
StrucOpt manuscript No.
(will be inserted by the editor)

Structural Optimization with FreeFem++

G. Allaire, O. Pantz

Abstract The aim of this paper is to show that rela-
tively small, simple and efficient shape optimization rou-
tines can be written using the free finite element software
FreeFem++. This is illustrated by the implementation of
two classical methods: the boundary variation method
and the homogenization one. Even though these routines
are simple enough so that their implementation can be
assigned (partially or totally) as homework to graduate
students, they yield results accurate enough to be useful
tools for engineers or researchers.

1

Introduction

It is worthless to emphasize that a course on structural
optimization must be illustrated by several examples of
the methods introduced. Better is to let the students
use structural optimization softwares or (even better) to
let them write their own. Nevertheless, it is not realistic
to ask a student to implement all parts of such algo-
rithms as mesh generation or the finite elements method
(for unstructured mesh). On the other hand, using a
well-established finite element software, the difficulty is
usually moved to the optimization loop (including the
adjoint analysis). The goal of this paper is to exhibit
(at least) one good compromise between easy optimiza-
tion and easy finite element analysis, which makes pos-
sible for graduate students to develop their own struc-
tural optimization programs. Indeed, as shown in the
following, relatively small (about 300 lines) and simple
structural optimization routines can be written using
FreeFem++, a free and user friendly 2-d finite element
software (Hecht et al. 2005). Depending on the available
time, it is possible to give the students most of the script
and to let them complete some missing parts, as the vari-
ational formulations associated to the state and adjoint

the date of receipt and acceptance should be inserted later

G. Allaire, O. Pantz

CMAP, Ecole Polytechnique, 91128 Palaiseau, France

equations. Our experience is based on a graduate course
taught at Ecole Polytechnique (Allaire 2005).

We have implemented two classical structural opti-
mization methods: Hadamard method for geometric opti-
mization (Pironneau 1984), (Soko lowski and Zolesio 1992)
and the homogenization method for topology optimiza-
tion (Allaire 2001), (Bendsoe and Sigmund 2003). The
paper is divided in two independent parts, each one being
devoted to one method. For each part, after recalling the
principles of the method (we refer to the above quoted
textbooks for a more complete presentation), we describe
briefly its implementation in FreeFem++. The free soft-
ware FreeFem++ requires as input a script which de-
scribes the geometry of the mesh, the variational formu-
lation of the problem and the optimization loop. These
ingredients have to be provided by the user, all other
aspects of finite elements being automatically managed
by FreeFem++, including mesh generation, adaptation
and deformation, assembling the rigidity matrix, solv-
ing the linear system, displaying the result, etc. This
is different in spirit of other softwares like Matlab (see
(Sigmund 2001) for an application in structural optimiza-
tion). Our routines (i.e. FreeFem++ scripts, tested with
the 1.47 version) are freely available on the web page
http://www. cmap.polytechnique.fr/~optopo

so that anybody can reproduce our illustrative numerical
examples (and get the inspiration to create new ones).

2

Boundary variations or geometric optimization

2.1

The gradient method

The gradient method is probably the simplest tool of
optimization but it may become tricky when applied to
shapes, so we indulge ourselves in giving some details.
Let F be a map from an Hilbert space X into R. The
gradient method amounts to build a sequence of elements
(xn)n≥0 ∈ X by

xn+1 = xn − hndn,

2

where hn ∈ R
+ is a small positive step and dn is the

descent direction defined by

(dn, y)X =< F ′(xn), y >X∗,X for any y ∈ X.

Usually, the identification between X and its dual X∗

under the scalar product (., .)X is understood. If we do
so, dn is nothing more but the gradient of F , F ′(xn). If
F ′(xn) is not equal to zero, then for hn small enough,
F (xn+1) < F (xn). The algorithm is initialized with any
element x0 ∈ X , and if F is strongly convex, xn converges
toward the optimal solution x∗ of the problem

F (x∗) = min
x∈X

F (x).

In structural optimization, the search set X is no more a
Hilbert space but a subset of the open sets of R

N (where
usually, N = 2 or 3) and has neither straightforward dif-
ferentiable nor Hilbert structure. Nevertheless, the gra-
dient method can successfully be applied. To this end,
we need to define variations of open sets, and endow the
set of variations with an Hilbert (or at least Banach)
structure.

