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The stability of fluid flow through a narrow conduit with elastic walls is explored,
treating the fluid as incompressible and viscous, and the walls as semi-infinite linear
Hookean solids. Instabilities analogous to roll waves occur in this system; we map out
the physical regime in which they are excited. For elastic wave speeds much higher
than the fluid speed, a critical Reynolds number is required for instability. However,
that critical value depends linearly on wavenumber, and so can be made arbitrarily
small for long waves. For smaller elastic wave speeds, the critical Reynolds number is
reduced still further, and Rayleigh waves can be destabilized by the fluid even at zero
Reynolds number. A brief discussion is given of the nonlinear dynamics of the instabil-
ities for large elastic wave speed, and the significance of the results to the phenomenon
of volcanic tremor is presented. Although magma itself seems unlikely to generate
flow-induced vibrations, the rapid flow through fractured rock of low-viscosity fluids
exsolved from magma appears to be a viable mechanism for volcanic tremor.

1. Introduction
Sustained ground vibrations are observed at most active volcanoes, and are some-

times a precursor to eruptions. This ‘volcanic tremor’ is often found to be distinctly
harmonic, and analysis of time series reveals fairly well-defined spectral peaks at
periods of seconds (e.g. Julian 1994; Hagerty et al. 2000). The phenomenon is thought
to be associated with the subsurface unsteady flow of magma, although the nature and
origin of the fluid motions has not yet been determined (Konstantinou & Schlindwein
2002). One theoretical model proposed by Julian (1994) advances the premise that
tremor arises from instability in magma conduits owing to interaction between the
flowing magma and the surrounding rock. This instability is analogous to that seeding
the roll waves which travel on thin falling fluid films and propagate down turbulent
water courses (e.g. Chang 1994), and related explanations have been advocated for un-
steady blood flow and ‘Korotkov sounds’ in physiology (Pedley 1980; Brook, Pedley &
Falle 1999).

The destabilization of fluid flow by a compliant wall is a familiar notion in several
other branches of fluid mechanics, notably in drag reduction in engineering (Benjamin
1960, 1963; Landahl 1962) and in air flow through passages in the lung (LaRose &
Grotberg 1997; Moriarty & Grotberg 1999). In these contexts, the flow is relatively
high speed (high Reynolds number), and the compliant walls typically take the form
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of thin tubes or layers. Consequently, much work has gone into understanding the
instability of inviscid or potential flow, and the theory of elastic shells or plates is
used to provide boundary conditions at the compliant walls. Instabilities are usually
found to arise for flow speeds greater than the natural elastic wave speeds of the wall
(Gad-El-Hak, Blackwelder & Riley 1984; Duncan, Waxman & Tulin 1985). By con-
trast, in the volcanic problem, the underlying flow of magma is much slower (low
Reynolds number), and certainly rather less than the elastic wave speeds in the
surrounding rock. Moreover, the geometry of the volcanic conduit is quite different
because the rock occupies a far larger region than the conduit itself. Overall, these
differences force us into a separate theoretical discussion of volcanic tremor. A notable
exception is the approach taken in the series of papers by Kumaran and collaborators,
which bears some similarity to the route followed in the current paper (Kumaran,
Fredricksen & Pinkus 1994; Srivatsan & Kumaran 1997; Shankar & Kumaran 2002).

In this regard, although Julian’s model shows that flow instability is a possible
mechanism for tremor, it is based on phenomenological arguments and not derived
from the governing equations. That system should consist of fluid equations for the
magma and the equations of elasticity for the surrounding solid rock. Consequently,
a more quantitative model of volcanic tremor is still desired in order to assess more
completely whether the flow instability mechanism truly lies at the heart of the
phenomenon. Furthermore, a better theoretical model of the phenomena might prove
useful as a tool to aid the prediction of eruptions and other dangerous volcanic events.

