
Freefem+: Tutorial

F. Hecht, O. Pironneau

December 5, 2000

Contents

1 file = a tutorial.edp 2

2 file = adapt.edp 3

3 file = blackScholes.edp 5
3.1 Two-dimensional Black-Scholes equation 5

4 file = cavity.edp 7

5 file = convect.edp 10
5.1 The Rotating Hill . 11

6 file = fictitiousdomain.edp 11

7 file = fitmesh.edp 12

8 file = fluidstruct.edp 13

9 file = jump.edp 14

10 file = naca.edp 16

11 file = optdes.edp 17

12 file = optshape.edp 19

13 file = readmesh.edp 20

14 file = region.edp 21

15 file = schwarz.edp 22

16 file = subroutine.edp 23

17 file = turekstep.edp 23

1

18 file = verifs.edp 24

19 file = verifss.edp 25

20 file = verifvs.edp 26

1 file = a tutorial.edp

A remark to start: notice that in this file the program is put between an opening
brace { and an ending brace }.
The effect is to force syntax checking of the entire program before starting its
execution. Freefem+ is basically an interpreter but a statement between braces
is a compound instruction so it is scanned as only one instruction. Thus this
forces freefem+ to ”compile” the program rather than interpret it.

Consider the problem

−∆v = 1 in Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, v = 0 on Γ = ∂Ω.

The problem is solved by the finite element method, namely:
Find u ∈ V the space of continuous piecewise linear functions on a triangulation
of Ω which are zero on the boundary ∂Ω such that∫

Ω

∇u · ∇w =
∫

Ω

w ∀w ∈ V

The first thing to do is to prepare the mesh (i.e. the triangulation) ; that is done
by first defining the border (the unit circle) and then call the mesh generator
(buildmesn) with the right orientation of the border (by definition Ω is on the
left side of the oriented Γ).

bor der a(t=0,2*pi){ x = cos(t); y = sin(t)};
mesh disk = bui l dmesh(a(50));

Next freefem+ will solve the PDE discretized by FEM with the following
instruction

sol ve(u) {
pde(u) -laplace(u) = 1;
on(a) u=0;

};

Next we can check that the result is correct. Here we display the result first
and then display the error field and compute the l2 error and the H1 error

pl ot (u);

2

pl ot (u-(1-xˆ2-yˆ2)/4);
pr i nt ("error L2=", sqrt(int()(u-(1-xˆ2-yˆ2)/4)ˆ2));
pr i nt ("error H10=", sqrt(int()(dx(u)-x/2)ˆ2

+ int()(dy(u)-y/2)ˆ2));

For better results we can use mesh adaptation. This module constructs a
mesh which fits best a function of V , so u is the main argument of adaptmesh .
Note that adaptmesh ”improves” a mesh, so it requires also the name of a mesh
for argument. Therefore mesh adaptation is done in freefem+ by

mesh disk1 = adapt mesh (disk,u);

where disk1 is a new mesh adapted to u.
To check that this mesh is better we solve the problem again and compute the
errors. Notice the improvement!

2 file = adapt.edp

Here we use more systematically the mesh adaptation to track the singularity
at an obtuse angle of the domain.
The domain is L-shaped and defined by a set of connecting segments labeled
a, b, c, d, e, f .

bor der a(t=0,1){x=t;y=0};
bor der b(t=0,0.5){x=1;y=t};
bor der c(t=0,0.5){x=1-t;y=0.5};
bor der d(t=0.5,1){x=0.5;y=t};
bor der e(t=0.5,1){x=1-t;y=1};
bor der f(t=0,1){x=0;y=1-t};
mesh th= bui l dmesh ("th", a(6) + b(4)

+ c(4) +d(4) + e(4) + f(6));
savemesh("th.msh");

Here buildmesh has an extra parameter, the character chain ”th”. Its
effect is to create a postscript file named ”th.ps” containing the triangulation
th displayed during the execution of the program. This feature is general to
all commands creating screen displays:those freefem commands which generate
a screen display accept a optional character chain as first parameter which ,if
present, then produces the creation of a (color) postcript file of the displayed
picture
Note that savemesh refers to the current mesh, therefore both keywords below
generate a file named th.msh but

3

savemesh("th.msh"); // saves current mesh in freefem format
savemesh("th.msh",sh); // saves mesh sh in freefem format

Now we are going to solve the Laplace equation with Dirichlet boundary
conditions 4 times on finer and finer meshes, something like

err := 0.1;
f or i := 1 t o 4 do
{

sol ve(u) {
pde(u) -laplace(u) = 1;
on(a,b,c,d,e,f) u=0;

};
err:=err/2;
mesh th = adapt mesh (th,u)err=err;

}

after each solve a new mesh adapted to u is computed. To speed up the
adaptation we change by hand a default parameter of adaptmesh: err ,
which specifies the required precision, is divided by two at every iteration.

In practice the program is more complex for two reasons

• We must use a dynamic name for files if we want to keep track of all
iterations. This is done with the concatenation operator ∼. for instance

f or i := 1 t o 4 do

savemesh("th"˜i˜".msh",th);

saves mesh th four times in files th1.msh ,th2.msh ,th3.msh , th3.msh .

• There many default parameters which can be redefined either throughout the
rest of the program or locally within adaptmesh. Here is the list below together
with their default value

• In freefem as a whole

• wait=1 if false (=0) no mouse click are necessary to close the graphics

• verbosity=1 controls the output (highest is verbose)

• in adaptmesh only

• abserror=1 if not true then relative error is used

4

• nbjacoby=1 number of Jacobi iterations used to smooth the metric.