2.2

Variations of an open set

Let J(Ω̃) be a real valued function defined for any open
set Ω̃ of R

N . Let Ω be a regular open set of R
N . Given

a map θ from Ω into R
N , we set

Ω(θ) = (Id +θ)(Ω) ≡ {x + θ(x) s.t. x ∈ Ω}.

For small vector field θ, the open set Ω(θ) are one-to-one
perturbations of the initial set Ω. If the map FΩ : θ 7→
J(Ω(θ)) is differentiable, we define the shape derivative

< J ′(Ω), θ >=< F ′
Ω , θ > .

By Hadamard structure theorem, it is known that the
shape derivative is carried only on the boundary of the
shape, i.e.

< J ′(Ω), θ >=

∫

∂Ω

j(Ω) θ · n ds. (1)

2.3

The boundary variation algorithm

In order to apply the gradient method to shape optimiza-
tion, it remains to associate to a given shape derivative
J ′(Ω) a direction of slope d. To this end, it suffices to
endow the space of vector fields from Ω into R

N with
an Hilbert structure, for instance H1(Ω)N . In this case,
the descent direction is the unique element d ∈ H1(Ω)N

such that for every θ ∈ H1(Ω)N ,

∫

Ω

(∇d · ∇θ + d · θ) dx =< J ′(Ω), θ > . (2)

Computing d as the solution of (2) can also be inter-
preted as a regularization of the gradient.

Remark 1 The choice of H1(Ω)N as space of variations
is more dictated by technical considerations (it is easy to
solve (2) with FreeFem++) rather than theoretical ones.
Many choices could be made and it is not obvious to find
the one which provides the better rate of convergence.
Moreover, it is possible to use a more general frame-
work and to define the direction d as the minimizer (in
some Banach space) of a functional of the form 1

2I(d)− <
J ′(Ω), θ >, where I is a positive functional. The present
case corresponds to the choice I(d) = ‖d‖2

H1(Ω).

Remark 2 Hadamard structure theorem tells us that the
directional derivative of J depends only on the value of
the normal component θ · n on ∂Ω (see formula (1)).
Thus, one can replace the space H1(Ω)N in (2) by H1(∂Ω)N

with the corresponding change of scalar product and the
new descent direction is the solution of

∫

∂Ω

d′·θ′+d·θds =< J ′(Ω), θ >, for every θ ∈ H1(∂Ω)N ,

where ′ denotes the surface gradient. Nevertheless, it is
more convenient to use (2) because it is simpler to solve,
and it yields a natural extension of the mesh deformation
on the whole domain Ω.

The resulting algorithm can be summarized as fol-
lows:

1. Choose an initial shape Ω0.
2. Iteration until convergence for n ≥ 0,

(a) Compute dn solution of the problem (2) with Ω =
Ωn.

(b) Set Ωn+1 = (Id−hndn)(Ωn), where hn is a small
positive real.

2.4

Algorithmic details of the method

In the following, several algorithmic details are discussed
which make the method truly efficient and effective.

2.4.1

Regularization of the mesh

It is well known that numerical shape optimization may
yield optimal designs with oscillating boundaries (i.e.
having peaks and wells of length scale of the order of
the mesh size). To avoid this problem, one can add a
perimeter penalization to the cost function J , but the
resulting solution will depend on the weight of the pe-
nalization. We prefer to use a regularization procedure
which explicitly smoothes the shape at each iteration. To
this end, we introduce two different meshes of Ω. At each

3

iteration, a fine mesh Sh is used to perform the finite el-
ement analysis and compute the descent direction d. We
extract a coarser mesh Th from Sh, the nodes of which
are moved in the direction −d defined by (2). Finally, a
new fine mesh Sh is deduced from the displaced Th by
mesh adaptation.

2.4.2

Regularization of the shape gradient

The displacement usually presents singularities at the
corners of the shape or at the changes of boundary con-
ditions type. In such cases, the formula (5) is not correct
anymore, as the right member of the formula is not well
defined. From the numerical point of view, this leads to
strong oscillations of the shape near its corners and can
produce unresolved meshing errors. To bypass this prob-
lem, we arbitrarily set the shape gradient to zero near
the corners of the shape.

