
Floating point numbers in Scilab

Michaël Baudin

May 2011

Abstract
This document is a small introduction to floating point numbers in Scilab.

In the first part, we describe the theory of floating point numbers. We present
the definition of a floating point system and of a floating point number. Then
we present various representation of floating point numbers, including the
sign-significand representation. We present the extreme floating point of a
given system and compute the spacing between floating point numbers. Fi-
nally, we present the rounding error of representation of floats. In the second
part, we present floating point numbers in Scilab. We present the IEEE dou-
bles used in Scilab and explain why 0.1 is rounded with binary floats. We
present a standard model for floating point arithmetic and some examples of
rounded arithmetic operations. We analyze overflow and gradual underflow
in Scilab and present the infinity and Nan numbers in Scilab. We explore
the effect of the signed zeros on simple examples. Many examples are pro-
vided throughout this document, which ends with a set of exercises, with their
answers.

Contents

1 Introduction 4

2 Floating point numbers 4
2.1 Overview . 4
2.2 Controlling the precision of the display 5
2.3 Portable formatting of doubles . 7
2.4 Definition . 8
2.5 Sign-significand floating point representation 10
2.6 Normal and subnormal numbers . 11
2.7 B-ary representation and the implicit bit 14
2.8 Extreme floating point numbers . 17
2.9 A toy system . 17
2.10 Spacing between floating point numbers 21
2.11 Rounding modes . 24
2.12 Rounding error of representation . 25
2.13 Other floating point systems . 27
2.14 Exercises . 28
2.15 Answers to exercises . 29

1

3 Floating point numbers in Scilab 31
3.1 IEEE doubles . 31
3.2 Why 0.1 is rounded . 34
3.3 Standard arithmetic model . 36
3.4 Rounding properties of arithmetic . 38
3.5 Overflow and gradual underflow . 39
3.6 Infinity, Not-a-Number and the IEEE mode 41
3.7 Machine epsilon . 44
3.8 Signed zeros . 45
3.9 Infinite complex numbers . 46
3.10 Notes and references . 47
3.11 Exercises . 47
3.12 Answers to exercises . 50

Bibliography 56

Index 58

2

Copyright c© 2008-2011 - Michael Baudin
This file must be used under the terms of the Creative Commons Attribution-

ShareAlike 3.0 Unported License:

http://creativecommons.org/licenses/by-sa/3.0

3

http://creativecommons.org/licenses/by-sa/3.0

Sign

64 163 53 52

Exponent Significand

Figure 1: An IEEE-754 64 bits binary floating point number.

1 Introduction

This document is an open-source project. The LATEX sources are available on the
Scilab Forge:

http://forge.scilab.org/index.php/p/docscifloat/

The LATEX sources are provided under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported License:

http://creativecommons.org/licenses/by-sa/3.0

The Scilab scripts are provided on the Forge, inside the project, under the scripts

sub-directory. The scripts are available under the CeCiLL license:

http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

2 Floating point numbers

In this section, we focus on the fact that real variables are stored with limited
precision in Scilab.

Floating point numbers are at the core of numerical computations (as in Scilab,
Matlab and Octave, for example), as opposed to symbolic computations (as in Maple,
Mathematica or Maxima, for example). The limited precision of floating point
numbers has a fundamental importance in Scilab. Indeed, many algorithms used
in linear algebra, optimization, statistics and most computational fields are deeply
modified in order to be able to provide the best possible accuracy.

The first section is a brief overview of floating point numbers. Then we present
the format function, which allows to see the significant digits of double variables.

2.1 Overview

Real variables are stored by Scilab with 64 bits floating point numbers. That implies
that there are 52 significant bits, which correspond to approximately 16 decimal
digits. One digit allows to store the sign of the number. The 11 binary digits left
are used to store the signed exponent. This way of storing floating point numbers
is defined in the IEEE 754 standard [20, 12]. The figure 1 presents an IEEE 754 64
bits double precision floating point number.

This is why we sometimes use the term double to refer to real variables in Scilab.
Indeed, this corresponds to the way these variables are implemented in Scilab’s

4

http://forge.scilab.org/index.php/p/docscifloat/
http://creativecommons.org/licenses/by-sa/3.0
http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

source code, where they are associated with double precision, that is, twice the
precision of a basic real variable.

The set of floating point numbers is not a continuum, it is a finite set. There
are 264 ≈ 1019 different doubles in Scilab. These numbers are not equally spaced,
there are holes between consecutive floating point numbers. The absolute size of the
holes is not always the same ; the size of the holes is relative to the magnitude of
the numbers. This relative size is called the machine precision.

The pre-defined variable %eps, which stands for epsilon, stores the relative preci-
sion associated with 64 bits floating point numbers. The relative precision %eps can
be associated with the number of exact digits of a real value which magnitude is 1.
In Scilab, the value of %eps is approximately 10−16, which implies that real variables
are associated with approximately 16 exact decimal digits. In the following session,
we check the property of εM which satisfies is the smallest floating point number
satisfying 1 + εM 6= 1 and 1 + 1

2
εM = 1, when 1 is stored as a 64 bits floating point

number.

-->format (18)

-->%eps

%eps =

2.22044604925D-16

-->1+%eps ==1

ans =

F

-->1+%eps /2==1

ans =

T

2.2 Controlling the precision of the display

In this section, we present the format function, which allows to control the precision
of the display of variables. Indeed, when we use floating point numbers, we strive to
get accurate significant digits. In this context, it is necessary to be able to actually
see these digits and the format function is designed for that purpose.

By default, 10 characters are displayed by Scilab for each real number. These
ten characters include the sign, the decimal point and, if required, the exponent. In
the following session, we compute Euler’s constant e and its opposite −e. Notice
that, in both cases, no more that 10 characters are displayed.

-->x = exp (1)

x =

2.7182818

-->-exp(1)

ans =

- 2.7182818

It may happen that we need to have more precision for our results. To control
the display of real variables, we can use the format function. In order to increase
the number of displayed digits, we can set the number of displayed digits to 18.

-->format (18)

-->exp (1)

ans =

5

2.718281828459045

We now have 15 significant digits of Euler’s constant. To reset the formatting back
to its default value, we set it to 10.

-->format (10)

-->exp (1)

ans =

2.7182818

When we manage a large or small number, it is more convenient to process its
scientific notation, that is, its representation in the form a ·10b, where the coefficient
a is a real number and the exponent b is a negative or positive integer. In the
following session, we compute e100.

-->exp (100)

ans =

2.688D+43

Notice that 9 characters are displayed in the previous session. Since one character
is reserved for the sign of the number, the previous format indeed corresponds to
the default number of characters, that is 10. Four characters have been consumed
by the exponent and the number of significant digits in the fraction is reduced to 3.
In order to increase the number of significant digits, we often use the format(25)

command, as in the following session.

-->format (25)

-->x = exp (100)

x =

2.688117141816135609D+43

We now have a lot more digits in the result. We may wonder how many of these
digits are correct, that is, what are the significant digits of this result. In order to
know this, we compute e100 with a symbolic computation system [19]. We get

2.68811714181613544841262555158001358736111187737 . . .× 1043. (1)

We notice that the last digits 609 in the result produced by Scilab are not correct.
In this particular case, the result produced by Scilab is correct up to 15 decimal
digits. In the following session, we compute the relative error between the result
produced by Scilab and the exact result.

-->y = 2.68811714181613544841262555158001358736111187737 d43

y =

2.688117141816135609D+43

-->abs(x-y)/abs(y)

ans =

0.

We conclude that the floating point representation of the exact result, i.e. y is
equal to the computed result, i.e. x. In fact, the wrong digits 609 displayed in the
console are produced by the algorithm which converts the internal floating point
binary number into the output decimal number. Hence, if the number of digits
required by the format function is larger than the number of actual significant
digits in the floating point number, the last displayed decimal digits are wrong. In

6

general, the number of correct significant digits is, at best, from 15 to 17, because
this approximately corresponds to the relative precision of binary double precision
floating point numbers, that is %eps=2.220D-16.

Another possibility to display floating point numbers is to use the ”e”-format,
which displays the exponent of the number.

-->format("e")

-->exp (1)

ans =

2.718D+00

In order to display more significant digits, we can use the second argument of the
format function. Because some digits are consumed by the exponent ”D+00”, we
must now allow 25 digits for the display.

-->format("e" ,25)

-->exp (1)

ans =

2.718281828459045091D+00

2.3 Portable formatting of doubles

The format function is so that the console produces a string which exponent does
not depend on the operating system. This is because the formatting algorithm
configured by the format function is implemented at the Scilab level.

By opposition, the %e format of the strings produced by the printf function (and
the associated mprintf, msprintf, sprintf and ssprintf functions) is operating
system dependent. As an example, consider the following script.

x=1.e-4; mprintf("%e",x)

On a Windows 32 bits system, this produces

1.000000e-004

while on a Linux 64 bits system, this produces

1.000000e-04

On many Linux systems, three digits are displayed while two or three digits (de-
pending on the exponent) are displayed on many Windows systems.

Hence, in order to produce a portable string, we can use a combination of the
format and string functions. For example, the following script always produces
the same result whatever the platform. Notice that the number of digits in the
exponent depends on the actual value of the exponent.

-->format("e" ,25)

-->x=-1.e99

x =

- 9.999999999999999673D+98

-->mprintf("x=%s",string(x))

x= -9.999999999999999673D+98

-->y=-1.e308

y =

- 1.000000000000000011+308

-->mprintf("y=%s",string(y))

y= -1.000000000000000011+308

7

2.4 Definition

In this section, we give a mathematical definition of a floating point system. We
give the example of the floating point system used in Scilab. On such a system,
we define a floating point number. We analyze how to compute the floating point
representation of a double.

Definition 2.1. (Floating point system) A floating point system is defined by the
four integers β, p, emin and emax where

• β ∈ N is the radix and satisfies β ≥ 2,

• p ∈ N is the precision and satisfies p ≥ 2,

• emin, emax ∈ N are the extremal exponents such that

emin < 0 < emax. (2)

Example 2.1 Consider the following floating point system:

• β = 2,

• p = 53,

• emin = −1022

• emax = 1023.

This corresponds to IEEE double precision floating point numbers. We will review
this floating point system extensively in the next sections.

A lot of floating point numbers can be represented using the IEEE double system.
This is why, in the examples, we will often consider simpler floating point systems.
For example, we will consider the floating point system with radix β = 2, precision
p = 3 and exponent range emin = −2 and emax = 3.

With a floating point system, we can represent floating point numbers as intro-
duced in the following definition.

Definition 2.2. (Floating point number) A floating point number x is a real number
x ∈ R for which there exists at least one representation (M, e) such that

x = M · βe−p+1, (3)

where

• M ∈ N is called the integral significand and satisfies

|M | < βp, (4)

• e ∈ N is called the exponent and satisfies

emin ≤ e ≤ emax. (5)

8

Example 2.2 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The real number x = 4 can be represented by the floating point number (M, e) =
(4, 2). Indeed, we have

x = 4 · 22−3+1 = 4 · 20 = 4. (6)

Let us check that the equations 4 and 5 are satisfied. The integral significand M
satisfies M = 4 ≤ βp− 1 = 23− 1 = 7 and the exponent e satisfies emin = −2 ≤ e =
2 ≤ emax = 3 so that this number is a floating point number.

In the previous definition, we state that a floating point number is a real number
x ∈ R for which there exists at least one representation (M, e) such that the equation
3 holds. By at least, we mean that it might happen that the real number x is either
too large or too small. In this case, no couple (M, e) can be found to satisfy the
equations 3, 4 and 5. This point will be reviewed later, when we will consider the
problem of overflow and underflow.

Moreover, we may be able to find more than one floating point representation of
x. This situation is presented in the following example.

Example 2.3 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

Consider the real number x = 3 ∈ R. It can be represented by the floating point
number (M, e) = (6, 1). Indeed, we have

x = 6 · 21−3+1 = 6 · 2−1 = 3. (7)

Let us check that the equations 4 and 5 are satisfied. The integral significand M
satisfies M = 6 ≤ βp − 1 = 23 − 1 = 7 and the exponent e satisfies emin = −2 ≤
e = 1 ≤ emax = 3 so that this number is a floating point number. In order to find
another floating point representation of x, we could divide M by 2 and add 1 to the
exponent. This leads to the floating point number (M, e) = (3, 2). Indeed, we have

x = 3 · 22−3+1 = 3 · 20 = 3. (8)

The equations 4 and 5 are still satisfied. Therefore the couple (M, e) = (3, 2) is
another floating point representation of x = 3. This point will be reviewed later
when we will present normalized numbers.