The purpose of the present paper is to take the mathematical modelling of Julian’s
mechanism a step further. In § 2, we analyse the governing equations for an idealized
volcanic conduit. In particular, in § § 3 and 4, we consider viscous flow along a long
uniform conduit sandwiched between two semi-infinite elastic slabs, and study the
excitation of propagating waves, using long-wave expansion and linear stability theory.
This approach parallels theory presented for roll waves in other contexts (Brook,
Pedley & Falle 1999; Balmforth & Mandre 2004; Balmforth & Liu 2004). We also
briefly describe results for nonlinear waves, uncovering what appears to be com-
plicated spatio-temporal dynamics (§ 5). Overall, the results confirm that Julian’s
mechanism is plausible, although the physical conditions required for instability seem
somewhat removed from those expected geologically. We offer some remarks placing
the mathematical model into the context of volcanic tremor in our conclusions (§ 6),
and mention the main direction of future work.

2. Formulation of the model
Our idealization of the physical problem is shown schematically in figure 1. We

consider a conduit, or slot, described by a Cartesian coordinate system in which x

points along the slot and y is perpendicular to it. The magma, contained in −h(x, t) <

y <h(x, t), is treated as a Newtonian viscous fluid, and the surrounding rock as an
elastic solid. The slot is relatively narrow, being a crack that is opened by an ambient
fluid pressure comparable to the stresses within the rock. The crack supports a flow
driven by a pressure gradient corresponding to a pressure difference that could be
rather smaller than the ambient pressure. We take the crack to be symmetric about
y = 0, and therefore consider only varicose disturbances.

2.1. The fluid

The fluid is described by an Eulerian coordinate system, (x, y), together with the
velocity field, (u(x, y, t), v(x, y, t)), and pressure, p(x, y, t). The governing equations
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Figure 1. Idealization of the magma conduit. (a) The geometry of a fluid moving through a
conduit bounded by semi-infinite elastic solids. (b) The coordinate systems used to describe
the fluid and solid.

are given by conservation of momentum,

ρ(ut + uux + vuy) = −px + ρν(uxx + uyy), (2.1)

ρ(vt + uvx + vvy) = −py + ρν(vxx + vyy) (2.2)

and continuity,

ux + vy = 0, (2.3)

where ρ and ν are the fluid density and viscosity, respectively. The fluid stresses are
given by the tensor, (

2ρνux − p ρν(uy + vx)

ρν(uy + vx) 2ρνvy − p

)
. (2.4)

2.2. The elastic solid

The elastic solid is described by a coordinate system, (X, Y ), based on the unstressed
solid arrangement: under the imposed ambient and dynamic stresses, an elastic
element is displaced from the position (X, Y ) to (X + ξ, Y + η), where the displacement
field, ( ξ (X, Y, t), η(X, Y, t)), satisfies the equations of motion,

ρsξtt =
∂σXX

∂X
+

∂σXY

∂Y
, ρsηtt =

∂σXY

∂X
+

∂σYY

∂Y
, (2.5)

where ρs is the solid density and σIJ denote the components of the elastic stress.
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We take the elastic stress–strain relation to be linear, isotropic and Hookean:

{σIJ } =

(
(2µ + λ)ξX + ληY µ(ξY + ηX)

µ(ηX + ξY ) (2µ + λ)ηY + λξX

)
, (2.6)

where λ and µ represent Lamé constants, which are related to Poisson’s ratio, � , via
� = λ/(2(µ + λ)).

In the volcanic setting, the fluid speeds are far less than the speeds at which elastic
waves propagate in the solid (typically the latter are O(103) m s−1). In this situation,
we could drop the acceleration terms from (2.5) so the elastic medium is quasi-
static. We give a general discussion of the linear stability of waves propagating in the
fluid without making this further simplification, but when considering nonlinear waves
we resort to the quasi-static approximation. Our motivation for the more general
treatment of the linear stability problem is partly to present a coherent mathematical
analysis. However, elastic wave speeds in viscoelastic coatings, polymer gels and
biological tissues can be relatively small (as low as centimetres per second – Gad-
El-Hak et al. 1984; Moriarty & Grotberg 1999; Muralikrishnan & Kumaran 2002),
highlighting the relevance to other physical problems. In this limit, we also make
contact with the existing results for high-speed flows.

