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Abstract: Nonlinear time series analysis gained prominence from the late 1980s on, primarily because
of its ability to characterize, analyze, and predict nontrivial features in data sets that stem from a wide
range of fields such as finance, music, human physiology, cognitive science, astrophysics, climate,
and engineering. More recently, recurrence plots, initially proposed as a visual tool for the analysis
of complex systems, have proven to be a powerful framework to quantify and reveal nontrivial
dynamical features in time series data. This tutorial review provides a brief introduction to the
fundamentals of nonlinear time series analysis, before discussing in greater detail a few (out of the
many existing) approaches of recurrence plot-based analysis of time series. In particular, it focusses
on recurrence plot-based measures which characterize dynamical features such as determinism,
synchronization, and regime changes. The concept of surrogate-based hypothesis testing, which
is crucial to drawing any inference from data analyses, is also discussed. Finally, the presented
recurrence plot approaches are applied to two climatic indices related to the equatorial and North
Pacific regions, and their dynamical behavior and their interrelations are investigated.

Keywords: time series analysis; nonlinear systems; recurrence plots; surrogate data; hypothesis
testing; complex systems; recurrence networks

1. Historical Background

A seminal event in the history of time series analysis was the discovery of nonlinear behavior,
such as deterministic chaos and self-similarity, in the 1960s. The subsequent development of such
concepts in the next three decades fundamentally and irrevocably changed how we viewed complexity.
First, many nonlinear dynamical systems showed ‘exponential divergence’ of close-by trajectories,
which meant that determinism—as opposed to stochasticity—did not guarantee predictability.
Second, and particularly relevant for time series analysis, nonlinear dynamical systems could produce
’irregular’, aperiodic signals without the presence of any stochastic component. Linear time series
analysis techniques typically considered the measured time-ordered signal as comprising of harmonics
or periodicities, mixed with stochasticity. In the linear perspective, all irregularities of the signal are
attributed to noise [1]. Deterministically chaotic systems demonstrated, however, that it was possible
to generate irregular, non-repeating signals without noise. The paradigm of nonlinear dynamical
systems provided an additional and fundamentally different route by which to approach real-world
complex systems.

It was not until the early ’80s, however, that the theoretical developments of nonlinear dynamical
systems began to give rise to new time series analysis techniques. This was primarily because
most real-world time series were one-dimensional scalar measurements which, in the nonlinear
dynamical viewpoint, were the projection of a higher dimensional time evolution on to the set
of real numbers R1 by a ‘measurement function.’ It was not clear how to infer the details of the
high dimensional dynamics in the true ‘state-space’ of the system from scalar-valued time-series
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measurements. Two papers, one by Packard et al. [2] in 1980, and the other by Takens in 1981 (cf. [3]
for a more accessible version of Takens’ original paper [4]), offered possible solutions to this problem
and, in essence, gave form to the discipline of nonlinear time series analysis as it is formulated even
today. The task of inferring the high dimensional dynamics from a scalar time series, called ‘state-space
reconstruction,’ became the cornerstone of nonlinear time series analysis. From the 1980s on, along with
the further development of theoretical phenomena such as self-similarity and fractal dimensions [5–7],
strange attractors [8–12], bifurcations [13–15], and chaotic synchronization [16–19], there were an
increasing number of studies that applied these concepts to time series obtained from laboratory
experiments [20–22] and real-world data [23–25]. The boom in nonlinear dynamics–related studies is
also attributable to the parallel development of increasingly faster, more compact, and more powerful
computers (cf. Section 2.9—computers and chaos—of [26]). The 1990s witnessed a drastic increase in
the number of studies related to “nonlinear time series analysis” (Figure 1a). Nonlinear concepts began
to be increasingly applied to complex systems from different fields such as population ecology [27–29],
human physiology [30–32], and climate [33–35].
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Figure 1. Publications in nonlinear time series analysis and recurrence plots. Based on an online search
in the Web of Science Core Collection database, the number of publications per year are shown which
contain the terms “nonlinear time series” (a) and “recurrence plots” (b), either in the title (yellow bars)
or anywhere in the text (green bars). Studies in nonlinear time series analysis begin to increase from the
early 1990s on, coinciding with the increasing ubiquity of more powerful and more compact computers.
The field of recurrence plots, however, receive increased attention only about a decade later, after the
turn of the century. Moreover, studies that are explicitly based on nonlinear time series techniques peak
ca. 2005–2010, whereas explicit recurrence plot studies are still on the rise. The difference between the
“All fields” and “In title” counts indicate that both concepts are increasingly seen as methodological
tools to be applied to other systems.

In 1987, Eckmann, Kamphorst, and Ruelle proposed a new graphical representation,
the ‘recurrence plot,’ which visualized the ‘recurrences’ of the states of a dynamical system and
captured essential features of its dynamics [36]. The recurrence plot was a simple, easily estimable,
visual aid to characterize the dynamics of a system. It was based solely on the measured time series and
was designed to complement new approaches of the time that estimated various nonlinear dynamical
characteristics such as the Lyapunov exponent [37], information dimension [38], and correlation
dimension [10]. Over the next decades, however, several methods were put forward to quantify
the patterns seen in recurrence plots—e.g., diagonal line structures—to infer probable dynamical
features such as a high degree of determinism [39–41]. The approaches based on recurrence plots
are collectively referred to as ‘recurrence quantification analysis’ (RQA), and they form the core of
recurrence plot-based techniques. A crucial advantage of recurrence plot-based approaches over other
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nonlinear approaches is that they perform reasonably well even when the length of the time series
is short (ca. 50–100 data points). Moreover, in cases when the underlying system is not sufficiently
deterministic or stationary, recurrence plots have proven useful in characterizing their behaviour.

The intuitive, visual appeal of recurrence plots, and their applicability to time-series from a wide
range of systems contributed to a consistent rise in the number of studies involving “recurrence plot”
approaches in the last two decades, following the rise in nonlinear time series analysis by roughly
a decade (Figure 1b). In addition to studies that extend the theoretical boundaries of recurrence
plots themselves, recurrence plot-based approaches have been applied to a wide range of real-world
scientific problems from diverse disciplines. For instance, in the field of finance, Strozzi, Zaldívar and
Zbilut [42] studied the time evolution of various RQA measures obtained from high-frequency currency
exchange data. Bastos and Caiado [43] used RQA to characterize more than twenty stock market
indices from around the world and identify changes in the recurrence quantifiers over time, especially
during well-known financial crises. In information technological research, Palmieri and Fiore [44]
used RQA measures to design a network traffic classification scheme based on the identification of
nonlinear transitions in IP traffic flows. Yang, Pan, and Xu [45] used RQA measures to quantify the
complexity of the sequences produced by their proposed quantum walk-based pseudorandom number
generator for image encryption. Recurrence plots have also been used to study music. Serrà, Serra
and Andrzejak [46] used cross-recurrence analysis to design an automated approach that successfully
identified cover versions of a given song. Moore, Corrêa and Small [47] use RQA measures to design a
surrogate-based hypothesis test which successfully distinguished ten compositions by famous Baroque
composer J. S. Bach from a Markov process.

In cognitive science research, Richardson and Dale [48] used cross-recurrence analysis to study
the coupling between the eye movements of a speaker, who was told to describe a scene, and that of a
listener watching the same scene. Duran et al. [49] used RQA to monitor body movement during acts
of deception and found that the upper face, and partly the arms, of a person show less determinism and
high complexity while lying. In the field of physiology, Konvalinka et al. [50] analyzed recurrence plots
constructed from heart rate data of different subjects present (as active participants and as spectators)
during a fire-walking ritual in a tiny rural Spanish village and found that the collective ritual induced
synchronized arousal between active participants and bystanders. Acharya et al. [51] used ten RQA
measures estimated from electroencephalogram (EEG) data to construct a feature set that was fed into
various classifying algorithms to determine the best predictor for epileptic seizures.

Recurrence plots have also been successfully applied to astrophysical and geophysical research.
Zolotova and Ponyavin [52] used cross-recurrence plot analysis to investigate phase synchrony
between northern and southern sunspot activities. Stangalini et al. [53] applied RQA measures
to detect dynamical transitions in solar activity in the last 150 years. Li et al. [54] used joint recurrence
plots to investigate the synchronization between a vegetation index and climatic observables and
revealed that for most parts of China, vegetation was more synchronized to temperature than
precipitation. Zhao et al. [55] conducted a similar study for the Qinghai–Tibetan plateau region
using RQA measures and found that vegetation is anti-correlated to the determinism of temperature
data and positively correlated to the entropy. A 2003 study by Marwan et al. [56] used cross-recurrence
analysis to investigate the influence of the tropical Pacific region on northwestern Argentina using
both modern-day and paleoclimatic proxy data sets. More recently, Eroglu et al. [57] applied RQA to
speleothem-based paleoclimatic data from two caves in Asian monsoon region and revealed a see-saw
relationship in the dynamical regimes between the two data locations. Zaitouny, Walker and Small [58]
use recurrence plots in combination with the previously established ‘quadrant scan’ technique [59]
to identify tipping points of dynamical systems and demonstrate their approach with real-world
examples such as petrophysical data from a geological well in Australia, electrocardiogram (ECG) data
recording cardiac arythmia, and EEG data of a person doing a multiplication task.
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2. Recurrence Plots in Engineering Research

Recurrence plot-based analyses have also been used in several aspects of engineering research.
An early study by Feeny and Liang in 1997 [60] used a recurrence-based generalized autocorrelation
function (cf. Zbilut and Marwan [61]) to infer unstable periodic orbits in a stick-slip oscillator model
with dry friction. However, the study does not explicitly mention the two-dimensional recurrence
matrix that forms the basis of all RQA. In a 2004 study, Wendeker et al. [62] constructed recurrence plots
explicitly using pressure time series from a spark ignition engine but they interpreted it only visually
to distinguish the observed dynamics from stochasticity. Follow-up studies used RQA measures to
show that (i) spark engine dynamics are multidimensional and they change with respect to the spark
advance angle [63], and (ii) low (high) frequency crankshaft rotation results in periodic (intermittent)
pressure dynamics [64].

Recurrence plot-based approaches have also been used in damage quantification and detection.
Nichols. Trickey, and Seaver [65] used multivariate measurements from nine locations on a finite
element model of a rectangular steel plate to estimate RQA measures that help to identify dynamical
changes induced by a cut (of various lengths) on the plate. Iwaniec et al. [66] used four RQA measures
to investigate the changes in dynamics between three different harmonic excitation modes of an
aluminum plate and between cracked and uncracked versions of a metal plate. Qian, Yan and Hu [67]
estimated a recurrence-based entropy to construct a data-driven model of ball bearing degradation,
which they showed could predict failure up to 50 minutes in advance. More recently, Zhou and
Zhang [68] constructed a feature vector from four RQA measures and applied it to a T2 control
chart [69] which was able to detect faulty ball bearings reliably.