The following definition introduces the quantum. This term will be reviewed in
the context of the notion of ulp, which will be analyzed in the next sections.

Definition 2.3. (Quantum) Let x ∈ R and let (M, e) its floating point representa-
tion. The quantum of the representation of x is

βe−p+1 (9)

and the quantum exponent is

q = e− p+ 1. (10)

There are two different types of limitations which occur in the context of floating
point computations.

9

• The finiteness of p is limitation on precision.

• The inequalities 5 on the exponent implies a limitation on the range of floating
point numbers.

This leads to consider the set of all floating point numbers as a subset of the real
numbers, as in the following definition.

Definition 2.4. (Floating point set) Consider a floating point system defined by β,
p, emin and emax. Let x ∈ R. The set of all floating point numbers is F as defined
by

F = {M · βe−p+1||M | ≤ βp − 1, emin ≤ e ≤ emax}. (11)

2.5 Sign-significand floating point representation

In this section, we present the sign-significand floating point representation which
is often used in practice.

Proposition 2.5. (Sign-significand floating point representation) Assume that x
is a nonzero floating point number. Therefore, the number x can be equivalently
defined as

x = (−1)s ·m · βe (12)

where

• s ∈ {0, 1} is the sign of x,

• m ∈ R is the normal significand and satisfies the inequalities

0 ≤ m < β, (13)

• e ∈ N is the exponent and satisfies the inequalities

emin ≤ e ≤ emax. (14)

Obviously, the exponent in the representation of the definition 2.2 is the same as
in the proposition 2.5. In the following proof, we find the relation between m and
M .

Proof. We must prove that the two representations 3 and 12 are equivalent.
First, assume that x ∈ F is a nonzero floating point number in the sense of the

definition 2.2. Then, let us define the sign s ∈ {0, 1} by

s =

{
0, if x > 0,
1, if x < 0.

(15)

Let us define the normal significand by

m = |M |β1−p. (16)

10

This implies |M | = mβp−1. Since the integral significand M has the same sign as x,
we have M = (−1)smβp−1. Hence, by the equation 3, we have

x = (−1)smβp−1βe−p+1 (17)

= (−1)smβe, (18)

which concludes the first part of the proof.
Second, assume that x ∈ F is a nonzero floating point number in the sense of

the proposition 2.5. Let us define the integral significand M by

M = (−1)smβp−1. (19)

This implies (−1)sm = Mβ1−p. Hence, by the equation 12, we have

x = Mβ1−pβe (20)

= Mβe−p+1, (21)

which concludes the second part of the proof.

Notice that we carefully assumed that x be nonzero. Indeed, if x = 0, then m
must be equal to zero, while the two different signs s = 0 and s = 1 produce the
same result. This leads in practice to consider the two signed zeros -0 and +0. This
point will be reviewed lated in the context of the analysis of IEEE 754 doubles.

Example 2.4 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The real number x = 4 can be represented by the floating point number (s,m, e) =
(0, 1, 2). Indeed, we have

x = (−1)0 · 1 · 22 = 1 · 22 = 4. (22)

The equation 13 is satisfied, since m = 1 < β = 2.

2.6 Normal and subnormal numbers

In order to make sure that each real number has a unique representation, we must
impose bounds on the integral significand M .

Proposition 2.6. (Normalized floating point numbers) Floating point numbers are
normalized if the integral significand satisfies

βp−1 ≤ |M | < βp. (23)

If x is a nonzero normalized floating point number, therefore its floating point rep-
resentation (M, e) is unique and the exponent e satisfies

e = blogβ(|x|)c, (24)

while the integral significand M satisfies

M =
x

βe−p+1
. (25)

11

Proof. First, we prove that a normalized nonzero floating point number has a unique
(M, e) representation. Assume that the floating point number x has the two repre-
sentations (M1, e1) and (M2, e2). By the equation 3, we have

x = M1 · βe1−p+1 = M2 · βe2−p+1, (26)

which implies

|x| = |M1| · βe1−p+1 = |M2| · βe2−p+1. (27)

We can compute the base-β logarithm of |x|, which will lead us to an expression
of the exponent. Notice that we assumed that x 6= 0, which allows us to compute
log(|x|). The previous equation implies

logβ(|x|) = logβ(|M1|) + e1 − p+ 1 = logβ(|M2|) + e2 − p+ 1. (28)

We now extract the largest integer lower or equal to logβ(x) and get

blogβ(|x|)c = blogβ(|M1|)c+ e1 − p+ 1 = blogβ(|M2|)c+ e2 − p+ 1. (29)

We can now find the value of blogβ(M1)c by using the inequalities on the integral
significand. The hypothesis 23 implies

βp−1 ≤ |M1| < βp, βp−1 ≤ |M2| < βp. (30)

We can take the base-β logarithm of the previous inequalities and get

p− 1 ≤ logβ(|M1|) < p, p− 1 ≤ logβ(|M2|) < p. (31)

By the definition of the function b·c, the previous inequalities imply

logβ(|M1|) = logβ(|M2|) = p− 1. (32)

We can finally plug the previous equality into 29, which leads to

blogβ(|x|)c = p− 1 + e1 − p+ 1 = p− 1 + e2 − p+ 1, (33)

which implies

e1 = e2. (34)

The equality 26 immediately implies M1 = M2.
Moreover, the equality 33 implies 24 while 25 is necessary for the equality x =

M · βe−p+1 to hold.

Example 2.5 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

We have seen in example 2.3 that the real number x = 3 can be represented
both by (M, e) = (6, 1) and (M, e) = (3, 2). In order to see which floating point
representation is normalized, we evaluate the bounds in the inequalities 23. We
have βp−1 = 23−1 = 4 and βp = 23 = 8. Therefore, the floating point representation
(M, e) = (6, 1) is normalized while the floating point representation (M, e) = (3, 2)
is not normalized.

12

The proposition 2.6 gives a way to compute the floating point representation of
a given nonzero real number x. In the general case where the radix β is unusual,
we may compute the exponent from the formula logβ(|x|) = log(|x|)/ log(β). If the
radix is equal to 2 or 10, we may use the Scilab functions log2 and log10.

Example 2.6 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

By the equation 24, the real number x = 3 is associated with the exponent

e = blog2(3)c. (35)

In the following Scilab session, we use the log2 and floor functions to compute the
exponent e.

-->x = 3

x =

3.

-->log2(abs(x))

ans =

1.5849625

-->e = floor(log2(abs(x)))

e =

1.

In the following session, we use the equation 25 to compute the integral significand
M .

-->M = x/2^(e-3+1)

M =

6.

We emphasize that the equations 24 and 25 hold only when x is a floating point
number. Indeed, for a general real number x ∈ R, there is no reason why the
exponent e, computed from 24, should satisfy the inequalities emin ≤ e ≤ emax.
There is also no reason why the integral significand M , computed from 25, should
be an integer.

There are cases where the real number x cannot be represented by a normalized
floating point number, but can still be represented by some couple (M, e). These
cases lead to the subnormal numbers.

Definition 2.7. (Subnormal floating point numbers) A subnormal floating point
number is associated with the floating point representation (M, e) where e = emin
and the integral significand satisfies the inequality

|M | < βp−1. (36)

The term denormal number is often used too.

Example 2.7 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

Consider the real number x = 0.125. In the following session, we compute the
exponent e by the equation 24.

13

-->x = 0.125

x =

0.125

-->e = floor(log2(abs(x)))

e =

- 3.

We find an exponent which does not satisfy the inequalities emin ≤ e ≤ emax.
The real number x might still be representable as a subnormal number. We set
e = emin = −2 and compute the integral significand by the equation 25.

-->e=-2

e =

- 2.

-->M = x/2^(e -3+1)

M =

2.

We find that the integral significand M = 2 is an integer. Therefore, the couple
(M, e) = (2,−2) is a subnormal floating point representation for the real number
x = 0.125.

Example 2.8 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

Consider the real number x = 0.1. In the following session, we compute the
exponent e by the equation 24.

-->x = 0.1

x =

0.1

-->e = floor(log2(abs(x)))

e =

- 4.

We find an exponent which is too small. Therefore, we set e = −2 and try to
compute the integral significand.

-->e=-2

e =

- 2.

-->M = x/2^(e -3+1)

M =

1.6

This time, we find a value of M which is not an integer. Therefore, in the current
floating point system, there is no exact floating point representation of the number
x = 0.1.

If x = 0, we select M = 0, but any value of the exponent allows to represent x.
Indeed, we cannot use the expression log(|x|) anymore.

2.7 B-ary representation and the implicit bit

In this section, we present the β-ary representation of a floating point number.

14

Proposition 2.8. (B-ary representation) Assume that x is a floating point number.
Therefore, the floating point number x can be expressed as

x = ±
(
d1 +

d2
β

+ . . .+
dp
βp−1

)
· βe, (37)

which is denoted by

x = ±(d1.d2 · · · dp)β · βe. (38)

Proof. By the definition 2.2, there exists (M, e) so that x = M · βe with emin ≤ e ≤
emax and |M | < βp. The inequality |M | < βp implies that there exists at most p
digits di which allow to decompose the positive integer |M | in base β. Hence,

|M | = d1β
p−1 + d2β

p−2 + . . .+ dp, (39)

where 0 ≤ di ≤ β − 1 for i = 1, 2, . . . , p. We plug the previous decomposition into
x = M · βe and get

x = ±
(
d1β

p−1 + d2β
p−2 + . . .+ dp

)
βe−p+1 (40)

= ±
(
d1 +

d2
β

+ . . .+
dp
βp−1

)
βe, (41)

which concludes the proof.

The equality of the expressions 37 and 12 allows to see that the digits di are
simply computed from the β-ary expansion of the normal significand m.

Example 2.9 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The normalized floating point number x = −0.3125 is represented by the couple
(M, e) with M = −5 and e = −2 since x = −0.3125 = −5 · 2−2−3+1 = −5 · 2−4.
Alternatively, it is represented by the triplet (s,m, e) with m = 1.25 since x =
−0.3125 = (−1)1 · 1.25 · 2−2. The binary decomposition of m is 1.25 = (1.01)2 =
1 + 0 · 1

2
+ 1 · 1

4
. This allows to write x as x = −(1.01)2 · 2−2.

Proposition 2.9. (Leading bit of a b-ary representation) Assume that x is a float-
ing point number. If x is a normalized number, therefore the leading digit d1 of the
β-ary representation of x defined by the equation 37 is nonzero. If x is a subnormal
number, therefore the leading digit is zero.

Proof. Assume that x is a normalized floating point number and consider its repre-
sentation x = M ·βe−p+1 where the integral significand M satisfies βp−1 ≤ |M | < βp.
Let us prove that the leading digit of x is nonzero. We can decompose |M | in base
β. Hence,

|M | = d1β
p−1 + d2β

p−2 + . . .+ dp, (42)

where 0 ≤ di ≤ β − 1 for i = 1, 2, . . . , p. We must prove that d1 6= 0. The proof
will proceed by contradiction. Assume that d1 = 0. Therefore, the representation
of |M | simplifies to

|M | = d2β
p−2 + d3β

p−3 + . . .+ dp. (43)

15

Since the digits di satisfy the inequality di ≤ β − 1, we have the inequality

|M | ≤ (β − 1)βp−1 + (β − 1)βp−2 + . . .+ (β − 1). (44)

We can factor the term β − 1 in the previous expression, which leads to

|M | ≤ (β − 1)(βp−1 + βp−2 + . . .+ 1). (45)

From calculus, we know that, for any number y and any positive integer n, we have
1 + y + y2 + . . .+ yn = (yn+1 − 1)/(y − 1). Hence, the inequality 45 implies

|M | ≤ βp−1 − 1. (46)

The previous inequality is a contradiction, since, by assumption, we have βp−1 ≤
|M |. Therefore, the leading digit d1 is nonzero, which concludes the first part of the
proof.

We now prove that, if x is a subnormal number, therefore its leading digit is
zero. By the definition 2.7, we have |M | < βp−1. This implies that there exist p− 1
digits di for i = 2, 3, . . . , p such that

|M | = d2β
p−2 + d3β

p−3 + . . .+ dp. (47)

Hence, we have d1 = 0, which concludes the proof.

The proposition 2.9 implies that, in radix 2, a normalized floating point number
can be written as

x = ±(1.d2 · · · dp)β · βe, (48)

while a subnormal floating point number can be written as

x = ±(0.d2 · · · dp)β · βe. (49)

In practice, a special encoding allows to see if a number is normal or subnormal.
Hence, there is no need to store the first bit of its significand: this is the hidden bit
or implicit bit.

For example, the IEEE 754 standard for double precision floating point numbers
is associated with the precision p = 53 bits, while 52 bits only are stored in the
normal significand.

