,x=0(b) fx) = /x>, x=1
Solution. Entering

I n[330]: = Series[Cos[x], {x, 0, 4}]
2
Qut [ 330] X

1 xt o[x1°®
~ g g tOK

computes the Maclaurin series to order 4. Entering

In[331]:= Series[Cos[x], {X, 0, 14}]

x2 x* x8 x8 x10 x*2
QUE[331)= 1- 5+ 57~ 720 ' 40320 ~ 3628800 ' 479001600
14
X O[X]15

87178291200

computes the Maclaurin series to order 14. In this case, the Maclaurin series for cos
converges to casfor all realx. To graphically see this, we define the functipnGiven
n, p[ n] returns the Maclaurin polynomial of degrador cosx.

In[332]:= p[n.] :=Series[Cos[x], {X, 0, n}1// Nor mal

In[333]:= pI[8]
2

X x4 x8 x8
Qut[333] T2 " 247 720 T 40320

We then graph coz together with the Maclaurin polynomial of degmree- 2, 4, 8 and
16 on the interva]—3x/2,37/2] in Figure 2.32. Notice that asincreases, the graph
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of the Maclaurin polynomial more closely resembles the graph ok.cd& would see
the same pattern if we increased the length of the interval and the vatue of

I n[ 334] : = somegr aphs = Tabl e [Pl ot [Eval uate[{Cos [X], p[2"n]}],
{x, -3xn/ 2, 3n/ 2}, Pl ot Range- > {-3x/ 2, 3n/ 2},
Aspect Rati o- > Aut omati c,
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 31},
Di spl ayFunction->1ldentity],
{n, 1, 4}]
Qut [ 334] = BoxDat a ( {- G aphi cs-, - Graphi cs-, - Graphi cs-, - Graphi cs- })

In[335]:= toshow=Partition[somegraphs, 2]
Qut [ 335] = BoxData({{-Graphics-, -G aphics-}, {-Gaphics-, -Gaphics-1}})
I n[ 336] : = Show[G aphi csArray [t oshow] ]

(b) After definingf(x) = 1/x?, we conpute the first 10 terms of the Taylor series for
f(x) aboutx = 1 with Ser i es.

In[337]:= f[x.]1=1/X"2;
pl0 = Seri es[f [x], {X, 1, 10}]
Qut[337]= 1-2 (x-1)+3 (x-1)2-4 (x-1)%+5 (x-1)*-6 (x-1)%+
7 x-1)%-8 x-1)7+9 (x-1)8-10 (x-1)%+11 (x-1)104
O[x -1711
In this case, the pattern for the series is relatively easy to see: the Taylor seriés for
aboutx = 1is

DDk + x- D).
k=0

This series converges absolutely if

(_1)k+1(k + 2)(X _ 1)k+1
=Dk + D(x - ¥

=x-1<1

k—oc0

or 0< x < 2. The series divergesxf= 0 andx = 2. In this case, the series converges
to f(x) on the intervalO, 2).

In[338]:= a[x,, k1= (-1)"k (k+1) (x-1)"k;
sl=FullSinplify[Abs[a[x, k+1]/alx, k111

Qut [ 338] = %S{W]

In[339]:= s2=Linmt[s] k->w]
Qut [339] = Abs[-1 +X]

I n[ 340] : = << Al gebra‘ | nequal i t ySol ve*

I nequal i tySol ve[s2 <1, x]
Qut[340]= 0<x<2

To see ths, we graphf(x) together with the Taylor polynomial fof(x) aboutx = 1
of degreen for largen. Regardess of the size o, the graphs off (x) and the Taylor
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N

N

Figure 2.32: Graphs of = cosx together with its second, fourth, eighth, and sixteenth

Maclaurin polynomials
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40+

30+

20+

10t

Figure 2.33: Graph of (x) together with the sixteenth degree Taylor polynomial about
x=1

polynomial closely resemble each other on the inte@a2)—but not at the endpoints
or outside the interval. (See Figure 2.33.)

In[341]:= pIn.] :=Series[f[x], {X, 1, n+1}1// Nor mal

In[342]:

Pl ot [Eval uate[{f [x], p[16]}],
{x, 0, 2}, Pl ot Range- > {-5, 45},
Pl ot Styl e- > {GrayLevel [0], G ayLevel [0.31}]

2.4.6 Taylor's Theorem

Taylor's theorem states the relationship betwef€r) and the Taylor series fof(x)
aboutx = X,.

Theorem 15 (Taylor's Theorem). Let y= f(x) have (at least) r- 1 derivatives on an
interval | containing x= X,. Then, for every number x |, there is a number z between
x and », so that

f(¥) = p,(X¥) + Ry(X),
where p(x) is given by(2.24)and

f(n+1)(z) N+
R0 = oy (%) ' (2.25)

Example 60. Use Taylor’s theorem to show that

sinx = i (-1f x2+1
4 (2k+ D)
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Solution. Let f(x) = sinx. Then, for each value of, there is a number between 0

andx so that sinc = p,(x) + R,(x) wherep, () = $f_o 12@xk andR (%) = f(:figf) X1,

Regardless of the value of ™1V (2) is one of sirg, — sinz, cosz, or — cosz, which are
all bounded by 1. Then,

| 1 |
f(n+ )(Z) n+1

s o0l = |y

: 1
|sinx — p,(x)| = D X"

and% - 0 asn - oo for all real values ok.

You should remember that the numbein R (x) is guaranteed to exist by Taylor's
theorem. However, from a practical point of view, you would rarely (if ever) need to
compute the value for a particulax value.

For illustrative purposes, we show the difficulties. Suppose we wish to approximate

sinz/ 180 using the Maclaurin polynomial of degreep}(x) = x — 1x3, for sinx. The The Maclaurin polynomial of degree 4 for
6

fourth remainder is sinxis S 190 = 04 x+0-2+ 2%,

0%

1
R,(X) = 126057 X.

In[343]:= f [x_.] =Sin[X];
r5=D[f [z], {z, 5}1/5!' X°5

Qut [ 343] = % x® Cos|[z]

If x = 7/180 there is a numberbetween 0 and/ 180 so that

ER(ﬂ )i— 1 COSZ( ﬂ )5
I #\180/| ~ 120 180

1 7 \° 10
ﬁ)(ﬁ)) ~ 0.135x 107,

IA

which shows us that the maximum the error can béﬂséﬁ))s ~ 0.135x 10719,

In[344] : = maxerror =N[1/ 120 % (x/ 180)"5]
Qut[344] = 1.349610711

Abstractly, the exact error can be computed. By Taylor’'s theoreatisfies
Vs Vs /s
fl—|= — |+ R, | —
(180) p4(180) ’ 4(180)
n 1 1

P 3 5
180 - 1§0” 349%2005 +22674811600000 cosz

I 3 5 _ain *
180" ~ 34992000 ' 22674816000000 “°%* "M 1g0

We graph the right-hand side of this equation withot in Figure 2.34. The exact
value ofzis thez-coordinate of the point where the graph intersectsztagis.
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0.0025 ®. 005 0.0075 0.01 0.0125 0.015 0.0175
-2x10°%6
-4x1071°
-6x107 %6
Figure 2.34: Finding

In[345]: = p4 =Series[f [x], {X, 0, 4}1// Nor mal

3
Qut[345]= x - >

6
I n[ 346] : = exval =Sin[x/ 180]

p4b = p4/ . x- > x/ 180

r5b=r5/.x->nx/ 180
Qut[346]= Sin ||

180
JT JT
Qut[346] = @5’ 34992000
_ 7 Cos[z]
QUt[346] = 5674816000000

In[347]:= toplot =r5b+p4db -exval ;
Pl ot [topl ot, {z, 0, n/ 180}]

We can use-i ndRoot to approximate, if we increase the number of digits carried
in floating point calculations witk\ér ki ngPr eci si on.

In[348]: = exz =
Fi ndRoot [topl ot == 0, {z, 0. 004}, Wrki ngPreci si on->32]
Qut[348] = {z - 0.003808614916554160794933316330124}

Alternatively, we can compute the exact value @fith Sol ve

In[349]:= cz =Sol ve[topl ot ==0, 2]
Solve :: "ifun" : "Inversefunctionsarebei ngused
bySol ve, so sone sol utions may not be found."

648000 (- 194400 r+ % + 34992000 Sin |35

Qut[349] = {{z > -ArcCos | . 180])]}’
JU
_ 3 Cor
{Z  ArcCos [648000 ( 194400 7T+7T5+ 34992000 Sin [180]) }}}

TT

and then approximate the result with
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In[350]: = N[cz]
Qut[350] = {{z » -0.00384232},
{z - 0.00384232}}

2.4.7 Other Series

In calculus, we learn that the power serfeg) = ¥, (x - xo)k is differentiable and
integrable on its interval of convergence. However, for series that are not power series
this result is not generally true. For example, in more advanced courses, we learn that
the function

f(x) = Z % sin(3)
k=0

is continuous for all values of but nowhere differentiable. We can use Mathematica
to help us see why this function is not differentiable. Let

f (X = Z % sin(3%).
k=0

Notice thatf, (x) is defined recursively by,(x) = sinxandf,(x) = f,_;(X)+ Zi sin(3"x).
We use Mathematica to recursively defifigx).

In[351]:= f[n.] :=f[n] =f[n-1]+Sin[3"n x]/2"n;
f[0] =Sin[x];

We ddine f,(x) using the form
fn_]:=f[n]=...

so that Mathematica "remembers” the values it computes. Thus, to corhpéie
Mathematica uses the previously computed values, nafjely , to conputef [ 5] .
Note that we can produce the same results by defifjjog with the command

f[n]:= ..

However, the disadvantage of definifiggx) in this manner is that Mathematica does
not "remember” the previously computed values and thus takes longer to cofppgite
for larger values oh.

Next, we useTabl e to generatef5(x), f5(X), fo(x), and f;,(x).

I n[ 352] : = posuns = Tabl e[f [n], {n, 3, 12, 3}]
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Out[352]:{8in[x]+% Sin[3 x}+% Sin(9 x}+% Sin[27 x]J,
Si n[x lSin3x 1Sin9x lSin27x
[X]+5 SIN[3 x]+7 SIn(9 x]+g SIn(27 x]+
1 . 1 ) 1 ! )
16 Sin[81 x]+§ Sin[243 x]+a Sin[729 x], Sin[x]+
1 1 1 1 .
> Sin(3 x]+Z Sin[9 x}+§ Sin[27 x]+E Sin[8l x]+

. 1
Sin[243 x] 64

. 1
Sin(6561 X] + &1

Sin[729 x] + Sin[2187 x]+

1
128
Sin[19683 x], Sin[x] +% Sin[3 x]+

32
1
256

1 1 1 . 1 )
1 Sin[9 x]+§ Sin[27 x}+E Sin[81 x}+§ Sin[243 x]+

1 ) 1
54 Sin(729 x] + 128

) 1 )
Sin[2187 x] + 556 Sin[6561 x]+

. Sin[59049 x] Sin[177147 x]
Sin[19683 x] + 1024 + 2048 +

512
Si n[531441 x]}
4096

We now graph each of these functions and show the results as a graphics array with
G aphi csArray in Figure 2.35.

I n[ 353] : = sonmegr aphs = Map [Pl ot [#, {x, 0, 3x},
Di spl ayFunction->1ldentity]& posuns];
toshow=Partition[sonegraphs, 2];
Show[G aphi csArray [t oshow] ]

From these graphs, we see that for large values tifegraph off, (x), although actu-
ally smooth, appears "jagged” and thus we might suspectfipat= lim___ f,(X) =
Yo 7 Sin(3%) is indeed continuous everywhere but nowhere differentiable.

2.5 Multi-Variable Calculus

Mathematica is useful is investigating functions involving more than one variable. In
particular, the graphical analysis of functions that depend on two (or more) variables is
enhanced with the help of Mathematica’s graphics capabilities.

2.5.1 Limits of Functions of Two Variables
Mathematica’s graphics and numerical capabilities are helpful in investigating limits of
functions of two variables.
Example 61. Show that the limit
. X2 —y?
lim 2_y
xy-00) X2 + y?

does not exist.
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Figure 2.35: Approximating a function that is continuous everywhere but nowhere
differentiable

Solution. We begin by definingf(x,y) = ﬁ:ﬁ Next, we usePl| ot 3D to graphz =

f(x,y for-1/2 < x< 1/2and-1/2 <y < 1/2. Cont our Pl ot is used to graph sev-

eral level curves on the same rectangle. (See Figure 2.36.) (To define a function of two
variables,f(x,y) = expressioninxand,erterf [ X_,y_] =expression in x and y.
Plot3D[f[Xx,Yy],{a, x, b}, {y, c, d}] generates a basic graphof f(x,y) for
as<x=<bandc=zy=d)

In[354]:= f[x, y-1=(X"2-y"2)] (X"2+y"2);

pl = Pl ot 3D[f [Xx, Y1, {X, -0.5, 0.5}, {y, -0.5, 0.5},

Pl ot Poi nt s- > {40, 40}, Di spl ayFunction->ldentity];
p2 = Cont our Pl ot [f [X, Y],

{x, -0.5, 0.5}, {y, -0.5, 0.5}, Pl otPoi nts->40,

Cont our Shadi ng- > Fal se, Axes- > Automati c,

AxesOri gi n-> {0, 0}, Di splayFunction->ldentity];
Show[G aphi csArray [{pl, p2}11]

From the graph of the level curves, we suspect that the limit does not exist because
we see that nea0,0), z = f(x,y) attains many different values. We obtain further
evidence that the limit does not exist by computing the value ef f(x,y) for vari-

ous points chosen randomly ng@r0). We useTabl e andRandomto generate 13
ordered triplegx, y, f(x,y)) for x andy "close to” 0. Becaus®andomis included in

the calculation, your results will almost certainly be different from those here. The first
column corresponds to thecoordinate, the second column thecoordinate, and the

third column the value af = f(x, y).
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Figure 2.36: (a) 3-dimensional and (b) contour plotd ©f, y)

In[355]:= r[n_] := {Random[Real , {-10" (-n), 10" (-n)}1,
Random[Real , {-10" (-n), 10" (-n)}1}

In[356]:=r[1]
Qut [ 356] = {5.25152, 9. 37514}

In[357]: = toeval uate = Tabl e[r [n], {n, 1, 15}]

Qut[357] = {{0.043922, 0. 0768676},
{-0. 00775639, 0. 0039307},
{-0. 0000561454,
-0. 0000790007},
{0. 0000536954, 0. 0000373069},
(3.24752107°%, 7. 412431078},
{1.701051077, -6.6412107 7},
{-1.1523110°°% -8.6988210°8),
{3.8591410°°, 4.18814107°9},
{-4.0704710°10,
7.0624810°193,
{8.1906810°11, 4. 65551107111,
{1. 6758110712,
-8.2398210712y,
{(8.4759310713,
-8.2378510713y,
{7.2836110714,
-5.9265810714},
{(6.2323210715,
-2.168551071%y,
{-2.1549310716,
4.8634310716},

In[358]:= Map[f [#[[111, #[[2]1]11&, toeval uate]
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Qut [ 358] = {-0.507731,
0.591324, -0. 328828,
0. 348863, -0. 677926,
-0. 876866, -0. 999649,
0. 0816327, -0. 501298,
0.511638, -0. 920559,
0. 0284831, 0. 203308,
0. 784009, -0. 671783}

From the third column, we see that f(X,y) does not appear to approach any partic-
ular value for points chosen randomly ngdy0). In fact, along the ling/ = mxwe see we choose lines of the form = mxbecause
that near(0, 0) the level curves of = f(x, y) look
like lines of the formy = mx
e

f(x,y) = f(x m>9—1_—

I T

Hence agx,y) - (0,0) alongy = mx, f(x,y) = f(x,myx - % Thus, f(x,y) does
not have a limit agx, y) - (0, 0).

In[359]:= vl=SinplifyI[f[x, mx]]
vi /. m>0
vi/.m->1

vi/. m>1/2

Qut [ 359] = i;”mz?
Qut[359] = 1
Qut[359]= 0
on[359]:§

O

In some cases, you can establish that a limit does not exist by converting to polar coor-
. . . 2_ .

dinates. For example, in polar coordinaté&, y) = §2+§22 becomed (r cosé, r sinf) =

2cog6-1

In[360]:= Sinmplify[f[r Cos[t]l,r Sin[t]]]
Qut[360]= Cos[2 t]

and

lim f(x,y) = lim f(rcos,rsing) = lim2co€#-1=2cog6-1=cosd
(x,y)~(0,0 r-0 r-0

depends o#.
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2.5.2 Partial and Directional Derivatives

Patial derivatives of functions of two or more variables are computed with Mathemat-
ica usingD. Forz = f(x,y),

1. Of[x,y], x] computesf(% = f,(x, ¥,
2.0f[x,y],vy] Computes% = (X, ¥,

3. D[ f[x,Yy],{x, n}] computesst, and

X

4. D f[x,vy],Y, X] computesa"’yz—[,; = f,y(x, ¥, and

5. Df[x,y],{x,n},{y,n}] computesin.

The calculations are carried out similarly for functions of more than two variables.

Example 62. Calculatef,(x, y), f,(x, Y, f, (X, ), f,,(x, 9, f (X, ¥, andf, (x, p if f(x,y) =

Siny X +y? + 1.
Solution. After defining f(x,y) = siny/x? + y? + 1,

In[361]:= f[x, y]l=Sin[Sqrt[x"2+y 2+1]1];
we illustrate the use ddto compute the partial derivatives. Entering

In[362]: = DIf [x, y1, X]

X Cos [4/1+x2+y?]
Qut [ 362] =
AJ1+x2+y?

computesf,(X, y).

Entering

In[363]:= DIf [X, y1, V]
y Cos [\/1+X2 +y2]

AJ1+x2+y?

computesf,(x, y).

out [ 363]

Entering

I n[ 364] : = DIf [X, y1, X, y1// Toget her

out [ 364] = Xy Cos [1/1+x2+y?] -x y [1+x2+y? Sin[/1+x2+y?]

(1+x2 +y2)3/2

computesf,,(X, ).
Entering

I n[ 365]: = DIf [x, y1, Yy, x1// Toget her
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out [ 365] = -X y Cos [\/1+x2+y?] -xy Jl+x2+y2 Sin[\/1+x2+y2}

(l+x2+y2)3/2

computesf, (X, y). Remember that under appropriate assumptidpex, y) = f,,(X, Y.

Entering

In[366]:= DIf [X, y1, {X, 2}1// Toget her

Qut [ 366] = ﬁ(@s [W1+x2+y?] +y? Cos [\/1+x%+y?]-

(L+Xx°+y“)
x2 1+ x2 +y? Sin[\/1+x2+y2])

computesf, (X, y).

Entering

In[367]:= DIf [X, y1, {y, 2}1// Toget her

Qut [367] = ﬁ(@s [\/1+X2+y2] +x2 Cos [\/1+X2+y2]7

(L+Xx°+y“)
y2 AJ14x2 4 y? Sin[\/1+x2+y2])

computesfy, (X, ). O

Thedirectional derivative of z= f(X, y) in the direction of the unit vectar = cosfi+
singjis

D, f(x,y = fi(x,y) cosd + f (X, y) sinb,
provided thatf,(x, y) and f,(x, y) both exist.
If f,(x,y) andf,(x,y) both exist, thegradient of f(x, y) is the vector-valued function
v,y = foo i+ 0695 = (f0 9, f,06 ).
Notice that ifu = (cosé, sing),
D,f(x,y) = vi(x,y) - (cosh,sing) .
Example 63. Let
f(x,y) = 6x%y — 3x* — 2%,

(a) FindD,, f(x,y) in the direction ofv = (3,4). (b) Compute
1
Digaus f (3\/ 9+3V3, 1) .

(c) Find an equation of the line tangent to the graphx/6- 3x* — 2y® = 0 at thepoint

(15333}

The vectord andj are defined by = (1,0)
andj = (0, 1).

Calculus of vector-valued functions is dis-

cussed in more detail in the next section.
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Figure 2.37:f(x,y) = 6x%y — 3x* = 2y° for -2 < x < 2and-2<y < 3

Solution. After definingf(x, y) = 6x2y—3x*-2y®, wegraphz = f(x, y) with Pl ot 3Din
Figure 2.37, illustrating thel ot Poi nt s, Pl ot Range, andVi ewPoi nt options.

In[368]:= f[x_, y.]=6x"2y-3x"4-2y"3;
Pl ot 3D[f [x, Y1, {X, -2, 2},
{y, -2, 3}, Pl ot Poi nt s- >50, Pl ot Range- >
{{-2, 2}, {-2, 3}, {-2, 2}}, BoxRatios-> {1, 1, 1},
Vi ewPoi nt - > {1.887, 2.309, 1.6}, dipFill->None]

(a) A unit vector,u, in the same dection asv is

3 4 > <3 4>
v = , =({—=,=).
VZ+2 VZ+a2[ 155

In[369]:= vV ={3, 4};
u=v/Sqrt [v.v]
Qut[369] = {ﬁ, i}

Then,D,, f(x,y) = (f,(x,y, f,(x,y) cotu, caculated irdu.

In[370] : = gradf = {DIf [x, y1, x], DIf [X, y1, Y1}
Qut[370]= {-12 x*+12 x y, 6 x*> -6 y?}

In[371]:= du=Sinplify[grad.u]
Qut[371]= - = (-2 x2+3 x3-3 x y+2 y?)
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(0) Dgays f (%\/9+ 3V3, 1) is calculated by evaluatingu if x = 4/9+ 3v3 and

y=1
In[372]:= dul =du/. {x->1/3Sqrt [9+3Sqrt [3]1], y->1}//Sinplify

Qut[372] = ,g V3 (72+ 3 (3+ﬁ))

(c) The gradient is evaluatedxf= %\/ 9+ 3v3andy = 1.

I n[373]: = nvec =
gradf/. {x->1/3Sqrt [9+3Sqrt [3]], y->1}//Sinplify

Qut[373]= {-4 /3+/3, 2 V3]

Generally,v f(x, y) is perpendicular to the level curvesof f(X,y), so

nvec = vf (%\/9+3\/§,1) = <fx(%\/9+3\/§, 1), fy(%\/9+3\/§,1)>

is perpendicular td(x,y) = 0 at thepoint(%\/ 9+ 3v3, 1). Thus, an equation of then equation of the lind containing(xy, o)

and perpendicular ta = (a, b isa(x — xo)+

line tangent to the graph dix,y) = 0 at thepoint(%\/ 9+ 33, 1) is b(y—y,) = 0.

fx(%\/9+3\/§,1)(x—% 9+3\/§)+ fy(%\/9+3\/§,1)(y—1) =0,

which we solve fory with Sol ve. We @nfirm this result by graphindg(x,y) = 0
usingCont our Pl ot with theCont our s- >{ 0} option inconf and then graphing
the tangent line in anpl ot . t anpl ot andconf are shown together witBhowin
Figure 2.38.

In[374] : = conf = ContourPl ot [
fIx, yl, {x, -2, 2}, {y, -2, 2}, Contours-> {0},
Pl ot Poi nt s- > 60, Cont our Shadi ng- > Fal se,
Frame- > Fal se, Axes- > Autonmatic, AxesOri gi n-> {0, 0},
Di spl ayFuncti on->Ildentity];

In[375]:= tanline =Solve[nvec[[1]]
(x-1/3Sgrt [9+3Sqrt [3]]) +nvec[[2]]1(y-1) ==0,
Yl

2v3-4 /343 (-4 \Jo.3V3x)
{ly-- >3 H

In[376] : = tanpl ot =Pl ot [Eval uate[y/.tanline],
{x, -2, 2}, Di spl ayFunction->ldentity];
Show[conf, tanpl ot, Di spl ayFuncti on- > $Di spl ayFuncti on,
Pl ot Range- > {{-2, 2}, {-2, 3}}, AspectRati o->Automatic]

Qut [ 375]
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-2 715

Figure 2.38: Level curves df(x, y)
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Figure 2.39:f(x,y)for—-3<x<3and-3<y =<2

Example 64. Let
f(x,y) = (y — 1)2e P~ _ %) (—x5 + %y_ ys) XV _ %e,xz,(yﬂ)z.

Calculatev f(x, y) and then graplv f (X, y) together with several level curves bfx, y).

Solution. We bagin by defining and graphing= f(x,y) with Pl ot 3Din Figure 2.39.

fIX, y-1=(y-1)"2Exp[-(x+1)"2-y 2]-

In[377]:=
10/ 3(-x"5+1/5y -y"3) Exp[-x"2 -y~ 2] -
1/ 9EXp[-X"2 - (y+1)"21;
In[378]:= Plot3D[f [x, y1, {X, -3, 3}, {y, -3, 3}, Pl ot Poi nts->50,
1.833}, Pl ot Range->All ];

Vi ewPoi nt - > {-1. 99, 2.033,

conf = Contour Pl ot [f [x, Y1, {X, -3, 3},
{y, -3, 3}, Pl ot Poi nt s- > 60, Cont our Shadi ng- > Fal se,

Frame- > Fal se, Axes- > Autonmati c, AxesOri gi n-> {0, 0},
Di spl ayFunction->Ildentity];

In the three-dimensional plot, notice thdppears to have five relative extrema: three
relative maxima and three relative minima. We also graph several level curties gf
with Cont our Pl ot and name the resulting graphionf . Thegraphic is not dis-
played because we include the optldinspl ayFuncti on->l dentity.

Next we calculatef,(x,y) and f (x,y) using Si npl i fy andD. The gradient is the

vector-valued functioif,(x, y), f,(x, ).

In[379]: = gradf = {D[f [Xx, y1, x1, DIf [x, y1, y1}//Sinmplify
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Figure 2.40: Contour plot of(x, y) along with several gradient vectors

2
OJt[379]: {5 (efxz,(1+y)2 X + 75 e,XZ,yZ X4—
9 e @MY (1.x) (-14y)2-6 XY x (5 x5-y+5yY)),
7% el+x2+y2,2 <1+X+X2+y+y2)
9

(-e**+9e?¥Y+3el? X2 V.e2X (-1+30 eV x°) y-
3 2V (6+17 el+2 x) y2+9 e2 v y3+30 elé2 x+2y y4)}

To graph the gradient, we udd ot G- adi ent Fi el d, which is contained in the
Pl ot Fi el d package. We usiél ot Gr adi ent Fi el d to graph the gradient naming
the resulting graphigr adf . gr adf andconf are displayed together usi@how.

I n[380]: = << G aphics'PlotField

gradf pl ot =Pl ot G adi entFi el d[f [X, y],
x, -3, 3}, {y, -3, 3}, Di splayFunction->ldentity];
Show[c
onf, gradfplot, D spl ayFuncti on- > $Di spl ayFuncti on]

In the result (see Figure 2.40), notice that the gradient is perpendicular to the level
curves; the gradient is pointing in the direction of maximal increase=of (x,y). O

Classifying Critical Points

Letz = f(x,y) be a real-valued function of two variables with continuous second-order
partial derivatives. Acritical point of z= f(x,y) is a point(xo, yo) in the interior of the
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domain ofz = f(x,y) for which

(%Y%) =0 and  f (x.y)=0.
Critical points are classified by tt&econd Derivativefr Partials) test

Theorem 16 (Second Derivatives Test)Let (xo,yo) be a critical point of a function
z = f(x,y) of two variables and let

d= fXX(XO’yO) fyy(xo'yo) - [fxy(XO’YO)]Z' (2.26)

1. Ifd >0and £, (), Yo) > O, then z= f(x,y) has arelative (or local) minimum
at (Xo, Yo)-

2. Ifd >0and f, (X, Yo) < 0, then z= f(x,y) has arelative (or local) maximum
at (X, Yo)-

3. Ifd <0, then z= f(x,y) has asaddle pointat (X, y)-

4. Ifd = 0, no corclusion can be drawn an@o, yo) is called adegenerate critical
point.

Example 65. Find the relative maximum, relative minimum, and saddle points of
f(X,y) = =22 +x* + 3y — y°.

Solution. After defining f(x, y), the critical points are found witBol ve and named
critpts.

In[381]:= f[x,y]l=-2Xx"2+x"4+3y-y"3;
critpts =
Sol ve [{DIf [x, y1, X1 ==0, DIf [x, y1, y1 == 0}, {X, y}]
Qut[381l]= {{x>-1,y—>-1}, {x->-1,y->1}, {x-0,y->-1},
{Xx-0,y->1}, {(x->1,y->-1}, {x->1,y->1}}

We then definedf xx. Given(x,, Yo), dfxx (X, Yo) returns the ordered quadrupdg v,
(2.26) evaluated dk,, o), andf,, (Xo, Yo)-

In[382]:= df xx[x0_, y0.] =
{x0, y0, DIf [x, y1, {x, 2}1DIf [x, y1, {y, 2}1-
DIf [x, y1, X, y1"2/. {x->x0, y- >y0},
DIf [X, y1. {X, 2}1/. {x->x0, y->y0}}
Qut[382] = {x0, y0, -6 (-4+12 x0%) y0, -4 +12 x02}

For example,

In[383]:= df xx[0, 1]
Qut[383]= {0, 1, 24, -4}

shows us that a relative maximum occurstatl). We then usé . (Repl aceAl | ) to
substitute the values in each elementof t pt s into df xx.
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Figure 2.41: (a) Three-dimensional and (b) contour plots(gfy)

In[384]:= df xx[x, yl/.critpts

Qut[384]= {{-1, -1, 48, 8}, {-1, 1, -48, 8}, {0, -1,
{0, 1, 24, -4}, {1, -1, 48, 8}, {1, 1, -48, 8}}

-24, -4},

From the result, we see thél, 1) results in a relative maximung), —1) results in a
saddle(1, 1) results in a saddl€l, —1) results in a relative minimung;-1, 1) results in
asaddk, and(1, —1) results in a relative minimum. We confirm these results graphically
with a three-dimensional plot generated withot 3D and a contour plot generated

with Cont our Pl ot in Figure 2.41.

In[385]:= pl1=Plot3D[f [x, Y1, {X, -3/2, 3/2}, {y, -3/2, 3/ 2},
Pl ot Poi nt s- > 40, Di spl ayFunction->ldentity];

p2 = Cont our Pl ot [f [X, Y1,

{x, -3/ 2, 3/2}, {y, -3/2, 3/ 2}, Pl ot Poi nts- > 40,
Cont our Shadi ng- > Fal se, Di spl ayFunction->ldentity];

Show[G aphi csArray [{pl, p2}1]

In the contour plot, notice that near relative extrema, the level curves look like circles
while near saddles they look like hyperbolas.

O

If the Second Derivatives test fails, graphical analysis is especially useful.

Example 66. Find the relative maximum, relative minimum, and saddle points of

XY = X2+ X3y2 +y4,

Solution. Initially we proceed in the exact same manner as in the previous example: we
define f(x,y) and compute the critical points. Several complex solutions are returned,

which we ignore.

INn[386]:= f[X, y]l=X"2+X"2y"2+y"4;

critpts =

Sol ve [{DIf [x, y1, x]1 == 0, DIf [x, y1,

y1==0}, {X, y}]
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Qut[386]= {(x >0,y -0}, {x>-V2,y--i}, {x>-2,y-i}
{Xe\@,ye—i}, {X%\/E,y—ﬂ}, {y >0, x>0},
{yaO,XaO}}

We then compute the value of (2.26) at the real critical point, and the valdig(&f y)
at this critical point.