Several studies that investigate the corrosion of metal surfaces with the help of electrochemical
noise measurements have applied recurrence plots to distinguish different types of corrosion dynamics.
Based on RQA, Garciá-Ochoa et al. [70] showed that an increase in sensitization intensity of S30400
stainless steel led to more deterministic dynamics. Yang et al. [71] showed that higher hydrostatic
pressures applied to high strength Ni-Cr-Mo-V steel also induced more deterministic dynamics.
Hou et al. [72] used four RQA measures to construct a PCA-based model for detecting corrosion and
also as a feature vector for a multilayer perceptron to predict corrosion type. More recently, Barrera,
Gómez and Garciá-Ochoa [73] used RQA to assess and compare the performance of protective coatings
on cast iron that inhibit corrosion.

Another important application of recurrence-based approaches is in the study of friction-induced
vibrations (FIV), in particular with respect to brake squealing and brake noise. Oberst and Lai [74]
gave a first quantitative insight into brake squeal noise, using RQA measures to classify and rank
noise performance, and showing that (a) linear measures are insufficient to characterize brake
squeal dynamics and (b) nonlinear measures reveal that higher nonlinearity leads to a worse squeal.
Wernitz and Hoffmann [75] provided a visual interpretation of recurrence plots obtained from friction
brake vibration measurements and argued that FIV dynamics are deterministic on short time scales
whereas random disruptions were seen on longer time scales. In a recent study, Stender et al. [76]
used RQA to demonstrate that FIVs are multiscale in nature, that squealing is consistent with low
dimensional attractors, and that the higher vibration levels correspond to higher determinism and
periodicity of the dynamics. They also proposed an automated framework based on RQA to detect
and monitor brake squealing. In a related study, Stender et al. [77] showed how RQA could help to
identify transitions between different types of friction-induced vibration such as chaotic and weakly
chaotic epochs, limit cycles and intermittent stick-slip dynamics.

Kabiraj and Sujith [78] used recurrence plots to verify intermittency in their investigation of
thermoacoustic instability in combustion systems using a ducted conical premixed flame. Nair and
Sujith [79] employed recurrence plots as a visual tool to infer the dynamics of flows in turbulent
combustors and infer Type I or Type II intermittency dynamics. Additionally, Nair, Thampi and
Sujith [80] showed that RQA measures in swirl-stabilized and buff-body-stabilized combustors could
reliably quantify changes in dynamics as a function of Reynolds number and where a potential
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candidate for early-warning indication of impending combustion. Elias and Namboothiri [81] used
cross-recurrence analysis to identify the transition from regular cutting to chatter cutting of metal
plates irrespective of the choice of metal. Harris et al. [82] showed that RQA measures were able to
characterize the dynamics of bistable cross-shaped laminated plate energy harvesters and proposed
recurrence plots as an efficient approach to distinguish different classes of dynamics such as single-well
periodic dynamics, chaotic snapthrough, and continuous snap-through. Oberst et al. [83] have recently
shown how recurrence-based power spectra could be used to identify stable and unstable periodic
orbits in model systems as well as mineralogical deposits in Western Australia. In their study, recurring
episodes of low dimensional dynamics and period-doubling route to instability were revealed along
the depth axis of the deposits.

3. About This Tutorial Review

The aim of this tutorial review is to provide a brief introduction to the basics of nonlinear time
series approaches, with a special focus on recurrence plots. Since the concepts of high dimensional
flows, state-space reconstruction, time delay embedding, and dynamical attractors are essential to
understand how a recurrence plot is estimated and how its patterns are to be interpreted, this review
covers the fundamentals of these topics. An additional crucial concept related to time series analysis is
surrogate-based hypothesis testing. The fundamental ideas behind statistical hypothesis testing and
the role of surrogate data sets in time series analysis methods are presented and a couple of surrogate
methods are discussed. Applications from model systems and real-world systems are used as didactic
tools where appropriate.

This review is not the first of its kind, neither in the broader domain of nonlinear time series
analysis, nor in the more focussed topic of recurrence plots. I refer the reader to [84–86], and more
recently [87], for excellent introductions to nonlinear time series analytical thought. For an in-depth
overview of recurrence plots as a data analysis tool, the review in [88] is recommended, and for a
historic coverage of recurrence plot-based approaches, [89] is helpful. This review is not exhaustive—it
is intended to provide only a glimpse into nonlinear thinking. No attempt is made to provide a
comprehensive literature survey. Rather, the focus is on illustrating key topics with the idea that the
readers are made curious and literate enough to go out and explore on their own. Moreover, the review
is biased by my own areas of expertise and relevant pointers to similar approaches developed in other
studies are provided when appropriate and necessary.

The remainder of the tutorial review is organized as follows: Section 4 highlights several
consequences of moving from a linear to a nonlinear paradigm of looking at the world. Section 5
touches upon the basics of the theory of nonlinear dynamical systems. Section 6 summarises the
fundamentals of how nonlinear time series approaches represent the time series data and how we can
reconstruct the state-space of the high dimensional dynamics from a scalar time series. Section 7 deals
with recurrence-based analysis, outlining the concepts of recurrence plots and recurrence networks and
showing how to use them to characterize dynamics, estimate synchronization, and detect transitions.
Section 8 illustrates the idea behind surrogate-based hypothesis testing and its necessity in time series
analysis of real-world complex systems where we do not have access to multiple realizations of the
dynamics. Section 9 demonstrates the discussed approaches with real-world examples from climate,
and Section 10 concludes the tutorial review with a brief summary and outlook.

Before we proceed, a brief note on measurement units: Without loss of generality, all measured
variables presented in this tutorial review are considered to be scaled such that they are dimensionless.
For instance, dividing each value of a signal by the sample standard deviation makes it dimensionless
while retaining all dynamical features—the primary focus of the discussion here. In a similar sense,
the unit of ‘time’ for all-time series presented here (other than the real-world examples) is arbitrary,
i.e., we can choose it to be seconds, minutes, or hours, etc., without impacting the dynamical aspects
being explained. Thus, rather than fix a particular unit for time in the model systems and numerical
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examples, which is a bit contrived in such cases, we drop the unit entirely with the understanding that
it bears no direct relevance to the content of the review.

4. Consequences of Nonlinearity

Idiosyncratic nonlinear behavior such as deterministic chaos, bifurcations, phase synchronization,
etc. lead to crucial differences in how we approach various aspects of time series analysis. In many
cases, nonlinear behavior is not reflected in linear time series measures such as the power spectrum,
correlation, mean, and variance (cf. Chapter 1—Introduction: why nonlinear methods?—of [86]).
This does not, however, imply that linear measures are redundant. In practice, while working with
a time series for which the underlying process is not known, nonlinear approaches are used as
complementary tools to linear time series characterization so that we pin down the dynamics as
reliably as possible. Four key aspects of time series analysis that are deeply impacted by nonlinearity
are discussed below.

4.1. Predictability

Many nonlinear dynamical systems exhibit ‘exponential divergence,’ which means that the
distance between trajectories starting from extremely close-by initial conditions increase exponentially
as time progresses [90]. This is a necessary (but not sufficient) feature of chaos and has drastic
implications for predictability. Imagine we have measured two signals, one that comes from a linear
system and is essentially composed of three superimposed sinusoidal frequencies with some additive
noise (Figure 2a), while the other comes from a chaotic system (Figure 2b). Now consider the following
situation: We measure the time series for both systems up to time t = 250 and based on this data we
determine all three component frequencies of the linear system and we also estimate the exact set of
differential equations for the nonlinear chaotic system. We are now in a position to predict the future
time evolution of both systems. However, due to the measurement process, our knowledge of the
state at time t = 250 has a miniscule error of the order of 10−6 times the standard deviation of both
signals (which are approximately equal). Due to the exponential divergence of nearby trajectories in
the chaotic system, the tiny uncertainty in fixing the initial condition for future predictions at t = 250
results in a prediction uncertainty equal to the variance of the signal after some time (yellow region
in Figure 2b visible from t ≈ 325 on). In the linear system, the initial uncertainty stays constant
throughout the entirety of the future projection. This is one fundamental reason why the weather
cannot be predicted more than ten days in advance (on average), even if we were to have immense
computational power and high measurement precision.
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Figure 2. Predictability of linear and nonlinear systems. Two signals are measured up to time t = 250
(red vertical line): in (a), the signal is from a linear process where it is essentially a superposition
of three sinusoids with frequencies, whereas in (b), the signal comes from a nonlinear system in
deterministic chaos. We assume perfect knowledge of all three components of the harmonic signal,
and also of the system of differential equations of the chaotic system. Using the knowledge of the
governing equations, at t = 500, we predict the future trajectories for both systems with an initial
uncertainty in determining the state of the system of the order of 10−6. For the chaotic system, the 95%
confidence interval (i.e., the interval that contains 95% of all initial conditions chosen within initial error
bounds) of future projections soon become as large as the entire spread of the signal (yellow shaded
area at ca. t ≈ 325). Exponential divergence of chaotic systems thus imply that even in the situation
when we have perfect knowledge about system dynamics, errors in measuring the state of the system
result in prediction errors that become as large as the diameter of the system after some time. This is
not the case for linear systems (a).

4.2. Transitions

Another important consequence of nonlinearity is that nonlinear processes exhibit non-intuitive
transitions between qualitatively different dynamics when system parameters are changed by
small amounts. At times, these transitions are not visible in the time series themselves and are
also not captured by their statistical moments. To demonstrate this, consider the chaotic Rössler
system, a canonical model system that exhibits paradigmatic nonlinear behavior and is often used
as a benchmark for testing new techniques of nonlinear time series analysis. We integrate the
three-dimensional system of ordinary differential equations for the Rössler system (cf. Equation (1)
in Section 5) for two different values of its parameter a, and concatenate their equilibrium values at
t = 250. Doing this effectively results in a transition at t = 250 (Figure 3a) from so-called ‘spiral-type
chaos’ (Figure 3b) to ‘screw-type chaos’ (Figure 3c). A moving average of 25 time units (yellow line in
Figure 3a) fails to capture the transition. The moving variance of 25 time units shows different behavior
for the screw-type chaos but it is still not possible to uniquely associate a distribution of variances to
each dynamical behavior. To detect transitions in a time series generated from nonlinear processes is
not a trivial task, as the dynamical changes can be subtle and non-trivial. Nevertheless, it is important
to use as many indicators as feasible to reliably conclude whether or not the system might have gone
through a transition.
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Rössler x
−10 0 10
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Rössler y
−10

0
10

R
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Figure 3. Nonlinear transitions in the Rössler system. The Rössler system (Equation (1)) is integrated
up to t = 500 with a sudden change in the parameter a at t = 250 (red vertical line in (a)). The change
in a results in a change in the behavior of the system from spiral-type chaos (a = 0.32) shown in (b)
to screw-type chaos (a = 0.38) shown in (c). A running mean of a window of size 25 time units (red
line in A) fails to show any change at the time of the transition. Although the running variance of 25
time units (yellow line in (a)) shows slightly different behaviour for screw-type chaos, it is not possible
to uniquely infer the particular dynamic on its basis. Transitions in nonlinear dynamical systems can
be of widely different types, and at times can be very subtle and hidden, not easily evident in linear
measures estimated from the scalar time series.