Example 2.10 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

We have already seen that the normalized floating point number x = −0.3125 is
associated with a leading 1, since it is represented by x = −(1.01)2 · 2−2.

On the other side, consider the floating point number x = 0.125 and let us
check that the leading bit of the normal significand is zero. It is represented by
x = (−1)0 · 0.5 · 2−2, which leads to x = (−1)0 · (0.10)2 · 2−2.

16

2.8 Extreme floating point numbers

In this section, we focus on the extreme floating point numbers associated with a
given floating point system.

Proposition 2.10. (Extreme floating point numbers) Consider the floating point
system β, p, emin, emax.

• The smallest positive normal floating point number is

µ = βemin . (50)

• The largest positive normal floating point number is

Ω = (β − β1−p)βemax . (51)

• The smallest positive subnormal floating point number is

α = βemin−p+1. (52)

Proof. The smallest positive normal integral significand is M = βp−1. Since the
smallest exponent is emin, we have µ = βp−1 · βemin−p+1, which simplifies to the
equation 50.

The largest positive normal integral significand is M = βp− 1. Since the largest
exponent is emax, we have Ω = (βp − 1) · βemax−p+1 which simplifies to the equation
51.

The smallest positive subnormal integral significand is M = 1. Therefore, we
have α = 1 · βemin−p+1, which leads to the equation 52.

Example 2.11 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The smallest positive normal floating point number is µ = 2−2 = 0.25. The
largest positive normal floating point number is Ω = (2 − 2−2) · 23 = 16 − 2 = 14.
The smallest positive subnormal floating point number is α = 2−4 = 0.0625.

2.9 A toy system

In order to see this, we consider the floating point system with radix β = 2, precision
p = 3 and exponent range emin = −2 and emax = 3. The following Scilab script
defines these variables.

radix = 2

p = 3

emin = -2

emax = 3

On such a simple floating point system, it is easy to compute all representable
floating point numbers. In the following script, we compute the minimum and
maximum integral significand M of positive normalized numbers, as defined by the
inequalities 23, that is Mmin = βp−1 and Mmax = βp − 1.

17

-15 -10 -5 0 5 10 15

Figure 2: Floating point numbers in the floating point system with radix β = 2,
precision p = 3 and exponent range emin = −2 and emax = 3.

-->Mmin = radix ^(p - 1)

Mmin =

4.

-->Mmax = radix^p - 1

Mmax =

7.

In the following script, we compute all the normalized floating point numbers which
can be computed from the equation x = M · βe−p+1, with M in the intervals
[−Mmax,−Mmin] and [Mmin,Mmax] and e in the interval [emin, emax].

f = [];

for e = emax : -1 : emin

for M = -Mmax : -Mmin

f($+1) = M * radix ^(e - p + 1);

end

end

f($+1) = 0;

for e = emin : emax

for M = Mmin : Mmax

f($+1) = M * radix ^(e - p + 1);

end

end

The previous script produces the following numbers;
-14, -12, -10, -8, -7, -6, -5, -4, -3.5, -3, -2.5, -2, -1.75, -1.5, -1.25, -1, -0.875, -0.75,
-0.625, -0.5, -0.4375, -0.375, -0.3125, -0.25, 0, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625,
0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 14.
These floating point numbers are presented in the figure 2. Notice that there are
much more numbers in the neighbourhood of zero, than on the left and right hand
sides of the picture. This figure shows clearly that the space between adjacent
floating point numbers depend on their magnitude.

In order to see more clearly what happens, we present in the figure 3 only the
positive normal floating point numbers. This figure shows more clearly that, when-
ever a floating point numbers is of the form 2e, then the space between adjacent
numbers is multiplied by a factor 2.

The previous list of numbers included only normal numbers. In order to include
subnormal numbers in our list, we must add two loops, associated with e = emin

18

0 5 10 15

Figure 3: Positive floating point numbers in the floating point system with radix
β = 2, precision p = 3 and exponent range emin = −2 and emax = 3 – Only normal
numbers (denormals are excluded).

and integral significands from −Mmin to −1 and from 1 to Mmin.

f = [];

for e = emax : -1 : emin

for M = -Mmax : -Mmin

f($+1) = M * radix ^(e - p + 1);

end

end

e = emin;

for M = -Mmin + 1 : -1

f($+1) = M * radix ^(e - p + 1);

end

f($+1) = 0;

e = emin;

for M = 1 : Mmin - 1

f($+1) = M * radix ^(e - p + 1);

end

for e = emin : emax

for M = Mmin : Mmax

f($+1) = M * radix ^(e - p + 1);

end

end

The previous script produces the following numbers, where we wrote in bold face
the subnormal numbers.
-14, -12, -10, -8, -7, -6, -5, -4, -3.5, -3, -2.5, -2, -1.75, -1.5, -1.25, -1, -0.875, -0.75,
-0.625, -0.5, -0.4375, -0.375, -0.3125, -0.25, -0.1875, -0.125, -0.0625, 0., 0.0625,
0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75,
2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 14.

The figure 4 present the list of floating point numbers, where subnormal numbers
are included. Compared to the figure 3, we see that the subnormal numbers allows
to fill the space between zero and the smallest normal positive floating point number.

Finally, the figures 5 and 6 present the positive floating point numbers in (base
10) logarithmic scale, with and without denormals. In this scale, the numbers are
more equally spaced, as expected.

19

0 2 4 6 8 10 12 14 16

Subnormal Numbers

Figure 4: Positive floating point numbers in the floating point system with radix
β = 2, precision p = 3 and exponent range emin = −2 and emax = 3 – Denormals
are included.

10 10 10 10 10
-2 -1 0 1 2

With Denormals

Figure 5: Positive floating point numbers in the floating point system with radix
β = 2, precision p = 3 and exponent range emin = −2 and emax = 3 – With
denormals. Logarithmic scale.

10 10 10 10
-1 0 1 2

Without Denormals

Figure 6: Positive floating point numbers in the floating point system with radix
β = 2, precision p = 3 and exponent range emin = −2 and emax = 3 – Without
denormals. Logarithmic scale.

20

2.10 Spacing between floating point numbers

In this section, we compute the spacing between floating point numbers and intro-
ducing the machine epsilon.

The floating point numbers in a floating point system are not equally spaced.
Indeed, the difference between two consecutive floating point numbers depend on
their magnitude.

Let x be a floating point number. We denote by x+ the next larger floating point
number and x− the next smaller. We have

x− < x < x+, (53)

and we are interested in the distance between these numbers, that is, we would like
to compute x+ − x and x− x−.

We are particularily interested in the spacing between the number x = 1 and the
next floating point number.

Example 2.12 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The floating point number x = 1 is represented by M = 4 and e = 0, since
1 = 4 · 20−3+1. The next floating point number is represented by M = 5 and e = 0.
This leads to x+ = 5 · 20−3+1 = 5 · 2−2 = 1.25. Hence, the difference between these
two numbers is 0.25 = 2−2.

The previous example leads to the definition of the machine epsilon.

Proposition 2.11. (Machine epsilon) The spacing between the floating point num-
ber x = 1 and the next larger floating point number x+ is the machine epsilon, which
satisfies

εM = β1−p. (54)

Proof. We first have to compute the floating point representation of x = 1. Consider
the integral significand M = βp−1 and the exponent e = 0. We have M · βe−p+1 =
βp−1 · β1−p = 1. This shows that the floating point number x = 1 is represented by
M = βp−1 and e = 0.

The next floating point number x+ is therefore represented by M+ = M + 1 and
e = 0. Therefore, x+ = (1 +βp−1) ·β1−p. The difference between these two numbers
is x+ − x = 1 · β1−p, which concludes the proof.

In the following example, we compute the distance between x and x−, in the
particular case where x is of the form βe. We consider the particular case x = 20 = 1.

Example 2.13 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

The floating point number x = 1 is represented by M = 4 and e = 0, since
1 = 4 · 20−3+1. The previous floating point number x− = 0.875 is represented by
M = 7 and e = −1, since x− = 7 · 2−1−3+1 = 7 · 2−3. Hence, the difference between
these two numbers is 0.125 = 1

2
· 0.25 which can be written 0.125 = 1

2
εM , since

εM = 0.25 for this system.

21

The next proposition allows to know the distance between x and its adjacent
floating point number, in the general case.

Proposition 2.12. (Spacing between floating point numbers) Let x be a normal-
ized floating point number. Assume that y is an adjacent normalized floating point
number, that is, y = x+ or y = x−. Assume that neither x nor y are zero. Therefore,

1

β
εM |x| ≤ |x− y| ≤ εM |x|. (55)

Proof. We separate the proof in two parts, where the first part focuses on y = x+

and the second part focuses on y = x−.
Assume that y = x+ and let us compute x+−x. Let (M, e) be the floating point

representation of x, so that x = M · βe−p+1. Let us denote by (M+, e+) the floating
point representation of x+. We have x+ = M+ · βe+−p+1.

The next floating point number x+ might have the same exponent e as x, and
a modified integral significand M , or an increased exponent e and the same M .
Depending on the sign of the number, an increased e or M may produce a greater or
a lower value, thus changing the order of the numbers. Therefore, we must separate
the case x > 0 and the case x < 0. Since neither of x or y is zero, we can consider the
case x, y > 0 first and prove the inequality 55. The case x, y < 0 can be processed
in the same way, which lead to the same inequality.

Assume that x, y > 0. If the integral significand M of x is at its upper bound, the
exponent e must be updated: if not, the number would not be normalized anymore.
So we must separate the two following cases: (i) the exponent e is the same for x
and y = x+ and (ii) the integral significand M is the same.

Consider the case where e+ = e. Therefore, M+ = M + 1, which implies

x+ − x = (M + 1) · βe−p+1 −M · βe−p+1 (56)

= βe−p+1. (57)

By the equality 54 defining the machine epsilon, this leads to

x+ − x = εMβ
e. (58)

In order to get an upper bound on x+ − x depending on |x|, we must bound |x|,
depending on the properties of the floating point system. By hypothesis, the number
x is normalized, therefore βp−1 ≤ |M | < βp. This implies

βp−1 · βe−p+1 ≤ |M | · βe−p+1 < βp · βe−p+1. (59)

Hence,

βe ≤ |x| < βe+1, (60)

which implies

1

β
|x| < βe ≤ |x|. (61)

22

We plug the previous inequality into 58 and get

1

β
εM |x| < x+ − x ≤ εM |x|. (62)

Therefore, we have proved a slightly stronger inequality than required: the left
inequality is strict, while the left part of 55 is less or equal than.

Now consider the case where e+ = e+1. This implies that the integral significand
of x is at its upper bound βp − 1, while the integral significand of x+ is at its lower
bound βp−1. Hence, we have

x+ − x = βp−1 · βe+1−p+1 − (βp − 1) · βe−p+1 (63)

= βp · βe−p+1 − (βp − 1) · βe−p+1 (64)

= βe−p+1 (65)

= εMβ
e. (66)

We plug the inequality 61 in the previous equation and get the inequality 62.
We now consider the number y = x−. We must compute the distance x−x−. We

could use our previous inequality, but this would not lead us to the result. Indeed,
let us introduce z = x−. Therefore, we have z+ = x. By the inequality 62, we have

1

β
εM |z| < z+ − z ≤ εM |z|, (67)

which implies

1

β
εM |x−| < x− x− ≤ εM |x−|, (68)

but this is not the inequality we are searching for, since it uses |x−| instead of |x|.
Let (M−, e−) be the floating point representation of x−. We have x− = M− ·

βe
−−p+1. Consider the case where e− = e. Therefore, M− = M − 1, which implies

x− x− = M · βe−p+1 − (M − 1) · βe−p+1 (69)

= βe−p+1 (70)

= εMβ
e. (71)

We plug the inequality 61 into the previous equality and we get

1

β
εM |x| < x− x− ≤ εM |x|. (72)

Consider the case where e− = e− 1. Therefore, the integral significand of x is at
its lower bound βp−1 while the integral significand of x− is at is upper bound βp−1.
Hence, we have

x− x− = βp−1 · βe−p+1 − (βp − 1) · βe−1−p+1 (73)

= βp−1βe−p+1 − (βp−1 − 1

β
)βe−p+1 (74)

=
1

β
βe−p+1 (75)

=
1

β
εMβ

e. (76)

23

0

RN(y)
RZ(y)
RD(y)

y

RU(y)RD(x)

x

RN(x)
RZ(x)
RU(x)

Figure 7: Rounding modes

The integral significand of |x| is βp−1, which implies that

|x| = βp−1 · βe−p+1 = βe. (77)

Therefore,

x− x− =
1

β
εM |x|. (78)

The previous equality proves that the lower bound 1
β
εM |x| can be attained in the

inequality 55 and concludes the proof.

