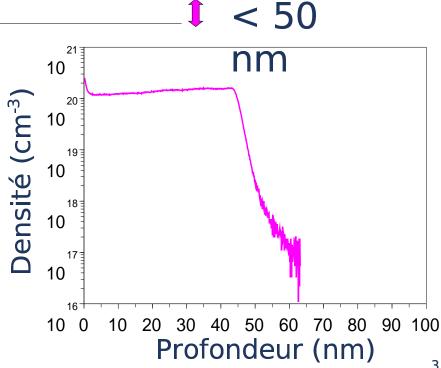


Modélisation des porteurs libres et de la température excédentaire dans le Silicium sous illumination laser intense

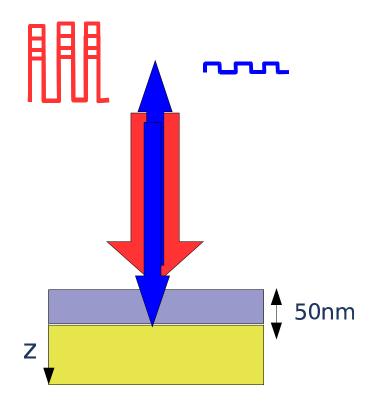
Fabian Dortu

Katholiek Universiteit Leuven (KUL)
Interuniversitair MicroElectronica Centrum (IMEC)

- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres excédentaires.
 - Diffusion de la chaleur excédentaire.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)



Besoin de caractériser les USJ dans les MOSFET


épaisseur (5-50 nm)

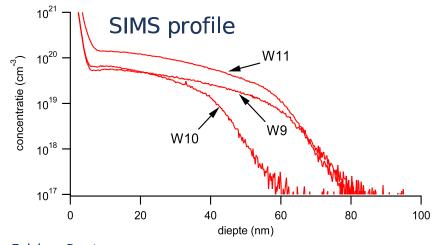
Ultra Shallow Junction (USJ) = Région d'extension de la source et du drain

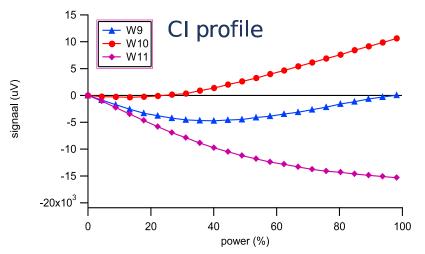
"Carrier Illumination™", une technique de Photo Reflectance Modulée pour la caractérisation des US

- •2 laser beams:
 - Sonde (8e5 W/cm²)
 - Pompe (0 à 3e5 W/cm²) (modulée à 2 kHz)

Le signal récupéré est la variation de la réflectance due à la modulation du laser pompe en fonction de sa puissance: $\Delta R(P) / R$

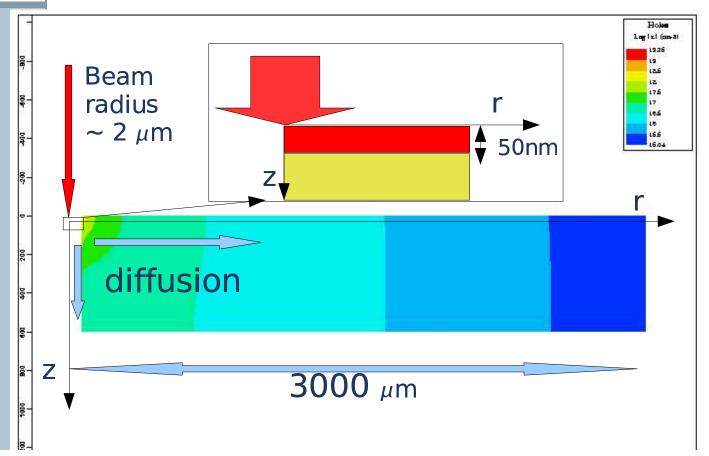
△R(P)/R est fonction des porteurs libres et de la température excédentaire