4.3. Synchronization

The study of synchronization predates the discovery of chaos and it is a far more general
phenomenon found in various systems, both linear and nonlinear. The synchronization of chaotic
systems, however, opens newer ways of looking at interdependencies between complex systems.
It turns out that there are subtler ways of connecting two systems than by a simple positive or negative
correlation. One interesting case is the phenomenon of ‘phase synchronization,’ which is a weak form
of synchrony between two systems, classically used to study the co-evolution of periodic self-sustained
oscillators. That phase synchrony is possible for chaotic systems was first demonstrated in 1996 by
Rosenblum, Pikovsky and Kurths [18]. We consider here the same example as used in [18], where
two chaotic Rössler systems are coupled in the first variable x and which show phase synchrony
for a coupling strength of 0.035 (Figure 4a). Under this condition, the amplitudes of both systems
are not correlated (Figure 4b) whereas the phases (as estimated using a Hilbert transform of the
x-components) are approximately equal (Figure 4c). In the context of time series analysis, this implies
that estimating only the cross-correlation (or even mutual information) of the measured signal (in this
case, the x-components of both systems) is not enough to capture all possible forms of interrelations.
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Figure 4. Phase synchronization of inherently chaotic systems. Two chaotic Rössler systems
are coupled bidirectionally via the x-components (a) such that they are in phase synchrony (cf.
Equations (21) and (22) and [18,88]). The amplitudes, i.e., the x-components of both systems, are almost
uncorrelated (Pearson’s cross-correlation of 0.013 in (b)) while the phases, obtained by a Hilbert
transform of the x-components, are almost identical, evidenced by the diagonal line obtained when the
phase φ2 of the second Rössler oscillator is plotted against the phase of φ1 of the first (c).

4.4. Characterization

In signal processing, it is common to characterize a time series by its power spectrum, which
highlights the dominant harmonic frequencies in the signal by plotting the square of the amplitudes
of the Fourier transform of the data against its frequency range. For a linear and time-invariant
(i.e., stationary) system, the Fourier transform completely describes the response of the system to
perturbations because the complex exponentials of the Fourier transform are also the eigenfunctions of
such systems. In certain cases of nonlinearity, this might not be sufficient to describe the entirety of the
system’s properties. To illustrate this, we consider two signals (Figure 5a), where one is from the chaotic
Rössler system, and the other is a randomized version of the Rössler time series. The randomisation is
done using a specific method [91] which ensures that the power spectrum of the randomized signal
is the same as the original signal (Figure5b). The randomized signal, however, possesses none of
the complex characteristics in high dimensional time evolution as is seen in the chaotic time series
(shown in Figure 5c). Thousands of such randomized versions of the original signal can be generated,
each unique in their time evolution, and each with a power spectrum similar to the original chaotic
time series. Still, they are, in essence, random processes—sharing none of the determinism of the
Rössler system.
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Figure 5. Power spectrum is insufficient to describe high dimensional nonlinear dynamics. The power
spectrum (b) of two signals shown in (a) do not reflect the stark difference between the two as is
evident from a three-dimensional representation of their time evolution in (c). Signal 1 (green) is the
x-component of the chaotic Rössler system and signal 2 (yellow) is constructed using an algorithm than
randomizes signal 1 such that the power spectrum is (approximately) unchanged. This highlights that
linear characteristics are at times insufficient to describe high dimensional nonlinear complexity.

5. Dynamical Systems: The Basics

5.1. What Is a Dynamical System?

The time evolution of a dynamical system is formulated mathematically in terms of either (i) a
system of differential equations that result in ‘flows,’ i.e., continuous time-evolving trajectories, or (ii)
a system of discrete iterative rules often called ‘maps.’ The well known Rössler model already used
in Section 4 is an example of a three-dimensional flow and the two-dimensional Hénon map is a
well-known example of a discrete map (Figure 6 shows the state space trajectories for the two systems).
In both scenarios, the system’s time evolution starts from a prescribed initial condition (crosses in
Figure 6a,b) and all subsequent points are obtained according to the integration of the system of
differential equations (for the Rösser system) or by using the discrete-time iteration rules (for the
Hénon system).

The Rössler model is described by the following equation system:

ẋ = −y− z

ẏ = x + ay

ż = b + z(x− c)

(1)

where ẋ denotes the time derivative dx
dt , and a, b, c are the parameters of the system (for Figure 6a

a = 0.432, b = 2, c = 4). For the Hénon map, the dynamic (i.e., the time evolution) is described by a set
of time discrete functions:

xt+1 = 1− ax2
t + yt

yt+1 = bxt
(2)

where xt denotes the value of x at time N 3 t = 1, 2, 3, . . . and a, b are the parameters of the system (for
the behaviour in Figure 6b, a = 1.4 and b = 0.3). A crucial difference between the two systems is that
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the system state in the Hénon map ‘jumps’ from one point in the XY-plane to another at each time step
of iteration. However, in the Rössler system, the trajectory ‘flows,’ in a continuous sense, from one
(x, y, z) point in the 3D space to another such that any point in the trajectory is connected to any other
point itself by a continuous unbroken path.

The system of equations in Equation (1) can be rewritten more concisely using the following
notation. Consider X := (x, y, z) ∈ X ⊆ R3 as the vector (in the 3D space X ) that describes the state of
the system at a given time t. Next, take ( fx, fy, fz; θ) =: F : X → X as the 3D function which maps
every point in X to another point in X itself, and θ denoting the set of parameters, which in this case
is θ = {a, b, c }. The three individual functions fx, fy, fz that compose F are the relations given in the
right-hand sides of the equations in Equation (1), i.e., fx = −y− z, fy = x + ay, fz = b + z(x − c).
Thus the Rössler model in Equation (1) becomes

Ẋ = F(X; θ) , (3)

which, without loss of generality, can be used to denote the dynamic of any flow. Similarly, we can
write down the generic form of the map in Equation (2) as

Xt+1 = F(Xt; θ) , (4)

which again is a generic form used to describe maps. In this particular case, for the Hénon map,
Xt = (xt, yt) ∈ X ⊂ R2, F = (1− ax2

t + yt, b xt), and θ = {a, b}. In both cases, given the space X ,
which contains all possible states the system can attain, and the function F, which tells us how to
move from the state at a time t to a next time t + δt (continuous) or t + 1 (discrete), we have complete
knowledge about the time evolution or the dynamics of the system, i.e., the system is fully described.
The space X is called the ‘state space’ of the system (at times also referred to as the ‘phase space’),
and F is referred to as the ‘dynamic’ which occurs within the state space. Together, the state space and
the dynamic constitute the ‘dynamical system.’
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Figure 6. Nonlinear dynamical systems: Flows and maps. The Rössler system (a) is an example of a
continuous dynamical system whereas the Hénon map (b) is a paradigmatic example of a 2D discrete
dynamical system. For the Rössler, trajectories in the 3D state-space are smooth, differentiable paths
that settle on the attractor as t → ∞. For the Hénon map however, the trajectories jump from point
to point in the state space and the attractor is therefore discontinuous. Here, the parameters for the
Rössler model are fixed at a = 0.432, b = 2, c = 4 and those for the Hénon are fixed at a = 1.4, b = 0.3,
for which both attractors are chaotic. Three different initial conditions (marked as “×”s) all converge to
the attractors as time progresses.
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5.2. Attractors

Given a particular configuration of the parameters θ of a dynamical system, it is found that the
equilibrium behavior, i.e., the values of state X as time t → ∞, is either ‘uni-stable’ or ‘multi-stable.’
‘Uni-stability’ implies that, all initial conditions for a given θ converge to a single type of equilibrium
behavior such as fixed point, periodic, chaotic, hyperchaotic, etc. ‘Multi-stability’ would imply that
the state-space can be partitioned into mutually exclusive sub-spaces of initial conditions, such that
each sub-space converge to a particular equilibrium behavior. In this tutorial review, we consider
only the uni-stable case. This is shown in Figure 6, where all three initial conditions chosen for
the Rössler system and the Hénon map ultimately ended up in the same region of the state space,
and actually even in the same ‘shape.’ The set of states in the phase space which determine the
equilibrium dynamics irrespective of initial conditions is called the ‘attractor’ of the system for the
chosen parameters θ. An additional condition for the set of states to be an attractor is that once the
trajectory of the system reaches this set, it should stay within the set for the rest of the time. There are
many different mathematical ways of defining attractors, as also there are different kinds of attractors
for different dynamical systems and under different conditions. In general, a few desired properties of
attractors are [9,92]:

1. Invariance: the attractor should map to itself under F.
2. Attractivity: any set of initial conditions in the state space should, for large t i.e., t→ ∞, converge

to the attractor.
3. Irreducibility: the attracting set of states should be connected by one trajectory and it should

not be possible to decompose the attractor to subsets of states which have non-overlapping
trajectories. In this case, each subset would be an attractor and not their union.

4. Persistence: the attractor should be stable under small perturbations, i.e., small deviations from
the trajectory on the attractor should return back to the attractor.

5. Compactness: the attracting set of states for the dynamic should be compact.

5.3. Bifurcations

Dynamical systems typically exhibit different types of equilibrium behavior when one or more
of the system parameters are changed. The equilibrium behavior changes because the change in the
parameters destabilizes an existing attractor and new attractors emerge in its place. An added feature
of such behavioral changes is that they often happen suddenly, i.e., there typically exists a critical
parameter value above and below which the system has two different attractors, or in the case the
system is multi-stable, the system might show different configurations of multi-stability before and
after the critical parameter value. The parameter value at which the attractors of the system change
qualitatively to a different type is called the ‘bifurcating point’ and the phenomenon itself in which the
system changes its equilibrium behavior is called a ‘bifurcation.’ There are many classes of bifurcations
that have been observed in dynamical systems, such as the saddle-node, pitchfork, Hopf, homoclinic,
and heteroclinic bifurcations (cf. Chapters 3 and 8 of [90]). Although for algebraically simple dynamical
systems, the points of bifurcation can be analytically obtained, in most cases, it is useful to numerically
integrate or iterate the system for various values of the bifurcating parameter and plot the ‘bifurcation
diagram.’ The bifurcation diagram is obtained by visualizing the equilibrium values of one dynamical
variable against the parameter value. There are different ways in which a dynamical system approaches
a chaotic attractor as the bifurcation parameter is varied. Both the Rössler model and the Hénon map
considered here bifurcate when we change their respective parameter a (Figure 7) and approach a
chaotic attractor via the ‘period-doubling route’ to chaos [93].
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In analyzing time series where the system dynamics are not known, the notion of bifurcations
plays an important role as it opens up the possibility of having transitions that do not show up in
the statistical moments of the variable but nevertheless involve qualitatively different equilibrium
behavior. We have encountered one such scenario in Figure 3 in which the Rössler system undergoes a
bifurcation from spiral-type chaos to screw-type chaos. The mean and the variance of the observed
time series are similar before and after the transition.
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Figure 7. Bifurcations in nonlinear dynamical systems. Both the Rössler system (a) and the Hénon
map (b) undergo qualitative behaviour in the their equilibrium dynamics as the parameter a is varied.
For the continuous Rössler system, the bifurcation diagram is obtained by discretizing the dynamic
by taking the local extrema of the time series y(t). Cross-sections such as the y = 0 plane (known
as Poincaré sections) can also be considered, which leads to a different projection of the dynamic.
The similar pattern seen in both systems—as they move from a single stable fixed point for low values
of a to periodic behavior and finally to chaos—is a universal phenomenon seen in chaotic systems
known as the ‘period-doubling’ route to chaos [93]. The vertical red dashed lines indicate the value of
a used in Figure 6.

