Chapter 17

Initial Value Problems for Ordinary
Differential Equations

17.1 The Problem

For n first order differential equations in one variable involving n functions

Yes T = 1,..., 7, we shall consider the inilial valve problem
(17.3) { v = f(z,y) for x € [xg,0], where
vlre) = ¥
with
yl(z) fl(zsylijy--'oyﬂ)
92(3) fz(zaylsyﬂr-"ryn)
¥v= : - F=1
yll(z) fn(z|yl|y2,---,yn)

‘The interval I = [zq, 3] is called the interval of integration for the differential
equation.

For n = 1 the initial value problem is one dimensional:
I, —_
(17.2) { y'(z) = flz,y) for r € [zo, B8], where
y(zo) = wo.

Exristence and uniqueness conditions.

For the initial value problem (17.1), the following conditions insure a unique
solution of the problem:

(1) The functions f,, r = 1,...,n, are continuous in a region 2 of the
(z, Y1, ..., Yn)-parameter space.

(2) The functions f, satisfy a Lipschitz condition for all (z,y), (z, ¥} € D:
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W f(z. W) — flm o)l < Ly - #Il.

Then there exists 4 region 13 C D, where the initial value problem (17.1) has
exactly one solution y for the initial condition p(xo) = yo. Condition (2) is
[ulfilled if for example the f. posscss bounded partial derivalives with respect
to yp in L2, in which case

8/,

L=
e

max
15rgn
(= Yrer

Each initial value problem for a single differential equation of n** order in y
with n initial conditions

{ @) = Sz, .0 ), where )
r n— -
y(zﬂ) = yy, ¥lea) = y(')r' o ry( ”(30) = W¥a

canh be reduced to a system (17.1) by solting
v () = gasa(7) for k=0,...,n—1.
The associated initial value conditinns become
‘y‘*)(;co} =yrp1(zg) for k=0,...,n-1

Thus all methods of this chapter can be employed equally for the solution of
first order initial value problems and nt* order initial value problems.

Bibliography for Section 17.1

[ENGES7), 10.1; {FRIE79]; [GEART1/1], 1.1, 3; [HAIRS7] 1; [LUTHST), 1,2;
[STET76}, 9 [STOE91], 7; [WERN79)], §1.

17.2 Principles of the Numerical Methods

The interval {xg, 4] of integration for {17.1} shall be partitioned

(173} Iy < Iy {T-'z{.-..{xﬂz-ﬁ

with lacal step sizes by == 2,4, —z; > 0fore =40, , N1
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Al the discrete grid points 2; we have to find approximate values Y for the
exach solution g(x)

Y(x) =Y;mp(zi) = p,-

Let us first considor the case w = 1 and integrate (17.2) from z; to £;4:

Tigs Tigd

[ v@ie= [ fa e

€y Fi
By the lindamental theorem of caleulus

(17.4)  y(zipy) = plx) + f fle,p{z))de fori=0,...,N-1,

{Il # > 1, we need to evaluate a vector valued integral, one component at a
timn}.

All numerical procedures for solving (17.1) or (17.2) differ only in the choice
ol method used Lo approximate the integral in (17.4). They can be classified
into three types:

1) one-step methods,
2) multi-step methods, and
3) extrapolation algorithms.

One-step methods use only ene preceding value ¥ when caleulating the next
approximate value ¥y,

Multi-step methods employ 5 + 1, 3 > 1, preceding valucs
Yiea¥isttr- Yio1, Y to calculaie Yy

Extrapolation algoritims use the Romberg quadrature method for the oumer-
ical solution of initial value problems.

Specialized methods are the so-called predictor-corrector methods. These are
procedures which first determine an approximate value YEi’l with a one-step
of & multi-step method in a predictor step. Then the value of Yﬁ}l is inproved

by a so-called correclor step. The corrections are called YE_I,_)l, Yﬁ)l, ‘e
The difference

Eip1 = w(Eig) — Yz ) with ¥iza) = plzia), Yiz) = wlx)
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is called the focal procedural ervor at the grid point #:4 . Here y(z) is assumed
to be the exact solution of the problem, and we assume that ¥ '(z;) has been
computed without rounding errors. Thus the local procedural error measures
the crror associated with integrating (17.4) from z; to zi1. O]} is the
order of the locel procedural error,

The dilference

eit1 = Y(Zir1) — Y (Ein)

is the global procedural error at the grid point z;4;. It measures the errcr
(b Zi4; taking into account all previonsly made errors. ()(h¥2.2) is the or-
‘der of the global procedural error, where fimar is the maximal step size:

hnaz = oJDEX lh;. A global error order of g, is achieved by a procedure

if the solution g of (17.1) is (g, + 1}-times continuously differentiable.

Bibliography for Section 17.2

[ENGERT], 10.2; [GEART1/1], 1.2; [AAIRS7] 1; (HALL76], 1; [HENRG8], 0.3;
[LAPF?1], 1; [LUTHSY, 3; [STET73], 1; [STOEOL], 7.2; [STUMS2], 11.1, 12.1;
[WERNSE], chap.1, 2.

17.3 One-Step Methods

17.3.1 The Euler-Cauchy Polygonal Method

One can approximate the integral in (17.4) by the arez of a rectangle:
Tit
h?
f flz)dz = hif (i) + 5 F(&) for &i € [zizin1)s i = 2+

i

Thus for Yy = yo we obtain vy = y(Tiy) 88
Yin = Yia +eE§ with
(17.5) Yiun = Yi+hif{zo, V) ilYi=y(ze, i=0,...,N-],

EC
i

2
M (6 = O(F) locally for some & € [zi, Tos]
Y,;, is the approximate value for y(£i41), and ££ is the local procedurul error.
It measures the errot of the single Euler-Cauchy step from 2, to z.4; under
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the assumption that ¥; = y(x;) and that y is lwice continucusly differentiable.
The crrors of preceding steps are taken into consideration only by the global
procedural crror

BC - .
Cipg = Miv1 — Yipr = Olhues), i=0,..., N1, funaz = Oq?yﬁ_l(mﬂl — ;).

For systems (17.1) we can formulate the following algorithm that uses (17.3):

ALGORITHM 17.1 (Euler- Canchy method).
For the solution of (17.1) calculate an approximate value Y; for y{z;) at
each grid peint ;. With ¥ = y(za) the ¥'; are given as

Yin=Y(+hf(x, Y, i=0,...,N-L

The global error order is ({hnas) for fypar = uﬂl;l%agc_l{hg}, ie.,

iz ) =Y + Olhmaz)s

if y is twice continuounsly differentiable. For choosing a suitable grid {17.3)
and controlling the step sizes, see section 17.3.7.

(x2.Y3)

h'¢
(%0.30) (x1.Y1)

Xo M1 Xz X3

Figure 17.1: The polygonal method

17.3.2 The Improved Euler-Cauchy Method

The improved Fuler-Cauchy inethod uses the direction field at
(#i + hi/2, Y4 12) in order to calcniate Yy, IL thus obtains a much im-
proved fitting of the solution to the direction field of the given differential
equation,
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ALCORITHM 17.2 (Improved Euler-Cauchy method).
For the solution of (17.1) and a suitably chosen grid (17.3), we set
Yo = y(zo) and define

Y = Yithf(mi+ (%), Yiapn)
Yi+hif(zi+(3), Y+ (%) Flz, YY), i=0,... ,N-1,

. 2 . —_ i .
The global error order is O(h7 .. ) With hmaz 1= o(rl_rlléa’ac_l(m.“ i), pro-

vided that y is three times continuously differentiable. For choosing the
proper step size, see section 17.3.7 .

17.3.3 The Predictor-Corrector Method of Heun

Using the trapezoidal rule for evaluating the integral in (17.4) gives an im-
plicit equation for ¥ iy, which must be solved iteratively. A first value for

Y(i?,_)l is determined here by of the Euler-Cauchy method. For a grid (17.3) we
have

Heun's method forn = 1:

Starting with ¥y = y{zo) we calculate for each i =0,..., N-1:
Predictor: Y.(fl =Y + hS(zi, Yi),
Corrector: KE::-” = Y.l + %"(f(:t"]’,) + f(ml'-l-l)l,i(:l)))t v = 0,112- v

The local procedural error satisfies:

R3
e,‘-’il = —ﬁy'"({.-) for some & € [#i,Ti1),

provided the solution y € C3(xo, f].
Since we cannot compute Yy directly, but only the iterates Y,-(_:;"”. there is
an additional iteration error

+1
6:"11.» =Yit1 — Yis::l )

Thus the proper local procedural ervor is

H i (v+1) _ _H H
El1y =¥in — Yi =&t LR

If K = hil; < 1, we can estimate
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l—h‘-Li+ (h‘L.)U'Fl h:’ (h,L.)U+1 h?
EH < 2 B4y it 2 B,
I l+l,l’I - 1-— hiLi l2‘y (£1)| + 1— hiLi 2 Iy (E?)lv

for some £y, & € [z, Zi41), s0 that we have
Ei!-];-l,ﬂ = O(h}),

already for v = 0, provided y € C%[z¢, ). Here L; are the local Lipschitz
constants for z € [z;, ziy1)-

The local error order of the corrector step is already attained after one iter-
ation step. Expericnce shows that, for sufficiently small step sizes hy, one or
two iterations suffice to make |Ef] | | essentially equal to lef! ||. This can be
assured if one chooses the local step sizes h; so that

0.05 < K = hiL; <0.20.

The global procedural error ¢ff |, which takes the errors of previous steps into
account, is

H | _ — 2 — —
Cipy ‘= Wil — Yi+i - O(hmax) for hmax - 0‘:?23;3'(_1 hi| hi = Ti41 — L.

ALGORITHM 17.3 (Heun’s method).
For solving (17.1) we must perforin the following steps with a suitable grid
(17.3) and Yy = y(xo) forcach i =0,...,N-1:

1LY =Y +hf(z,Y) (predictor).
2. Forv=0,1: YE:_T” =Y+ -’5‘ (f(n:i,Y,-) + f(m;H,YE:_},)) {correc-
tor).

The local step size h; should be chosen so that K = hlq < 0.20. After
step 2 we set for each i

Yl'.-H = Yg-)l
The global procedural error is

eﬂ-l = O(hﬁmx)

ax hi, hi =zip — T, provided y € C3(zo, B}

with hmu = OEI"%&X_
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17.3.4 Explicit Runge-Kuita Methods
17.3.4.1 Construction of Runge-Kutta Methods

The most important category of ane-step methods are the Runge- Kutia meth-
ods. An explicit Runge-Kutta method of order m has the general form

m
Yt =¥+ by Z .‘ijk-_i |:I|'1 Y, Ay} with
=1

(17.6)¢ *i{=nY k)= f(=,Y),
-1
ki{z, ¥ h):=f (;z:+ ol ¥ +h} b_,-,k,l::c,Y,h}) L, 3=2,...,m
=1
This approach defines the explicift Runge-Kutta formulas.

For explicit m* order Runge-Kutta methods with m < 4, one can achieve a
local ercor order of g¢ = m 4+ 1 and a global ercor order of g, = m. Form > 4,
we have g, < m.

Here is a table of the global error order for the m** order explicit Runge-Kutta
methods:

m|1 2 3 4 5 6 7 8 §

i1 2 3 4 4 5 6 6 7

Ifm = 1, the Runge-Kutta method is identical with the Euler-Cauchy method.
For s = 2 the improved Euler-Cauchy method and Heun's method are ob-
tained. Thus they arc Runge-Kutta methods of order two. For m = 4 we shall
find the so-called clessicel Runge-Kuite method:

17.3.4.2 ‘The Classical Runge-Kutta Method

A Runge-Kutta procedure for m = 4 of the form {17.6) is called the classical
Runge-Hulta method.