 Le signal réfléchi résulte de l'interférence des ondes réfléchies par le gradient de l'indice de réfraction excédentaire:


$$CI_{sig} \sim \frac{\Delta R(P)}{R} \sim \Delta n(P, z=0^+) + \int_{0^+}^{\infty} \cos\left(\frac{4\pi nz}{\lambda}\right) \frac{d\Delta n(P, z)}{dz} dz$$

- Des porteurs libres excédentaires △N(P,z)
- De la température excédentaire ∆T(P,z)

$$CI_{sig} \sim \frac{\Delta R(P)}{R} \sim |B| \left| \Delta N(P, z=0^+) + \int_{0^+}^{\infty} \cos\left(\frac{4\pi nz}{\lambda}\right) \frac{d\Delta N(P, z)}{dz} dz \right| - \left(\Delta T(P, z=0^+) + \int_{0^+}^{\infty} \cos\left(\frac{4\pi nz}{\lambda}\right) \frac{d\Delta N(P, z)}{dz} dz \right| = 0^+$$



- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres excédentaires
 - Diffusion de la chaleur excédentaire.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)

Modélisation des équations de drift-diffusion dans un domaine 3D axisymmétrique

Bien que la topologie du domaine soit simple, les différents ordres de grandeurs rendent le problème complexe (mesh non uniforme):

- X_i < 50 nm
- Laser radius = 2e3 nm
- Diffusion length = sqrt(D τ) ~ 1e6 nm (D~20cm²/s, τ ~10⁻⁴ s)

Equations de Poisson et driftdiffusion

 $\epsilon \Delta \psi = -q(p-n+N_D-D_A)$

$$\begin{array}{ll} 1/q\nabla.(J_{n}) = (U_{n} - G_{n}) & \text{avec} & J_{n} = -q\mu_{n}n\nabla\phi_{n} \\ 1/q\nabla.(J_{p}) = -(U_{p} - G_{p}) & J_{p} = -q\mu_{p}p\nabla\phi_{p} \end{array}$$

 $-D_a \nabla . \nabla \Delta n = G - U$ $1/q\nabla.(J_n) = (U_n - G_n) \\ 1/q\nabla.(J_n) = -(U_n - G_n) \\ J_p = -q\mu_p p \nabla \phi_p$ avec $J_p = -q\mu_p p \nabla \phi_p$ $\frac{d\Delta n}{ds_n} = 0 \text{ in } \delta\Omega_n$ $n = n_0 + \Delta n \\ p = p_0 + \Delta p$ $\Delta n=0$ in $\delta \Omega_d$

Substrat homogène

Où μ (mobilité), U (recombinaison/génération nette) et G (génération externe) sont fonctions de Ψ , n et p. n_o et p_o sont les concentrations à l'équilibre.

En pratique,

$$\dot{U}_n = U_p = U_{auger} + U_{SRH}$$
 $G_n = G_p = G_{ind,phonon}$

$$U_{\!S\!R\!H}(n,p)\!=\!\frac{p\,n\!\!-\!n_{ie}^2}{\tau_p(N_{\!a},N_{\!d})(n\!+\!n_{i\!e}\!\exp(E_{t\!r\!a\!p}\!/\,k\!T\!))\!+\!\tau_n(N_{\!a},N_{\!d})(p\!+\!n_{i\!e}\!\exp(E_{-t\!r\!a\!p}\!/\,k\!T\!))}$$

$$U_{auger}(n,p)=A_n(pn^2-nn_{ie}^2)+A_p(np^2-pn_{ie})$$

$$G(r,z) = I_{las} / E^{phot} e^{-(\frac{r}{R_{las}})^2} R \alpha_{bba} e^{-\alpha_{bba} z} \quad \text{avec} \quad \alpha_{bba} = \alpha_{bba} (E_{gap}, E^{phot}, E^{phon}, T)$$

$$D_a = \frac{(p+n)D_nD_p}{pD_p + nD_n}$$

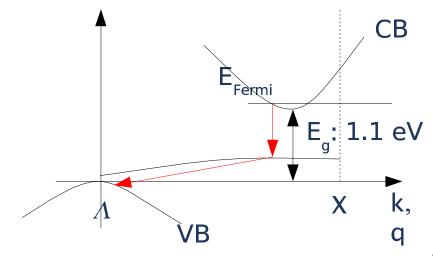
Fabian Dortu

- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres excédentaires.
 - Diffusion de la chaleur excédentaire.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)