• inquire for queries on the mesh in the display (need to press ”f”(forward) to
exit the inquiry mode)

• nbvx=9000 max number of vertices that buildmesh is allowed to generate

• omega=1 Jacobi surrelaxation parameter

• ratio=1.8 max allowed ratio of length of two opposite edges (by a vertex)

• nbsmooth=3 number of times nodes are moved at their optimal position in its
Voronoi polygon.

• splitpbedge=1 if true any internal edge which happens to have its two ver-
tices on the border will be split.

• maxsubdiv=10 max number of time a triangle is divided.

• rescaling=1 the function with respect to which the mesh is adapted is rescaled
to be between 0 and 1

• keepbackvertices=1 if true will try to keep as many vertices of the previous
mesh as possible. ;

• cutoff=1e-6 if no abserror then the metric is divided by cutoff + the abs
value of the function (useful for boundary layers)

• anisomax=1e6 the max aspect ratio of triangles

• err=0.01 relative error level of a posteriori error wished for the function.

• hmin=0 smallest edge size

• hmax = diam(Ω/3 largest edge size

• errg=0.01 relative error between the discrete border and the continuous one

• ismetric=1 if =3 the metric is given by hand so 3 functions defining a sym-
metric matrix field are needed if =0 then a function is given and its hessian is
computed to define a metric, if =1 then isotropic mesh size is given directly at
every point through a function.

3 file = blackScholes.edp

3.1 Two-dimensional Black-Scholes equation

In mathematical finance, an option on two assets is modeled by a Black-Scholes
equations in two space variables, (see for example Wilmott’s book : a student
introduction to mathematical finance, Cambridge University Press).

5

∂tu +
(σ1x1)2

2
∂2u

∂x2
1

+
(σ2x2)2

2
∂2u

∂x2
2

+ ρx1x2
∂2u

∂x1∂x2
+ rS1

∂u

∂x1
+ rS2

∂u

∂x2
− rP = 0 (1)

which is to be integrated in (0, T)×R+ ×R+ subject to, in the case of a put

u(x1, x2, T) = (K −max(x1, x2))+. (2)

Boundary conditions for this problem may not be so easy to device.
As in the one dimensional case the PDE contains boundary conditions on the
axis x1 = 0 and on the axis x2 = 0, namely two one dimensional Black-Scholes
equations driven respectively by the data u(0,+∞, T) and u(+∞, 0, T). These
will be automatically accounted for because they are embedded in the PDE. So
if we do nothing in the variational form (i.e. if we take a Neuman boundary
condition at these two axis in the strong form) there will be no disturbance to
these.
At infinity in one of the variable, as in 1D, it makes sense to match the final
condition:

u(x1, x2, t) ≈ (K −max(x1, x2))+er(T−t) when |x| → ∞. (3)

For an American put we will also have the constraint

u(x1, x2, t) ≥ (K −max(x1, x2))+er(T−t). (4)

We take

σ1 = 0.3, σ2 = 0.3, ρ = 0.3, r = 0.05, K = 40, T = 0.5 (5)

An implicit Euler scheme with projection is used and a mesh adaptation is done
every 10 time steps. The first order terms are treated by the Characteristic
Galerkin method, which, roughly, approximates

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
≈ 1
δt

(un+1(x)− un(x− ~aδt)) (6)

The listing of the freefem program is given below. The program is self-explanatory
and gives all the numerical values needed to reproduce the test.

m:=20; L:=80; LL:=80;
bor der aa(t=0,L){x=t;y=0};
bor der bb(t=0,LL){x=L;y=t};
bor der cc(t=L,0){x=t ;y=LL};
bor der dd(t=LL,0){x = 0; y = t};
mesh th = bui l dmesh(aa(m)+bb(m)+cc(m)+dd(m));
sigmax:=0.3; sigmay:=0.3; rho:=0.3; r:=0.05;

6

K=40; dt:=0.02;
f = max(K-max(x,y),0);
f emp1(th) u=f;
f emp1(th) xveloc = -x*r+x*sigmaxˆ2+x*rho*sigmax*sigmay/2;
f emp1(th) yveloc = -y*r+y*sigmayˆ2+y*rho*sigmax*sigmay/2;
j:=0;
f or n=0 t o 0.5/dt do
{

sol ve(th,u) wi t h AA(j){
pde(u) u*(r+1/dt)

- dxx(u)*(x*sigmax)ˆ2/2 -dyy(u)*(y*sigmay)ˆ2/2
- dxy(u)*rho*sigmax*sigmay*x*y/2
- dyx(u)*rho*sigmax*sigmay*x*y
= convect (th,xveloc,yveloc,dt,u)/dt;

on(aa,dd) dnu(u)=0;
on(bb,cc) u = f;

};
u = max(u,f); pl ot ("uf",th, u-f);
i f (j==10) t hen {

mesh th = adapt mesh("th",th,u);
f emp1(th) xveloc = -x*r+x*sigmaxˆ2+x*rho*sigmax*sigmay/2;
f emp1(th) yveloc = -y*r+y*sigmayˆ2+y*rho*sigmax*sigmay/2;
f emp1(th) u=u;

wait:=0; j:=-1;
}; j=j+1;

};

For more details see the article in the file BlackScholEastWest.pdf

4 file = cavity.edp

See also section 3.3 of the documentation of freefem+

The driven cavity flow problem is solved first at zero Reynolds number (Stokes
flow) and then at Reynolds 100. The velocity pressure formulation is used first
and then the calculation is repeated with the stream function vorticity formu-
lation.