ALGORITHM 17.4 { Classical Runge-Kutta method).
To sotve {17.1) one has to choose a suitable grid (17.3), and starting with
Yo = y{xy), one evaluates

17.3  One-Step Methods 431
Y=Y+l {lk + ikz + il: + lk with
i i G i 3 3 ] G 4
kl = f{Ii:Yi}!
.‘G? = f{i}:; + [.‘;.-f‘z], Y.+ h.-{k.,n"‘z}],
ky = Fizo+(hif2), Yo+ hilka/2)),
kq = f{:r:; +|FI-|'1 Y;+h|k3}

At cach grid point x;, ¥, is an approximate value for the exact value
gi{z;). The local error order is O(Af), the global error order is O(A,,,)

with fimay = ugliréaﬁ_l{z.-.,.l — ) if y € C%[a, 8]

YFor 1 = 1 one can follow the procedure in the following caleulation scheme.
For n > 1 one has to proceed analogously for each component.

CALCULATION SCHEME 17.5 {Classical Runge-Kutla method for
n=1}

| ¢ x | Ryfm ¥ohed j=3..4 | &Y
0]z . o k= flxo, o) ki
In+:_5‘ !,rn+ﬁlu:—,f- k2=f{-l=n+52“,yn+h-n%‘-} 282
ro+ 5 o + frp =4 k3 = flza+ 38,1 + ko) 2k;
%o + b yo + hoks ke = fiza+ Bo, o + hoka) ke
£ =zo+ho | ¥ = o + hok™ KO o LY
1| = ¥ k= f{z:,17) &
=+ 5 Y+ bk k2= flz + 4, ¥+ AL s
o+ Y+ b B ka=flz+ 5. V1 + %) 2y
I +ﬁ-] 1—'|+hi-kﬂ k4=f[1‘] +h]1}"|+h1k3:| k4
=+ Yz=y1+h1k{'] K éE
2| z= Ya ky = f(z2, ¥3) k)

The classical Runge-Kutta method is expensive in computational time. Per
Runge-Kutta step, one has to compute four functional values of f since m = 4.
For higher e more evaluations are necessary. When comparing the calculation
time and degree of exactness of the classical Runge-Kutta method or one of
higher order with the previously inentioned methods, it is obvious that Runge-
Kutta is preferrabie to the Euler-Cauchy, the improved Euler-Cauchy method
and Lo Heun's method. A detailed survey can be found in [LUTHET], p 68 .
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¥7.3.4.3 A List of Explicit Runge-Kutta Formulas

¥ the following we give a coefficient tabie for explicit Runge-Kutta methods
of the form (17.6) for orders m = 1,... ,&. For a local error order g, the global

crror oriler always is g, = — 1.
The lormulas (17.6) can be written out in detail as:

Y= Y.+ h.‘{.‘ilk[ + Aqka+ ..+ Amkmj with

kl[Iﬁ YI'1 h‘l} = .fl:zl'F}’l}
kalzi, Yo, hi) = Flzi +e2he, ¥y + hibm 1)
Kalzi, ¥iohe) = F(zi 4 0ahi, Y + hilbakr + baakes))

Enlza Yi i) = Fimi+ e, Yi + Bilbamikr + bmaka +... % B m—1Km—1]}-
The coefficients A;, a3 and b, are listed for j = 1,...,m, a =1,...,m = 1
and m = 1,...,8 in the following table.

Further explicit Runge-Kutta formulas can be found in [FEHLE0] and in
[FEHL66); see also section 17.3.4.4 for Runge-Kutta embedding formulas.
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TABLE 17.6 (Coefficient table for explicit Runge-Kuits formulas).

mflj| A ; |bpfors=1,....m—1{¢q, | name ol the
method
1 i1 1 0 1 | Buler-Cancly
, 11 90 0 Improved
. 2
29 1 j1/2| 142 E.-C. method
) 11121 © Heun's
2
2] 1 1 method
i1/l o
321/ 142 3 el
3|16 1 -1 2 3™ order
1f1/4} 0
RK
32| 0 [1f3) 113 3 !
3(3/M4 |23 0 2/3 37¢ order
1(1f/8| D
4 2|38 (13| 1/3 4
3/8-
3378243172 H
4118 1 1 -1 formuls
1(1/6| 0 :
4 || 2 Iiﬁ 1f2 | 112 4 Classical
3|13zl 0o 172 RK-
411/6| 1 0 0 method
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17.3.4.4 Embedding Formulas

If for two explicit Runge-Kutta formulas of urders s and i > m, the values
for k; coincide for § = 1,...,m, one can use both formulas as a pair. The
resulting formula is called an embedding formuda.

In this sense the improved Euler-Cauchy method (g = 2) together with the
RungeKutta method of order three; the Runge-Kutta Fehiberg methods with
global error orders 4 and 5; the England I and England II formulas with ¢, = 4
and g, = 5; as well as the Fehlberg I- and Fehlberg Ik-formulas with g, = 5 or
g, = § are embedding formulas, Fach of the two formulas of & pair supplics
an approximate value ¥ and Y for y(z; + h). These two approximate values
can be used for controlling the step size effectively. In general we have:

(Y =Y,+h Y Ak with global ereor order g,
=1

. mo_

Y =Y,+h} Ajk;j with global error order §,
i=1

for

1 kl = f(Ii)Yi-)
kg = _f(:c,- =} ﬂzh,Yi + hbﬂlkl)

j-1
ki =flei+a;h, Y+ 3 bbuk,), 7=3,...,/.

N al

1o the following list, we shall give each embedding formula a short code such
as “kd(2)" for the Runge-Kutta etnbedding formula of 3™ and 2™ order.

RE - embedding forimde of 2™ and 3™ order, rk3(2).
(dg =2 ¢, = 3,m = 2,7 = 3)

List of coefficients:

JlAs|Asla; [bjs for a=1,.. k-1

L{tjo]o
2| 31154
3|4 1|-1 2
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Y =Y, + hk;

}_"i :Yi+h{ék1+%k2+%k3}
17.7 Wit
( ) k; = f(zlh

ki :f(ﬂ"l-!— h Y + ’EA.I)

ks = flz; + h, i = hkl + 2hkq).

RK - Fehiberg - embedding formula of 4'* and 5** order, rkif5(4).
(9 =4, 8, =52, m=5m=06)

Coeflicient scheme:

j }iJ AJ “‘j bj. fDI' 3=‘1,...,Th—1
18 25
1 2 | 3et ©
2] 0 o [i] 4
3| 8656 | 10w [ 5 | 3 EX
12025 | 565 | @ 37 33
4 | BMGEL | 20T 4 12 ) 1933 7300 7290
Seda0 | 4104 | 1% | 2197 2197 19T
I R § 439 - Gee  _ A4R
2| = 50 5 1 2U6 8 513 4104
2 1 A 3544 185y 1
6| % il=% 2 “mes a4 @
(Y =Y+ h{Zk + 2%k + N2k - Lks)
T _ 1% g, 856 2.
Y —Yi""l-{%kl 4 ﬁjﬁgk1+g:i%kq— k5+%k6}
with
ki = flzi,Y))
(17.8) { ky = f{z; + %h, Yi+ Lhkl}
ki = f(zg + %J'l-, Y.+ 1 hkl +3 hkz)
o = fle+ B0V 4 HRG - Bk + Bk
kr, = flz; + 1Y+ ﬂghkh — Bhka + s.ﬁl'zuhk;; - ‘“ﬁ:’d hks)
ks = flms + L0, Y — Shky + 2hky — B8Ak; + 3530k — ghks).
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(g = 4, g = 5, m = 4, 1 = 6)

England - formula of 4t* and 5'* order, rke5(4).

Coefficient scheme:

il A5 | 45| a; bja for s=1,...,m -1
liagx| 510
2l ojo|ifL
slofsf4] 4 4
a5
g|& 1110 -1 2
2 | 7 10
5| 3% lw B0 %
6 | 128 128 _125 546 51 _318
336 5 | 626 §35 626 625 575
[ Y =Yg+h{é—k1+ik3+-l'k4}
> 125
Y =Y“+h{%k1+336k4+3§§k5+336k6}
with
k, = flz:, Y )
ky = flzi+ LY+ 5k
(179} <
k;] - f(I.‘ + %,Yi + %kl + %kz)
k4 =f(17|'+h,yi—'hk2+2hk3)
ks _f(x.+ h,Y + hk1+ hkg“f-ﬁhkq)
ke = flxi+ 2, Y+ Zhky - 2hky + SEhks+
78
l ks — Ehks).
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(4o =54, =6 m=6,m=8)

RK - Fehlberg - embedding formula of 5'* and 6'* order, rkf6(5).

Coeflicient scheme:

il A | A |a; bjs for s=1,...,m—1
7 31
1V 728 | 384 | ©
2l 0 o [&| &
g2 2| 4| 4 16
2816 2816 15 T5 Ta
4] 2 | & |2 1 B 3
32 a2 3 6 3 2
125 4 8 4 16
S|l Eis] -8 % 4 0=
6 0 | & |18 -8 % -8R i
5 11 11 11
7] & 0|-8%6 O 6 —ie 3 O
8| & 11 & -9 B —te ms 01
(Y =Y+ h{3k + BBk + Sk + Faks + Ske)
}-’ =Y'+h{mk1 + :;?;ka'i' =kys + .:.::k5+
5 k7 + aﬁkﬂ}
with
ky = .f(-'riaYi)
k2 "_“'.f(mt"—ﬁ! hkl)
k3 = f(I.‘ + Eh’ Y,‘ + ﬁhkl + %hkz}
(17.10)4 k _ 2 5 3 5
4 = f(.'l.'. + ah, Y,‘ + Ehkl - —hkg + —hk:])
ke = flzi+ 20, Y, — Shky + Alhk, - dhky + JEhEs)
kg = flz; + b, Y + g—g—éhk; - -l's—shkz + %hk:ﬁ'
1p,1.
—sihkq + 123!1’;: 5);
ki = flai, Y — Zhhky + 2hhks — fighke + ggzhks)
kg = f(.’l’:.‘ + ’I,Yl' + G4Uhk1 lahkg + g hk3+
| — thks + fhks + hkq).
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Furth bedding formulas can be ¢ osed in complete anal f 1} . -
fullow?;:r:nefﬁciexi schetmes. © compose E analogy from the Prince-Dormand-embedding formulas of 4" and 5% order, rk5(4)7 .

(‘Ig =4, (iy =3, "‘=7: = 7)

Further embedding formulas:

RK - Fehlbery - embedding formulas of 37 and 4'* order, rkf4(3). Cocflicient scheine:
fg, =3, 4, =4, m=4,m=14)
il A; Aj it bjg for s=1,....m—1
. 79
Coefficient scheme: U] 3 aa0n 0
. T _ 1 1
J| A; Aj ta;| by for s=1L...,m-1 2 0 0 & 5
7] 5w 7571 3| 2 y
1| 2m n | g 21 13 666 | 10 | 40 a
{70 | 1w 4| 14 anz 4 44 _358 32
al o 0 |z 4 192 G40 5 16 [ ]
Tl T e | 2B | _ w2007 | 8 | 19872 _ usace  gassm 212
| s [nm |2 | oz 43 S 7] 339200 | § | GGG 2187 6561 T
igl2 | aR26 | 15 | 860 mo) 6 u AT, 1] oz _ 355 48731 4B 5103
4| 1278 [ 2166 | 35 | Aon_7migs  eriss B4 2100 3108 W bur 17 18A56
8ibah | 9005 | IR | THd T ] 7 0 1 35 0 500 125 _aier 11
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T3 1| a0 0 36w w0eh

Prince-Dormand-embedding formulas of 4% and 5" order, rk5(4)7 m.