Equation de la chaleur

$$-k\nabla . \nabla T = H_{hc} + H_{rec}$$
, $T = T_0$ in $\delta \Omega_{d}$, $\frac{dT}{dn} = 0$ in $\delta \Omega_n$

Eq. linéaire mais couplée à ∆n


Terme source (hot carriers) dépendant de la position:

$$H_{hc}(r,z) = I_{las} \frac{E^{phot} - E^{gap}}{E^{phot}} e^{-(\frac{r}{R_{las}})^2} R \alpha_{bba} e^{-\alpha_{bba} z}$$

Terme source dépendant du taux de recombinaison des porteurs libres:

$$H_{rec}(\Delta\,n){=}\,U(\Delta\,n)\,E_{gap}$$

- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres excédentaires.
 - Diffusion de la chaleur excédentaires.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)

Logiciels de résolutions

- Logiciels propriétaires de "Semiconductor Device Simulation" (disponibles à l'IMEC)
 - Avantages:
 - équations déjà implémentées.
 - Sélection de modèles par l'usage de drapeaux.
 - Connaissance des méthodes de résolution non requise.
 - Désavantages:
 - Orienté transistor et pas opto-électronique.
 - Ajouts de nouvelles équations/modèles par l'utilisateur impossible (sauf dans certains cas simples).
 - Prix exorbitant (licence à 11k USD / 3 ans).
 - Limitation du nombre de noeuds (<60k).
 - Bugs nombreux et temps de réponse pour obtenir une correction/hack de l'ordre de l'année.

Logiciels de résolution

- Logiciels libres
 - MOUSE (volumes finis) hard coded
 - GetDP (éléments finis), développé à l'ULg et similaire à FreeFEM++
 - Désavantage
 - Peu souple. Ex:
 - méthode de Newton est codée en dur.
 - Difficile de chaîner des résolutions.
 - Avantage
 - Forum de discussion (mailing list)
 - FreeFEM++
 - Avantage
 - Très souple (notamment grâce aux macros)
 - Très performant
 - Bonne documentation
 - Désavantage
 - Pas de forum de discussion pour partager l'infos entre les utilisateurs

- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres excédentaires.
 - Diffusion de la chaleur excédentaire.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)

Formulation variationnelle de l'équation de diffusion

$$-\nabla .(c(u)\nabla u) + a(u)u = f(u) \text{ sur } \Omega$$

$$c.\nabla (u).n + qu = g \text{ sur } \delta \Omega_n$$

$$u = r \text{ sur } \delta \Omega_d$$

Après multiplication par

une fonction test v: $\int_{\Omega} (c \nabla u. \nabla v + a u v - f v) \ d\Omega - \int_{\delta\Omega} (-q u + g) v \ d\delta\Omega = 0, \ \forall v$

 $u(r) = \sum_{j=1}^{N} U_{j} \phi_{j}(r)$ Fonctions u et v:

L'équation (forme matricielle) devient: $\rho = (K^c + M^a + Q^q)U - F^f - G^g = 0$

$$K_{ij}^{c} = \int_{\Omega} c \nabla \phi_{j} . \nabla \tau_{i} \ d\Omega$$

$$M_{ij}^a = \int_{\Omega} a \phi_j \tau_i \ d\Omega$$
 En pratique $Q_{ij}^q = \int_{\delta\Omega} q \phi_j \tau_i \ d\delta\Omega$ $\phi_i = \tau_i$

$$F_i^f = \int_{\Omega} f \tau_i \ d\Omega$$

$$G_i^g = \int_{\delta\Omega} g \tau_i \ d\delta\Omega$$

Le jacobien est approximé par:

$$J_{ij} = \frac{\delta \rho_i}{\delta U_j} = K^c + M^{(a-f')} + diag((K^{c'} + M^{a'}) U)$$