6. State Space Reconstruction

The diverse complex behavior exhibited by nonlinear dynamical systems opened up new
perspectives of looking at real-world systems. At the same time, however, it gave rise to a critical
problem in the analysis of time series that were obtained from real-world complex systems: how
could high dimensional dynamics be analyzed using only scalar time series? One solution to
this challenging problem was first proposed in the seminal paper by Packard et al. in 1980 [2],
in which the authors proposed to reconstruct the state space from a scalar time series by using the
derivatives of the time-series measurements. In the case of noisy measurements, however, derivatives
of increasingly higher-order amplify the noise. In this tutorial review, we consider a second approach,
first given by Takens in 1981 [4], in which a system of delay coordinates is used to reconstruct the state
space dynamics of higher dimensionality. These two papers—by Packard et al. and by Takens—in
conjunction with a third crucial addition by Sauer, Yorke, and Casdagli [3] a decade later, laid down
the fundamental pillars of nonlinear time series analysis methods. We explain below the time-delay
embedding approach to state-space reconstruction, and follow the review in [84] closely, due to its
concise, sharp description.
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6.1. The Measurement Paradigm and Time Delay Embedding

Consider the dynamical system {X , F} composed of the d-dimensional state spaceX ⊂ Rd and the
flow F : X → X which maps a point in the state space at a given time to the next point on the trajectory
at the next time instant. We obtain a scalar time series st ⊂ R1 by using a measurement function
h : X → R1 which maps discrete locations xt ∈ X of the d-dimensional flow to discrete, time-ordered
scalar values such that st = h(xt), where xt := Ft(x0) and x0 is the initial state of the system at time
t = 0. In this situation, one can define a delay coordinates map [84], G : X → Rm, m < d, such that
G(xt) = yt ∈ Rm, where

yt = (st, st+τ , st+2τ , . . . , st+(m−1)τ) . (5)

Here, G maps a point xt on the flow to a point y of the reconstructed state space in Rm with
the help of the ‘time delay’ τ, and the ‘embedding dimension’ m. Takens proved that G has the
generic property that it is an embedding of {X , F} in Rd for the condition m ≥ 2d + 1 [4]. That it is an
embedding implies that G : X → G(X ) ⊂ Rm is a diffeomorphism, and that it is ‘generic’ implies that
the subset of pairs (h, τ) which result in an embedding is an open and dense subset in the set of all pairs
of (h, τ). Although in principle this was a path-breaking result, for actual high dimensional real-world
systems (such as regional weather systems), it meant that the embedding dimension had to be greater
than twice the dimension of the state space. This would mean that the scalar time series would have to
be extremely long in order to facilitate an embedding in such a high dimension. The next advancement
in this regard was made by Sauer, Yorke, and Casdagli [3] where the condition m ≥ 2d + 1 was further
constrained so that m needed to be greater only than twice the box-counting dimension of the attractor
A ⊂ X in order to ensure that it is an embedding of {X , F}. All such embeddings are “prevalent”
rather than “generic” in the sense that ‘almost all’ pairs of (h, τ) will result in an embedding. This result
had tremendous practical consequence because a large part of nonlinear dynamical systems were,
in fact, dissipative systems in which the volume and dimensionality of the attractor A was drastically
smaller than the state-space X . In other words, since all initial conditions would ultimately settle to
the dynamics on A, which had a much smaller volume, and consequently much smaller dimension,
than X , it was possible to study and model the equilibrium dynamics of a high dimensional system
{X , F} using a much smaller dimensional embedding G as given in Equation (5).

6.2. Time Delay Embedding in Practice

In order to determine the embedding from a given time series, the time delay τ and the embedding
dimension m must be fixed. The results of Takens and Sauer, Yorke, and Casdagli prove the existence
of the embedding, but they do not tell us how to determine τ and m. Till date, there are no rigorous
mathematical results that provide a unique route by which to determine these two parameters.
In the absence of such proofs, numerous methods have been proposed that use various heuristic
considerations to direct the time series analyst on how to optimally choose τ and m. We focus here on
two popular approaches, one each for selecting τ and m, which allow us to reliably reconstruct the
attractor of high dimensional dynamics from scalar time series (Figure 8c,d).

1. Determining the time delay. The choice of τ impacts the resulting embedding critically. When τ

is smaller than the desired value, consecutive coordinates of yt are correlated and the attractor
is not sufficiently unfolded. When τ is larger than the desired value, successive coordinates are
almost independent, resulting largely uncorrelated cloud of points in Rm without much structure.
It is important that the fundamental idea in determining the time delay τ is that each coordinate
of the reconstructed m-dimensional vector yt must be functionally independent. In order to
achieve this, it is recommended to set τ to the first zero-crossing of the autocorrelation function.
However, the autocorrelation function captures only linear self-interrelations, and it is more



Vibration 2019, 2 346

preferable to use the first minimum of the self-mutual information function (Figure 8a), as first
shown in [94]. For the scalar time series {st}N

t=1, the self-mutual information at lag τ is,

I(τ) =
∫
S̃

∫
S̃(τ)

p(s̃, s̃(τ)) log
(

p(s̃, s̃(τ))
p(s̃) p(s̃(τ))

)
, (6)

where S̃ 3 s̃ is a random variable underlying the sample {st}N−τ
t=1 and S̃(τ) 3 s̃(τ) is the random

variable underlying the sample {st}N
t=τ . In this notation, the optimal value of τ is given by,

τe = min
τ

{
τ :

d I(τ)
dτ

= 0,
d2 I(τ)

dτ2 > 0
}

. (7)

2. Determining the embedding dimension. The method of false nearest neighbours (FNN) put
forward by Kennel, Brown and Abarbanel in 1992 [95] is typically used to determine the
embedding dimension, once a time delay τ is chosen. This approach is based on the geometric
reasoning that given an embedding ym

t in dimension m, it is possible to differentiate between
‘true’ and ‘false’ neighbours of points on the reconstructed trajectory. In this method, we first
choose a reasonable definition of ‘neighbourhood.’ Based on this definition, we identify the
neighbours of all points on the trajectory in Rm. Next, we look for the false neighbours, defined
as those neighbours which cease to be neighbours in m + 1 dimensions, i.e., when we consider
the trajectory ym+1

t ∈ Rm+1. The false neighbours were neighbours in the lower dimensional
embedding solely because the attractor was not properly unfolded and we were actually looking
at a projection of the attractor rather than the attractor itself. As an example, consider the 2D limit
cycle trajectory on a circle, where opposite points that are almost on the same vertical line would
be seen as neighbours if the same dynamic were projected on to the horizontal axis, i.e., the 1D real
line R1. Once the attractor is properly unfolded, however, the number of false neighbours would
go to zero. In practice, this notion is implemented by the following formula (after Equation (3.8)
of [86]),

FNN(r) =

N−mτ

∑
i=1

Θ

 ||ym+1
i − ym+1

k(i, m)
||

||ym
i − ym

k(i, m)
|| − r

Θ
(σ

r
− ||ym

i − ym
k(i, m)

||
)

N−mτ

∑
i=1

Θ
(σ

r
− ||ym

i − ym
k(i, m)

||
) , (8)

where Θ(·) denotes the Heaviside function which is one for all positive arguments and zero
otherwise, || · || denotes the maximum norm and k(i, m) is the index of the point closest to ym

i in
the m-dimensional embedding based on maximum norm. The first term in the numerator counts
all those cases when the distance between a point and its closest neighbour increases by more
than a factor of r in going from m dimensions to m + 1 dimensions. However, in order to not
count those cases where the points are already far apart in m dimensions, the second term in the
numerator is used as a weight and also as a normalisation factor in the denominator. The second
term ensures that we count only those cases where the closest neighbour in m dimensions is closer
than σ/r, where σ is the standard deviation of the data. The final embedding dimension me is the
smallest value of m for which the fraction FNN(m) is zero (Figure 8b).
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Figure 8. State space reconstruction using time delay embedding. The first minima of the self-mutual
information (red circle and dashed yellow line in (a) is used to determine the time delay of embedding
τ. Using τe = 137 chosen from the I(τ) curve, the fraction of false neighbors FNN(m) (Equation (8))
determines the minimum embedding dimension me required to properly unfold the attractor (b). In the
example chosen here, the true attractor of the Rössler system is shown in (c). Considering only the
x-component as the measured signal, the embedding parameters are determined using (a) and (b) as
τe = 137 and me = 3. The reconstructed attractor (d) is not identical to the one in (c) but the two are
topologically equivalent.

7. Recurrence-Based Analysis

Recurrence-based analysis utilizes a fundamental characteristic of dynamical systems: that a
system’s dynamical trajectory eventually returns close to earlier states as time passes. Particularly in
the case of time series obtained from real-world systems, we find that systems repeat earlier behavior,
even if only in an approximate sense, and even though they might at times be interrupted by regime
shifts and dynamical transitions. Poincaré was the first to mathematically describe the recurrence
of dynamical systems 130 years ago, known today as the ’Poincaré Recurrence Theorem’ [96]. As a
principle of analyzing time series, however, the first breakthrough for recurrence-based analysis came
with the pioneering paper of Eckmann, Kamphorst, and Ruelle [36]. Their work demonstrated, for the
first time, how to construct the ‘recurrence plot,’ which encoded the pairwise recurrences of time
series values, and which created a visual typology of the dynamics, solely from the measured time
series. This forms the basis of all of the recurrence-plot-based analysis presented in the sections below.
We refer the reader to [88] for a comprehensive review of recurrence plots.