2.3. Boundary conditions

Symmetry at the centreline demands that uy = v = 0 on y =0. On the channel walls,
there is no slip and so the displacement of the wall and its rate of change must match
with the corresponding fluid displacement and velocities, i.e.

x = X + ξ (X, 0, t), h(x, t) = H + η(X, 0, t), (2.7)

u(x, h, t) = ξt (X, 0, t), v(x, h, t) = ηt (X, 0, t). (2.8)

Stress balance forces us to make the tangential and normal stresses continuous, which
in the absence of any interfacial tension requires that

1

1 + h2
x

(
1 hx

−hx 1

) (
2ρνux − p ρν(uy + vx)

ρν(uy + vx) 2ρνvy − p

) (−hx

1

)
=

(
σXY

σYY

)
, (2.9)

on y = h or Y = 0. Since the wall is a material surface, we have the kinematic condition,

ht + u(x, h, t)hx = v(x, h, t). (2.10)

The remaining conditions to be specified include the far-field boundary conditions
within the elastic solid and the conditions arising at the edges of the crack should it
be finite. For the former, we demand that disturbances either decay for Y → ±∞, or
correspond to purely outgoing waves. We avoid discussion of the edge conditions in
the current paper and adopt periodic boundary conditions in x and X.

2.4. Non-dimensionalization

We remove dimensions from the governing equations as follows. We define H as a
characteristic half-thickness of the channel and measure lengths along the slot with
the unit, L. We scale velocities (u, v) with the characteristic speeds, U and UH/L,
and time t with L/U :

x = Lx̃, z = Hz̃, u = Uũ, v = UHṽ/L, t = Lt̃/U, (2.11)

where the tilde indicates dimensionless variables. The aspect ratio ε =H/L is assumed
small and we shall take advantage of this below to simplify the equations. We also
take p = (ρνUL/H 2)p̃ to balance axial pressure gradient with shear stress.
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On dropping the tilde decoration, the dimensionless fluid equations become

R(ut + uux + vuy) = −px + uyy + ε2uxx, (2.12)

ε2R(vt + uvx + vvy) = −py + ε2(vyy + ε2vxx), (2.13)

and
ux + vy = 0, (2.14)

with a scaled Reynolds number parameter, R = εUH/ν, assumed order one.
For the elastic solid, we adopt (ξ, η) = H (ξ̃ , η̃) and (X, Y ) = L(X̃, Ỹ ). We also define

the potentials, ξ = φX + χY and η =φY − χX , which, after dropping the tildes, reduce
the equations of motion to the two wave equations,

φtt = α2(φXX + φYY ), χtt = β2(χXX + χYY ), (2.15)

where α and β are the dimensionless compressional and shear elastic wave speeds
(inverse Mach numbers):

α2 =
λ + 2µ

ρsU 2
, β2 =

µ

ρsU 2
. (2.16)

The compressional wave speed is always greater than the shear wave speed (α > β).
The match of stresses and displacements at the wall gives

x = X + εξ (X, 0, t), h − 1 = η(X, 0, t), (2.17)

u(x, h, t) = εξt (X, 0, t), v(x, h, t) = ηt (X, 0, t), (2.18)

(GσYY + p)
(
1 + ε2h2

x

)
= −2ε2

[
ux

(
1 − ε2h2

x

)
+ hx(uy + ε2vx)

]
, (2.19)

GσXY

(
1 + ε2h2

x

)
= ε(uy + ε2vx)

(
1 − ε2h2

x

)
− 4ε3hxux, (2.20)

where

G =
ε2Hµ

ρνU
(2.21)

is a stiffness parameter and we have non-dimensionalized the stresses by the unit,
µH/L.

3. Propagating waves along a long crack
3.1. The equilibrium fiddle

Our idealization envisages the conduit as being held open by sustained ambient
pressure that is supplemented by a weaker pressure gradient along the slot which
drives the flow. A complicating aspect of this idealization is that the pressure gradient
exerts a differential stress on the elastic wall, inducing a deformation which will not
necessarily be uniform. Consequently, the conduit may taper or widen with distance.
Below, we aim to study waves propagating along the conduit, and any non-uniformity
complicates the description. For the sake of simplicity, we make a first approximation
in which we ignore any x-dependent deformation of the elastic walls and assume that
the equilibrium conduit is of uniform thickness, but retain the pressure gradient to
drive a mean flow. In general, this is an approximation similar to the edifice used in
physiological contexts (e.g. Brook et al. 1999).

