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Abstract — This paper describes an implementation in freefem++ of a mimetic scheme due to Yu.
Kuznetsov. This is done by a minor modification of the program which implements the totally discon-
tinuous Raviart-Thomas element RT0 because both elements have similar degrees of freedom. The
method is tested in combination with characteristic-Galerkin unwinding on the rotating hill problem.
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1. Introduction

A general framework for mimetic schemes has been built by F. Brezzi et al (yet to
be published). The original idea seems to be Shashkov’s (see [3]); it was used and
enlarged to a Finite Element context by Brezzi and Lipnikhov[2] and many others
since then.

The upside of mimetic methods is that it allows any polygon in a tessalization
of the domain of the PDE, not just triangles and quadrangles; also, an element inner
edge may be shared in part by several elements on the other side.

The downside of mimetics is the difficulty of their computer implementation.
Aware of this problem, Yu. Kuznetsov had been working down-up on an alternative,
with success for porous media flows in 2D and 3D, much easier to implement.

It turns out that for piecewise constant approximations both methods agree in
the special case where the quadrangles are divided into 4 equal elements (Figure 1);
we give here similar division for triangles.

Eager to try these new methods the authors thought out a way to implement
them in freefem++. This article is the story of their implementation and a report on
performance for the general convection-diffusion equation.
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The presentation of the finite element method follows the line of a private lecture
by Yu. Kuznetsov but more details are available in [6].

2. Problem Statement and Discretization

For simplicity consider the Laplace equation written as a first order system (gener-
alization to Darcy’s law and time dependent convection-diffusion equations are in
[7],[5], [6] and below):

u+∇p = 0, ∇ ·u = f , in Ω + b.c. on Γ = ∂Ω. (2.1)

The domain Ω is covered by a set of non-overlapping elements E. The edges of E
are called generically S. Note that for any integrable scalar or vector-valued q and
any vector-valued v with integrable normal component,

qS :=
1
|S|

∫
S

q(x)dγ(x), qE :=
1
|E|

∫
E

q(x)dx, vn
S :=

1
|S|

∫
S

v(x) ·n(x)dγ(x). (2.2)

are piecewise constant quantities.

Proposition 2.1. Let V E
S be the space of vector-valued functions v : E → R2

such that such that ∇ · v is constant on E and v ·n is constant on each edge S ∈ ∂E;
then (2.1) implies∫

E
u · vdx+ ∑

S∈∂E
(pS− pE)vn

S|S|= 0, ∀v ∈V E
S , ∀E (2.3)

∑
S∈∂E

un
S|S|= |E| fE , ∀E. (2.4)

Proof
The second equation of (2.1) integrated on E gives (2.4). To derive (2.3) let us

multiply the first equation of (2.1) by v ∈V E
S and integrate the second term by parts:∫

E
u · vdx+

∫
∂E

pv ·ndγ−
∫

E
p∇ · vdx = 0. (2.5)

By making use of the fact that ∇ · v is constant we can write that∫
E

p∇ · vdx = pE |E|∇ · v = pE

∫
E

∇ · vdx = pE

∫
∂E

v ·ndγ = pE ∑
S∈∂E

vn
S|S|. (2.6)

This proves (2.3)(2.4).
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Figure 1. The mesh is made of a union of polygons. A portion of the mesh is shown highlighting 5
elements and the fact that the edges of adjacent elements do not need to match. Notations for elements
and edges are shown on the left with Γkm := Ek ∩Em . Center and right: each polygon is subdivided
so that each sub-element shares two edges with its mother element; this is shown in the center on a
triangle E with its 3 quadrilateral sub-elements {Ei}3

1 of equal size and on the right on a quadrangle
E with its 4 sub-elements of equal size {Ei}4

1.