In[387]:= df xx[x0_, y0_] =
{x0, y0, DIf [x, y1, {x, 2}1DIf [x, y1, {y, 2}1-
DIf [x, Y1, X, y1"2/. {x- >x0, y- >y0},
DIf [x, y1, {x, 2}1/. {x->x0, y->y0}}
Qut[387] = {x0, y0, -16 x0? y0% + (2+2 y0?) (2 x0%+12 y0?), 2+2 y0?}

In[388]:= df xx[0, 0]
Qut[388]= {0, 0,0, 2}

The result shows us that the Second Derivatives test fai; @t

In[389]:= pl=Plot3D[f [X, Y], {X, -1, 1}, {y, -1, 1}, Pl ot Poi nts- > 40,
Di spl ayFuncti on->Ildentity, BoxRati os->Automatic];
p2 = Cont our Pl ot [f [Xx, y1, {x, -1, 1},
{y, -1, 1}, Pl ot Poi nt s- > 40, Cont ours- > 20,
Cont our Shadi ng- > Fal se, Di spl ayFuncti on->ldentity];
Show[Gr aphi csArray [{pl, p2}1]

However, the contour plot df(x, y) near(0, 0) indicates that an extreme value occurs at
(0,0). The three-dimensional plot shows tt§@t0) is a relative minimum. (See Figure
2.42.) O

TangentPlanes

Let z = f(x,y) be a real-valued function of two variables. If both(x,,y,) and
fy (xo,yo) exist, then an equation of the plane tangent to the graph of f(x,y) at

the point(Xy, Yo. f (X0, Yo)) is given by
fi (%0, Yo) (X = %) + (X0, Yo) (¥ = ¥o) = (2= 20) = O, (2.27)

wherez, = f (xo, yo). Soling for zyields the function (of two variables)

z=f, (X o) (X — %) + f, (%0: Yo) (Y = Yo) + Z- (2.28)

Symmetric equations of the line perpendicular to the surfacef(x,y) at the point
(o Yor ) are given by

X_XO y_yO Z_ZO (229)

oY) fy(ov) -1
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Figure 2.42: (a) Three-dimensional and (b) contour plots(®fy)

and parametric equations are

X=X + fy (X0, o) t
Y =Yo+ f, (%, 30)t (2.30)
z=17z-t

The plane tangent to the grapho f(x, y) at the poin{(X, Yo, f (X, Yo)) is the "best”
linear approximation of = f(x,y) near(x,y) = (xo, yo) in the same way as the line tan-

gent to the graph of = f(x) at the point(xo, f (Xo)) is the "best” linear approximation
of y = f(X) nearx = X,.

Example 67. Find an equation of the plane tangent and normal line to the graph of at
f(x,y) = 4 - (2¢ + y?) at the point(1, 2,5/2).
Solution. We ddine f(x,y) and computd (1, 2) and fy(l, 2).

In[390]:= f[x., y-1=4-1/42x"2+y"2);
f 1, 2]

dx = D[f [Xx, y1, X1/ . {x->1, y->2}

dy =DI[f [x, y1, y1/. {x->1, y->2}
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Figure 2.43: Graph of (x, y) with a tangent plane and normal line

Qut [ 390] = g
out[390] = -1
Qut[390] = -1

Using (2.28), an equation of the tangent plane4s—1(x—1)-1(y—2)+ f(1,2). Using
(2.30), parametric equations of the normal linexarel —t,y=2-t,z= f(1,2) - t.
We confirm the result graphically by graphirgx, y) together with the tangent plane
in p1 usingPl ot 3D. We usePar anet ri cPl ot 3D to graph the normal line ip2
and then displap1 andp2 together withShow in Figure 2.43.

In[391]: = pl=Plot3D[f [X, Y1, {X, -1, 3}, {y, O, 4},
Di spl ayFuncti on->1ldentity, Pl otPoints->40];
p2 =Pl ot3D[dx (x-1) +dy (y-2)+f[1, 2], {x, -1, 3},
{y, 0, 43}, Di spl ayFunction->ldentity, Pl otPoints->30];
p3 =ParanetricPlot3D[{1+dx t, 2+dy t, f[1, 2] -1},
{t, -4, 4}, Di spl ayFunction->ldentity];
Show[pl, p2, p3, Pl ot Range- > {{-1, 3}, {0, 4}, {0, 4}},
BoxRat i os- > Aut onati c,
Di spl ayFuncti on- > $Di spl ayFunction]

Because = -1(x-1)-1(y—2)+ f(1, 2) is the "best” linear approximation df(x, y) near
(1, 2), the graphs are very similar ngds 2) as shown in the three-dimensional plot. We
also expect the level curves of each n€ial) to be similar, which is confirmed with
Cont our Pl ot in Figure 2.44.
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Figure 2.44: Zooming in nedd, 2)

In[392]:= p4 =ContourPl ot [f[X, y], {X, 0.75, 1. 25}, {y, 1.75, 2. 25},
Cont our Shadi ng- > Fal se, Di spl ayFunction->ldentity];
p5 = Contour Pl ot [dx (x-1) +dy (y-2) +f[1, 2],
{x, 0.75, 1. 25}, {y, 1.75, 2. 25},
Cont our Shadi ng- > Fal se, Di spl ayFunction->ldentity];
Show[G aphi csArray[{p4, p5}11

Lagrange Multipliers

Certain types of optimization problems can be solved using the methbdgrange
multipliersthat is based on the following theorem.

Theorem 17 (Lagrange’s Theorem).Let z= f(x,y) and z= g(x,y) be real-valued
functions with continuous partial derivatives and let # (x, y) have an extreme value
at a point(x,, Yo) on the smooth constraint curvéxgy) = 0. If vg(x,, ) # 0, then
there is a real numbet satisfying

v (% Yo) = 2V 9 (% Yo) (2.31)

Graphically, the pointixo,yo) at which the extreme values occur correspond to the
points where the level curves bE f(x,Yy) are tangent to the graph ofx, y) = 0.

Example 68. Find the maximum and minimum values 6fx,y) = Xy subject to the
constraintsx? + 3y? = 1.

Solution. For this problem,f(x,y) = xy andg(x,y) = %xz + %yz — 1. Observe that
parametric equations fop + 3y? = 1 arex = 2codt, y = 3sint, 0 <t < 2r. In
Figure 2.45, we us@ar anet ri cPl ot 3D to parametrically graplgx,y) = 0 and
f(x,y) for x andy-values on the curvg(x, y) = 0 by grghing

X = 2cost X = 2cost
y = 3sint and y = 3sint
z=0 z=x-y=6cogsint
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Figure 2.45:f(x,y) ong(x,y) = 0

for 0 =t < 27. Our goal is to find the minimum and maximum values in Figure 2.45
and the points at which they occur.

In[393]:= f[x, yl=XY;
gIX., y1=x"2/4+y"2/9-1;

In[394]:= sl =ParanetricPlot3D[{2 Cos[t], 3 Sin[t], 0},
{t, 0, 2x}, Di spl ayFunction->ldentity];
s2 =ParanetricPlot3D[{2 Cos[t], 3 Sin[t], 6 Cos[t]1Sin[t]},
{t, 0, 2x}, Di spl ayFunction->ldentity];
Show[s1, s2, BoxRati os- > Autonati c,
Di spl ayFuncti on- > $Di spl ayFunction]

Toimplement the method of Lagrange multipliers, we comgige y), f,(x,y), g,(x, y),
andgy(x, y) with D.
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In[395]: = fx =DIf [X, y1, x]
fy =DIf [x, y1, yI
gx =DIg[x, yI, X1

gy =DIg[x, y1, ¥yl

Qut[395] = y
Qut[395] = x
Qut [ 395] = g
Qut [ 395] = 29y

Sol ve is used to solve the system of equations (2.31):

f, 6y = 4g,(x, Y
fy(Xa y = )Lgy(xv y)

gx,y =0
for x, y, andA.
In[396]:= vals =Solve[{fx==2 gx, fy == gy, g[X, y] ==0},
{X, ¥y, A}]
Qut[396] = {{1- -3, xﬁfﬁ,yﬁj’i},
{/\—>—3,X—>\/§,y+—%},
{)%3,X%7\/E,yef%}’

3
{193, Xa\/z, yeﬁ}}

The corresponding values 6¢x, y) are found using . .
In[397]:= nl = {x, f[x y1} .vals
Qut[397]= {{ -2, T -3}, {V2, -

(v, 55 3))

8] (-2 - 8],

N

1n[398]:= N[nl]

Qut[398] = {{-1.41421, 2.12132, -3.},
{1.41421, -2.12132, -3.},
{-1. 41421, -2.12132, 3.},
{1.41421, 2.12132, 3. }}

We cortlude that the maximum valui(x, y) subject to the constraimf(x,y) = 0 is 3
and occurs aé\/E 3\/5) and(—\/z —%\/E) The mhimum value is-3 andoccurs at
(—\/Z 3\/5) and(\/i, —%‘\/5) We graph several level curves dfx, y) and the graph

of g(x,y) = 0 with Cont our Pl ot and show the graphs together wishow. The
minimum and maximum values d{x, y) subject to the constraig(x,y) = 0 occur at
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Figure 2.46: Level curves df(x, y) together withg(x,y) = 0

w

N

N

the points where the level curves bfx, y) are tangent to the graph gix,y) = 0 as
illustrated in Figure 2.46.

In[399]:= cpl = ContourPl ot [f [x, Y], {X, -3, 3},

{y, -3, 3}, Cont ours-> 30, Cont our Shadi ng- > Fal se,
Pl ot Poi nt s- > 40, D spl ayFunction->ldentity];

cp2 = Cont our Pl ot [
gIx, y1, {x, -3, 3}, {y, -3, 3}, Contours-> {0},
Cont our Shadi ng- > Fal se, Di spl ayFuncti on->ldentity,
Cont our Styl e- > Thi ckness [0.0111];

Show[cpl, cp2, Di spl ayFunction- > $Di spl ayFuncti on]

2.5.3 lterated Integrals

Thel nt egr at e command, used to compute single integrals, is used to compute iter-
ated integrals. The command

Integrate[f[x,y],{y,c,d},{x, a, b}]

attempts to compute the iterated integral

fcd L‘b f(x,y) dxdy. (2.32)
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If Mathematica cannot compute the exact value of the integral, it is returned unevalu-
ated, in which case numerical results may be more useful. The iterated integral (2.32)
is numerically evaluated with the commaNar

Nl ntegrate[f[x,y],{y,c,d}, {x, a, b}]

Example 69. Evaluate each integral: (994 flz (2xy2 + 3x2y) dx dy(b) fOZ fyfy (3x2 N y3)dxdy
© ;7 f5~ xye* ¥ dydx(d) f;* ;" e™™dxdy

Solution. (a) First we computd [ (2xy? + 3x?y) dx dywith | nt egr at e. Second, we
computef24 flz (2xy? + 3x?%y) dxdywith | nt egr at e.

In[400]:= Integrate[2x y"2+3x"2 vy, VY, X]
x3 y2  x2 y3
+

Qut [ 400] = 5 3
In[401]:= Integrate[2x Yy 2+3x 2 vy, {y, 2, 4}, {X, 1, 2}]
Qut [ 401] = 98

(b) We illustrate the same commands as in (a), except we are integrating over a non-
rectangular region.

In[402]:= Integrate[3x"2+y"3, {X, ¥~ 2, 2y}]
Qut[402]= 8 y3+2 y*-yS_yS
In[403]:= Integrate[3Xx"2+y"3, Y, {X, ¥ 2, 2y}]
mt[403]:2y4+£-£-£

5 6 7
In[404]:= Integrate[3Xx"2+y"3, {y, 0, 2}, {X, ¥ 2, 2y}]

Qut [ 404] = %

(c) Improper integrals can be handled in the same way as proper integrals.

In[405]:= Integrate[x y Exp[-x"2-y"2], X, y]

Qut [ 405] = % e Xy
In[406]:= Integrate[x vy Exp[-x"2-y~ 2], {X, 0, o},
{y, 0, ©}1
1
Qut [ 406] = 2

(d) In this case, Mathematica cannot evaluate the integral exactly so wd nse-
gr at e to obtain an approximation.

In[407]:= Integrate[Exp[Sin[x y11, Y, X]
Qut [ 407] = JJeSi”[X Y axdy

In[408]:= Nintegrate[Exp[Sin[x Y11, {Yy, 0, n}, {x, 0, w}]
Qut [ 408] = 15.5092
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Area, Volume, and Surface Area

Typical applications of iterated integrals include determining the area of a planar re-
gion, the volume of a region in three-dimensional space, or the surface area of a region
in three-dimensional space. The area of the planar régisrgiven by

A= ffRdA. (2.33)

If z= f(x,y) has continuous partial derivatives on a closed re@lpthen he surface
area of the portion of the surface that projects drts given by

sae [ (20 +(20] + 10n 23

If f(x,y) = g(x,y) on R, the volune of the region between the graphsfex,y) and
gix,y is

V = f(x,y) — , dA 2.35
ffR((xy) gx.y) (2.35)

Example 70. Find the area of the regioR bounded by the graphs gf = 2x* and
y=1+x.

Solution. We bagin by graphingy = 2x2 andy = 1+ x? with Pl ot in Figure 2.47. The

x-coordinates of the intersection points are found \&ith ve.

In[409]:= Plot [{2x"2, 1 +X" 2}, {x, -3/ 2, 3/ 2},
Pl ot Styl e- > {GrayLevel [0], G ayLevel [0. 31},
Aspect Rati o- > Aut omati c]

In[410]: = Solve[2x"2==1+X"2]
Qut[410] = {{x > -1}, {x >1}}

Using (2.33) and taking advantage of symmetry, the aré&disfiven by

1 14X
A:ff dA=2f f dydx,
R 0 J2x¥?

which we compute with nt egr at e.

In[411]:= 2 Integrate[l, {x, 0, 1}, {y, 2x"2, 1 +Xx"2}]
Qut [ 411] = 3

We corclude that the area ®is 4/ 3. O

If the problem exhibits "circular symmetry,” changing to polar coordinates is often
useful. IfR={(r,0)]a<r <b,a < 6 < B}, then

B b
ff f(x,y)dA:f f f (rcosd, rsind) rdrdé.
R a a
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Figure 2.47y = 2x? andy = 1 + x? for -3/2 < x < 3/2
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Example 71. Find the surface area of the portion of

fx,y)=y4-x2-y?

that lies above the regidR = {(x, ) [x® + y? < 1}.

Solution. First, observe that the domain 6fx, y) is

{(x,y)‘—\/4—y25xs\/4—y2,—2§y32}={(r,9)|0srsZ,OsGsZyr}.

Similarly,

R:{(x,y)‘—\/l—yzsxs J1-y2 -1=<y< 1}:{(r,0)|0srsl,0s9s2ﬂ}.

With this observation, we udear anet ri cPl ot 3D to graphf(x,y) in pl and the
portion of the graph off(x,y) above Rin p2 and show the two graphs together with
Show. We wish to find the area of the black region in Figure 2.48.

In[412]):= f[x, y-1=Sqrt [4-x"2-y"2];

In[413]:= pl =ParanetricPlot3D[{r Cos[t],r Sin[t],
frr Cos[t], r Sin[t]1}, {r, O, 2}, {t, O, 2},

Pl ot Poi nt s- > 45, Di spl ayFunction->1ldentity];

p2 = Paranetri cPl ot 3D[
{r Cos[t], r Sin[t],f[r Cos[t]l,r Sin[t]], GayLevel [0.3]},
{r, 0, 1}, {t, 0, 2x},
Pl ot Poi nt s- > 45, Di spl ayFunction->ldentity];

Show[pl, p2, Di spl ayFuncti on- > $Di spl ayFuncti on,

BoxRat i os- > Aut omati c]

We conpute f,(x, y), f,(x,y) and\/[fx(x, y)]2 +[f,x, y)]2 + 1 with DandSi npl i fy.
In[414]:= fx = DIf [X, y1, X]

fy=D[)1: [x, yl, yl

Qut[414]= - ——X
/4*X27y2
out[414]= ——

[4_x2 _y2?

Then, using (2.34), the surface area is given by

SA- ffRJ(g;)i(g;)mdA
-/ R\/ﬁd’* (236)

dxdy.

=\[1\[\/ﬁ\/4_iTy2
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Figure 2.48: The portion of the graph &€x, y) aboveR

However, notice that in polar coordinates,
R={r,010<r=<10<60<2n}

so in polar coordinates the surface area is given by

2 1 2
SA:f f rdrdo,
0o Jo V4-r2

In[415]:= s1=Sinplify[Sqrt [1+fx"2+fy~2]]
v
~4 +x% 1 y?

Qut[415]= 2 |-

In[416]:= s2=Sinplify[sl /. {x->r Cos[t], y->r Sin[t]}]
1
4 -r

Qut[416]= 2 .

which is much easier to evaluate than (2.36). We evaluate the iterated integral with
I ntegrate

In[417]:= s3 =Integrate[r s2, {t, 0, 2x}, {r, 0, 1}]
Qut[417]= 2 (4-2 V/3) «

In[418]: = N[s3]
Qut[418] = 3.36715

and conclude that the surface areéa's 4\/§)7T ~ 3.367. O

Example 72. Find the volume of the region between the graphz ef4 — x> — y? and
Z=2-X
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Figure 2.49z=4-x?> —-y?andz=2-xfor-2<x<2and-2<y<2

Solution. We begin by graphingz = 4 — x* — y? andz = 2 - x together withPl ot 3D
in Figure 2.49.

In[419]:= pl=Plot3D[4-X"2-y" 2, {X, -2, 2}, {y, -2, 2},

Pl ot Poi nt s- > 40, Di spl ayFunction->Ildentity];
p2 =Pl ot3D[2 - X, {X, -2, 2}, {y, -2, 2},

Pl ot Poi nt s- > 40, D spl ayFunction->ldentity];
Show[pl, p2, Pl ot Range- > {{-2, 2}, {-2, 2}, {-2, 4}},
BoxRat i os- > Aut onati c,

Di spl ayFuncti on- > $Di spl ayFunction]

The region of integratiorR, is determined by graphing 4 x> — y? = 2 — x in Figure
2.50.

In[420]:= ContourPlot [4-X"2-y"2-(2-X), {X, -2, 2}, {y, -2, 2},
Cont our s- > {0}, Cont our Shadi ng- > Fal se, Pl ot Poi nt s- > 50,
Frame- > Fal se, Axes-> Automatic, AxesOri gi n-> {0, 0}]
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-2

Figure 2.50: Graph of 4 x2 —y? = 2 — x

Completing the square shows us that

R:{(x,y)i(x—— }
S
Thus, using (2.35), the volume of the solid is given by
o] oot -

=ff [(4-x2—y?) - (2-x)] dxdy,

which we evaluate with nt egr at e.

I\)Iw
I/\
I/\

NI W

~——

r\:u—-
|

In[421]:= il=Integrate[(4-X"2-y 2) - (2-X), {y, -3/2, 3/2},
{x, 1/2-1/2Sqgrt [9-4y"2], 1/2+1/2 Sqrt [9 -4y~ 2]}]
81
32
In[422]:= NI[i 1]
Qut[422] = 7.95216

Qut [ 421] =

We corelude that the volume i&r ~ 7.952. O
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Triple Iterated Integrals

Triple iterated integrals are calculated in the same manner as double iterated integrals.

Example 73. Evaluate

ald Yy Ytz
f f f (X+ 2z)sinydxdzdy.
0 0 0

In[423]:= il=Integrate[(x +2z) Sin[yl, {y, 0, n/ 4}, {z, 0, ¥},

{x,0,y+2}]
17 17 n 17 =2 17 8

V2 a2 322 3842
calculates the triple integral exactly witmt egr at e.

Solution. Entering

Qut[423] = -

An approximation of the exact value is found with

In[424]:= N[i 1]
Qut[424] = 0. 157206

]
We illustrate how triple integrals can be used to find the volume of a solid when using
spherical coordinates.
Example 74. Find the volume of the torus with equation in spherical coordinates

sing.

Solution. We proceed by graphing the torus wiipher i cal Pl ot 3Din Figure 2.52,
which is contained in thBar anmet r i cPl ot 3D package that is located in ti&raph-
icsdirectory (see Figure 2.51).

I n[425] : = << G aphi cs' Paranetri cPl ot 3D

Spheri cal Pl ot 3D[
in[¢l, {¢, 0, 7}, {6, 0, 27}, Pl ot Poi nt s- > 40]

In general, the volume of the solid regiénis given by

szf DdV.

Thus, the volume of the torus is given by the triple iterated integral

21 e sing
V= f f f p?sing dp de do,
0 0 0
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O Help Browser
((GoTo_][Graphics” ParametricPlatap” | CBack | [close |
{J Built-in Functions @ Add-ons {2 The Mathematica Book
(3 Getting Started/Demos (3 Other Information (3 Master Index
‘Workingwithédd-ors | Introduction 4 ParametricPlot3Dl
PlotField

Standard Packages M| |Algebra M PlotField3D =
MathLink Library » Calculus 13 Polyhedra é
Prograrnrming in Mathernat | | Discreterath M 1Shapes -
Extra Utilities »| = |Geometry M= |Spline [~

Graphics M| = |Surface0fRevalution o

coordinates, respectively. The names given to the wvarables in spherical coordinates wary in the literature.
The convention used here is that the angle theta is measured from the positive 7 axds, and the angle phi
18 reasured in the x —y plane from the positive x ads.

SphericalPlotzD([r, generate a plot in three dimensions of r as a function of
{thata, thetamin, hetamax}  the angles heta and phi
o P, phimin, phimas; |
CylindricalFlot3D[z, plotzasafuncton of the radius rand the angle theta
fr, rmin, rmax},
{1heta, thetamin, thetamax}
1

Functions for plotting in three dimensions. =

m Here is & sphere of radius 2. [t is very simple to represent in spherical coordinates.

In[4]:=SphericalPlot3D[ 2.
{theta. 0. Pi}. {phi. 0. 2Pi}]

[T

[«»

Figure 2.51: Mathematica’s help f&pheri cal Pl ot 3D

Figure 2.52: A graph of the torus
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In[426]:=il=Integrate[p 2 Sin[¢l, {6, 0, 27},
{¢, 0, 7}, {p, 0, Sin[¢]}]
2
JT
Qut [ 426] = T

In[427]:= N[i 1]
Qut[427] = 2. 4674

which we evaluate with nt egr at e. We mnclude that the volume of the torus is

in? ~ 2.467.

2.6 \ector Calculus

2.6.1 Basic Operations on Vectors

We review the elementary properties of vectors in in space. Let
u = (U, Uy, Ug) = Ui + Uy + Ugk

and
v = (Vy, Vp, V) = Vi + Vo + Vgk

be vectors in space.

1. u andv areequalif and only if their components are equal:

u=v e U =V,U =V, andug = V,.

2. Thelength (or norm) of u is

lhall = y/uy? + Uy? + ug?.

3. If cis a scalar (number),
cu = (Cuy, Cly, CUy) .

4, Thesumof u andv is defined to be the vector
U+ v = (U +Vp, Uy + Vy, Ug + Vg) .

5. If u # 0, aunit vector with the same direction ass

L -t (uy, Uy, U3)

u= y ] .

Il [u2+u2+a2 = 00
1 2 3

6. u andv areparallel if there is a scalac so thatu = cv.

In space, thestandard unit vectors arei =
(1,0,0), j = (0,1,0), andk = (0,0, 1). With

the exception of the cross product, the vector
operations discussed here are performed in
the same way for vectors in the plane as they
are in space. In the plane, teandard unit
vedors arei = (1,0) andj = (0, 1).

A unit vector is a vector with length 1.
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7. Thedot product of u andv is
u-v =V + UV, + UgVs.

If 6 is the angle between andv,

u-v

lball IvIl

Consequentlyn andv are orthogonal ifx - v = 0.

8. Thecross productof u andv is

You should verify thatu - (u x v) = 0O andv - (u x v) = 0. Henceu x v is
orthogonal to bothi andv.

Topics from linear algebra (including determinants) are discussed in more detail in
the next chapter. For now, we illustrate several of the basic operations listed above.
In Mathematica, many vector calculations take advantage of functions contained in
the Vect or Anal ysi s package located in th€alculus directory. Use Mathemat-
ica’s help facility to obtain general help regarding Wect or Anal ysi s package as
shown in Figure 2.53.

Example 75. Letu = (3,4,1) andv = (-4, 3,-2). Cakulate (a)u - v, (b) u x v, (c)
llull, and(d) Ilvll. (e) Find the agle betweeru andv. (f) Find unit vectors with the
same direction as, v, andu x v.

Solution. After loading theVect or Anal ysi s package, we defina = (3,4, 1) and
v = (-4,3,-2). Notice that to definax = (u;, u,, u;) with Mathematica, we use the
form

u={ul, u2, u3}.

Similarly, to defineu = (u;, u,), we use the

formu={ul, uz}. We illustrate the use dbot Pr oduct andCr ossPr oduct , both of which are con-
tained in thevect or Anal ysi s package, to calculate (a)-(d).

Remark.Generallyu. v returns the same result Bst Pr oduct [ u, b] .

I n[ 428] :

<< Cal cul us‘ Vect or Anal ysi s*

I n[ 429] :

u= {3, 4, 1};

v ={-4, 3, -2};

I n[ 430] : = udv = Dot Product [u, V]
Qut[430]= -2
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A three-dimensional coordinate systern assigns three muubers to each point in space. In defining a
eoordinate syster, one must malke a choice abot what 10 reasure and how 0 measure it Frequently,
physical systerns exhibit special syrataetries or structures that make a particular coordinate systern
especially usefinl. Offten the wain step in a mathetatically elegant solution to problers Telated o these
systerns i3 choosing the cotrect coordinates

A variety of tnols for doing, calculus in various thres-dimensional coordinate systers are provided in this
package. Because a given symbolic or numeric expression can mean differen things in diffsrent coondinate
systeras, Mathematica rust kmow what coordingte systern you are using and what the coordinate variables

are. The initial default coordinate systein is Cartesian with coordinate variables X, Yy, and 2z, If you
are frequently working in another system it may be wseful to change the default o that systern using

Setfoordinates.

CoordinateSystem the name of the default coordinate systern
Coordinates[ ]| give the default variables in the default coordinate system
Coordinates [coordsys] give the default variables in the coordinate system coordsys
SetCoordinates [coordrys set the defanlt coordinate system to be coordsys with

1 default variahles
SetCoordinates [coordsys setthe default coordinate system o be coordsys with -
[vare] ] variables vars [~
-
i T1000.  w Jui] [«]»

Figure 2.53: Mathematica’s help for tMect or Anal ysi s package

I n[431]: = ucv = CrossProduct [u, V]
Qut[431] = {-11, 2, 25}

In[432]:= v=Sqgrt [u. u]

Qut[432] = V26

In[433]:= nv=Sgrt [v.V]
Qut[433]= V29

We use the formul@ = cos™* (%) to find the angle betweenu andv.

[hallllv Il

In[434]:= ArcCos[u.Vv/ (v nv)]

N[%

Qut[434] = ArcCos | - 3377}

Qut[434] = 1.6437

Unit vectors with the same direction asv, andu x v are found next.

In[435]:= nornmu =u/ v

nornv = v/ nv

nucrossv = ucv/ Sgrt [ucv. ucv]
Qut[435] = { 3 2 1 }

26’ 13’ /26

155
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Figure 2.54: Orthogonal vectors

4 3 2
ut[435]= { - =50 5 ~ze)

11 & [5
Cut[435]:{75m, 7515, g}

We can graphically confirm that these three vectors are orthogonal by graphing all three
vectors with theli st Pl ot Vect or Fi el d3D function, which is contained in the
Pl ot Fi el d3D package. After loading thel ot Fi el d3D package, the command

Li st Pl ot Vector Fi el d3D | i st of vect or s]

graphs the list of vectorsi st of vect or s. Each element of i st of vect ors is
of the form{ { ul, u2, u3}, {vl, v2, v3}} where(u;, u,, u;) and(v;, v,, v;) are the
initial and terminal points of each vector. We show the vectors in Figure 2.54.

I n[436] : = << G aphi cs* Pl ot Fi el d3Df
I n[437]: = ListPlotVectorFiel d3D[{{{0, O, 0}, nornu},
{{0, 0, 0}, nornmv}, {{O, O, O}, nucrossv}},

Vect or Heads- > True]

In the plot, the vectors do appear to be orthogonal as expected. |
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With the exception of the cross product, the calculations described above can also be
performed on vectors in the plane.

Example 76. If u andv are nonzero vectors, thojection of u ontov is
proj wy
u=——5V
Vo v

Find proj,u if u = (-1,4) andv = (2, 6).

Solution. We ddineu = (-1,4) andv = (2, 6).
and then compute proj.

In[438]:= u={-1, 4};
v ={2, 6};
projvu=u.v v/v.v
11 33}

Qut [ 438] = {E’ o

Finally, we graphu, v, and proj, u together using\r r owandShow in Figure 2.55.

In[439]: = << G aphi cs' Arrow

I n[440]: = ?Arrow

"Arrow[start, finish, (opts)]isagraphics
primtiverepresentinganarrowstartingat
st art andendi ngat fi ni sh."

In[441]:

pl = Show[G aphi cs[
{Arrow[ {0, 0}, ul, Arrow[{0, 0}, v1, Thi ckness[0. 03],
Arrow[ {0, 0}, projvu, HeadScal i ng- >Rel ative]}],
Axes- > Aut onati c, Aspect Rati o- > Automati c,
Di spl ayFunction->Ildentity];

I n[442] : = p2 = Show[G aphi cs[{Arrow[{0, 0}, ul,
Arrow[ {0, 0}, v], Thickness[0.03]1, Arrow[{O0, 0},
proj vu, HeadScal i ng- > Rel ati ve], GrayLevel [0. 4],
Arrow[proj vu, u, HeadScal i ng- >Rel ativel}],
Axes- > Aut omati ¢, Aspect Rati o- > Automati c,
Di spl ayFunction->ldentity];

I n[443] : = Show[Gr aphi csArray [{pl, p2}1]

In the graph, notice that = proj,u + (u - projvu) and the vectom — proj,u is
perpendicular tor. O
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Figure 2.55: Projection of a vector
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2.6.2 \ector-Valued Functions

We now turn our attention to vector-valued functions. In particular, we consider vector-
valued functions of the following forms.

Plane curves: r(t) = x(t)i + y(t)j (2.37)

Space curves: r(t) = x(t)i + yt)j + z(H)k (2.38)
Paametric surfaces: r(s,t) = x(s, )i + y(s,Dj + z(s, bk (2.39)
Vector fields in the plane:  F(x,y) = P(x, Y)i + Q(X, Y)j (2.40)

Vector fields in space:  F(x,y,2 = P(x,y,2i + Q(X,Y,2j + RXx,y,2k (2.41)

For the vector-valued functions (2.37) and (2.38), differentiation and integration is car-
ried out term-by-term, provided that all the terms are differentiable and integrable.
Suppose thaE is a smooth curve defined lyt), a<t < b.

1. If r’(t) £ 0, theunit tangent vector, T(t), att is

r'(t)

TO = or

2. If T'(t) # 0, theprincipal unit normal vector , N(t), is

T
N© = Tl

3. Thearc length function, s(t), is
1
s(t)=f llr’ (ull du.
a

In particular, the length o on the intervala, b is fab lIr’ ()l dt.

4. Thecurvature, k, of C att is It is a good exercise to show that the curva-

ture of a circle of radius is Ur.

- ITOI _a®) NO _ '@ x o)
Tl vonr T i@

wherev(t) = r’(t) anda(t) = r”(t)
Example 77 (Folium of Descartes).Consider thd-olium of Descartes

3at . 3at? .

= o 4 2
r®) 143 1413

fort # -1, ifa= 1. (a) Findr'(t), r”’(t) andfr(t)dt. (b) Find T(t) andN(t). (c) Find
the curvaturex. (d) Find the length of the loop of the Folium.
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Solution. (a) After definingr(t),
In[444):=r[t]1={3 at/ (1+t"3),3 at 2/ (L+t"3)};
a=1;

we computer’(t) and [ r(t) dt with * ,
r'(t)dr, r”(t)dr 2, and [ rt)dtir.

andl nt egr at e, respectiely. We name

In[445]:=dr =Sinmplify[r'[t]]
dr2=Sinplify[r”[t]]

ir=Integrate[r[t], t]

3-6t3 3t (-2+t3
Qut [ 445] = { - ( o Ly

(1+t°) (1+t°)

18 t2 (-2+t3) 6 (1-7 t3+t6)
Qut [ 445] =

L4481 = { (1+t3)° (14133
142t 1 )

Qut[445]= {+/3 ArcTan | 7 ] -Logil+t]+5 Log[l-t «t?],

Log [1+t3]}

(b) Mathematica does not automatically make assumptions regarding the va|ise of
does not algebraically simplifyr’(t)ll as we might typically do unless we uBew
er Expand.

In[446] : = nr = Power Expand [Sqrt [dr.dr1//Sinmplify]
1+4t2-41t3-41t5:4t5t8
(1+t3?