 $U_{n+1} = U_n - J_n^{-1} \rho(U_n)$ Itération de Newton:

Note sur le calcul du Jacobien

Exemple de calcul du Jacobien pour la partie relative à K:

$$\rho = (K^{c} + M^{a} + Q^{q}) U - F^{f} - G^{g} = 0$$

$$K_{ij}^{c} = \int_{\Omega} c \nabla \phi_{j} \cdot \nabla \phi_{i} d\Omega$$

$$J_{ij} = \frac{\delta \rho_{i}}{\delta U_{j}}$$

$$\rightarrow J_{ij}^{K} = \frac{\delta \rho_{i}^{K}}{\delta U_{j}} = \frac{\delta (KU)_{i}}{\delta U_{j}} = \lim \epsilon \rightarrow 0 \left(\frac{1}{\epsilon} \int_{\Omega} \sum_{l} c(U + \epsilon \phi_{j}) \nabla \phi_{l} \nabla \phi_{i} dx (U_{l} + \epsilon_{l,j}) - c(U) \nabla \phi_{l} \nabla \phi_{i} dx (U_{l}) \right)$$

$$= \text{avec} \quad c(U + \epsilon \phi_{j}) = c(U) + \frac{dc}{du} \epsilon \phi_{j}$$

$$J_{ij}^{K} = \frac{\delta \rho_{i}^{K}}{\delta U_{j}} = \frac{\delta (KU)_{i}}{\delta U_{j}} = \int_{\Omega} c(U) \nabla \phi_{j} \nabla \phi_{i} dx + \sum_{l} \int_{\Omega} \phi_{j} \frac{dc}{du} \nabla \phi_{l} \nabla \phi_{i} dx U_{l}$$

$$K_{ii}^{C}$$

Remplacé par la matrice formée avec la somme des lignes (lumped approx.)

 $\operatorname{diag}(K^{(c')}U)$

- "Carrier Illumination", une technique de Photo-Reflectance Modulée pour la mesure des porteurs libres dans les Ultra-Shallow-Junctions (USJ) – Principe général.
- Modélisation du problème
 - Drift-Diffusion des porteurs libres en excès.
 - Diffusion de la chaleur en excès.
- Résolution
 - Comparaison logiciels propriétaires et libres
 - Résolution avec FreeFEM++ (porteurs libres + température)
- Développement sous FreeFEM++ d'un environnement intégré: FSEM (Finite Element for SEMiconductor with FreeFEM)

Pourquoi FSEM?

Réunir les avantages des logiciels commerciaux et de FreeFEM, à savoir:

- Permettre à l'utilisateur, d'utiliser le programme facilement: sélection des équations/formulations/modèles par l'usage de flags
- Permettre à l'utilisateur moyennement avancé d'ajouter un nouveau modèle facilement
- Permettre à l'utilisateur avancé d'ajouter de nouvelles équations/formulations/méthode de résolution