2.1. Discrete Approximation equivalent to Shashkov’s Mimetic Scheme

The notations are explained in Figure 1. Note that a constant vector w can be recon-
structed from two fluxes on non parallel edges S1,S2, wn

Si
:= w ·ni, i = 1,2 where ni

is the outer normal to the edge Si:

w = n1 wn
S1
−wn

S2
n1 ·n2

1− (n1 ·n2)2 +n2 wn
S2
−wn

S1
n1 ·n2

1− (n1 ·n2)2 . (2.7)

Now, in (2.3) and (2.4) everything is discrete except the first term. So let us recon-
struct u in E from its fluxes on ∂E. Following [6] the reconstruction is piecewise
constant but discontinuous:

• Each triangle E is divided into 3 quadrilaterals of equal size by the medi-
atrices as shown in Figure 1. The number of sub-elements is dE = 3.

• Each quadrilateral element E is divided in 4 quadrilaterals of equal size by
joining the mid-points of two facing edges as in Figure 1. Here dE = 4.

• More complex polygons are divided into sub-elements so that each of them
has 2 (and only 2) common boundaries with ∂E.

With uEi reconstructed by (2.7) from the fluxes on the two non internal edges of Ei,
the following approximation is used∫

E
u · vdx≈

dE

∑
1

uEi · vEi |Ei|. (2.8)

Two cases can be considered:

• The totally discontinuous case in which the flux vn
S seen from E is different

from the flux on S but seen from the adjacent element E ′.
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• The semi-continuous case in which vn
S is the same seen from E and E ′.

Definition 2.1. In the semi-continuous case the degrees of freedom of the finite
element are pE ,un

S and pE , pS, un
S in the totally discontinuous case

In the totally discontinuous a weak continuity at the edges must be imposed by

∑
E

∑
S∈∂E

∫
S

qSun
Sdγ(x) = 0, ∀qS. (2.9)

The numerical scheme is made of (2.3)(2.4) in the semi-continuous case and (2.3)(2.4)
(2.9) in the totally discontinuous case, both using (2.8).

Remark 2.1. Suppose we have n quadrilaterals and m triangles then there are
M = n+m elements and N = 4n+3m edges S; so the number of degrees of freedom
is 2N +M. Because V E

S is constructed from the fluxes at the edges, dimV E
S =4 for

quadrilaterals and 3 for triangles; so the number of equations in (2.3) is 4n+3m and
M in (2.4). As the number of equations in (2.9) is N the total number of equations
4n+ 3m+M +N = M + 2N is equal to the number of unknowns. The scheme is
proved to be well posed in [6] for example.

Remark 2.2. If there are qualitaterals only, the scheme is exactly Shashkov’s
mimetic scheme [3][2]. The convergence analysis for the scheme above is available
in [8]

Remark 2.3. There are many mimetic finite difference schemes, usually only
distinct by the numerical quadrature applied to the first term in the first equation
of (2.3). Recently, it has been shown in [9] that the classical mixed finite ele-
ment methods also fall into the mimetic finite difference family on arbitrary poly-
gonal/polyhedral meshes when some local problems are solved on the triangular
submesh mesh of each polygonal. Such an approach has the particular advantage
that no approximation/numerical quadrature is needed and the precision of simpli-
cial mixed finite elements is fully maintained, while the implementation is straight-
forward from an existing mixed finite element code.

3. Extension to time dependent problems with convection

With a∈ L∞(Rd×(0,T )), A∈ L∞(Rd×d×(0,T )), the convection-diffusion equation

∂t p+a ·∇p−∇ · (A∇p) = f + b.c. and u(·,0) given

is rewritten in mixed form with D = A−1 as

∂t p+a ·∇p+∇ ·u = f , Du+∇p = 0, +b.c... (3.1)
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It can be discretized in time by

1
δ t

pm +∇ ·um = f̃ m := f (x)+
1
δ t

pm−1(x−am− 1
2 (x)δ t), Dum +∇pm = 0. (3.2)

With the totally discontinuous element, a spatial discretization like (2.3) (2.4) (2.7)
gives the following system:

Definition 3.1. For the totally discontinuous method, the discrete problem is

∑
E

dE

∑
1

vT
Ei

DuEi |Ei|+∑
E

∑
S∈∂E

(pS− pE)vn
S|S|= 0, ∀v ∈V E

S ,

∑
E

|E|
δ t

pEqE +∑
E

∑
S∈∂E

un
SqE |S|= ∑

E
|E| f̃ m

E qE , ∀qE ∈ QE ,

∑
E

∑
S∈∂E

qSun
S|S|= 0, ∀qS ∈ QS. (3.3)

where V E
S is the finite element space of vector-valued functions defined by their

fluxes on the edges seen from each element (two fluxes), QS is the space of affine
functions defined by their fluxes on the edges and QE is the space of P0 functions
on the elements.

In the case of the semi-continuous element, V E
S is replaced by VS the same space but

with fluxes equal on the left and right of each inner edge S of the mesh; in that case
the third equation is not needed.

4. Implementation in freefem++

The Raviart-Thomas element RT0 and the totally discontinuous RT0 were already
in freefem++, which, by the way, handles only triangles. By dividing the triangles
in 3 sub-element, as shown in Figure 1, the logistic of the element is the same as
RT0 and the interpolation inside the element is similar.

Indeed the hat function ϕ j associated with the edge opposite vertex q j is propor-
tional to~x−~q j and the value of this function at the one of the two other vertices qi is
exactly equal to the value given by (2.7) when wn

S = δi j. So instead of assigning ϕ i

to the opposite edge, one assign it to the quadrangle which contains q j; this amounts
to 3 extra lines of C++ code only. As the sub-elements have the same area, the only
thing needed is to make sure that integrals are computed by a quadrature formula
which uses the vertices for quadrature points (see the keyword qf1pTlump below),
namely mass lumping.

The program in Figure 2 shows the script to solve −∆p = 1, p|Γ = 0 with Ω =
(0,1)2. An error plot on fig. 2 for this problem shows that the method is indeed of
order one with respect to the mesh size. A problem with discontinuous coefficient
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and analytical answer was also tested and similarly perfect order one L2 error was
observed.

To test the full convection-diffusion equation we solved the rotating hill problem
in the unit square discretized on a 40×40 uniform mesh with δ t = 0.1,

p(x,y,0) = e−100∗((x−0.75)2+(y−0.75)2), ν = 0.001 and

a = (y− 1
2
,
1
2
− x),A11 = ν ∗ (1+(x <

1
2
)),A22 = ν ,A12 =−

ν

2
,A21 = 0. (4.1)

The solver at each time step is programmed by (pt is pm|T and pto is pm−1|T )

problem kuz([pe,pt,u1,u2],[qe,qt,v1,v2])
= int2d(th,qft=qf1pTlump)( [u1,u2]’*[[D11,D12],[D21,D22]]*[v1,v2] )
+ int2d(th)(pt*qt/dt)
+ intalledges(th)( (pe-pt)*(v1*N.x+v2*N.y) + (u1*N.x+u2*N.y)*(qt+qe/2) )
- int2d(th)((f + ptold(x-a1*dt,y-a2*dt)/dt)*qt ) + on(1,2,3,4,pe=0);

After half a turn the hill has decreased due to diffusion as shown in Figure 2.

4.1. Performance on the black oil problem

To enhance the oil recovery, an hydrocarbon solvent or water is injected by a well
to push the oil into the recovering well. When the fluids are miscible and incom-
pressible, the replacement may be governed by the following set of equations (see
[1]),

∇ ·u = 0, u = − k
µ(c)

∇p, (4.2)

ϕ
∂c
∂ t

+∇ · (uc) = D∇
2c, (4.3)

where the domain is considered to be a unit square, u is the velocity of fluid, p is
fluid pressure, c the volume fraction of solvent, ϕ the porosity, k the permeability
of the medium, D is a constant diffusion coefficient and µ is the viscosity of the
homogeneous mixture of oil and solvent which is a function of c and given as (due
to Koval [4]),

µ(c) =
[
µ
−1/4
s c+µ

−1/4
o (1− c)+ ε

]−4
, (4.4)

µs and µo represent viscosities of solvent and oil respectively and ε is a small num-
ber to insure that µ is always strictly positive.