2.4.3

Volume constraint

Many structural optimization problems feature a volume
constraint on the admissible open sets. This constraint
is imposed by introducing a Lagrange multiplier ` in the
formulation. More precisely, the descent direction is now
computed from the shape derivative of the Lagrangian
J ′(Ω)+`V ′(Ω), where V (Ω) = |Ω| denotes the volume of
the shape Ω. The value of the Lagrange multiplier is re-
freshed at each iteration so the shape satisfies the volume
constraint when the algorithm converges. Since moving
the mesh is relatively costly, we do not enforce exactly
the volume constraint before convergence. Instead, we
increase the Lagrange multiplier if the current volume
of the shape is greater than the target volume and we
decrease it otherwise. Nevertheless, this could lead to os-
cillations of the shape’s volume. Thus, we relax it with
the value of the Lagrange multiplier computed by as-
suming that the optimality condition is satisfied, namely
J ′(Ω) + `V ′(Ω) = 0, at least in the average sense on the
boundary ∂Ω, i.e. ` = −

∫

∂Ω
j(Ω) ds/

∫

∂Ω
ds with the

notations of (1). More precisely, the Lagrange multiplier
is updated at each iteration by

`n+1 = (`n + `)/2 + ε`(V − V0),

where ε` is a small enough positive real number.

2.4.4

Stepping algorithm

The choice of the descent step hn is not an easy task.
Too big, the algorithm is unstable, too small the rate
of convergence is insignificant. In order to refresh hn,

we compare at each iteration the current descent direc-
tion dn with the previous one dn−1. If the scalar product
(dn, dn−1)H1(Ω)N is negative, we suspect that the algo-
rithm is becoming unstable. In this case, we reduce the
step and go backward: the next iteration is initialized
with the previous shape Ωn−1. On the other hand, if
dn and dn−1 are very close, the step hn is increased. The
step hn is also decreased if reversed triangles are detected
when the mesh is updated (see section 2.6.3).

2.4.5

Stopping criterion

A typical convergence criterion for stopping the opti-
mization loop would be to check that the shape deriva-
tive J ′(Ω) is small enough in some appropriate norm.
However, since we use continuous gradients (and not dis-
crete ones), it is hopeless to expect very small gradient
norm because of numerical discretization errors. There
is a more serious obstacle to using a strict convergence
criterion which is linked to the inability of changing the
topology. Indeed, it happens quite frequently that two
different parts of the shape boundary tend to merge. In
such a case, the descent step is decreased in order to
avoid reversed triangles after moving the mesh (see Sec-
tion 2.6.3). It can become almost zero even if the shape
derivative J ′(Ω) is large and the optimal shape is not
reached. Consequently, we do not use any convergence
criterion to stop the algorithm. We instead fix the num-
ber of iterations at the beginning of the algorithm. If it
is too small, we can always restart it with the previous
final shape as initial guess.

2.5

Numerical Applications for the boundary variation

method

The above algorithm has been successfully tested in N =
2 space dimensions for different kinds of structural op-
timization problems, in particular on the classical can-
tilever and grip optimization.

2.5.1

Compliance optimization

Let Ω be the reference configuration of a linear isotropic
elastic body. We assume that Ω is fixed on ΓD, submitted
to surface forces g on ΓN and free on Γopt, where ∂Ω =
ΓD ∪ ΓN ∪ Γopt. The displacement of the structure u(Ω)
is the solution of the linear elasticity system

div(Ae(u(Ω))) = 0 in Ω,
(Ae(u(Ω))n = g on ΓN ,
(Ae(u(Ω))n = 0 on Γopt,
u(Ω) = 0 on ΓD,

(3)

4

where e(u) = (∇u + ∇uT)/2 is the strain tensor, and n
is the outward normal to the boundary, A is the Hooke’s
law or elasticity tensor defined by