Prince-Dormand-embedding formulas of 4% and 5** order, tk5(4)6 m. (fo=4 dg=5m="7,m="T)

(qs =d~1 'i_v = 5, mo= G'l h = 6)

Corflicicnt scheme: Coeflicient scheme:

i | A; A; la by for s=1,...,m—1 . -
J y] j i) ja Vot il A; Aj a; bj, for s=1,...,m~1
18 31
VI 76 | 70 | O N LR N TR )
i . HH) S
2 0 G = T :
5 5 2 2
2 0 0 5 i
3| loop 1961 a 3 LD
s | BT || W ag 3! 1 233 L L L
5 500 3 iz 1
4128 _Us | 3 3 9 i}
16 08 | & 10 m 5 41 ~218 86T | 5 | A5 00 _ 25 6O
400 1 O 3 324 108 a1
5] % 351 2 26 _ 2 8480 55
T 3 O T T T TH 51 3 T 2] 8 13 e 9
40 1000 3 | 330 66 110
6| X o 1 | —iBL 5 _ 266 _ M 189
56 o} W 2 207 I b 6| X 483 1 |-\ ] L _x 2
{1 I 28 4 T T ki
—1 19 3 _M43 3 7
7 0 50 1 | 556 0 [ we 40 B0



442 17 Tnitial Valuye Problems

Prince-Dorinand-esbedding formula of 58 and 6" order, rk6{5)8 1.
(g =5, 0, =6, m =17, m=8)

Coeflicient schome:

il A | Aj |ﬂj| by for a=1,...,m—1
8l B2]
1 AEA TORa 0
1 1
3 | 2mus 15683 z _ 2 o
30T7e | Tiewd | @ Bl Y]
4 | Je807 | 175273 | 3 815 _ 270 1052
[ELGIES P12R0M)} 7 1372 343 1372
5| s a5 | 3 383 _ B4 50p49 4598,
Ti44 IRTE I LR [ TIRM 1TRIE
6 | Lare 785 4 { _ae4p7 T2 IM0B 29306 334
[ XD 2704 & ERLFT L1 23375 AT 404
7 37 3 1 5381 _ 35 _ M7 BOODSS 5235 395
T120 ) 1376 11~ 31603 HHITTE 1836 4056
8 L 1 | epamr _odi qwsissvs  seiozer _ dudash arexss
i 26611F T laaz saladha | 141sA144 T 20832 454372

Verner - embedding formula of 5% and G order, rkvB(5).
(4y = 5, dy = 6, m = 6, i = B)

Coefficient scheme:

j[ Ay | Ay |a_,'| bjy for a=1,....m—1
57 3
1] &5 w |0
1 1
2 0] 0 18 is
gl sl 4 [0 _1 1
[1] pL1 [ 12 4
4| 1377 ] 243 ;o2 _% 4 a
2240 [RFI] [] a] P4 Rl
elzz oz 2| w _a b6 7
i azo | 6w | o3 13 11 11 11
73 s T2 380 12285 2695
6l 0 |1 |1|-F # B - e
7| oL 8 R716 656 309520 416 52
§320 5 831 27 T 11 27
al 2 1| 3ams  _w 4213 pEss  _ndw p  693
FTA 13 1 78 128 344 3328
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Verner - embedding formula of 6'* and 7% order.
(QQ =G,g, = T,rn = 8, = 10)

Coefficient scheme of the embedding forroula rkv7{6):
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Each of the formulas of such a compatible embedding pair supplies an approx-
imate value Y and Y for y at z; + A. Since the two formulas of one pair have
different error orders and since we have to calculate only one set of k; values
for both formulas, embedding formulas are well suited for step size control
and thus for adaptive procedures. Section 17.3.7.2, and algorithms 17.12 and
17.13 indicate procedures with an automatic step size control which relies on
the difference Y — Y [rom the two approximations for y of a compatible pair.

The following expressions for the difference Y — ¥ can be derived from the
embedding formulas (17.7} to (17.10):

For the Runge-Kutta embedding formula of 2" and 3™ order we have

(17.7") Y - Y =h{-}{k + jk2 — jhs}
for the Runge-Kutta-Fehlberg embedding formula of 4** and 5** order we have

(17.8") Y -Y =h{—zhki+ ks + Bk, — Sk — Zke )

for the England embedding formula of 4** and 5* order we have

(17.9°) Y-V =h{k + 2Bk + Lk~ Bks ~ 128},

136 336 336 336 336

while for the Fehlberg I/Tl-cmbedding formula of 5" and 6** order we obtain
the especially simple formula

(17.10") Y -Y = Zhi{k +ke—ky—ks}.

Bibliography for Section 17.3.4

[DORMS0); (DORMS1|; [FEHL60|; [FEHL66]; [FEHL69); [FEHL70);
{FEHL75); {HAIR87] 2.6, [HULL72]; [LUTHS7); [VERN78].
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17.3.5 Implicit Runge-Kutta Methods of Gaussian Type

With an ezplicit Runge-Kutta method for the initial value problem (17.1) and
the partition (17.3), one can obtain a local error order of maximally ¢¢ = m+1
if m < 4, and of at most g¢ = m, if i > 4. Such explicit Runge-Kutta meth-
ods use m functional evaluations f;, j = 1,...,m, per step.

With an implicit Runge-Kutta method one can obtain a local error order of
q = 2m + 1 from m functional evaluations per step if the grid points z, +ajh;
are identical with the nodes of the Gaussian quadrature formulas for the in-
terval [zi,%it1], see section 15.7. Implicit Runge-Kutta formulas use (17.6)
for s = 1,...,m instead of 5 = 1,...,7—1 for the explicit formulas. In the
following table, we describe implicit Runge-Kutta formulas of the Gaussian
type form = 1,2,3:

TABLE 17.7 (Implicit Runge-Kutta formulas of Gaussian type).

Y1 =Y+ hiki(zi, Y, h) with

k, =f(.’.|7.'+hi/2,yi+klf2)

Yign =Y+ (hf2) (ki + k) with
ki = flxi+ (1/2)(1 - 1/V3)hy,
2 Y+ (1/4)k; + (1/2)(1/2 - 1/v/3)k2), 5
ky = (i + (1/2)(1 + 1/v3)hs,
Y+ (1/2)(1/2 + 1/vV3ky + (1/4)k2).

Y =Y+ hi((5/18)ky + (4/9)k2 + (5/18)k;) with
ki = fla+ (1/2)1 = /3750, Y+ (5/36)k; +
(2/9 - 1/vVIB)kz + (5/36 — 1/(2v18))ks),
3 ks = flzi + hi/2, Yi+ (5/36 + /15/24)k 1+ 7
(2/9)kz2 + (5/36 ~ \/15/24)ka),
ki = F(zi + (1/2)(1 + /3/5)h;, ¥+ (5/36+
1/(2v15))ky + (2/9 + 1/VI5)kz + (5/36)k3)-
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For all 2 < m _4' 20, [GLAS66] gives tables for the coefficients A4, a;,8;,. The
systems of equations given above for the k; are nonlincar and mnst he solved
iteratively. Similar systems result for o > 3.

The iterative solution of such nonlinear systemn is demonstrated here for
1 = 2, For this purpose, we use an upper index on.k; as the iteration index.
The initial values are

k(u} k(ﬂ} = flz:, ¥).

The #teration rwle is given by:

Kb — g ( +§( )h.,}"+%k"3+2(% ﬁ-)k;"}),

I =g (g (10 ) e B (o Jg) 0+ 7).

=12, ...

The iteration will converge for any initial values k‘,“’ Lm), see [GRIGTT),
p- 40, and [SOMMGT], p. 31, provided A, is chosen so that

af.
dy,

(17.12) max hiL; Y Ibjal < 1, where L; = L 1<k <n

a=1

IE[I‘.,I‘.'.‘]

To obtain a local error of order O{AI™*!), 2in — 1 iteration steps are needed.
The step size h; satisfying {17.12) and the number m of functional cvalua-
tions per integration step can be chosen at will. As iz shown in [SOMME7],
ohe can minimize the needed computational time T{e,m} for a given error
threshold e by a proper choice of 1n. If one knows the optimal m, the step size
h; = x4y — z; = hi{c, m) can be found for cach integration step.

Corvesponding Formulas and coeflicients for implicit Runge-Kutta tnethods in
which the m arguments z; + a;h; coincide with the nodes of other quadrature
formulas such as Newton-Cotes, Maclaurin, ete., can be found in [SOMMET].
Another method of step size control which is bhased npon two different. quadra-
ture forrnulas is given in [GRIGY7], p. 68/70.

Bibliography for Section 17.3.5

[GLAS66); [GRICTT); [HAIRS7] 2.7; [SOMMG7).
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17.3.6 Consistence and Convergence of One-Step
Methods

When we consider the algorithms of one-step mmethods for solving the initial
value problem {17.1) on a grid (17.3), we note that each procedure can be
deseribed Ly a recursion of the following form:

(17.13) Yo=Y+ 0¥z, Y, ), i= G-,

Each one-step method iz uniquely determined by the associaled function $.
For example for the improved Euler-Cauchy method this function is

'@(:’Ei,yh h;) = {Ii + Y + h-s./IJ _f(fl‘.,Y )}

And the one for the m** order Runge-Kutta method is:

Sl Yiha) = Y dyky(zi, Y i, hy)

J=1

with the 4; and k, from the table in section 17.3.4 .

DEFINITION 17.8 (Local discretization ervor, truncation error ).
For the defining function #(z, Y, I) of a one-step method using (17.4) and
{17.13), we define the locel discrelization error at the grid point z; as

= h%{y(zm) — w(z)) — ®(mi, ylz), h)-

7; i5 also called the truncation errar at x;. Here y(z) is the exact solution
of the intial value problem y'(z) = f(z,v), w(zo) = ¢

DEFINITION 17.9 (Consistency).
A one-step method is called consistent, if the weighted sum of the local
discretization errors at all grid peints z;, i = 0,..., /¥,

Nl
> hillwil

i=0
“ORVEE as h — 0 with & = tmax Ay and
converges to 0 7 max NaX DiEN—1 i

hl' Im Tyl — Iy =0,
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A one-step method is consistent if the maximum local discretization error
satisfies

EH] =+ U.
OE::}E%:_I{HT;"}—)O a8 Nipax =+ 0

Thus, all the one-step methuds of the previous sections are consistent, pro-
vided the solution  of (17.1) is sufficiently often continuously differentiable.

DEFINITION 17.10 (Consistency order) .
The order {AT .. ], with which the truncation error or local discretization
error tends towards zero, i5 called the consisteney order of the method.

The consistency order is equal to the global ercor order. Tu achieve the con-
sistency order, the cxact solution y must be sufficiently ofien continuously
differentiable. To achieve consistency, ¥ must be twice continucusly differen-
tiable.

THEOREM 17.11 { Convergence).

A consistent one-step method with a consistency order g > () whose asso-
ciated function ¥ fulfills a Lipschits condition relative to ¢ is convergent
of order q. ‘Therefore

im0 = gl = 0.

For a proof see [STOE91], 7.2.2; [WERNT9] .

17.3.7 Error Estimation and Step Size Control

£17.3.7.1 Error Estimation

If Yh(x) and Y;{x) arc approximate values for ¢ at a point z € |[zy, ]
computed for step sizes A and h using a method with global error order gy,
then we can estimake the global procedural error as

Yh(:) — Y;‘(I} = o

(17.14) en =yl = Val) s e 1 o

And

17.3  One-Step Methods 453

k)Y 4 (z) = Yi(x
Yi(z) =Yu(r) + e}, = B/ ‘)(,i,,/;)(:.)“ ] it

gives an improved approximate value for the exact solution y(z) when com-
pared with ¥ ,{x). For sufficiently often differentiable solutions ¥,

y(x) = Yh(x) + O(n%th).

The global error order is increased by at least one by adding the estimated
erTor to the approximate value, see [STUMS2], p.253.

For i = 2} we have

Yaole) — Yopix
B,‘(I)g_h%),mﬂﬂ_l:e;,

Vit = 20 = Yale),

where Y), denotes the approximation for y(z) for the step size h and Y3y, the
one for the step size 2h. And the improved approximate value ¥ (2) is better
by at least one h-power than Y ().

Fur example, we can obtain the following estimation foriulas and improved
approximate values for specific one-stop procedures with A = 2h,

1. Euicr-Cauchy method:
B9 (s) ~ Y IO(a) — VIS ()
Yile) =2Y5° () - Y ().
2. Heun'’s method and improved Euler-Cauchy method:
efl@) =} (Y@ - YH@)
Yille) = (a¥F ) - Yih@).
3. Classical Runge-Kutta method:
efiK () m 5 (Y (2) - Y2 ()

Vil (z) = 5 (16Y ¥ (2) - Y (=) -
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17.3.7.2 Automalic Step Size Control, Adaptive Methods for Ini-
tial Value Problems

Generally, it is not appropriate to calculate with a constant step size, i.e.,
with an equidistant grid. We recommend to adapt the chosen step size locally
to the behavior of the solution, for examples see [LUTH87], 4.3. In regions of
little change in the solution, one can choose relatively big steps, in regions of
large changes of the solution one should proceed with relatively small steps.
It is possible to control the step size automatically by using error estimation.
For this we shall describe several possibilities and procedures below.