The non-dimensional form of the governing equations are written as,

∇ ·u = 0, ∇p = −
[
c+(1− c)M−1/4

]−4
u, (4.5)

∂c
∂ t

+∇ · (uc) = Pe∇
2c, (4.6)
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Figure 2. Freefem script (top) and results (middle) on −∆p = 1, p|Γ−0 by the totally discontinuous
mimetic element. In the middle on the left the log-log error plot has a slope equal to -1.1 . Bottom: the
rotating hill at t = 0 and at t = 3.1. On the right a zoom around the tip of the hill shows the velocity
field at final time.
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where reservoir length L is the length scale, ϕL/U the time scale, U is represent-
ative flux of fluid, pressure is made non-dimensional by the term LUµs/k, Péclet
number Pe =UL/D and the mobility ratio M = µo/µs.

The boundary conditions are taken as,

c = 1, p = 1, at the injection well and p = 0, at the recovery well (4.7)

Normal derivatives of c and p are assumed to be zero on the remaining boundar-
ies; in the freefem script these boundary conditions are applied by adding to the
definitions of the PDE of u, p

+int1d(th,r1)([v1,v2]’*[N.x,N.y]*1)+on(s1,s2,s3,s4,u1=0,u2=0)

where r1 is the injecting well and s1,s2,s3,s4 are the sides of the square do-
main. Notice that even though u1 = u2 = 0 is specified, freefem will automatically
select only the normal component and enforce u ·n = 0 .Similarly for the PDE for
c and its gradient a=∇c is

problem concentration([c,a1,a2],[wt,b1,b2])
= int2d(th,qft=qf1pTlump)( [a1,a2]’*[b1,b2] / Pe )
+ intalledges(th)(-c*(b1*N.x+b2*N.y) + (a1*N.x+a2*N.y)*wt)
+ int2d(th)(c*wt/dt)
- int2d(th)( convect([u1,u2],-dt,c_old)*wt/dt)
+ on(r1,s1,s2,s3,s4,a1=0,a2=0) + on(r1,c=1)

First we made a test to assert the precision of the method when the porosity is
highly discontinuous. So we solved in the unit square

∇ ·u = 0, u =−K∇p, p(0,y) = 1, p(1,y) = 0,
∂ p
∂x

= 0 at y = 0,1 (4.8)

with K =K0+(K1−K0)1x>0.5 with very large values of K1/K0. The L2 error plot on
p shown on figure 3 does not depend on K1/K0 in the range [106,1012] and shows
optimal order 1.

Miscible viscous fingering generally occur at high value of Péclet number Pe
[4],[1]. For the numerical simulation M and Pe are taken as M = 5 and Pe = 3000
respectively and ε = 0.1. Calculations are performed on a mesh with 10760 vertices
and 21138 triangles with a time step of 0.02. Results are shown on fig. 4 at T=3.
A comparison is made with the P1-element for both equations; the computing time
is twice shorter with the later which however is known to be is less stable on these
problems in general (but stable here). Because fingering is an unstable phenomenon
one cannot expect that both methods would give the same results. Nevertheless the
results are of similar nature and time scale.
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Figure 3. The L2 error plot on p solution (4.8) for 4 uniform meshes from 40×40 to 160×160 and
K1/K0 = 109

Conclusion

We have shown that it is easy to implement the mimetic methods in freefem++, at
least in the case of low order polynomials. However freefem++ is limited to triangles
only, a restriction that kills much of the qualities of mimetic approximations. In the
future we plan to extend this work in two directions:

1. Create an element which can be divided by a line representing a fault and on
which the permeability can take two different values and use mime tics on
both parts.

2. Allow the user to cluster triangles and define his mimetic approximation on
these clusters.
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