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New development in freefem++
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Abstract — This is a short presentation of the freefem++ software. In Section 1, we recall most
of the characteristics of the software, In Section 2, we recall how to to build the weak form
of a partial differential equation (PDE) from the strong form. In the 3 last sections, we present
different examples and tools to illustrated the power of the software. First we deal with mesh
adaptation for problems in two and three dimension, second, we solve numerically a problem
with phase change and natural convection, and the finally to show the possibilities for HPC we
solve a Laplace equation by a Schwarz domain decomposition problem on parallel computer.

Keywords: finite element, mesh adaptation, Schwarz domain decomposition, parallel comput-
ing, freefem++

1. Introduction

This paper intends to give a small presentation of the software freefem++.
A partial differential equation is a relation between a function of several

variables and its (partial) derivatives. Many problems in physics, engineering,
mathematics and even banking are modeled by one or several partial differen-
tial equations.

Freefem++ is a software to solve these equations numerically in dimen-
sions two or three. As its name implies, it is a free software based on the Finite
Element Method; it is not a package, it is an integrated product with its own
high level programming language; it runs on most UNIX, WINDOWS and
MacOs computers. Moreover freefem++ is highly adaptive. Many phenom-
ena involve several coupled systems, for example: fluid-structure interactions,
Lorentz forces for aluminum casting and ocean-atmosphere coupling. Mul-
tiphysics problems require different finite element approximations or differ-
ent polynomial degrees, possibly on different meshes. Some algorithms like
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252 F. Hecht

Schwarz’ domain decomposition method also require data interpolation on
multiple meshes within one program. Freefem++ can handle these difficul-
ties, i.e. arbitrary finite element spaces on arbitrary unstructured and adapted
meshes.

The characteristics of freefem++ are:

• Problem description (real or complex valued) by their variational formu-
lations, with access to the internal vectors and matrices if needed.

• Multi-variables, multi-equations, bi-dimensional and three-dimensional
static or time dependent, linear or nonlinear coupled systems; however
the user is required to describe the iterative procedures which reduce the
problem to a set of linear problems.

• Easy geometric input by analytic description of boundaries by pieces;
however this part is not a CAD system; for instance when two bound-
aries intersect, the user must specify the intersection points.

• Automatic mesh generator, based on the Delaunay–Voronoi algorithm;
the inner point density is proportional to the density of points on the
boundaries [17].

• Metric-based anisotropic mesh adaptation. The metric can be computed
automatically from the Hessian of any freefem++ function [20].

• High level user friendly typed input language with an algebra of analytic
or finite element functions.

• Multiple finite element meshes within one application with automatic
interpolation of data on different meshes and possible storage of the in-
terpolation matrices.

• A large variety of triangular finite elements: linear, quadratic Lagrangian
elements and more, discontinuous P1 and Raviart–Thomas elements, el-
ements of a non-scalar type, the mini-element, etc., but no quadrangles.

• Tools to define discontinuous Galerkin finite element formulations P0,
P1dc, P2dc and keywords: jump, mean, intalledges.

• A large variety of linear direct and iterative solvers (LU, Cholesky,
Crout, CG, GMRES, UMFPACK [13], MUMPS [2], SuperLU, etc.) and
eigenvalue and eigenvector solvers (ARPARK) [24], and optimization
tools like Ipopt [32].
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New development in freefem++ 253

• Near optimal execution speed (compared with compiled C++ implemen-
tations programmed directly).

• Online graphics, generation of .txt, .eps, .gnu, .mesh files for further
manipulations of input and output data.

• Many examples and tutorials: elliptic, parabolic and hyperbolic prob-
lems, Navier–Stokes flows, elasticity, fluid structure interactions, as well
as Schwarz’s domain decomposition method, eigenvalue problem, resid-
ual error indicator, etc.

• A parallel version using MPI.