Qut[446] = >

The unit tangent vectot'(t) is formed inut .

In[447):= ut =1/ nr dr//Sinplify

1-2 13
out[447] = { 5 5 = —
1+4tc-41t°-41t>+4t°+t
t (-2+13) )

1+4t2-41t3-41t5:4 6,8

We perform the same steps to compute the unit normal velst@y, In particular, note
thatdutb = T’ (®)II.

In[448]:= dut =D[ut, t1//Sinmplify
i 2t (-2+t3) (1+1t3
(1+4 t2-4 t3-4 15,4 16,1832
2 (-1+31t%+219) )
(1+4 t2-4t3-4t5.:4t6.¢8)%2
In[449]:= duta=dut.dut//Sinmplify
4 (1+tH*
(1+4 t2-4 13-4 t5+4 t8,18)2
I n[ 450] : = dut b = Power Expand [Sqrt [duta]]
2 (1+13)2
1+4 t2-4t3_41t5+4 t6.t8

)2

Qut [ 448]

Qut [ 449]

Qut [ 450] =
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In[451]:= nt =1/dutb dut//Sinplify

t (-2+13)
Qut[451] = { 5 . = —
1+4tc-41t°-41>+41t°+t
1-21t3 )

1+4 t2-4t3_41t5:4 6.8

T @l

o (0 determine the curvature gur vat ur e.

(c) We use the formula =

In[452]:= curvature =Sinplify[dutb/nr]
2 (1+t3)4
8. 32

Qut [ 452] = > 3 5 5
3 (1+4t°-41t°-41t>+41°+t°)

We graphically illustrate the unit tangent and normal vectorsBt= (3/2, 3/2). First,
we compute the unit tangent and normal vectotsdfl using/ . .

In[453]:= utl=ut/.t->1
1 1
Qut[453]= {- =, =
[4531= {- 7 5}
In[454]:= ntl=nt/.t->1
1 1
Qut[454]= {- =, -—=
[454] = { 7 ﬁ}
We thencompute the curvatureif= 1 insmal | k. The center of the osculating circle
atr(1) is found inx0 andyO. The radius of the osculating circle i$d the

position vector of the center is+ %N.
In[455]:= smal | k =curvature/.t->1

N[smal | k]
N[1/smal | k]

X0=r[t][[1]] -dr.dr
rr211/ (dr [[111dr2[[2]]1 -dr2[[1]1dr [[2]])/.t->1

yOo=r[tI1[[2]1]-
r.dr dr[[21]1/ (dr [[111dr2[[21]1 -dr2[[1]1dr [[211)/.t
->1

Qut [ 455] = ST\E

Qut [ 455] = 3.77124

Qut [ 455] = 0. 265165
1

Qut[485] = T¢

21

16

We now bad theAr r ow package and grapft) with Par anet ri cPl ot . Theunit

tangent and normal vectors &tl) are graphed wittar r owin al anda2. The os-

culating circle atr(1) is graphed withCi r cl e in c1. All four graphs are displayedsx aphi cs[ G rcl e[ {x0, yo0}, r]]

together withShow in Figure 2.56. is a two-dimensional graphics object that

represents a circle of radius centered at

Qut [ 455] =

In[456] : = << G aphi cs’ Arrow the point(xy, ¥p). Use Show to display the

graph.
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-1

oL

Figure 2.56: The Folium with an osculating circle

I n[457]:= pl =ParanetricPl ot [Evaluate[r [t]], {t, -100, 100},
Pl ot Range- > {{-2, 3}, {-2, 3}}, Pl ot Poi nts- > 200,
Aspect Rati o->1, Di splayFunction->ldentity];
p2 = Show[G aphics[{Circl e[{x0, y0}, 1/ smal | k],
Arrow([r [1], r [1] +utl], Arrow[r [1], r [1] +nt1]}],
Di spl ayFuncti on->ldentity];
Show[pl, p2, Di spl ayFuncti on- > $Di spl ayFuncti on]

(d) The loop is formed by graphingt) fort > 0. Hence, the length of the loop is given
by the improper integraf;™ lir(t)ll dt, whichwe compute wittNI nt egr at e.

In[458]:= Nintegrate[nr, {t, 0, ©}]
Qut [ 458] = 4.91749

O

Recall that thggradient of z = f(x, y) is the vector-valued functionf (x, y) = (f,(x, ), f,(x, ).
Similarly, we define thgradient of w = f(x,y, 2 to be

of, of, of
vixy,2 = (f,x,y,2, {,(¢,Y,2, f,(x,y,2) = P oy + Ek. (2.42)

A vector fieldF is conservativeif there is a functionf, caled apotential function,
satisfyingv f = F. In the special case thRtx, y) = P(x, y)i+Q(X, y)j, F is conservative
if and only if

oP 0Q

gy  ox’
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Thedivergenceof the the vector field(x,y,2 = P(X, Y, 2i + Q(X, Y, 2j + R(X,Y, 2k is
the scalar field
oP 0Q OR

dvF=v-F=—+—

- 2.4
OXx 6y+az (2.43)

The Di v command, which is contained in théect or Anal ysi s package, can be
used to find the divergence of a vector field:

D v[{P(x,Vy,2),QAX,y,2),R(x,y,2)}, Cartesian[x,y, z]]

computes the divergence Bfx,y,2 = P(X,y, 2i + Q(X, VY, 2j + R(X, Y, 2k. Thelapla-
cian of the scalar fieldv = f(x,y, 2 is defined to be
o’f  o°f  o°f
div(vi)=v-(vf) =v?f = — + — + — = Af. 2.44
(vi) (vi) Py ( )

In the same way thadbi v computes the divergence of a vector fieldypl aci an,
which is also contained in théect or Anal ysi s package, computes the laplacian of
a <calar field.

Thecurl of the vector fieldF(x,y,2 = P(X,Y, 2i + Q(X, Y, 2j + R(X,Y, 2k is

curlF(x,y,2 = vx F(x,Y,2
i j k
o] d ad

=‘ x y iz (2.45)
Px,y,2 QXY,2 RXY,2
=[5~ 55 3+ (5 - )

If F(x,y,2 = P(X,Y,2i + Qx,¥,2j + R, y, 2k, F is conservative if and only if
curlF(x,y, 2 = 0, in which caseF is said to berrotational .

Example 78. Determine if
F(x,y) = (1- 2¢)ye™* i+ (1-2y%)xeYj
is conservative. IF is conservative find a potential function fBr
Solution. We ddine P(x,y) = (1 - 2x%)ye*¥ andQ(x,y) = (1 - 2y?)xe ¥, Then
we useDandSi npl i fy to see thaB(x,y) = Q,(x,y). HenceF is conservative.

In[459]:= p[x, y-1=(1-2x"2)y ExXp[-Xx"2-y"2];
qix., y-1=(1-2y"2)x Exp[-X"2-y"2];

In[460]:= Sinplify[DIpIx, y1, y11

Sinplify[DIgIX, Y1, X11

Qut[460]= e XV (-142 x?) (-1+2 y?)
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Qut [ 460] = e X2

(-1+2 x?) (-1+2 y?)
We ue| nt egr at e to find f satisfyingvf = F.

In[461]:
Qut [ 461]

il=Integrate[p[X, Y1, X] +g[y]
e x ygly]

In[462]:= Solve[D[il, y] ==q[X, Y1, g"[y]]
Qut[462] = BoxData ({{g'[y] »0}})

In[463]:=f =il1/.9g[y]l->0

out[463]= eX*V x y

Remember that the vectaFsare perpendicular to the level curvesfofTo seehis, we
normalizeF in uv.

In[464]:= uv = {p[X, Y1, qI[X, y1}/
Sqrt [{p[x, y1, d[x, y1}. {pIx, ¥1, qIx, y1}1//

Simplify
2

e® ¥ (L1:2 x2) y

Qut[464]= { -

Je’z (x2+y?) (y2+4 x* y2.ix2 (1-8 y2.4 y4))

2

B e X Y2 x (“1+2 y?) |

\/e’2 (x2y?) (y2+4 x* y2+x2 (1-8 y2+4 y*))

We then graph several level curves bin cp with Cont our Pl ot and several vectors
of uv with Pl ot Vect or Fi el d, which iscontained in thél ot Fi el d package, in
f p. We show he graphs together witBhowin Figure 2.57.

I n[465] : = << Graphics' PlotField

cp = Contour Pl ot [f, {x, -3/2, 3/ 2}, {y, -3/2, 3/ 2},
ont our s- > 15, Cont our Shadi ng- > Fal se, Pl ot Poi nts->60, D
i splayFunction->ldentity];

In[466]:= fp =PlotVectorField[uv, {x, -3/2, 3/2}, {y, -3/2, 3/ 2},
Di spl ayFunction->ldentity];

Power ::"infy" :
"InfiniteexpressionlT0 encountered."”
Power ::"infy" :

"InfiniteexpressionlT0 encountered."”
I n[ 467] : = Show[cp, fp, D spl ayFuncti on->$Di spl ayFunction]

Note that we can udd ot Gr adi ent Fi el d, whichis contained inth®l ot Fi el d
package, to graph several vectorszdf. Howeer, the vectors are scaled and it can be
difficult to see that the vectors are perpendicular to the level curvesTie advatage

of proceeding this way is that by graphing unit vectors, it is easier to see that the vectors
are perpendicular to the level curvesfoiih the resulting plot. O
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Figure 2.57: The vectorB are perpendicular to the level curvesfof

Example 79. (a) Show that
F(x,y,2 = —10xy%i + (32 — 10x%y) j + 9yZk
is irrotational. (b) Findf satisfyingvf = F. (c) Compute divF' andv?f.

Solution. (a) After definingF'(x,y, 2, we useCur | , which is contained in th&ec-
t or Anal ysi s package, to see that cfl(x,y,2 = 0.

I n[ 468] : = << Cal cul us‘ Vect or Anal ysi s*

In[469]: = BoxData({Cear [f], f[X, Yy, z.]={-10x y"2,32°3-10x"2vVy,9y z "2}})
Qut[469]= {-10 x y?, -10 x®> y+3 z3, 9 y z?}

In[470]: = Curl [f [x,y, z]1]
Qut[470]= {0, 0, 0}

(b) We then usé nt egr at e to findw = f(x,y, 2 satisfyingvf = F.

In[471]:= il=Integratelf [Xx, Yy, z]1[[111, X] +Qly, z]
Qut[471]= -5 x? y?2+gly, z]

In[472]:= i2=D[i 1, y]

Qut[472] = BoxData(-10 x? y+g®0 1y, z7)

In[473]: = BoxData(Solveli 2 ==f [x, vy, 21 [[211, g% [y, z11)
Qut[473] = BoxData({{g™™? [y, z] -3 z%}})
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In[474]:= i3 =Integrate[3z"3, y] +h[z]
Qut[474]= 3y z3+h[z]

In[475]:=i4=i1/.9ly, z1->i3
Qut[475]= -5 x? y2+3 y z%+h[z]

In[476]:= Solve[D[i4, z] ==f [X, Y, Z][[3]]]
Qut[476] = BoxData({{h'[z] - 0}})

In[477]:= 1f =-5 x? y?>+3 y z3;

vf is orthogonal to the level surfaces &f To illustrate this, we us&ont our -

Pl ot 3D, which is contained in th&ont our Pl ot 3D package, to graph the level
surface ofw = f(x,y, 2 corresponding tav = -1for -2 < x < 2,-2 <y < 2, and
-2 =<z=<2inpf. We then us®l ot G adi ent Fi el d3D, which is contained in the
Pl ot Fi el d3D package, to graph several vectors in the gradient fieltl ofer the
same domain igr adf . The two pots are shown together witBhow in Figure 2.58.
In the plot, notice that the vectors appear to be perpendicular to the surface.

In[478]: = << G aphi cs* Pl ot Fi el d3D
<< G aphi cs‘ Cont our Pl ot 3D
In[479]: = pf = ContourPl ot 3D[I f, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
Pl ot Poi nt s- > {5, 7}, Di spl ayFunction->ldentity];
I n[480]: = ¢f =Pl ot G adi ent Fi el d3D[I f, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, DisplayFunction->ldentity];
I n[481] : = Show[pf, gf, Di spl ayFuncti on- > $Di spl ayFuncti on]

For (c), we tak advatage ofDi v andLapl aci an. As expected, the results are the
same.

In[482]:= DivI[f[x, Yy, z], Cartesian|[x, y, z11
Qut[482]= -10 x?-10 y?+18 y z

In[483]:= Laplacian[lf, Cartesian([x,y, z1]
Qut[483]= -10 x?>-10 y2+18 y z

2.6.3 Line Integrals

If F is continuous on the smooth cur@ewith parametrization(t), a <t < b, theline

integral of F onC is
b
fF -dr = f F-r'(t)dt (2.46)
C a

If F is conservative an@ is piecewise smooth, line integrals can be evaluated using
theFundamental Theorem of Line Integrals
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Figure 2.58:v f is orthogonal to the level surfaces bf
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Theorem 18 (Fundamental Theorem of Line Integrals).If F is conservative and the
curve C defined by(t), a<t < b is piecewise smooth,

f F-dr = f (x(b) - f (r(@) (2.47)
C

whereF = vf.

Example 80. Find fCF - dr whereF(x,y) = (€Y -ye®i+ (e*-xe¥)iandC is
defined byr(t) = costi+ In(2t/x) j,n/2 <t < 4n.

Solution. We see hat F' is conservative witlD and find thatf(x,y) = xe?¥ + ye*
satisfiesvf = F with | nt egr at e.

In[484]:

fIx., y-1={Expl-yl-y Exp[-x], EXp[-X] -x EXp[-y1};

r[t_.] ={Cos[t], Log[2t/n]};

I n[ 485] : = BoxData ({D[f [x, y1[[111, y1//Sinmplify, D[f [X, Y1[[21]1, x1//Simplify })
Qut[485]= -e*-e”Y

Qut[485]= -e* -e”Y

In[486]:= If =Integrate[f [Xx, yI[[111, x]
Qut[486]= e x+e Xy
Hence, using (2.47),

iy-ms 3IN2 1
f F.dr = xe¥ +ye ) ons - = Tn + % ~ 0890
C

In[487]:= xr[t_] =Cos[t];
yr[t_] =Log[2 t/=x];
{xr [n/ 21, yr [n/ 21}

{xr [47], yr [4r]}
Qut[487]= {0, 0}
Qut[487]= {1, Log[8]}

In[488]:= Sinplify[lf/. {x->1, y->Log[8]}]
N[%

1

out[488]= =
[ 488] 8" o

Qut [ 488] = 0. 889984

Log (8]

O

If Cis a piecewise smooth simple closed curve Bod y) andQ(X, y) have continuous
partial derivativesGreen’s theoremelates the line integr@fc (P(x, y) dx+ Q(x, y) dy)
We assume that the symb§i means to eval- t0 @ double integral.
uate the integral in the positive (or counter-
clockwise) direction.
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Figure 2.59y =x?andy = /X, 0= x =<1

Theorem 19 (Green’s Theorem).Let C be a piecewise smooth simple closed curve in
the plane and R the region bounded by C. #,8) and QXx, y) have continuous partial
derivatives on R,

5@(P(x,y)dx+ Qx, y) dy) = ffR(%S - g—l;)dA. (2.48)

Example 81. Evaluate
Sg(e?‘ - siny) dx+ (cosx — €7) dy
C

whereC is the boundary of the region betwege x> andx = y?.

Solution. After definingP(x, y) = € — siny andQ(x, y) = cosx — € ¥, we useP| ot to
determine the regioR bounded byC in Figure 2.59.

In[489]:= p[x_, y.] =Exp[-Xx] -Sin[y];:
qlx-, y-1 =Cos[x] -Exp[-y];
Plot [{x"2, Sgrt [x1}, {Xx, 0, 1.1},
Pl ot Styl e- > {GrayLevel [0], G ayLevel [0. 31},
Aspect Rati o- > Aut omati c]
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Using (2.48),

96(93‘ siny) dx+ (cosx— €7Y) dy = ff ‘ZT(E_@

(cosy — sinx) dA
R

1 VX
= f f (cosy — sinx) dydx,
0 Jx

In[490]:= dqdp = Sinpli fy[D[q[X, Y1, X1 -DI[p[X, y1, y11
Qut[490] = Cos [y] -Sin[x]

which we evaluate with nt egr at e.
In[491]: = Integrate[dqdp, {x, 0, 1}, {y, X" 2, Sqrt [Xx]1}]
N[%

7T 2 Vs 2 .
2\/: FresnelC[J;] \/: FresneIS[J;} +4 Sin[l)]

Qut[491] = 0. 151091

Qut [ 491]

Notice that the result is given in terms of tReesnel S andFr esnel Cfunctions,
which are defined by

X
FresnelS[x]:f sin(gtz) dt and FresnelC[x]:f cos( )dt
0 2 0

A more meaningful approximation is obtained wiNkhWe anclude tha% f (cosy — sinx) dy dx~
0.151. O

2.6.4 Surface Integrals

Let Sbe the graph of = f(x,y) (y = h(X, 2, X = k(y,2) andlet R, (R,,, R,) be the
projection ofSonto thexy (xz y2) plane. Then,

ff g(x,y,2dS= ff g(x,y, f(x,y))\/[fx(x,y)]2+[fy(x,y)]2+1dA (2.49)
S R(y

= f g(x,hx,2,2 \/[hx(x, z)]2 + [hy(x, z)]2 +1dA  (2.50)
Rz

= f szg(l«y,z),y,z)\/[ky(y.z>]2+[kz(y,z)]2+1dA. (2.51)

If Sis defined parametrically by

r(s,t) = x(s,bi + y(s,b)j + z(s, bk, (s,h)eR



2.6. VECTOR CALCULUS 171

the formula
ff g(x,y,2dS= ff g(x(s,b) [rgx r || dA, (2.52)
s R
where
_Ox, oy, _ OX, é’y
rs_(')_sl+6_s ask and r, = 3t1+ Bt Btk’
is also useful.

Theorem 20 (The Divergence Theorem)Let Q be any domain with the property that

each line through any interior point of the domain cuts the boundary in exactly two

points, and such that the boundary S is a piecewise smooth closed, oriented surface

with unit normaln. If F is a vector field that has continuous partial derivatives on €@, our purposes, a surface dsiented if it
then has two distinct sides.

ffoV~FdV=ff QdidevszSF.ndS (2.53)

In (2.53),ffSF~n dSis called theoutward flux of the vector fieldF across the surface
S If Sis a portion of the level curvg(x, y) = C for someg, then a unit normal vector
n may be taken to be either

= V9 or n - V9 .
v gl v gl

If Sis defined parametrically by
r(s,t = x(s,bi + y(s,bj + z(s, vk, (s,t) € R,
aunit normal vector to the surface is

I‘SXI‘t

llrg X 1l
and (2.53) becomes

ffpnds ff ey xr,) dA.

Example 82. Find the outwardflux of the vector field
F(x,Y,2 = (xz+ xyZ)i + (xy+ X°y2)j + (yz+ xy’z) k

through the surface of the cube cut from the first octant by the pbarek, y = 1, and
z=1.

Solution. By the Divergence theorem,

ff F-ndA:fff v FdV.
cube surface cube interior
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Hence, without the Divergence theorem, calculating the outward flux would require
six separate integrals, corresponding to the six faces of the cube. After definming
computev - F with Di v. Di v is contained in th&/ect or An;

package. You do not need to relo:
I n[492]:

<< Cal cul us‘ Vect or Anal ysi s* ) )
t or Anal ysi s package if you ha

IN[493]:=f[X,y,zZ1l={X2Z+XYy 22, Xy+x"2y z,y z+X Yy 2 z}; loaded it during yourcurrent Mat

session.
In[494]):= divf =Div[f [X,y, z], Cartesian[x, VY, z]]
Qut[494]= x+y+x y2+z+x2 z+y Z°?

The outward flux is then given by

1 1 1
fff v-FdV:f f f v-Fdzdydx= 2,
cube interior 0 0 0

which we compute with nt egr at e.

In[495]: = Integratel[divf, {z, 0, 1}, {y, O, 1}, {x, 0, 1}]
Qut [495]= 2

O

Theorem 21 (Stoke’s Theorem).Let S be an oriented surface with finite surface area,
unit normaln, and boundary C. LeF be a continuous vector field defined on S such
that the components & have continuous partial derivatives at each nonboundary

point of S. Then,
9§F'dr=ff curl F-ndS. (2.54)
C S

In other words, the surface integral of the normal component of the cufl taken
overSequals the line integral of the tangential component of the field takerGover
particular, ifF = P(x,y, 2i + Q(X,V, 2j + R(X,y, 2k, then

f(P(x, Y, 2dx+ Q(x, Y, 2dy+ R(X,y,2d2 = ff curlF-ndS.

c s

Example 83. Verify Stoke’s theorem for the vector field
Fx,y,2=(-y)i+(y"-2j+(x+2)k

andSthe portion of the paraboloil= f(x,y) = 9 - (X* +y?),z= 0.

Solution. After loading thevect or Anal ysi s package, we definB andf. Thecurl
of F is computed witrCur | incurl F.
I n[496] : = << Cal cul us* Vect or Anal ysi s*

In[497]:= capf [X, Yy, z]1={X"2-y,yY 2-2, x+2"2};
fIX, ¥y1=9-(X"2+y"2);
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In[498]: = curl capf =Curl [capf [X, Yy, z], Cartesian[x, vy, z]]
Qut[498]= {1, -1, 1}

Next, we define the functioh(x,y,2 = z— f(x,y). A normal vector to the surface is

given byvh. A unit normal vectorn, is then gven byn = % which is computed in

un.

In[499]: = BoxData({h[x. y_, z.1 =z-f [x, y], norntosurf =Gad[h[x, y, z], Cartesian[x,y, z11})
Qut[499]= -9+x%+y?+2z
Qut[499]= {2 X, 2 y, 1}

In[500]:= un=Sinplify[norntosurf/Sqgrt [norntosurf.norntosurf]]
2

Qut [500] = { , y , !
Jivax2iay? 114 x2:ay2 (104 %214 y2

The dot product curF - n is computed irg.

In[501]:= g=Sinplify[curl capf.un]

1+2 x-2
Qut[501]= ——2 XY
\1+4 x%+4 y?
Using the surface integral evaluation formula (2.49), In this exampleR, the projection off(x, )

onto thexy-plane, is the region bounded by

2 2 the graph of the circle? + y? = 9.
ff curl F-ndS= ff gy, o6 /[ fa 9] +[f,x 9]+ 1dA
S R

3 oR . :
- L fm g0, Y, 106 9) 4 [0 9] + [0 9] + 1dy dx
= 9r,

which we compute with nt egr at e.

In[502]:= tointegrate=Sinplify[(g/.z->f[X, y])=*
Sqrt [DIf [x, y1, X172+ DI[f [x, y1, y1"2 +11]
Qut[502]=1+2 x-2y

I n[503]:

il=Integrate[tointegrate, {x, -3, 3},
{y, -Sart [9-x"2], Sgrt [9 -x"2]}]
Qut[503]= 9

To verify Stoke’s theorem, we must compute the associated line integral. Notice that
the boundary oz = f(x,y) = 9— (xX* + y?), z = 0, is the circlex’ + y> = 9 with
parametrizatiorx = 3cost, y = 3sint, z = 0, 0 < t < 2r. This paametrization is
substituted intd(x, y, 2 and hamegvf .

In[504]:= pvf =capf [3Cos[t], 3Sin[t], 0]
Qut[504] = {9 Cos[t]®>-3 Sinft], 9 Sin[t]? 3 Cos[t]}
To evaluate the line intgral along the circle, we next define the parametrization of the

circle and calculatdr. The dot product opvf anddr represents the integrand of the
line integral.
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In[505]:=r[t_.]={3Cos[t], 3Sin[t], 0};
dr =r’[t]
Qut[505]= (-3 Sin[t], 3 Cos[t], 0}

In[506]:= tointegrate =pvf.dr;

As before withx andy, we instruct Mathematica to assume thad real, compute the
dot product ofpvf anddr and evaluate the line integral witint egr at e.

In[507]:= Integrate[tointegrate, {t, 0, 2x}]
Qut[507]= 9

As expected, the result isr9 |

2.7 Exercises

1. Compute the following by hand and check your results with Mathematica:
@ & (% + )
(b) & (xe™)
(c) & (cosyt+ +cost)
(d) & (1+1)
(e) %Xsinx

2. Evaluate the following antiderivatives by hand and check your results with Math-
ematica:

(a) f(§ + 3—;)dx
(b) [xe>dx
(© [tsin(})dt

3. Let f(x) = x2sir? (1/x) for x # 0 andf(0) = 0. (a) Show thak = 0 is acritical
number off(x). (b) Explain why Theorem 3 can or cannot be used to classify
f(0). (c) Classify f(0).

4. (a) Evaluate lig,o S (b) Evaluate[ &2 dx and carefully use the Fundamen-
tal Theorem of Calculus to verify your result.

5. Determine the intervals for which(x) = xV3(x - 4)Y3(x - 6)?3 is increasing and
decreasing. Generate a graphf ¢f) that confirms your results.

6. Classify the relative extreme valuesfgk) = 2 cosx+sin 2, 0 < x < 2. Grgph
f(x) on this interval.

7. Determine the intervals for which(x) = /x(x + 4) is increasing, decreasing,
concave up, and concave down. GréigR).
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10.

11.

12.

13.

14.

15.

. Let R be the region in the first quadrant bounded by the graphs sfsinx,

x = 0, x = m and thex-axis. Find the volume of the solid obtained by revolving
R about (a) thex-axis, (b) they-axis, (c) the horizontal ling = 2, and (d) the
vertical linex = -1.

. LetRbe the region in the first quadrant bounded by the graplys=of — x? and

the x-axis. Find the volume of the solid obtained by revolviRgbout (a) the
x-axis, (b) they-axis, (c) the linex = 1, and (d) the lings = 1. (e) Are the results
the same as the results obtained in the following exercise? Why or why not?

LetR be the region bounded by the graphgef x andy = x2. Find thevolume

of the solid obtained by revolving about (a) the-axis, (b) they-axis, (c) the
line x = 1, and (d) the liney = 1. (e) Are the results the same as the results
obtained in the previous exercise? Why or why not?

Determine if the following improper integrals converge or diverge.

@ [t
(b) [ L dx

00 X2+3x+2

Determine if the following series converge or diverge.

o k
(@ 21 (100l
(b) T, (-D*ksin(%)
(©) T 10
Determine the interval of convergence of each power series.

(@) Ti2o X
(b) 32, Tx— 1)k
(©) My g (x+ DK

(d) zgo(%)k XK

Find the Maclaurin series for (X). What is he interval of convergence for
this series?

(a) Show that
> 1
= cos(3%)

converges absolutely for all valuesxf(b) Use term-by-term differentiation to
differentiate

1
f(x) = Z > cos(3).
k=0
State (at least) three particular valuex difiat are not 2-multiples of each other
for which the resulting series diverges. (c) Provide graphical evidencd that
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16.

17.

18.

19.

20.

21.

22.

23.

24.

CHAPTER 2. CALCULUS

is continuous everywhere but nowhere differentiable. Write a short paragraph
providing justification for the graphs you provide.
Let
n!

% = 1000
(a) Compute and graph the first few terms of the sequence. (b) Based on (a),
do you think the sequence converges or diverges? (c) By hand, determine if the
sequence converges or diverges.

Show that
: X2y
lim ——
xy-00) X* + y?
does not exist.Hint: The level curves off(x,y) = xﬁ{ﬁ near(0, 0) look like
parabolas of the formg = ax?.

Find,(0,0), £,(0,0), f,,(0,0), andf,,(0,0) if

P-) |
(= { iy 0,0
0,if x,y = (0,0

Find the relative maximum, relative minimum, and saddle points(xfy) =
6x%y — 3x* — 2y8. Confirm your results with both three-dimensional and contour
plots.

Find the outwardflux of the vector field
F(x,y,2 = X%+ y%j + 7k

through the surfacBenclosed by the hemisphere: V1 — x> — Z and the plane
z=0.

Show that the curvature of the circle with parametric equatirns, r cost,
y=rsint,0<t < 2ris Ur.

Verify Stoke’s theorem for the vector field
F(x,y,2=(Y-2)i+(x+2)j+ (¥ -1k
andSthe portion of thez = f(x,y) = 25— (9%* + 16y?), z= 0.

A parametrization of th& dbius strip is given byr(s,t) = x(s,t)i + y(s,t)j +
zs, 0k, 0<s<n-1<t <1 wherex=(4-tsins)cos B,y = (4-tsins)sin X,
andz =t coss. Grgph the Mobius strip.

Letf(x) = (xsin()—l())2 for x # 0 andf(0) = 0. (a) Show thak = 0 is acritical
number. (b) Explain why the First Derivative Test can or cannot be used to clas-
sify this critical number. Use a graph to support your explanation. (c) Classify
x=0.
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25. LetShbe the surface given parametrically B§g, t) = x(s, Hi + y(s, )j + z(s, bk,
0<s=<1/2 0=t =< 4r, whaex = scost — 35°c0s 2,y = —ssint — 1’sin 2,
andz = 3s¥2cos(3t). (a) GaphS (b) Explain why or why noSis orientable.

Hint: Graphn = ”:SXIH . (c) If Sis orientable, find the area 8f Note: Sis called

Maeder’s Owl Minimal Surface.
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Chapter 3

Linear Algebra

Chapter 3 discusses Mathematica’s linear algebra commands.

The examples used to illustrate the various commands are similar to examples routinely
done in a one semester linear algebra course and include solving systems of linear

equations and finding eigenvalues and eigenvectors of a square matrix.

3.1 Linear Systems of Equations

Given a linear system of equations, we can solve it quickly by eliminating variables in

an efficient way. Given a linear system of equations, performing the operations of

1. interchanging the order of the equations,
2. multiplying an equation by a nonzero number, and
3. adding a nonzero multiple of one equation to another

result in a system equivalent to the original.

Example 84. Solve

X+y+z=2 3.1)
X—2y+2z=17 3.2)
X+3y+2z2=2 (3.3)

Solution. We methodically eliminate. We eliminatefrom (3.2) and (3.3) by adding

179
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—1x (3.1) to (3.2) and (3.3) which results in

X+y+z=2 (3.4)

-3y+z=5 (3.5)

2y+z=0 (3.6)

Multiplying (3.5) by -3 gives us
X+y+z=2 3.7)
1 5
y— :—%z =-3 (3.8)
2y+z=0 (3.9)

We now eliminatey from (3.9) by adding-2x (3.8) to (3.9) giving us

X+y+2z=2 (3.10)

1 5
y-32= -3 (3.11)

5 1
§Z_ 3 (3.12)
Multiplying (3.12) by 2 results in

X+y+z=2 (3.13)

1 5
y-— §Z_ ~3 (3.14)
7=2 (3.15)

where we see that= 2. Substitutingz = 2 into (3.14) shows us thgt= —1. Substi-
tutingy = —1 andz = 2 into (3.13) shows us that= 1. The solution to the system is
x=1y=-1,z=2.

We oonfirm this result withSol ve.

In[508]:= Solve[{X+Yy+Z==2, X-2y +2Z ==7, X +3y +2Z == 2}]
Qut[508]= {{x->1,y->-1,2z-2}}

O

In the example, notice that the most difficult part is writing the variables. Also, it
doesn’t matter what we call the variables: solving

Xp+X+X%X3=2
X] =X+ 2% =7
Xy +3X, +2%X5 =2

is the same as solving (3.1)-(3.3).
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Definition 1 (Matrix). A matrix is a rectangular array.

In a text, we usually denote matrices with bold letters.

1 1 1
A=|1 -2 2 7
1 3 2

is a 3x 2 matrix because it has three columns and two rows. The entries in this matrix
are numbers. (b) I£ = f(x,y) andz = g(x, y) are functions for which the first partial
derivatives exist, From a practical point of view, compute

J = g_)f( % — fX(X' y) fy(Xa y)
a_g gX(X' y) gy(xl y)

OX
is a 2x 2 matrix because it has two rows and two columns. The entries of this matrix
would usually be functions of andy. (c) If x andy are differentiable functions df

Example 85. (a)

af/ox = f, by assuming that all variables
) exceptx are constant.

a9
ay

X = X(t) andy = y(t), andx is the 2x 1 matrixx = (;(/) the matrix

X’ = — = g; =
dtly) “\§) "y
is a 2x 1 matrix because it has two rows and one column. A matrix with one column
is called acolumn vector. Similarly, a matrix with one row is called eow vector. If

the context is clear, the word row or column is omitted and a matrix with one column
(or row) is referred to asaector.