Aξ = 2µξ + λ(Tr ξ) Id (4)

with Lamé moduli λ and µ. The variational formulation
of (3), which has to be implemented in the FreeFem++

software (see section 2.6.2), is

∫

Ω

(2µe(u(Ω)) · e(q) + λ div u(Ω) div q) dx =

∫

ΓN

g · q ds

for every q ∈ H1(Ω)2 such that q = 0 on ΓD. We consider
the compliance minimization problem

min
Ω

c(Ω) =

∫

ΓN

g · u(Ω) ds,

over all open sets Ω such that ΓN ∪ ΓD ⊂ ∂Ω, with
prescribed volume V0. The functional c admits a shape
derivative (see e.g. (Allaire et al. 2004))

< c′(Ω), θ >= −

∫

Γopt

(2µ|e(u(Ω))|2+λ(div u(Ω))2)(θ·n)ds.

(5)

2.5.2

A Numerical example: The cantilever

To illustrate the performance of our FreeFem++ script,
we consider the compliance minimization of the following
cantilever.

Ω ΓN

ΓD

ΓD

g

Γopt

Γopt

Γopt

Fig. 1 Initial shape

The algorithm is initialized with the shape shown on
figure 1 to which several holes have been added. The
resulting optimal designs are displayed on figure (2- 7).
As expected, the compliance decreases as the number of
holes grows. Nevertheless, the benefit becomes very weak
starting from three holes.

Initial shape No hole 1 hole
Compliance 40.5 23.3 19.6

2 holes 3 holes 5 holes 6 holes
Compliance 18.3 17.57 17.51 17.47

Fig. 2 Optimal design with no hole

Fig. 3 Optimal design with one hole

Fig. 4 Optimal design with two holes

2.5.3

Grip optimization

We consider the optimization of a gripping mechanism
made of a linear elastic material. We use the same no-

5

Fig. 5 Optimal design with three holes

Fig. 6 Optimal design with five holes

Fig. 7 Optimal design with six holes

tations than those of section 2.5.1. Nevertheless, we as-
sume that the boundary ∂Ω of the structure splits in
four parts. The grip is fixed on ΓD, submitted to surface
loads on ΓN , free on Γopt, and in bilateral contact on Γc

where the piece to grip lies (see figure 8). The displace-
ment u(Ω) of the grip is the solution of the following
variational formulation

Find u(Ω) ∈ W (Ω) := {q ∈ H1(Ω)2 : q = 0 on ΓD ,

and q · n = 0 on Γc},

such that for every test function v ∈ W (Ω),

∫

Ω

2µe(u(Ω)) · e(v) + λ div u(Ω) div vdx =

∫

ΓN

g · vds.

Remark 3 We assume that the contact between the grip
and the body is bilateral. It would be more realistic to
consider an unilateral contact instead, but it would lead
to a non linear, and thus much more difficult, problem.

We want to maximize the pressure P (Ω)

P (Ω) = −

∫

Γc

(σ(Ω)n) · n ds,

of the grip on the piece, where σ(Ω) is the stress tensor,

σ(Ω) = 2µe(u(Ω)) + λ div(u(Ω)) Id .

The pressure P (Ω) can be rewritten as

P (Ω) = −

∫

Ω

2µe(u(Ω)) · e(uc) + λ div u(Ω) div uc dx,

where uc is a vector field in H1(R2) such that uc = 0 on
ΓD and uc = n on Γc. The maximization of P (Ω) usually
leads to disconnected structures. In order to avoid this
problem, we instead minimize the functional

G(Ω) = −P (Ω)/c(Ω) + `|Ω|.

For a given positive pressure P (Ω) of the grip on the
piece, it is advantageous to minimize the compliance
c(Ω) in order to minimize the functional G(Ω). Thus, we
hope that disconnected structures (for which the compli-
ance is typically very high) are not reasonable minimiz-
ers of G. Moreover, we add a penalization of the volume
in the objective function G (` is a positive real). Hence
the minimizers of G are not excessively fat. The shape
derivative of P (and thus of G) is easy to compute (see
e.g. (Allaire et al. 2004))

< P ′(Ω), θ >=

∫

Γopt

(

2µe(p(Ω) − uc) · e(u(Ω))

+ λ div(p(Ω) − uc) div u(Ω)

)

(θ · n)dx,

where θ = 0 on ∂Ω \Γopt. The expression of P ′(Ω) relies
on an adjoint state p(Ω) ∈ W (Ω) defined as the solution
of

∫

Ω

(2µe(p(Ω)) · e(q) + λ div p(Ω) div q) dx =

∫

Ω

(2µe(uc) · e(q) + λ div uc div q) dx

for every q ∈ W (Ω).