With the approximation, the undisturbed conduit can be taken to have a semi-
thickness of h = 1, and we further set

px −→ −3, u −→ U (y) = 3
2
(1 − y2), (3.1)

to arrive at an equilibrium flow solution with unit flux through y � 0.
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3.2. Boundary-layer model

To leading order in ε, the fluid equations reduce to the ‘boundary-layer model’,

R(ut + uux + vuy) = −px + uyy, (3.2)

py = 0 or p = p(x, t), ux + vy = 0 (3.3)

(cf. Chang, Demekhin & Kopelevich 1993). The solution must be matched with that
for the elastic solid at the compliant wall: to leading order in ε, the match is

x = X, h − 1 = η, u = 0, v = ηt , p = −GσYY , σXY = 0. (3.4)

Assuming an infinite domain in X, we may solve the equations for the elastic solid
using Fourier transforms in space and time. After some algebra, we arrive at the
relation,

p = G

∫ ∞

−∞

∫ ∞

−∞
D(k, iω)ĥ(k, ω)eikx+iωtdk dω, (3.5)

where ĥ(k, ω) is the double Fourier transform of h(x, t) − 1,

D(k, Λ) = − β2

Λ2κα

[
4k2κακβ −

(
Λ2

β2
+ 2k2

)2
]

, (3.6)

κ2
α = k2 − ω2/α2, κ2

β = k2 − ω2/β2, (3.7)

and we take Re(κj ) > 0, j = α or β , should those real parts be finite, or Im(κj ) > 0
if the exponent is purely imaginary (signifying an outgoing wave). For a periodic,
but finite, conduit we may perform the same reduction, but with a discrete Fourier
transform in x. Either way, (3.5) proves useful for linear stability theory.

Note that, if ω � βk, (3.6) reduces further:

D(k, Λ) → 2|k|
(

1 − β2

α2

)
= 2|k| µ + λ

2µ + λ
=

|k|
1 − �

. (3.8)

The double Fourier transform then reduces to a spatial Hilbert transform, which is a
standard result for static elasticity problems (e.g. England 1971; Muskhelishvili 1953).

3.3. Slot-averaging

At zero Reynolds number, R = 0, the fluid system in (3.2) can be integrated to find
the flow profile, u = − px(h

2 − y2)/2. This further sets the stage for a lubrication-type
analysis of the problem. However, as we see later, there is no instability in this limit
of the problem, at least for large elastic wave speeds, so there seems little point in
proceeding down this avenue. However, the reduction of the flow profile suggests a
further approximation based on averaging the equations across the slot, but retaining
inertia. This approach is equivalent to the classical use of von Kármán–Pohlhausen
power integrals in boundary-layer theory and is much used for falling fluid films and
streams (Chang 1994), where it leads to models that predict the growth of roll waves
beyond a threshold in Reynolds number. We integrate (3.2) and continuity across the
slot and adopt the ansatz,

u(x, y, t) = 3
2
U (x, t)

(
1 − y2

h2

)
, (3.9)
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where U (x, t) is not yet known, to compute the integrals of u. This leads to two
coupled evolution equations for U and h:

R
[
(hU )t + 6

5
(U 2h)x

]
= −hpx − 3U

h
, ht + (Uh)x = 0. (3.10)

The pressure gradient in (3.10) is determined from matching with the elastic solid,
and specifically (3.5).

The slot-averaged model in (3.10) is useful for further analysis, but shares a defect in
common with similar approaches for fluid films, namely that it incorrectly predicts the
critical Reynolds number for the onset of instability. An improvement over (3.10) can
be found by introducing a higher-order polynomial for the flow profile (Ruyer-Quil &
Manneville 2000):

u(x, y, t) =

4∑
j=0

aj (x, t)

[(
1 − y

h

)j+1

−
(

j + 1

j + 2

)(
1 − y

h

)j+2
]

. (3.11)

The aim of the improvement is to correct the critical Reynolds number by suitably
selecting the amplitudes, aj (x, t), which leads to the alternative, slot-averaged model,

R

(
qt +

17q

7h
qx − 9q2

7h2
hx

)
= −5

6
hpx − 5q

2h2
, ht + qx = 0, (3.12)

where the flux, q =
∫ h

0
u dy, now appears as a dynamical variable. As shown below,

(3.12) correctly predicts the onset of long-wave instability. Below, we refer to the
system (3.10) as the ‘simplest’ slot-averaged model, and (3.12) as the ‘improved’
version.