7.1. Recurrence Plots

Consider the dynamical system {X , F}, X ⊂ Rd, F : X → X , as before where {xt}N
t=1 is a

measured d-dimensional time series of length N. The system is said to recur when a state xi at time
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t = i is approximately ‘close’ to a different state xj at time t = j, i.e., xi ≈ xj. Here, the notion of xi
being close to xj depends on (i) the choice of a norm such as the Euclidean norm or the maximum
norm, and (ii) the choice of a distance threshold, which helps to unambiguously define all states farther
apart than itself as ‘not close,’ and vice versa. We can thus encode all possible pairs of recurrences in
the recurrence matrix R,

Rij = Θ
(
ε− || xi − xj ||

)
, (9)

where || · || is an appropriate norm, ε is the chosen distance threshold and Θ is the Heaviside function.
The resulting matrix R of size N×N thus a binary-valued matrix comprising solely of 1 s and 0 s, where
the 1 s denote pairs of time points where the measured states recur and 0 s denote non-recurring pairs
of time points. R is symmetric only if the chosen norm is symmetric. In their original paper, Eckmann,
Kamphorst and Ruelle [36] used a k-nearest neighbor norm. When we have a single scalar time series
{st}N

t=1, we first embed the time series using time-delay embedding (Section 6) to obtain an embedded
state-space trajectory {yt}N′

t=1, where N′ = N − (me − 1)τe. The recurrence matrix is then estimated
from the embedded trajectory yt. A ‘recurrence plot’ is obtained when we visualize the recurrence
matrix by placing a black dot for every 1 and an empty dot for every 0. Based on the relatively
simple estimation process given by Equation (9), we arrive at a powerful visual representation that
captures the difference in dynamical behaviour (Figure 9). The recurrence matrix contains all relevant
dynamical information. Robinson and Thiel [97] proved that, given a recurrence matrix R, it is possible
to reconstruct the time evolution of the dynamical system up to a homeomorphism, i.e., up to a change
in the coordinate system. This result is practically observable in the successful reconstruction of time
series and attractors from recurrence plots [98,99].

To construct a recurrence plot (RP), however, one has to carefully choose the various parameters
related to the estimation of R in Equation (9). The embedding parameters me and τe have been
extensively studied for their influence on recurrence plot-based estimates. Iwanski and Bradley [100]
demonstrated that that for particular low dimensional systems, RQA measures remained unchanged
on change of embedding parameters, and Thiel et al. [98] showed that the estimation of second-order
Rényi entropy and the correlation dimension from recurrence plots was independent of the choice of
embedding. However, this is not the case for all RP-based estimates. March, Chapman and Dendy [101]
derive analytical formulae that explicitly express two recurrence-based measures (indicative of
deterministic behavior) as a function of the embedding dimension. Thiel, Romano, and Kurths [102]
also report how over-embedding—the choice of embedding dimension much larger than the minimum
required to unfold the attractor—can introduce spurious correlations between the embedded vectors.

The choice of the parameter ε impacts further analyses based on R, and there is no mathematical
result which prescribes how to choose ε uniquely. There are several studies that have proposed
approaches to decide on an optimal ε [103–107]. As a general rule of thumb, it is best to choose ε such
that the recurrence matrix does not have too few 1 s (empty recurrence plot) or too many (almost
completely filled recurrence plot). The ratio of the number of 1 s to the size of R, known as the
recurrence rate, is typically kept in the range of 5–10% for most analyses. The choice of ε is innately
linked to the timescales that we wish to investigate. On increasing ε, we increase the tolerance of what
constitutes a recurrence, and end up with more 1 s in R, which fills in finer, and shorter timescale,
structures from the recurrence plot. If the focus of the study is to study longer timescale behavior,
increasing the recurrence rate beyond 30% might be appropriate.

Irrespective of the final chosen value of the parameters me, τe, and ε used to construct a recurrence
plot, sensitivity tests have to be carried out. A sensitivity test (with respect to one parameter) is
typically done by changing the parameter value up to a few percent of the value chosen for the main
analysis. The results would indicate whether or not the final conclusions are robust to small changes
in parameter values.

Beside univariate time series, recurrence plot analyses can also be extended to bivariate data
using cross-recurrence plots [108] and multivariate data using joint-recurrence plots [109]. Other than
cross- and joint-recurrence plots, additional extensions of recurrence plots include windowed- and
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meta-recurrence plots [110] weighted recurrences plots [111], fuzzy recurrences plots [112], order
pattern recurrence plots [113], and recurrence plots of recurrence plots [114]. Each of these extensions
provide useful insights into the recurrence features of idiosyncratic dynamical systems.
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Figure 9. Typology of recurrence plots. Recurrence plots obtained from: Gaussian white noise (a),
superposed harmonics with periods 10, 50, and 75 (b), chaotic Rössler (c), and geometric Brownian
motion (d). The differences in the dynamical characteristics lead to drastically different patterns.
Pure white noise shows no structure, while harmonic and chaotic behavior show diagonal lines to
different degrees, and Brownian motion with drift reveals modular periods interspersed with bottleneck
periods. The embedding parameters and the recurrence plot thresholds are given in the title of each
subplot. In (b), ε was used as a fixed recurrence rate, while for the rest it was the threshold for the
Euclidean norm.

7.2. Recurrence Networks

In 2009, Marwan et al. [115] proposed an extension to recurrence plot-based analysis.
Their approach was to exploit the inherent analogy between the adjacency matrix of a network and a
recurrence matrix to define a new object, the ‘recurrence network,’ which is the network represented
by the adjacency matrix obtained by removing the main diagonal of the recurrence matrix R, i.e.,

Aij = Rij − δij , (10)

where δij is the Kronecker delta, which is 1 when i = j and 0 otherwise. Removing the main diagonal
from R is equivalent to removing self-loops in the recurrence network—a necessary condition to
analyze several ‘path’-based measures in order to avoid getting stuck in an infinite loop. The recurrence
network is thus the network obtained when we consider the states xi as the nodes of the network
and place a link between xi and all other states which are closer to it than the chosen threshold ε.
The network itself is embedded in the state space of the dynamics (or in the embedding space for
reconstructed attractors), and is similar to the phase space networks described by Xu, Zhang, and
Small in their 2008 article [116]. In the last decade, recurrence networks have been applied successfully
to reveal nontrivial dynamical features in various complex systems [117–119].
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In general, considering the recurrence patterns of a nonlinear dynamical trajectory as a complex
network results in a paradigmatic shift in how we phrase the dynamical questions (synchronization,
transitions, and so on), and enables us to apply the entire toolbox of complex network-based measures
to the time series under investigation. For instance, consider the 2014 study by Eroglu et al. [111],
in which the authors propose an intuitive criterion for choosing ε: that the recurrence network should
remain connected. In this way, there exists a critical value of ε below which the network ceases to be
connected, and a value just above this critical value is recommended for ε. We refer the reader to [120]
for an overview of complex network techniques used in time series analysis.

7.3. Quantification Based on Recurrence Patterns

Different structures in recurrence plots are interpreted as characteristics of different kinds of
dynamics. Bradley and Mantilla [121] show how unstable periodic orbits can be used as a basis set for
the geometry seen in a recurrence plot and how a comparison of the block structure between two RPs
can indicate the (dis)similarity between the underlying dynamics. Zou et al. [122] use RPs to distinguish
quasi-periodic, fully chaotic, and sticky chaotic orbits in nonintegrable Hamiltonian systems using
far less data than other methods. Facchini, Kantz, and Tiezzi [123] show that characteristic curved
patterns in an RP can be caused by nonstationarities in the signal, in particular by a linearly increasing
or a periodically modulated carrier frequency, and that such nonstationarities are not captured in a
traditional spectrogram. More recently, Hutt, and beim Graben [124] propose a new RP-based approach
that can identify metastable attractors and heteroclinic orbits, a task that is typically challenging using
standard methods.

In general, there are various measures that attempt to quantify different aspects of the recurrence
plot into a single number, and they are collectively referred to as recurrence quantification measures.
The measures based on recurrence plots typically require the time-ordering information of the recurring
points and can thus be considered to capture dynamical features. Measures derived from recurrence
networks, however, do not require the time-ordering information, and capture various aspects of
the geometry, i.e., the topology, of the attractor. In this section we consider two measures, viz.
‘determinism’ and ‘average shortest path length,’ one each from the recurrence plot and recurrence
network frameworks.

1. Determinism. A prevalent feature found in most recurrence plots are diagonal lines, which show
up when there are periods in which trajectories evolve in parallel to each other. A diagonal line
of length l occurs when the following condition is satisfied: yi ≈ yj, yi+1 ≈ yj+1, yi+2 ≈ yj+2,
. . . , yi+l−1 ≈ yj+l−1. This condition can hold only when the two sections of the trajectory—one
between yi and yi+l−1 and the other between yj and yj+l−1 are parallel to each other in the
reconstructed state space, which occurs for periodically repeating portions of the trajectory.
A higher number of such periodically repeating sections of the trajectory would imply that the
state of the system can be predicted on timescales equal to the period of oscillation which, in this
example, would be the time difference ∆t = |i − j|. Diagonal lines are thus typically used as
an indicator of deterministic behavior, as is also seen in the recurrence plots given in Figure 9.
To quantify the extent of determinism contained in the recurrence plot, the recurrence plot-based
measure DET is defined as,

DET =

N
∑

l=l0
l K(l)

N
∑

l=1
l K(l)

, (11)

where the denominator is the total number of recurring points, K(l) is the number of lines of
length l, and l0 is the minimum number of points required to form a line. Although technically l0
should be 2, higher values can be chosen in certain cases. For instance, in noisy systems, one can
expect very short diagonal lines to occur purely by chance. Such lines do not encode determinism
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of the system and are better avoided in the estimation of DET. In such situations, we an set l0 to a
larger value so as to count only longer lines as they are less likely to occur due to randomness
and more likely to indicate (any) deterministic component of the underlying process. DET gives
a number between 0 and 1 such that a periodic signal (e.g., a sinusoid) will have a value of 1 and
a purely stochastic signal will result in a value extremely close to 0.

2. Average shortest path length. A ‘path’ between two nodes i and j in a network is defined as a
sequence of nodes that needs to be traversed in order to go to node j from node i. In general,
there exist many possible paths between any pair of nodes in a network, and there can be even
several possible shortest paths between a pair of nodes. However, it is possible to uniquely
define a shortest path length dij between two nodes i and j which is the smallest number of
nodes that need to be traversed in order to reach j from i. Often the average shortest path length
is a characteristic feature of networks that can help distinguish the topology of one network
from another. In recurrence networks, shortest path length helps to characterize the topology of
nearest-neighbor relationships. Each shortest path dij is the distance between two states i and j of
the system measured by laying out dij straight line segments between them such that: (i) each
line segment cannot be more than ε units long, and (ii) the ends of each line segment must lie on
a measured state, the first and last of which are i and j respectively. Thus, dij is bounded from
below by the straight line between the states i and j, i.e., dij is the upper bound for the Euclidean
distance between two states on the attractor [115,117], and its average value is an upper bound
for the mean separation of states of the attractor [117]. The average shortest path length, SPL, is
estimated as—

SPL =
1

N(N − 1)

N

∑
i,j =1

dij , (12)

where N is the size of the recurrence network and the normalization factor N(N − 1) is the
possible number of unique paths between N nodes. In order for Equation (12) to be estimable,
we should not have self-loops in the network, which is ensured by Equation (10), and the network
also has to be connected, in the sense that must exist at least one path between any pair of nodes
in the network. Note that SPL quantifies the topology on the recurrence networks embedded
in the state space and in several situations, such as multiple attractors existing for the same
parameter set, SPL can help quantify differences between the different attractors based on their
geometric layout. This might not be reflected in estimations of mean separation of states for the
same attractors.