Method A) Lo control the step sizes.

By using the crror estimate {17.14), one can proceed as [ollows: after every two
steps with a step size h from z;_, to z; and 24, one carries out a step with
the double step size 2h from z;_, using the same method. If the estimated
error is far below the given error bound one can increase the step size for the
next step. Il the estimated error is larger, one integrates over the last half
once more with a smaller step size. If the step size has been chosen correctly
one can use the error estiraie in {17.14) to improve the approximate value,
one then continues with the improved value.

Method B) to conirol the step size.

The following method of automatic step size control is still more effective:
One uses two one-step methods with associated functions ¢ and ®, one of
which has the global convergence order gy, and the other at least the order
¢¢+ 1. One calculates the approximate values Y and Y at thepoint z = x;+h
with both methods, starting from an approximate value Y'; for the grid point
z; and a step size h. Depending on the outcome of the error estimation, one
can accept the chosen step size b and accept z;4) := 2 as a new grid point,
or onc must repeat the integration with a smaller step size. Thus, one works
adaptively, as in the following algorithm, see [LUTH87), 4.3.

ALGORITHM 17.12 { Automatic step size control, adaptive initial value
solver).

Choose two one-step methods with associated functions ® and @ with
error orders g, and g, + 1 at least, Let ¥'; be an approximate value for the
exact solution y at the grid point z; . Then proceed with a chosen step
size h as follows:

17.3 One-Step Methods 455

1. Caiculate an approximate solution ¥ with the first method and an
approximate solution ¥ with the second method for z; + k:

Y=Y+ h'I'(:E,’,Y.', h), Y= Y+ h‘i’(x,-,Y.-, h).

For a given crror bound £ > 0 set

1/9,
Iy x|

2.If5 >1then Yy = Y is accepted as a new approximation at the
grid point ;4+) := x; + k. For the next step, carried out as in 1, choose
the new step size as
h:= min{2; 5} - h.

If § < 1, one has to repeat the first step using the step size

h:= ma.x{%;S} - h.

ALGORITHM 17.13 (Automatic step size conirel according to
it [HULL72j}).

Chouse two one-step methods of orders g, and §; > q, + 1. Let Y; bean
approximate value for the exact solution y at the grid point z;.

1. Compute approximate solutions ¥ and ¥ at z; + & by using the two
one-step methods.

2. Compute

1

c )lm,m
Y Y|
where £ = ||¥|| RELERR + ABSERR.

3. If||Y - Y| <, then Yy, := Y is accepted as a new approximation
for the grid point x4, 1= z; + h. The next step uses the step size

h = min{§;4h}.

§:=0.9h (

K ||Y — Y| > &, the first step has to be repeated with the new step size

h:= max{5; ih}
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REMARK concerning the crror estimates when osing embedding formulas:

Seciion 17.3.4.4 described embedding formulas. They are especially suited for
adaptive medhods using step size cootrol as done in algorithm 17.12 or 17.13,
because the approximale value ¥ can be found with very little computational
effort once the approximate value ¥ has been computed: All the kj-values
nccessary for computing ¥ can be wsed for Anding Y.

Aa axamples, in section 17.3.4.4 we have given the Runge-Kutbta furmulss of
27 and 3™ order, the Runge-Kutta-Fehlberg formulas of 44" and 5% order,
ilie England formulas of 4% and 5* arder and the Fehlberg formulas of 5%
and 6% order. The diffcrences ¥ — ¥ that are needed for algorithms 17.12 or
17.13 arc given in the formulas (17.77 up o {17.10%).

REMARK: In the program section of this book we include » program TV
which works adaptively using automatic step size control, giving the user the
choice between Lhe Range-Watta embedding formulas of second and third or-
der, ar the England formulas of fourth and Gfik ovder. If for an initial value
problem (17.1) vne wants Lo calculabe approximate values for the solukion wizh
ab Lhe points 2 = oy + kA for k= 1,... kena, il is useful to call the programn
1VF in & loop it such a way that the solution is calculated at the point 2y,
i.e., in each loop the initial values £p aod ¥ (2} are used to compuote ¥ (e}

When integrating (17.1) from @ to x4, oo can nse a step size cootrol
acconling 1o algarithm 17.12, The mixed error test (1.6] is to be used and the
error bound £ should be el as

¢ = ABSERR + RELERR [[¥']|,

so that the 5 of algotithmy 17.12 has the form

5o (h ABSERR + RELERR |1i-g[)”"
v - ¥

REMAREK concerning the choice of a suitable embedding forninula:

Maturaily, it iz possible to use any olher pair of embedding formulas of see-
tion 17.3.4.1 adaptively. Seclion 17.8 will deal with those as well as give test
resulls on algorithms 17.12 and 17,13 for automatic slep size control and de-
cision hints.

Bibliography for Section 17.3

{BIOR74], 8.1-8.3; [COLL6E], 11, §2; [CONTBO], 6; [ENGEST], 10.3, 1L1;
[GEARTI/1], 2; [GRIGT7), vol.1; (HAIRB7} 2; [HENRGE], part I; [LAPIT1],
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2,3; [LUTHS?), 4.1-4.3; [NOBL65], 11, 10.2-10.5; [RALSTS] val.1, 9; [RICET],
p.257-276; ISCITWSY], 0.1; [STET73}, 3; [STUMR2), 11; [WERNTI], 1V, §6.7;
[ZURMBSS], §25, 27 .

17.4 Multi-Step Mecthods

17.4.1 The Principle of Mulii-Step Methods

. Multi-step methods use & 4 1 preceding values ¥V, ¥ty Yo ¥V

andl calenlale an approximate value ¥y for @(7i41] o0 a given grid.

{Ine considers the initial vadue problem

y'ic) = Flao,w) = flzplz)) = flzomam. . ounlforx € T«‘;—nﬂi
p{m.a) =y,

On the interval [z_,, 5] of integration [ov the diffrrentinl equation we define
A partition

{17.15) {

L P R A o 1 T
with local step sizges by ;=20 ~ 2 >0 fori= —s,...,N—3, where N > 3,

Initially, we assume that the valoes of ¢ and those of f{r,y) are kuown al
the POIER T_ 5, T up1s. -y &1, d0- The points (2g, F(2,p)) for i = —a,...,0
form the atarting eelues for computing the approximnate values ¥, = ¥ (2}
for ¥, = y{;gt-}.li-. = ]1 Cn N - 8, at the [‘E]Tlﬂ.lrlliﬂg N—=r El’id pﬂilltﬁ
Ty, Eds.- -, 3 n-a- The starting values of y are either given {exactly or approx-
imalely} or they must be caleulated approximalely by means of a one-step
method (e by ihe classical Bunge-I{utta methad). In the following we de-
nola the starting values by (zy, flz, g0 = {r, fi) ot i = -5, L

We will proceed from the intepral egualion {17.4) associated with the differ-
enliad equation (17,35} in [z, 2,40]. With one class of multi-step methods,
the function f in {17.4) ks replaced by the interpolating polynomial &, of
degres s through the o + 1 inderpolation points (), f,],5 = i—s,.... 4, and
&, is intcgrated vver the inberval [, £.41]. Thue one can obtain an approx-
imate value Yoy, for ., . 16§ = 0, these interpolation points are identical
with the starting pointa, fur # > O sowe starting points and points (%;, f;) for
i=1,...,i jointly deteymine the approximate value ¥ oy nsing the computed
approximations ¥,,Y 5, ..., ¥i. Since the cight hand sile of {17.4} contains
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only the values ¥, to ¥, this yiclds an ezplicit formula for calculating the
approximate value ¥4, and the integration slep is an rxtrapolation step.

Analogously we can obtain an irnplicit formule il we use the node iy, in the
interpolation polynomial For f together with the nodes z;_,, Tices1, .-, %
Then the right hand side of (17.4) also containg ¥iyi, hesides
Y oYicat1,....¥i. A formula of this lype is the corrector formula of
Heun’s method.

If one uses an explicit and an implicit formula as a pair, the explicit formula
is called a prediclor, and the irnplicit one a corrector, while the procedure is
called a predicior-corractor method.

References: For multi-step methods we recommend particularly the baok of
Shampine and Gordon, see [SHAMY7S). Tt emphasizes the Adams methods and
gives very cofficient algorithms and FORTRAN programs.

17.4.2 The Adams-Bashforth Method

The Adams-Bashferth method results from (17.4) by replacing f(z, y(z)) by
its interpolation polynomial $,(x) and the associated remainder R,45(z) at
the s + 1 interpolation poinis (x5, f,), 7 = (i—5),...,%. Integraling from x;
to iy yields

i1
Ve = Yo +eff with Yen=Yi+ [ @)z with
T
Ti41
Ef‘fl’ =ty = Yier = / R,y (z)dz.
Ei

e;’fl' is the local procedural error which resulty from integrating over [2;, #i44]),
assuming that ¥'; is exact.

Thus for every 3 and given points (z;, _fj), j =4%—8,...,i, onc obtains an
Adams-Bashforth fortnula that cotnputes ¥, by integrating from z; to Tiy
with an associated local procedural error of e = O(h7).

Next we give the Adama-Bashforth formulas for 5 = 3,4, 5,6 and equidistant
grid points: With k; = h = const we have
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8=3(g=5): Y = Y+ 5(55f,—59F,_, +37f;_2—9F._s),
i=0,...,n—-4,
E";'4+Bl = g;u;h' y(.‘i)(u') = O(hs) T € [In 1\+1]
s=4(g=6): Yy = Y+ (1901, —2774F,_, + 2616 F,_,+
—1274f; 5 + ﬂolfi_“'),
E:ﬂ = g%ﬁs hﬁy(ﬁ)(’?i) = O(hﬁ): T € [$i,1i+1],
i=0,...,n— &
s=h(qe=T): Yy = Y+ hg4277f, — T923f,_, + 9982, ,+
—T208f, o+ 2877 F._y — 4TSS 5D,
el = R (g) = O, mi € (25, 2001),
1=0,...,n—6;
s=6{q=8): Yy = Y+ ghmg(108721f, — 447288,  +

+7|)5549_]“,-_2 — GBB256F,_; +407139f,_,+

—134472f,_c + 19087 f,_¢),

efAl = ZBLpyU(n) = OY), w € [zi,20),

1=0,...,n-T7.
The global error arder is ((h%} with g, = q¢ — 1.

For the Adains-Bashlorth formulas, one always needs s+ given points (z;, f _,-),
which have to be determined by another method. This method should have
the same local error order. This could be achieved by a suitable Runge-Kutta
method and would be a good reason to employ the Runge-Kutta method for
the entire interval [z_,, 4], instead of combining the Adams-Bashforth formula
with the Runge-Kutta formula,

Since for an Adams-Bashforth step from z; to 4, one has to calculate
only one new functional value f, in contrast to m new functional values for
a Runge-Kutta step of order m, the Adams-Bashforth formula works much
faster than the Runge-Kuita formula. This would be a good reason to comn-
bine the Runge-Kutta method with the Adams-Bashforth formula.

Howcever, the Adams-Bashforth formula should not be employed by itself, but
rather as a predictor together with an implicit formula as a corrector. The
roason for this is that in the Adams-Bashforth formula the interpolation in-
torval i [ai_y, z,) for &4, while [z, z;4.1] is the integration interval of ®,, so
that the imtegration is evaluated in an exteapolation step. As is well known,
the remainder Iy of an interpolation has large values for points outside
of the interpolation interval, see section 9.6, We thereflore have to be aware
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that the local procedural error ¢35 will increase strongly for large A and will

become bigger than the local procedural error of the Runge-Kutta method of
the same error order. For error estimates, consult section 17.4.5.