4. Linear stability theory
We perform a linear stability analysis of the boundary-layer model by introducing

the decomposition,

u = U + ψy(y) eikx+Λt , v = −ikψ(y) eikx+Λt , h = 1 + ĥ eikx+Λt , p = p̂ eikx+Λt , (4.1)

where k is the wavenumber and Λ the complex growth rate, and then linearizing in the
amplitudes, ĥ etc. Once the equations are linearized, the solution can be normalized
such that ĥ → 1. The linearized version of (3.2) is

ψ ′′′ = ikp̂ + R[(Λ + ikU )ψ ′ − ikU ′ψ], (4.2)

and the boundary conditions are ψ (0) = ψ ′′(0) = 0,

U ′(1) + ψ ′(1) = Λ + ikψ(1) = 0, p̂ = GD(k, Λ), (4.3)

where D(k, Λ), is defined in (3.6).
In terms of wave speed, c ≡ iΛ/k, the linear equations become

ψ ′′′ = ikG

{
D +

R

G
[(U − c)ψ ′ − U ′ψ]

}
, U ′(1) + ψ ′(1) = ψ(1) − c = 0, (4.4)

which illustrate how a change of G corresponds to a rescaling of k and R. Moreover,
we anticipate that the main parameter governing stability is R/G = ρU 2/εµ ≡ ρ/ρsεβ

2.
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Figure 2. Scaled ‘elastic’ contribution to growth rate against β for four values of α/β (this
contribution must be scaled by G). The inset shows the critical value of β for which the
contribution changes sign. This condition corresponds to the Rayleigh wave speed equalling
the propagation speed of fluid disturbances (three).

4.1. Long waves

We solve the linear boundary-layer model via a long-wave expansion of the form,

ψ = ψ0 + k2ψ2 + · · · , p̂ = kp̂1 + · · · , Λ = kΛ1 + k3Λ3 + · · · , R = kR1. (4.5)

The exercise is standard, and furnishes the solution,

Λ1 = −3i, Λ3 = 6
5
R1 − Gαβ2

27
√

α2 − 9

[
4

αβ

√
(α2 − 9)(β2 − 9) −

(
9

β2
− 2

)2
]
. (4.6)

Thus, inertia is destabilizing, and the flow is unstable to long waves provided R >Rc,
where

Rc =
5kGαβ2

162
√

α2 − 9

[
4

αβ

√
(α2 − 9)(β2 − 9) −

(
9

β2
− 2

)2
]
. (4.7)

This threshold can be made arbitrarily small by selecting waves of increasingly long
wavelength. If β → ∞ with α/β held fixed, Rc → 5kG(1 − β2/α2)/9.

A key feature of (4.6) is that the second term, which arises from the deformation
of the elastic wall, is stabilizing for large elastic wave speeds. However, as those wave
speeds decrease, the sign of this term switches (see figure 2), and the deformation of
the wall also becomes destabilizing, implying that there is no threshold in Reynolds
number for long-wave instability. The conduit is then unstable even in the lubrication
limit. The critical elastic wave speed β is also shown in figure 2. The switch occurs
when an elastic wave speed approaches the speed with which disturbances propagate
naturally in the fluid (equal to three with the current non-dimensionalization). More
specifically, the switch is at a Rayleigh wave speed of three, as described further in
§ 4.4. This result is of the same flavour as that reported by Kumaran et al. (1994) for
flow down a gel-walled tube.