To illustrate the two recurrence-based quantifiers introduced above, we estimate DET and SPL
for the Hénon map for different values of the parameter a between a = 1 and a = 1.4, and compare the
results with the ‘maximal Lyapunov exponent’ (MLE) Λ in each case (Figure 10). The MLE is typically
used to quantify the exponential divergence of trajectories:

Λ = lim
n→∞

1
n

n

∑
t=1

ln |F′(xt)|, (13)

which for the x-component of the Hénon map translates to,

Λ = lim
n→∞

1
n

n

∑
t=1

ln | − 2axt|. (14)

Values of Λ > 0 indicate chaotic attractors where nearby trajectories diverge exponentially as time
progresses. Negative Λ values denote periodic attractors where all trajectories eventually converge to
a fixed number of states.

We find that DET tends to decrease from a ≈ 1.12 as the map bifurcates towards the chaotic
attractor at a = 1.4 (green shaded area in Figure 10), and it typically shows a trend opposite to that of
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the MLE (red shaded area in Figure 10), which increases with a. SPL has low values till around a ≈ 1.12,
at which point it jumps to a higher value and then gradually decreases as a is increased. In the periodic
windows (ca. 1.23 ≤ a ≤ 1.24 for instance), DET increases sharply and there is a corresponding drop
in SPL. Together, the two measures help to infer the underlying dynamics meaningfully: While the
decrease in DET from a ≈ 1.12 on tells us that the equilibrium dynamics turn more and more irregular,
the decrease in SPL informs us that the attractor shrinks in volume in the same interval.
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Figure 10. Recurrence-based quantification. The determinism DET (green) estimated from the
recurrence plot and the average shortest path length shortest path length (SPL) (yellow) estimated from
the recurrence network quantify dynamical changes for the Hénon map (Equation (2)) on changing
the bifurcation parameter a (cf. Figure 7). For comparison, the MLE Λ (red) is shown alongside the
recurrence quantification measures to indicate the chaotic and periodic windows. DET (SPL) is low
(high) for chaotic dynamics (i.e., Λ > 0) and high (low) for periodic behaviour. Recurrence plots were
estimated with τ = 1, m = 2, ε = 2 for the x variable of the Hénon map. The shaded areas denote the
interquartile range obtained using 100 randomly chosen initial conditions for each value of a.

7.4. Inferring Dependencies Using Recurrences

Recurrence plots also provide powerful ways to determine interdependencies between two
systems based solely on the measured time series. Particularly for chaotic oscillators, it can detect
subtle and nontrivial modes of connectedness between two systems, such as phase synchronization (cf.
Section 4.3) and generalized synchronisation [125]. To detect such forms of synchronization without
knowledge of the system equations or system parameters is a difficult inverse problem that becomes
potentially tractable with recurrence plots. Romano et al. [126] showed how conditional recurrences
obtained from recurrence plots can be used to detect coupling directions whereas Feldhoff et al. [127]
estimated coupling directions by a comparison of geometric motifs in the recurrence networks of
coupled dynamical systems. Groth [128] showed that a combination of cross-recurrence plots and
order recurrence plots can lead to a robust estimator of coupling between two systems. Tanio, Hirata
and Suzuki [129] used recurrence plots and combinatorial optimization to reconstruct a slowly varying
driving force by observing only the driven system. Hirata and Aihara [130] presented an approach to
detect common driving forces from bivariate time series measurements by using counts of joint
recurrence of the two systems that were in excess of what was expected from their individual
recurrence rates. More recently, statistically motivated measures of interdependencies were proposed
which attempt to formulate a mutual information–like quantity based on recurrences [131,132].
Here, we briefly present the measure to detect phase synchronization proposed by Romano et al. [125]
and the statistical measure for interdependence proposed by Goswami et al. [131].
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1. Correlation of probabilities of recurrence. The determination of the phase from the measured
time series of a chaotic oscillation is a challenging task. Especially in the case when the attractor
is in a non-phase-coherent dynamical regime, it is nontrivial to determine which particular
combination of the state space variables would result in a reliable definition of the ‘phase’ of
the motion, in the sense that with every time period, the phase should increase by 2π. In their
study, Romano et al. [125] exploit this idea to note that for complex systems, we need to relax
the condition || xi − xi+τ || = 0 (which is true for a purely periodic system with a single well
defined period τ) to rather have || xi − xi+τ || ≈ 0, i.e., || xi − xi+τ || < ε, which allows us to define
the function,

q(τ) =
1

N − τ

N−τ

∑
i=1

Θ (ε− || xi − xi+τ ||) =
1

N − τ

N−τ

∑
i=1

Ri, i+τ , (15)

where the normalisation N − τ ensures that the average number of recurring points for every
possible period τ is considered. The function q(τ), also referred to as the τ-recurrence rate, can
be considered as a kind of generalized autocorrelation function of the system which peaks at
multiples of the dominant periods of the dynamics (cf. [61]). An important point here is that
τ should be typically greater than the correlation timescales of the system. To estimate the
extent of phase synchronisation, Romano et al. suggest to use the Pearson’s cross-correlation
coefficient of the qX (τ) and qY (τ) curves from two dynamical systems {X , FX } and {Y , FY} in
combination with an appropriately selected so-called Theiler window [133] to take into account
the autocorrelations of the dynamics. This was updated in a later study [134] to consider only
those values τ ≥ τ0, where τ0 = maxτ{τXc , τYc } is the maximum of the two decorrelation times
for the two systems, where the decorrelation time was considered as the smallest value of τ for
which the autocorrelation function is less than 1/e. Here, we suggest to consider the decorrelation
time with respect to q(τ) instead of the autocorrelation function, i.e., τc = minτ{q(τ) ≤ 1/e}.
Thus, the phase synchronisation between X and Y can be obtained by,

CPR =
1

N − τ0

N

∑
τ̃=τ0

(
qX (τ)− µ̃Xq

) (
qY (τ)− µ̃Yq

)
σ̃Xq σ̃Yq

(16)

where µ and σ denote the sample mean and standard deviations, and the tilde symbol (˜) is used
to denote estimates based on the τ ≥ τ0 condition. Equation (16) is thus nothing but the sample
cross-correlation coefficient of the q(τ ≥ τ0) values obtained for X and Y .

2. Recurrence-based measure of dependence. Goswami et al. [131] recently proposed a statistically
motivated measure of dependence based on recurrence plots. This idea was further developed
by Ramos et al. [132] to include conditional dependences as well which helped to identify and
remove ‘common driver’ effects in multivariate analyses. The so-called recurrence-based measure
of dependence (RMD in Eq. 20 below) is the mutual information of the probabilities of recurrence
of two dynamical systems X and Y . Consider the recurrence plot RX constructed from the
measured/embedded series {xt}N

t=1: we can estimate the probability that the system X recurs to
the state at time t = i as,

pXi =
1
N

N

∑
j=1

RXij , , (17)

and similarly, we get pYi for system Y . Now, consider the joint recurrence plot [88],

RXYij = RXij RYij , (18)

which encodes the joint recurrence patterns of systems X and Y by looking at those pairs of time
points where a recurrence in X coincides with a recurrence Y and vice versa. The joint recurrence
plot allows us to define the joint probability



Vibration 2019, 2 354

pXYi =
1
N

N

∑
j=1

RXYij , (19)

which encodes the joint probability that recurrences of the system X to its state at time t = i
coincide with recurrences of system Y to its state at the same time t = i. The three quantities pXi ,
pYi , and pXYi allow us to define the mutual information of these probabilities of recurrence, i.e.,

RMD =
N

∑
i=1

pXYi log
pXYi

pXi pYi
, (20)

which encodes the extent to which X and Y are non-independent. For the case where the two
systems are completely synchronized, pXYi = pXi = pYi , which means, according to Equation (20),
RMD = 〈 −pXi log pXi 〉, i.e., the Shannon entropy of the recurrences of states of the system. If the
systems are independent, RMD is zero as the joint probability pXYi is simply the product of
the two individual probabilities of recurrences. We can understand this by observing that the
product in Equation (18) involves the element-wise product of two corresponding columns of the
individual recurrence plots. For independent systems X and Y , this amounts to estimating the
probability of getting overlapping 1 s from multiplying two binary series where the 1 s in each
series have been distributed independently according to probabilities pXi and pYi respectively,
which is simply pXYi = pXi pYi .
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Figure 11. Inferring interdependencies using recurrences. Estimates of CPR (blue), recurrence-based
measure of dependence (RMD) (yellow), and PCC (red) for the coupled Rössler system (Equations (21)
and (22)) for varying coupling strength µ. The shaded interval denote the interquartile ranges of the
measure as obtained from 100 different initial condition choices for the coupled system. The onset of
phase synchronization at µ ≈ 0.042 is recorded by CPR as it becomes almost one, but it is also recorded
by RMD as it suddenly jumps from values close to zero to a plateau at around RMD ≈ 10. This plateau
for RMD ends at µ ≈ 0.075; and after µ ≈ 0.102, RMD plateaus again, signaling the onset of lag
synchronisation [88]. Between µ = 0.075 and µ = 0.102, RMD has a much larger spread indicating
large fluctuations due to intermittent lag synchronisation. RMD shows similar results to that of JPR
(cf. Figure 43C of [88]), but is easier to implement and computationally less expensive. Note that PCC
dips just before the onset of phase synchronisation and has a continues increase afterwards, but is
unable to detect either the precise onset of phase or lag synchronisation.
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To illustrate how CPR and RMD work, we consider two mutually coupled Rössler oscillators
(after [88], cf. Figure 43C and Equations (A7) and (A8) of that paper) connected bidirectionally in the
first component by a coupling strength µ—

ẋ1 = −(1 + ν)y1 − z1 + µ(x2 − x1)

ẏ1 = (1 + ν)x1 + ay1

ż1 = b + z1(x1 − c)

, (21)

ẋ2 = −(1− ν)y2 − z2 + µ(x2 − x1)

ẏ2 = (1− ν)x2 + ay2

ż2 = b + z2(x2 − c)

, (22)

where the parameters a = 0.15, b = 0.2, c = 8.5, and ν = 0.02. For the phase synchronous state
shown in Figure 4, the coupling strength µ = 0.035, but in the current example, we vary the coupling
strength in the interval µ ∈ [0., 0.12]. For each value µ considered, we integrate the coupled system
until it reaches equilibrium behaviour, and consider the last part of the time series for the recurrence
plot-based interdependence analysis, i.e. the estimation of CPR and RMD (Figure 11). We take the
first components, x1 and y1, as the observed time series and embed them according to the steps in
Section 6. We find that CPR begins to rise as the system approaches phase synchronisation and at
µ ≈ 0.042, it hits 1 and remains at that value for all higher values of µ. RMD records a jump at the
onset of phase synchrony, which is followed by a noisy plateau till µ ≈ 0.075. RMD further shows
the onset of lag synchronisation at µ ≈ 0.102 after which its fluctuations plateau off again. In the
interval µ ∈ (0.075, 0.102), the values of RMD show large fluctuations primarily due to intermittent
lag synchronisation. In general, RMD behaves similar to the measure JPR put forth in [125] but is
easier to implement and faster to compute. For comparison to CPR and RMD, we also estimate the
Pearson’s cross-correlation coefficient PCC,

PCC =
1
N

N

∑
i=1

(
xi − µX

) (
yi − µY

)
σX σY

(23)

where µ and σ denote the sample mean and standard deviations of X and Y as before and N is the
length of the time series. PCC dips sharply to moderate negative values before the onset of phase
synchronisation but fails to detect the onset of phase and lag synchronisation (red area in Figure 11).