Stokes flow is modeled by

−∆u+∇p = 0, ∇ · u = 0 in Ω

7

and the boundary conditions for the driven cavity problem is u · n = 0 and
u · s = 1 on the top boundary and zero elsewhere.
The mesh is constructed by

wait:=0;
bor der a(t=0,1){ x=t; y=0}; // the unit square
bor der b(t=0,1){ x=1; y=t};
bor der c(t=1,0){ x=t; y=1};
bor der d(t=1,0){ x=0; y=t};
n:=20;
mesh th= bui l dmesh(a(n)+b(n)+c(n)+d(n));

Notice that we set wait:=0 to avoid clicking in the graph window all the
time
The Stokes problem is implemented as a system solve for the velocity (u, v) and
the pressure p:

sol ve(u,v,p){
pde(u) - laplace(u) + dx(p) = 0;

on(a,b,d) u =0;
on(c) u = 1;

pde(v) - laplace(v) + dy(p) = 0 ;
on(a,b,c,d) v=0;

pde(p) p*0.001- laplace(p)*0.001 + dx(u)+dy(v) = 0;
on(a,b,c,d) dnu(p)=0;

};

. Each PDE has its own boundary conditions. There is some arbitrary deci-
sion there which will effect the condition of the linear system. Basically Dirichlet
data should be associated to the corresponding PDE so that the penalization is
done on the diagonal of the matrix of the underlying discrete linear system.

Notice the term p*0.001- laplace(p)*0.001 which is a regularization
term, necessary here because the finite element P1-P1 for velocity-pressure does
not satisfy the LBB condition.

Next the streamlines are computed by finding ψ such that rotψ = u or bet-
ter, −∆ψ =rotu,

solve(psi){ pde(psi) -laplace(psi) = dy(u)-dx(v);
on(a,b,c,d) psi=0};

Now the Navier-Stokes equations are solved

∂u

∂t
+ u · ∇u−∆u+∇p = 0, ∇ · u = 0

8

with the same boundary conditions and initial conditions u = 0. This is
implement by using the convection operator convect for the term ∂u

∂t +u ·∇u,
giving a discretization in time

1
δt

(un+1 − unoXn)− ν∆un+1 +∇pn+1 = 0, ∇ · un+1 = 0

The term,unoXn(x) ≈ un(x − un(x)δt) will be computed by the operator
“convect”, so we obtain

nu:=0.01; dt :=0.1;
f or i=0 t o 20 do
{
sol ve(u,v,p) wi t h B(i){

pde(u) u/dt- laplace(u)*nu + dx(p) = convect(u,v,dt,u)/dt;
on(a,b,d) u =0;
on(c) u = 1;

pde(v) v/dt- laplace(v)*nu + dy(p) = convect(u,v,dt,v)/dt;
on(a,b,c,d) v=0;

pde(p) p*0.1*dt - laplace(p)*0.1*dt + dx(u)+dy(v) = 0;
on(a,b,c,d) dnu(p)=0;

};
};

Notice that the matrices are reused (keyword with)

Now the same problem can be solved by the Stream function with vorticity
ω =rotu, as

∂ω

∂t
+ u · ∇ω − ν∆ω = 0

giving

f emp1 psi = 0; // stream function
f emp1 om = 0; // vorticity
f or i=0 t o 20 do
{

f emp1 u = dy(psi); // velocity
f emp1 v = -dx(psi);
sol ve(psi,om) with D(i){

pde(psi) om -laplace(psi) = 0;
on(a,b,d) dnu(psi)=0;
on(c) dnu(psi) = 1;
pde(om) om/dt - laplace(om)*nu = convect(u,v,dt,om)/dt;
on(a,b,c,d) dnu(om) + psi*1e8 = 0; // a trick to im-

pose psi = 0
};

pl ot (om);
};

9

5 file = convect.edp

See section 2.4 of the documentation of freefem+
Freefem+ implements the Characteristic-Galerkin method for convection op-

erators. Recall that the equation

∂u

∂t
+ ~v · ∇u = f

can be discretized as

Du

Dt
= f i.e.

du

dt
(X(t), t) = f(X(t), t) where

dX

dt
(t) = ~v(X(t), t)

and where D is the total derivative operator. So a good scheme is

1
δt

(um+1(x)− um(Xm(x))) = fm(x)

where Xm(x) is an approximation of the solution at t = mδt of

dX

dt
(t) = ~v(X(t), t), X((m+ 1)δt) = x.

In freefem+ this is implemented by

f or i=1 to 1/dt do
{ u = convect (v,vx,vy,dt)*dt + f*dt;

v = u;
}

where ~v = (vx, vy)T .
It is strange that one cannot write

u = convect (u,vx,vy,dt)*dt + f*dt;

but this is because “convect” is a nonlocal operator. To compute the value
u[i] of u at vertex i we need the values of u at all neighboring vertices. Now
equalities between functions in freefem are implemented by a do loop so that
u[i] is computed and stored thereby overwriting the old value of u[i].

10

5.1 The Rotating Hill

The rotating hill problem is the convection of a hump type initial condition
by a solid rotation velocity; this at all time the computed solution should be
equal to the initial condition rotated around the origin.

bor der a(t=0,2*pi){ x := cos(t); y := sin(t)};
mesh th = bui l dmesh(a(50));
f emp1 v = exp(-10*((x-0.3)ˆ2 +(y-0.3)ˆ2));
dt := 0.17;
f emp1 u1 = y;
f emp1 u2 = -x;
f or i=0 t o 10 do {

convect (u1,u2,dt,f,v);
v=f;

};

Note that this form of the operator convect is not the same as the one used
before. Here the interpolation is more precise.