4.2. Short (or nearly inviscid) waves

We derive short-wavelength estimates for the eigenvalue Λ of the boundary-layer
model as follows (cf. Chang et al. 1993). For k � 1 or R � 1, over the bulk of the
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fluid the term ψ ′′′ in (4.2) is negligible, in which case,

(U − c)2
d

dy

(
ψ

U − c

)
= −GD(k, Λ)

R
, (4.8)

where c = −iΛ/k is the complex wave speed. We readily integrate:

ψ = −GD

R
(U − c)

∫ y

0

dỹ

[U (ỹ) − c]2
≡ ψI , (4.9)

on imposing ψ(0) = ψ ′′(0) = 0. This solution cannot be made to satisfy the remaining
boundary conditions, reflecting how a viscous sublayer arises near the wall. There, we
must reinstate ψ ′′′, to find the solution, ψ =ψI + ψB , with

ψB ∼ Be−ς(1−y), ς = (1 − i)

√
kcR

2
, (4.10)

where B is a constant of integration. Enforcing the boundary conditions (bearing
in mind that cRψ ′

I = p̂ +3RψI and ψ ′
B = ςB at y = 1) now provides the dispersion

relation,

cR = GD

[
1

3 − ςc
+ c

∫ 1

0

dy

(U − c)2

]
(4.11)

cR =
GD

3 − cς
+

GD

2c − 3

[
1 +

2c√
3(2c − 3)

tan−1

√
3

2c − 3

]
. (4.12)

Note that the inviscid problem corresponds to taking the limit |ς | → ∞ with G/R

fixed in the formulae above and dropping ψB , in which case (4.12) is exact. Notably,
in the inviscid limit, we can have c → 3/2 for the neutrally stable case and a critical
layer develops which we briefly discuss in § 4.4.

The dispersion relation (4.12) can be simplified further given that k � 1, although
the precise details depend upon the size of the elastic wave speeds. We present some of
the details in Appendix A, and summarize the main results as follows. Let cr = Re(c)
and Λr = Re(Λ). Then, for cr � β ,

cr ∼

√
2kG

R

(
1 − β2

α2

)
, Λr ∼ −k3/4. (4.13)

Alternatively, for cr ∼ β , the eigenvalues satisfy at leading order

DR(cr ) = D(k, −ikcr ) = 0. (4.14)

This is the dispersion relation for an elastic half-space bounded by an shear-free
interface at fixed pressure. Consequently, the solutions are Rayleigh waves (Love 1944)
with cr = cR . The Rayleigh waves occur as counter-propagating pairs (the symmetry-
breaking due to the direction of fluid flow does not appear at leading order). The
Rayleigh waves propagating backwards with respect to the fluid appear to be always
relatively strongly damped, and we ignore them henceforth. At higher-order, the
forward-propagating Rayleigh waves become modified by viscous dissipation in the
fluid, and Λr ∼ −k−1/2.

These results imply that when the elastic wave speeds are large, there are two
scaling regimes (at fixed Reynolds number). First, for 1 � k1/2 � α, β , the growth rate
plummets as −k3/4 (and the propagation speed increases as k1/2). When k1/2 ∼ α, β ,
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however, the disturbances become Rayleigh-like waves and the growth rate turns
around and approaches zero from below as −k−1/2. Overall, short waves are stable.

4.3. Slot-averaged theory

The simplest theory (3.10) predicts the dispersion relation,

9 − 3iΛ

k
+ iR

(
−12iΛ

5
+

6k

5
− Λ2

k

)
= ikGD(k, Λ). (4.15)

The second, improved, theory (3.12) gives

9 − 3iΛ

k
+ iR

(
54k

35
− 102iΛ

35
− 6Λ2

5k

)
= ikGD(k, Λ). (4.16)

We analyse the second of these for comparison with the earlier results. Marginal
stability occurs for Λ = iω, with ω real. Thence, provided κα and κβ remain real,

ω = −3k, R =
5kGαβ2

162
√

α2 − 9

[
4

αβ

√
(α2 − 9)(β2 − 9) −

(
9

β2
− 2

)2
]

. (4.17)

This is identical to the long-wave results of the boundary-layer model (though it is
not restricted to long waves). A similar calculation for the first slot-averaged model
gives a result in error by a factor of order unity, vindicating our improvement of that
theory.