If A hasn rows andm columns, we can write it as

&y 8 &3 .- Gy

A=|% %2 % o Bl oo A =(g)
: : : : i)
4 8p 83 .- &

where the entry in theh row andjth column ofA is denoted by;, which isdefined
in Mathematica by entering

capa={{all, al2,...,aln},{a2l, a22,...,a2n,...,{anl,an2,...,annt}}.
After you have defined\ =capa, capa[[i]] returns thdth row of A. UseMa-
t ri xFor mto display a matrix in traditional row-and-column form.
Given the linear system with equations andh unknowns,
ApqXy + A% + ... 8 X, = Dy

31Xy + 3% + .. BXy = by (3.16)

B Xq + 8Xo + -+ By = By
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we can associate it with the matrix

a; &, a3 ... &y b
A=|P %2 Bs oo B by
8u @p g - @nm by

Similarly, given a matrix, we can associate it with a linear system of equations.

x=1 - 1 0 1
y=-2 0 1 -2

Example 86. (a)

(b)
Xx-y=3 (l -1 3)
2X+y=6 2 1 6
(c)
2x+2y=3 (2 2 3)
4x+4y=5 4 4 5
(d)

Thus, performing the row operations of

1. interchanging the rows of a matrix,
2. multiplying a row of a matrix by a nonzero number, and

3. adding a nonzero multiple of one row to another row of a matrix
correspond to the operations of

1. interchanging the order of the equations,
2. multiplying an equation by a nonzero number, and

3. adding a nonzero multiple of one equation to another

to the corresponding system of linear equations and vice-versa.
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Example 87. Solve

-3x+2y-2z=-10
X-y+2z2=7
2X-y+z2=6.

-3 2 -2 -10
Solution. The associated matrixid =| 3 -1 2 7 ] defina in capa, and
2 -1 1 6

then displayed in traditional row-and-column form witht r i xFor m

In[509]:= C ear [capal

In[510] : = capa = {{-3, 2, -2, -10}, {3, -1, 2, 7}, {2, -1, 1, 6}};
Mat ri xFor m[capa]
-3 2 -2 -10
Qut[510]= (3 -1 2 7
2 -1 1 6

We eliminate methodically. First, we multiply row 1 byl/3 so that the first entry in
the first column is 1.

In[511]:= capa = {-1/ 3capa[[1l]1], capa[[2]1], capal[[311}

B 2 2 10
Qut[511] = {{1, 3 3 ?}, {3, -1, 2, 73, {2, -1, 1, 6} }

We now eliminate below. First, we multiply row 1 by3 and add it to row 2 and then
we multiply row 1 by—2 and add it to row 3.

In[512]: = capa = {capa[[1l]], -3capa[[l]] +capall2]],
-2capa[[1]] +capal[[3]11}
2 2 10 1 1 2
Qut[512] = {{1, 3 3 ?}, {0, 1, 0, -3}, {0, 3 3 -5}}
Observe that the first nonzero entry in the second row is 1. We eliminate below this

entry by adding-1/3 times row 2 to row 3.

In[513]:= capa = {capal[[l]], capal[[2]], -1/3 capal[[2]] +capal[[3]1]1}

2 2 10 11
Qut[513]= {{1 -3 3 ?}, {0, 1, 0, -3}, {0, 0, -3 §}}

We multiply the third row by-3 so that the firshonzero entry is 1.

In[514]:= capa = {capa[[l]], capa[[2]], -3capal[3]1]}

Mat ri xFor m[capal
Qut[514] = {{1, %, % 1?0}, {0, 1,0, -3}, {0, 0, 1, -1} }
1 .2 2 10
aut[s14= [ £ 3 %
0 0 1 -1
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This matrix is equivalent to the system

2.2 10
3 3473
y--3

z=-1,

which shows us that the solutionxs= 2,y = -3,z = -1.

Working backwards confirms this. Multiplying row 2 by2and alding to row 1 and
then multiplying row 3 by-2/3 and ading to row 1 results in

In[515]:= capa = {2/ 3 capa[[2]1] +capa[[l]], capa[[2]], capal[[3]11};
capa = {-2/3 capa[[3]] +capal[[ll], capa[[2]], capal[[3]1};
Mat ri xFor m[capa]

1.0 0 2
Qut[515]= ([0 1 0 -3
00 1 -1

which is equivalent to the systex= 2,y = -3,z= -1.
Equivalent results are obtained wiRowReduce.

In[516]:= capa = {{-3, 2, -2, -10}, {3, -1, 2, 7}, {2, -1, 1, 6}};
capa = RowReduce [capa]

Mat ri xFor m[capa]
Qut[516]= {{1, 0,0, 2}, {0, 1, 0, -3}, {0, 0, 1, -1}}

1 0 0 2
Qut[516]= [0 1 0 -3
00 1 -1

Finally, we confirm the result directly witBol ve.

In[517]:= Solve[{-3x+2y -2Z ==-10, 3X -y +2Z2 ==7, 2X -y +Z == 6}]
Qut[517]= {{x>2,y~>-3,z->-1}}

O

As illustrated in the exampleRowReduce can be used to perform the elementary
row operations on a matrix. GeneralfpwReduce[ A] reducesA to reduced row
echelon form

Example 88. Solve

=3X; + 2%y + 55 = =12
Xy — X, —4X3 =9
2% =X = g =T.

-3 2 5 -1
Solution. The associated matrix iA = ( 3 -1 -4 92} which is reduced to
2 -1 -3 7

row echelon form wittRowReduce.
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In[518]: = capa={{-3, 2, 5, -12}, {3, -1, -4, 9}, {2, -1, -3, 7}};:
rrcapa = RowReduce [capa] ;
Mat ri xFor m[rr capal

1 0 -1 2
out[518]= [0 1 1 -3
00 0 O

The result shows that the original system is equivalent to

X —Xg =2 or X; =2+ X5
X + X3 = =3 Xo = =3 —X%g

S0X4 is free. That is,for any real numbet, a solution tole system is

A

The system has infinitely many solutions.
Equivalent results are obtained wisiol ve.

In[519]:= Sol ve[{-3x1 +2x2 +5x3 == -12, 3x1 -x2 -4x3 == 9,
2Xx1 -x2 -3x3 ==7}1
Sol ve :: "svars" : "Equationsnaynotgi vesol utions
forall sol vevariables."
Qut[519] = {{x1->2+x3, Xx2->-3-x3}}

In[520]: = Sol ve[{-3x1 +2x2 +5x3 == -12,
3x1-x2-4x3==9, 2x1 -%x2-3x3 ==7},
{x1, x2}1
Qut[520] = {{x1->2+x3, x2->-3-x3}}

Example 89. Solve

=3X; + 2%, + 5% = —14
33X — X, — 4%y =11
2% — Xp — X3 = 8.

-3 2 5 -14

Solution. The associated matrix A = 3 -1 -4 11 |, which isreduced to
2 -1 -3 8

row echelon form wittRowReduce.

In[521]:= capa={{-3, 2, 5, -14}, {3, -1, -4, 11}, {2, -1, -3, 8}};
RowReduce [capa]// Mat ri xForm

1 0 -1 0

Qut[521]= [0 1 1 ©

0 0 0 1
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The result shows that the original system is equivalent to

X =% =0
X +X%X3=0
0=1

Of course, 0 is not equal to 1: the last equation is false. The system has no solutions.

We check the calculation witlsol ve. In this cag, the results indicate th&bl ve
cannot find any solutions to the system.

In[522]:= Sol ve[{-3x1 +2x2 +5x3 == -14, 3x1 -x2 -4x3 == 11,
2x1 -x2 -3x3 == 8}]
Qut[522]= {}

Generally, if Mathematica returns nothing, the result means either that there is no solu-
tion or that Mathematica cannot solve the problem. In such a situation, we must always
check using another method, which we will do in Section 3.3. O

Example 90. The nullspace of A is the set of solutions to the system of equations
3 2 1 1 -2
3 3 1 2 -1
Ax =0. Findthe nullspacecA =2 2 1 1 -1f.
-1 -1 0 -1 0
5 4 2 2 -3

Solution. Observe that row reducin@A|0) is equivalent to row reducings. After
defining A, we useRowReduce to row reduceA.

In[523]:= capa={{3, 2, 1, 1, -2}, {3, 3, 1, 2, -1},
{2,2,1,1, -13, {-1, -1, 0, -1, 0}, {5, 4, 2, 2, -3}};
RowReduce [capa]// Mat ri xForm

100 0 -1
01 0 1 1
ut[523]= ([0 0 1 -1 -1
0 00 0 O
0 00 0 O

The result indicates that the solutionsAk = 0 are

Xy t 0 1
Xy -s—t -1 -1
X=|X|=|s+t|=s| 1[|+t] 1],
Xy s 1 0
X5 t 0 1

wheresandt are any real numbers. The dimension of the nullspacenuligy , is 2; a
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Humerical Computation B[ =[List Operations » Nul|Space
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HullSpace

mHNullSpace[m] gives a listof vectors that forms a basis for the null space of the matrix m

®HullSpace works on both numerical and sybolic matrices
mHullSpace|[m, Hodulus-=n] finds null spaces for integer matices mocwlo n.

mKHullSpace[m, BeroTest -3 lost] evaluates tes1[ m[ [3, j]] ] to determine whether matrix
elements are zero. The default setting is GeroTest —» Automatic

= & Mathod option can also be given. Possible settings are as for LinearSolve.
= See fhe Mathematica book: Section 3.7.8.

mSee also: LinearSolve, RowRedu ingularValues.

~ Further Examples

The nullspace of a non-singular matrix is the trivial vector space. In other words, no nonzero
vector gets multiplied to the zero vector

= ]
e )

ouqil= {}

This nullspace has dimension 1

1
\n[Z]:H\lllSchE[[: i _11]] ]:|
3

owel= {{4, -3, 1}}

We check the result.

1
=22 t)qa, -3, 1 1]
T f T I [

A0 ]

Figure 3.1: Mathematica’s help folul | Space

basis for the nullspace is

0 1

You can use the commaridll | Space (see Figure 3.1 to find a basis of the nullspace
directly.

I n[524] : = Nul | Space[capal
Qut[524]= ({1, -1, 1,0, 1}, (O, -1,1, 1, 0}}

3.2 Matrix Operations

The matrix operations of addition, subtraction, and scalar multiplication are performaeghris a number.
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in the natural way.

1. If A = (a;)andB = (b;) arenxm, A + B = (a; + by;). Thatis, ifA andB

have the same dimensions, the sum (difference) is the matrix obtained by adding

If A andB do not have the same dimen- (subtracting) the corresponding entries.

sions, the operations of matrix addition and

subtraction are not defined.

2. If cis a scalar and\ = (a;), CA = (ca;). Thatis, to multiply a matrix by a
scalar quantity, multiply each entry of the matrix by the scalar quantity.

Matrix multiplication is more complicated for the beginner.Af = (aij) and isn x k
andB = (b;) isk x m, AB is defined to be the matrix

C = (g;) (3.17)

where
k
Gij = @1byj + &by + - + by = Zaiubuj' (3.18)
u=1

Thatis, if A = (a;) and isnxkandB = (b;; ) iskxm, AB is the matrixC = (g;;) where
¢;; is obtained by multiplying each entry in thté row of A by the corresponding entry
in the jth column of B and adding the result. Note thatA andB do not have the
appropriate dimensions, the matrix produaté defined.

If the matrix product is defined, entér B to compute the produci B.

_8 _5 _3 7 5 4 -8 -
Example 91. Let A = (_3 9 5), B=(4 6|,C=|9 4 -6|,andD =
5 - 7 6 5

:2 _95 . If defined, perform each computation: @B, (b) BAC, (c)AB+D, (d)

AC, and(e) BC.

Solution. After definingA, B, C, andD,

In[525]:= capa = {{-8, -5, -3}, {-3, 9, 5}};
capb = {{7, 5}, {4, 6}, {5, -5}};
capc = {{4, -8, -9}, {9, 4, -6}, {7, 6, 5}};
capd = {{-5, 9}, {-6, -5}};

we perform each defined calculation. Entering
I n[ 526] : = capa. capb

Mat ri xFor m[%]
Qut[526] = {{-91, -55}, {40, 14}}

91 -55
Qut[5261= (,5 1a

computesAB. Entering
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I n[527] : = capb. capa. capc

Mat ri xFor m[%
Qut[527] = {{-166, 632, 599}, {232, 644, 336}, {-1010, -320, 445}}
-166 632 599
Qut[527] = 232 644 336
-1010 -320 445

computesBAC. Enteing
I n[ 528] : = capa. capb + capd

Mat ri xFor m[%q
Qut[528] = {{-96, -46}, {34, 9}}

Qut [ 528] = ‘3946 ‘36
computesAB + D. Entering
I n[529] : = capa. capc

Mat ri xFor m[%

Qut[529] = {{-98, 26, 87}, {104, 90, -2}}
98 26 87
Qut[529] = (104 90 -2

computesAC. Entering

capb . capc

Dotizdatsh : Temsors {{7, 5}, {4, 6}, {5, -5}} and
({4, -8, -9}, {2, 4, -8}, {7, 6, 5}} have incompatible
shapes.

{17, 5}, {4, 6}, {5, -5}}. {{¢, -8, -9}, {9, 4, -6}, {7, 6, 5}}

returns an error message becaB<@ is not defined. O

Example 92. Thenx nidentity matrix is the matrixI with 1's down the diagonal and
O's elsewhere. 1A isnx n, AT = TA = A. We \erify this equation ifA is 2 x 2.

In[530]:=id2={{1, 03}, {0, 1}};
{{a, b}, {c, c}}.id2//MatrixForm

id2. {{a, b}, {c, d}}// MatrixForm

out[530] = (2 2 )
out[530] = (2 2 )

3.3 Determinants

Let A = (a;) be ann x n matrix. Thecofactor of ; is (-1)*IC;;, where C;; is the

(n—=1) x (n— 1) matrix obtained by deleting thi¢h row andjth column of A. The
determinant of A is
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Definition 2 (Determinant). Thedeterminantof thel x 1 matrix A = (a) is a. The

determinantof the2 x 2 matrix A = (i 3) is

a b
|A|_|C d =ad - bc.

For n > 2, thedeterminantof the nx n matix A is defined inductively by

|A| = Z(—l)”jaij Icy]- (3.19)

If A is a square matrix, the commabdt [ A] computes the determinant 4f.

2 -8 1

6 =2 - 8 -5 8

Example 93. Calculatethedeterminantof(A):[—9 0 —l]and(b)Bz 7 1 7
9 0 - -8 -8 3

Solution. (a) To computeA| by hand, we choose to expand along the second column:

-6 -2 -3 -9 -1
-9 0 -1j=(-Dn*?.-2.] ‘ =2.(72--9) =162
! 9 0 -8 |9 -8

We check the calculation witBet . For (b), we useet .

In[531]: = Det [{{-6, -2, -5}, {-9, 0, -1}, {9, 0, -8}}1
Qut[531] = 162

In[532]: = Det [{{2, -8, 1, -5}, {8, -5, 8, 4}, {7, 1, 7, -9},
{-8, -8, 3, 8}}1]

Qut[532] = 11047

3.3.1 Inverses

MatricesA andB are inverses iAB = BA = I. If A has an inverse, we denote the
inverse byA~1. The square matriA has an inverse if and only [A| # 0.

If JA| # O, the inverse ofA can be computed using the formula

1
Al= A2 3.20
|A] (3.20)

Thecofactor matrix, A°, of A is the matrix WhereA? is thetranspose of the cofactor matrix

obtained by replacing each elementAfby
its cofactor.

If A has an inverse, reducing the mattix|I) to reduced row echelon form results in
(IJIA~Y). This method is often easier to implement than (3.20).
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It is particularly useful to memorize the inverse formula for & 2 matrix: if A =
(a b) and|A| £ 0,

c d
Al Lfd -by_ 1 d -b
|A|\-c a) ad-bcl-c a)

In[533]: = RowReduce[{{a, b, 1, 0}, {c, d, 0, 1}}]

_ d
Qut[533]= {{1, 0, -bc+ad bc-a d}' {01, -

c a
-bc+ad -bc+a d}}

If A has an inverse, the commahdver se[ A] computesA .

In[534]:= Inverse[{{a, b}, {c, d}}]
b

out[534] = {{ ¢ a

bc+ad -bc+a d}' {77b c+tad -bc+a d}}

-2 2 1
Example 94. CalculateA™ 1 if A = [ 0 -2 2 ]

-2 -1 -1
10

Solution. After defining A andI = [0 1 0], we conpute|A| = 12, soA! exists.
0 0 1

I n[ 535] : = << Li near Al gebra' Matri xMani pul ati on‘ ;
capa = {{2, -2, 1}, {0, -2, 2}, {-2, -1, -1}};
i3={{1, 0, 0}, {0, 1, 0}, {0, O, 1}};

I n[ 536] : = Det [capa]

Qut[536] = 12

We use AppendRows (see Figure 3.2 to form the matriA|T) AppendRows is contained in tha/t r i x-

. . Mani pul at i on package that is located in
In[537]:= ai 3 = AppendRows [capa, i 3];

Mat ri xFor m[ai 3]

2 -2 1 1 0 O
o -2 2 0 1 O
-2 -1 -1 0 0 1

theLinearAlgebra directory.

Qut [ 537]

and the useRowReduce to reducg A|I) to row echelon form.

I n[ 538] : = RowReduce [ai 3]

1 1 1 1 1
Qut[538] = {{1, 0, 0, 3 7 -g}, {0,1,0 -3 0 -5}
11 1
{o.0, 1, "3 5 *5}}
/3 -1/4 -1/6
The result indicates that 1 = [ -1/3 0 -1/3|. We dheck this result with n-
-1/3 12 -13

verse.
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MathLink Library b [MumericalMath »| " |Orthaganalization
Programming in Matherratd | Statistics M Tridiagonal — [
Extra Utilities b= Utilities [ bl

m LinearAlgebra™MatrixManipulation™

This package includes functions for composing and separating matricss using mws, colurans, and
subroatrices. All of the definitions inwolve simple cormbinations of built-in functions. Also incloded are
functions for constmeting a variety of special matrices

AppendColunns [y ,  join the colurans in matrices my . mz .,
My, -]
AppendRows [y , mz  Join the Tows in watrices my , ma, ...
e
ElockMatrix [Blocks] join rows and colurans of subratrices in Plocks 1o fomm
a new matrix

Functions for combining matrices.
= This loads the package

ri]=<< Linearilgebra‘HatrizHanipulation®: ]

mDefing a2 =2 matrix.

mzl-a = f{f{aill, alz}. {a2i, a22}}; HatrixForm[a]

1

w2k Fonne

[311 alZJ ]
azl azz

m Define a second ratrx

nE=b = {{bi1., biZ}. {b21. b2Z2}}. HatrixForm[b] ]
Ouf3liietriForm=

(hll hlZJ

bzl bzz

A ]

1 J100% ~ [ul] [«]»

Figure 3.2: Thevat ri xMani pul ati on package
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In[539]:= Inver si[cafa] 1 1 11 1
Qut(s39]= {{3. -7 g1 (-3 0 3k {-3 3 -3l
]
3.3.2 Linear Systems of Equations
Consider the linear system
A qXy + AgXy + o+ Ay X, = by
Ay1 Xy + BppXy + 000 + By Xy = D, (3.21)

Ay Xy + X + o+ AyX, = by

In matrix form, the system is written ax = b, whee

&y, @ - &y Xy b,
A = B1 8p - a?“, X = X.Z, and b= b.z.
Ay Qp - Gy Xn b,
If A is invertible, it follows thatAx = b has solution
x=A"'b.

Cramer’s Rule

An alternative method of solvindx = b is given byCramer’s rule
Let A; denote the matrix obtained by replacing tttecolumn ofA by b. Then,

-
Al

The commandLi near Sol ve[ A, b] (see Figure 3.3) solveAx = b for x.
Example 95. Solve each system: (a)
2X) — 2% — g+ X, =1
=Xy = 2Ky + g + Xy = =2
2% =X+ 2% =1
=2X) + 2%y = Xg =Xy =2
(b)
=Xy + 4Xy + 15%; + 18x, = -7
=X + X+ 3%+ 3%, =1
5%, — 2%, =93 — 12X, =5
—4X; + 2%, + 8X5 + 10x, = —4.
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LinearsSolve

mLinearSolve[m, b] finds an x which solves the matix equation m . x==&.

® LinearSolve works on both munerical and symbolic matrices

m The argument & can be either a vector or a matrix.

m The matrix m can be square or rectangular

= For underdetermined systems, LinearSolve will retum one of the possible solutions; Solve will
Tetum a general solution,

= For sparse systems of linear equations, it will usually be much more efficient to use Solve than
LinearSolve.

aIf you need to solve the same approximate numerical linear system many times, it is usually more efficient
1o use LUDecomposition and LUBackSubstitution

mLinearSolve[m, b, Modulus -> 1] takes the matrix equation to be wodulo n.

mLinearSolve[m, b, ZeroTest -> fert] evaluates test[ m[[1, F11 ] to determine whether matrix
elements are zero. The default setting is ZeroTest —> (#==0&).

4 Method option can also be given. Possible settings ate Co factorExpansion,
DivisionFresRowReduction and OneStepRowReduction The default setting of Automatic
switches between these methods depending on the matrix given

mSee the Mathematica book: Section 8.

mSee also L on Motes and I on Motes.

m3ee also: Inverse PseudoInverse Solwe Nullsy

m Related package: Lineardlgebra” Tridiagonal”

[> Further Examples

A ]

1 J100% ~ [ul] [«]»

Figure 3.3: Mathematica’s help fai near Sol ve
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2 -2 -2 1
: : . . -1 -2 2 1
Solution. (a) In matrix form, the system is equivalentAx = b, whae A = 5 _1 2 0
-2 2 -1 -1
Xy 1
X = iz ,andb = _1 . After definingA andb, we seehat A~ exigs by computing
3
Xy 2
|A| = 9 with Det .

I n[ 540] : = << Li near Al gebra‘ Matri xMani pul ation' ;
capa = {{2, -2, -2, 1},
{-1, -2, 2, 1}, {2, -1, 2, 0}, {-2, 2, -1, -1}};
b=1{1, -2, 1, 2};

I n[541] : = Det [capa]
Qut[541]= 9

The inverse is then found withnver se.

In[542]:= ai =I|nverse[capa]
B 1 1 4 8 2 14 1 1
Qut [ 542] = {{7§, 30 7§}, {75, -3 L 7?}, {7§, 0, 0, 7§},
11 2 26
(-5 -3 -2-5H
-3
. . Lo -11/3 .
We obtain the solution by computing b = 1 The result indicates tha =
-233
-1/3,x, = —=11/3,%x; = -1, andx, = —23/3.
In[543]:= ai.b
_ 1 11 23
Qut [ 543] = {75, -5 L 7?}

We cleck the result withLi near Sol ve.

I n[ 544] : = Li near Sol ve[capa, b]

B 1
Qut [ 544] = {75, -5 L 7?}

Alternatively, we check the result by reducing the augmented mea#ik) to row
echelon form withAppendRows andRowReduce.

In[545]:= b = Map[{#}& b]

Qut[545] = ({1}, {-2}, {1}, {2}}

I n[ 546] : = augb = AppendRows [capa, b]

Qut[546]= ({2, -2, -2, 1, 1}, {-1, -2, 2,1, -2}, {2, -1, 2, 0, 1},
{-2, 2, -1, -1, 2}}

I n[ 547] : = RowReduce[augb]// Matri xForm



196 CHAPTER 3. LINEAR ALGEBRA

1000 -1
1
aut[sary= (0 1 0 0 =
0010 1
000 1 %
-7 4 15 18
-1 1 3 3

(b) In matrix form, the system is equivalentAx = b, whae A = 5 _2 _9 _12

-4 2 8 10

X; =7

X = §2 ,andb = _5 . After defininingA andb, we usedet to see thatA| = 0—
3
Xy -4

A1 does not exist. Consequently, the system may have no solutions or infinitely many
solutions.

I n[548] :

capa = {{-7, 4, 15, 18},
{-1, 1, 3, 3}, {5, -2, -9, -12}, {-4, 2, 8, 10}}:
b={-7, -1, 5, -4};
I n[ 549] : = Det [capa]
Qut[549]= 0

We ue AppendRows to form the augmented matriA |b),

I n[550]: = bvec = Map[{#}& b]
Qut [550] = ({-7}, {-1}, {5}, (-4}}
I n[ 551] : = augb = AppendRows [capa, bvec];

Mat ri xFor m[augb]
-7 4 15 18 -7

1 1 3 3 -1
Qt[551]= | o 5 9 12 5
4 2 8 10 -4

which we then reduce usingowReduce. Theresult indicates that the system has
infinitely many solutions.

I n[ 552] : = RowReduce[augb]// Matri xForm
1 0 -1 -2 1
0o 1 2 1 0
0 0 0 0 O
0 0 0 0 O

Qut [ 552] =

By hand, we write the solutions as follows. lsdndt denote real numbers. Then, any
solution to the system takes the form

X)) (1 1 2
X,| |0 -2 -1
x|~ o S| 11+ o |
X,) \O 0 1
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We check the result with.i near Sol ve. Note hatLi near Sol ve only returns one
solution.

I n[ 553] : = Linear Sol ve[capa, b]
Qut[553]= {1, 0, 0, 0}

However, when we usBol ve, we obtain infinitely many solutions.

I n[554] : = capa. {x[1]1, x[2], X[3], X[4]} ==
Qut[554] = (-7 x[1] +4 x[2] +15 x[3] +18 x[4],
-X[1] +x[2] +3 X[3] +3 x[4],5 x[1]-2 x[2] -9 x[3]-12 x[4],
-4 X[1]+2 x[2] +8 x[3] +10 x[4]} ==
(-7, -1, 5, -4}
I n[555]:= Sol ve[capa. {x[1], x[2], x[3], x[4]} ==b]
Sol ve :: "svars" : "Equationsnaynotgi vesol uti ons

foral |l sol vevari abl es. "
Qut[555]= {{x[1] 51+x[3]+2 x[4], X[2] »-2 X[3] -%x[4]}}

3.4 Eigenvalues and Eigenvectors

Let A be annx n matrix. A is aneigenvalueof A if there is anonzerovector,v, called
aneigenvector satisfying

Av = Av. (3.22)
We find the ggenvalues ofA by solving thecharacteristic polynomial
[A-AI =0 (3.23)

for A. Once we find the eigenvalues, the corresponding eigenvectors are found by
solving

(A-ADv=0 (3.24)

for v.

If A isa square matrix,

Ei genval ues[ A]
finds the eigenvalues df,

Ei genvect ors[ A

finds the eigenvectors, and
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Ei gensyst enf A

finds the eigenvalues and corresponding eigenvedBiat act eri sti cPol ynomi al [ A, | anbda]
finds the characteristic polynomial &f.

Example 96. Find the eigenvalues and corresponding eigenvectors for each of the fol-

01 7T
lowing matrices. (a)A = (‘23 _23) b) A = (1 ‘31) © A = [1 0 1] (d)

110
_ya 2
A‘(—s —]J4)

Solution. (a) We begin by finding the eigenvalues. Solving

P +61+5=0

|A—)LI|=|_3_/\ 2

2 -3-2"
gives us\; = -5 anda, = -1.

Observe that the same results are obtained uSiray act eri sti cPol ynoni al
andEi genval ues.

In[556] : = capa = {{-3, 2}, {2, -3}};
Characteri sticPol ynom al [capa, A]// Fact or

el = Ei genval ues [capal
Qut[556]= (L+2) (5+2)
Qut[556] = {-5, -1}
, . . X
We now find the corresponding eigenvectors. ket= (yl

) be an eigenvector corre-
1

sponding ta\;, then

which row reduces to

o ol)-(6)

Thatis,x; +y; = 0 orx, = -y,. Herce, for any value of, # 0,

()= ()= ()
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is an eigenvector correspondingAp Of course, this represents infinitely many vec-

). Note that

tors. But, they are all linearly dependent. Choosing 1 yieldsv,; = ( 1

you might have choseyy = —1 andobtainedv, = _11

are "correct” because these vectors are linearly dependent.

. However both of our results

Similarly, lettingv, = (;2) be an eigenvector corresponding\jove solve(A - )LZI) v, =
2

R K

Thus,x, -y, = 0 orx, = y,. Herce, for any value of, # 0,

= (52)=0) ()

is an eigenvector correspondingAg Choosingy, = 1 yieldsv, = (1) We onfirm

1
these results usingowReduce.

In[557]:=i2={{1, 0}, {0, 1}};
evl =capa-el[[1l]] i2
Qut[557]= {{2, 2}, {2, 2}}

I n[ 558] : = RowReduce[evl]

Qut[558] = ({1, 1}, {0, 0}}

In[559]:= ev2 =capa-el[[2]] i2
RowReduce [ev2]

Qut[559] = {{-2, 2}, {2, -2}}
Qut[559] = ({1, -1}, {0, 0}}

We obtain the same results usiBggenvect or s andEi gensyst em

I n[ 560] : = Ei genvectors[capal

Ei gensyst em[capal
Qut[560] = {{-1, 1}, {1, 1}}
OJI[SGO]: {{75! 71}1 {{711 1}! {1! 1}}}

(b) In this case, we see that = 2 has multiplicity 2. There is only one linearly

independent eigenvector,= ( 1

), corresponding ta.

In[561]: = capa = {{1, -1}, {1, 3}};
Fact or [Char acteri sticPol ynomi al [capa, A]]

Ei genvect or s [capa]

Ei gensyst em[capa]
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Qut[561]= (-2+2)2
Qut[561] = {{-1, 1}, {0, 0}}

1
(c) The eigenvalu@, = 2 has corresponding eigenvectey = [l] Theeigenvalue
1
2,3 = =1 has multiplicity 2. In this case, there are two linearly independent eigenvec-

-1 -1
tors corresponding to this eigenvalue; = ( 0 ] andvy = [ 1 ]
1 0

In[562]: = capa = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}};
Fact or [Characteri sticPol ynom al [capa, A]]

Ei genvect ors[capal

Ei gensyst em[capa]
QUt[562]= - (-2+2) (1+1)2
Qut[562]= {{-1, 0, 1}, {-1, 1, 0}, {1, 1, 1}}
Qut[562]= ((-1, -1, 2}, {{-1,0,1}, {-1,1,0}, {1, 1, 11}}

(d) In this case, the eigenvalugs, = —;11 + 4i are complex conjugates. We see that the
eigenvectors, , = (é) + (g)l are complex conjugates as well.

In[563]: = capa = {{-1/4, 2}, {-8, -1/ 4}};
Ei genvect or s [capa]

Ei gensyst em[capa]
Qut[563]= {{i, 2}, {-i, 2}}

Qut [ 563] = {{7%74 i, 7%+4 ibo(gi, 2y, (-, 20}

3.5 Exercises

—4
1 5 3 5 0 1 1
viea- (b 9m-(3 o= 4 3),D=[_23 ’]

-1 0 -1
[ 1 -1 0 ] If defined, calculate each of the following by hand and confirm
1 1 0
your result with Mathematica. If the operation is not defined, state why.
(a) 1A
(b) A-B
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(c) BA

(d) A~

(e) IE|

(f) B

(9) AD

(h) DA

() (CD)+B

() (AE)-C

(k) (CD)E

() DOE

2. Calculate:

@5 5
-5 -1 -4

(b)|6 -7 -8
7 4 -6

-5 -6 -2 -3
© 3 -3 -4 8
-7-6 2 2
-6 -6 0 2

3. Find the eigenvalues and corresponding eigenvectors for each matrix.

-2 2

@a-(7 3
-1 0

(b) A = (_2 _1)
0 -1

©a-(5 3
1 0

(dA=|0 -1 1
1 0 O

0 1 -1
©) A:(—l 0 o]
0 0 1

4. Solve each of the following linear systems using at least two different methods.
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@)

=14, — 2% + X3 =X, =1
=8X; =X + X3 =X, =—1
8X) — 2%y + Xg = —

16X + 2X, — Xg + X, = =2

(b)

=14x; — 2%, + X3 + 18x, = 3

—8X; =X + X3 +10x, =1
8X; — 2%y + X5 — 4%, = -8
16X, + 2%, — X3 — 20x, = -4

(©)

—14x, — 2%, + 12X — 12¢, =5
—8X) =X+ X3 — 7%, =3
8%y — 2%, — 10%;3 + 10x, = —6
16x; + 2%, — 14X; + 14x, = -6

(d)

=14, — 2%, + 12X - 12, = 4
=8X) =X+ TXg = TXy =2
8x; — 2%, — 10%; + 10x, = —6
16x; + 2%, — 14x5 + 14x, = -5



Chapter 4

Differential Equations

Chapter 4 discusses Mathematica’s differential equations commands. The examples
used to illustrate the various commands are similar to examples routinely done in a one
semester differential equations course.