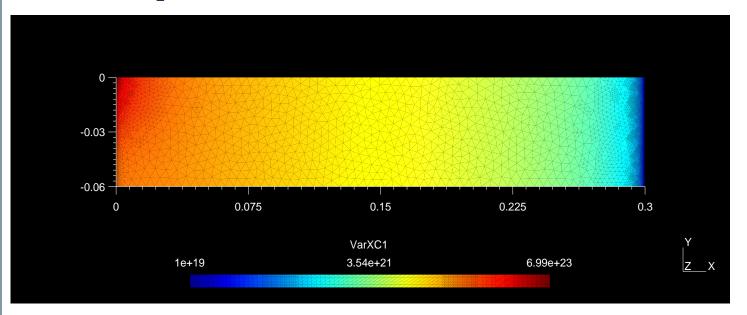
Example de fichier FSEM

```
include "../../fsemincl.edp" /* Main include. Load all FSEM macros */
include "fsem_SolverPar_template.edp" /* Load default solver parameter */
include "fsem ModUsrPar template.edp" /* Load default user parameter */
include "fsem_TEST_2d_geo.edp" /* Load mesh definition */
                             Macros et variables (real, table, fespace, ...) en turquoise
                                        doivent être définis par l'utilisateur
/* Contact definition
macro AllContactCarr() ContactOhm(outer) //
macro AllContactTemp() ContactTemp(bottom, 300) ContactTemp(outer, 300) //
                              Macros et variables (real, table, fespace, ...) en bleu
/* Model initialisation */
                                          sont prédéfinis dans FSEM
int NRegions=1;
UsrModInit(NRegions);
/* Define laser parameters (radius, intensity, ...)*/
                                                // number of laser
ParUsrLaserN = 1;
real[int] ParUsrLaserE(ParUsrLaserN);
                                                // Photon energy [eV]
real[int] ParUsrLaserI(ParUsrLaserN);
                                                // intensity [W m-2]
. . .
```

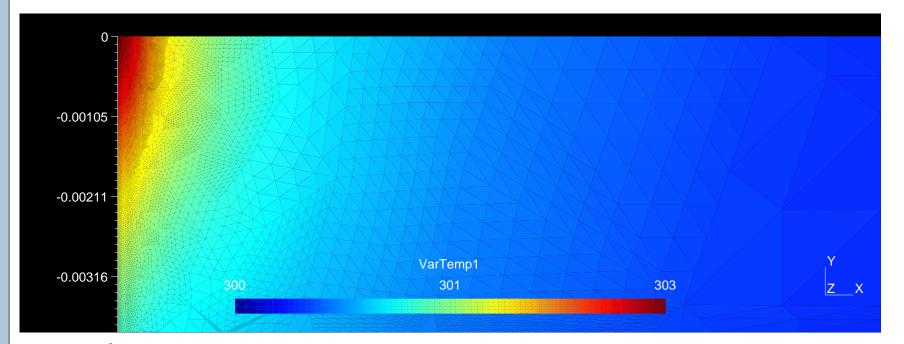

Example de fichier FSEM (suite 1)

```
/* Declaration du vecteur solution */
Vh VarXCGuess;
ModUsrBGNSlotboom = 1;
ModUsrBTBIP0 = 1;
ParUsrTemp = 300;
                                Solution système linéaire utilisée comme
VarXCGuess=0;
                                 solution initiale au problème non linéaire
SolveCarrLn(VarXCGuess, Vh);
                                Résolution du problème non-linéaire
ModUsrRecAuger=1;
ModUsrRecSRH=1;
Vh VarXC1;
VarXC1 = VarXCGuess;
                                    Variables intermédiaires (coef d'absorption,
                                    taux de recombinaison Auger, ...)
Vh HeatGenAll;
                                    disponibles (block {}) pour sauvegarde figures, ....
SolveCarrNln(VarXC1, Vh, VarXC1);
ModUsrHeatHotCarrier=1;
ModUsrHeatRec=1;
ComputeHeatGen(HeatGenAll, ParDepEGap, ParDepAlpha, ParDepRecVol);
```