One can construct other multi-step formulas by again replacing f(x, y(z))
in (17.4) with an interpolating polynomial @, for s+1 interpolation points
(zj, ;1 = i—s,...,i, and by integrating over [ZimryZis1] for integers
0 < r < s The case r = 0 gives the above Adams-Bashforth formulas.
For further such methods see [COLL66], p.86-88; [HENR68], p.199-201, 241;
[SHAM7S]; [STUMS2], p.273-276; [WERN79], p.290-294.

17.4.3 The Predictor-Corrector Method of Adams-
Moulton

This method combines an Adams-Bashforth extrapolation formula with an
implicit corrector formula of at least the same error order. We recommend
to choose a corrector formula with an error order one higher than that of
the predictor formula. In this case we obtain a predictor-corrector method.
One can obtain a corrector of higher error order if one replaces f(z,y(=))
in (17.4) by its interpolation polynomial for the s +2 interpolation points
(zj,f;),j =i—8,...,3+], and then proceeds in an analogous way to section
174.2.

Il 5 = 3, we obtain for an integration step from %; to z;41 and an equidistant
partition:

Vier = Y+ Efﬂ" with

Yir = Y+ p(251f,, +646F, — 264f,, +106f;, — 19f,3),

ANy

efMs = Bohtyl®)(n) = O(S) for some 1 € s, Tit ).

Since £,y = F(%:iy1,Yiy1), the formula for Y ;4 is implicit so that ¥,y
must be determined iteratively. This iteration shall be labelled with an upper
index v. Then the Adams-Moulton formula for s = 3 becomes:

Y =Y+ (2818 (Y + 6465, - 264f, 1+
+106f,_5 — 19f;_3).

It is employed as a corrector formula together with the Adams-Bashforth
formula for s = 3 as a predictor. The corrector formula will converge if

af.
Oy

(17.16)

251
%hL-—ns’. 1, wherq L_rlsrlzl;:aén
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If the step size h is sufficiently small, one or two iterations in (17.16) will
suffice.

ALGORITHM 17.14 {Predictor-corrector method of Adams-Moulton
for s =3).

Given: The differential equation ¥'(z) = f(z,¥),z € [x_3,.0 = zn_a],
with the initial condition y(z_3) = y_3, the step size i > 0, the
nodes x; = x9 +ih, i = =3,...,N =3, and the starting values
(z:, F;)i=-3,...,0

Task: Compute approximations Y; for y(x;),i = 1,...,N =3 by per-
forming the following steps for each integration step from z; to
Tipl:

1* step: Calculate YE'P, from the Adams-Bashforth lormula (predictor-
formula with g, = 5)
Y = Vit (555 - 59f., +37fiy = 9fig)

2 step: Calculate f{ziy ,Ysg_)i).

37 step: Calculate YE:"I'” for v = 0 and ¥ = 1 from the Adams-Moulton
formula (17.16) (corrector formula with g, = 6).

In general two itcration steps will suffice if h is chosen so that i = AL < 0.20.
Then one can accept

YE:TI) =Yiq1 R Yy

If in the course of computations, it is necessary to decrease the step size before
reaching the node zj, it is generally recommended to halve A. In this case,
onc has to recalculate the initial values needed for the ensuing calculations
fori=j-2,j—3,j—-1andj-— 3.
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CALGULATION SCHEME 17.15 { Adams-Moulton method for s = 3 and
n=1)

| i | |Yi=Y() ]| fi= Vi) |

~3|za|Ya=ya | [
Starting —2 | z.2 | Yoq f-2
Values -1 |z Y_l f_l

D |z0 | Yo fo
Extrapolation | 1 |z | ¥® f, )
with Adams-
Bashforth
Interpolation 1 |x Y,(” Sz, Y,m)
with Adams- § 1 |z | ¥ =Y | fl=, 1)
Moulton
Extrapolation | 2 | z2 Yz(o) fza, Yr_.(u))
with A.-B.
Interpolation 2 |z Y.}l) f(xa, ng )
with A.-M. 2 |z | Y=Y,

Further Adams-Moulton methods.

In the following we shall indicate further Adams-Moulton methods in which
the error order of the predictor is one less than that of the corrector. We shall

use the abbreviation £ = f(:z;...l,}’gi),).

s=4: YO = Y+ 25(1901F, - 2774f_; + 2616, _,+
~1274f,_3 + 251f,_4),
YD =y, (@7 + 1427F, - TO8F,, + 4821, o+
—173f,_3 +27Fi_4)
e = BTy ) = ON), s € [z, Tiva]s

i=0,...,n—4
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s=5: YO = Y.+ A (42775, — 1923F,_, +9982f_,+

—T208f;.3 + 2877f,_4 —475F,_5),

YUY = v+ b (19087 £, + 65112F, — 46461 F,_,+
+37504f,_, — 20211 f, 5 + 6312f,_, — 863f,_,),
el = AR () = O(R®), m € [£4,2001),
i=0,...,n~5
3=6: Y& = Y.+ 5h5(198721f, — 447288, , + 705549 f,_,+
~688256f,_y + 40T139f,_, — 134472F, .+
+19087f,_),

YUY = Y+ ghes(3679050) + 1308408, ~ 121797F,_ 4+
+123133f,_, — 88547f,_, + 41409f,_+
~11351f,_5 + 13754,_¢),

eNTS = — s h®y ™ (n) = O(A°), i € [z, 2],

i=0,...,2n-6

Since the error order of the corrector is always one larger than that of the
predictor, one or two iteration steps are sufficient in most cases. In general,
a predictor-corrector method whose predictor part has the error order vy and
whose corcector has the error order rq, has the following local procedural error
ELK after v + 1 iteration steps:

B =y - YT = O(pmintrantean),
For ry = r; — 1 we thus attain the crror order of the corrector after one it-
eration step. For an arbitrary r; < ra, we can achieve the error order O(h™2)
after v = rp —r| — 1 iteration steps. Since, however, the error of the predictor
exceeds that of the corrector for s > 3 by a [actor greater than 10, one or
morc iterations can be required in practice to redice the total error to the
error of the corrector. If one is, however, satistied with obtaining an overall
error order equal to Lthe one for the corrector, then if ¥; = r3 — 1 only one iter-
ation is required. If r; = ry, one must be satisfied with one iteration, see also
[HENRS68], p.196; [STUMS2], p.271; [WERN79], p.209. If still more iterations
are needed, it is better to decrease the step size than to continue iterating,
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In the following we give an Adams-Moulton method whose predictor formula
is the Adams-Bashforth formla for s = 3 and whose corrector is the Adams-
Moulten fortnula for 5 = 2. They have the same Jocal error order O(43):

Predicior: YET. =V, + $5(556, — 59 ., +37f; 5 = 9f; 3),
{Adamns — Dashforth :

for 5 = 3)

Corrector: YE:T”..—.. Y+ %(Qfﬁ); +19F, ~5f,_y + Ji_s)-
(Adams — Moulton

for s =2)

This procedure requires only one iteration step for cach grid point and thus
it saves computing time. This predictor-corrector pair, has an especially sim-
ple error estimate, ser alsn section 17.4.5, formulas {(17.18), (17.19), so that
without much calculation time and without requiting additional calenlations
with different step sizes, cach value Y, can be improved immediately.

Instead of the Adams-Moulton formulas as corrector, one can also use formulas
with an especially advantageous error propagation. For this purpose, we define
the corrector with ¢ = m 4 3 in the form

(17.17) Yip= Y at¥Yie+h 3 bef(mioe, Yiok).
k=0 % R

If ef, | stands for the global procedural error of a formula (17.17), and eﬁ,_“f
for the same error for the Adams-Moulton foriula of the same error order,
then “Eﬂ_l”f”ﬂf_'_‘n'i'” is a measure for the quality of the corrector (17.17) with
respect to error propagation. According to [FEHLG1),

YE:.T” = Y i+ Y+ HYis+ 5k (120f(2i+nY£1)1)+
+067f (s, Vi) + G00f (2ia, ¥ iz} + 405 (244, ¥ 14 )+

F72f (g5, Y ios))

is a corrector with g¢ = 7 for which ||ef,_, ||/||efﬁ|| amounts to only about 8%
of the global procedural error of the Adam-Moulton formula of the same error
order. To be used as a predictor, one would need an extrapolation formula
with g; = 6. Hence one can use the Adams-Bashlorth formula for s = 4. Due
to the very small error terms in (17.17), we recommend to iterate more than
twice.
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17.4.4 The Adams-Stérmer Method

In this section we describe a multi-step method that treats an initial value
problemn of the form

glz,y,y¥") with
Yo, ¥'(Zo) =up

¥’ (z)
u{xo)

1l

directly without reducing it to an initial value problem (17.1).

ALGORITHM 17.16 (Adoms-Slermer method).

Assume an initial value problem y"(zx) = g(r,y,¢') 15 given with
wr_a) =¥Y.q V(E_s) =y g Hzi =z +ih, i=-3,...,,N-3, are
the nodes of the integration interval [x_3,znv_3 = ], one carries oui, the
following steps in order to calenlate the approximate value Yy, for v,
fur each i = 1,..., N -2, after having calculated the starting values from
the triples {x;, ¥, ¥i},i = —3,...,0, possibly by using a Runge-Kutta
method:

1** step: Calculate the values Yﬁ_’l ) Yﬂ:’: from the predictor formula of
local error order Q{h%):

YSTI. = Yi + hY: + %(3239‘ - 264911-! + 1599.'..; - 389.‘..3).
(0 L ofe
YJH) =Y+ ;_4("591' —99g;_, + 79,2 — 9g9:_a)s

with g, = g(%i, Y5 ¥)).

ad gion: Calculate glzigs, YSi)l,Y:(fl)}.

3 siep: Calewlate YS:_T” and Y:S::'” for v = 0 and » = 1 according to
the corrector formulas {g; = 6):

vl = v+ hY+ i (1350(en, Y, Y 8D) + 7529, - 2469, 1+
+96g;_3 — 179i—:i)a
YU oyl g e (2519(::.-+, Yy B 6a6g, — 2649, +

+106g;_, ~ 1994—3)-
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NOTE. There is vo casy rle to decide whether it is more advaotageous Lo
treat an initial value problemn of a second o higher arder dilferential equation

oy

{1} using the Adams-Stirmer method {direct procedure) directly or another
direct method for differential equations of higher order, or

{2) reducing the problem to an initial value problem fur & system of Gt
order differential equations {indirect proceduze).

Acrording to [RUTIGD)], to proceed with (1) for problems with many integra-
tion steps can lead to a detrimental acenmulation of rounding errors, see also
[ENGEST], 11.4. Thus the approach (2} is generally preferred.

For high crder differential equations, i has been shown that the direct meth-
ouls that correspond to the classical Runge-Kutta method and the Adams-
Moulton method achieve a smaller global ereor ondy if the derivative yin—!
does not occur in . For a problem of the form 5™ = flz, 0, ... 5" YY),
the indirect methods generally have Ue smaller global ereor.

17.4.5 FError Estimaies for Multi-Step Methods

The error estiinstes given in section 17.3.7 can also be used for walti-slep
methods. For instance, the estimates and inproved approximations from
{17.14} are for:

1) the Adams-Bashforth method for o = 3:
elf(x) = & {(Vi{z)— Vaala)),
Yilz) =4 (0¥ u(a) - Yaufn))s
2) the Adams-Moulton method for » = 3:
efMin) = 31I (¥alz) = Yanlz)),
Velr) = o (B2¥(2) — Yaula)).
If the Adams Bashforth formula for 5 = 3 {with a local error order of O{AR])
is used as a predictor, and the Adains-Moulion fonmula far s = 2 {with local

crror order of QLAPY) i= ward A= a corrector, then the following estimale lor
the global procedural error holds, ses |CONTSY 2.237:
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=6 efMiz) = ylz) -V z) = - (YLIJ(E} - Yf,“}{::]) :
Vi =yl - & (Y - v )
= 11_1 (IEYLI]{I:’ +YL0]{I]) .