2.5.4

Numerical example of the optimization of a grip

To illustrate the performance of our algorithm, we con-
sider the optimization of the grip shown on figure 8,

6

g

g

ΓN

ΓN

Γopt

Γopt

Γc

Γopt
Ω

Γopt

Γopt

ΓD

Fig. 8 Initial grip’s shape

where the white square is the piece to be gripped by
the jaws of the elastic structure Ω. The next figures dis-
play the optimal shape (figure 9) and the deformation
of the grip when the piece between the jaws is removed
(figure 10).

Fig. 9 Optimal design of a grip

2.6

Practical implementation

The boundary variation algorithm is easy to implement
in N = 2 space dimensions with FreeFem++. In this sec-
tion, we present the main parts of a FreeFem++ script for
the compliance minimization example (see section 2.5.1).
For the sake of simplicity, the details presented in sec-
tion 2.4 have not been included. In any case, our com-
plete FreeFem++ scripts are available on the web page
http://www. cmap.polytechnique.fr/~optopo. More
informations on the script syntax of FreeFem++ can be
found in (Hecht et al. 2005).

Fig. 10 Deformation of the optimal grip

2.6.1

Initialization

The initial shape Ω0 is explicitly built, after having de-
fined its boundaries. Each boundary is tagged by a label,
according to the type of supported boundary conditions
and to its mobility (fixed or not) during the optimization
process. Each boundary is parametrized and oriented by
a real t. As usual with mesh generators, the user must
take care of a proper junction and orientation of the dif-
ferent parts of the boundary. The shape is meshed by
triangles: the resulting mesh is denoted by Sh in the fol-
lowing code lines.

mesh Sh;

//Definition of the boundary labels

int neumann=1; int dirichlet=2; int free=3;

//right boundary (neumann condition)

border a(t=-1,1) {x=20; y=t;label=neumann;};

//left boundary (free or dirichlet condition)

border c1(t=4,2) {x=0; y=t;label=dirichlet;};

border c2(t=2,-2) {x=0; y=t;label=free;};

border c3(t=-2,-4){x=0; y=t;label=dirichlet;};

//upper and lower boundary (free condition)

border b(t=1,0)

{x=20.*t;y=4.-3.*t;label=free;};

border d(t=0,1)

{x=20.*t; y=-4.+3.*t;label=free;};

//a circular hole

border Hole1(t=0,2*pi)

{x=0.2*cos(t)+8;y=0.2*sin(t);label=free;};

Sh = buildmesh (b(30)+c3(10)+c2(10)

+c1(10)+d(30)+a(20)+Hole1(-11));

7

2.6.2

Definition of the state equation

In the case of compliance optimization, the state or dis-
placement u is the solution of the linear elasticity equa-
tions (3). We use P2 × P2 Lagrange finite elements to
compute u. The elasticity problem is described by its
variational formulation

//Material parameters

real E=15; //Young Modulus

real nu=0.35; //Poisson ratio

//Lame Moduli

real lambda=E*nu/((1.+nu)*(1.-2.*nu));

real mu=E/(2.*(1.+nu));

//Applied Loads

func g1=0.; func g2=-1.;

//Finite elements space on the finer mesh Sh

fespace WSh(Sh,[P2,P2]);

//Displacement and test functions

WSh [u1,u2],[v1,v2];

///////////////////////////////

// Elasticity problem //

// (variational formulation) //

///////////////////////////////

problem elasticity([u1,u2],[v1,v2]) =

int2d(Sh)

(

2.*mu*(dx(u1)*dx(v1)+dy(u2)*dy(v2)

+((dx(u2)+dy(u1))*(dx(v2)+dy(v1)))/2.)