For an infinite elastic wave speed, short waves have the limiting eigenvalues,

Re(Λ) ∼ − 5

4R
, Im(Λ) ∼ −k3/2

√
5G

3R

(
1 − β2

α2

)
, (4.18)

and are therefore always stable. For finite α and β , on the other hand, short waves
once again limit to Rayleigh waves with wave speed, cR . The damping or growth of
these modes appears at order k−2, leading to

Re(Λ) ∼ 3(cR − 3)

kGD′
R(cR)

, (4.19)

where DR(cr ) ≡ D(k, −ikcR)/k. As long as k1/2 � α, β , the growth rate therefore first
decreases and flattens out to a minimum value near −5/4R. Once k1/2 ∼ α, β , the
growth rate begins to increase back toward zero. Because D′

R(cR) < 0, the short
waves are only stable if cR > 3. That is, if the Rayleigh waves are slower than fluid
disturbances, they are destabilized by the coupling with the fluid; faster waves are
stable. These trends are illustrated below, and have some similarities with the results
of the boundary-layer theory described earlier.

4.4. Numerical results

We summarize and extend the results above using numerical computations with the
linear boundary-layer model, as shown in figures 3–5. We take G = 2, in view of
the secondary importance of this parameter to stability. Figure 3 shows growth rates
against k for an unstable flow with different elastic wave speeds (but with α/β = 2),
and displays an instability with long-wave character. As elastic wave speed decreases,
the band of unstable wavenumbers widens, and by β = 2, the unstable band extends
to rather higher wavenumber.

Figure 4 shows further details of the growth rates for low and high wavenumber,
and compares the numerical results with the asymptotic predictions derived above and
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elastic wave speeds with α/β = 2 and β as indicated. The numerical results are compared with
the asymptotic predictions for long and short waves, as given in Appendix A (for the β → ∞
wave speed, a higher-order approximation than given in the Appendix is also included; the
slight improvement did not merit the inclusion of the actual formulae).

in the Appendix. In particular, this figure highlights the switch over from long waves,
with cr = 3 and Λr ∼ (6R/5)k2, to short Rayleigh-like waves with weak damping rates
(except for the curve with β → ∞).
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displays the stability boundary.
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We present more stability results in figures 5 and 6, which illustrate the effect of
varying the elastic wave speed β for fixed α/β = 2. Figure 5 shows a sequence of growth
rates plotted as densities on the (log10 R, log10 k)-plane. The growth rates are largest
for order-one wavenumber and R, irrespective of α/β . Stability boundaries are shown
in figure 6. As the elastic wave speed is decreased, the range of unstable wavenumbers
increases, and for β < 3.22, the stability boundary abruptly turns upwards to leave
long waves unstable for R → 0. The abrupt change in the stability boundary occurs
for a Rayleigh wave speed of 3, and corresponds to the switch in sign of the elastic
term in (4.6), as shown graphically in figure 2.
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averaged model (3.12) with α =2β , G = 2 and β = ∞, 5 and 3. The contours have the same
levels as in figure 5.

For large R, the stability boundary has the dependence, R ∼ k17/11, whereas at
smaller R, we find either R ∼ k or R ∼ k−1, depending on whether β is above or
below 3.22, respectively. The curious dependence, R ∼ k17/11, can be verified from
short-wave theory along the lines sketched out above, but also adding the next term
in the solution for ψI . This turns out to be necessary since c → 3/2 on this part
of the boundary, indicating that the neutrally stable inviscid solution (|ς | → ∞) can
develop singularities along the midline of the conduit (where the wave speed matches
the maximum flowspeed, i.e. the inviscid solution develops a critical layer). The third
(short-wave, low β) part of the stability boundary, R ∼ k−1, corresponds to neutral
Rayleigh waves with c → cR , for which there is no pressure perturbation at the wall,
only a displacement (and kR arises as the eigenvalue of (4.2)).

Figure 7 displays a comparison between the results of the boundary-layer model
and the two slot-averaged models presented earlier. Both averaged theories capture
the long-wave instability, although the improved model compares better with the
boundary-layer theory, as shown further in figure 8, which should be compared
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Figure 9. A numerical solution of the slot-averaged model (3.12) for R = 1.5, β/α = 1/2 (with
β → ∞) and G = 2. (a) The averages of (5.2). The inset shows h(x, t) as a density on the (t, x)-
plane. (b)–(d) show further details of the solution. (b) A phase portrait on the (〈h2〉, 〈U 2〉)-plane.
(c) Time series at two fixed positions. (d) Four snapshots of the solutions near the end of the
computation.

with the relevant panels of figure 5. The comparison is less favourable at higher
wavenumbers, where the growth rates are predicted to flatten out for the averaged
theories whereas the actual damping rates of the boundary-layer model are stronger.
Note that boundary-layer theory is strictly valid for small εk, and the high
wavenumbers computed in the figures do not necessarily conform to this condition.
The computations might then best be thought of as a test of the slot-averaged
theories, which are essentially approximations of the boundary-layer model.