2.11 Rounding modes

In this section, we present the four rounding modes defined by the IEEE 754-2008
standard, including the default round-to-nearest rounding mode.

Assume that x is an arbitrary real number. It might happen that there is a
floating point number in F which is exactly equal to x. In the general case, there
is no such exact representation of x and we must select a floating point number
which approximates x at best. The rules by which we make the selection leads to
rounding. If x is a real number, we denote by fl(x) ∈ F the floating point number
which represents x in the current floating point system. The fl(·) function is the
rounding function.

The IEEE 754-2008 standard defines four rounding modes (see [12], section 4.3
”Rounding-direction attributes”), that is, four rounding functions fl(x).

• round-to-nearest: RN(x) is the floating point number that is the closest to x.

• round-toward-positive: RU(x) is the largest floating point number greater
than or equal to x.

• round-toward-negative: RD(x) is the largest floating point number less than
or equal to x.

• round-toward-zero: RZ(x) is the closest floating point number to x that is no
greater in magnitude than x.

The figure 7 presents the four rounding modes defined by the IEEE 754-2008
standard.

The round-to-nearest mode is the default rounding mode and this is why we
focus on this particular rounding mode. Hence, in the remaining of this document,
we will consider only fl(x) = RN(x).

24

It may happen that the real number x falls exactly between two adjacent floating
point numbers. In this case, we must use a tie-breaking rule to know which floating
point number to select. The IEEE 754-2008 standard defines two tie-breaking rules.

• round ties to even: the nearest floating point number for which the integral
significand is even is selected.

• round ties to away: the nearest floating point number with larger magnitude
is selected.

The default tie-breaking rule is the round ties to even.

Example 2.14 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3.

Consider the real number x = 0.54. This number falls between the two normal
floating point numbers x1 = 0.5 = 4 · 2−1−3+1 and x2 = 0.625 = 5 · 2−1−3+1.
Depending on the rounding mode, the number x might be represented by x1 or x2.
In the following session, we compute the absolute distance between x and the two
numbers x1 and x2.

-->x = 0.54;

-->x1 = 0.5;

-->x2 = 0.625;

-->abs(x-x1)

ans =

0.04

-->abs(x-x2)

ans =

0.085

Hence, the four different rounding of x are

RZ(x) = RN(x) = RD(x) = 0.5, (79)

RU(x) = 0.625. (80)

Consider the real number x = 4.5 · 2−1−3+1 = 0.5625. This number falls exactly
between the two normal floating point numbers x1 = 0.5 and x2 = 0.625. This is a
tie, which must, by default, be solved by the round ties to even rule. The floating
point number with even integral significand is x1, associated with M = 4. Therefore,
we have RN(x) = 0.5.

2.12 Rounding error of representation

In this section, we compute the rounding error committed with the round to nearest
rounding mode and introduce the unit roundoff.

Proposition 2.13. (Unit roundoff) Let x be a real number. Assume that the floating
point system uses the round-to-nearest rounding mode. If x is in the normal range,
therefore

fl(x) = x(1 + δ), |δ| ≤ u, (81)

25

where u is the unit roundoff defined by

u =
1

2
β1−p. (82)

If x is in the subnormal range, therefore

|fl(x)− x| ≤ βemin−p+1. (83)

Hence, if x is in the normal range, the relative error can be bounded, while if x
is in the subnormal range, the absolute error can be bounded. Indeed, if x is in the
subnormal range, the relative error can become large.

Proof. In the first part of the proof, we analyze the case where x is in the normal
range and in, the second part, we analyze the subnormal range.

Assume that x is in the normal range. Therefore, the number x is nonzero, and
we can define δ by the equation

δ =
fl(x)− x

x
. (84)

We must prove that |δ| ≤ 1
2
β1−p. In fact, we will prove that

|fl(x)− x| ≤ 1

2
β1−p|x|. (85)

Let M = x
βe−p+1 ∈ R be the infinitely precise integral significand associated with

x. By assumption, the floating point number fl(x) is normal, which implies that
there exist two integers M1 and M2 such that

β1−p ≤M1,M2 < βp (86)

and

M1 ≤M ≤M2 (87)

with M2 = M1 + 1.
One of the two integers M1 or M2 has to be the nearest to M . This implies that

either M −M1 ≤ 1/2 or M2 −M ≤ 1/2 and we can prove this by contradiction.
Indeed, assume that M −M1 > 1/2 and M2 −M > 1/2. Therefore,

(M −M1) + (M2 −M) > 1. (88)

The previous inequality simplifies to M2−M1 > 1, which contradicts the assumption
M2 = M1 + 1.

Let M be the integer which is the closest to M . We have

M =

{
M1, if M −M1 ≤ 1/2,
M2 if M2 −M ≤ 1/2.

(89)

Therefore, we have |M −M | ≤ 1/2, which implies∣∣∣∣M − x

βe−p+1

∣∣∣∣ ≤ 1

2
. (90)

26

Hence, ∣∣M · βe−p+1 − x
∣∣ ≤ 1

2
βe−p+1, (91)

which implies

|fl(x)− x| ≤ 1

2
βe−p+1. (92)

By assumption, the number x is in the normal range, which implies βp−1 ≤ |M |.
This implies

βp−1 · βe−p+1 ≤ |M | · βe−p+1. (93)

Hence,

βe ≤ |x|. (94)

We plug the previous inequality into the inequality 92 and get

|fl(x)− x| ≤ 1

2
β1−p|x|, (95)

which concludes the first part of the proof.

Assume that x is in the subnormal range. We still have the equation 92. But, by
opposition to the previous case, we cannot rely the expressions βe and |x|. We can
only simplify the equation 92 by introducing the equality e = emin, which concludes
the proof.

Example 2.15 Consider the floating point system with radix β = 2, precision p = 3
and exponent range emin = −2 and emax = 3. For this floating point system, with
round to nearest, the unit roundoff is u = 1

2
21−3 = 0.125.

Consider the real number x = 4.5 · 2−1−3+1 = 0.5625. This number falls exactly
between the two normal floating point numbers x1 = 0.5 and x2 = 0.625. The
round-ties-to-even rule states that fl(x) = 0.5. In this case, the relative error is∣∣∣∣fl(x)− x

x

∣∣∣∣ =

∣∣∣∣0.5− 0.5625

0.5625

∣∣∣∣ = 0.11111111 (96)

We see that this relative error is lower than the unit roundoff, which is consistent
with the proposition 2.13.

2.13 Other floating point systems

As an example of another floating point system, let us consider the Cray-1 machine
[24]. This was the same year where Stevie Wonder released his hit ”I wish”: 1976
[23]. Created by Seymour Cray, the Cray-1 was a successful supercomputer. Based
on vector instructions, the system could peak at 250 MFLOPS.

However, for the purpose of this document, this computer will illustrate the
kind of difficulties which existed before the IEEE standard. The Cray-1 Hardware

27

Sign

0 631 15 16

Exponent Significand

Figure 8: The floating point data format of the single precision number on CRAY-1
(1976).

reference [8] presents the floating point data format used in this system. The figure
8 presents this format.

The radix of this machine is β = 2. The figure 8 implies that the precision is
p = 63 − 16 + 1 = 48. There are 15 bits for the exponent, which would implied
that the exponent range would be from −214 + 1 = −16383 to 214 = 16384. But
the text indicate that the bias that is added to the exponent is 400008 = 4 · 84 =
16384, which shows that the exponent range is from emin = −2 · 84 + 1 = −8191
to emax = 2 · 84 = 8192. This corresponds to the approximate exponent range
from 2−8191 ≈ 10−2466 to 28192 ≈ 102466. This system is associated with the epsilon
machine εM = 21−48 ≈ 7× 10−15 and the unit roundoff is u = 1

2
21−48 ≈ 4× 10−15.

On the Cray-1, the double precision floating point numbers have 96 bits for
the significand and the same exponent range as the single. Hence, doubles on this
system are associated with the epsilon machine εM = 21−96 ≈ 2×10−29 and the unit
roundoff is u = 1

2
21−96 ≈ 1× 10−29.

Machines in these times all had a different floating point arithmetic, which made
the design of floating point programs difficult to design. Moreover, the Cray-1 did
not have a guard digit [11], which makes some arithmetic operations much less
accurate. This was a serious drawback, which, among others, stimulated the need
for a floating point standard.

2.14 Exercises

Exercise 2.1 (Simplified floating point system) The floatingpoint module is an ATOMS
module which allows to analyze floating point numbers. The goal of this exercise is to use this
module to reproduce the figures presented in the section 2.9. To install it, please use the statement:

atomsInstall("floatingpoint");

and restart Scilab.

• The flps systemnew function creates a new virtual floating point system, based on round-
to-nearest. The flps numbereval returns the double f which is the Create a floating point
system associated with radix β = 2, precision p = 3 and exponent range emin = −2 and
emax = 3.

• The flps systemgui function plots a graphics containing the floating point numbers asso-
ciated with a given floating point system. Use this function to reproduce the figures 2, 3
and 4.

Exercise 2.2 (Wobbling precision) In this exercise, we experiment the effect of the magnitude of
the numbers on their relative precision, that is, we analyze a practical application of the proposition
2.13. Consider a floating point system associated with radix β = 2, precision p = 3 and exponent
range emin = −2 and emax = 3. The flps numbernew creates floating point numbers in a given

28

floating point system. The following calling sequence creates the floating point number flpn from
the double x.

flpn = flps_numbernew("double",flps ,x);

evaluation of the floating point number flpn.

f = flps_numbereval (flpn);

• Consider only positive, normal floating point numbers, that is, numbers in the range [0.25, 14].
Consider 1000 such numbers and compare them to their floating point representation, that
is, compute their relative precision.

• Consider now positive, subnormal numbers in the range [0.01, 0.25], and compute their
relative precision.

2.15 Answers to exercises

Answer of Exercise 2.1 (Simplified floating point system) The calling sequence of the flps systemnew

function is

flps = flps_systemnew ("format" , radix , p , ebits)

where radix is the radix, p is the precision and ebits is the number of bits for the exponent.
In the following session, we create a floating point system associated with radix β = 2, precision
p = 3 and exponent range emin = −2 and emax = 3.

-->flps = flps_systemnew ("format", 2 , 3 , 3)

flps =

Floating Point System:

======================

radix= 2

p= 3

emin= -2

emax= 3

vmin= 0.25

vmax= 14

eps= 0.25

r= 1

gu= T

alpha= 0.0625

ebits= 3

The calling sequences of the flps systemgui function are

flps_systemgui (flps)

flps_systemgui (flps , denormals)

flps_systemgui (flps , denormals , onlypos)

flps_systemgui (flps , denormals , onlypos , logscale)

where

• denormals is a boolean which must be set to true to display subnormal numbers (default
is true),

• onlypos is a boolean which must be set to true to display only positive numbers (default is
false),

• logscale is a boolean which must be set to true to use a base-10 logarithmic scale (default
is false).

The following statement

29

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2 4 6 8 10 12 14
x

R
e
la

ti
v
e
 e

rr
o
r

Figure 9: Relative error of positive normal floating point numbers in the floating
point system with radix β = 2, precision p = 3 and exponent range emin = −2 and
emax = 3.

flps_systemgui (flps);

prints the figure 2. To obtain the remaining figures, we simply enable or disable the various options
of the flps systemgui function.

Answer of Exercise 2.2 (Wobbling precision) The following script first creates a floating
point system flps. Then we create 1000 equally spaced doubles in the range [0.25, 14] with the
linspace function. For each double x in this set, we compute the floating point number flpn

which is the closest to this double. Then we use the flps numbereval to evaluate this floating
point number and compute the relative precision.

flps = flps_systemnew ("format", 2 , 3 , 3);

r = [];

n = 1000;

xv = linspace (0.25 , 14 , n);

for i = 1 : n

x = xv(i);

flpn = flps_numbernew("double",flps ,x);

f = flps_numbereval (flpn);

r(i) = abs(f-x)/abs(x);

end

plot (xv , r)

The previous script produces the figure 9.
For this floating point system, the unit roundoff u is equal to 0.125:

-->flps.eps/2

ans =

0.125

We can check in the figure 9 that the relative precision is never greater than the unit roundoff
for normal numbers. This was predicted by the proposition 2.13. The relative precision acheives
a local maximum when a number falls exactly between two doubles: this explains local spikes.
The relative error can be as low as zero when the number x is exactly a floating point number.