+lambda*(dx(u1)+dy(u2))*(dx(v1)+dy(v2))

)

-int1d(Sh,neumann)(g1*v1+g2*v2)

+on(dirichlet,u1=0,u2=0);

The adjoint problem (if any) and the extension problem
(2) (which gives the descent direction d = (d1, d2)) are
defined in a similar way. The following code lines define
the extension problem.

//////////////////////////////////////

// Expression of the shape gradient //

//////////////////////////////////////

macro gradientexp()

-2.*mu*(dx(u1)^2+dy(u2)^2

+((dx(u2)+dy(u1))^2)/2.)

-lambda*(dx(u1)+dy(u2))^2

//extension field

WSh [d1,d2];

//test functions for the extension field

WSh [theta1,theta2];

//Lagrange multiplier

real lagrange;

///////////////////////

// Extension problem //

///////////////////////

// H1 scalar product between

// vector-valued functions

macro prodscal(t1,t2,p1,p2)

dx(t1)*dx(p1)+dy(t1)*dy(p1)

+dx(t2)*dx(p2)+dy(t2)*dy(p2)+t1*p1+t2*p2

//

problem extension([d1,d2],[theta1,theta2]) =

int2d(Sh)(prodscal(d1,d2,theta1,theta2))

+int1d(Sh,free)((theta1*N.x+theta2*N.y)

*(gradientexp + lagrange))

+on(dirichlet,neumann,d1=0,d2=0);

2.6.3

The optimization loop

The optimization loop consists in three main steps: reso-
lution of the state equation, computation of the descent
direction in terms of the shape derivative, shape updat-
ing.

int niter=100; //Number of iterations

real step=0.1; //Initial step

//Target volume

real volume0=95.;

//Refreshing step of the Lagrange multiplier

real lagrangestep=3;

//Initialization of the Lagrange multiplier

real volume,perimeter;

elasticity;

volume=int1d(Sh)(x*N.x+y*N.y)/2;

perimeter=int1d(Sh,free)(1.);

lagrange=

int1d(Sh,free)(gradientexp)/perimeter;

int iter;

///////////////////////////////

// Optimization Loop //

///////////////////////////////

for (iter=0;iter< niter;iter=iter+1){

//Solving the state equation

elasticity;

//Update of the Lagrange multiplier

volume=int1d(Sh)(x*N.x+y*N.y)/2;

perimeter=int1d(Sh,free)(1.);

lagrange=0.5*lagrange

-0.5*int1d(Sh,free)(gradientexp)/perimeter

+lagrangestep*(volume-volume0)/volume0;

//Computation of the descent direction

extension;

//Update of the shape

Sh = movemesh (Sh,[x+step*d1,y+step*d2]);

plot(Sh);

};

///// END OF THE OPTIMIZATION LOOP /////

plot(Sh,wait=1); //Display the final shape

An additional subroutine of FreeFem++, checkmovemesh,
allows to detect any occurrence of reversed triangles and
thus make sure that the mesh is always conforming. An-
other subroutine, adaptmesh, is dedicated to mesh adap-
tation (i.e. the mesh is automatically refined where large

8

errors are detected) which greatly improves the efficiency
of the computation. Actually mesh adaptation is neces-
sary to prevent mesh degeneracy. Thus, for an effective
algorithm it is recommended to insert the following code
line at the end of the optimization loop, just before the
update of the shape (movemesh command)

Sh = adaptmesh(Sh,[u1,u2]);

Merging together the above script parts yield a 106 lines
optimization routine (including comments) that already
works nicely. Of course, for a truly efficient routine one
needs to add all the refinements given in section 2.4 or
to download the scripts on our web page.

3

Topology optimization using homogenization

One limitation of the previous method is its incapacity to
change the topology of the structure. Moreover, even for
a given topology, the final result depends heavily on the
initial shape. In particular, if holes are too close in the
initial shape, they tend to merge, and the procedure is
more or less stucked, as the thin layer between the holes
can not be removed. Overall the previous method usually
yields local minima which may be far from global ones.
The homogenization method is aimed at optimizing the
topology and getting global minima. It relies on the in-
troduction of composite materials which can be shown
to yield optimal shapes in a relaxed or generalized sense.
Numerically, a composite optimal shape is first computed
and then projected on the set of “real” shapes by a pe-
nalization procedure which removes the “grey” areas of
intermediate densities. In the following, we focus on the
minimization of a weighted sum of the compliance and
the weight of the structure. Furthermore, we assume that
the structure is made of a linear elastic isotropic material
and included in a fixed working domain Ω.