7.5. Detecting Dynamical Regimes Using Recurrences

Recurrence-based approaches can also be used to distinguish between various dynamical regimes.
Casdagli [110] proposed a change point detection measure based on a conditional probability that
estimates the likelihood of observing recurrences in two block diagonal squares whose upper-right and
lower-left corners touch at the time point being tested for being a potential change point. Beim Graben
and Hutt [135] propose to identify change points using a phase space partition constructed as a
union of intersecting balls along the trajectory of the dynamics. Rapp, Darmon and Cellucci [59]
use a similar notion and propose the ‘quadrant scan’ method to detect transitions, which has been
recently also applied by Zaitouny et al. [58] to detect transitions in various kinds of real-world
data. Iwayama et al. [136] proposed a change point detection approach based on the detection of
‘communities’ in recurrence networks using spectral clustering. More recently, Goswami et al. [137]
use a similar notion and propose that communities can be used as an indicator of abrupt transitions in
time series.

All of the above approaches have one thing in common: the idea that block structures in the
recurrence matrix correspond to epochs where the trajectory is ‘trapped’ in a particular part of the
state space. Identification of block structures, and in particular, the bottleneck time points between
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two consecutive blocks indicate the change point. Formally, the identification of block structures
in a recurrence matrix is equivalent to identifying ‘communities’ in the corresponding recurrence
network. ‘Community’ is used here in the sense of Newman’s definition [138], which corresponds to
groups of nodes in a network that are more densely linked to each other than the rest of the network.
Below, we use the simplest form of identifying a network community, ‘modularity,’ to identify abrupt
transitions and dynamical regimes in a given time series.

Newman and Girvan [139] put forth the notion of modularity to provide a quality criterion
that allowed the inter-comparison of a set of given network partitions (i.e., a community structure)
to determine the partition with the strongest community structure, i.e., the highest modularity.
Given a network and a partition of the network, modularity estimates the deviation of average
within-community link density of the given partition from that of a random network with the same
degree sequence. For the adjacency network A, let M denote the total number of links in the network,
then the modularity is

MOD =
1

2M

N

∑
i, j=1

(
Aij −

kik j

2M

)
δ(cicj), (24)

where ki is the ‘degree’ of node i defined as the total number of links attached to node i, and ci is
is an indicator function that gives the community index of node i such that δ(ci, cj) equals 1 when
ci and cj belong to the same community and zero otherwise. In order to evaluate the modularity
MOD, we need to thus specify a partition of the network such that different nodes are grouped into
different communities. This idea is used to construct an optimisation algorithm which, given all
possible communities for a given network, returns the partition that maximizes MOD which serves as
a utility function for the maximisation algorithm. There are several algorithms which carry out this
optimisation in reasonable computation time. Besides modularity, which is known to have several
drawbacks in detecting block structure in networks, many other methods have been proposed to
identify communities in complex networks, and we refer the reader to [140] for a comprehensive
overview of this topic.

We demonstrate the approach with the example of a particle moving under a symmetric
triple-well potential—

U(x) = x2(bx2 − c)2 + ax2, (25)

with b = 0.1, c = 1, and a = 1 (Figure 12a). Based on the Langevin equation for a particle moving
under the potential U,

dx = U′(x)dt + σdW, (26)

where σ denotes the magnitude of the stochastic Wiener process dW, we esimate the time series for the
particle’s location by integrating Equation (26) with the Euler-Marayama method:

xn+1 = xn −U′(xn)dt + σ
√

dtξ, (27)

where dt = tn+1 − tn, and ξ ∼ N (0, 1) is a standard normal random variate. Using the fast greedy
implementation in Python package for igraph [141] for detecting the communities in a given network
while optimizing Newman’s modularity, we obtain three distinct communities (Figure 12b) which
almost always correspond to the three stable states around the three minima of the potential U.
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Figure 12. Detecting dynamical regimes using recurrences. The three wells (boundaries indicated
by horizontal dashed lines) of a triple-well potential U(x) ((a), cf. Equations (25)–(27)) identified
using the community structure of the recurrence network (m = 1, τ = 1, fixed recurrence rate = 20%)
obtained from the time series (grey line in (b)) sampled every t = 0.25 units (circles in (b)). The three
communities (indicated in (b) with the color of circles) are obtained by optimizing the modularity
(Equation (24)) of all possible partitions of the recurrence network. This approach allows us to: (a) infer
that the dynamics has three regimes, (b) classify the time series.

8. Surrogate-Based Hypothesis Testing

All-time series analysis essentially involves the estimation of quantifiers from data and subsequent
inference of dynamical characteristics. In practice, however, time series quantifiers often yield values
that are intermediate and which make it infeasible to formulate an unambiguous inference from the
value alone. For instance, if we obtain a value of DET = 0.68 we are unable to clearly conclude whether
the underlying dynamics are deterministic (DET ≈ 1) or random (DET ≈ 0) (cf. [104]). The ambiguity
of such time series quantifiers can be tackled in two different ways, which correspond to two different
situations of obtaining time series.

First, consider the situation that we obtain our time series from an ‘active experiment,’ where
we can change the parameters and initial conditions of the system and obtain further time series if
necessary. In this case, we can try to identify a bifurcating parameter of the system, and change its
value incrementally. We can estimate DET corresponding to each value of the bifurcating parameter,
and compare them with each other (this is the situation in Figure 10). This way, we gain an
understanding of which configurations of the system are more deterministic and which are less
so. Active experiments allow us to explore time series characteristics on a relative scale simply by
enabling us to investigate the system dynamics under different parameter configurations. The second
situation is that of a ‘passive experiment,’ where we have only one realization of the system, and where
we cannot generate a new time series for different system configurations. This is the case for most
real-world time series. In the case of such passive experiments, we have to rely on the framework of
statistical hypothesis testing, and we have to use ‘surrogate time series’ to help us carry out the tests.

Surrogate time series are randomized versions of the original time series that retain a few desired
characteristics of the original dynamics. The characteristics which they retain encode a ‘null hypothesis’
against which we test the ‘significance’ of the time series characteristic. The simplest surrogate
generation method is to shuffle the values of the original time series, which destroys all time-ordered
dynamical information but retains the value distribution. We can use this method, for instance, to test
whether the DET estimated from a time series is statistically significant under the null hypothesis:
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the observed determinism is explainable by a random process with a similar value distribution.
A second surrogate generation technique was used in Section 4.4 (Figure 5), where we used the Iterated
Amplitude Adjusted Fourier Transformed (iAAFT) method [91] to create stochastic time series such that
all dynamical structure of the input Rössler data was removed but nevertheless the power spectrum
remained unchanged. In this case, the null hypothesis is: the observed dynamical characteristics
(DET, SPL, and so on) are explainable by a random process with a similar power spectrum. To test
the significance of measures of interdependence, such as RMD, CPR, or PCC, we typically use twin
surrogates [142], which mimic trajectories from the same dynamical system albeit with random initial
conditions. Twin surrogates retain both linear and nonlinear characteristics as the original time series,
but by virtue of being a trajectory from a randomly chosen initial condition, the coupling is broken.
The null hypothesis for twin surrogates is: the observed coupling is explainable by a randomly chosen
trajectory, i.e., an independent realization, of the same dynamical system. If the observed value of
CPR or RMD is not likely from a randomly chosen pair of twin surrogates, then we fail to accept the
null hypothesis, indicating that the observed value of CPR or RMD are ’statistically significant’, i.e.,
extremely less likely to have occurred simply by chance from systems that are dynamically similar.
We refer the reader to [143] for a comprehensive overview of the multitude of surrogate time series
generation methods that have been proposed till date.

In practice, in order to use surrogates for statistical hypothesis testing, we do the following:

1. Estimate the time series analysis quantifier Q from the original time-series, denote it as Qorig.
2. Generate K surrogate time series using an appropriate surrogate generation method.
3. Estimate the same quantifier Q from each of the surrogate time series in the exact same manner as

was done for the original time series. This results in a sample of K values of Q, which we denote
as {Qsurr

i }K
i=1.

4. Estimate the probability distribution Pnull (Q) from the sample {Qsurr
i }K

i=1 using a histogram
function or a kernel density estimate. This distribution is known as the ‘null distribution’ as
it is the distribution of values Q for the situation the null hypothesis is true, i.e., for whatever
characteristic the surrogates preserve.

5. Using Pnull (Q), estimate the so-called ’p-value,’ defined as the total probability of obtaining a
value at least as extreme as the observed value Qorig, i.e.,

p =
∫

Q>Qorig

Pnull (Q) . (28)

The p-value encodes how less likely is the observed value Qorig to be obtained from the null
distribution Pnull .

6. Based on a chosen confidence level of the test α, determine whether Qorig is statistically significant
at level α by checking whether p < α or not. When p < α, the observed value Qorig is statistically
significant with respect to the chosen null hypothesis, and we fail to accept the null hypothesis,
indicating that the observed Qorig is caused by characteristics other than what is retained in the
surrogates. By convention, α is typically chosen at 5%, i.e., α = 0.05 or in some cases at 1%,
i.e., α = 0.01. Values of α higher than 5%, such as 10%, is not recommended as the statistical
evidence in such cases is rather weak.

7. In cases when there is more than one statistical test, we have to take into account the problem
of multiple comparisons. This situation commonly arises in a sliding window analysis, where
we divide a time series into smaller (often overlapping) sections and estimate the quantifier Q
for each section. If α = 0.05, then 5% of the windows are possibly false positives. To reduce the
effect of false positives, ‘correction factors’ such as the Bonferroni correction or the Dunn-S̆idák
correction are used [144]. In particular, Holm’s method [145] is preferable as it does not require
that the different tests be independent. The fundamental idea behind correction factors is to use a
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corrected value of α which is far lower than the actual reported α, thereby reducing the effective
number of false positives at the reported level of confidence.

It is important to keep in mind that the final inferences are only as strong as the chosen surrogate
method and the corresponding null hypothesis. If we estimate DET from a time series and test its
significance against a Pnull (Q) generated from a simple random shuffle of the time series, then a
statistically significant result can only let us conclude that the observed levels of determinism are not
likely caused by an uncorrelated stochastic process with the same value distribution. However, if we
observe a statistically significant value of DET against a Pnull (Q) generated from iAAFT surrogates,
then we can make a stronger inference, viz., that the observed levels of determinism are not likely
caused by a stochastic processes that possess not only the same value distribution but also the same
autocorrelation structure. This would indicate that the determinism is likely due to factors other
than the autocorrelation of the dynamics. To test whether an observed value of DET is significant
or not, twin surrogates would not make sense because they give us dynamically similar trajectories
which presumably, also have similar values of DET. To test the significance of DET against a null
hypothesis which gives surrogates with similar DET values is a contradiction in itself. That said,
we can, however, keep increasing the characteristics retained by the surrogates—value distribution,
power spectrum/autocorrelation, mutual information, neighborhood structure, and so on—and make
the inferences accordingly stronger, as long as the increase in the strength of inference is relevant to
what we want to learn from the time series.