6 file = fictitiousdomain.edp

This example is somewhat similar to the one in ”jump.edp” in that it solves
a problem involving a boundary which is not part of the triangulation.
Here we solve a Neumann problem

u−∆u = 0 in Ω
∂u

∂n
=

(
1
1

)
· n

which has an analytical solution u = x + y. The domain is a circle but it is
embedded in a greater square and the fictitious domain method is used, namely:
Find u ∈ H1

0 (D) such that∫
D

((1Ω + ε)(uw +∇u · ∇w)) =
∫

Γ

(nx + ny)w

where ε is a regularization parameter.
This gives

bor der a(t=-1,1){ x=t; y=-1}; // the unit square
bor der b(t=-1,1){ x=1; y=t};

11

bor der c(t=1,-1){ x=t; y=1};
bor der d(t=1,-1){ x=-1; y=t};
bor der circle(t=0,2*pi) { x=cos(t)/2;y=sin(t)/2;}

Chi= (x*x+y*y)<0.25;

f or i:=1 t o 3 do {
n = i*10;
mesh Ch= bui l dmesh(circle(pi*n/5));
mesh Th= bui l dmesh(a(n)+b(n)+c(n)+d(n)); // +circle(pi*n));
var sol ve(Th) A(U,V) with {

A= int()((Chi+0.001)*(U*V + dx(U)*dx(V)+dy(U)*dy(V)))
+ on(Th,a,b,c,d)(V)(U=0)
- int(Ch,circle)(2*(x+y)*V)

};
append("err.txt",n,sqrt(int()(Chi*(U-x-y)ˆ2)));

};
save("Ufd.wrl",U); // 3D plot viewed with Int Explorer/Netscape
pl ot (Chi*(U-x-y)); // error

Note that ”append” writes at the end of the file if ever it contains something.
It is easy after that to call gnuplot to display in log-log scale the error decrease
in terms of h (i.e. 1/n).

7 file = fitmesh.edp

This illustrates the flexibility of ”adaptmesh”.
The domain is a circle with a circular hole

bor der a(t=0,pi*2){ x = cos(t); y = sin(t)};
bor der b(t=0,2*pi){ x = 0.3 + 0.3*cos(t); y = 0.3*sin(t) };
mesh th = bui l dmesh(a(40) + b(-20)) ;

Two ”crazy” functions are chosen:

sy = (10*x*x*x+y*y*y) + atan(100*(sin(5*y)-2*x));
s = (x*x*x+10*y*y*y) + atan(10*(sin(5*x)-4*y));

Then the mesh is adapted to the two functions in 4 iterations:

f or i= 1 t o 4 do
{

12

mesh th = adapt mesh (th,s,sy) verbosity=4,
err=0.01, hmax=2, hmin=0.00005, nbvx=10000, omega=1.8,

nbsmooth=2,
splitpbedge=0., maxsubdiv=5 ;

pl ot (s());
pl ot (sy());

};

The parameters of adaptmesh have been described in section 1. What is
important here is to notice that the adpativity is requested with respect to two
functions.

8 file = fluidstruct.edp

This is a variation of the example described in section 11.5 of freefem+ docu-
mentation.

A beam sits on a box full of fluid rotating because the left vertical side has
velocity one. The beam is bent by its own weight, but the pressure of the fluid
modifies the bending.
The bending displacement of the beam is given by (uu,vv) solution of

bor der a(t=2,0) { x=0; y=t }; // left beam
bor der b(t=0,10) { x=t; y=0 }; // bottom of beam
bor der c(t=0,2) { x=10; y=t }; // rigth beam
bor der d(t=0,10) { x=10-t; y=2 }; // top beam

E := 21.5;
sigma := 0.29;
mu := E/(2*(1+sigma));
lambda := E*sigma/((1+sigma)*(1-2*sigma));
gravity := -0.05;
mesh th = bui l dmesh(b(20)+c(5)+d(20)+a(5));
var sol ve(th,0) bb(uu,w,vv,s) with {

e11 = dx(uu); e22 = dy(vv); e12 = (dx(vv)+dy(uu))/2;
w11 = dx(w); w22 = dy(s); w12 = (dx(s)+dy(w))/2;

bb = int()(2*mu*(e11*w11+e12*w12+e22*w22)
+ lambda*(e11+e22)*(w11+w22)/2 -gravity*s)
+ on(a,c)(w)(uu=0) + on(a,c)(s)(vv=0)

};

Then Stokes equations for fluids at low speed is solved in the box below the
beam but the beam has deformed the box (see border h):

13

bor der e(t=0,10) { x=t; y=-10 }; // bottom
bor der f(t=0,10) { x=10; y=-10+t }; // right
bor der g(t=0,10) { x=0; y=-t }; // left
bor der h(t=0,10) { x=t; y=vv(t,0)*(t>=0.001)*(t <= 9.999);};
mesh sh = bui l dmesh(h(-20)+f(15)+e(15)+g(15));

sol ve(U,V,P){
pde(U) - laplace(U) + dx(P) = 0; on(e,f,g,h) U =0;
pde(V) - laplace(V) + dy(P) = 0 ; on(e,f,h) V=0; on(g) V=(-

y)*(10+y)/25;
pde(P) P*0.001- laplace(P)*0.001 + dx(U)+dy(V) = 0;

on(e,f,g,h) dnu(P)=0;
};

P = P - int(b)(P)/10;