2. Weak formulation

For the first example consider a Poisson problem on a domain Ω with a parti-
tion of the boundary ∂Ω in Γ2,Γe: Find u such that

−∆u = 1 in Ω, u = 2 on Γ2,
∂u
∂~n

= 0 on Γe. (2.1)

Denote Vg = {v ∈ H1(Ω)/v|Γ2 = g}, and the weak form of the equation is
obtained by multiplying by v and integrating by parts (2.1). The variational
formulation is: Find u ∈V2(Ω), such that

∀v ∈V0(Ω),
∫

Ω

∇u ·∇v =
∫

Ω

1v+
∫

Γ

∂u
∂n

v. (2.2)

Note that due to ∂u/∂~n = 0 on Γ2 and v = 0 the term
∫

Γ
(∂u/∂n)v disappears

on Γ2. Finally the finite method simply replaces Vg with a finite element space,
such as

Vgh = {vh ∈C0(Ω̄) : ∀K ∈Th,vh|K ∈ P1 and vh|Γ2 = 0}

in the case of linear elements; for full detail see [10, 21].
Below, we give an example of an elaborate mesh for a 3D fish and the

Poisson problem; the freefem++ code is below and the results are on Figs. 1
and 2.

load "msh3" load "medit" load "tetgen"
mesh3 Ths("Y5177_Fish_cut.mesh"); // read skin fish mesh...
real hh = 10; // the final mesh size
real[int] domaine = [0,0,0,1,hh^3/6.];
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254 F. Hecht

Figure 1. 3D Poisson solution iso-surface. Figure 2. 2D Poisson solution iso-value.

mesh3 Th=tetg(Ths,switch="pqaAYY",regionlist=domaine);
fespace Xh(Th,P2);
real x0=-200,y0=0,z0=0;
func ball = sqrt((x-x0)^2+(y-y0)^2+(z-z0)^2) < 30;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
Xh p,q;
solve laplace(p,q,solver=CG) =

int3d(Th)( ball*p*q+Grad(p)’*Grad(q) ) -
int3d(Th)( 1*q );

plot(p,fill=1,wait=1,value=0,nbiso=50); // see Fig.1

The skin mesh of the 3D fish come from the URL http://www-roc.inria.fr/
gamma/download/counter.php?dir=FISH&get obj=Y5177 Fish cut.mesh&
acces=Y5177 Fish. The graphics solution of the problem in 2D and 3D are dis-
played in Figs. 2 and 1, respectively.

3. Mesh adaptation

In freefem++ a lot of adaptation tools are implemented; this corresponding to
the work of many people [6, 9, 17, 19, 20, 25, 26, 29, 31].

All these tools are based a Delaunay–Voronoi algorithm with a distance (or
Metric) between two points q1,q2 given by

√
t(q1−q2)M (q1−q2) where the

matrix M is symmetric positive definite matrix field defined on the mesh Th.
Consequently the length `M of a curve γ for ]0,1[∈ Rd with respect to M is

`M =
∫ 1

0

√
tγ ′(t)M (γ(t))γ ′(t)d t. (3.1)

The computation of M can be implicit of explicit; the tools to compute M , in
isotropic cases are scalar fields h which represent the local mesh size such that
M = Id/h2, where Id is the identity matrix.
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New development in freefem++ 255

The idea is to build a meshes with edges of equal length with respect of
M , i.e. the length with respect to M of all the mesh edges should be closed to
one so as to get an equi-repartition of the error close to err in norm L∞. So for
P1 continuous finites elements. The metric can be defined by

`M =
1

err
|∂ 2

h uh| (3.2)

where |∂ 2
h uh|=

√
(∂ 2

h uh)2 and ∂ 2
h u is an approximation of the Hessian matrix

of uh. Freefem++ does it automatically by default with adaptmesh function
(2D), MetricPk (2D), or with mshmet (2D).

An example of L∞ error mesh adaptation with metric for the Poisson prob-
lem in an L-shape domain Ω =]0,1[2 \ [1/2,1[2. Find u ∈ H1(Ω) such that

−∆u = (x− y) in Ω,
∂u
∂nnn

= 0 on ∂Ω,
∫

Ω

u = 0 (3.3)

we add do a small stabilization term εu to remove the constraint
∫

Ω
u, so the

weak form is: Find uε ∈ H1(Ω) such that

∀v ∈ H1(Ω),
∫

Ω

uεv+ εuεv−
∫

Ω

(x− y)v = 0. (3.4)