3.1

Setting of the initial problem

Let Ω be a fixed bounded working domain in R
N . Let

Γ0, ΓN and ΓD be a partition of the boundary of Ω. As
previously, u(ω) denotes the displacement of the struc-
ture ω ⊂ Ω which is assumed to be clamped on ΓD and
submitted to surface loads g on ΓN

div σ = 0 in ω, with σ = Ae(u),
σn = g on ΓN , and σn = 0 on ∂ω \ (ΓN ∪ ΓD)
u = 0 on ΓD,

where e(u) = (∇u+∇uT)/2 and A is defined by (4). We
consider the following compliance minimization problem

min
ω⊂Ω

∫

ΓN

g · u(ω) dx + `|ω|, (6)

where ` > 0 is a Lagrange multiplier for the volume
constraint. It can be proved that this problem usually
admits no minimizer. The number of holes of a mini-
mizing sequences of (6) increases to infinity, and thus, it
does not converge to a classical shape, but to a compos-
ite one. The principle of the homogenization method is
to extend the minimization problem to such generalized
or composite shapes.

3.2

The homogenized problem

The composite shape is described by two variables, the
material density θ(x) : Ω → (0, 1) and the homogenized
Hooke’s tensor A∗(x), which represents the underlying
micro-structure (the shape of the holes). The displace-
ment of the composite structure is the solution of

div σ = 0 in Ω, with σ = A∗e(u),
σn = g on ΓN , and σn = 0 on Γ0

u = 0 on ΓD.
(7)

The homogenized problem is defined as

min J(θ, A∗) = c(θ, A∗) + `

∫

Ω

θdx, (8)

where the minimization takes place over all couples (θ, A∗)
such that A∗ is a homogenized Hooke’s law correspond-
ing to a material density θ. The compliance of the com-
posite structure is defined by

c(θ, A∗) =

∫

ΓN

g · u ds =

∫

Ω

A∗−1σ · σ dx.

The minimum is reached by special composites called
sequential laminates, obtained as successive layerings of
void and material in N orthogonal directions and with
adequate proportions. The directions of lamination are
given by the eigenvectors of the stress tensor σ. For ex-
ample, in dimension N = 2, the optimal lamination pro-
portions are

m1 =
|σ2|

|σ1| + |σ2|
, m2 =

|σ1|

|σ1| + |σ2|
, (9)

where σ1 and σ2 are the eigenvalues of σ. Then, the ho-
mogenized Hooke’s law of the optimal composite is

A∗−1 = A−1 +
1 − θ

θ
(m1f

c
A(e1) + m2f

c
A(e2))

−1
, (10)

where e1 and e2 are the unitary eigenvectors of σ and
f c

A(ei) are fourth-order tensors defined for any symmetric
matrix ξ by

f c
A(ei)ξ · ξ = Aξ · ξ −µ−1|Aξ|2 +

µ + λ

µ(2µ + λ)
((Aξ)ei · ei)

2.

Finally, the optimal density θ is

θopt = min

(

1,

√

λ + 2µ

4µ(λ + µ)`
(|σ1| + |σ2|)

)

. (11)

9

3.3

Numerical algorithm for the homogenization method

By using the principle of minimal complementary energy
for the compliance

c(θ, A∗) = min
div τ=0 in Ω
τn=g on ΓN

τn=0 on Γ0

∫

Ω

A∗−1τ · τ dx,

the minimization of the homogenized formulation (8) can
be seen as an alternate minimization with respect to ad-
missible stresses τ and design parameters (θ, A∗). Thus,
we use the following “optimality criteria” algorithm

1. Initialization of the shape (θ0, A
∗
0).

2. Iteration until convergence for n ≥ 0,
(a) Compute the stress tensor σn by solving (7).
(b) Compute the new design parameters (θn+1, A

∗
n+1),

using the optimality conditions (10-11).