Now the beam will feel the stress constraint from the fluid:

f emp1 sigma11(x+uu,y+vv) = (2*dx(U)-P);
f emp1 sigma22(x+uu,y+vv) = (2*dy(V)-P);
f emp1 sigma12(x+uu,y+vv) = (dx(V)+dy(U));

which comes as a boundary condition to the PDE of the beam:

var sol ve(1) bb(uu,w,vv,s) wi t h {
bb = int()(2*mu*(e11*w11+e12*w12+e22*w22)

+ lambda*(e11+e22)*(w11+w22)/2 -gravity*s)
- coef*int(b)(sigma11 *nrmlx*w + sigma22*nrmly*s
+ sigma12*(nrmly*w + nrmlx*s))
+ on(a,c)(w)(uu=0) + on(a,c)(s)(vv=0)};

err = sqrt(int()((uu-uu1)ˆ2 + (vv-vv1)ˆ2));

Notice that the matrix generated by bb is reused. Finally we deform the
beam

mesh th = movemesh(th, x+uu, y+vv);

9 file = jump.edp

14

Here we wish to solve the problem ([f]|γ denotes the jump of f across γ)

−∆u = f in Ω [u] = g on γ [
∂u

∂n
= 0] on γ u = 0 on Γ

where Γ = ∂Ω and γ is a closed curve strictly inside Ω. The variational
formulation of this problem is∫

Ω

∇u · ∇w =
∫

Ω

fw −
∫

γ

w ∀w ∈ H1
0 (Ω)

In this example, f = 1, g = 1, Ω is the unit square and γ is the circle of radius
0.5 centered at the origin, in the middle of the square.
In many applications it is not possible to locate γ beforehand and so it is not
part of the triangulation (it could move while the background mesh should stay
fixed).
Freefem can handle both cases. First when γ is part of the triangulation:

bor der a(t=-1,1){ x=t; y=-1}; // the unit square
bor der b(t=-1,1){ x=1; y=t};
bor der c(t=1,-1){ x=t; y=1};
bor der d(t=1,-1){ x=-1; y=t};
bor der circle(t=0,2*pi) { x=cos(t)/2;y=sin(t)/2;}
n = 40;
Chi= (x*x+y*y)<0.25;

// The circle is part of the mesh
mesh Th= bui l dmesh(a(n)+b(n)+c(n)+d(n)+circle(pi*n));
var sol ve(Th) A(U,V) with {

A= int()(dx(U)*dx(V)+dy(U)*dy(V) - Chi*V)
+ on(Th,a,b,c,d)(V)(U=0)
+ int(circle)(nrmlx*dx(V) + nrmly*dy(V))

};

Then when it is not part of the triangulation

// Ch is needed only to fix nb of points on Circle
mesh Ch= bui l dmesh(circle(pi*n/5));
mesh Th= bui l dmesh(a(n)+b(n)+c(n)+d(n));
var sol ve(Th) A(U,V) with {

A= int()(dx(U)*dx(V)+dy(U)*dy(V) - Chi*V)
+ on(Th,a,b,c,d)(V)(U=0)
+ int(Ch,circle)(nrmlx*dx(V) + nrmly*dy(V))

};

15

However not that there is some restriction, namely that the circle must be
divided into segments for integration purpose and the only way to do that is to
build a triangulation with it. The algorithm is not optimal and so it is slow.
In both cases the normal is the outer normal with respect to the orientation of γ.

We can check if mesh adaptation works as follows:

mesh Th= adapt mesh(Th,U);
var sol ve(Th) A(U,V) with {

A= int()(dx(U)*dx(V)+dy(U)*dy(V) - Chi*V)
+ on(Th,a,b,c,d)(V)(U=0)
+ int(Ch,circle)(nrmlx*dx(V) + nrmly*dy(V))

};
pl ot (U);
save("U.wrl",U);

Notice the last command. It builds a 3D plot of u which can be viewed in all
angles with a vrml engine such as present in recent versions of Internet Explorer
or Netscape (else download the plugin from Cosmo for instance).

10 file = naca.edp

A NACA0012 airfoil is considered, at the center of a large circle:

bor der a(t=0,2*pi) { x=5*cos(t); y=5*sin(t) }; // approximates
infinity

bor der b(t=0,2){ // Profil S1
i f ((t<0.001)or(t>1.999)){x=0; y=0.} el se
i f (t<=1) t hen {x=t;

y=0.17735*sqrt(t)-0.075597*t
-0.212836*(tˆ2)+0.17363*(tˆ3)-0.062534*(tˆ4);}

el se i f (t>1.0001){x=2-t;
y=-(0.17735*sqrt(2-t)-0.075597*(2-

t)
-0.212836*((2-t)ˆ2)+0.17363*((2-t)ˆ3)-0.06254*((2-t)ˆ4))}
};

mesh th = bui l dmesh(a(30)+b(70));

It is tricky to get the geometry right because of the round off errors. Here we
had to consider the leading edge separately otherwise the profile wasn’t closing
properly.

16

Next we solve potential flow for two values of the circulation, 0 and 1. First
zero:

sol ve (psi0) wi t h A(0){
pde(psi0) -laplace(psi0) = 0;
on(a)psi0=y-0.1*x; // 10 percent lift
on(b)psi0= 0;

};

then one:

sol ve(psi1) wi t h A(1){
pde(psi1) -laplace(psi1)= 0;
on(a) psi1 = 0;
on(b) psi1 = 1;

};

The general solution is then psi0 + beta psi1 and beta is determined by
writing that the pressure is continuous at the trailing edge (x,y)=(1,0):

beta := psi0(0.99,0.01)+psi0(0.99,-0.01);
beta := -beta / (psi1(0.99,0.01)+ psi1(0.99,-0.01)-2);

The pressure cp is computed by

f emp1 psi = beta*psi1+psi0;
pl ot (psi);
f emp1 cp = -dx(psi)ˆ2 - dy(psi)ˆ2;
pl ot (cp);

Notice that some precision is lost on cp due to the fact that it is obtained
from the derivatives of the stream function ψ and so it should be a P0 function,
but the plot routine of freefem does not plot P0 functions.