You can easily prove that ||uε−u||H1 < εC, the discretization with P1 Lagrange
finite element and ε = 10−10, is:

int[int] lab=[1,1,1,1];
mesh Th = square(6,6,label=lab);
Th=trunc(Th,x<0.5 | y<0.5, label=1);
fespace Vh(Th,P1);
Vh u,v;
real error=0.01;
problem Poisson(u,v,solver=CG,eps=1.0e-6) =

int2d(Th,qforder=2)(u*v*1.0e-10+ dx(u)*dx(v) + dy(u)*dy(v)) +
int2d(Th,qforder=2)((x-y)*v);

for (int i=0; i<4; i++)
{

Poisson;
plot(u,wait=1);
Th=adaptmesh(Th,u,err=error);
plot(Th,wait=1);
u=u; // reinterpolation of u on new mesh Th.
error = error/2;

};
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256 F. Hecht

Figure 3. Mesh. Figure 4. Solution.

The final mesh adaption and associated solution will be show in Figs. 3
and 4

With the MetricPk plugin of J.-M. Mirebeau we can build a metric in R2

for the Lagrangian triangular continuous approximation of degree k, Pk, with
respect to the norm W r,p with r = 0 or 1; the output is an adapted mesh with
Nt element with a metric which can be optimal or sub optimal; the lost of
optimality is due to constraint on acute angle in triangulation in case of r = 1
(see [26, 27] or J.-M. Mirebeau these details):

load "MetricPk"
real Nt = 1000, r=1, k=3, p=1; // def of the parameter...
mesh Th=square(20,20,[2*x-1,2*y-1]);
func f = x^2*y + y^3 + tanh(5*(-2*x + sin(5*y)));
fespace Metric(Th,[P1,P1,P1]);
Metric [m11,m12,m22];
for(int i=0; i<5; i++) {

plot(Th,wait=true); // see Figs. 6 and 5
[m11,m12,m22]=[0,0,0]; // resize metric array
m11[]=MetricPk(Th,f, kDeg=k,rDeg=r,pExp=p, mass=Nt/Z,

TriangulationType=0); // 0 sub optimal
// 1 Optimal (=>no acute angle)

Th = adaptmesh(Th,m11,m12,m22,IsMetric=true); }

In 3D we can use meshmet a plugin by J. Morice for the mshmet library
of P. Frey [16]. To compute an isotropic adapted metric on can use tetgen,
another plugin documented in [30]. The following listing is a full test of this
idea.
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New development in freefem++ 257

Figure 5. Optimal metric in norm W 1,1 for
103 triangle but it is wrong mesh because the
acute constraint is miss.

Figure 6. Suboptimal but not acute constraint
for 103 triangle.

load "msh3" load "tetgen" load "mshmet" load "medit"
int n = 6;
int[int] l1=[1,1,1,1],l01=[0,1],l11=[1,1];
// label numbering for boundary condition
mesh3 Th3=buildlayers(square(n,n,region=0,label=l1),

n, zbound=[0,1], labelmid=l11, labelup = l01,
labeldown = l01);

Th3 = trunc(Th3,(x<0.5) | (y < 0.5) | (z < 0.5),
label=1); // remove the ]0.5,1[ˆ3 cube

// end of build initial mesh
fespace Vh(Th3,P1);
Vh u,v,usol;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
solve Poisson(u,v,solver=CG) = int3d(Th3)( 1e-6*u*v +

Grad(u)’*Grad(v) ) - int3d(Th3)( (z-y/2-x/2)*v );
real errm=1e-2; // level of error
for(int ii=0; ii<5; ii++) {

Vh h; h[]=mshmet(Th3,u,normalization=1,aniso=0,nbregul=1,
hmin=1e-3,hmax=0.3,err=errm);

errm *= 0.6; // change the level of error
Th3=tetgreconstruction(Th3,switch="raAQ",

sizeofvolume=h*h*h/6.);
Poisson;
plot(u,wait=1,nbiso=15); } // see Fig.8

medit("U3",Th3,u); // see Fig.7
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258 F. Hecht

Figure 7. 3D adapted mesh. Figure 8. Iso surface.

Finally, tools like splitmesh (only in 2D) can also be used; it splits trian-
gle uniformly into sub triangles. In 3D the plugin mmg3d-v4 moves 3D meshes
or build 3D anisotropic meshes inside each element (see [15]).