Computing σn amounts to solve the linear elasticity sys-
tem (7) in a displacement formulation and evaluate the
resulting stress. The stress tensor is just required to up-
date the design parameters. However, since the above al-
gorithm is an alternate minimization, the objective func-
tion is always decreasing.

The resulting optimal design being composite, it is
then “projected” on the set of classical shapes by apply-
ing again the previous scheme with the following slight
modification: the density is updated setting θn+1 = θpen,
where

θpen =
1 − cos(πθopt)

2
,

instead of θn+1 = θopt. This has the tendency to progres-
sively force the density to take only the values 0 or 1. The
success of this penalization process can be explained by
recalling that any minimizer of the homogenized prob-
lem (8) is attained as the limit of a minimizing sequence
of the initial problem (6).

3.4

Practical implementation

The displacement of the structure is computed using P2
Lagrange finite elements. The stress tensor σ and the
density θ are discretized either by P1 Lagrange finite
elements or discontinuous P1 finite elements. Moreover,
the mesh is adapted at each iteration. The composite op-
timal design is independent of the mesh, on the contrary
of the penalized classical optimal design. Therefore, mesh
adaptation is crucial here to be able to capture fine de-
tails even if the initial mesh was coarse. Finally, as A∗ is
not coercive, the Hooke’s law A∗ is replaced by A∗ + εA,
with ε = 10−3, in order to invert the stiffness matrix.
We use the same basic operators of FreeFem++ as in the

case of geometric shape optimization, so we do not in-
clude FreeFem++ scripts here. The interested reader can
find the detailed routine on our web page.

3.5

Numerical results for the homogenization method

We apply the homogenization method to the same can-
tilever problem of section 2.5.2. The composite optimal
design is displayed on figure 11: its compliance is 16.17.

Fig. 11 Density of the optimal composite shape

The penalization step leads to a classical structure
with compliance equal to 17.04 (see figure 12).

Fig. 12 Optimal shape obtained after penalization

To determine the accuracy of the homogenization
method, we apply the boundary variation method to

10

an initial shape chosen so the final structure has the
same topology and almost the same geometry, than the
one obtained by homogenization (see figure 13). As il-

Fig. 13 Optimal shape obtained by geometric optimization

lustrated by figure 14, both cantilevers match almost ex-
actly. Moreover, the compliances are very close: 17.07 for

Fig. 14 comparison between the optimal design obtained
with each method

the solution of the boundary variation method compared
to 17.04 for the homogenization.

However it is not completely fair to compare compli-
ances for different shapes obtained with different meth-
ods because of numerical errors caused by the possibly
different meshes and by the approximation of void by a
soft material of the order of εA.

4

Conclusion

We have shown the suitability of FreeFem++ for shape
optimization in two dimensions. This free and user-friendly
software does not require an heavy investment in pro-
gramming and allows users to focus on the practical
aspects of structural optimization. Our experience with
graduate students is extremely positive: numerical home-
works or personal projects based on FreeFem++ are both

an excellent motivation and illustration of shape opti-
mization. Eventually many other methods can be im-
plemented with FreeFem++, including SIMP or layout
optimization methods like the variable thickness sheet
method.

References

Allaire G., Shape optimization by the homogenization

method, Springer Verlag, New York (2001).

Allaire G., Conception optimale de structures, Editions de
l’Ecole Polytechnique (2005).

Allaire G., Jouve F., Toader A.-M., Structural optimization
using sensitivity analysis and a level-set method, J. Comp.
Phys. Vol 194/1, pp.363-393 (2004).

Bendsoe M., Sigmund O., Topology Optimization. The-

ory, Methods, and Applications, Springer Verlag, New York
(2003).

Hecht F., Pironneau O., Le Hyaric A., Oht-
suka K., FreeFem++ Manual, downloadable at
http://www.freefem.org

Pironneau O., Optimal shape design for elliptic systems,
Springer-Verlag, New York, (1984).

Sigmund O., A 99 line topology optimization code written
in Matlab, Struct. Multidisc. Optim. 21, pp.120-127 (2001).

Soko lowski J., Zolesio J.P., Introduction to shape optimiza-

tion: shape sensitivity analysis, Springer Series in Compu-
tational Mathematics, Vol. 10, Springer, Berlin (1992).