11 file = optdes.edp

An optimal shape design is solved. The solution is know: it is a rectangle.
The state equation of the system is potential flow p and at the solution it should
be p = x. So we set to

min
Ω
{
∫

D

(p− x)2 : −∆p = 0 in Ω, + b.c.}

17

The boundary conditions are Dirichlet (p = x) on the vertical boundaries and
homogeneous Neumann on the horizontal (or quasi-horizontal) walls. The set
D is the part of Ω where y < 0.25. The initial geometry Ω is a rectangle with
a hump:

bor der h(t=0,3){x=t;y=0.25}; // 0
bor der a(t=1,0){x=t; y=0.5}; // 1
bor der b(t=3,2){x=t;y=0.5};
bor der e(t=0,3){x=t;y=0};
bor der c(t=0,0.25){x=3;y=t}; // 3
bor der d(t=0.5,1){x=3;y=0.5*t};
bor der f(t=0.5,0.25){x=0;y=t};
bor der g(t=0.25,0){x=0;y=t};
bor der i(t=2,1){x=t;y=0.5+(t-1)*(2-t)}; // 2
mesh th= bui l dmesh(a(20)+b(20)+c(10)+d(10)

+e(60)+f(10)+g(10)+h(60)+i(20));

The state equation is solved by

sol ve(p) {
pde(p) p*0.0001 - laplace(p) = 1;
on(c,d,f,g) p=x;

};

there is a small regularization because the rectangle is long and there are
too many walls with Neumann conditions.
The gradient of the function with respect to shape deformation must be com-
puted. This requires an adjoint q:

sol ve(q){
pde(q) q *0.0001 - laplace(q) = 20*(y<0.25)*(p-x);
on(c,d,f,g) q = 0;

};

and then , with respect to vertical variations of boundary Ω, the gradient
of the functional which is minimized is J ′ = nx∇p · ∇q. So in principle itera-
tions which move the top boundary proportionally to J’ should work. But then
oscillations appear and so a smoother is needed. It is implemented as follows:

sol ve(v){
pde(v) -laplace(v) = 0;
on(a,b,e,c,d,f,g) v =0;
on(i) v = nrmlx*(dx(p)*dx(q)+dy(p)*dy(q));
};

sol ve(v)

18

{ pde(v) -laplace(v) = v;
on(a,b,e,c,d,f,g) v =0;

};

And now we move the top boundary proportionally to v:

mesh th = movemesh(th,x,y - 0.4*(y>0.25)*v*(y-0.25));
};

12 file = optshape.edp

The object of this exercise is to recover a shape from the value of the PDE in a
domain Z. The shape is a disk but its center (xcent,ycent) is not known. The
disk moves in a domain which is the union of a rectangle and a circle, given by

wait:=1; xcent:=2.5; ycent:=0.5; r:=0.2; L=4;
bor der a(t=0,1){x=t;y=1-t};
bor der a1(t=1,L){x=t;y=0};
bor der b(t=0,1){x=L;y=t};
bor der c(t=L,0){x=t ;y=1};
bor der e(t=0, pi/2){ x= cos(t); y = sin(t)};
bor der e1(t=pi/2, 2*pi){ x= cos(t); y = sin(t)};
bor der f(t=0,2*pi){ x =xcent+r*cos(t); y=ycent+r*sin(t);};
n:=1;
mesh sh = bui l dmesh(a1(15*n) + b(5*n) + c(20*n) +e1(25*n)+f(-15*n));

By solving the PDE for a given position of the disk we find a target function
ud:

D = (x+xcent)ˆ2+(y+ycent)ˆ2<=0.3;
sol ve(ud) wi t h B(0)

{ pde(ud) -laplace(ud)=10*D;
on(e1,f)ud=0; on(b)ud=1; };

As can be seen the PDE is a Laplace equation with mixed Dirichlet-Neumann
data and source term in D. So the problem now is to recover (xcent, ycent) by
minimizing the norm of u− ud in Z, the complementary of the unit disk in the
circular part of the domain. The problem is solved by a gradient method. It is
complicated by the fact that we start with a course mesh and make it finer if
the gradient method stalls.

19

C =(xˆ2+yˆ2 <= 1);
ibb:=0; xcent:=1.; ycent:=0.3; eps:=0.1; Noptim:= 7; opteps :=

1; cout := 1;

f or ioptim:=0 t o Noptim do
{

i f (cout < opteps) t hen{ opteps := opteps/100; n := n+1};
mesh th = buildmesh(a1(7*n) + b(2*n) + c(10*n) +e1(12*n)+f(-

7*n));
D1 = ((x+xcent)ˆ2+(y+ycent)ˆ2<=0.3); C1 = (xˆ2+yˆ2 <= 1);

sol ve(u)
{ pde(u) -laplace(u)=10*D1; on(e1,f)u=0; on(b)u=1 };

ibb:=ibb+1; pl ot ("ub"˜ibb,u);
cout := int(th)((xˆ2+yˆ2>1)*(u-ud)ˆ2) ;
coutb:= int(f)(uˆ2+(dx(u)*nrmlx)ˆ2+(dy(u)*nrmly)ˆ2);