30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25
x

R
e
la

ti
v
e
 e

rr
o
r

Figure 10: Relative precision of positive subnormal floating point numbers in
the floating point system with radix β = 2, precision p = 3 and exponent range
emin = −2 and emax = 3.

Moreover, the relative precision tends to increase by a factor 2 when the exponent increases, then
to decrease by a factor 2 when the exponent does not change, but the magnitude of the number
increases.

In order to study the behaviour of subnormal numbers, we use the same script as before, with
the statement.

xv = linspace (0.01 , 0.25 , n);

The figure 10 presents the relative precision of subnormal numbers in the range [0.01, 0.25].
The relative precision can be as high as 1, which is much larger than the unit roundoff. This was
predicted by the proposition 2.13, which only gives an absolute accuracy for subnormal numbers.

3 Floating point numbers in Scilab

In this section, we present the floating point numbers in Scilab. The figure 11
presents the functions related to the management of floating point numbers.

3.1 IEEE doubles

In this section, we present the floating point numbers which are used in Scilab, that
is, IEEE 754 doubles.

The IEEE standard 754, published in 1985 and revised in 2008 [20, 12], defines a
floating point system which aims at standardizing the floating point formats. Scilab
uses the double precision floating point numbers which are defined in this standard.

The parameters of the doubles are presented in the figure 12. The benefits of
the IEEE 754 standard is that it increases the portability of programs written in
the Scilab language. Indeed, all machines where Scilab is available, the radix, the

31

%inf Infinity
%nan Not a number
%eps Machine precision
fix rounding towards zero
floor rounding down
int integer part
round rounding
double convert integer to double
isinf check for infinite entries
isnan check for ”Not a Number” entries
isreal true if a variable has no imaginary part
imult multiplication by i, the imaginary number
complex create a complex from its real and imaginary parts
nextpow2 next higher power of 2
log2 base 2 logarithm
frexp computes fraction and exponent
ieee set floating point exception mode
nearfloat get previous or next floating-point number
number properties determine floating-point parameters

Figure 11: Scilab commands to manage floating point values

precision and the number of bits in the exponent are the same. As a consequence,
the machine precision εM is always equal to the same value for doubles. This is the
same for the largest positive normal Ω and the smallest positive normal µ, which are
always equal to the values presented in the figure 12. The situation for the smallest
positive denormal α is more complex and is detailed in the end of this section.

The figure 13 presents specific doubles in an exaggeratedly dilated scale.
In the following script, we compute the largest positive normal, the smallest

positive normal, the smallest positive denormal and the machine precision.

- - >(2 -2^(1 -53))*2^1023

ans =

1.79D+308

-->2^-1022

ans =

2.22D-308

-->2^(-1022-53+1)

ans =

4.94D-324

-->2^(1-53)

ans =

2.220D-16

In practice, it is not necessary to re-compute these constants. Indeed, the
number properties function, presented in the figure 14, can do it for us.

In the following session, we compute the largest positive normal double, by calling
the number properties function with the "huge" key.

-->x=number_properties("huge")

32

Radix β 2
Precision p 53
Exponent Bits 11
Minimum Exponent emin -1022
Maximum Exponent emax 1023
Largest Positive Normal Ω (2− 21−53) · 21023 ≈ 1.79D+308
Smallest Positive Normal µ 2−1022 ≈ 2.22D-308
Smallest Positive Denormal α 2−1022−53+1 ≈ 4.94D − 324
Machine Epsilon εM 21−53 ≈ 2.220D-16
Unit roundoff u 2−53 ≈ 1.110D-16

Figure 12: Scilab IEEE 754 doubles

0 Subnormal
Numbers

Normal
Numbers

Infinity

~4.e-324 ~2.e-308 ~1.e+308

Zero

Figure 13: Positive doubles in an exaggeratedly dilated scale.

x = number properties(key)

key="radix" the radix β
key="digits" the precision p
key="huge" the maximum positive normal double Ω
key="tiny" Smallest Positive Normal µ
key="denorm" a boolean (%t if denormalized numbers are used)
key="tiniest" if denorm is true, the Smallest

Positive Denormal α, if not µ
key="eps" Unit roundoff u = 1

2
εM

key="minexp" emin
key="maxexp" emax

Figure 14: Options of the number properties function.

33

x =

1.79D+308

In the following script, we perform a loop over all the available keys and display
all the properties of the current floating point system.

for key = ["radix" "digits" "huge" "tiny" ..

"denorm" "tiniest" "eps" "minexp" "maxexp"]

p = number_properties (key);

mprintf("%-15s= %s\n",key ,string(p))

end

In Scilab 5.3, on a Windows XP 32 bits system with an Intel Xeon processor, the
previous script produces the following output.

radix = 2

digits = 53

huge = 1.79D+308

tiny = 2.22D-308

denorm = T

tiniest = 4.94D-324

eps = 1.110D-16

minexp = -1021

maxexp = 1024

Almost all these parameters are the same on most machines on the earth where Scilab
is available. The only parameters which might change are "denorm", which can be
false, and "tiniest", which can be equal to "tiny". Indeed, gradual underflow is
an optional part of the IEEE 754 standard, so that there might be machines which
do not support the subnormal numbers.

For example, here is the result of the same Scilab script with a different, non-
default, compiling option of the Intel compiler.

radix = 2

digits = 53

huge = 1.798+308

tiny = 2.225 -308

denorm = F

tiniest = 2.225 -308

eps = 1.110D-16

minexp = -1021

maxexp = 1024

The previous session appeared in the context of the bugs [7, 2], which have been
fixed during the year 2010.

Subnormal floating point numbers are reviewed in more detail in the section 3.5.

3.2 Why 0.1 is rounded

In this section, we present a brief explanation for the following Scilab session. It
shows that 0.1 is not represented exactly by a binary floating point number.

-->format (25)

-->0.1

ans =

0.1000000000000000055511

34

We see that the decimal number 0.1 is displayed as 0.1000000000000000055511....
In fact, only the 17 first digits after the decimal point are significant : the last digits
are a consequence of the approximate conversion from the internal binary double
number to the displayed decimal number.

In order to understand what happens, we must decompose the floating point
number into its binary components.

Let us compute the exponent and the integral significant of the number x = 0.1.
The exponent is easily computed by the formula

e = blog2(|x|)c, (97)

where the log2 function is the base-2 logarithm function. The following session shows
that the binary exponent associated with the floating point number 0.1 is -4.

-->format (25)

-->x = 0.1

x =

0.1000000000000000055511

-->e = floor(log2(x))

e =

- 4.

We can now compute the integral significant associated with this number, as in the
following session.

-->M = x/2^(e-p+1)

M =

7205759403792794.

Therefore, we deduce that the integral significant is equal to the decimal integer
M = 7205759403792794. This number can be represented in binary form as the 53
binary digit number

M = 11001100110011001100110011001100110011001100110011010. (98)

We see that a pattern, made of pairs of 11 and 00 appears. Indeed, the real value
0.1 is approximated by the following infinite binary decomposition:

0.1 =

(
1

20
+

1

21
+

0

22
+

0

23
+

1

24
+

1

25
+ . . .

)
· 2−4. (99)

We see that the decimal representation of x = 0.1 is made of a finite number of
digits while the binary floating point representation is made of an infinite sequence
of digits. But the double precision floating point format must represent this number
with 53 bits only.

In order to analyze how the rounding works, we look more carefully to the integer
M , as in the following experiments, where we change only the last decimal digit of
M .

- - >7205759403792793 * 2^-56

ans =

0.0999999999999999916733

- - >7205759403792794 * 2^-56

ans =

0.1000000000000000055511

35

We see that the exact number 0.1 is between two consecutive floating point numbers:

7205759403792793 · 2−56 < 0.1 < 7205759403792794 · 2−56. (100)

In our case, the distance from the exact x to the two floating point numbers is

|0.1− 7205759403792793 · 2−56| = 8.33 · · · 10−18, (101)

|0.1− 7205759403792794 · 2−56| = 5.55 · · · 10−18. (102)

(The previous computation is performed with a symbolic computation system, not
with Scilab). Therefore, the nearest is fl(0.1) = 7205759403792794 · 2−56.

3.3 Standard arithmetic model

In this section, we present the standard model for floating point arithmetic.

Definition 3.1. (Standard arithmetic model) We denote by u ∈ R the unit round-
off. We denote by F the set of floating point numbers in the current floating point
system. We assume that the floating point system uses the round-to-nearest round-
ing mode. The floating point system is associated with a standard arithmetic model
if, for any x, y ∈ F , we have

fl(x op y) = (x op y)(1 + δ), (103)

where δ ∈ R is such that |δ| ≤ u, for op = +,−, ∗, /,√ .

The IEEE 754 standard satisfies the definition 3.1, and so is Scilab. By contrast,
a floating point arithmetic which does not make use of a guard digit may not satisfy
this condition.

The model 3.1 implies that the relative error on the output x op y is not greater
than the relative error which can be expected by rounding the result. But this
definition does not capture all the features of a floating point arithmetic. Indeed,
in the case where the output x op y is a floating point number, we may expect that
the relative error δ is zero: this is not implied by the definition 3.1, which only
guarantees an upper bound.

We now consider two examples where a simple mathematical equality is not
satisfied exactly. Still, in both cases, the standard model 3.1 is satisfied, as expected.

In the following session, we see that the mathematical equality 0.7 − 0.6 = 0.1
is not satisfied exactly by doubles.

-->0.7-0.6 == 0.1

ans =

F

This is a straightforward consequence of the fact that 0.1 is rounded, as was pre-
sented in the section 3.2. Indeed, let us display more significant digits, as in the
following session.

-->format("e" ,25)

-->0.7

ans =

36

6.999999999999999556D-01

-->0.6

ans =

5.999999999999999778D-01

-->0.7-0.6

ans =

9.999999999999997780D-02

-->0.1

ans =

1.000000000000000056D-01

We see that 0.7-0.6 is represented by the binary floating point number which decimal
representation is 9.999999999999997780...×10−2. This is the double just before 0.1.
Now 0.1 is represented by 1.000000000000000056...×10−1, which is the double after
0.1. As we can see, these two doubles are different.

Let us inquire more deeply into the floating point representations of the doubles
involved in this case. The floating point representation of 0.7 and 0.6 are:

fl(0.7) = 6305039478318694× 2−53 (104)

fl(0.6) = 5404319552844595× 2−53 (105)

In the following session , we check this experimentally.

- - >6305039478318694*2^ -53==0.7

ans =

T

- - >5404319552844595*2^ -53==0.6

ans =

T

The difference between these two doubles is

fl(0.7)− fl(0.6) = (6305039478318694− 5404319552844595)× 2−53 (106)

= 900719925474099× 2−53. (107)

The floating point number defined by 107 is not normalized. The normalized repre-
sentation is

fl(0.7)− fl(0.6) = 7205759403792792× 2−56 (108)

Hence, in this case, the result of the operation is exact, that is, the equality 103
is satisfied with δ = 0. It is important to notice that, in this case, there is not error,
once that we consider the floating point representation of the inputs.

On the other hand, we have seen that the floating point representation of 0.1 is

fl(0.1) = 7205759403792794 · 2−56. (109)

Obviously, the two floating point numbers 108 and 109 are not equal.
Let us consider the following session.

-->1-0.9 == 0.1

ans =

F

37

This is the same issue as previously, as is shown by the following session, where
display more significant digits.

-->format("e" ,25)

-->1-0.9

ans =

9.999999999999997780D-02

-->0.1

ans =

1.000000000000000056D-01

3.4 Rounding properties of arithmetic

In this section, we present some simple experiments where we see the difference
between the exact arithmetic and floating point arithmetic.

We emphasize that all the examples presented in this section are practical con-
sequences of floating point arithmetic: these are not Scilab bugs, but implicit limi-
tations caused by the limited precision of floating point numbers.

In general, the multiplication of two floating point numbers which are represented
with p significant digits requires 2p digits. Hence, in general, the multiplication of
two doubles leads to some rounding. There are important exceptions to this rule,
for example when one of the inputs is equal to 2 or a power of 2.

In binary floating point arithmetic, multiplication and division by 2 is exact,
provided that there is no overflow or underflow. An example is provided in the
following session.

-->0.9 / 2 * 2 == 0.9

ans =

T

This is because this only changes the exponent of floating point representation of
the double. Provided that the updated exponent stays within the bounds given by
doubles, the updated double is exact.

But this is not true for all multipliers. For example, consider the following
session, as shown in the following session.

-->0.9 / 3 * 3 == 0.9

ans =

F

Commutativity of addition, i.e. x + y = y + x, is satisfied by floating point
numbers. On the other hand, associativity with respect to addition, i.e. (x+y)+z =
x+ (y + z), is not exact with floating point numbers.