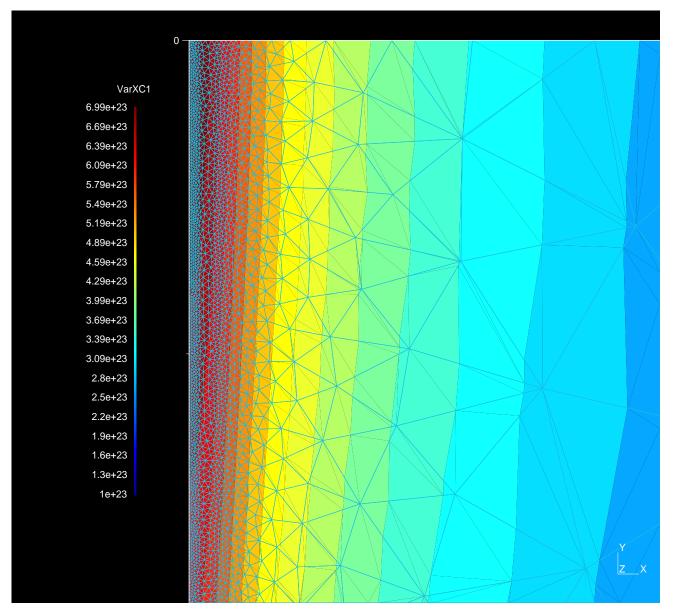
Fabian Dortu



Example de fichier FSEM (suite 2)

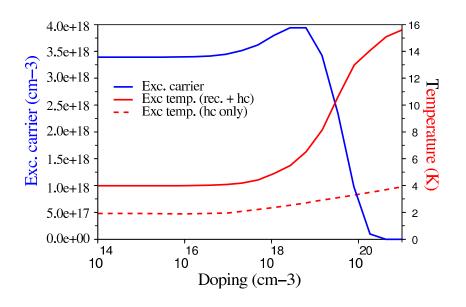

```
Vh VarTemp1;
                            Solution de l'équation pour la température
VarTemp1=0;
                              Le terme source est passé en argument
 SolveTempLn(VarTemp1, Vh, HeatGenAll);
 * Couplage porteurs excédentaires et température
 for(int i=1; i<5; i++) {
                          Couplage porteurs excédentaires - température
 ParUsrTemp = VarTemp1;
   SolveCarrNln(VarXC1, Vh, VarXC1);
   ComputeHeatGen(HeatGenAll, ParDepEGap, ParDepAlpha, ParDepRecVol);
   SolveTempLn(VarTemp1, Vh, HeatGenAll);
```

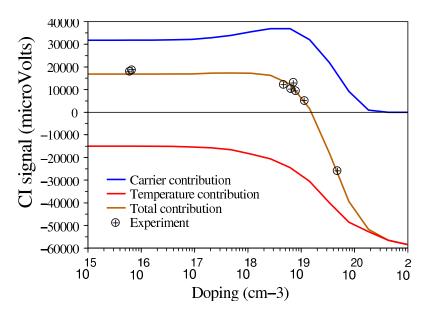

Quelques résultats


Densité de charges excédentaires (m⁻³) sous illumination (8.06 Wcm⁻², 980nm, R=1.5 µm). FreeFEM 1.47-4. Rendu avec gmsh 1.60.

Température (K)

Quelques résultats




Densité de charges excédentaires (m $^{-3}$) sous illumination (8.06 Wcm $^{-2}$, 980nm, R=1.5 μ m).

FreeFEM 1.47-4. Rendu avec gmsh 1.60.

Quelques résultats

Charge et température excédentaire de surface en fonction du dopage (homogène)

CI signal en fonction du dopage du dopage.

"Progress in the physical modeling of Carrier Illumination (CI)" *F. Dortu, T. Clarysse, W. Vandervort.*To be published in JVST february 2006 issue.

Conclusions

Travail réalisé :

- Implémentation d'un environnement pour la simulation de l'équation de diffusion des porteurs excédentaires et de la température (FSEM)
- Une documentation sommaire sous la forme d'un diagramme expliquant la structure du programme et les variables/macros prédéfinies

Travail à réaliser:

- Amélioration de la structure de FSEM (les macros manquent parfois de cohérence par rapport à leurs arguments)
- Implémentation d'une formulation mixte avec des éléments de Raviart-Thomas dans le but d'implémenter les équations complètes de drift-diffusion

Souhaits

Création d'une mailing list

SEEDS FOR TOMORROW'S WORLD IMECNOLOGY