9. Application: Climatic Variability in the Equatorial and Northern Pacific

We apply the concepts discussed in the previous sections to the climatic variability of the
Pacific Ocean, particular of the equatorial Pacific and the North Pacific basin. The sea surface
temperatures (SSTs) in these two regions reportedly impact climatic conditions and weather patterns
globally [146–148]. SSTs in the equatorial Pacific exhibit the well known El Niño southern oscillation
(ENSO), which is an oscillatory behavior between anomalously warm and anomalously cold SSTs on
typically quasi-biennial timescales. Anomalous warm (cold) periods in this region, are known as El
Niño (La Niña) years. Here, we use the Niño 3.4 climatic index [149], constructed by averaging the
monthly SST values in a pre-defined spatial box along the equatorial central Pacific roughly north of
Tahiti, between 120W–170W and 5S–5N. The North Pacific basin, roughly the region north of Hawaii
and contained between the Asian shoreline to the west and the northwest American shoreline to
the east, exhibits a slower timescale oscillation known as the Pacific Decadal oscillation (PDO) [150].
An index for the PDO is estimated from the leading empirical orthogonal function (EOF) pattern of
SST anomalies in the North Pacific basin. The positive (negative) phase of the PDO typically has a cold
(warm) SST anomaly in the central part of the North Pacific and shows a corresponding warm (cold) El
Niño (La Niña) like pattern in the equatorial Pacific. Although the positive (negative) phase of the PDO
is similar to the positive (negative) phase of the ENSO, the two phenomenon operate on different time
scales: While the ENSO phases typically last only for around 6 to 18 months, PDO SST patterns remain
consistent for several decades before switching phase. The PDO is also suggested to modulate the
likelihood of the positive and negative phases of the ENSO, pointing to a complex relationship between
the two climatic modes [151]. We try to understand various aspects of the dynamical behavior of,
and the interrelations between, the two climatic phenomena in this section. We use monthly resolved
time series of Niño 3.4 index [152] and the PDO index [153] that cover a period of almost 150 years
from January 1870 to November 2018.
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We quantify the ENSO and PDO dynamics using DET and SPL (Figure 13a,b). We first estimate
the recurrence plot of the entire time series with the following set of parameters: (i) for the ENSO index
time series: τe = 10, me = 3, (ii) for the PDO index time series: τe = 16, me = 3. We then estimate DET
and SPL in a sliding window of 10 years, moved ahead in steps of 1 month. The recurrence plot of
each window is obtained by extracting the relevant entries for the window from the entire recurrence
plot. The entire procedure is repeated for 1000 iAAFT surrogates generated from the full-time series,
and the results are used to define anomalous periods of DET and SPL, identified here as those values
of DET and SPL which lie outside the interquartile range of the null distributions.

We find that ENSO is typically more deterministic than the PDO (Figure 13a). Moreover, the DET
time series of the two modes show a largely anti-correlated evolution in the first part of the range,
ca. 1876–1910. This changes to a visibly non-stationary lagged relationship between the two with
the PDO leading the ENSO ca. 1910–1950, and the ENSO leading the PDO for a brief period ca.
1950–1964. Thereafter, the lagged relationship vanishes and gives way to a largely correlated time
evolution. The SPL series are also largely positively correlated, but show an anti-correlation in terms
of when they are anomalously high or low with respect to the iAAFT null model (Figure 13b). This is
particularly visible from ca. 1920 onwards, when most values of ENSO SPL are anomalously higher
(lower) when PDO SPL values are lower (higher). This however does not hold true for the period
surrounding the 1998 El Niño event, where both the ENSO and the PDO show anomalously high SPL
values simultaneously.

We investigate the interrelations between the ENSO and the PDO using the recurrence-based
measures of similarity CPR and RMD (Figure 13c). Using the same recurrence plot parameters
as before, and the same window and step sizes, we obtain the time evolution of CPR and RMD
and estimated the statistical significance (at 5% confidence) of each estimate based on a null model
using 1000 twin surrogates. The statistical significance is obtained by taking into account multiple
comparisons with Holm’s method. We find that none of the CPR and RMD values are statistically
significant after taking multiple comparisons into account. The situation does not change even if we
do not take into multiple comparisons into account. We can infer from this result that — given the
null hypothesis that the observed interdependence is due to the internal dynamics of the ENSO and
the PDO, i.e., that a distribution of twin surrogates can explain the observed CPR and RMD values —
there is no significant interrelation distinguishable from the time series data alone. It is likely then that
most reported correlations between these two climatic systems are due to the frequent interlocking of
a pair of otherwise uncoupled nonlinear oscillators.

We also look at the dynamical regimes of the two systems from the recurrence network perspective
outlined earlier. After constructing the recurrence network, we use the fast greedy implementation
of modularity optimization from the Python package for igraph to obtain the recurrence network
communities that maximize the modularity. For both the ENSO and PDO indices, we obtain a
predominantly two-community structure with a few likely stochastic variations (Figure 13d,e). The two
communities effectively recover the positive and negative phases of the oscillations. Although this
seems like a trivial result at first glance, it is a powerful proof of concept: we are able to recover
the underlying states of the system (viz. the positive and negative phases of the ENSO or the PDO)
without any knowledge of the system details, and solely from topological considerations inferred
from time-series measurements. The results are striking for for both cases, in which the recurrence
network community detection separates he positive and negative values of the two indices without
any information about the actual values themselves and by solely utilizing the recurrence patterns
encoded in the time evolution. For the PDO index, the largely warm and negative phases (marked as
’W’ and ’C’ respectively in Figure 13e) coincide with known phase shifts of the PDO and also explain
the shifts in the determinism of the PDO in Figure 13a. The 1957–1958 and 2002–03 El Niños are also
revealed in the midst of cold PDO phases in the PDO regime detection as belonging to the ‘warm’
PDO phase. This indicates that faster timescale variability of the PDO also plays an important role in
modulating sea surface temperatures in the Pacific.
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Figure 13. Dynamics and interrelations of the ENSO and PDO indices. (A) DET for the ENSO Niño
3.4 index (green) and the PDO index (yellow). Dashed horizontal lines indicate inter-quartile ranges
obtained from the iAAFT null model. While the two systems are anti-correlated up to ca. 1930, they
show a changing lead-lag behavior after that. (b) SPL for the ENSO Niño 3.4 index (green) and the
PDO index (yellow). The two SPL series are largely correlated, but after ca. 1960, they show the
opposite behavior in terms of being higher or lower than the iAAFT null model. (c) CPR (green) and
RMD (yellow) between the ENSO and PDO indices. Statistical evidence for interdependence is rather
weak, given the twin surrogate null model, and the confidence level of 5% (horizontal dashed lines)
apart for three periods of significant interrelation for RMD (solid yellow markers), centered around the
Niño–like conditions of 1897, 1914, 1941, 1956, and 1998. (d,e) Dynamical regimes of the ENSO (d) and
the PDO (e) by maximising MOD. A 3-community structure is obtained, in which two communities
are predominant, demarcating the positive (red markers) and negative phases (green markers) of the
two climatic phenomena. Especially for the PDO, we recover the broad periods of warm and cold
phases, marked in (d) as “W” and “C” respectively. Recurrence plot parameters used are: (i) ENSO:
τe = 10, me = 3, (ii) PDO: τe = 16, me = 3. For the calculations of RMD and CPR, both indices were
embedded with the maximum values of both m and τ.
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10. Summary and Outlook

This review provided a brief glimpse into nonlinear time series analysis methods while
focussing on recurrence plot-based approaches. The historical development of the discipline
was outlined and the benefits of approaching a time series from a nonlinear perspective were
motivated by showing how nonlinear processes impact our understanding of predictability, transitions,
synchronization, and characterisation. A short primer on dynamical systems, attractors, bifurcations,
and equilibrium dynamical behavior was given, on the basis of which the fundamental ideas of
state-space reconstruction were discussed. Time delay embedding, a widely used approach of
state-space reconstruction, was considered in detail and the methods to determine the time delay
and dimension of embedding were described. Recurrence plots and various recurrence plot-based
time series analysis methods were taken up in detail. This included measures that characterize the
dynamics (DET) and the geometry of the attractor (SPL), those that quantify interdependence based
on auto-correlation-like (CPR) and mutual information-like (RMD) estimates of recurrence patterns,
and those that identify dynamical regimes based on geometric considerations (MOD). The concept
of surrogate-based hypothesis testing was introduced and its critical role in time series analysis was
motivated. Two surrogate generation techniques—the iterated amplitude adjusted Fourier transform
(iAAFT) method and the twin surrogates method—were briefly discussed and the null hypothesis
corresponding to each approach was stated.

We applied the presented approaches to the ENSO and PDO climatic indices that record the
conditions of the sea surface temperatures in the equatorial and North Pacific regions respectively.
We find that the ENSO is more deterministic than the PDO and that the two share a complex lead–lag
relationship that changes with time. Around the turn of the 19-th century, from around 1876 to 1910,
the determinism of the two systems shared an anti-correlated relation. The SPL of the two systems
was mostly positively correlated but they were out-of-phase in terms of when they were higher or
lower than the iAAFT null model. We found no statistical evidence for interrelations between the
ENSO and the PDO using CPR and RMD and a twin surrogate-based null model at 5% confidence
level. Finally, we used a fast greedy algorithm to find the partition of the recurrence network that
maximizes MOD for both indices, and recovered the positive and negative phases of the two indices.
This is a powerful proof of concept for the approach, which is able to uncover the underlying states of
the system without prior knowledge about system details.

Nonlinear time series analysis evolved at a time when computational power was transforming
the scientific and technological world. Since the 1980s, this field has expanded from a niche
discipline to being widely used in several applications, such as finance, climate, neuroscience, ecology,
and engineering. Almost forty years after Packard et al.’s paper on state-space reconstruction, we are
now standing at the brink of another revolutionary moment in this discipline, where the concepts of
Bayesian statistics and machine learning are being incorporated into nonlinear time series methods.
Both these fields shared similar trajectories of growth in the second half of the 20-th century, parallel
to the one outlined for nonlinear time series analysis in this review. The incorporation of ideas from
these two disciplines will likely lead to new discoveries and deeper insights obtainable from time
series. Studies such as the one by Brunton, Proctor, and Kutz [154] and by Lu, Hunt, and Ott [155]
have taken first steps in this direction. The fundamental question, however, remains the same as the
one in Packard et al.’s paper: How do we infer high dimensional dynamical invariants from a scalar
time series?
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