-->(0.1 + 0.2) + 0.3 == 0.1 + (0.2 + 0.3)

ans =

F

Similarly, associativity with respect to multiplication, i.e. x ∗ (y ∗ z) = (x ∗ y) ∗ z is
not exact with floating point numbers.

-->(0.1 * 0.2) * 0.3 == 0.1 * (0.2 * 0.3)

ans =

F

38

Distributivity of multiplication over addition, i.e. x ∗ (y + z) = x ∗ y + x ∗ z, is not
exact with floating point numbers.

-->0.3 * (0.1 + 0.2) == (0.3 * 0.1) + (0.3 * 0.2)

ans =

F

3.5 Overflow and gradual underflow

In the following session, we present numerical experiments with Scilab and extreme
numbers.

When we perform arithmetic operations, it may happen that we produce values
which are not representable as doubles. This may happen especially in the two
following situations.

• If we increase the magnitude of a double, it may become too large to be
representable. In this case, we get an overflow, and the number is represented
by an Infinity IEEE number.

• If we reduce the magnitude of a double, it may become too small to be rep-
resentable as a normal double. In this case, we get an ”underflow” and the
accuracy of the floating point number is progressively reduced.

• If we further reduce the magnitude of the double, even subnormal floating
point numbers cannot represent the number and we get zero.

In the following session, we call the number properties function and get the
largest positive double. Then we multiply it by two and get the Infinity number.

-->x = number_properties("huge")

x =

1.79D+308

-->2*x

ans =

Inf

In the following session, we call the number properties function and get the
smallest positive subnormal double. Then we divide it by two and get zero.

-->x = number_properties("tiniest")

x =

4.94D-324

-->x/2

ans =

0.

In the subnormal range, the doubles are associated with a decreasing number of
significant digits. This is presented in the figure 15, which is similar to the figure
presented by Coonen in [6].

This can be experimentally verified with Scilab. Indeed, in the normal range,
the relative distance between two consecutive doubles is either the machine precision
εM ≈ 10−16 or 1

2
εM : this has been proved in the proposition 2.12.

In the following session, we check this for the normal double x1=1.

39

Exponent Significant Bits

-1022 (1) X X X X X

Subnormal
Numbers

Normal
Numbers-1021 (1) X X X X X

-1022 (0) 1 X X X X

-1022 (0) 0 1 X X X

-1022 (0) 0 0 1 X X

-1022 (0) 0 0 0 0 0

Figure 15: Normal and subnormal numbers. The implicit bit is indicated in paren-
thesis and is equal to 0 for subnormal numbers and is equal to 1 for normal numbers.

-->format("e" ,25)

-->x1=1

x1 =

1.000000000000000000D+00

-->x2=nearfloat("succ",x1)

x2 =

1.000000000000000222D+00

-->(x2 -x1)/x1

ans =

2.220446049250313081D-16

This shows that the spacing between x1=1 and the next double is εM .
The following session shows that the spacing between x1=1 and the previous

double is 1
2
εM .

-->format("e" ,25)

-->x1=1

x1 =

1.000000000000000000D+00

-->x2=nearfloat("pred",x1)

x2 =

9.999999999999998890D-01

-->(x1 -x2)/x1

ans =

1.110223024625156540D-16

On the other hand, in the subnormal range, the number of significant digits is
progressively reduced from 53 to zero. Hence, the relative distance between two
consecutive subnormal doubles can be much larger. In the following session, we
compute the relative distance between two subnormal doubles.

-->x1=2^ -1050

x1 =

8.28D-317

-->x2=nearfloat("succ",x1)

x2 =

8.28D-317

-->(x2 -x1)/x1

40

ans =

5.960D-08

Actually, the relative distance between two doubles can be as large as 1. In the
following experiment, we compute the relative distance between two consecutive
doubles in the extreme range of subnormal numbers.

-->x1=number_properties("tiniest")

x1 =

4.94D-324

-->x2=nearfloat("succ",x1)

x2 =

9.88D-324

-->(x2 -x1)/x1

ans =

1.

3.6 Infinity, Not-a-Number and the IEEE mode

In this section, we present the %inf and %nan numbers and the ieee function.
For obvious practical reasons, it is more convenient if a floating point system

is closed. This means that we do not have to rely on an exceptional routine if an
invalid operation is performed. This is why the Infinity and the Nan floating point
numbers are defined by the IEEE 754 standard.

The IEEE 754 2008 standard states that ”the behavior of infinity in floating-
point arithmetic is derived from the limiting cases of real arithmetic with operands
of arbitrarily large magnitude, when such a limit exists.”

In Scilab, the Infinity number is represented by the %inf variable. This number
is associated with an arithmetic, such that the +, -, * and / operators are available
for this particular double. In the following example, we perform some common
operations on the infinity number.

-->1+%inf

ans =

Inf

-->%inf + %inf

ans =

Inf

-->2 * %inf

ans =

Inf

-->%inf / 2

ans =

Inf

-->1 / %inf

ans =

0.

The infinity number may also be produced by dividing a non-zero double by zero.
But, by default, if we simply perform this division, we get a warning, as shown in
the following session.

-->1/+0

!--error 27

41

m=ieee()

ieee(m)

m=0 floating point exception produces an error
m=1 floating point exception produces a warning
m=2 floating point exception produces Inf or Nan

Figure 16: Options of the ieee function.

Division by zero ...

We can configure the behavior of Scilab when it encounters IEEE exceptions, by
calling the ieee function which is presented in the figure 16.

In the following session, we configure the IEEE mode so that Inf or Nan are
produces instead of errors or warnings. Then we divide 1 by 0 and produce the
Infinity number.

-->ieee (2)

-->1/+0

ans =

Inf

Most elementary functions associated with singularities are sensitive to the IEEE
mode. In the following session, we check that we can produce an Inf double by
computing the logarithm of zero.

-->ieee (0)

-->log (0)

!--error 32

Singularity of log or tan function.

-->ieee (2)

-->log (0)

ans =

- Inf

In general, this mode should not be changed. However, some computations are
made easier if infinities and Nans are produced. In this case, the user may change
the IEEE mode temporarily, resuming the mode to the previous value after the
computation is done, as in the following script.

backupmode = ieee()

ieee(newmode)

// Do what we want to do...

ieee(backupmode)

This is because the ieee function changes the global state of Scilab, and will change
all computations which are performed after the call to the function. Hence, if a
function (be it an internal or external module of Scilab) calls the ieee function,
unexpected behavior changes may occur, and we certainly do not want this as a
user.

All invalid operations return a Nan, meaning Not-A-Number. The IEEE 754
2008 standard defines two NaNs, the signaling and the quiet Nan.

• Signaling NaNs cannot be the result of arithmetic operations. They can be
used, for example, to signal the use of uninitialized variables.

42

• Quiet NaNs are designed to propagate through all operations without signaling
an exception. A quiet Nan is produced whenever an invalid operation occurs.

In the Scilab language, the variable %nan contains a quiet Nan. There are several
simple operations which are producing quiet NaNs. In the following session, we
perform an operation which may produce a quiet Nan.

-->0/0

!--error 27

Division by zero ...

This is because the default behavior of Scilab is to generate an error. If, instead, we
configure the IEEE mode to 2, we are able to produce a quiet Nan.

-->ieee (2)

-->0/0

ans =

Nan

In the following session, we perform various arithmetic operations which produce
NaNs.

-->ieee (2)

-->%inf - %inf

ans =

Nan

-->0*%inf

ans =

Nan

-->%inf*0

ans =

Nan

-->%inf/%inf

ans =

Nan

-->modulo(%inf ,2)

ans =

Nan

In the IEEE standard, it is suggested that the square root of a negative number
should produce a quiet Nan. In Scilab, we can manage complex numbers, so that
the square root of a negative number is not a Nan, but is a complex number, as in
the following session.

-->sqrt(-1)

ans =

i

Once that a Nan has been produced, it is propagated through the operations
until the end of the computation. This is because it can be the operand of any
arithmetic statement or the input argument of any elementary function.

We have already seen how an invalid operations, such as 0/0 for example, pro-
duces a Nan. In earlier floating point systems, on some machines, such an exception
generated an error message and stooped the computation. In general, this is a
behavior which is considered as annoying, since the computation may have been
continued beyond this exception. In the IEEE 754 standard, the Nan number is

43

associated with an arithmetic, so that the computation can be continued. The stan-
dard states that quiet Nans should be propagated through arithmetic operations,
with the output equal to another quiet Nan.

In the following session, we perform several basic arithmetic operations, where
the input argument is a Nan. We can check that, each time, the output is also equal
to Nan.

-->1+%nan // Addition

ans =

Nan

-->%nan+2 // Addition

ans =

Nan

-->2*%nan // Product

ans =

Nan

-->2/%nan // Division

ans =

Nan

-->sqrt(%nan) // Square root

ans =

Nan

The Nan has a particular property: this is the only double x for which the
statement x==x is false. This is shown in the following session.

-->%nan == %nan

ans =

F

This is why we cannot use the statement x==%nan to check if x is a Nan. Fortunately,
the isnan function is designed for this specific purpose, as shown in the following
session.

-->isnan (1)

ans =

F

-->isnan(%nan)

ans =

T

3.7 Machine epsilon

The machine epsilon εM is a parameter which gives the spacing between floating
point numbers.

In Scilab, the machine epsilon is given by the %eps variable. In the following
session, we check that the floating point number which is next to 1, that is 1+ is
1+%eps.

-->1+%eps > 1

ans =

T

-->1+%eps/2 == 1

ans =

T

44

On the other hand, the number which is just before 1, that is 1−, is 1-%eps/2.

-->1-%eps/2 < 1

ans =

T

-->1-%eps/4 == 1

ans =

T

We emphasize that the number properties("eps") statement returns the unit
roundoff, which is twice the machine epsilon given by %eps.

-->eps = number_properties("eps")

eps =

1.110D-16

-->%eps

%eps =

2.220D-16

3.8 Signed zeros

There are two zeros, the negative zero -0 and the positive zero +0.
Indeed, the IEEE 754 standard states that zero must be associated by a zero

significand M and a minimum exponent e. For double precision floating point num-
bers, this corresponds to e = −1022. But this leaves two possible representations
of zero: the sign s = 0, which leads to the positive zero (−1)0 × 0× 2−1022 and the
sign s = 1, which leads to the negative zero (−1)1 × 0× 2−1022. Hence, the sign bit
s leads to two different zeros.

In Scilab, the statement +0 creates a positive zero, while the statement −0
creates a negative zero. These two numbers are different, as shown in the following
session. We invert the positive and negative zeros, which leads to the positive and
negative infinite numbers.

-->ieee (2)

-->1/+0

ans =

Inf

-->1/-0

ans =

- Inf

The previous session corresponds to the mathematical limit of the function 1/x,
when x comes near zero. The positive zero corresponds to the limit lim 1/x = +∞
when x → 0+, and the negative zero corresponds to the limit lim 1/x = −∞ when
x→ 0−. Hence, the negative and positive zeros lead to a behavior which corresponds
to the mathematical sense.

Still, there is a specific point which is different from the mathematical point of
view. For example, the equality operator == ignores the sign bit of the positive and
negative zeros, and consider that they are equal.

-->-0 == +0

ans =

T

45

It may create weird results, such as with the gamma function.

-->gamma (-0) == gamma (+0)

ans =

F

The explanation is simple: the negative and positive zeros lead to different values
of the gamma function, as show in the following session.

-->gamma (-0)

ans =

- Inf

-->gamma (+0)

ans =

Inf

The previous session is consistent with the limit of the gamma function in the
neighbourhood of zero. All in all, we have found two numbers x and y such that
x==y but gamma(x)<>gamma(y). This might confuse us at first, but is still correct
once we know that x and y are signed zeros.

We emphasize that the sign bit of zero can be used to consistently take into
account for branch cuts of inverse complex functions, such as atan for example.
This use of signed zeros is presented by Kahan in [13] and will not be presented
further in this document.

3.9 Infinite complex numbers

In this section, we consider exceptional complex numbers involving %inf or %nan

real or imaginary parts. We present the complex function, which is designed to
manage this situation.

Assume that we want to create a complex number, where the real part is zero
and the imaginary part is infinite. In the following session, we try to do this, by
multiplying the imaginary number %i and the infinite number %inf.