4.1 First-Order Differential Equations

4.1.1 Separable Equations

Because they are solved by integrating, separable differential equations are usually the
first introduced in the introductory differential equations course.

Definition 3 (Separable Differential Equation). A differential equation of the form
f(y)dy=g(x)dx (4.1)

is called a first-orderseparable differential equation

We solve separable differential equations by integrating.

Remark. The command

DSol ve[y’ [t]==f[t,y[t]],y[t], t]

attempts to solvg’ = dy/dt= f(t,y) fory. (See Figure 4.1.)

Example 97. Solve each of the following equations. (#)— y?>sint = 0 (b)Y =
ay(1- &y), K, @ > 0 constant.

203
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mDSolve[egn, ¥, X] solves a differential equation for the function y, with independent variable x.
mDSolwe[{egn, , 6q7 ¢ ... }o A¥y s Yoo ... 1o X] S0lves 3 list of differential equations.
mDSolve[egn, ¥, (X1, X, ... }] 50lves a partial differential equation.

mDSolwe[&gn, Y[ X1, X] gives solutions for y[ x] Tather than for the function y itself
wExmample: DSolve[y'[x] == 2 a x, y[x], x]—{{y[x] = ax?+C[1]}}.

= Differential equations must be stated in tens of derivatives such as ¥ ' [x]. obfained with D, not iotal
derivatives obtained with Dt.

»DSolve generates constands of infegration indesxed by successive infegers. The option
DSolveConstants specifies the function to apply to each index. The defanlt is
DSolveConstants->C, which yields constants of integration C[ 1], C[2].

mhSolveConstants—>(Module[ {C}, C] &) guarantees that the constants of integration are unique,
even across different invocations of DSolve

= For partial differential equations, DSolwve genemales arbitrary functions C[n] [ .. .

= Boundary conditions can be specifisd by giving equations suchas y' [0] ==

= Zolutions given by DSolwe sometimes include integrals that cannot be carried out explicitly by
Integrate. Dumay variables with local naraes are used in such integrals.

mDSolve sometimes gives implicit solutions in s of Solve.

mDSolwve can solve linear ordinary differential equations of any order with constant coefficiends. It can
solve alsn many linear squations up tn second order with non-constant cosfficients

#DSolve inchides general procedures that bandle a large fraction of the nonlinear ordinary differential
equations whose solutions are given in standard reference books such as Farale

mD0Solve can find general solutions for linear and weakly nonlinear partial differential equations. Truly
nonlinear partial differendial equations usually adit no general solutions.

uZee the jza book: Section 1.5.8 and Section 3.5.10.
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1.
0.8 F
0.6 F
0.4

0.2

Figure 4.2: Several solutions gf - y?sint = 0

Solution. (a) The equation is separable:

1
—dy=sintdt
1
—dyzfsintdt
Iy
1
——=-cost+C
y
3 1
Y= Ccost+C’

We check our result wittDSol ve.

In[564]:= sola=DSolvel[y [t]-y[t] 2Sin[t]==0,y[t],t]

Qut [ 564] = Hy[thi-cmmosm}}

Observe that the result is given as a list. The formula for the solution is the second part
of the first part of the first part afol a.

In[565]:= solal[l, 1, 2]]
1

Qut[565] = ~C[1] +Cos [t ]
We then graph the solution for various values®ith Pl ot in Figure 4.2. To graph the list of functions
list for a =< x =< b, erer
In[566]:= toplota=Table[sola[[1, 1, 2]]1/.C[1]->-i, {i, 2, 10}] Pl ot [ Eval uat e[l st], {x, a, b}] .
Qut[566] = { , , = , L , o
2+Cos[t] 3+Cos[t] 4+Cos[t] 5+Cos|[t]
1 1 1 1
6+Cos[t]’ 7+Cos[t]’ 8+Cos[t]’ 9+Cos[t]’
1
10 + Cos [t | J

In[567]:= Pl ot [Eval uate[topl ota], {t, 0, 2x}, Pl ot Range- > {0, 1},
AxesOrigin-> {0, 0}1]
expression /. x->y replaces all oc-
currences ofx in expressionby y. Ta-
bl e[ a[ k], {k, n, m}] generates the list
8 8ni1r - Bmo1s 8y



See Figure 4.20.

206 CHAPTER 4. DIFFERENTIAL EQUATIONS

(b) After separating variables, we use partial fractions to integrate.

1
= 1- =
4 “y( Ky)
———dy=dt
ay(1-y)
1 (} N i) _ dt
aly K-y
1
pe (Inlyl = In|K = y) = Cyt
y t
Koy~ Cé"
_ CKe"
Y=cet-1
We check the calculations with Mathematica. First, we Apart to find the partial
fraction decomposition LR
ay(1-gy)
In[568]:= sl=Apart[1/ (ay (1-1/k y)), VYl
Qut [ 568] = S =

y a (-k+y) a
Then, we usé nt egr at e to check the integration.
In[569]:= s2=Integrate[sl, y]

Qut [ 569] = Logam B Log{;kwl

Last, we use us8ol ve to soIve% (Iniyl = In|K —yl) = ctfory.

In[570]:= Solve[s2==cC t, y]
ec t o g
Qt[570]= {{y - v all

We can useDSol ve to find a general solution of the equation

In[571]:= solb=DSolvel[y'[t] ==a y[t] (1-1/k y[t]), y[t], t]

qut[s711= ({yit] - 5K 1
el o _gCll]

as well as find the solution that satisfies the initial conditi@ = y,.

In[572]: = solc =DSolve[{y’ [t] == y[t] (1- y[tl), y[0]==y0}, y[t], t]

_ et yo
Qut[572] = {{y[t] - m}}
The equatiory = ay(1 - ty)is called theLogistic equation (or Verhul st equatior)
and is used to model the size of a population that is not allowed to grow in an un-
bounded manner. Assuming thg0) > 0, then all solutions of the equation have the
property that lim, = K.

To see ths, we setr = K = 1 andusePl ot Vect or Fi el d, which is contained in the
Pl ot Fi el d package that is located in ti&raphics directory to graph the direction
field associated with the equation in Figure 4.3.
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[l

ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s
ViYL s

©oooo
NAOOR N

1 2 3

IN
o

Figure 4.3: A typical direction field for the Logistic equation

1 2 3 4 5

Figure 4.4: A typical direction field for the Logistic equation along with several solu-
tions

In[573]:= << G aphics'PlotField ;
pvf =Pl ot VectorFiel d[{1, y(1-y)}, {t, O, 5},
{y, 0, 5/ 2}, HeadLengt h- >0, Axes- > Autonmati c]

The property is more easily seen when we graph various solutions along with the di-
rection field as done next in Figure 4.4.

In[574]:= toplot =Table[solc[[1, 1, 211/.y0->i/5, {i, 1, 12}1;
sol s = Pl ot [Eval uat e[t opl ot ],
{t, 0, 5}, Di spl ayFunction->ldentity];
Show[pvf, sol s]

4.1.2 Linear Equations
Definition 4 (First-Order Linear Equation). A differential equation of the form
dy
2y () 4 + 3y = f(), (4.2)

where g(t) is not identically the zero function, is a first-ord@rear differential equa-
tion.

Assuming thag, (t) is not identically the zero function, dividing (4.2) lay(t) gives us
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thestandard form of the first-order linear equation:

dy 3
at Py = q(t). (4.3)

If q(t) is identically the zero function, we say that the equatiohamogeneous The
corresponding homogeneous equatioaf (4.3) is

dy
at + p(t)y = 0. 4.4
Observe that (4.4) is separable:
dy
at pt)yy =0

1
—dy = —p(t)dt
y y p

In|y|=—fp(t)dt+C
y = Ce—fp(t)dt.

Notice that any constant multiple of a solution to a linear homogeneous equation is also
A particular solution is a specific solution @ S0lution. Now suppose thatis any solution of (4.3) ang, is a particular solution of
to the equation that does not contain any &4.3). Then,
bitrary constants. ,
(Y=Yp) + PO (Y=Yp) =Y + POY = (¥, + PO)Y,)
=q®) -q) =0.

Thus,y-y, is a solution to the corresponding homogeneous equations of (4.3). Hence,

Y=Y, = Ce Jpwdt
y = Ce Jp0dt Yo
y = yh + yp!

wherey, = Ce/ PV Thatis, a general solution of (4.3) is

y:yh+yp!

whereyp is a particular solution to the nonhomogeneous equatioryaigia general
solution to the corresponding homogeneous equation. Thus, to solve (4.3), we need to
first find a general solution to the corresponding homogeneous equgtievhich we

can accomplish through separation of variables, and then find a particular sojytion,

to the nonhomogeneous equation.

If y, is a solution to the corresponding homogeneous equation of (4.3) then for any
constant, Cy, is also a solution to the corresponding homogeneous equation. Hence,
it is impossible to find a particular solution to (4.3) of this form. Instead, we search
for a particular solution of the form, = u(t)y,, where u(t) is nota constant function.
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Assuming that a particular solutioy,, to (4.3) has the forny, = u(t)y,,, differentiating
gives us

Yo' = UYh + Uy
and substituting into (4.3) results in

Yo + Py, = Uy, + uy,” + ptuy, = qt).

Becausauy,” + p(t)uy, = U [yh’ + p(t)yh] =u-0=0, we obtain ¥, is a solution to the corresponding homo-
, geneous equation sg’ + p(t)y;, = 0.
Uy, = q)
v = Zqu)
Yh

ul — efp(t)dtq(t)
u= feff’(“‘“q(t)dt

SO

y, = ut)y, = Ce /PO f el POt ) gt

Because we caninclude an arbitrary constant of integration when evalg,fai(rPﬁ) dtot) dt,
it follows that we can write a general solution of (4.3) as

y =g /pOdt f el POty gt (4.5)

Thus, first-order linear equations can always be solved, although the resulting integrals
may be difficult or impossible to evaluate exactly.

Mathematica is able to solve the general form of the first-order equation, the initial-
value probleny’ + py =g, ¥0) =y,

In[575] : = DSol ve[y’[t; +p[tly[tl==q[tl, yI[tl, t]‘
Qut[575] = {{y[t] %effop[DSolve‘t]dlDSolve‘t CI1] +efjop[DSoIve‘t]d1DSOIve‘t

t DSol ve' t . .
J eb plDSolve'tjabSol ve't g psol ve* t ]dDSol ve' t }}
o

In[576] : = DSol ve[{y’[tt] +p[t1y[t] ==g[t], y[0] ==y0}, y[t1, t]
Qut [576] = {{y[t ] %e—jo p [DSol ve't ]dDSol ve't yO+

t DSol ve' t . .
J elo p(DSolve'tjdbSolve't o pgpl ve' t ]dDSol ve‘t)}}
0

as well as the corresponding homogeneous equation,

In[577]:= DSoIve[y’[t] +pltly[t]1==0,yI[t], t]
Qut [577] {{y[t ] %e—jo p [DSol ve't ]dDSol ve‘t C[l]}}

In[578]: = DSol vel{y'[t1+pltlylt] ==0, y[0] ==y0}, y[t], t]
Qut [578] = {{y[tJ%effop[DSolve‘t]deSolve‘t yO}}

although the results contain unevaluated integrals.
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Example 98 (Exponential Growth). Let y = y(t) denote the size of a population at
timet. If y grows at a rate proportional to the amount presgagtisfies

dy
dt

wherea is thegrowth constant If y(0) =y, using (4.5) results ity = y,e". We use
DSol ve to confirm this result.

= ay, (4.6)

In[579]:= DSolve[{y'[t]==a y[t], y[0] ==y0}, y[t], t]

Qut[579] = {{y[t] >e' * y0}}
¥ = k(y-ys) modelsNewton's Law of

Cooling therate at which the temperature

Example 99. Solve each of the following equations: @ = k(y - ys), YO) = Yo, k

t), ch heating/cooling bod
V) changes in & heatngleooling body 14y constant (b’ — 2ty =t (C)ty — y = 4t COS 4 — sin4
proportional to the difference between the

temperature of the body and the constant

Solution. By hand, we rewrite the equation and obtain
temperatureys, of the surroundings.

dy
dt

A general solution of the corresponding homogeneous equation

— ky = —ky,

dy

ky=0
a Y

isy, = €. Becausek and—ky, are constants, we suppose that a particular solution of
the nonhomogeneous equatigp, has the formy, = A, where Ais a constant.

This wil turn outto be a lucky guess. If thereAssuming thaty, = A, we havey, = 0 and substitution into the nonhomogeneous
is not a solution of this form, we will not be€quation gives us
able to find it.

dyp

at —ky, = -KA = —ky, so A=y

o
Thus, a general solution 5=y, +y, = Ce +y,. Applying the initial condition
y(0) = y, results iny =y, + (y, — Yo)€".
We oltain the same result witbSol ve. We graph the solution satisfing0) = 75
assuming that = —1/2 andy, = 300 in Figure 4.5. Notice tha{t) - y, ast - .
In[580]:= sola=DSolvel[{y'[t] ==k(y[t]-Yys), y[0] ==yO0}, y[t], t]
Qut[580]= {{y[t] ekt (yo-ys)+ys}}
In[581]:=tp=solal[l, 1, 2]1/. {k->-1/2, ys->300, yO- >75};

Plot [tp, {t, 0, 10}]
(b) The equation is in standard form and we idenpift) = —2t. Then, the integrating

factor isu(t) = gl PO _ o t? . Multiplying the equation by the integrating factpfrt),
results in

ety -2ty =te®  or (;jt (ye‘tz) te™
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300
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2 4 6 8 10
Figure 4.5: The temperature of the body approaches the temperature of its surroundings

Integrating gives us

2 1 2 1 2
e _ Tt - _=
ye' = -ze +C or vy > +Cé".

We onfirm the result wittDSol ve.

In[582]:= DSol ve[y'[t] -2t y[t]==t,y[t], t]
Qut[582]= {{y[t] »7%+e‘2 cri}}

(c) In standard form, the equationyis— y/t = (4t cos 4 — sin4)/t sop(t) = -1/t. The
integrating factor isu(t) = e/ P04t — e-Int = 1/t and multiplying the equation by the
integrating factor and then integrating gives us

%%_ t%y: t%(4tcos4 -sin4)
%(t}y) = t32(4t cos4 —sin4)
1 sin4a
y=sin4 +Ct,

where we use thent egr at e function to evaluate tlz(4t cos4 -sin4)dt = 04 4
C.

In[583]:= Integrate[(4 t Cos[4t]-Sin[4t])/t"2,t]

Qut [ 583] w

We aonfirm this result withDSol ve.

In[584]:= sol =
DSol ve[y'[t]-y[t]l/t == (4 t Cos[4t]-Sin[4t])/t,y[t], t]
Qut[584]= {{y[t] >t C[1l]+Sin[4 t]}}
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Figure 4.6: Every solution satisfigéd) = 0

In the general solution, observe thatery solution satisfieg(0) = 0. That is, the
initial-value problem

%_% = t%(4tcos4—sin4), y0) =0

has infinitely many solutions. We see this in the plot of several solutions that is gener-
ated withPl ot in Figure 4.6.

In[585]:= toplot =Table[sol [[1, 1, 211/.C[1]1->i, (i, -5, 5}1;:
Pl ot [Eval uate[topl ot ], {t, -2x, 27x},
Pl ot Range- > {-2x, 25}, Aspect Rati o->1]

4.1.3 Nonlinear Equations

Mathematica can solve a variety of nonlinear first-order equations that are typically
encountered in the introductory differential equations course.

Example 100. Solve each: (a)y cosx + 2x&’) dx+(siny + x?¢/ — 1) dy = 0 (b) (y? + 2xy) dx-
x?dy = 0

Solution. (a) Notice thatly cosx + 2x&’) dx + (siny + X%y — 1) dy = 0 can be written
asdy/dx= — (ycosx + 2x&)/ (sinx + x?e¥ — 1).
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The equation is an example of aract equation A theorem tells us that the equatiorsee your text for details.
M(x, ydx+ N(x,y)ydy =0

is exactif and only if IM/dy = ON/ox.

In[586]:= m=Cos[x]+2 x Explyl:
Nn=Sinfy] +x 2Exp[y] -1;
DIm y1

D[n, x]
Qut[586]= 2 &Y x
Qut[586]= 2 &Y x

We solve eact equations by integrating. LE{(x,y) = C satisfy(ycosx + 2x&’) dx +
(siny + x*¢" - 1)dy = 0. Then,

Fx,y = f(cosx+ 2x€') dx = sinx + X2’ + g(y),

whereg(y) is a function ofy.

In[587]:= fl=Integrate[m x]
Qut[587] = e¥ x%+Sin[x]

We net find thatg/(y) = siny — 1 sog(y) = —cosy — y. Herce, a general solution of
the equation is

sinx + x?¢ — cosy = C.

In[588]:= f2=D[f1, y]
Qut[588] = e¥ x?

In[589]:= f3=Solve[f2+c==n, C]
Qut[589] = {{c->-1+Sin[y]}}

In[590]:= Integrate[f3[[1, 1, 211, Y]
Qut[590] = -y - Cos [y]

We aonfirm this result withDSol ve. Notice that Mathematica warns us that it cannot
solve fory explicitly and returns the same implicit solution obtained by us.

In[591]:=nf =m .y->y[X];
nf =n/.y->y[x];
sol =DSol ve[nf +nf y’[x] ==0, y[x], X]
Sol ve :: "tdep" : "Theequationsappeartoi nvol ve
transcendent al f uncti onsof t hevari abl esi n
anessenti al | ynon - al gebrai cway. "
Qut [591] = Sol ve[eYX] x? - Cos[y(x]] +Sin[x] -y[x] ==C[1], {y[x]}]

Graphs of several solutions are graphed v@timt our Pl ot in Figure 4.7.
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75 -5 2.5 25 &5 7.5

Figure 4.7: Graphs of several solutiongp€osx + 2x&’) dx+ (siny + X%V — 1) dy=0

In[592]: = sol [[1, 1]]
Qut [592] = e¥*) x% - Cos[y[x]] +Sin[x] -y[x]

In[593]:= sol 2 =sol [[1, 111/.y[X]->Yy
Qut[593]= e¥ x?-y-Cos[y] +Sin[x]

In[594]:= cvals =Tabl e[
sol 2/ . {x->-3x/2,y->i}, {i, 0, 6x, 6x/ 24}1//
N

Qut[594] = {22. 2066,
48.2128, 106. 254,
233. 647, 512. 735,
1124. 85, 2468. 28,
5416. 56, 11885. 2,
26074.5, 57196. 7,
125457., 275169. ,
603531., 1. 32372108,
2.903310°, 6.3677610°,
1. 39663107, 3. 0632107,
6.71846107, 1. 47355108,
3.2319108, 7. 08847 108,
1.554710°% 3.4098910°)

I n[595] : = ContourPl ot [sol 2, {x, -3x, 3x}, {y, O, 67},
Cont our Shadi ng- > Fal se, Frane- > Fal se, Axes- > Automati c,
AxesOri gi n-> {0, 0}, Contours->cval s, Pl ot Poi nts->60]
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(b) We can writey? + 2xy)dx — x2dy = 0 asdy/dx = (y? + 2xy)/x2. A first-order
equation ishomogeneousf it can be written in the form

dy/dx= F(y/X).
Homogeneous equations are reduced to separable equations with either the substitution
Yy = UXOr X = VY.
In this case, we have thdiy/dx= (y/x)? + 2(y/X) so the equation is homogeneous.

Lety = ux Then, dy = udx+ xdu Substituting into(y? + 2xy) dx — x?dy = 0 and
separating gives us

(Y* + 2xy)dx— x*dy = 0
(UPx® + 2u) dx— x3(u dx+ xdu) = 0
(U7 + 2u)dx— (udx+xduy =0

(U7 + u)dx= —xdu

1 1
u(u+ 1)du - —;dx.

Integrating the left and right-hand sides of this equation Wwith egr at e,

In[596]:= Integrate[l/ (u(u+1)), ul
Qut [596] = Log[u] -Log[1 +u]

In[597]:= Integrate[-1/X, X]
Qut[597] = -Log[x]

exponentiating, resubstituting= y/x, and soling for y gives us

Inlu-INju+1 =-Inix+C
u
yrx.
yIx+1 = C/x
_ Cx
" x-C’

In[598]:= Solve[(y/x)/ (y/ x+1) ==c/ x, y]
¢ X
Qut [ 598] {{yﬁfm}}

We mnfirm this result withDSol ve and then graph several solutions wiRhot in
Figure 4.8.

In[599]:= sol =DSol vel[y[x] 2 +2Xx y[x]-x"2y’[x] ==0, y[x], x]

~ x< C[1]
Qut[599] = {{yx) > -5 )]

In[600]:= toplot =Table[sol [[1, 1, 211/.C[1]1->i, {i, -5, 5}1;:
Pl ot [Eval uate[topl ot 1, {Xx, -5, 5}, Pl ot Range- > {-5, 5},
Aspect Rati o- > Aut omatic]
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Figure 4.8: Graphs of several solutiong gt + 2xy) dx - x*dy = 0

4.1.4 Numerical Methods

If numerical results are desired, udBSol ve (see Figure 4.9):
NDSol ve[{y" [t]==f[t,y[t]],y[t0] ==yO},y[t],{t,a, b}]

attempts to generate a numerical solution of
d
{d—¥ = f(t,y)
Y(to) =Yo
validfora<t <b.

Example 101. Consider

dy _
dt

(a) Determingy/(1). (b) Graphy(t), -1 <t < 10.

(t? - y?) siny, y0) = -1.

Solution. We first remark thaDSol ve can neither exactly solve the differential equa-
tiony’ = (t2 — y?) siny nor find the solution that satisfige0) = 1.

In[601]: = sol =DSolve[y'[t] == (t"2-y[t]1"2)Sin[t], y[t], 1]
Qut [ 601] = BoxData (DSol ve[y’[t] ==Sin[t] (t2-y[t]%),y[t], t])
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Figure 4.9: Usind\DSol ve
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Figure 4.10: Graph of the solution 0 = (t2 — y?) siny, y(0) = -1
In[602] : = sol =

DSol ve[{y’[t] == (t"2-y[t]1"2)Sin[t], y[0] ==yO0}, y[t], t]
Qut [ 602] = BoxData (DSol ve[{y’ [t] ==Sin[t] (t2-y[t]?), y[0] ==y0}, y[t], t])

However, we obtain a numerical solution valid fo0t < 1000 using thé\DSol ve
function.

In[603]:= sol =NDSol ve[{y'[t] == (t"2-y[t]1"2)Sin[y[t]], Y[0] ==-1},
y[t1, {t, 0, 1000}]
Qut [ 603] = BoxData ({{y[t] - I nterpolatingFunction[{{0., 1000. }}, " <>"][t]}})

Enteringsol /.t ->1 evaluates the numerical solutiontif 1.

In[604]:= sol /.t->1
Qut[604] = {{y[1] » -0.766014}}

The result means thgtl) ~ —.766. We usé’l ot command to graph the solution for
0 <t < 10in Figure 4.10.

In[605]:= Plot [Evaluate[y[t]/.sol 1, {t, 0, 10}]
O

Example 102 (Logistic Equation with Predation). Incorporating predation into the
logistic equation y’ = ay(1 - gy), restts in

dy 1
pri 0/)’(1 - RY) - Py,

whereP(y) is a function ofy describing the rate of predation. A typical choice Rois
P(y) = ay?/ (b? + y?) becausé(0) = 0 andP is bounded above: lim_, P(y) < .

Remark.Of course, if lim__ y(t) = Y, then lim__, P(y) = aY?/ (b? + Y?). Gererally,
however, lim,  P(y) # a because lim,  y(t) <= K # oo, for someK = 0, in the
predation situation.
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Figure 4.11: (a) Direction field and (b) direction field with three solutions

If « =1,a=5andb = 2, graph the direction field associated with the equation as well
as various solutions if ( = 19 and (b = 20.

Solution. (a) We defineegn|[ k] to be

dy 1 5y?
dt _y(l Ky) 44y

<< G aphics'PlotField

I n[ 606] :

IN[607]:= eqn[k.] =y [t] ==y[t1(1-1/Kk y[t])-5y[t]1"2/ (4+y[t]1°2);

We us Pl ot Vect or Fi el d to graph the direction field in Figure 4.11 (a) and then
the direction field along with the solutions that satigf) = .5, y(0) = .2, andy(0) = 4
in Figure 4.11 (b).

In[608]:= pvf19 =PlotVectorField[{1, y(1-1/19 y) -5y~ 2/ (4+y"2)},
{t, 0, 10}, {y, O, 6}, Axes- > Autonmati c, HeadLengt h- >0,
Di spl ayFuncti on->Ildentity];

I n[ 609]:

nl = NDSol ve[{eqn[19], y[0] ==0.5}, y[t1, {t, O, 10}1;
n2 = NDSol ve[{eqn[19], y[0] == 2}, y[t1, {t, O, 10}1;
n3 = NDSol ve[{eqn[19], y[0] ==4}, y[t1, {t, 0, 10}1;

In[610]: = sol pl ot =Pl ot [Eval uate[y[t]/. {nl, n2, n3}],
{t, 0, 10}, Pl ot Styl e- > Thi ckness [0. 011,
Di spl ayFuncti on->Ildentity];

The same results can be obtained udhg.

In[611] : = nunsol s = Map [NDSol ve [
{eqn[19], y[0] == #}, y[t], {t, O, 10}1& {0.5, 2, 4}1;
sol pl ot =Pl ot [Eval uate[y[t]/.numsol s],
{t, 0, 10}, Pl ot Styl e- > Thi ckness[0. 011,
Di spl ayFunction->ldentity];

In[612] : = Show[G aphi csArray [{pvf1l9, Show[pvf19, solplot]}]]

In the plot, notice that all nontrivial solutions appear to approach an equilibrium solu-
tion. We determine the equilibrium solution by solviyig= 0
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Figure 4.12: Direction field

In[613]: = eqn[19]1[[2]]
Z (p Y[t 5 yt)?
Qut [ 613] = (1 s ) VI - g
In[614]:= Sol ve[egqn[19.1[[2]1] ==0, y[t]]
Qut[614]= {{y[t] =0.}, {y[t] —0.923351},
(y[t] >9.03832-0.785875 i},
{y[t] >9.03832+0.785875 i }}

to see thaitis y ~ 0.923.

(b) We carry out similar steps for (b). First, we graph the direction field Rlitbt Vec-
tor Fi el d in Figure 4.12.

In[615]: = pvf20 = PlotVectorField[{1, y(1-1/20 y) -5y~ 2/ (4+y"2)},
{t, 0, 10}, {y, 0, 20}, Axes->Automati c,
HeadlLengt h- >0, Aspect Rati o- > 1/ Gol denRati 0] ;

We then useMap together with NDSolve to numerically find the solution satisfying
y(0) = .5i, fori = 1, 2,..., 40 and name the resulting listunsol s. Thefunctions
contained imunsol s are graphed wittPl ot insol pl ot .

In[616] : = nunsol s =
Map [NDSol ve[{eqn[20], y[0] ==#}, y[t]1, {t, 0, 10}1&,
Tabl e[0.5i, {i, 1, 40}11;
sol pl ot =Pl ot [Eval uate[y[t]/.nunsol s],
{t, 0, 10}, Pl ot Styl e- > Thi ckness [0. 005],
Di spl ayFunction->ldentity];

Last, we display the direction field along with the solution graphsdhpl ot using
Showin Figure 4.13.

In[617]: = Show[pvf 20, sol pl ot ]

Notice that there are three nontrivial equilibrium solutions that are found by solving

y =0.
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| | |

Figure 4.13: Direction field with several solutions

In[618]:= Sol ve[eqn[20.1[[2]1] ==0, y[t]]
Qut[618] = {{y[t] —>0.}, {y[t] —0.926741},
{y[t]—>7.38645},

{y[t] >11.6868}}

In this casey ~ .926 andy ~ 11.687 are stable whilg ~ 7.386 is unstable. O

4.2 Second-Order Linear Equations

We now present a concise discussion of second-order linear equations, which are ex-
tensively discussed in the introductory differential equations course.

4.2.1 Basic Theory
Thegeneral form of the second-order linear equationis

d? d
ag(od—té’ + al(t>d—i’ +ayby = f(t), 4.7)

wherea,(t) is not identically the zero function.

Thestandard form of the second-order linear equation (4.7) is

d? d
G + PG +aby = 0. (4.8)
The corresponding homogeneous equatioaf (4.8) is
d? d
d—tZ + p(t)d—{ +q(t)y = 0. (4.9)

A general solutionof (4.9) isy = c,y, + c,Yy, where



A particular solution,y,, is a soltion that
does not contain any arbitrary constants.
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1. y, andy, are solutions of (4.9), and

2.y, andy, arelinearly independent

If y, andy, are solutions of (4.9), theyy andy, arelinearly independentif and only
if the Wronskian,

Wity val) = |0 02| = vy - 0¥, (4.10)

is not the zero function. Iy, andy, are linearly independent solutions of (4.9), we call
the setS= {y,, y,} afundamental set of solutionsfor (4.9).

Lety be a general solution of (4.8) ayg be a particular solution of (4.8). It follows
thaty -y, is a solution of (4.9) sy -y, = y, wherey, is a general solution of (4.9).
Hencey =y, +Y,. Thatis, to solve the nonhomogeneous equation, we need a general
solution,y,, of the corresponding homogeneous equation and a particular solyfjon,

of the nonhomogeneous equation.

4.2.2 Constant Coefficients

Suppose that the coefficient functions of (4.7) are constagis) = a, a,(t) = b, and
ay(t) = cand thatf(t) is identically the zero function. In this case, (4.7) becomes

ay’ +by +cy=0. (4.11)

Now suppose thay = €, k constant, is a solution of (4.11). Theyi, = k! and
y’ = k2. Substitution into (4.11) then gives us

ay’ + by +cy = ak’e" + bké® + ce
= &"(aké + bk+¢) = 0.

Because& = 0, the solutions of (4.11) are determined by the solutions of
alk® + bk+c=0, (4.12)

called thecharacteristic equationof (4.11).

Theorem 22. Let k, and k, be the solutions 0f4.12)

1. If k, # k, are real and distinct, two linearly independent solutiong4fl1)are
y, = €4t and y, = €%'; a gereral solution of(4.11)is

y = ¢, €4 + ¢, e,

2. If k, = k,, twolinearly independent solutions ¢#.11)are y; = € and y, =
teat; a general stution of (4.11)is

y = ¢, &4t + cted!,
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3. Ifk;, = a£pi, B # 0, twolinearly independent solutions ¢#.11)are y, =
e" cospt and y, = e singt; a gereral solution of(4.11)is
y = € (c, cospt + ¢, singt).
Example 103. Solve each of the following equations. (a)’6+y —2y = 0(b)y” +
2y +y=0(c) 16/ +8y +145/=0
Solution. (a) The characteristic equation i&%6+ k — 2 = (3k + 2)(2k — 1) = 0 with
solutionsk = —2/3 andk = /2. We check with eitheFact or or Sol ve.
In[619]:= Factor [6k™2 +k - 2]
Sol Ve[6kA2+k—2 ==0]

Qut[619]= (-1+2 k) (2+3 k)

Qut [ 619] = {{ka—g}, {k%%}}

Then, a fundamental set of solutiongés?/3, &/2} and a general solution is
y=c,e23 4 c,éd2
Of course, we obtain the same result wil8ol ve.