// don’t compute if last iteration
i f (ioptim <= Noptim-1) t hen {

sol ve(th,p)
{ pde(p) -laplace(p)=2*(u-ud); on(e1,f)p=0; };

dxcent = -int(f)(((u-ud)ˆ2+dx(p)*dx(u)+dy(p)*dy(u))*(x-xcent)/0.09);
dycent = -int(f)(((u-ud)ˆ2+dx(p)*dx(u)+dy(p)*dy(u))*(y-ycent)/0.09);

xcent:=xcent-dxcent; // gradient method
ycent:=ycent-dycent;

};
};

This program was written in cooperation with B. Mohammadi. For further
details on optimal shape design the reader is referred to our book
Applied Optimal Shape Design Oxford University Press, 2000.

13 file = readmesh.edp

Freefem can read and write files which can be reused once read but the names
of the borders are lost and they have to be replaced by the number which
corresponds to their order of appearance in the program, unless the number is
forced by the keyword ”label”.

bor der floor(t=0,1){ x=t; y=0}; // the unit square
bor der right(t=0,1){ x=1; y=t; label=5};
bor der ceiling(t=1,0){ x=t; y=1; label=5};

20

bor der left(t=1,0){ x=0; y=t; label=5};
n:=10;
mesh th= bui l dmesh(floor(n)+right(n)+ceiling(n)+left(n));
savemesh("toto.am_fmt"); // format "formated Marrocco"
savemesh("toto.Th"); // format database "bamg"
savemesh("toto.dbg"); // format debug
savemesh("toto.msh"); // format freefem
mesh th2 = r eadmesh("toto.msh");
save("f.txt",f);
r ead("f.txt",g);
pl ot (g);
sol ve(u){

pde(u) u+laplace(u) = g;
on(1) u=0;
on(5) dnu(u)=1;

};
pl ot (th2,u);

There are many formats of mesh files available for communications with other
tools such as emc2, modulef..., the suffix gives the chosen type. More details
can be found in the article by F. Hecht ”bamg : a bidimentional anisotropic
mesh generator” (INRIA report 1999) available in the freefem web page.
Note also the wrong sign in the Laplace equation, but freefem can handle it as
long as it is not a resonance mode (i.e. the matrix of the linear system should
be non-singular).

14 file = region.edp

This example explains the definition and manipulation of region, i.e. subdo-
mains of the whole domain.

Consider this L-shaped domain with 3 diagonals as internal boundaries,
defining 4 subdomains:

bor der a(t=0,1){x=t;y=0};
bor der b(t=0,0.5){x=1;y=t};
bor der c(t=0,0.5){x=1-t;y=0.5};
bor der d(t=0.5,1){x=0.5;y=t};
bor der e(t=0.5,1){x=1-t;y=1};
bor der f(t=0,1){x=0;y=1-t};
// internal boundary
bor der i1(t=0,0.5){x=t;y=1-t};
bor der i2(t=0,0.5){x=t;y=t};
bor der i3(t=0,0.5){x=1-t;y=t};
mesh th = bui l dmesh (a(6) + b(4) + c(4) +d(4) + e(4) +

f(6)+i1(6)+i2(6)+i3(6));

21

pl ot p0(region);

”region” is a keyword of freefem+ which is in fact a function and can be
accessed by region(x,y) . The value returned is the number of the subdomain.
This number is defined by ”buildmesh” which scans while building the mesh
all its connected component. So to get the number of a region containing a
particular point one does:

nupper:=region(0.4,0.9);
nlower:=region(0.9,0.1);
print(nlower,nupper);

This is particularly useful to define discontinuous functions such as might
occur when one part of the domain is copper and the other one is iron, for
example.
We this in mind we proceed to solve a Laplace equation with discontinuous
coefficients (ν is 1, 6 and 11 below).

nu=1+5*(region==nlower) + 10*(region==nupper);
plotp0(nu);
solve(u){ pde(u) -laplace(u)*nu = 1; on(a,b,c,d,e,f) u=0};
plot(u);

15 file = schwarz.edp

To solve
−∆u = f in Ω = Ω1 ∪ Ω2 u|Γ = 0,

the Schwarz algorithm for domain decomposition runs like this

−∆um+1
1 = f in Ω1 um+1

1 |Γ1 = um
2

−∆um+1
2 = f in Ω2 um+1

2 |Γ2 = um
1

where Γi is the boundary of Ωi and on the condition that Ω1∩Ω2 6= ∅ and that
ui are zero at iteration 1.

Here we take Ω1 to be a quadrangle, Ω2 a disk and we apply the algorithm
starting from zero.

22

bor der a(t=1,2){x=t;y=0};
bor der b(t=0,1){x=2;y=t};
bor der c(t=2,0){x=t ;y=1};
bor der d(t=1,0){x = 1-t; y = t};
bor der e(t=0, pi/2){ x= cos(t); y = sin(t)};
bor der e1(t=pi/2, 2*pi){ x= cos(t); y = sin(t)};
n:=4;
mesh th = bui l dmesh(a(5*n) + b(5*n) + c(10*n) + d(5*n));
mesh TH = bui l dmesh (e(5*n) + e1(25*n));

f emp1(th) u = 0;
f or i=0 t o 10 do
{

sol ve(TH,U) wi t h A(i){ pde(U) -laplace(U) = 1;
on(e) U = u; on(e1) U = 0 };

sol ve(th,u) wi t h B(i){ pde(u) -laplace(u) = 1;
on(d) u = U; on(a,b,c) u = 0};

pl ot (TH,U,th,u);
};

Notice that the PDEs have each their own mesh and that the matrices are
stored factorized and reused. Notice also how both graphics are superposed.