-->ieee (2)

-->%i * %inf

ans =

Nan + Inf

The output number is obviously not what we wanted. Surprisingly, the result is
consistent with ordinary complex arithmetic and the arithmetic of IEEE exceptional
numbers. Indeed, the multiplication %i*%inf is performed as the multiplication of
the two complex numbers 0+%i*1 and %inf+%i*0. Then Scilab applies the rule
(a+ ib) ∗ (c+ id) = (ac− bd) + i(ad+ bc). Therefore, the real part is 0*%inf-1*0,
which simplifies into %nan-0 and produces %nan. On the other hand, the imaginary
part is 0*0+1*%inf, which simplifies into 0+%inf and produces %inf.

In this case, the complex function must be used. Indeed, for any doubles a and
b, the statement x=complex(a,b) creates the complex number x which real part is
a and which imaginary part is b. Hence, it creates the number x without applying
the statement x=a+%i*b, that is, without using common complex arithmetic. In the
following session, we create the number 1 + 2i.

-->complex (1,2)

46

ans =

1. + 2.i

With this function, we can now create a number with a zero real part and an infinite
imaginary part.

-->complex(0,%inf)

ans =

Infi

Similarly, we can create a complex number where both the real and imaginary
part are infinite. With common arithmetic, the result is wrong, while the complex

function produces the correct result.

-->%inf + %i*%inf

ans =

Nan + Inf

-->complex(%inf ,%inf)

ans =

Inf + Inf

3.10 Notes and references

The section 3.2 was first published in [5] and is reproduced here for consistency.
The ”Handbook of floating point arithmetic” [18] is a complete reference on the

subject. Higham presents in [11] an excellent discussion on this topic. Within the
chapter 1 of Moler’s book [16], the section 1.7 ”Floating point arithmetic”, is a lively
and concise discussion of this topic in the context of Matlab. Stewart gives in [21]
a discussion on floating point numbers. In his Lecture 6, he presents floating point
numbers, overflow, underflow and rounding errors. In [9], Forsythe, Malcolm and
Moler present floating point numbers in the chapter 2 ”Floating point numbers”.
Their examples are extremely interesting. Goldberg presents in [10] a complete
overview of floating point numbers and associated issues. The pioneering work of
Wilkinson on this topic is presented in [25].

In the exercises of the section 3.11, we analyze the Pythagorean sum
√
a2 + b2.

The paper by Moler and Morrison 1983 [17] gives an algorithm to compute the
Pythagorean sum without computing their squares or their square roots. Their
algorithm is based on a cubically convergent sequence. The BLAS linear algebra
suite of routines [14] includes the SNRM2, DNRM2 and SCNRM2 routines which
compute the Euclidean norm of a vector. These routines are based on Blue [3]
and Cody [4]. In his 1978 paper [3], James Blue gives an algorithm to compute

the Euclidean norm of a n-vector ‖x‖ =
√∑

i=1,n x
2
i . The exceptional values of

the hypot operator are defined as the Pythagorean sum in the IEEE 754 standard
[12, 20]. The ieee754 hypot(x,y) C function is implemented in the Fdlibm software
library [22] developed by Sun Microsystems and available at netlib. This library is
used by Matlab [15] and its hypot function.

3.11 Exercises

Exercise 3.1 (Operating systems) • Consider a 32-bits operating system on a personal
computer where we use Scilab. How many bits are used to store a double precision floating

47

point number?

• Consider a 64-bits operating system where we use Scilab. How many bits are used to store
a double ?

Exercise 3.2 (The hypot function: the naive way) In this exercise, we analyze the compu-
tation of the Pythagorean sum, which is used in two different computations, that is the norm of a
complex number and the 2-norm of a vector of real values.

The Pythagorean sum of two real numbers a and b is defined by

h(a, b) =
√
a2 + b2. (110)

• Define a Scilab function to compute this function (do not consider vectorization).

• Test it with the input a = 1, b = 1. Does the result correspond to the expected result ?

• Test it with the input a = 10200, b = 1. Does the result correspond to the expected result
and why ?

• Test it with the input a = 10−200, b = 10−200. Does the result correspond to the expected
result and why ?

Exercise 3.3 (The hypot function: the robust way) We see that the Pythagorean sum
function h overflows or underflows when a or b is large or small in magnitude. To solve this
problem, we suggest to scale the computation by a or b, depending on which has the largest
magnitude. If a has the largest magnitude, we consider the expression

h(a, b) =

√
a2(1 +

b2

a2
) (111)

= |a|
√

1 + r2, (112)

where r = b
a .

• Derive the expression when b has the largest magnitude.

• Create a Scilab function which implements this algorithm (do not consider vectorization).

• Test it with the input a = 1, b = 0.

• Test it with the input a = 10200, b = 1.

Exercise 3.4 (The hypot function: the complex way) The Pythagorean sum of a and b is
obviously equal to the magnitude of the complex number a+ ib.

• Compute it with the input a = 1, b = 0.

• Compute it with the input a = 10200, b = 1.

• What can you deduce ?

Exercise 3.5 (The hypot function: the M& M’s way) The paper by Moler and Morrison
1983 [17] gives an algorithm to compute the Pythagorean sum a⊕b =

√
a2 + b2 without computing

their squares or their square roots. Their algorithm is based on a cubically convergent sequence.
The following Scilab function implements their algorithm.

function y = myhypot2(a,b)

p = max(abs(a),abs(b))

q = min(abs(a),abs(b))

while (q< >0.0)

r = (q/p)^2

s = r/(4+r)

p = p + 2*s*p

q = s * q

end

y = p

endfunction

48

• Print the intermediate iterations for p and q with the inputs a = 4 and b = 3.

• Test it with the inputs from exercise 3.2.

Exercise 3.6 (Decomposition of π) The floatingpoint module is an ATOMS module which
allows to analyze floating point numbers. The goal of this exercise is to use this module to compute
the decomposition of the double precision floating point representation of π. To install it, please
use the statement:

atomsInstall("floatingpoint");

and restart Scilab.

• The flps systemnew function creates a new virtual floating point system. Create a floating
point system associated with the parameters of IEEE-754 doubles.

• The flps numbernew function creates a floating point number associated with a given
floating point system. The flpn = flps numbernew ("double" , flps , x) calling se-
quence creates a floating point number associated with a given double x. Use this function
to compute the floating point decomposition of the double %pi.

• Manually check the result computed by flps numbernew.

• Find the two consecutive doubles p1 and p2 which are so that p1 < π < p2.

• Cross-check the value of p2 with the nearfloat function, by searching for the double which
is just after %pi.

• Compute π − p1 and p2 − π.

• Why does fl(π) =%pi is equal to p1 ?

Exercise 3.7 (Value of sin(π)) In the following session, we compute the numerical value of
sin(π).

-->sin(%pi)

ans =

1.225D-16

• Compute p2 with the nearfloat function, by searching for the double which is just after
%pi.

• Compute sin(p2).

• Based on what we learned in the exercise 3.6, can you explain this ?

• With a symbolic system, compute the exact value of sin(p1).

• Compare with Scilab, by computing the relative error.

Exercise 3.8 (Floating point representation of 0.1) In this exercise, we check the content
of the section 3.2. With the help of the ”floatingpoint” module, check that:

fl(0.1) = 7205759403792794 · 2−56. (113)

Exercise 3.9 (Implicit bit and the subnormal numbers) In this exercise, we reproduce the
figure 15 with a simple floating point system with the help of the ”floatingpoint” module. To do
this, we consider a floating point system with radix 2 , precision 5 and 3 bits in the exponent. We
may use the flps systemall(flps) statement returns a list of all the floating point numbers from
the floating point system flps. We may also use the flps number2hex function, which returns
the hexadecimal and binary string associated with the given floating point number. In order to
get the value associated with the given floating point number, we can use the flps numbereval.

49

3.12 Answers to exercises

Answer of Exercise 3.1 (Operating systems) Consider a 32-bits operating system where we
use Scilab. How many bits are used to store a double ? Given that most personal computers are
IEEE-754 compliant, it must use 64 bits to store a double precision floating point number. This
is why the standard calls them 64 bits binary floating point numbers. Consider a 64-bits operating
system where we use Scilab. How many bits are used to store a double ? This machine also uses
64 bits binary floating point numbers (like the 32 bits machine). The reason behind this is that 32
bits and 64 bits operating systems refer to the way the memory is organized: it has nothing to do
with the number of bits for a floating point number.

Answer of Exercise 3.2 (The hypot function: the naive way) The following function is a
straightforward implementation of the hypot function.

function y = myhypot_naive(a,b)

y = sqrt(a^2+b^2)

endfunction

As we are going to check soon, this implementation is not very robust. First, we test it with the
input a = 1, b = 1.

-->myhypot_naive (1,1)

ans =

1.4142136

This is the expected result, so that we may think that our implementation is correct.
Second, we test it with the input a = 10200, b = 1.

-->myhypot_naive (1.e200 ,1)

ans =

Inf

This is obviously the wrong result, since the expected result must be exactly equal to 10200, since
1 is much smaller than 10200. Hence, the relative precision of doubles is so that the result must
exactly be equal to 10200. This is not the case here. Obviously, this is caused by the overflow of
a2.

-->a=1. e200

a =

1.00D+200

-->a^2

ans =

Inf

Indeed, the mathematical value a2 = 10400 is much larger than the overflow threshold Ω which is
roughly equal to 10308. Hence, the floating point representation of a2 is the floating point number
Inf. Then the sum a2 + b2 is computed as Inf+1, which evaluates as Inf. Finally, we compute
the square root of a2 + b2, which is equal to sqrt(Inf), which is equal to Inf.

Third, let us test it with the input a = 10−200, b = 10−200.

-->myhypot_naive (1.e-200 ,1.e -200)

ans =

0.

This time, again, the result is wrong since the exact result is
√

2×10−200. The cause of this failure
is presented in the following session.

-->a=1.e-200

a =

1.00D-200

-->a^2

ans =

0.

50

Indeed, the mathematical value of a2 is 10−400, which is much smaller than the smallest nonzero
double, which is roughly equal to 10−324. Hence, the floating point representation of a2 is zero,
that is, an underflow occurred.

Answer of Exercise 3.3 (The hypot function: the robust way) If b has the largest magnitude,
we consider the expression

h(a, b) =

√
b2(

a2

b2
+ 1) (114)

= |b|
√
r2 + 1, (115)

where r = a
b . The following function implements this algorithm.

function y = myhypot(a,b)

if (a==0 & b==0) then

y = 0;

else

if (abs(b)>abs(a)) then

r = a/b;

t = abs(b);

else

r = b/a;

t = abs(a);

end

y = t * sqrt(1 + r^2);

end

endfunction

Notice that we must take into account the case where a and b are zero, since, in this case, we
cannot scale neither by a, nor by b.

Answer of Exercise 3.4 (The hypot function: the complex way) Let us analyze the following
Scilab session.

-->abs (1+%i)

ans =

1.4142136

The previous session shows that the absolute value algorithm is correct in the case where a = 1,
b = 1. Let us see what happens with the input a = 10200, b = 1.

-->abs (1. e200+%i)

ans =

1.00D+200

The previous result shows that a robust implementation of the Pythagorean sum algorithm is
provided by the abs function. This is easy to check, since we have access to the source code
of Scilab. If we look at the file elementary functions/sci gateway/fortran/sci f abs.f, we
see that, in the case where the input argument is complex, we call the dlapy2 function. This
function comes from the Lapack API and computes

√
a2 + b2, using the scaling method that we

have presented. More precisely, a simplified source code is presented below.

DOUBLE PRECISION FUNCTION DLAPY2(X, Y)

[...]

XABS = ABS(X)

YABS = ABS(Y)

W = MAX(XABS , YABS)

Z = MIN(XABS , YABS)

IF(Z.EQ.ZERO) THEN

DLAPY2 = W

ELSE

51

DLAPY2 = W*SQRT(ONE+(Z / W)**2)

END IF

END

Answer of Exercise 3.5 (The hypot function: the M& M’s way)
The following modified function prints the intermediate variables p and q and returns the extra

argument i, which contains the number of iterations.

function [y,i] = myhypot2_print(a,b)

p = max(abs(a),abs(b))

q = min(abs(a),abs(b))

i = 0

while (q< >0.0)

mprintf("%d %.17e %.17e\n",i,p,q)

r = (q/p)^2

s = r/(4+r)

p = p + 2*s*p

q = s * q

i = i + 1

end

y = p

endfunction

The following session shows the intermediate iterations for the input a = 4 and b = 3. Moler and
Morrison state their algorithm never performs more than 3 iterations for numbers with less that
20 digits.

-->myhypot2_print (4,3)

0 4.00000000000000000e+000 3.00000000000000000e+000

1 4.98630136986301410e+000 3.69863013698630120e-001

2 4.99999997418825260e+000 5.08052632941535820e-004

3 5.00000000000000090e+000 1.31137265239709110e-012

4 5.00000000000000090e+000 2.25516523372845020e-038

5 5.00000000000000090e+000 1.14692522126238280e-115

The following session shows the result for the difficult cases presented in the exercise 3.2.