In[620]:= DSol ve[By” [t] +y [t]-2y[t]==0,Yy[t], t]
Qut[620]= {{y[t]-e2 3 cr1y+e'2 cr21}}

(b) The characteristic equationk$ + 2k + 1 = (k + 1) = 0 with solutionk = -1,
which has multiplicity two, so a fundamental set of solution{saTé, te‘t} and a general
solution is

y=cet +ctet.
We check the calculation in the exact same way as in (a).
In[621]:= Factor [K"2 + 2k +1]
Solve[k™2 +2k +1 ==0]

DSol vel[y” [t]1+2y’[t]1+y[t]==0, y[t], t]
Qut[621]= (1+k)?
Qut[621]= {{k > -1}, {k>-1})
Qut[621]= {{y[t]>e™t C[1]+e' t C[2]}}

(c) The characteristic equation iskf6+ 8k + 145= 0 with soltionsk, , = —‘—11 + 3i so
afundamental set of solutionsﬁe‘”4 cos 3, e4sin 3} and a general solution is

—t/4

y=e"*(c,cos3 +c,sin).

The calculation is verified in the same way as in (a) and (b).
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I n[622]: = Factor [16k™ 2 + 8k + 145, Gaussi anl nt eger s- > True]
Sol ve[16k™ 2 + 8k + 145 == 0]
DSol ve[16y”/[t] +8y’[t]1 +145y[t] ==0, y[t], t]
QUt[622]= ((1-12 i) +4 k) ((L+12 i) +4 k)
1 . .
Qut[ 622] = {{k974—73 i}, {k+4—+3 it}
out[622]= {{y[t]-e/* C[2] Cos[3 t]-e** C[1] Sin[3 t]}}

Example 104. Solve

d?y  _dy dy
645 +164 +1025/=0,y0) =1, ;1 (0) =2

Solution. A gereral solution of 6§’ +16y'+1025/ = Oisy = e /8 (c, sin4 + ¢, cos 4).

I n[623]: = gensol =DSol ve[64y” [t] + 16y [t] +1025y[t] ==0, y[t], t]
Qut[623]= {{y[t]-e'/8 C[2] Cos[4 t]-e"® C[1] Sin[4 t]}}

Applying y(0) = 1 showsus thatc, = 1.

In[624]:= el =y[t]/.gensol [[1]1]/.t->0
Qut [ 624] = C[2]

Computingy’

In[625]:= Dly[t]/.gensol [[1]],t]

Qut[625]= -4 e /8 C[1] Cos[4 t]-= e'8 C[2] Cos[4 t]+

1
8
% e8 Cr1] Sin4t]-4et'8 C[2] Sin[4t]

and thery'(0), showsus that 4, — §¢,=2.

In[626]:= e2 =D[y[t]/.gensol [[1]],t]1/.t->0

Qut[626] = -4 C[1] 7%

Solving forc, andc, with Sol ve shows s thad ¢, = 3£ andc, = 1.

In[627]:= cval s = Sol ve[{el ==1, e2 == 3}]

aut[627]= {{C[1] L2 C[2] »1}}

32’

Thus,y = e/8(1L sin4 + cos 4), which we graph wittPl ot in Figure 4.14.

In[628]: = sol =y[t]/.gensc32I [[111/.cvals[[1]]
Qut[628]= e/ Cos[4 t]+3—g e8 sin[4 t]

In[629]:= Plot [sol, {t, 0, 8x}]

We verify the calculation withDSol ve.
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Figure 4.14: The solution to the initial-value problem tends to D-aso

I n[630] : = DSol ve[
{64y’ [t]+16y’[t]+1025y[t] ==0, y[0] == 1, y’[0] == 2},
y[tl, tl
_ 17
Qut[630]= {{y[t]>e/8 Cos[4 t]+ > S|n[4t})}}

4.2.3 Undetermined Coefficients

If (4.7) has constant coefficients arfdt) is a product of terms", e®, @ constant,
cospt, and/or sinBt, B constant,undetermined coefficientan often be used to find
a particular solution of (4.7). The key to implementing the method iguthciously
choose the correct form gf,.

Assume that a general solutioy,, of the corresponding homogeneous equation has
been found and that each termfgf) has the form

t"ecospt  or  t"e” cospt.
Foreachterm of f(t), write down theassociated set
F = {t"e" cospt, t"e™ singt, t" e cospt, t" e singt, ... ., €' cospt, €' singt, }.

If any element of is a solution to the corresponding homogeneous equation, multiply
each element df by t™, whee mis the smallest positive integer so that none of the el-
ements otf™F are solutions to the corresponding homogeneous equation. A particular
solution will be a linear combination of the functions in all fhis.

Example 105. Solve

d2
4d—t¥—y=t—2—5cost—e*“2.
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Solution. The corresponding homogeneous equatioryis-4y = 0 with general solu-
tiony, = c,e™2 + c,€/2.

In[631]:= DSol ve[4y” [t] -y[t]1==0, y[t], t]
aut[631]= {{y[t]»e"/? C[1] +e''2 C[2]}}

A fundamental set of solutions for the corresponding homogeneous equaBos is
{e*“z, e"z}. The associated set of functions for 2 isF, = {1,t}, the associated set of
functions for-5 cogt is F, = {cost, sint}, and the associated set of functions fag V2

No element ofF, is contained inSand no IS F3 = {€72}. Note hate¥2 is an element o so we multiplyF, by t resulting in
element ofF, is contained irS. _t/2
tF; = {te 2},

Then, we search for a particular solution of the form
¥, = A+ Bt+Ccost + Dsint + Ete?,

whereA, B, C, D, andE are constants to be determined.

In[632]:= yp[t_.l1=a+b t+c Cos[t]+d Sin[t]+e t Exp[-t/2]
Qut[632]= a+b t+e e2 t +c Cos[t]+d Sin[t]

Computingy’p andy’F;
In[633]:= dyp=yp'[t]

d2yp =yp”It]
Qut[633]= b+e e—tlz,% eet’/2t.d Cos[t]-c Sin[t]

Qut[633]= -e e’”2+% eet’2t_¢c Cos[t]-d Sin[t]
and substituting into the nonhomogeneous equation results in

—A-Bt-5Ccost —5Dsint —-4EeY2 =t -2 - 5cog — e V2.

In[634]:= eqn =4 yp”[t] -yplt]l ==t -2-5Cos[t]-Exp[-t/2]
Qut[634]= -a-bt-eet'2t_c Cos[t]-d Sin[t]+

4 (-e e’”2+% eetl’2t_¢c Cos[t]-d Sin[t]] ==

2-et2,t _5 Cos|t]
Equating coefficients results in
-A=-2 -B=1 -5C=-5 -5D=0 -4E=-1
soA=2,B=-1,C=1,D =0, andE = /4.

In[635]:= cval s =
Sol ve[{-a==-2, -b==1, -5¢ == -5, -5d == 0, -4e == -13}1

t[635]= {{a>2,b>-1,¢c51,d-0, e»%}}

y, is then given by, = 2t + cost + jte™/2
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In[636]: = yp[t]/l.cvals[[l]]
Qut[636]= 2-t + 7 e 2 t 4 Cost]

and a general solution is given by

1
Y=Yn+Y,=Ce?+ci?+2—t+cost + Zte‘“z.

Note that-A — Bt — 5C cost — 5D sint — 4EeY2 =t — 2 — 5cost — e V2 is true forall
values oft. Evaluating for five different values afgives us five equations that we then
solve forA, B, C, D, andE, resulting in the same solutions as already obtained.

In[637]:= el=eqn/.t->0

Qut[637]= -a-c+4 (-c-e) ==-8
In[638]:= e2=eqn/.t->n/2
e3=eqn/.t->mrx
ed=eqn/.t->1
eS=eqn/.t->2
Qut [ 638] = —a—d—bz—ﬂfg e e’ ni4 (7d7e e4 2 e g4 7T) ==
-2 e’”’4+g .
Qut[638]= -a+c-b n-e e2 144 (c—e e’”’2+z e e’? n) ==3-e "2,
Qut [ 638] = 7a7b7%7c Cos[1]-
d sin1) 4( 3€ ¢ cos[1]_d Sinm)
a4 |- _ _ —
4 /e
1
-1-— -5 Cos |1
Je [1]
Qut[638]= -a-2 b72€_eic Cos [2]-
d Sin[2]+4 (_zie_c Cos[2] -d Sinf2]) --
15 cosi2
e

In[639]:= Sol ve[{el, e2, e3, e4, e5}, {a, b, c, d, e}1//Sinplify
Qut[639]= {{d-0,b>1,a-2c-1, e )]

Last, we check our calculation witbSol ve andsi npl i fy.

In[640]:= sol 2 =
DSol ve[4y” [t] -y[t] ==t -2-5Cos[t]-Exp[-t/2], y[t], t]
{{yvit1-

e'/2 cr1y+e'2 C2

Qut [ 640]
(e'/2-2 t+2 Cos[t]-4 Sin[t])+

]
t 1 1 .
et/2 (2 et/2, 5 e’2t+§ e/2 Cos[t]+el’? Sln[t])}}

In[641]:= Sinplify[sol 2]
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Qut[641] = {{y[t] -

1
7 et/2 (1+8 €2+t -4 €2 t+4 Cl1]+4 €' C[2])+Cos[t]}}

O
Example 106. Solvey” + 4y = cos 2, y(0) = 0,y'(0) = 0.

Solution. A general solution of the corresponding homogeneous equatyprFig, cos 2+
c,sin 2. For thisequationF = {cos 2, sin 2}. Beause elements & are solutions to
the corresponding homogeneous equation, we multiply each elemErivyf result-
ing intF = {tcos 2,tsin 2}. Therefore, we assume that a particular solution has the
form

Yp = Atcos2 + Btsin 2,

whereA and B are constants to be determined. Proceeding in the same manner as
before, we computg, andy;

In[642]:= yp[t.1=at Cos[2t]1+b t Sin[2 t];
yp'It]

yp”It]
Qut[642]= a Cos[2t]+2 bt Cos[2t]+b Sin[2t]-2at Sin[2t]

Qut[642]= 4 b Cos[2t]-4at Cos[2t]-4a Sin2t]-4bt Sin[2t]
and then substitute into the nonhomogeneous equation

In[643]:= eqn =yp”’[t] +4yp[t] == Cos[2t ]

Qut[643]=4 b Cos[2t]-4at Cos[2t]-4a Sin[2t]-
4 bt Sin[2t]+4 (at Cos[2t]+bt Sin[2t])-==
Cos[2 t]

Equating coefficients readily yields = 0 andB = /4. Alternatively, remember that
—4Asin2 + 4Bcos 2 = cos 2 is true forall values oft. Evaluating for two values df
and then solving foA andB gives the same result.

In[644]:= el =eqn/.t->0
e2=eqn/ . t->xnl4

cval s =Sol ve[{el, e2}]
Qut[644]= 4 b ==
Qut[644]= -4 a-==
Qut[644]= {{a-0 b»l}}
' 4

It follows thaty, = 7t sin2 andy = ¢; c0s 2 + ¢, sin 2 + 3t sin 2.

In[645]:= yp[t]/.cvals[[1]]
Qut [ 645] = i t Sin[2t]

In[646]:= y[t_1=cl Cos[2t]+c2 Sin[2t]+1/4 t Sin[2t]
Qut[646]=cl Cos[2 t]+c2 Sin[2 t]+%t Sin[2t]
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Figure 4.15: The forcing function causes the solution to become unbountled as

Applying the initial conditions

In[647]:= y'[t] 1 .
Qut[647]= 2 c2 Cos[2 t]+5 t Cos[2 t]+7 Sin[2t]-2cl Sin[2t]
In[648]:= cvals =Solve[{y[0] ==0, y'[0] ==0}]

Qut[648]= {{c1-0, c2-0}}
results iny = %t sin 2, which we graph withPl ot in Figure 4.15.

In[649]:= y[t1/.cvals[[1]]
Qut [ 649] = % t Sin[2t]

In[650]:= Plot [Evaluate[y[t]/.cvals[[1]]]1, {t, O, 16x}]
We verify the calculation withDSol ve.
In[651]:= dear[y]

DSol ve [
y”[t]+4y[t]==Cos[2t], y[0] ==0, y'[0] ==0}, y[t], t]

Qut[651] = {{y[t}ej—l t Sin[2t1}}

4.2.4 Variation of Parameters

LetS= {yl, yz} be a fundamental set of solutions for (4.9). To solve the nonhomagetticular solution,y,, is a soltion that
neous equation (4.8), we need to find a particular SO|U§iﬁ)Df (4.8). We search for adoes not contain any arbitrary constants.

particular solution of the form

Yp = U1 Oy, () + Uy (DY, (1), (4.13)

whereu, andu, are functions of. Differentiating (4.13) gives us

Observe that it is pointless to search for solu-
tions of the formy, = c,y; + c,y, wherec,
andc, are constants because for every choice
of ¢, andc,, ¢,y; + CyY, is a solution to the
corresponding homogeneous equation.
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Yo' = Ur'Yy + UgYy + WY, + Uy
Assuming that
YU +y,u," =0 (4.14)
results iny,” = u;y,” + U,y,”. Computing the second derivative then yields
Yo =uy) Uy + WY+ Uy,
Substitutingy,,, y,", andy,” into (4.8) and using the facts that
Uy (Y, + Py +ay) =0 and u(y,” +py, +qy,) =0

(becausey; andy, are solutions to the corresponding homogeneous equation) results
in
dzyp dyp N ” I, ! ’” ’ ’
T PO + AOYp = Uy + Uryy” + Uy, + Upy,” + pO) (Upyy” + Upy,') + at) (uyy; + Upys)
=y,u" +y,'u, = f(b).
(4.15)

Observe that (4.14) and (4.15) form a system of two linear equations in the unknowns
u,” andu,’:

’ ’ _
YU +Youy" =0

4.16
y'u + Y, uy = f(t). ( )
Applying Cramer’s rule gives us
10 ¥ v 0]
O Y1 y®Of® . Ol y®f)
u,/ = =- and u, = = , (4.17)
' i Y2 W© ? Yi Y W(S
vi' Y vi' Y

whereW(S) is the WronskianW(S) = !;/1, ;/2, . After integrating to obtain, andu,,

171 2|

we formy, and then a general solutionz=y, +y,,.

Example 107. Solvey” + 9y = sec 3, y(0) =0,y (0) =0,0=<t < n/6.

Solution. The corresponding homogeneous equatioff is 9y = 0 with general solu-
tiony,, = ¢, cos 3 +c, sin 3. Then, a fundamental set of solutionsSis: {cos 3, sin 3}
andW(S) = 3, as we see usinget , andSi npl i fy.

In[652]:= fs = {Cos[3t], Sin[3t]1};
wm= {fs, D[fs, t]};
wni / Mat ri xFor m

wd = Si nplify[Det [wm]]
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Qut [ 652] = Cos[3 t] Sin[3[

t]
-3 Sin[3t] 3 Cos[3t] )

Qut[652]= 3
We use (4.17) to findi, = £ Incos 3 andu, = it.
In[653]:= ul=Integrate[-Sin[3t]Sec[3t]/3,t]

u2 =Integrate[Cos[3t]Sec[3t]/3, t]

Qut [ 653] = Log[Cos[3 t]]

1
¢
Qut[653] = 2
It follows that a particular solution of the nonhomogeneous equati;qp:is% cos3 Incos 3+
%t sin3 and a general solutionys=y, +y, = ¢; C0s3+¢C,sin3 + % cos3 Incos 3+
itsin3.

In[654]:= yp=ul Cos[3t]+u2 Sin[3t]

Qut [ 654] = % Cos[3 t] Log[Cos([3 t]] +

Identical results are obtained usib§ol ve.

t Sin(31t]

w|

In[655]:= DSolve[y”[t]+9y[t] ==Sec[3t], y[t], t]

Qut[655] = {{y[t] - C[2] Cos[3 t]+$ Cos[3 t] Log[Cos[3 t]]+

% t Sin[3t]-Crl] Sin[3t]}}
Applying the initial conditions gives us; = ¢, = 0 so we conalde that the solution to
the initial value problem iy = § cos 3 Incos 3 + 3tsin 3.

I n[ 656] : = sol =DSol ve[
{y”[t]1+9y[t] ==Sec[3t], y[0] ==0, y'[0] ==0}, y[t],t]
{{y[t}»% (Cos[3 t] Log[Cos(3 t]]+3t Sin[3t])}}

Qut [ 656]
We graph the solution wittl ot in Figure 4.16.

In[657]:= Plot [Evaluate[y[t]/.sol ], {t, O, n/6}]

]
4.3 Higher-Order Linear Equations
4.3.1 Basic Theory
Thestandard form of the nth-order linear equation is
dny dn—ly dy
an + aﬂ_l(t)W +ee al(t)a + agy = f(b). (4.18)
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0.1
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Figure 4.16: The domain of the solutionia/6 <t < 7/6

Thecorresponding homogeneous equatioaf (4.18) is

dny dn—ly dy B
an + an_l(t)W +t ai(t)a +a5(t)y = 0. (4.19)

Letyy, Y, ..., ¥, ben solutions of (4.19). The s& = {y;,V,,..., ¥} is linearly
independentif and onl if the Wronskian,

Y1 Y, Y3 Y
yl/ y2/ y3/ o yn/
_ yl// y2// y3// . yn//
W(S = 4.20
S I yl‘(s) y2'(3) ys'(s) yn_(g) I ( )
Y g yen o)

is not identically the zero functiorSis linearly dependentif Sis not linearly inde-
pendent.

If y;, ¥, ..., ¥, aren linearly independent solutions of (4.19), we say tBat=
{yl,yz, e ,yn} is a fundamental setfor (4.19) and ageneral solution of (4.19) is
Y=0CYp + G + CgYg + -+ + Gy

A general solutionof (4.18) isy =y, + Yy, Wherey, is a general solution of the
corresponding homogeneous equation gnis a particular solution of (4.18).

4.3.2 Constant Coefficients

If
dny dn—ly

dy
ATa +an—lW+"'+ala+aoy—o
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has real constant coefficients, we assumeythat!! and find thak satisfies thehar-
acteristic equation

K'+a, K™+ +ak+a,=0. (4.21)

If a solutionk of (4.21) has multiplicitym, m linearly independent solutions corre-
sponding tdk are

e ted, .ttt

If a solutionk = a + Bi, B8 # 0, of (4.21) has multiplicitym, 2m linearly independent
solutions corresponding to= « + Si (andk = o — i) are

e cospt, e singt, te? cospt, te? singt, . . ., t™ e cospt, t™Le singt

Example 108. Solve 13/ — 5y” — 6y —y = 0.

Solution. The characteristic equation is
123 -5k —6k—1=(k-1)(3k+1)(4k+1)=0

with solutionskl =-1/3, k2 =-1/4 andk3 =1. Fact or [ expr essi on] attempts to fac-

R R tor expression
In[658]:= Factor [12k"3-5k™2 -6k - 1]

Qut[658]= (-1+k) (1+3 k) (L+4 k)

Thus, three linearly independent solutions of the equatiog,aree™'3, y, = /4 and
y; = €; a gereral solution isy = ¢,e™3 + c,eV4 + ;€. We chek with DSol ve.

In[659]:= DSol ve[12y"/[t]1 -5y [t]1 -6y [t]1-y[t]1==0,y[t], t]
out[659]= {{y[t]-e'/3 Ccr1y+et'* cr2y+e' C[31}}

Example 109. Solvey” + 4y’ = 0,y(0) = 0,y'(0) = 1,y”(0) = -1.

Solution. The characteristic equationk$ + 4k = k(k? + 4) = 0 with soltionsk; = 0
andk2'3 = +2i that are found wittsol ve. Enter?Sol ve to obtain basic help regarding

R the Sol ve function or see Figure 4.17.
In[660]:= Sol ve[k™3 +4k == 0]

Qut[660]= {{k >0}, {ko>-21i}, {ko2i}}

Three linearly independent solutions of the equationygre= 1, y, = cos2, and
y; = sin 4. A general solution ig/ = ¢; + ¢,sinZ + c;cos 2.

In[661] : = gensol =DSol ve[y” [t]+4y'[t]1==0,y[t], t]
Qut[661]= {{y[t] - C[3] +% C[1] Cos|[2 t}+% C[2] Sin[2 t1}}

Application of the initial conditions shows us theit= -1/4, ¢, = 1/2, andc; = 1/4
so the solution to the initial-value problemyis= —% + $sin2 + 1 cos 2. We veify
the computation witlbSol ve and graph the result witRl ot in Figure 4.18.
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O Help Browser BB
[ Go To ”Eulve | Close

@ Built-in Functions (3 Add-ons 3 The Mathematica Book

(3 Getting StartedsDemos (3 Other Information ) Master Index

Murrerical Computation | Basic Algebra ¥ |Solve
Algebraic Computation 13 Formula Manipulationpk DSolwe
Matherratical Functiors B Equation Salving » Equal
4
H

Lists and Matrices Calculus M| |Replacedll £/
Graphics and Sound

F—{Polynomial Functions M|
1= Eliminate
= Solvehlways

D

Prograrmming .

Solve

mSolve[egns, vars] atterapls to solve an equation or set of equations for the variables vars
mSolve[egns, vars, elims] attempts to solwe the equations for vars, eliminating, the wariables elims.

= Equations are given in the forta lhe == rhs.

m 3irultaneons equations can be corabined either in a list or with &&.

m & single variable or a list of variables can be specified.

mSolve[egns] tries o solve for all variables in eqns

mExample: Solve[3x+9 ==0, x].

® Solve gives solutions in ternas of miles of the form x > sol.

= When thers ate several variables, the solution is given in terms of lists of rles: {x == 5, , ¥ > &y, .. &
u When there ate several solutiohs, Solwe gives a list of them.

= When a particular root has noultiplicity greater than one, Solve gives several copies of the cormesponding
Folution.

® Solve deals primarily with linear and polynomial equations.

u The option TrwerssFunctd ons specifiss whether Solve should use imverse functions i try and find
solutiohs to mome general equations. The default is InverseFunctions->Rutomatic. In this case,
Solwe can use inverse functions, but prints 3 waming, messagze. See notes oh InverseFunctions

® Solve gives generic solutions only. It discards solutions that are walid only when the parareters satisfy
special conditions. Reduce gives the complete set of solutions

® Solve will not always be able to get explicit solutions 0 equations. It will give the explicit solutions it
can, then give a symbolic representation of the remaining soluftions in terms of Roo t objects. If there are
sufficiently few syrmbolic parameters, you can then use N fo get numerical approximations o the
solutions

mSolve gives {} if there are no possible solutinns t the equations

AN

mSolve[egns, ..., Mode->Modular] solves equations with equality required only modulo an integer.
sckud 2ea )

fh i ——a 1f

SHioular sl 30 :
l100° w [l [«I»

Figure 4.17: If you forget the syntax for a Mathematica function, take advantage of
Mathematica’s help facility. Here, we use the Help Browser to refresh our memory
regarding thesol ve function.
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Figure 4.18: Graph of = —1 + 3 sin2 + 1 cos 2

In[662]:= el =y[t]/.gensol [[1]]/.t->0

aut[662] = S o3

In[663]:= e2=D[y[t]/.gensol [[1]],t]/.t->0

e3 =D[y[t]/.gensol [[1]], {t, 2}1/.t->0
Qut [ 663] = C[2]
Qut[663]= -2 C[1]

In[664]:= cvals =Solve[{el==0, e2==1, e3 ==-1}]
Qute64]= {{Cl1] -3, C2] > 1, C[3] > )]

I n[ 665] : = partsol =DSol ve[
{y”[t]+4y’[t]==0,Yy[0] ==0, y'[0] ==1, y”[0] == -1},
yltl, t]

11 1
Qut [ 665] = {{y[t}»71+z Cos[2 t]+5 Sin[2 t1}}

In[666]:= Pl ot [Evaluate[y[t]/.partsol ], {t, 0, 2x},
Aspect Rati o- > Automatic]

O

Example 110. Find a differential equation with general solutips c,e2/3+c,te2/3+
Cat2e72/3 + ¢, cost + €5 Sint + cgt cost + ¢t sint + cgt? cost + cgt2 sint.

Solution. A linear homogeneous differential equation with constant coefficients that
has this general solution has fundamental set of solutions

S={e 3 te?/3,t%e '3 cost, sint, t cost, t sint, t cost, t? sint

Hence, in the characteristic equatikn= —2/3 has multiplicity 3 whilek = +i has
multiplicity 3. The characteristic equation is

2 a3 9 g 13, 170 ¢ 62 26, 4 8
27(k+§) (k=)3k+i)% =K + 2K +€k +7k +7I¢r’+§k4+5k3+§k +§k+2—7,

where we use Mathematica to compute the multiplication wkpand.

In[667]:= Expand[27 (k +2/3)"3(k"2 +1)" 3]
Qut[667] = 8+36 k+78 k?+135 k3 +186 k* +189 k5 +170 k® +117 k7+
54 k& +27 k°
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Thus, a differential equation with the indicated general solution is

d% _d® 13d’y 170d% _d%% 62d'y _d®% 26d’y 4dy 8
w2t 3ar T 27 ae T oar “oaf T o de " aat 2’

O

4.3.3 Undetermined Coefficients

For higher-order linear equations with constant coefficients, the method of undeter-
mined coefficients is the same as for second-order equations discussed in Section 4.2.3,
provided that the forcing function involves appropriate terms.

Example 111. Solve

ddy 2d?% . 145dy _

d’y , 2d%y 145 d?y
dt3  3dt?2 " 9 dt

- vo =1 Y0 -
e N0 =1, £(0)=2

Solution. The corresponding homogeneous equatyty %y” + %sy’ = 0, has general
solutiony,, = ¢, + (¢, sin4 + c; cos 4) /% and a fundamental set of solutions for the
corresponding homogeneous equatioB is{1, e 3 cos 4, e ¥3sin 4}.

In[668]:= DSol vely” [t]1+2/3y”[t]+145/9y’[t]1==0, y[t1, t1//
Sinplify

_ 3 s
Qut[668] = {{y[t] > C[3] * 125 ©

((12 C[1] -C[2]) Cos[4 t]+ (C[1] +12 C[2]) Sin[4 t])}}

For e, the associated set of functionsHs= {e‘t}. Because no element &f is an
element ofS, we assume thay, = Aet, where Ais a constant to be determined. After
definingy,, we conpute the necessary derivatives

In[669]:= yplt.]=a Exp[-t];
yp'It]

yp”It]

yp”rIt]
Qut[669]= -a et

Qut[669]= a et
Qut[669]= -a e

and substitute into the nonhomogeneous equation.

In[670]: = ec1r£118= yp”[t1+2/ 3yp”[t]1+145/9yp’[t] ==Exp[-t]

Qut [ 670] = -5 2 el ==et

Equating coefficients and solving fér gives usA = —9/148 soy, = —%Be“ and a
Sol veAl ways[ equat i on, vari abl e] general solution iy =y, + Yp-
attempts to solveequationso that it is true
for all values ofvariable
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In[671]:
Qut [ 671]

Sol veAl ways [eqn, t ]
({as-1os}}
148

We verfy the result withDSol ve.

In[672]:= gensol =DSol ve[y” [t]+2/3y”[t]+145/9y’'[t] ==Exp[-t],
yltl, tl

. 9 et 3 36 i (-3-4i
Qut[672]= {{y[t] - 148 *(m’ 145) e’
(i,L) e<’%‘+4i
290 1160

) 1 Cr2] +C[31}}

To obtain a real-valued solution, we uSenpl exExpand:

In[673]:= ?Conpl exExpand

" Conpl exExpand [expr ]expandsexprassum ng
thatal | vari abl esar er eal . Conpl exExpand [
expr, x1, x2, ... Jexpandsexprassum ng
t hat var i abl esmat chi nganyof t hexi ar econpl ex. "

In[674] : = s1 = Conpl exExpand [y [t 1/ . gensol [[11]1]

get 373610, s 9 3
Qut[674]= -=— +C(3] - [z - Jaz ) €7 Cl1] Cos[4 t]- (555 - 7165
36 3
-t/3 oY > -t/3 0 _
el/3 cr2) Oos[4t}+(l45+145) e/3 C[1] Sin[4 t]
3 90y L3 -
(1160+290) et/3 Cr2] Sin4t]
In[675]:= t1=(?.’?oeffici_ent [s1, Expg—t/S%Qoth]]
I |
Qut[675] = (’ﬁ+ 145) [ ]’(ﬁ’1160> c2)
In[676]:= t2 =Coefficient [sl, Exp[-t/3]1Sin[4t]]
Qut [ 676] = (£+3—') (1] - (555 + ') 2]
145 145 1160 ' 290

In[677]:= t3=C[3]
Qut[677] = C[3]

In[678]:= O ear [cl, c2, c3]

s2=Solve[{tl==cl,t2==c2, t3==c3}, {C[1], C[2], C[31}]

Qut [ 678] = {{cm»(f%fz i) (cl+i c2),C[2}e(—16—% (cl-i c2),
C[3] »c3}}

The result indicates that the form returned@fol ve is equivalent to

In[679]: = 53=51/.t52[[1]]//Si mplify

Qut[679] = csfgljs sclet!3 Cos(at]+c2 et’'3 Sin4t)

To apply the initial conditions, we compuy0) = 1, y'(0) = 2 andy”’(0) = -1

In[680]:= el=(s3/.t->0) ==1
e2 = (D[s3,t]/.t->0) ==

e3 = (D[s3, {t, 2}1/.t->0) == -1
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>
|

E 1 2 3 4 5 6

Figure 4.19: The solution of the equation that satisfi@ = 1,y (0) = 2, andy”’(0) =
-1

9
Qut [ 680] = _54_8 +Cl+c3 ==
cl
QUU[680] = o - o +4 €2

-1

9 143 c1 8 c2
th[GBO]: *m* 9 - 3 =

and solve forc,, c,, andc;.

In[681]:= cval s =Sol ve[{el, e2, e3}]

471 20729 157
Qut[681] = {{c1 - -57255. €2 Z75550 ©3 - 145 1)

The solution of the initial-value problem is obtained by substituting these values into
the general solution.

In[682]:= s3/.cvals[[1]]
157 9 et 471 e'/3 Cos[4 t] 20729 e'/3 Sin[4 t]
Qut[682]= —— - -
[682] 145 148 21460 * 42920

We cleck by usinddSol ve to solve the initial-value problem and graph the result with
Pl ot in Figure 4.19.

In[683]:= sol =DSol ve[{y” [t]+2/3y”[t]+145/9y’[t] ==Exp[-t],
y[0] ==1, y'[0] ==2, y”[0] == -1}, y[t],
t]

B 157 9 et 471 20729 i (34i)
Qut[683] = Hy““ﬁ’ 148 (42920’ 85840 ) ’ -
( 471 20729 i ) (L) )
42920 © 85840

I n[ 684] : = real sol = Conpl exExpand[y[t]1/.sol [[1]]]
157 9 et'! 471 e'3 Cos[4 t] 20729 e'/3 Sin[4 t]
Qut[6841= 175 - 15 - 21460 " 42920

In[685]:= Plot [real sol, {t, 0, 2x}, Aspect Rati o- >Automatic]

U
Example 112. Solve
d®y 7d’y 73dSy 229d% 801d% d3y d?y dy _
Pt st =t —— 2+ ———— + 976 + 1168—— + 640 + 128/ =te' +sin4 +t.
di¢ ~ 2dt"  2dt® 2 dt® 2 dt* dt® dt? dt Y

Solution. Solving the characteristic equation

In[686]:= Solvelk™8+7/2k™7 +73/ 2k™ 6 + 229/ 2k" 5+
801/ 2k™4 +976k™ 3 +1168k™ 2 + 640k + 128 ==
01
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Qut[686] = {(k > -1}, {k -1}, {k -1}, {ke—%}, k>-4ijy,
(k>-41i}, (kodi}, (kodiy}

shows us that the solutions ge = -1/2, k, = -1 with multiplicity 3, andk;, =
+4i, each with multiplicity 2. A fundamental set of solutions for the corresponding
homogeneous equation is

S={e"? &' te’,t?% ", cos 4,tcos4,sin 4, tsin 4}

A general solution of the corresponding homogeneous equation is

—t/2

Vi = C1€7Y2 + (Cy + Cot + Cut%) €7 + (Cg + Cot) sin 4 + (cg + Cyt) cOS 4.