16 file = subroutine.edp

There is a (very) limited possibility for avoiding code repetition in freefem.
For example, if we declare

bor der a(t=0, 2*pi){ x := cos(t); y := sin(t)};
mesh th = buildmesh(a(70));
f emp1 v = sin(x);

subr out i ne cout(ro){
v = 2*v+ro;
cout = int()(vˆ2*cos(x));

};

Then to avoid code duplication, we can write for instance

pr i nt (cout(0),cout(1), cout(2));

23

17 file = turekstep.edp

See also paragraph 10.2 in the documentation of freefem.

The Navier-Stokes equations

∂t~u+ ~u · ∇~u− ν∆~u+∇p = 0, ∇ · ~u = 0

are approximated in time by

1
δt

(un+1 − unoXn)− ν∆un+1 +∇pn+1 = 0, ∇ · un+1 = 0

The term,unoXn(x) ≈ un(x − un(x)δt) will be computed by the operator
“convect”, so we obtain

nu:=0.01; dt :=0.1;
f or i=0 t o 20 do
{
sol ve(u,v,p) wi t h B(i){

pde(u) u/dt- laplace(u)*nu + dx(p) = convect(u,v,dt,u)/dt;
on(a,b,d) u =0;
on(c) u = 1;

pde(v) v/dt- laplace(v)*nu + dy(p) = convect(u,v,dt,v)/dt;
on(a,b,c,d) v=0;

pde(p) p*0.1*dt - laplace(p)*0.1*dt + dx(u)+dy(v) = 0;
on(a,b,c,d) dnu(p)=0;

};
};

Notice that the first time solve occurs it has B(0) so the matrix is built and
factorized. The second time it has B(1) so the matrix is reused.

The flow in an expanding pipe is studied. It is again the Navier-Stokes The
Reynolds number based on the size of the step an the mean inflow is Re = 200.
The projection algorithm is used as in Rannacher-Turek (featflow).
The boundary conditions at the outflow boundary has been chosen so as to give
optimal performance, among the one allowed by the physics of the problem.

24

18 file = verifs.edp

This file and the 2 others that follow compare the computed solution with
the analytical solution in odd cases where all the options of the solver are used.
There are several examples. Let us take one with exact solution ue = sin(x+y).
First we define a number of constants

visc := 2.2; // coef of PDE, taken as constants
dis := 3.3;
rob := 1.1;
aa := 1.3;
vxx := 1;
vyy := 2;
vxy := 3;
vyx := 4;
nnx() = -x; // component of normal to border b
nny() = -y;

Then we compute the solution, its derivative, its normal derivative

ue()= sin(x+y); // analytical solution
dxue() = cos(x+y); // x derivative of ue
dnuue()=dxue()*(visc*(nnx+nny) + (vxy+vxx)*nnx + (vyx+vyy)*nny);

And now we compute the data of the pde so that it gives ue for solution:

neu() = ue()*rob+dnuue();
rhs() = dis*ue + ue * (2 * visc + vxx + vyy +vxy + vyx) + aa *

cos(x+y);

And then solve the PDE

sol ve(th1,u) {
pde(u) u*dis + dx(u)*aa - laplace(u)*visc

-dxx(u)*vxx-dyy(u)*vyy-dxy(u)*vxy-dyx(u)*vyx = rhs;
on(a) u=ue;
on(b) dnu(u) + u*rob = neu
};

and finally plot the result and the error

pl ot (u);
pl ot (th1,u-ue);

25

pr i nt (int(th1)((u-ue)ˆ2));

The same can be sone on a finer mesh to check that the error decreases.

19 file = verifss.edp

Same thing as file verifs.edp but for a 2-system

20 file = verifvs.edp

Same as above but when using varsolve .

26

Index

3D plot, 12

adaptmesh, 3
parameters, 4

airfoil, 16
append, 12

bamg, 21
Black-Scholes, 5
border, 2
brace, 2
buildmesh, 2

characteristic (methof of), 10
closing curves, 16
compilator, 2
convect, 10

Dirichlet, 4
discontinuous functions, 22
domain decomposition, 22
dynamic file names, 4

femp1, 2
fluid-structure, 7
fluid-structure interaction, 13

gnuplot, 12

inner boundaries, 14
interpreter, 2

multiple criteria adaptivity, 12

Navier-Stokes, 23
Neumann, 8, 11, 17

optimal shape, 17, 19

postscript, 3
potential flow, 16

read files, 20
region, 21
Reusable matrices, 9
Rotating hill, 10

savemesh, 3

27

singularity, 3
stokes, 7
streamlines, 8
subdomains, 21
systems, 25

vrml, 12, 16

write files, 20

28

29

	file = a_tutorial.edp
	file = adapt.edp
	file = blackScholes.edp
	Two-dimensional Black-Scholes equation

	file = cavity.edp
	file = convect.edp
	The Rotating Hill

	file = fictitiousdomain.edp
	file = fitmesh.edp
	file = fluidstruct.edp
	file = jump.edp
	file = naca.edp
	file = optdes.edp
	file = optshape.edp
	file = readmesh.edp
	file = region.edp
	file = schwarz.edp
	file = subroutine.edp
	file = turekstep.edp
	file = verifs.edp
	file = verifss.edp
	file = verifvs.edp