-->myhypot2 (1,1)

ans =

1.4142136

-->myhypot2 (1,0)

ans =

1.

-->myhypot2 (0,1)

ans =

1.

-->myhypot2 (0,0)

ans =

0.

-->myhypot2 (1,1. e200)

ans =

1.00D+200

-->myhypot2 (1.e-200 ,1.e -200)

ans =

1.41D-200

We can see that the algorithm created by Moler and Morrison perfectly works in these cases.

Answer of Exercise 3.6 (Decomposition of π) In the following session, we create a virtual
floating point system associated with IEEE doubles.

52

-->flps = flps_systemnew ("IEEEdouble")

flps =

Floating Point System:

======================

radix= 2

p= 53

emin= -1022

emax= 1023

vmin= 2.22D-308

vmax= 1.79D+308

eps= 2.220D-16

r= 1

gu= T

alpha= 4.94D-324

ebits= 11

In the following session, we compute the floating point representation of π with doubles. First,
we configure the formatting of numbers with the format function, so that all the digits of long
integers are displayed. Then we compute the floating point representation of π.

-->format("v" ,25)

-->flpn = flps_numbernew ("double" , flps , %pi)

flpn =

Floating Point Number:

======================

s= 0

M= 7074237752028440

m= 1.5707963267948965579990

e= 1

flps= floating point system

======================

Other representations:

x= (-1)^0 * 1.5707963267948965579990 * 2^1

x= 7074237752028440 * 2^(1 -53+1)

Sign= 0

Exponent= 10000000000

Significand= 1001001000011111101101010100010001000010110100011000

Hex= 400921 FB54442D18

It is straightforward to check that the result computed by the flps numbernew function is exact.

- - >7074237752028440 * 2^-51 == %pi

ans =

T

We know that the decimal representation of the mathematical π is defined by an infinite number
of digits. Therefore, it is obvious that it cannot be be represented by a finite number of digits.
Hence, 7074237752028440 · 2−51 6= π, which implies that %pi is not exactly equal to π. Instead,
%pi is the best possible double precision floating point representation of π. In fact, we have

p1 = 7074237752028440 · 2−51 < π < p2 = 7074237752028441 · 2−51, (116)

which means that π is between two consecutive doubles. It is easy to check this with a symbolic
computing system, such as XCas or Maxima, for example, or with an online system such as
http://www.wolframalpha.com. We can cross-check our result with the nearfloat function.

-->p2 = nearfloat("succ",%pi)

p2 =

3.1415927

- - >7074237752028441 * 2^-51 == p2

53

http://www.wolframalpha.com

ans =

T

We have

p2 − π = 3.2162 . . . · 10−16, (117)

π − p1 = 1.22464 . . . · 10−16. (118)

Which means that p1 is closer to π than p2. Scilab rounds to the nearest float, and this is why %pi

is equal to p1.

Answer of Exercise 3.7 (Value of sin(π)) In the following session, we compute p2, the double
which is just after %pi. Then we compute sin(p2) and compare our result with sin(%pi).

-->p2 = nearfloat("succ",%pi)

p2 =

3.1415927

-->sin(p2)

ans =

- 3.216D-16

-->sin(%pi)

ans =

1.225D-16

Since %pi is not exactly equal to π but is on the left of π, it is obvious that sin(%pi) cannot be
zero. Since the sin function is decreasing in the neighbourhood of π, this explains why sin(%pi)

is positive and explains why p2 is negative.
With a symbolic computation system, we find:

sin(7074237752028440 · 2−51) = 1.22464679914735317...e− 16. (119)

On the other hand, with Scilab, we find:

-->format("e" ,25)

-->s = sin(%pi)

ans =

1.224606353822377258D-16

We can now compute the relative error for the sin function on this particular input. The following
session is executed with Scilab 5.3.2 on Linux 32 bits.

-->e = 1.22464679914735317e-16

e =

1.224646799147353207D-16

-->abs(s-e)/e

ans =

3.302611414499966415D-05

As we can see, the relative error is so that there are less than 5 significant digits. This should be
sufficient for most applications, but is less than expected, even if the function is ill-conditionned
for this value of x. This bug has been reported [1].

Answer of Exercise 3.8 (Floating point representation of 0.1) In this exercise, we check the
content of the section 3.2 and compute the floating point representation of 0.1.

-->flps = flps_systemnew ("IEEEdouble");

-->format("v" ,25)

-->flpn = flps_numbernew ("double" , flps , 0.1)

flpn =

Floating Point Number:

======================

s= 0

54

M= 7205759403792794

m= 1.6000000000000000888178

e= -4

flps= floating point system

======================

Other representations:

x= (-1)^0 * 1.6000000000000000888178 * 2^-4

x= 7205759403792794 * 2^(-4 -53+1)

Sign= 0

Exponent= 01111111011

Significand= 1001100110011001100110011001100110011001100110011010

Hex= 3FB999999999999A

We can clearly see the pattern ”0011” in the binary digits of the significand.

Answer of Exercise 3.9 (Implicit bit and the subnormal numbers) In this exercise, we
reproduce the figure 15 with a simple floating point system with the help of the ”floatingpoint”
module. To do this, we consider a floating point system with radix 2 , precision 5 and 3 bits in the
exponent.

-->flps = flps_systemnew ("format", 2 , 5 , 3)

flps =

Floating Point System:

======================

radix= 2

p= 5

emin= -2

emax= 3

vmin= 0.25

vmax= 15.5

eps= 0.0625

r= 1

gu= T

alpha= 0.015625

ebits= 3

The following script displays all the floating point numbers in this system.

flps = flps_systemnew ("format", 2 , 5 , 3);

ebits = flps.ebits;

p = flps.p;

listflpn = flps_systemall (flps);

n = size(listflpn);

for i = 1: n

flpn = listflpn(i);

issub = flps_numberissubnormal (flpn);

iszer = flps_numberiszero (flpn)

if (iszer) then

impbit = " ";

else

if (issub) then

impbit="(0)";

else

impbit="(1)";

end

end

[hexstr ,binstr] = flps_number2hex(flpn);

f = flps_numbereval (flpn);

sign_str = part(binstr ,1);

55

expo_str = part(binstr ,2: ebits +1);

M_str = part(binstr ,ebits +2: ebits+p);

mprintf("%3d: v=%f , e=%2d , M=%s%s\n",i,f,flpn.e,impbit ,M_str);

end

There are 224 floating point numbers in this system and we cannot print all these numbers here.

[...]

113: v=0.000000 , e=-2, M= 0000

114: v=0.015625 , e=-2, M=(0)0001

115: v=0.031250 , e=-2, M=(0)0010

116: v=0.046875 , e=-2, M=(0)0011

117: v=0.062500 , e=-2, M=(0)0100

118: v=0.078125 , e=-2, M=(0)0101

119: v=0.093750 , e=-2, M=(0)0110

120: v=0.109375 , e=-2, M=(0)0111

121: v=0.125000 , e=-2, M=(0)1000

122: v=0.140625 , e=-2, M=(0)1001

123: v=0.156250 , e=-2, M=(0)1010

124: v=0.171875 , e=-2, M=(0)1011

125: v=0.187500 , e=-2, M=(0)1100

126: v=0.203125 , e=-2, M=(0)1101

127: v=0.218750 , e=-2, M=(0)1110

128: v=0.234375 , e=-2, M=(0)1111

129: v=0.250000 , e=-2, M=(1)0000

130: v=0.265625 , e=-2, M=(1)0001

131: v=0.281250 , e=-2, M=(1)0010

132: v=0.296875 , e=-2, M=(1)0011

[...]

References

[1] Michael Baudin. The cos function is not accurate for some x on Linux 32 bits.
http://bugzilla.scilab.org/show_bug.cgi?id=6934, December 2010.

[2] Michael Baudin. Denormalized floating point numbers are not present
in Scilab’s master. http://bugzilla.scilab.org/show_bug.cgi?id=6934,
April 2010.

[3] James L. Blue. A portable fortran program to find the Euclidean norm of a
vector. ACM Trans. Math. Softw., 4(1):15–23, 1978.

[4] W. J. Cody. Software for the Elementary Functions. Prentice Hall, 1971.

[5] Michael Baudin Consortium Scilab Digitéo. Scilab is not naive. http://forge.
scilab.org/index.php/p/docscilabisnotnaive/.

[6] J. T. Coonen. Underflow and the denormalized numbers. Computer, 14(3):75–
87, March 1981.

[7] Allan Cornet. There are no subnormal numbers in the master. http:

//bugzilla.scilab.org/show_bug.cgi?id=6937, April 2010.

56

http://bugzilla.scilab.org/show_bug.cgi?id=6934
http://bugzilla.scilab.org/show_bug.cgi?id=6934
http://forge.scilab.org/index.php/p/docscilabisnotnaive/
http://forge.scilab.org/index.php/p/docscilabisnotnaive/
http://bugzilla.scilab.org/show_bug.cgi?id=6937
http://bugzilla.scilab.org/show_bug.cgi?id=6937

[8] CRAY. Cray-1 hardware reference, November 1977.

[9] George Elmer Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer
Methods for Mathematical Computations. Prentice-Hall series in automatic
computation, 1977.

[10] David Goldberg. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. Association for Computing Machinery, Inc., March
1991. http://www.physics.ohio-state.edu/~dws/grouplinks/floating_

point_math.pdf.

[11] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002.

[12] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic.
IEEE, New York, NY, USA, August 2008.

[13] W. Kahan. Branch cuts for complex elementary functions, or much ado about
nothing’s sign bit., 1987.

[14] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. Technical report, University of Texas
at Austin, Austin, TX, USA, 1977.

[15] The Mathworks. Matlab - hypot : square root of sum of squares.
http://www.mathworks.com.

[16] Cleve Moler. Numerical Computing with Matlab. Society for Industrial Math-
ematics, 2004.

[17] Cleve B. Moler and Donald Morrison. Replacing square roots by Pythagorean
sums. IBM Journal of Research and Development, 27(6):577–581, 1983.

[18] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston, 2010.

[19] Wolfram Research. Wolfram alpha. http://www.wolframalpha.com.

[20] David Stevenson. IEEE standard for binary floating-point arithmetic, August
1985.

[21] G. W. Stewart. Afternotes on Numerical Analysis. SIAM, 1996.

[22] Inc. Sun Microsystems. A freely distributable C math library, 1993. http:

//www.netlib.org/fdlibm.

[23] Wikipedia. 19th grammy awards — wikipedia, the free encyclopedia, 2011.
[Online; accessed 18-May-2011].

57

http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/hypot.html
http://www.wolframalpha.com
http://www.netlib.org/fdlibm
http://www.netlib.org/fdlibm

[24] Wikipedia. Cray-1 — wikipedia, the free encyclopedia, 2011. [Online; accessed
18-May-2011].

[25] J. Wilkinson. Rounding Errors In Algebraic Processes. Prentice-Hall, 1964.

58

Index

ieee, 42
%eps, 4
%inf, 41
%nan, 42
nearfloat, 39
number properties, 32

denormal, 13

epsilon, 4

floating point
number, 8
system, 8

format, 5
Forsythe, George Elmer, 47

Goldberg, David, 47

IEEE 754, 4
Infinity, 41

Malcolm, Michael A., 47
Moler, Cleve, 47, 52
Morrison, Donald, 52

Nan, 42

precision, 4

quantum, 9

Stewart, G.W., 47
subnormal, 13

Wilkinson, James H., 47

59

	1 Introduction
	2 Floating point numbers
	2.1 Overview
	2.2 Controlling the precision of the display
	2.3 Portable formatting of doubles
	2.4 Definition
	2.5 Sign-significand floating point representation
	2.6 Normal and subnormal numbers
	2.7 B-ary representation and the implicit bit
	2.8 Extreme floating point numbers
	2.9 A toy system
	2.10 Spacing between floating point numbers
	2.11 Rounding modes
	2.12 Rounding error of representation
	2.13 Other floating point systems
	2.14 Exercises
	2.15 Answers to exercises

	3 Floating point numbers in Scilab
	3.1 IEEE doubles
	3.2 Why 0.1 is rounded
	3.3 Standard arithmetic model
	3.4 Rounding properties of arithmetic
	3.5 Overflow and gradual underflow
	3.6 Infinity, Not-a-Number and the IEEE mode
	3.7 Machine epsilon
	3.8 Signed zeros
	3.9 Infinite complex numbers
	3.10 Notes and references
	3.11 Exercises
	3.12 Answers to exercises

	Bibliography
	Index