I n[ 687]: = gensol =DSol ve[D[y[t]1, {t, 8}1+7/2D[y[t]1, {t, 7}1+
73/ 2D[y[t], {t, 6}] +229/2D[y[t]1, {t, 5}1+
801/ 2D[y [t 1, {t, 4}1 +976D[y[t], {t, 3}]1+
1168D[y[t]1, {t, 2}]1 +640D[y[t], t] +128y[t] ==0,
ylt], t]
out[687]= {{y[t]-
et Cl1j+et t C[2]+et t?2 C[3]+e 2 C[4]+C[6] Cos[4 t]+
t C[8] Cos[4 t]-C[5] Sin[4t]-t C[7] Sin[4t]}}

The associated set of function f! is F, = {e™', te”!}. We multiply F; by t", where

n is the smallest nonnegative integer so that no elemetitFfis an element ofs

t3F, = {t%, t%e!}. The associated set of functions for stigF, = {cos 4, sin 4}.

We mutiply F, byt", wherenis the smallest nonnegative integer so that no element of
t"F, is an element o&: t°F, = {t?>cos 4, t?sin4}. The associated set of functions for
tis F; = {1,t}. No element ofF; is an element o0&

Thus, we search for a particular solution of the form
yp = APe + Athe + AjtP cos 4 + AtPsind + Ay + Adt,

where theA, are constants to be determined.

After definingy,, we compute the necessary derivatives We have used Table twice for
typesetting  purposes. You can
compute the derivatives usingTa-

In[688]:= yp[t_-] =a[llt"3Exp[-t]+a[2]t"4Exp[-t]+ ble[ {n,Dyp[t],{t,n}]} {n 1,8}].

a[3]1t"2Cos[4t] +a[4]t"2Sin[4t] +a[5] +a[6]t

ut[688]= et t% af1l]+et t% a[2]+a[5]+t a[6] +t2 a[3] Cos[4 t]+
t? af4] Sin4 t]

In[689]:= Table[{n, Dlyp[t], {t, n}1}, {n, 1, 4}]
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Qut[689]= {{1,3 e t? af1y-e* t3 a[1+

4 et t3a[2)-et t* af2]+a[6]+2t a[3] Cos[4 t]+
4t2 a[4] Cos[4t]-41t2 a[3] Sin[4t]+2t a[4] Sini4 ti},
{2,6 et t a[1]-6 e* t% a[l]+

et t3 af1]+12 et t2 a[2]-8 et t3 a[2)+et t* a[2y+
2 a[3] Cos[4t1—16t2 a(3] Cos[(4t]+16t a[4] Cos[4 t]-
16 t a[3] Sin[4t]+2 a[4] Sin[4t]-16 t? a[4] Sin[4 t]},
6 et aj1]-18 et t a[1]+9 et t2 a[l]j-et t3 af1]+
24 et t a[2]-36 et t2 a[2]+12 et t3 a[2]-et t* a
96 t a[3] Cos[4 t]+24 a[4] Cos[4 t]-64 t2 a[4] Cos
24 a[3] Sin[4t]+64 t2 a[3] Sin[4t]-96t a[4] Sin
24 e' af1]+36 et t a[f1]-12 et t2 a[1j+et t3 a[1]+
24 et a[2]-96 et t a[2]+72 et t?2 a[2]-16 et t3 a2+
e! t* a[2]-192 a[3] Cos[4 t] +256 t2 a[3] Cos[4 t]-
512 t a[4] Cos[4 t]+512 t a[3] Sin[4 t]-192 a[4] Sin[4 t]+
256 t2 a[4] Sin[4 t]}}

In[690]:= Table[{n, Dlyp[t], {t, n}1}, {n, 5, 8}1

Qut[690]= {{5, 60 e" a[l]-60 e* t a[l]+15 e t? a[l]-e" t3 a[l]-

120 e! a[2]+240 e' t a[2]-120 et t2 a[2]+20 e' t3 a[2]-
e! t% a[2]+2560 t a[3] Cos[4 t]-1280 a[4] Cos[4 t]+
1024 t2 a[4] Cos[4 t]+1280 a[3] Sin[4 t]-
1024 t2 a[3] Sin[4 t]+2560 t a[4] Sin[4 t]},
{6, -120 e a[1]+90 e t a[1l]-18 e' t2 a[l]+et t® a[l]+
360 e a[2]-480 e t a[2]+180 et t? a[2]-24 et t% a[2]+
e! t* a[2] +7680 a[3] Cos[4 t] -4096 t2 a[3] Cos[4ti+
12288 t a[4] Cos[4 t]-12288t a[3] Sin[4 t]+
7680 a[4] Sin[4 t]-4096 t2 a[4] Sin[4 t]},
210 e! a[1]-126 et t a[1]+21 et t2 a[1]-et t3 a[1]-
840 e! a[2]+840 e' t a[2]-252 et t2 a[2]+28 et t3 a[2]-
el t% a[2]-57344 t a[3] Cos[4 t] +43008 a[4] Cos[4 t]-
16384 t2 a[4] Cos[4 t]-43008 a[3] Sin[4 t]+
16384 t2 a[3] Sin[4 t]-57344 t a[4] Sin[4 t]},
{8, -336 e a[l]+
168 e t a[1]-24 et t2 a[1]+et t3 a[l] +1680 e a[2]-
1344 et t a[2]+336 e t2 a[2]-32 et t3 a[2]+et t* a[2]-
229376 a[3] Cos[4 t] +65536 t2 a[3] Cos[4 t]-
262144 t a[4] Cos[4 t] +262144 t a[3] Sin[4 t]-
229376 a[4] Sin[4 t]+65536 t2 a[4] Sin(4 t]}}

—
N

and substitute into the nonhomogeneous equation, naming theegsulAt this point
we can either equate coefficients and solveXaor use the fact thatqn is true forall
values oft.
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In[691]:= eqn =D[yp[t], {t, 8}1 +7/2D[ypI[t], {t, 7}1+
73/ 2D[yp[t1, {t, 6}] +229/2D[yp[t]1, {t, 5}1+
801/ 2D[ypI[t], {t, 431 +976D[yp[t1, {t, 3}1+

1168D[yp[t], {t, 2}] +640D[yp[t], t] +128yp[t] ==

t Exp[-t]+Sin[4t]+t//
Sinplify

Qut[691]= et (-867 a[l] +7752 a[2] -3468 t a[2]+
128 e' a[5] +640 e! a[6]+128 et t a[6])-
64 (369 a[3] -428 a[4]) Cos[4 t]-
64 (428 a[3] +369 a[4]) Sin[4 t] ==
t+elt t+Sini4t]

We aubstitute in six values df

In[692]: = sysofeqs =Tabl e[eqn/.t->n//N, {n, 0, 5}]

241
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Qut[692] = {-867. a[l. ]+
7752. a[2.]
64. (369. a
428. a
128. a[5. ]+
640. a[6.] ==0,
41.8332 (369. a[3.]-
428. af[4.])+
48.4354 (428. a[3. ]+
369. af4.])+
0.367879 (-867. a[l.]+
4284. a[2. ]+
347.94 a[5. ]+
2087.64 a[6.]) ==
0. 611077
9.312 (369. a[3.]-
428. af4.])-
63.3189 (428. a[3. ]+
369. af4.])+
0.135335 (-867. a[l.]+
816. af[2. ]+
945.799 a[5. ]+
6620.59 a[6.]) ==
3. 26003
-54. 0067 (369. a[3.]-
428. af[4.])+
34.3407 (428. a[3.]+
369. a[4.])+
0. 0497871 (-867. a[l.]-
2652. a[2.]
2570.95 a[5
20567.6 a[6
2.61279
61.2902 (369. a[3.]-
428. af4.])+

18.4258 (428. a[3.]+
369. a[4. ])+
0.0183156 (-867. af[l.]-
6120. a[2.]
6988.56 a[5. ]+
62897.1 a[6.])
3. 78536
-26.1173 (369. a[3.]-
428. af4.])-
58.4285 (428. a
[4.]

+
1+

1) ==

+

w
"

369. a[4
0. 00673795
(-867. a[l.]-
9588. a[2. ]+
18996.9 a[5. ]+
189969. a[6. ])
5. 94663}

)+
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and then solve foh.

In[693]: = coeffs =
Sol ve[sysof eqs, {a[l.1, a[2.1, a[3.1, a[4.1, a[5.1, a[6.1}]
Qut[693]= {{a[l.] - -0.00257819,
a[2.] - -0.000288351,

a[3.] > -0. 0000209413,
a[4. ] - -0. 0000180545,
a[5.] > -0. 0390625,
a[6.] »0.0078125}}

Yp Is obtained by substituting the values frinto y, and a general solution is =
Yn +Y,- DSol ve is able to find an exact solution.

In[ 694] : = gensol =DSol ve[D[y[t]1, {t, 8}1+7/2D[y[t]1, {t, 7}1+
73/ 2D[y [t 1, {t, 6}1 +229/ 2D[y[t1, {t, 5}1+
801/ 2D[y[t1, {t, 4}1 +976D[y[t], {t, 3}1+
1168D[y[t1, {t, 2}] + 640D[y[t1, t]+128y[t] ==
t Expl[-t]1+Sin[4t]+t,yrtl, ti//
Simplify
5 2924806 e! t 86016 et t
Qut[6941= {{y[t] >3558 - “5z137560 * 128~ 1410857

o2 -t 3 -tot4
1270 e~ t7 38 e t7 e’ 17 4 ci1j.et t C2)s

83521 14739 3468
9041976373 107 t2
_t 2 -t/2 _
e 17 Cl3)+~e " Cl4) + (199643253056000 5109520
1568449
Cl6)+t |- 15168156800 +C[8]]) Cos[4 t)-
13794625331
.
798573012224000
20406 t 369 t2
352876225 20438080"0[5] -t C[7])
Sinf4 ti}}

Vari ation of Parameters

In the same way as with second-order equations, we assume that a particular solution
of the nth order linear equation (4.18) has the foym = u;(t)y; + Uy()y, + -+~ +

u,t)y,, wheeS={y,, y,, ..., Y} is afundamental set of solutions to the corresponding
homogeneous equation (4.19). With the assumptions

Yo =YiU + Yol + -+ YU =0
7 — ’u ’ + ’u ’ + e + /u ’ — 0
Yo =YV U +Yo U, Yn Un . (4.22)

yp(n—l) _ yl(nfz)ul/ + y2(n72)u2/ P yn(nfz)un/ -0
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we obtain the equation
yi" U + v, Py ey P = (). (4.23)

Equations (4.22) and (4.23) form a systenmdinear equations in the unknowmus’,
u,’,...,u,’. Applying Cramer’s rule,

u./ = VVI(S)
WS

(4.24)

whereW(S) is given by (4.20) an(S) is the determinant of the matrix obtained by
replacing theth column of

Y1 Y2 - W 0
O N
Wy e z

Example 113. Solvey® + 4y’ = sec 2.

Solution. A general solution of the corresponding homogeneous equatign=s, +
c,cos 2 + ¢y sin &; afundamental set iS = {1, cos 2, sin 2} with WronskianW(S) =
8.

In[695]:= yh =DSol vel[y” [t]+4y’[t]==0, y[t], t]
1 1 )
().Jt[695]={{y[t]aC[3}+§C[l} COS[ZI}+EC[2} Sinf2 t1}}

In[696]:= s = {1, Cos[2t], Sin[2t]};
ws = {s, D[s, t1, D[s, {t, 2}1};:
Mat ri xFor m[ws]

1 Cos[2 t] Sin[2 t]
Qut[696]= (0 -2 Sin[2t] 2 Cos[2t]
0 -4 Cos[2t] -4 Sin[21]

In[697]:= dws = Sinplify[Det [ws]]
Qut[697]= 8

In[698]:= dws =Det [ws]1//Sinmplify
Qut[698] = 8
Using variation of parameters to find a particular solution of the nhonhomogeneous

equation, we ley;, = 1,y, = cos2, andy; = sin2 and assume that a particular
solution has the forny, = uy; + Uy, + Ugy;. Using the variation of parameters
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formula, we obtain
0 cos2t sin&

U'1=:—é 0 -2sin2  2cos2t|=-sec2 so ulz:—glnlsec2+tan2|,
sec? -4cos2t -4sin
110 sin2 1

u’zzéo 0 20s2|=-- soO Uz=—;1t
0 sec?2 -4sin2

and

1 1 cosx 0 1 1
ug_éo -2sin2 0 |=--tan2 so u3=§In|cos.2|,
0 -4cos2t sec?

where ve useDet andl nt egr at e to evaluate the determinants and integrals.

In[699]:= ulp=1/8
Det [{{0, Cos[2t], Sin[2t]1}, {0, -2Sin[2t], 2Cos[2t ]},
{Sec[2t], -4Cos[2t], -4Sin[2t1}}1//
Simplify
Qut [ 699] = % Sec[2 t]

In[700]: = Ir:1Lt egratefulp, t] 1
Qut[700] = -3 Log[Cos[t]-Sin[t]] *3 Log[Cos[t] +Sin[t]]

In[701]:= u2p=Sinplify[1/8 Det [{{1, O, Sin[2t]}, {0, 0, 2Cos[2t]},
{0, Sec[2t], -4Sin[2t]}}]]

1
Qut[701] = 7
In[702]:= Irt1t egratef[u2p, t1]
Qut[702] = -
In[703]:= u3p=Sinplify[1/8 Det [{{1, Cos[2t], 0}, {0, -2Sin[2t], O},

{0, -4Cos [2t], Sec[2t1}}1]
Qut[703] = 741—1 Tan[2 t]

In[704] := Integrate[u3p, t]
Qut[704] = 3 Log[Cos[2 t]]

Thus, a particular solution of the nonhomogeneous equation is

1 1 1 .
Yp = §In|5e02+tan2|—Ztc052+§ln|0032|sm2t

and a general solution js=y; +y,. We \erify the calculations usinGSol ve returns
an equivalent solution.

In[ 705] : = gensol =
DSol ve[y””[t]1 +4y’[t] ==Sec[2t], y[t], t1//Sinplify
Qut[705] = {{y[t] »% (8 C[3]-2 (t -2 C[1]) Cos[2 t]-

Log[Cos[t] -Sin[t]] +Log[Cos[t] +Sin[t]]+
(4 C[2] +Log[Cos[2 t]]) Sin[2 t])}}
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O

4.3.4 Nonlinear Higher-Order Equations

Generally, rigorous results regarding nonlinear equations are very difficult to obtain.
In some cases, analysis is best carried out numerically and/or graphically. In other
situations, rewriting the equation as a system can be of benefit, which is discussed in

the next section. (See Example 117.)

4.4 Systems of Equations

4.4.1 Linear Systems

We now consider first-order linear systems of differential equations:

X’ = A)X + F(t), (4.25)
where
) a () at) ... &, i)
xo =0, an=|%2O 20 O ang g = |20,
Xy(t) ayt) ap® ... a4t fa()

Homogeneous Linear Systems

The corresponding homogeneous system of (4.25) is
X’ = AX. (4.26)

In the same way as with the previously discussed linear equati@@s)exal solution
of (4.25) isX = X, + X, whereX, is ageneral slution of (4.26) andX, is a
A particular solution to a system of ordi- particular solutionof the nonhomogeneous system (4.25).
nar diﬁerent_ial equations s a set of func¢ ¢, D, ..., ¢, arenlinearly independent solutions of (4.26)ganeral solutionof
tions that satisfy the system but do not cort—4 26) is

tain any arbitrary constants. That s, a partic-

ular solution to a system is a set of specific Cy
functions,containing no arbitrary constants X = Clq)l n Czq)z Ty qu)n — (‘D1 (I)z o (I)n) Cg = oC,
that satisfy the system. :
C
n
where

G

G,

o= (0, P, ®) and C=|7
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® is called afundamental matrix for (4.26). If ® is a fundamental matrix for (4.26),
¥ =Adord’' - Ad=0.

A(t) constant

Suppose thaA(t) = A has constant real entries. Lete an eigenvalue oA with
corresponding eigenvecter Then, vel is a solution ofX’ = AX.

If A = a+Bi, B # 0, is an eigenvalue A& and has corresponding eigenvectot a+bi,
two linearly independent solutions & = AX are

e (acospt — bsingt) and e (asinft + bcospt). (4.27)

Example 114. Solve each of the following systems. (X) = (:5; :5:23)X (b)

X =3y © dx/dt=—3x+ 2y
y = -1x dy/dt= -8x— 1y

Solution. (a) With Ei gensyst em we seethat the eigenvalues and eigenvectors of
-2 -1/3 1 "
A = (_1/3 _1/2) ared, = -1/6 andA, = -5/6 andv; = (1) andv, = (1)

respectively.

In[706] : = capa = {{-1/2, -1/ 3}, {-1/3, -1/ 2}};
Ei gensyst em[capa]

5 1
Qut [ 706] = H’E’ ’6}' ({1, 1}, (-1, 1}}}

ThenX, = (_11) e andX, = i e %6 are two linearly independent solutions of

—t/6 —5t/6
. -€ € c o
the system so a general solutiorXs= ( o6 e—5”6) (Cl); afundamental matrix is
2

_etl6 g5u6
= ( gtl6 g 56|
We use DSol ve to find a general solution of the system by entering

In[707] : = gensol =DSol ve[{x'[t] ==-1/2x[t]-1/3y[t],
y'It]==-1/3x[t]-1/2y[t]}, {x[t], y[t1},
t]
out[707]= {{x[t] -e™ Y6 Cc[1)-e/® C[2],y[t]»e e C[1] +e® C[2]}}

We graph the direction field withPl ot Vect or Fi el d, which is contained in the
Pl ot Fi el d package located in th@raphics directory, in Figure 4.21.

Remark. After you have loaded thel ot Fi el d package,

PlotVectorField[{f[x,y],a[x,y]}, {x, a, b}, {y,c,d}]
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O Help Browser BB
[ Go To ”Graphms‘PlutField‘ | [ Back ] [ Close ]
(3 Built-in Functions @ Add-ons ) The Mathematica Book
(3 Getting Starteds/Demos (3 Other Information ) Master Index
‘Workingwithddd-ons B Introduction #| _|Graphics
iGr’apmcﬁD

ImplicitPlot
Legend
—{MultipleListPlot
| =1 ParametricPlot3D
~|PlotField

Standard Packages b Algebra
MathLink Library »| |Calculus
Programming in Matheratie || Discreteath
Extra Utilities B |Geometry
Graphics

rryvwy

D]

m Graphics~PlotField™~

Anything that assigns 2 magnitude and direction at each point gives a vector field. Examples include the
electromagnetic field and the velocity field of a flnid. Any ordinary differential equation can be used to
define a vector fisld. These wector fields can be wisualized by drawing arrows epresenting, the vectors. The
direction of the arrow is equal to the direction of the vector field at its base point. The magnitude of the
armow is proportional to the maghitudz of the vector field.

This package plots two-dirensional vectar fields. For doing, vector field plots in three dimensions use the
package Graphics” PlatFie1d3Dn”

FlotVectorField|[{f, plotthe yector fisld given by the vector-valued function
¢ Fybe (%, omin, omaxy I the rnge specified
o 1y i, ymaxp]
FlotGradientFiald[f, plotthe pradisnt wecior fisld of the scalar-valued function f
{x, xmm, xnaz}.
£y yomin, ymaxi |
FlotHamiltonianField[ plotthe Hamiltondan vector field of the scalar-mlued function @
i
{x, xmin, ynax}
¢ (Yo ymin, ymax
1

Plotting wector fields in two dimensions.
= This loads the package
In1]===Graphics PlotField" ]

m The two cotaponents of this vector field are given by sin(x) and cos(y).

AN

{x. 0, Pi}, {y 0, Pi}]
[100°% ~w [iu] K

z-PlotYectorField[ {Sin[x]. Cos[¥]}. H
ID

Figure 4.20: The?l ot Fi el d package

generates a basic direction field for the systgh= f(x,y), ¥ = g(x,y)}fora=x=<b
andc <y < d. (See Figure 4.20.)

In[708]: = << G aphics' PlotField

In[709]:

pvf =Pl ot VectorFiel d[{-1/2x -1/ 3y, -1/ 3x -1/ 2y},
{x, -1, 1}, {y, -1, 1}, Axes->Autonatic]

Several solutions are also graphed wedr anet ri cPl ot and shown together with
the direction field in Figure 4.22.

In[710]:= initsol =DSol ve[{x'[t] ==-1/2x[t]-1/3y[t],
y’[t]==-1/3x[t]-1/2y[t], x[0] ==x0, y[0] ==yO0},
{x[t1l, y[tl}, t]

Qut[710]= {{x[t] > -e® 6 (% (-x0 -y0) +% g2 t/3 (7x0+y0)>,

yit)-es /e (% e? 3 (_x0+y0) +—XO;yO)}}
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* LXK
- A VA
~ A A
- ror KXy
- I A
v [ A
il [ A I
A A A A ¢ ¢ 4 N A A s s s,
A A A A A v 4 i Ny ~ 4 4 4 &
A A A A A 4 g {1 v ~ 4 4 4
AAA A A 0 4 4 vy~ - a
ANAA A A A a 4y Y o~ =
AN A A A q 44 40y N~
S S S A A

Figure 4.21: Direction field foX’ = AX

In[711]:= t1 =Tabl e[ParanetricPl ot [
Evaluate[{x[t], y[t]1}/ .initsol/. {x0->1, yO->i}],
{t, 0, 15}, Di spl ayFunction->ldentity,
Pl ot Styl e- >GrayLevel [0.311, {i, -1, 1, 2/8}1;
t2 = Tabl e[ParanetricPl ot [
Evaluate[{x[t], y[t]1}/ .initsol/. {x0->-1, yO->i}],
{t, 0, 15}, Di spl ayFunction->Ildentity,
Pl ot Styl e- > G ayLevel [0.3]1], {i, -1, 1, 2/ 8}]1;
t3 = Tabl e[ParanetricPl ot [
Evaluate[{x[t], y[t]1}/ .initsol/. {x0->i, y0O->1}],
{t, 0, 15}, Di spl ayFunction->Ildentity,
Pl ot Styl e- >GrayLevel [0.3]11, {i, -1, 1, 2/8}]1;
t4 = Tabl e[ParanetricPl ot [
Evaluate[{x[t], y[t]1} .initsol/. {x0->i, y0O->-1}1,
{t, 0, 15}, Di spl ayFunction->Ildentity,
Pl ot Styl e- >GrayLevel [0.3]11, {i, -1, 1, 2/8}]1;

In[712]:= Show[tl, t2, t3, t4,

pvf, Di spl ayFuncti on- > $Di spl ayFuncti on,
Aspect Rati o- > Aut omati c]

(b) In matrix form the system is equivalent to the syst&m= —](}8 Jj02 X. Asin

(a), we useEi gensyst emto see that the eigenvalues and eigenvectonsathb f A=
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AR RN/ I Ay v
- LA A s
- W/ YA Ay
- -~ Wl 5/ ¥ P/
o= ' ) » ) KE By
A
v ,

o N

1 -0. ' 1
Pl ~ v v
A A A xSy N

A A A

/¢ N ~ < 4 a
N/ S I R T < -
Y A A A A ()1 \ -
yd S A A « 4 | <~
S AA N A S

Figure 4.22: Direction field foX’ = AX along with various solution curves

0 12 . 1 0.
(—1/8 o ) ared,, =0+ fi andv,, = (O) + (sz) i.

In[713]:= capa = {{0, 1/ 2}, {-1/8, 0}};
Ei gensyst em[capa]

Qut[713] = {{7'4, IZ}’ ({20,1), {-2i, 1)}

Two linearly independent solutions are tHkn = (1) coslt—( 0 )sin it = ( (iOS.%tl )
0 4" \y2 4 -3 singt

int
andX, = ((1)) singt + (1?2) cosit = (;clggzt) and a general solution X = ¢, X, +

1 a1

cos3t sinzt \(c . .

c,X, = 4 4 1] orx = ¢, cosit + ¢, sinit andy = —¢,; 3 sinlt +
22 (—%sm%‘t s cosst/\c, 1008t + G SINg y 122004

1 1

5C, cosgt.

As before, we us®Sol ve to find a general solution.

In[714] : = gensol =DSol ve[{x'[t]==1/2y[t], Yy [t] ==-1/8x[t]},
{x[tl, y[tl}, t]

Qut[714] = {{x[t] -2 C[1] Cos [%] +2 C[2) Si“[tﬂv

| +C[1] Sin [t—}}

y[t]->C[2] Cos ]| 7

B

Initial-value problems for systems are solved in the same way as for other equations.
For example, entering
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Figure 4.23: (a) Graph of(t) andy(t) (b) Parametric plot ok(t) verausy(t)

In[715] : = partsol =DSol ve[{x'[t] ==1/2y[t],
y'[t1==-1/8x[t]1, x[0] ==1, y[0] == -1}, {x[t]1, y[t1},

t]
ut[715]= {{x[t]>-2 (-3 Cos ] esin[5]],
yit]»-cos [5] -5 sin[z]})

finds the solution that satisfi@f0) = 1 andy(0) = —1.

We graphx(t) andy(t) together as well as parametrically with ot andPar anet -
ri cPl ot, respectively, in Figure 4.23.

In[716]:= pl =Plot [Evaluate[{x[t], y[t]}/ .partsol], {t, 0, 8x},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0.4]},
Di spl ayFunction->Ildentity];
p2 = Paranetri cPl ot [
Eval uate[{x[t], y[t]1}/ .partsol ], {t, O, 8x},
Di spl ayFuncti on->Ildentity, Aspect Rati o- >Automatic];
Show[G aphi csArray [{pl, p2}1]

Wecan also us@! ot Vect or Fi el d andPar anet ri cPl ot to graph the direction
field and/or various solutions as we do next in Figure 4.24.

In[717]:= pvf =Pl otVectorField[{1/ 2y, -1/ 8x}, {X, -2, 2},
{y, -1, 13}, Di spl ayFunction->ldentity];

In[718]:= initsol =DSol ve[{x'[t] ==1/2y[t],
y'[t] ==-1/8x[t], x[0] ==x0, y[0] ==yO0},
{xX[t], y[tl}, t]
1 )
{{xmt1--2 (75 x0 Oos[ﬂfyo Sin| })
t 1 . t
y[t]->yo0 OOS[Z}—E x0 Sln[ﬂ}}

Qut [ 718] t

e
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Figure 4.24: Notice that all non-trivial solutions are periodic

In[719]:= t1=Tabl e[ParanetricPl ot [
Evaluate[{x[t], y[t]1} .initsol/. {x0->i, y0->i}],
{t, 0, 8x}, Di splayFunction->ldentity,
Pl ot Styl e- > GrayLevel [0.3]],
{i,0,1,1/8}1;

I'n[ 720] : = Show[t 1, pvf, Di spl ayFuncti on- > $Di spl ayFuncti on,
Aspect Rati o- > Aut omatic]

_1
(c) In matrix form, the system is equivalent to the syst&¥m= ( é Zl)X. The
- T2
_1
eigenvalues and corresponding eigenvectorA cf é 21) are found to bg, , =
-8 -1 ,
1+ 4i and —l+0' ith Ei t
-z t4iandv,, = () £|,]i with B gensyst em
In[721]: = capa = {{-1/4, 2}, {-8, -1/ 4}};
Ei gensyst em[capa]
Qut[721] = {{7%74 i, 7%+4 iho(gi,2), (-, 20}

A gereral solution is then

X =¢X; +6,X,

=cet ((é) cos4 — ((2)) sin 4) +ce4 ((é) sin4 + ((2)) cos 4)
_ et cos4 te sind \| _ o4 cos4 sin4d \(c,
- 1\-2sin4) " 7?\2cos4t)| -2sin4  2cost)\c,
orx = e4(c, cos4 + ¢, sin4) andy = e/4(2c, cos 4 — 2c, sin4). We wnfirm this

result usingdSol ve.

In[722] : = gensol =DSol ve[
{X'[t]==-1/4x[t]+2y[t], y'[t] ==-8x[t]-1/4y[t]},
{x[t], ylt1} tl
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Qut[722]= {{x[t]>C[2] (7%| Oos[(4+z t}+%| Oosh[(f+4|) t]+
%Sin[(4+lz).t]—%| Slnh[ —+4|)t])+
ci1) (7% Cos [ 4+ t}—% Cosh [(,+4i] t]-
%i Sin[4+'z)t}+1 sinh[(7+4i] t])

In[723]: = gensol [[1, 1, 2]]

Qut[723] = C[2] (7%| Oos[(.4+iz t}+%| Cosh[%+4i) t]+
%Sin[(4+i—l)-t}7%| Slnh[(%+4|) t})+

ci1) (-% OOSM‘“_IZ) t]—% Oosh[(%+4|) t]-

%i sin[[4+5) t]+% Sinh[(%+4|) t])

I n[ 724] : = Conpl exExpand[gensol [[1, 1, 2]11//Sinplify
Qut[724]= (C[1] Cos[4 t]-C[2] Sin[4 t]) (7Cosh[tz]+8inh[z—l})

In[725]:= (C[1] Cos[4 t]-C[2] Sin[4 t]) (-e/?)

I n[ 726] : = Conpl exExpand[gensol [[1, 2, 2]111//Sinmplify
Qut[726]= 2 (C[2] Cos[4 t]+C[1] Sin[4 t]) (Oosh[zﬂ _si nh[tz})

IN[727]:= 2 (C[2] Cos[4 t]+C[1] Sin[4 t]) (e''%

In this case, we obtained the real form of the solution by selecting the portion of the
expression that we wanted to write in terms of exponential functions

0 LI T
ezl |- 4o =) t|+ = 1cosh||= <42

SNRTIED i 1 1
el [-—ees|[s+ 2] &) - —cemn|[= s ax)e] - 22
R LT R A

Conplezkapandgensol((1. 1. 2111 /7 Simplity :‘1

CHESIEREEERIE - - | - =] - ||

(G111 Conl4 £] - CL2] Sinl4 t1) (-E7) 1

and then accesséd i gToExp from theAlgebraic Manipulation palette

Expand|a]
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to obtain the result.

2 (512] Sonl4 £ + €111 Sdal4 ) [:c:hj%l - ”“"HI:

ConplezKzpand [gennn BIL. E. Z]]) 07 Simplity 1]
2 (C12] Conld t] + G[1] Finl4 t]) (B 1

We us Pl ot Vect or Fi el d andPar anetri cPl ot to graph the direction field
associated with the system along with various solutions in Figure 4.25.

In[728]:= pvf =Pl otVectorField[{1/4x +2y, -8x -1/ 4y},
{x, -1, 1}, {y, -1, 1}, Axes->Automati c,
Di spl ayFuncti on->Ildentity];

In[729]:= initsol =DSol ve[{x'[t] ==-1/4x[t] +2y[t],
y'[t]==-8x[t]-1/4y[t], x[0] ==xX0, y[0] ==yO0},

{x[tl, y[tl} t1]
t
1

Qut [ 729] t

{{x[t1>x0 Cos[4 t] Cosh |
t

]+% y0 Cosh =] Sin[4 t]-

[N

X0 Cos[4 t] Sinh[—]-> y0 Sin[4 t] Sinh[zﬂ,

Ll
N

t

1 t .
yit]-2 EyO Cos[4 t] Oosh[z]fxo Cosh [=] Sin[4 t]-

B

1 ot ) ot
5 Y0 Cos[4 t] Sinh[z]+x0 Sin[4t] Slnh[z])}}

In[ 730] :

t1l =Tabl e[ParanmetricPl ot [
Eval uate[{x[t], y[t]1}/ .initsol/. {x0->1, yO->i}],
{t, 0, 15}, Di spl ayFunction->ldentity,
Pl ot Styl e- > GrayLevel [0. 37117,
{i, -1, 1, 2/ 8}1;

In[731]:

Show [t 1, pvf, Di spl ayFuncti on- > $D spl ayFuncti on,
Pl ot Range- > {{-1, 1}, {-1, 1}}, Aspect Rati o- > Autonatic]

Last, we illustrate how to solve an initial-value problem and graph the resulting solu-
tions by finding the solution that satisfies the initial conditig@® = 100 andy(0) = 10
and then graphing the results wih ot andPar anet ri cPl ot in Figure 4.26.