This estimate is vory simple to nse becagse it does not roquire any calenlations
for a doubled step size. It also can be uzed to determine whether the chosen
step size is sufficient for the desired precision.

Analagausly, one can combine an Adame-Dashfurth formouls with an Adams-
Moolton lormals of egual ervor ordor for 4 = 6,7,8 to form 2 predictor-
rorrector pair. Then only ooe iteration step is required, and the following
eslimates for the global procodiral ercor hold:

w=6: ep¥E@) =y Yt = -k (YD - vPw),
ge=7 eM(z) =yl - Yz m-L (YL”[::} -Yi¥a),
a=8: ef¥z) =y - Y@~ -L (Y- YPE).

REMARK: An cffeclive automatic step size controd, lihe the one in section
17.3.7 for one-step methods, is also possible for multi-step methods by us-
ing nuich move involved procedures. Further information cen be found in
[SHAMTS] with its guite elaborate FORTRAMN programs.

17.4.6 Computational Error of One-Step and Multi-Step
Methods

While the global procedural crror of one-step and nulti-step methods de-
creascs with & — 0 of order qp, the global computational ercor ineresses with
decreasing siep size. The total error, ic the sum of prooedural errer and
compitational error, can thus not be reduced arbitrarily. Henve the step size
fr should be chosen 50 Lhat procedural and computatipnal errors have about
the saroc order of magnitude.

Il rh(c) denutes the global computational crrar at z, the following crude
eatimabe (n = 1) is valid for one-stop methods:
ﬁ—’s (x—xp] [ C=0,
man

£ {ﬂc{*'*ﬂ}—l} otherwise,
(331:%9

lrut=ll =
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Here ¢ is the maximum of the absolute computational error of each calenlation
step and {7 = L, the Lipschitz constant, in case of the Eulm-Ca.u-::hy method
aml C = L for t.l1e classical Runge-Kutta method.

For multi-step atd prodictor-corrector methods we have

. s
Frafzlf = im0 L

- hmu 1- G‘.‘:hnme !

where ©f and Oy depetd on the cocfficients of the formulas used, sew
IHENRS8], 5.3, 5.4. The giobal computational etrot is thus of order Q(1/A,,... )
for both one-step and multi-step methods.

Bibliography for Section 17.4

[CARNGS}, £.8-6.12; [COLL73], II, 4.2; {CONTS(], 6.6-6.8, 6.11; [ENGEST],
10.4; [GEART1/1}, 7-10; [HATR87] 3; [HENRG4], 11.6-14.7; [HENREE], 5,6;
[LAPITL), 4.7; [LUTHAT], 4.4; [McCAGT), 9.2; [RALSE7] vol 1, 8.; [SCHWR9],
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17.5 Bulirsch-Stoer~-Gragg Extrapolation

We congider the initial value problem (17.1). W.io.g we can assume n = 1:

yI{I} = JF(:Er y]! y{Iﬂ} = o

The cxtrapolation method of Bulicsch-Stoer-Gragg can casily be expanded to
systemas.

We want to find an approximation Y(Z) for the exact solution y{f) of the
initial value problem at £ with
I—1Ig

Ti=og+ A for b= N and N >0,

Gragy's funclion 5(Z; h) supplies an approximate value for g{z) with a global
error order of Q). It is calculated according to (STOES], 7.2.14 as follows:

With
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=W
(17.18){ @ = tAflznm), =1 =T th
Zipy = Ty (e, ), @i =aiHhloris1, L N
3 is definad as
1
(17.19 S{Z:h) = E[;:ﬂ.- +zy_1 ¥ hflzy . an)]

In the extrapolalion method of Bulirsch and Stoer, one chouses a sequence of
positive intogers

{1?'2{]} {ﬂmﬂhﬂ::---}
with D < np < 1, < ... and compuotes Gragy's lunction S(E; ;) for each
F— I
. hj= .
av.an ; -

The numbers n; must all be even or all be odd. The values S(E;h;] are
computed as in (17.18} and (17.19}. One can obtain the value

S 0yl = %[znj + zn; -y + B f{za;, Zn H-

for each j = 0,1,... with

e
) =z + A f(To ol xy =t
2l = Zey 4 2hiflEan). T =mblh i=lm-1

Then y{z} = S{#;h;) + OUA]).
Since S has an asymptotic expausion in powers of h}, oIg can construct ap-
prisimations with a ligher crror order by wsing Richardson exirapolation,
just as in Romberg intogration, For this one furing a "Romberg scheme™ as
follows, sec section 14.10:
The numbers of its Bret column are given as

LY = Stz hy) for j=0.0,...

Then one calculates the values for the colomns with & = 1,2,... using the

formula
i N e _ pen
W* _ hive Ft1 ¥

(17.22) L 7 for j=0,1,...
( fi )
-1
lil-j_H_-
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The columns of this Romberg scheme converge towards y(Z} for all functions
y that are sufficiently often differentiable:

lim L =y{#) Tor k fixed;
PR

The convergence of the k** column has the order gy = 2k+2fork =0,1,2,....
NOTE: The number of columns used should be limiled zo that no oscillations
ocecur. Oscillations can be triggered by the beginning influences of rounding

errors as well as the possibility that f is not sufficiently smooth, i.e., not dif-
ferentiable sufficiently often.

Romberg sequence.
If we choose n; = 2/ N for an even integer NV, the sequence (17.20) becomes
N-{1,2,4,8,16,32,.. ).

This is called the Romberg sequence. For these ny, (17.21) becomes

L I —Iy - h
(17.23) hy =~ = o

The LM, k = 1,2,.. ., are computed from (17.22) and (17.23) as

kg -1 _ kD)
Ve Avra Al
2 ]

L = for j=0,1, ...

Dlulirsch sequence,

If we chouse the Bulirsch sequence {2,4,6,8,12,16,...} in (17.20}, we obtain
for j = 0 and hg := h with

b forodd
h; =
———-—(&"j—a PUETE for even j

the h; values as {ho, h,...} =h-{, 1, 5. 1. 3L L & 1 }-

With thesc h;, the computations in (17.22) are significantly simplified.
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Step size control.

In extrapolation methods one should also utilize step size control, This can
be done by means of one of the methods in sectivn 17.3.7, sce specifically the
algorithims 17.12 and 17.13.

The program DESEXT in the prograin section uses the above extrapolation
method with the Bulirsch sequence. Its step size contral is realized with the
method of [HALL76}, p.113.

NOTE. Insicad of the above method based upon polynomial extrapolation
or the Richardson principle, see eg. [BJORT4), 7.22; {STUMBZ], p. 253;
[WERNT79) 111, §7, one can also use algorithms based on rational extrapo-
lation. Test examples for such procedures have given even better numerical
results, see [BULIGG|, {GRAGES].

Bibliography for Section 17.5

[GEART1/1), 6; {GRIGT7], 5,2; [HAIR87] 2.9; [HALL76], 6, [LAPITL], 5;
[STET73), 6.3; [STOE®1), 7.2.14.

17.6 Stability
17.6.1 Preliminary Remarks

Integrating the initial value problem (17.1} numerically supplies approximate
solutions ¥; = ¥ (z,) at the grid points 2o < 2, < ... < &g = 3 for the
unknown exact solution ¥; = y(x;}. For all previously mentioncd methods
one can prove that the approximate values Y, converge towavds the exact
values y(ri) a8 Amaz — 0 under the assumption that the associated function
& satisfies a Lipschitz condition and that the calculations have no rounding
EITOTS.

However, it is necessary to examine a method in the presence of rounding
crrors as well, The only useful algorithms are so-called stable algorithms. Ac-
cording to section 1.4, an algorithm is stable if the error committed in one
calculation step does not increase in the following steps. Tt is called unstable
if, even for arbitrarily inany steps, the approzimations ¥ differ unboundedly
from the exact valucs y,, 50 that the computed selution is in essence useless,
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The cause of an instabilily can lie within the Jiferential equation itself or it
can originate io the numerical procedurae. In the first case, the inatability ia
4 result of Lhe physical process described by Uha liferential equation. In the
sccond case, the instability can be avoided by chosing a more appropriate oo-
metical method. Al onr investigations in this section will again only be made
for n = 1, i.e,, for an initial value problem y'{z} = fz,%) with y(zp} = yo-

17.6.2 Stability of Differential Equations
Let ¢ be the solution of the ivitial valoe problem (1711 with & =1:

¥z = fle.v), wizo} =wm,

and u be a sclution close to y that satisfics the same difflerential cquation
as y. However asaume that the initial condition for w is slightly altered by
roundiog errors and procedural errors. Such errors ean originate for example
if the initiszl value gy of the problem bas been calenlated numerically.

Wi can express uas:

ulz) := ylz) + eyj(x).
tHlere g iz a sé-valled error function and £ iz a parameter with 0 < £ < 1.

Then 7 satisfies the so-called differeniinl variational equation:

W= f
Under the assumyption fy = ¢ = const, it has Lhe solution

“2=red nize) = m.

lz} = me
If f, = £ <0, then 5z} decreases for increasing . In this case, the differen-
Liz] eqquation is called siable, aotherwiee W 16 unstable, For a stabde differential
oquation, the distance of the solutions for different initial values diminishes
for growing z, so that an error made at one point, sech a8 a rounding orror
in the initial condition, will fade away.
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17.6.3 Stability of the Numerical Method

For r = 1 one-step and multi-step methods have the general form

A i M
{17.24} EUM—kYH-l—k = fi-z fras—x fiv1—x
ke k==L0k

for an eguidistant grid . They are explicit, if fp = 0, and implicit for by # 0.
Their coefhicionts wnst satisfy

M M
STap=0, ¥ be=1
k=0 k=0

For example for the Euler-Cauchy method and M = 1, we have seen:

ap=-1, =1 Y=1 b=0
whilc for Heun's method with M =
ap=1, g =-1, az=1, k=0 b=1f2, b=1§2
An eration of the fonn (17.24) is culled a difference equation ol erder M.

For multi-step methods we have 3 > 1, since several preceding values
¥;,¥ic1,..., are used to calculale Yi41. The Runge-Kutia methods are not
multi-step procedures aithough M = 3, for the values ¥i, ¥ associated with
b1, b are determined by f(x;_z,Yi—a). The veason for this is that in alporithm
17.4 the value 1 corcesponds to Yoz, the value ¥; + -’1'23 ta ¥j_y, anl the
value ¥; + hike /2 o Fi.

The dilferential cquation p'(x) = f{z,¥) caa thus be replaced by a differ-
enoe equation of the form {17.24), which gives rise to a differesnce variational
rquation with If; =¥ + el

i)

a
(17.25) Z oar a5 = f*Zi'M—kHiH—kfy{Ii-H-—t.Ui+1—k]-
k=0

k=0
tlere {J; i= another approximate solution close to the approximate sclution
Y;, H; is the error sohation, am & is & parameter with 0 < £ < 1. To solve
(17.25) we sek

Hizj):= H; =X for an integer j.

(Strictly speaking, the following considerations liold only for linear differential
cyiations with constant coefficients. For a more general theory see [DAHLTY]).
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Under the assumption f, = ¢ = const, we can inserl the above expression for
H; into (17.25):

M M
{(17.26) . Y an,NTE = ke b =0

k=0 k=0
Cleatly A £ 0, for if A = 0 then H =0, i.e., Lhe approximate values ¥; would
not be subject to any perturbations caused by rounding errors or trunca-
tion errors at preceding nodes. Multiplying (17.26) by AM~1-1, we obtain a
polynomial equation for A:

M M
P'[Jl} = zum_kl’d_k - flCZbM,EJ\'M_k =1.

k=0 k=
With

L) A

glA} = FameAMF= 3 gt and
k=0 k=0
Ll M

EI’{);} = E ﬂ*f_g-l’u** = Z bg.)l.k
k=0 k=0

this can be written in the form
(17.27) P{A) = pfA) — heo(a} = 0.

P{A) := o(A) —keo(X) is called the choracteristic polynomial of the multi-step
method.

The M zeros of {17.27) are A, ¥ = 1,..., M. For each valuc of ¥ there is
an errer selution (H,); = (A, ) of (17.25}. The error solutions {#,}; wilt not
increase for increasing j precizely when A, < 1 for all .