4. Phase change with natural convection

This example illustrates the coupling of natural convection modeled by the
Boussinesq approximation and liquid to solid phase change in Ω =]0,1[2, No
slip condition for the fluid are applied at the boundary and adiabatic condition
on upper and lower boundary and given temperature ϑr (resp ϑl) at the right
and left boundaries. The starting point of the problem is Brainstorming session
(part I) of the third freefem++ days in December, 2012, this is almost the Or-
ange Problem is described in URL http://www.ljll.math.upmc.fr/h̃echt/ftp/ff++
days/2011/Orange-problem.pdf, we present the validation part with paper [34].

The main interest of this example is to show the capability of freefem++ to
solve complex problem with different kind of non-linearity. You can find other
complex example in [1, 5, 7, 8, 11, 12, 23] for example, (thanks to I. Danalia to
the help in the modelization).

So the full model is: Find uuu = (u1,u2), the velocity field, p the pressure
field and ϑ the temperature flied in domain Ω such that

uuu given in Ωs

∂tuuu+(uuu∇)uuu+∇.µ∇uuu+∇p =−cT eee2 in Ω f

∇.uuu = 0 in Ω f

∂tϑ +(uuu∇)ϑ +∇.kT ∇ϑ = ∂tS(T ) in Ω.

(4.1)

Where Ω f is the fluid domain and the solid domain is Ωs = Ω \Ω f . The en-
thalpy of the change of phase is given by the function S, µ is the relative vis-
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cosity, kT the thermal diffusivity.
In Ω f = {x ∈ Ω;ϑ > ϑ f }, with ϑm the melting temperature the solid has

melt.
We modeled, the solid phase as a fluid with huge viscosity, so:

µ =

 ϑ < ϑ f ∼ 106

ϑ > ϑm ∼
1

Re
.

This removes movement in the solid phase, and here Re is the Reynolds num-
ber of the liquid phase.

The Stefan enthalpy Sc with defined by Sc(ϑ) = H(ϑ)/Sth where Sthe is
the Stefan number, and H is the Heaviside function (0, if (ϑ < 0), 1 else). with
use the following smooth the enthalpy:

S(ϑ) =
tanh(50(ϑ −ϑm))

2Ste
.

We apply a fixed point algorithm for the phase change part (the domain
Ω f is fixed at each iteration) and a full no-linear Euler implicit scheme with a
fixed domain for the rest. We use a Newton method to solve the non-linearity.

Remark, if we don’t make mesh adaptation the Newton method do not
converge, and if we use explicit method this diverge too, and finally if we
implicit the dependence in Ωs the method also diverge. This is a really difficult
problem.

The finite element space to approximate u1,u2, p,ϑ is defined by:

fespace Wh(Th,[P2,P2,P1,P1]);

We do mesh adaptation a each time step, with the following code:

Ph ph = S(T), pph=S(Tp);
Th = adaptmesh(Th,T,Tp,ph,pph,[u1,u2],err=errh,

hmax=hmax,hmin=hmax/100,ratio = 1.2);

This mean, we adapt with all variable plus the 2 melting phase a time n+1
and n and we smooth the metric with a ratio of 1.2 to account for the movement
of the melting front.

The Newton loop and the fixed point are implemented as follows:

real err=1e100, errp;
for (int kk=0; kk<2; ++kk) // 2 step of fixed point on Ω s
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260 F. Hecht

{ nu = nuT; // recompute the viscosity in Ω s,Ω f
for (int niter=0; niter<20; ++niter) // newton loop
{ BoussinesqNL;
err = u1w[].linfty;
cout << niter << " err NL " << err << endl;
u1[] -= u1w[];
if(err < tolNewton) break; } // convergence...