In[732]:= partsol =DSol ve[{x'[t] ==-1/4x[t] +2y[t],
y’[t]==-8x[t]-1/4y[t], x[0] ==100, y[0] ==10},
{x[tl, y[t1}, t1]

Qut[732] = {{x[t] >100 Cos[4 t] cosh[%]+5 Oosh[tz] Sin[4t]-
100 Cos[4 t] Sinh[%]_5 Sin(4 t] Sinh[%},
y[t]->2 (5 Cos[4 t] msh[%}floo Oosh[tz} Sin(4 t]-

5 Cos[4 t] Sinh[z—l}+100 Sin4 t) Sinh[tz])}}
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v

Figure 4.25: Various solutions and direction field associated with the system

In[733]:= pl=Plot [Evaluate[{x[t], y[t]} .partsol], {t, 0, 20},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 4]},
Di spl ayFunction->1ldentity, Pl ot Range->All];
p2 = Paranetri cPl ot [
Evaluate[{x[t1, y[t]1}/ .partsol ], {t, 0, 20},
Di spl ayFuncti on->ldentity, AspectRati o- > Automatic];
Show[G aphi csArray [{pl, p2}11]

Figure 4.26: (a) Graph ofit) andy(t) (b) Parametric plot ok(t) verausy(t) (For help
with ShowandG aphi csArr ay, use the Help Browser as shown in Figure 4.27)
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Matherretical Functions Contour Plots GraphicsSpacing

| Help Browser EIB
[ Go To ”Graph\csArray | [ Back ] [ Close ]

@ Built-in Functions (3 Add-ons ) The Mathematica Book

() Getting Started/Demos (3 Other Information ) Master Index

Nurrerical Computation b 2D Plots #| _|Show

Algebraic Computation (— 30 Plots P|_|GraphicsArray =

Graphics and Sound Sound Generation

] Epilog
{* [Combinations

[ Rectangle

rrvwy

4
»
Lists and Matrices B Density Plats
b
b

<1

Programming

GraphicsArray

wGraphicsArray[{gy . §; ... }] IepEsents a 10w of graphics objects.

mGraphicsArray({{§;; « §1p .- }r ... }] TEpresents a two-dirensional array of graphics objects.

= Fou can display a GraphicsArray object using Show.

FrameTicks changed to None

GraphicsSpacing > 0.1

graphics abjects given inside GraphicsArray.
m3ee the book: Section 1.9.4 and Section 2.9.1.

m3ee also: Rectangle RasterArray, TableForm GridBox.

B GraphicsArray sets up identical rectanglar display areas for each of the graphics objects it confains
®GraphicsArray takes the same options a8 Graphics, with the defaults for Ticks and

®GraphicsArray takes the additional option GraphiesSpacing, which specifies the spacing
‘between the rectangular areas confaining each graphics object. The default seting is

u The options DisplayFunction, ColorOutputatd CharacterEncoding ar ignored for

" Further Examples

We create two sivaple plots, suppressing their display.

between the ten plots is half the (horizondal) size of each plot
Fraluate the cells to see the graphics

In[3]= Show[GraphicsArray[{pl1. p2}]1]:

[i]=pl = Plot[Sin[x]. {x. 0. Zx}, DisplayFunction » Identity]:

nzl=p2 = Plot[Sin[2 x]. {x, 0, 2x}, DisplayFunction —» Identity]. j
We the plots as the elerents of a graphics armay. In the second array the aronnt of spacing ]

A ]

[100% ~ [iu]

[«¥

Figure 4.27: Mathematica'’s help f@ aphi csArr ay
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4.4.2 Nonhomogeneous Linear Systems
Generally, undetermined coefficients is difficult to implement for nonhomogeneous
linear systems as the choice for the particular solution must be very carefully made.

Variation of parameters is implemented in much the same way as for first-order linear
equations.

Let X,, be a general solution to the corresponding homogeneous system of (X.25),
a general solution of of (4.25), anK, a particular solution of (4.25). It then follows
thatX — X, is a solution to the corresponding homogeneous systeksX, = X,
and, consequentlX = X, + X,

A particular solution of (4.25) is found in much the same way as with first order linear
equations. Le® be a fundamental matrix for the corresponding homogeneous system.
We assume that a particular solution has the fd(lp = OU(t). Differentiating X,

gives us

X, =0U+oU".
Substituting into (4.25) results in

PU+0U = AOPU + F
oU =F

U =0 F
U:qulet,

where we have used the fact tlddlJ — A®U = (¢ — AP) U = 0. It follows that
_ -1
Xp= (I)f(l) Fdt. (4.28)

A gereral solution is then
X=X +X,
=oC +<1>f<1>—1th

=<I>(C+f<b‘1th)=<I>f<I>‘let,

where we have incorporated the constant ve€tarto the indefinite integraf o~1F dt.

Example 115. Solve the initial-value problem

, (1 -1 tcos3 (1
X' = (10 —1)X_(t sint +tcos3)’ X(0) = (—1)'

Remark.In traditional form, the system is equivalent to

x0) =1, y0) = -1.

X =X-y-tcos3
y =10x-y-tsint—tcos3’
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Solution. The corresponding homogeneous systes= (110 j

)Xh. Theeigen-
. . 1 -1
values and corresponding eigenvectorsAot= (

1 —3 ! y.

In[734] : = capa = {{1, -1}, {10, -1}};
Ei gensyst em[capa]
Qut[734]= {{-3i,3 i}, {{1-31i,10}, {1+31i,10}}}

) ared;, = =3 andv,, =

sin3 cos3
sind -3cos3t cos3 +3sind

fcos3+sind -icos3
-%sind+cos3 isind |

A fundamental matrix i® = ( ) with inversed1 =

In[735]:= fm= {{Sin[3t], Sin[3t]-3Cos[3t]},
{Cos[3t], Cos[3t]+3Sin[3t]}};
fmnv=Inverse[fm//Sinplify
Qut[735] = {{% OOS[St}+Sin[3t},OOS[3t}—% Sin(3tl},

{7% O()S[Bt},% Sin[3t1}}

We now omputed1F(t)

In[736]:= ft = {-t Cos[3t], -t Sin[t]-t Cos[3t]};
stepl =fmnv.ft

Qut[736]= {(-t Cos[3 t]-t Sin[t]) Oos[3t]7% Sin[St})f

t Cos([3 1] % Cos[(3t]+Sin[(3t]],

1y Cos[3 t]2+

3 (-t Cos[3t]-t Sin[t]) Sin(3t]}

Wk

and [ @~1F(t) dt.

In[737]:= step2 =Integrate[stepl, t]
Qut[737] = {ﬁ (-288 t2+36 Cos[2 t]-
216t Cos[2t]-9 Cos[4t]+108t Cos[4 t]-16 Cos[6 t]+
48 t Cos[6 t]+108 Sin[2t]+72t Sin[2t]-27 Sin[4t]-

36t Sin(4t]-8 Sin6t]-96t Sin[et]),ﬁ

(72 12-36 Cos[2 t]+9 Cos[4 t]+4 Cos[6 t]+24t Cos[6 t]-
72t Sin[2t]+36t Sinf4t]-4 Sin6t]+24t Sin6t])}

A general solution of the nonhomogeneous system iscli@rrb‘lF(t) dt + C).

In[738]:= Sinplify[fmstep2]
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Qut[738] = {% (27 Cos[t]-4 ((1+6t +18 t?) Cos[3 t]+27 t Sin[t]-
Sinf(3t]+6t Sin(3t]+18 t% Sin[31t])),
% (-36t Cos[t]-4 (1-61t+18 t?) Cos[3 t]-45 Sin[t]-

4 Sin[3t]-24t Sin[(3t]+721t2 Sin[3t])}
It is easiest to usBSol ve to solve the initial-value problem directly as we do next.

In[739]:= check =DSol ve[{x'[t] ==x[t]-y[t]-t Cos[3t], y'[t] ==
10x[t]-y[t]-t Sin[t]-t Cos[3t], x[0] ==1, y[0] == -1},
{x[t], y[t1}, t]
General ::"spelll" : "Possiblespellingerror :
newsynbol nangchecki s sinilar

to existing symbol “Check:"

Qut[739] = {{x[t}e% (-9 Cos[t]+297 Cos[3t]-72t2 Cos[3 t]+
36t Sin[t]+192 Sin[3t]-24t Sin[3t]),
y[t] -
1

88 (-9 Cos[t]-36t Cos[t]-279 Cos[3t]-72t Cos[3 t]-

72 t2 Cos[3 t]-45 Sin[t]+36t Sin[t]+1107 Sin[3 t]-
24t Sin[(31t]-2161t% Sin[(3t])}}

After using?Eval uat e to obtain basic information regarding tEeal uat e func-
tion, the solutions are graphed with ot andPar anet ri cPl ot in Figure 4.28.

I n[740] : = ?Eval uate

"Eval uat e [expr Jcausesexprt obeeval uat edeven
i fitappearsastheargument of af uncti on
whoseat tri but esspeci fyt hatit shoul dbe
hel duneval uat ed. "

In[741]:= pl =Pl ot [Evaluate[{x[t], y[t]}/ .check], {t, O, 8n},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 4]},
Di spl ayFunction->ldentity];
p2 = Paranetri cPl ot [
Eval uate[{x[t], y[t]}/.check], {t, O, 8},
Di spl ayFuncti on->ldentity, Aspect Rati o- > Automatic];
Show[G aphi csArray [{pl, p2}11]

4.4.3 Nonlinear Systems

Nonlinear systems of differential equations arise in numerous situations. Rigorous
analysis of the behavior of solutions to nonlinear systems is usually very difficult, if
not impossible.

To generate numerical solutions of equations, NS8ol ve. (See Figure 4.9.)
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Figure 4.28: (a) Graph oft) (in black) andy(t) (in gray) (b) Parametric plot of(t)
verausy(t)

Example 116 (Van-der-Pol’s equation). Van-der-Pol's equatiox” + u (x2 - 1) X +
x = 0 can be written as the system

y

e u(e 1)y, (4.29)

Xl
Yy
If u =2/3,%0) =1, andy(0) = 0, (a) findx(1) andy(1). (b) Graph the solution that
satisfies these initial conditions.

Solution. We ug NDSol ve together to solve (4.29) with = 2/3 subject tox(0) = 1
andy(0) = 0. We name the resulting numerical solutiomnsol .

In[742] : = nunmsol =NDSol ve[{x'[t] ==Vy[t],
y’[t] == —X[t]—2/3(X[t ]“2—1)y[t], x[0] ==1, y[O] ==0},
{x[t1, y[ti1}, {t, 0, 30}1]

Qut [ 742] = BoxData ({{x[t] > InterpolatingFunction[{{0., 30.}}, " <>"][t], y[t]~>
Interpol ati ngFunction[{{0., 30.}}, " <>"][t]}})

We ewluatenunsol if t =1 to see thax(1) ~ .5128 andy(1) ~ —.9692.

In[743]:= {x[t], y[t]1} .nunmsol/.t->1

Qut[743] = {{0.512849, -0. 969199} )

Pl ot, Paranetri cPl ot, andPar anetri cPl ot 3D are used to grapk(t) and
y(t) together in Figure 4.29 (a); a three-dimensional ggtok(t), y(t)) is shown in Figure
4.29 (b); a parametric plot is shown in Figure 4.29 (c); and the limit cycle is shown
For relp regardingshow and Gr aphi c- more clearly in Figure 4.29 (d) by graphing the solution for£20< 30.
sArray, see Figure 4.27.)
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Figure 4.29: (ak(t) andy(t) (b) A three-dimensional plot (c}(t) verausy(t) (d) x(t)
verausy(t) for20<t < 30

In[744]:= pl =Pl ot [Evaluate[{x[t], y[t]}/ .nunsol ], {t, O, 15},
Pl ot Styl e- > {GrayLevel [0], GrayLevel [0. 4]},
Di spl ayFunction->ldentity];
p2 = Paranetri cPl ot 3D[Eval uate[{t, x[t], y[t1}/.numsol ],
{t, 0, 15}, Di spl ayFunction->ldentity];
p3 = Paranetri cPl ot [
Eval uate[{x[t1, y[t1}/.nunsol ], {t, O, 15},
Aspect Rati o- > Autonatic, Di spl ayFunction->ldentity];
p4 = Paranetri cPl ot [
Eval uate[{x[t]1, y[t1}/ .nunsol ], {t, 20, 30},
Aspect Rati o- >Autonatic, Di spl ayFunction->ldentity];
Show[G aphi csArray [{{pl, p2}, {p3, p4}}]1]

Linearization

Consider the autonomous system of the form An autonomous systendoes not explicitly
depend on the independent varialileTha
is, if you write the system omitting all argu-
ments, the independent variable (typically
does not appear.
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X' = f (X0 % 00f)

Xy = Tp (X, X0 %) (4.30)

xn’=fn(x1,x2,...,>§1).

An equilibrium (or rest) point, E = (x,*, %", ..., %), of (4.30) is a solution of the
system

fy (X%, .- .%) =0
fo(Xy, X0 ., %) =0 (4.31)
fo (X %o .-, %,) = 0.

The Jacobianof (4.30) is

of,  of ofy
T (Xg X, oo %) = O
OXy X T OX,

The rest pointE, is locally stable if and only if all the eigenvalues oI (E) have
negative real part. IE is not locally stableE is unstable

Example 117 (Duffing’s Equation). Consider the forceghendulum equation with
damping,

X" + kX + wsinx = F(t). (4.32)
Recall the Maclaurin series for sinsinx = x— £33+ £x5— 2x"+. ... Using sinx ~ X,
(4.32) reduces to the linear equatidh+ kx + wx = F(t).

On the other hand, using the approximationxsia x — %xe’, we olain X’ + kX +
w(x-£x%) = F(t). Adjusting the coefficients of andx® and assumig tha F(t) =
F coswt gives usDuffing’s equation:

X’ + kX + cx+ e = F cosut, (4.33)

wherek andc are positive constants.
Lety = X. Then,y = X’ = F coswt — kX — cx— ex® = F coswt — ky — cx — ex® and
we can write (4.33) as the system

X =y

4.34
y = F coswt — ky — cx— ex® (434)
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Assuming thaF = 0 results in the autonomous system

X =y (4.35)
y = —cx—ed — ky. '

The rest points of system (4.35) are found by solving
X =y
y = —cx—eC — ky,
resulting inE; = (0, 0).

In[745]:= Solve[{y==0, -c x -€ Xx"3-k y==0}, {X, y}1]

Qut[745]= {{y >0, x>0}, {y -0, x»fl\/\g/a}, {y-o, x»'\/\g/a}}

Wefind the Jacobian of (4.35) i1, evaluate the Jacobian B,

In[746]:= s1 = {{0, 1}, {-c -3e x"2, -k}};
s2=s1/.x->0
({0, 1}, {-c, -k}}

Qut [ 746]
and then compute the eigenvalues wiflgenval ues.
In[747] : = s3 = Ei genval ues [s2]

Qut [ 747] = {% (7k7\/74 c+k2), % (—k+\/—4 c+k2)}

Because andc are positivek? — 4c < k? so the real part of each eigenvalue is always
negative ifk? — 4c # 0. Thus,E, is locally stable.

For the autonomous system
X = f(X,y)
y =9,

Bendixson’s theorem states that iff (X, y) + g,(x,y) is a continuous function that is
either always positive or always negative in a particular re@afi the plane, then the
system has no limit cycles R. For (4.35) we have

d d
W+ d—y(—cx— ex® - ky) = -k,

which is always negative. Hence, (4.35) has no limit cycles and it followsEha
globally, asymptotically stable.

In[748]:= D[y, x] +D[-c X -€ X"3-k y, y]
Qut[748]= -k

We u Pl ot Vect or Fi el d andPar anet ri cPl ot toillustrate two situations that
occur. In Figure 4.30 (a), we use= 1,e = 1/2, andk = 3. In this casek, is astable
node On the other hand, in Figure 4.30 (b), we wse 10,e = 1/2, andk = 3. In this
casef, is astable spiral



264 CHAPTER 4. DIFFERENTIAL EQUATIONS

In[749] : = << G aphics' PlotFi el d

pvfl=
Pl ot VectorFiel d[{y, -x -1/2x"3 -3y}, {Xx, -2.5, 2.5}, {
y, -2.5, 2.5}, Di spl ayFunction->ldentity];

In[750] : = nungraphlinit_ c_, opts___] :=Mdul e[{nunsol },
nunsol = NDSol ve[
(X [tl==y[t], y'[t]l==-c x[t]1-1/2x[t]"3-3y[t],
Xx[01 ==init[[1]1], y[0] ==init[[2]1},
{x[t1, yIt1y, {t, 0, 10}1;
Par anetricPl ot [Eval uate[{x[t1, y[t]1}/.nunsol ],
{t, 0, 10}, opts, Di splayFunction->ldentity]l]

In[751]:= i1 ="Table[numgraph[{2.5, i}, 11, {i, -2.5, 2.5, 1/ 2}1;
i 2 =Tabl e[numgraph[{-2.5, i}, 11, {i, -2.5, 2.5, 1/ 2}];
i 3 =Tabl e[nungraph[{i, 2.5}, 11, {i, -2.5, 2.5, 1/ 2}1;
i 4 =Tabl e[nunmgraph[{i, -2.5}, 11, {i, -2.5, 2.5, 1/ 2}1;

In[752]:= cl1=Showl[il, i2, i3, i4,
pvfl, Pl ot Range-> {{-2.5, 2.5}, {-2.5, 2. 5}},
Aspect Rati o- >Automatic];

In[753]:= pvf2=
Pl ot VectorField[{y, -10x -1/2x"3 -3y}, {x, -2.5, 2.5},
{y, -2.5, 2.5}, Di splayFunction->ldentity];
In[754]:= i1 =Tabl e[nungraph[{2.5, i}, 101, {i, -2.5, 2.5, 1/ 2}1;
i 2 =Tabl e[numgraph[{-2.5, i}, 1071, {i, -2.5, 2.5, 1/ 2}1;
i 3 =Tabl e[numgraph[{i, 2.5}, 101, {i, -2.5, 2.5, 1/ 2}];
i 4 =Tabl e[numgraph[{i, -2.5}, 1071, {i, -2.5, 2.5, 1/ 2}1;
In[755]:= c2=Show[i 1, i2,i3,i4,
pvf2, Pl ot Range- > {{-2. 5, 2.5}, {-2.5, 2. 5}},
Aspect Rati o- > Automaticl;

I n[ 756] : = Show[G aphi csArray[{cl, c2}]1]

Example 118 (Predator-Prey). The predator-prey equations take the form

dx

? = ax— bxy
Y _ dxy—
at = dxy-cy

wherea, b, ¢, andd are positive constants.represents the size of the prey population
at timet while y represents the size of the predator population at tirfkiée useSol ve
to calculate the rest points. In this case, there is one boundary rest [gpiat(0, 0)
and one interior rest poinE, = (c/d, a/b.
In[757]:= rps=Solve[{a x-b X y==0,d xy -c y==0}, {X,Vy}]

a

Qut[757]= {{x >0, y 03, {Hg, yo ot

The Jacobian is then found usibg
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Figure 4.30: (a) The origin is a stable node (b) The origin is a stable spiral

In[758]:= jac = {{D[a x-b x y, x], D[a x-b x y, y1},
{D[d x y -c vy, x],Dldxy -cvy,ylt};

Mat ri xFor m[j ac]

a-by -b x )

QEL7S8I= {7y ¢ id x

E, is unstable because one eigenvalud @) is positive. For the linearized system,
E, is a center because the eigenvalued(&,) are complex conjugates.

In[759] : = Eigenval ues[jac/.rps[[2]11]

Qut[759]= {-i +a +c,i +a /)

In fact, E, is a center for the nonlinear system as illustrated in Figure 4.31, where we
have used = 1,b = 2,c = 2, andd = 1. Notice that there are multiple limit cycles
aroundg; = (1/2,1/2).

In[760] : = BoxData({<< G aphics'PlotField, pvf =Pl otVectorField[{x-2Xx vy, 2X y-
vy}, {X, 0, 2}, {y, O, 2}, Di splayFunction->ldentity];})

In[761] : = nungraphlinit_ opts___] := Modul e[{nunsol },
nunsol = NDSol ve [
(X[t ==x[t]-2x[t1y[t], y'[t]==2x[t]y[t]-yI[t],
X[0] ==init[[1]]1, y[0l ==init[[2]1]},
{x[t1, yIti1y, {t, 0, 50}1;
Parametri cPl ot [Eval uate[{x[t], y[t]}/ .nunsol ],
{t, 0, 10}, opts, Di splayFunction->Ildentity]]

In[762]:= i1 =Table[numgraph[{i,i}1, {i, 3/20, 1/ 2, 1/ 20}]1;
Show i 1, pvf, Di spl ayFunction->$Di spl ayFuncti on,
Pl ot Range- > {{0, 2}, {0, 2}}, Aspect Rati o- > Autonatic]

In this model, a stable interior rest state is not possible.
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Figure 4.31: Multiple limit cycles about the interior rest point

The complexity of the behavior of solutions to the system increase based on the as-
sumptions made. Typical assumptions include adding satiation terms for the predator

(y) and/or limiting the growth of the prey]. Thestandard predator-prey equations
of Kolmogorov type,

X =ax(1— lx)— mxy
K a+ X

y- y(m ) S)’ (4.36)

a+x
incorporates both of these assumptions.

We u® Sol ve to find the three rest points of system 4.36. Egt= (0, 0), E; = (k,0)
denote the two boundary rest points, dfhe interior rest point.

In[763]:= rps = Sol ve[
{a x (1-2/k x) -mx y/ (a+x) ==0,y (mx/ (a+x) -s) ==0},

{x, y}1
Qut[763]= {{x >0,y -0}, {y >0, x >k},
a (-k mra s+k s) a as
by-- k (m-s)2 'Xﬁ77m+s}}

The Jacobian], iscalculated next irs 1.
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In[764]:= sl = {{D[a x (1-1/k x) -mx y/ (a+X), X1,
Dla x (1-1/k x) -mx y/ (a+x),Vyl},
{Dly (mx/ (a+x)-s), x], D[y (mx/ (a+X) -s), Y1}};
Matri xFor m[s1]
mx vy my X o X m X
R R R I
Qut [ 764] = (a+X) a+X krn k atXx,
-2 * ) Yy -S +
(a+X) a+X a+X
Becausel(E,) has one positive eigenvalug, is unstable.
In[765]:= e0=s1/.rps[[1]1]:
Mat ri xFor m[e0]
ei gsO = Ei genval ues [e0]
_ ja O
Qut [ 765] = (0 . )
Qut[765] = {-s, a}
The stability ofE, is determined by the sign of — s— am/(a + k).
In[766]:= el =s1/.rps[[2]];:
Mat ri xFor m[el]
ei gsl = Ei genval ues[el]
k m
—a -
Qut [ 766] = K &K
0 -S
‘ ma+k
Qut [ 766] = {m—s, ~a}
The eigenvalues af(E,) are quite complex.
In[767]):= e2=s1/.rps[[3]1];
Mat ri xForm[e2]
ei gs2 = Ei genval ues [e2]
as a . a2 ms (-k mra s+k s) a +am(7k m+a s+k s) a
kK (-m+s) k (m-s)2 (-m+s) (af?mfs)z k (m-s)% (a-2.%)
Qut[767] = a (-k m+a s+k s) ams - ) o
- (-mks) (a—f‘mfs) -mes
k (m-s)2
Qut[767] = { 1 (-s (am-k mra s+k s) a-

2 km@m-s)

V(-4 km@m-s)s (knf-ams-2k ms+a s?+k s?) a+

s2

(a m-k mra s+k s)2 orz)),
1

m(fs (a m-k mra s+k s) o+

V(-4kmm-s)s (knf-ams-2 k ms+a s?+k s?) a+

2

s2 (am-k mras+k s)? o?))}
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Instead, we compute the characteristic polynomial@,), p(A) = CZPLZ + CA + Cp,
and examine the coefficients, is always positive.

In[768] : = cpe2 = CharacteristicPol ynom al [e2, A]//Sinplify
_ _ _ 2
Qut [ 768] = as o M-S+ +S (S+A))+k (M=S) (=S a (S+A) +m (S a+2%))
k m (m-s)

In[769]:=c0=kcpeZ/.A—>0//Sin'pIify
Qut [ 769] = s (mfksi)’nfa s) a

In[770]: = cl = Coefficient [cpe2, A1//Sinplify
s (k (-m+s)+a (m+s)) a

Qut[770] = K oSy
In[771]: = c2 = Coefficient [cpe2, A”2]1//Sinplify
Qut[771] =

On the other hand, andm — s — am/(a + k) have the same sign because

In[772]:= cO/eigsl[[1]1]1//Sinmplify

Qut[772]= A% S @ N )ms o

is always positive. In particular, ih— s—am/f(a+ k) < 0, E, is stable. Becausg,
is negative, by Descartes’ rule of signs, it follows tipat) will have one positive root
and hencd, will be unstable.

On the other hand, i — s — am/(a + k) > 0 so thatE, is unstableE, may be either
stable or unstable. To illustrate these two possibilitieg letKk = m= 1 anda = 1/10.
Werecalculate.

In[773]:= a=1;k=1;m=1;a=1/10;

In[774] := rps = Sol ve [
{ax (1-1/k x) -mx y/ (a+x) ==0,y (mx/ (a+Xx) -s) ==0},

{x, y}1
Qut[774]= {{x -0, y >0}, {y >0, x »1},
10-11 s S
{y_>100 (-1+s)2'x+10 (—1+s)}}

In[775]:= sl = {{D[a x (1-1/k x) -mx y/ (a+X), X1,
Dla x (1-1/k x) -mx y/ (a+x),yl},
{Dly (mx/ (a+x)-s), x], D[y (mx/ (a+x)-s), y1}};
Matri xFor m[s1]

1-2 x+ Xy - 71X
L Ol 5 + X
_ ig + 10 10
Qut [ 775] =
(— + 1 ) -S +
Feri b o

In[776]:= e2=s1/.rps[[3]1]:
cpe2 = CharacteristicPol ynom al [e2, A1//Sinplify
-11 s3+s2 (21-11 2) -10 X2+s (-10+9 A+10 A?)

Qut[776]= 10 (-1+s)
In[777]:= cO=cpe2/.a2->0//Sinmplify

11 s?
Qt[777]= s -

10
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In[778]:= cl1 =Coefficient [cpe2, A1//Sinplify
- S) s

QLTI o sy
In[779]: = c2 = Coefficient [cpe2, A”2]1//Sinplify
Qut[779] = 1

Usingl nequal i t t ySol ve, we sedhat

1. ¢, ¢;, andc, are positive if 911 < s < 10/11 while
2. ¢, andc, are positive and, is negative if 0< s < 9/11.
In[780] : = << Al gebra‘ | nequal i t ySol ve*

I nequal itySolve[cO0>0 && c1>0, s]

9 10

= — < < —

Qut [ 780] 11 S 11
In[781]:= I nequalitySolve[cO>0 && c1<0, s]

7811 = <Ss< —

Qut[781]= 0<s 11

In the first situationE, is stable; in the secord, is unstable.

Usings = 1922, we graph the direction field associated with the system as well as
various solutions in Figure 4.32. In the plot, notice that all nontrivial solutions approach
E, ~ (.63,.27); E, is stable—a situation that cannot occur with the standard predator-
prey equations.

In[782]:= rps/.s->19/22//N
Qut[782]= {{(x->0,y->0}, {y-0,x-1.1},
{y - 0.268889, x - 0.633333}}

In[783]: = << G aphics'PlotField

pvf =Pl ot VectorField[
a X (1-1/k x) -mx y/ (a+x) ,y (mx/ (a+x) -19/22)}, {
X, 0, 1}, {y, O, 1}, Di spl ayFunction->Ildentity];

In[784]: = nungraphlinit_ s_, opts___] := Modul e[{nunsol },

nunsol = NDSol ve [
{(X'[t]1==a x[t] (1-1/k x[t])-mx[t] y[t]l/ (a+Xx[t]),
y'[tl==y[t] (mx[t]/ (a+x[t])-5s),
X[0] ==init[[1]]1, y[O] ==init[[2]1]},
{x[t1, y[t1}, {t, 0, 50}1;

Parametri cPl ot [Eval uate[{x[t], y[t]}/.nunsol ],

{t, 0, 50}, opts, DisplayFunction->Ildentity]]

In[785]:= i1="Table[numgraph[{1, i}, 19/ 221, {i, 0, 1, 1/10}1;
i 2 =Tabl e[numgraph([{i, 1}, 19/22], {i, 0, 1, 1/ 10}];
Showli 1, i 2, pvf, Di spl ayFuncti on->$Di spl ayFuncti on,
Pl ot Range- > {{0, 1}, {0, 1}}, Aspect Rati o- > Autonatic]

On the other hand, usirg= 8/11 (so thak, is unstable) in Figure 4.33 we see that all
nontrivial solutions appear to approach a limit cycle.
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Figure 4.32:;s= 19/22

In[786]:= rps/.s->8/11//N
Qut[786]= {{x->0,y->0}, {y-0,x-1.1},
{y - 0.268889, x - 0. 266667} }

In[787]:=i1="Tabl e[nungraph[{1, i}, 8 111, {i, 0, 1, 1/ 10}];
i 2 =Tabl e[nungraph[{i, 1}, 8/ 111, {i, 0, 1, 1/ 10}1;
pl = Showl[i 1, i 2, pvf,
Pl ot Range- > {{0, 1}, {0, 1}}, Aspect Rati o- >Autonati c,
Di spl ayFuncti on- > $Di spl ayFuncti on]

The limit cycle is shown more clearly in Figure 4.34.

I n[ 788] : = nungraph[{0. 759, 0. 262},
8/ 11, Di spl ayFuncti on- > $Di spl ayFuncti on,
Pl ot Range- > {{0, 1}, {0, 1}}, Aspect Rati o- > Automatic]

45 Exercises

1. Solve each of the following differential equations by hand and verify your result
with Mathematica.
(@ 13" +y -y=0
(b)y y’+6y +1=0
© Yy +gy=0
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Figure 4.34: A better view of the limit cycle without the direction field
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(d) " +6y +8% =0

(e)y”-y =0

My -y +y-y=0

(9) vy +ky= 0,k constant

(h) y —ycott = sint

(i) y’ — k% =0,k > 0 constant

() y’ + k% =0,k > 0 constant

(k) y'+y=0,y(0)=0,y(0) =0
Ny +y=1,y0=0,y0=0
(m) y"+y=sint,y0) =0,y (0 =0

(n) y' +y=sed
(0 y”-y=0
Py +y =1
@y”+y=¢
N y”+y =sed

. (a) Use Mathematica to soly& — 4ycot4 = sin4. (b) Solvey” — dycot4 =

sin4 by hand and simplify your solution to obtayn= (C + t)sin4, wheaeC
is an arbitrary constant. (c) Show that the solutions obtained in (a) and (b) are
equivalent.

. Find a differential equation with general solutipr- c,€ + c,te! + c;cos2 +

C,SiNZ + cstcos 2 + ¢t sin 4.

. Is it possible for a linear differential equation with real constant coefficients to

have general solution = c,t? + c,t3? If so, state a linear differential equation
with real constant coefficients that has general solufienc,t? + c,t3. If not,
explain why.

. Isit possible for a linear differential equation to have general solytiem, t? +

c,t3? If so, state a linear differential equation that has general solytien
c,t? + c,t3. If not, explain why.

. (a) If there is no forcing (that id; = 0), show that Duffing’s equation (see

=y
= —cx—ex®
classify the rest points of this system. (c) lllustrate the stability by graphing

various solutions to this systemkf= ¢ = 1 ande = %

Example 117) can be written as the sys ;m Ky’ (b) Find and

. (a) Look up the Existence and Uniqueness theorem for first-order linear equa-

tions in your text. (b) Does the fact that

%'_fl = tlz(4tcos4—sin4), y(0) =0

have infinitely many solutions contradict the Existence and Uniqueness theorem?
Why or why not?
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