If |A.] < 1 {or all », we have strong stebiity. if there is an index v with
|A| = 1, then b, may only be a simple zero of (17.27) for asymptotic stability.

Since the equation (17.25] is linear in H;, every linear combination of the
functions {#,}; is also a solution. If all A, are different, then the M sclutions
{H.}; = (A, » = 1,..., M, are linearly independent, and the general
solution of [17.23) has the form

M
Hy = E"-‘v{hr}j

v=l

with arbitrary real coefficients c,. The class of solutions of (17.25} thus has
cardinality oo™, where M denotes the order of the difference equation.
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One conseguence of this is: If M > 1 {except for the Runge-Kutta methods),
the order of the difference equation is higher than that of the differential equa-
tion. Thus Lhe difference equation will have a larger solution space than that of
the underlying differential egquation. And the numerical method will produce
“parasilic solutions”. Only one of Lthe solutions of the difference equation will
converge for i = 0 towands the solution of the initial value problem [17.1],
provided that the multi-step procedure on which it is based does converge.
The higher the arder M of the difference equation is, the better its local crror
order {h%). A difference equation (17.24) of M t srder can give rise to a
numerically stable integration method with the local error order Q{RM*?) for
even M, and with O(AM+?) for odd M at most. Procedures with a higher
error order must be numerically unstable {[WERNTY),59}. In the following we
shatl only deal with local behavior, and locally we shall set f, = ¢ = const.
We can distinguish the following types of stability:

- Asymptotic stability,
- Absolute stability |
- A-stability, and

- S.ifl stability .

DEFINITION 17.17 { Asymplotic stability, stabiity for i = 0).

An algorithm for the munerical integration of an initial value problem
{17.1) is called asywptotically stable for h — 0, if the pelynomjal a(A)
fulfills the root condition, i.c., if it has only roots A, with |A,| < 1 and if
|%.] = 1, then A, is & simple root of g.

Consistent one-step methods are always asymptotically stable, if the associ-
ated function & is Lipschitz bounded. Since g{1) = Ea, = 0, each method has
at least one root &, = 1, thus one can never speak of a strongly asymptoticaily
stable method liere. During computations, however, it cannot be guaranteed
that one works with a sufficiently small it for which the method satisfics the
above indicated criterion. For this reason, one needs stability statements also
for & # 0 in order to form a valid assessment, of the stability behavior of the
method used for the chosen step size fi:
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DEFINITION 17.18 (Absolute stability, stability for h # 0).

An algorithm for the numerical integration of (17.1) is strongly absolutely
stable for a fixed A # 0, if all roots A, of {17.27) satisfy |A,| < 1. It is
called weakly absofutely stable, if the root condition of Definition 17.17 is
fulfilled, otherwise it is unstable. '

A curve in R~ which bounds the region of absolute stability of a method
is called its stability boundary, see also [ENGE87], p. 458.

With absolutely stable procedures we are guaranteed that stable solutions of
the given differential equation are approximated by stable solutions of the
corresponding difference equation. The following phenomenon is, however,
possible:

lim y(z) =0, but lim Y{zo+ih)=d>0.
00 ';;‘g’ .

:
It le y(z) = 0 must imply lim Y(zo + 1k} = 0 as well, then one has to
X —$C0 i—hoo

[9'ry
require stability for arbitrary values fic with Re(hc) <0 and |hc} ~ oo. Such
a behavior is called A-stability.

DEFINITION 17.18 (A-stability, stability for arbitrary he with

lhc] =+ o0).

A procedure for the numerical integration of (17.1} is called A-stable, if
for arbitrary iic with Re(hc) < 0, the root condition of Definition 17.17 is
fulfilled for P(A) = o{}) + hea(A) = 0.

For A-stable methods the stability region must therefore contain the left half-
plane of C, i.e., the entirc negative real axis of the hc-plane must be part of
the stability region. The following statements hold about A-stability of one-
step and multi-step methods:

(1) Explicit one-step methods are not A-stable.

{2) There exist A-stable implicit one-step method such as the implicit
Runge-Kutta formulas of Gaussian type ot the Rosenbrock methods, see
[HALL76], p. 148, but not all implicit Runge-Kutta methods are A-
stable.

(3) An explicit multi-step procedure cannot be A-stable.

(4) The glabal error order (or consistency order} of an A-stable multi-step
method can be at most two.
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(5) Among the A-stable multi-step methods with consistency order two,
Heun’s method has the smallest error.

The extrapolation method of section 17.5 is not A-stable. This summary shows
that, except for the methods under (2), no method is known with a global
error order g, > 2 that fulfills the necessary condition of A-stability for all
values ¢ with Re(he) < 0.

The term “stiff stability” will be defined in section 17.7.

Bibliography for Section 17.6

[ATKI78], 6.8; [HAIRS7); [HALL76], 2; [JELT76); [JELT78]; [LINI77);
[LUTHS7], 12; [RUTI52); [STOE1], 7.2; [WERN79], §9-11 .

17.7 Stiff Systems of Differential Equations

17.7.1 The Problem

There is one class of initial valuc problems (17.1) for whose numcrical treat-
ment only very specific methods are useful. This is the class of stiff differential

cquations ¥'(z) = flz, y)-

DEFINITION 17.20. A system of differential equations ¢ = f(z,1y)
is called stiff, if the component functions y(z) of the solution y of (17.1)
have a very different growth behavior: For increasing z, there are strongly
decreasing, weakly decreasing, as well as increasing solutions y; and the
increasing contributions grow much less quickly than the decreasing oncs
attenuate.

Requirements for a method to solve stiff systems of differential equations.

A method that is to be useful for stiff systems must meet the requirement that
components of an approximate solution that have decreased below a certain
threshold cannot have any more influence on the solution when the intcgration
process is continued. This means that the stiff components must be integrated
with a method in which for arbitrary & > 0 and all complex ¢ with Re(c) <0
we have
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lim ¥ (xy + ik} =D.
l':;En&:

A-stability is (ut least in a limitcd way) necessary for a numetical iethod to
integrate still differential equations, since the sunerical solution must repro-
duce correctly the required dimimishing of e stilf components. In this respect
the implicit Runge-Kutta methods of Gaussian type in section 17.3.5 are well
suited for stifl systems.

17.7.2 Criteria for the Stiffness of a System

{A) For the system (17.1) of differential cquations we assume at first that
J(x,4) = Ay for a constant (r,n) matrix A = (0}, §,k=1,...,n. Thus
we assume that a syslemn

{17.28) ¥'(z) = Ay(z)

of linear differential equations with constant coefficients is given.

Il A is diagonalizable, then the problemn cat be transformed to diagonal form,
Thiz i3 always possible il A has n distinct eigenvaloes. The systein (17.28)
then separates into n scalar difforential equations g = Ay for i =1,.. . ,n.
In general A can be reduced by similarity to its Jordan normal form. if the
Jordan norinal form of A is nondiagonal, then two eigenvalues of A would
have to be equal, which is very improbable. So the assumption that A is di-
agonalizable is not as restrictive as it might seem, see chapter 7.2. Hence let
us assume Lhat the system (17.28) can be separated into n scalar differential
cquations. And in the remainder of this section we shall investigale scalar
model problems for which we want to find integration methods with an ap-
propriate stability behavior.

A system (17.28) is called stiff if for the eigenvalues A; of A:

min, fe(Ai(z, v))
ulma.x Re(A(z, y))| >
ihzef :

{17.29) L

Criterion {17.29} siates that a system (17.28) can ooly be stilf if one of the
eigenvalues of A lics in the left half-plane of € and morecver the real part

of the left-most eigenvalue of A iz significantly larger than the maximal real
part of all the eigenvalues of A.

{B) To a given system of the form (17.1} we can locally associate a system of
the form (17.28) for every x € 7. The matrix A can be taken as the Jacobi
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matrix of (17.1):

— dfi(z,u _ r Pk
(17.30) { A '—( i )—A( e y), LEk=1L...,n
fi Ifi(’:»!l)=fi(2=,y1.yg,...,y,,),

It Ai, i =1,...,n, are the eigenvalues of A in (17.30) at (z,y), then (17.29)
is a criterion whether the system (17.1) s stifl in & neighborhood of (2, ¥)-
We note that the matrix A in (17.30) can vary strongly in the interval of

integration,
A dctailed analysis of stiffness is given in [HAIRO1].

17.7.3 QGear’s Method for Integrating Stiff Systems

The stability region of an A-stable method includes the negative he-half-plane.
Demanding A-stability restricts the global error order of methods suitable for
integraling stiff systems. For this reason, several modified stabilily notions
have been introduced which are related to A-stability, but allow to increase
the global error order of 2 method. See [GEAR71/2], [GEART71/1], [GRIGTT]
val. 2).

(Pear's method is based on the characteristic polynomial

(17.31) P = 8()) — heo ().

AL fitsl () is chosen in such a way that P(A) = 0 as |hc] — oo : Division of
(17.31) by hc and taking the limit Jhc| - oo leads to o(A) = 0. The simplest
choice iz :

(17.32) a(A) =AM,

¥or uhis reason, P(A) has the best possible stability property for he = oo: If
|he| = oo, P has an M-fold root at A = 0. The condition of strong abzolute
stability (definition 17.18) is fulfilled at |hef = co. In order to determine the
hehavior at finite points of the he-plane, one has to

1) fiud the polynomial P(}) and thus g(A), and

2)  to determnine ils stability region.
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1) For {17.32) ooe can calculate the assoviated plz] from the consistency
conditions: A linear multi-step method has (he consistency order o, i1 {see
[GRIGTT] wol. 2, p. 334)

M . .

(i) ¥ (k! —jiukf-1) =0, §=1,...,4, and
i:_ﬂ:‘“

Gi) 5 aw =0
k=0

{17.33) i a gystem ol g +1 lincar equations for the cocfficientsag, k= 0,...,4,
of the multi-step provedure.

(17.33)

2) The stability region of the multi-slep method obtained by sulving the loear
system in 1) is determined for X := re® with [A = r < 1 [rom

A il
= 5—-’\% = :‘:E:;@; =u +#u, ¢ €, 2n].

The stabilivy howtdary is obladned by setling » = 1.

Corrector formulas of Gear's method forg=1,...,6.

The iteration rules for the various methods are given bolow for #(3) = M,
M=1,...,6, with Af =y as congistency neder:

M Corrector formualas of Gear's method forg=1,... &
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i YE—T—t” =¥i+ h'-fgi}] =Y;+ h.f':IHl-YE:};}. r=0,1,2...

2 [yt = :11('“’-' ~ Yo +2hr¥), v=0,12,...

3 [ vinh = g(eyi-ovi+aris +ﬁhf£f,), y=0,1,2,...
1

4|yl = E(aa}’; — 36V + 16V g+
5 YE:—TH = I%F(:imyi —3Y,; +20Y, o+

G YE:T]} = -l—‘li-?(ﬁﬁﬂy*' —456Y,_y + GOY .. o+

i+l

—3Y .+ 12000 ), »=0,1,2, ..
_T5¥ i +12Y 4 4 ﬁuhf’;i],)T v=0,1,2,. ..

—IY g + T i — WY+ 8001 ), v=01,2

For g4 = 1,...,6 only onc functional evaluation of f is necessary per iteration
step. The stability regions for ¢ = 1,...,6 are given in the following picture
{see [GEART1{1], p. 212). Every boundary curve of & stability region passes
thtough the poi. [ = co of the he-plane, see lignres 17.2 and 17.3. For
M = 2 the method iz weakly A-stable, a5 is Heun's method, The fermulas are
sLifly stable for M = 3,... B

he-plane

=

I
=1

4 i
=2
’ \_/
§=3

Figure 17.2: Stability rogions for Gear's method forg=1,2,3

y

he-plana

Figure 7.2: Stability cogiona or Gear's mebhod for g = 4,5,6

One can reprosent the stabifity regions for the methods of Gear in a simplificd
way a5 [ollows:
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ol wbely | v

\\/7//////7 "

-8

7

Figure 17.4; Regions of sUl stability
{for 4 = 6, for exampte, = —6.1,8 = 0.5, and a = 0}

The borders of the stability regions are tangents to the curves in the figures
17.2 and 17.3. Gear called the regions in figure 17.4 regions of sEiff stability.
He gave the [ollowing definition ((GEART71/2]):

DEFINITION 17.21 (Stff aluability).