}

The linearized problem is:

problem BoussinesqNL([u1w,u2w,pw,Tw],[v1,v2,q,TT])
= int2d(Th) (

[u1w,u2w,Tw]’*[v1,v2,TT]*cdt
+ UgradV(u1,u2,u1w,u2w,Tw)’ * [v1,v2,TT]
+ UgradV(u1w,u2w,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1w,u2w)’*Grad(v1,v2)) * nu
+ ( Grad(u1,u2)’*Grad(v1,v2)) * dnu* Tw
+ cmT*Tw*v2
+ grad(Tw)’*grad(TT)*kT
- div(u1w,u2w)*q -div(v1,v2)*pw - eps*pw*q
+ dS(T)*Tw*TT*cdt
)

- int2d(Th) (
[u1,u2,T]’*[v1,v2,TT]*cdt
+ UgradV(u1,u2,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1,u2)’*Grad(v1,v2)) * nu
+ cmT*T*v2
+ grad(T)’*grad(TT)*kT
- div(u1,u2)*q -div(v1,v2)*p
- eps*p*q // stabilization term
+ S(T)*TT*cdt
- [u1p,u2p,Tp]’ *[v1,v2,TT]*cdt
- S(Tp)*cdt*TT
)

+ on(1,2,3,4, u1w=0,u2w=0) + on(2,Tw=0) + on(4,Tw=0);

The parameters of the computation are taken from [34] case 2, ϑm = 0,
Re = 1, Ste = 0.045, Pr = 56.2, Ra = 3.27 · 105, ϑl = 1, ϑr = −0.1 so in this
case cmT = cT =−Ra/Pr, kT = kT = 1/Pr, eps = 10−6, time step δ t = 10−1,
cdt = 1/δ t, and with a good agreement this is Fig. 6 of [34] at time t = 80 (see
Figs. 9 and 10).
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Figure 9. Iso-value of the temperature at time
t = 80 of problem (4.1).

Figure 10. Velocity at time 80 of problem
(4.1).

5. A Schwarz domain decomposition example in parallel

The following is an explanation of the scripts DDM-Schwarz-*.edp of the dis-
tribution. This is Schwarz domain decomposition in parallel with a complexity
almost independent of the number of process (with a coarse grid precondi-
tioner), thanks to F. Nataf for the all the discussion to implementation of this
algorithm (see [28] for the theory).

To solve the following Poisson problem on domain Ω with boundary Γ in
L2(Ω):

−∆u = f in Ω, u = g on Γ

where f and g are two given functions of L2(Ω) and of H1/2(Γ).
Let (πi)i=1,..,Np be a regular partition of unity of Ω, i.e.:

πi ∈ C 0(Ω) : πi > 0,
Np

∑
i=1

πi = 1.

Denote Ωi the sub domain which is the support of πi function and also denote
Γi the boundary of Ωi. The parallel Schwarz method is as follows.

Let ` = 0 be the iterator and u0 an initial guest respecting the boundary
condition (i.e. u0|Γ = g):

−∆u`i = f in Ωi, u`i = u` on Γi \Γ, u`i = g on Γi∩Γ (5.1)

u`+1 = ∑
Np
i=1 πiu`i ∀ i = 1, . . . ,Np. (5.2)
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After discretization with the Lagrange finite element method, with a com-
patible mesh Thi for Ωi, there exists a global mesh Th such that Thi is included
in Th.

Remark 5.1. We avoid using finite element spaces associated to the full
domain Ω because it is too expensive.

Now let us look at this academic example:

−∆u = 1 in Ω =]0,1[3, u = 0 on ∂Ω. (5.3)

In the following test we use a GMRES version preconditioned by the
Schwarz algorithm (Ps) and with a coarse grid solver (Pc) on a coarse mesh.
To build a new preconditioner lP from two preconditioner Pc and Ps we use
the following approximation 0 ∼ I−AP−1 = (I−AP−1

c )(I−AP−1
s ) and after

a simple calculus we have P−1 = P−1
c +P−1

s −P−1
c AP−1

s .

6. Conclusion

Freefem++ is a continuously evolving software because it is easy to add new
tools, finite elements. We have tried to illustrate this with three examples. In
the future we expect to include more tools for three dimensional anisotropic
meshes adaptive, automatic differentiation by operator overloading, seamless
integration of parallel tools to free the user off low level programming.

Acknowledgments. Our thanks to Olivier Pironneau for the fruitful discus-
sions and the initialization of freefem in the nineties, to Kohji Ohtsuka for
helping with the documentation, to Antoine Le Hyaric for the integrated ver-
sion freefem++-cs, to Jacques Morice, and Sylvain Auliac for the develop-
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box, and finally to Eliseo Chacòn Vera for the freefem++ wiki (see URL
http://www.um.es/freefem/ff++/pmwiki.php).
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