A procedure is called stiff-stable if it is absclutely stable in the region
Ry = {he | (Refhe} < D < 0)} and is exact in the region
Ay = {he| D < Relhe) < o, [Im(he)f < B}

Convergence of the correclor formaula.

In general, the corrector formula of Gear's method (see the earlier table of
corrector formulas for g = 1,...,6) hay the lorm

A
vl
Y1(i+t '= Z{hbM—kfi+l—k —ay—kY i)+ hbmfsr_}l,
k=1

which can be derived from (17.24) by solving for ¥ 4. The corrector iteration

converges if
afi
|MJM ( ay*)

where (gﬁ-) iz the Jacobi matrix and || - || & matrix norm. For stiff single

diferential equations, as well as for separated differential equations, the con-
vergence condition becomes

o
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h bM%l <.

‘The convergence condition for the iteration might demand a smaller A than
is required Ly the stiflly-stable method vsed. In this case, onc should use
Newton's method instead of the general iteration procedure for solving the
corrector equation. To save computational timo it may suffice to work with
the simplificd Newton's method - provided its convergence is not jeopardized,
sce section 6.2,

The prediclor.

As initial values (predictors) for the correclor iteration, the values Yg:_}, =Y,
were sugpestod by Gear, The corrector iteration converges if A is chosen ac-
cording to the convergence conditions just mentioned. In general, three iter-
ations are snggested. 'redictors such as the Adams-Bashforth formulas for
the Adams-Moulton formulas can be constructed for the procedures of M th
order with M = 3,...,6: Starting with the equations (17.33}, one constructs
an explicit procedure (bp = 0) by setting o{X) = AM=1,

Rewnarks for Gear's method,

The whole procedure was implemented by Gear, see SUBROUTINE DIFSUR
in {GEART1/3]. The program works with automatic step size control and
autowatically selects the global error order for a given error bound. Besides
DIFSUDR there exist newer versions Gear 3 or Gear Rev. 3 and a program
package developed by Byrne and Hindmarsh in 1975 from DIFSUR, It uses
the MS-methods as given by Nordsick, see [GRIG77], where bolh ¢, and A can
be controlled. At the same time, this package vonlains a numerical method

with which one can avoid calculating the starling values. One begins the cal-

culation with a onestep method of the class of chosen methods ([GRIGTY),
p. 80 I1.}. When modifying step sizes one must be carcful so that stability is
not jeopardized {i.c., one should not, routinely halve the step size). For details
consult [GEART4). Further procedures fur systems of stiff diflerential equa-
uions are given in [GRIGT7], p. 236.

In general, Gear's method docs not give useful results for suff problems where
the eigenvalues A, of the Jacobi matrix (fy) are close o the imaginary axis of
the he-plane. For then some cigenvalues are outside of or close to the boundary
of the region of absolute stability. Tn this case, Roscnbrock’s or the modified
Rosenbrock’s methods have proven useful ([KAPSS81). Here, instead of the
notion of stiff stability, other modifications of A-stability have to be used
according to the structure of the procedure ([GRIGT?, 15236 ss. [JELT?6);
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{JELT78}). A-stable methods are the implicit Runge-Kutta formulas with
Gaussian nodes (see section 17.3.5), as well as certain types of Rosenbrock
methods. The amount of computational time, however, is considerably higher
here than with Gear’s method.

REMARK. Effective algorithms for solving stiff systems and their FORTRAN
programs based on the work ol Gear, Krogh and Hull are contained in the
program package DEPAC which is available in coded form, see [SHAMYS).
Another effective procedure for stiff systems is the Eunright method, see
[ENGES7], p. 491.

Bibliography for Section 17.7
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17.8 Suggestions for Choosing among the
Methods

None of the methods of this chapter will perform better than any other for
every problem. One must, therefore, learn about the advantages and disad-
vantages of each method in order to decide for each particular problem which
method to use. One cannot expect that the theory alone will be able to furnish
strict criteria for choosing the optimal method for a desired accuracy. One can
only formulate the following general guidelines on comparing the class of one-
step methods and extrapolation methods on the one side with the multi-step
methods on the other.

As one typical representative of one-step methods we shall choose the classical
Runge-Kutta method:

Advantages: 1) Sell-starting, fixed local error order O(£3), simple to
handle.

2) Automatic step size control easily possible.

Disadvantage: Each integration step requires the calculation of four
functional values.
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Extrapolation method:

Advantages: 1) Self-starting, no fixed error order.
2) Step size control possible.

Disadvantage: Considerable computational time per step.

Multi-step methods:

Advantages: In general, cach integration step requires only two or three
functional evaluations per iteration step. Formulas of arbi-
trarily high order can casily be constructed.

Disadvantaeges:1) Not seif-starting. Calculation of starting values required.
2) Step size control possible {{GRIG77], vol.2, p.92, 98.), but

very time consuming since the starting values must be
recalculated if the step size is changed (see (GEARSO0]).

These statements are independently true for all types of initial value problems.
To help us decide on the merits of the methods we must moreover distinguish
between non-stiff and stiff initial value problems:

Suggestions for non-stiff systems of differential equations.

The literature contains extensive numerical cosnparisons of the known numer-
ical methods for integrating initial value problems for systems of differential
equations of first order. A general test program DETEST was developed to
investigate and compare all of the methods for solving initial value problems
of ordinary differential equations in [HALL 73] by Hall, Enright, Hull and
Sedgivida . A short description of this program and test results can be found
in [HULL72] and [ENRI76).

There the test problems were divided into five classes:

1) Single first order differential equaticns.

2) Small systems of first order.

3) Medium sized systems of first order.

4) Systems of first order for calculating orbits.

5) Large order systems.

In each instance an error bound ¢ is given for the local procedural error so that

rounding errors have no effect if computations are carried out in double preci-
sion. The step size is adjusted if the given bound & demands it. The amount of
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computational offort serves as a measure of the suitability of a method under

the given conditions {i.e., t.brpc of problem, size of ). The computational effort
is subdivided into:

{a) Time lor the calculation of functional values of f, which depends
on Lheir number per step and the complexity of the function f.

(1) Time for the other operations, apart from (c) (overhead).
{¢) Time for necessary changes in the step size.

The following values for & were used:
(Be=10"% (ii)e=10"8, (ii)e=10""
Test results from [LNRITE], p. 626-635:

If the time for (a) is not significant such as it would be for a simple function
[, the Bulirsch-Stoer-Gragg extrapaolation method is best, see section 17.5. if,
however, the needed number of f-values is large and their caleulation is time
consuming, then the Adams procedures are more advantageous, although the
amount of calculation time in (b) is larger here. Implicit Adams type meth-
ods of variable order are particularly advantageous, see [KROGGS], where the
order of the method is automatically determined at the beginning of caleu-
lations froin the given £. h is chosen as large as possible while maintaining
stability. Depending on whether the accuracy bound € is exceeded or not, the
error order of the method used locally is increased or decreased. Runge-Kutta
methods are only of advantage if the amount of computational Lime in {(a}) is
low and a modest accuracy is required, such az ¢ = 10-3. Time tests for single
differential equations are also included in [ENRITE}.

Suggestions for Runge-Kulla embedding formulas.

Adaplive initial value solvers are the methods of choice here in every situa-
tion. Since adaptive methods require the calculation of two approximations
Y and Y for the solution y in each step if step size control is to be used,
we must try and minimize the computational effort to find ¥ in order to he
competitive with othier methods. When using Runge-Kutta embedding for-
mulas this computational effort is minimal, since ¥ and ¥ are formed from
the same & values and the computation of ¥ can be performed quickly, see
section 17.3.4.4.

Qur awn cxtensive testz of embedding forimulas have lead to the following
results:

(1) The method rk&({4)6m {Prince-Dormand embedding formula of 4'* and
5t ordet) can be especially recommended among the forimulas of 44 and
5% order. rkb{4)7Tm and rke5(4) are less suitable. rkeb(4) requires a
rather large amount of computational time.
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(2) Among the formulas of 6t and 7** order, rkv6(5) is to be preferred for
its reliability and exactness. The forinulas rk6(5)8m and rkv7(6) can
be highly recommended due to their short computational times.

(3) Among the formulas of 8% and 9% order, rk8(7)13m is preferred due
Lo ils high relizbility, its exactness and its short computational time;
rkvB8(7) is a close second. However, rkv{B) requires a large amount
of computations and has no other advantages aver the above methods
of 8% order.

(4) The formulas rkft{5} and rkf8(7) did not give comparably good reanlts
in the tests.

(5) For stilf problems noue of the explicit Runge-Kutta methods gave ac-
ceptable results,

Suggestions for stiff systems.

Before deciding upon a method one should try to verify whether the given
system is stiff. In general, one ean decide this question with the criteria of
section 17.7.2. For small systems, it is sometimes possible to recognize stiff-
ness divectly from the given differential equations. In general a system will
reveal its stiffness if when using an cxplicit method the step size has 1o be
chosen very small due to an already ivrclevant component of the solution,
A verification of the stifness criteria in section 17.7.2 can, however, require
considerable eHort. Dut il one does not test for stiffness or falsely diagnoses a
system as stilf and then uses one of the implicit metheds for stifl systems of
section 17.7, one might get very inexact results for a non-stiff system despite
the long caleulation time of the procedures there. For this reason, attempts
arc being made to develop numerical tests thal find out easily whether a given
problem s s6lf ot not.

Such a test has been proposed by L.F. Shampine. The given initial value prob-
lem is integrated first by an explicit Runge-Kutta method, and then by the
Eutor-Cauchy wmethod with a prescribed level of exactness for the local pro-
cedural error. The Runge-Kutta method is normally chosen as the one given
by Fehlberg with e = 5, and ¢, = § with coefficients in table 17.6. Formula
(17.8) provides a good appruximation {or Lhe local procedural error at zyyy.

If such a test indicates that the problem is stiff, then suggestions for the choice
of the method can be drawn from the examination in [HULL7S]. This paper
describes systematic numerical tests in which five different methods that are
suitable for solving stiff problems are applied to 25 specific known stiff prol-

lemns. To test procedures for stiff systems, a test program STIFF DETEST

was developed to test all known useful methods. The program can be found
in a technical report of Bedet, Enright, 1ull of the Department of Computer
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. Science of the University of Toronts. 'T'he results are published in [HULLYS).
A measure of the usefulness of a method for a certain problem class is taken as
the computational time required for obtaining a given accuracy bound. This
time is composed of computer overhead, the time for functional evaluations
and the computing of Jacobians as well as for matrix inversions. Here are
some general suggestions: The stiff-stable methods of Enright and Gear have
proved well suited for all problems in which the eigenvalues of every Jacobi
matiix do nat lie cluse to the imaginary axis of the he-plane. The Enright
procedure is stiffly-stable. The Enright method generally gives more accurato
results, but it takes more time than Gear's method.

For problems in electrical engincering, whete eigenvalues often appear cloac to
the imaginary axis, Gear’s method is nearly useless, while Enright’s tnethod
has only limited use. A stiflly-stable procedure is obviously of no use here
cither, since T'm(hc) % | and Re(he) is small. For this reason, ane should
uses an A-stabie method. Implicit Runge-Kuita methods with Gaussian nodes
have thiz property. It iz, however, easier to deal with Rosenbrock methoels For
the integration of stiff systems. Suitable Rosenbrock methods are given in
[KAPS81]. Kaps indicated modified Rosenbrock methods up to order 6 in
1977; they were hinplemented by Kaps and Wanner in [KAPSE]].

A shorl deseription of the tests in {HULL7S] can be found in [GRIGT7], vol.

2. FORTRAN-Codes for Gear's method can be found in [SHAMTS], see also
our remwark at the end of section 17.4.1 .
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