5. Nonlinear waves
To catch a glimpse of the nonlinear dynamics of unstable propagating waves, we

solve the improved slot-averaged model (3.12) numerically in a periodic domain of
length 2π. We adopt the simplifying assumption (ω/k) � α, β , and use a Fourier
transform to compute the pressure in terms of the displacement of the wall:

h = 1 +

∞∑
n=−∞

hn einx, p = 2iG(1 − β2α2)

∞∑
n=−∞

n2hn einx sgn(n). (5.1)

The PDEs are then solved using a standard implicit time integrator after dealing with
spatial derivatives with either a finite-difference or a pseudo-spectral scheme. Initial
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Figure 10. A similar set of pictures to figure 9, but for R = 1.75. (In this case, (b) the phase
portrait shows only the final attractor, not the initial transient, (c) shows time series at three
positions and (d) shows three profiles.)

conditions take the form of small random perturbations about the equilibrium state.
The end result is the evolution of h(x, t) and q(x, t). For purposes of presentation,
we define an average velocity, U (x, t) = q/h.

We first set G = 2 and show a suite of computations of increasing R (figures 9–11).
The initial perturbations seed the growth of unstable waves, which ultimately saturate
at finite amplitude. The wavelength of the fastest growing disturbance is given by
linear theory, which is the longest wave in the box (i.e. n= 1 in (5.1)) if G =2. For
R = 1.5 (figure 9), the instability saturates in a steadily propagating wave. At fixed
position, the time series of the wave takes the form of a periodic nonlinear oscillation,
but in terms of the averages,

〈h2〉 =

∫ 2π

0

h2 dx, 〈U 2〉 =

∫ 2π

0

U 2 dx, (5.2)

the saturated wave is perfectly steady. As we gradually reduce the Reynolds number
from 1.5 to the critical value at the threshold of instability, the level of saturation
smoothly decreases to zero, in the usual manner of a supercritical bifurcation.

Somewhat above R =1.5, the saturated nonlinear wave no longer remains steady.
Near R = 1.65, the steady solution appears to lose stability to a second wave
propagating with different speed. The result is a two-frequency pattern (a torus
in phase space), which appears as a limit cycle in the averages of (5.2), as illustrated
in figure 10 for R = 1.75. The solutions develop in a complicated fashion as we raise
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Figure 11. A similar set of pictures to figure 9, but for R = 2.4. (In this case, (b) the phase
portrait shows only the final attractor, not the initial transient, (c) shows a time series at a
single location and (d) shows two profiles.)

R still further; more bifurcations take place and there appears to be a transition to
chaos, although we have not traced the precise pathway. Figure 11 shows what we
interpret to be a chaotic solution at R = 2.4.

The waves connected to the solutions shown in figures 9–11 are not the only possible
outcomes of the initial-value problem. Occasionally, other solutions appear abruptly
on changing R, some of which are again steady. The new solutions have multiple
peaks within each spatial period. Also, unsteady solutions with temporal oscillations
in the averages of (5.2) can exhibit period-doubling phenomena on varying R. Thus,
the system shows much scope for generating the nonlinear dynamics interpreted by
Julian (1994, 2000) to underlie long-term variations of tremor frequency spectra.

One unsatisfying aspect of our computations at larger Reynolds numbers was
that the ‘improved’ slot-averaged model began to display a tendency to jump from a
regular solution to what appeared to be a singular solution that diverged in finite time.
This behaviour is a known feature of thin-film equations (Ruyer-Quil & Manneville
2000) and signifies that the model is inadequate for larger values of R. By contrast, the
simpler slot-averaged model shows no such singular features and generates solutions
that remain regular at large R. To avoid the singular solutions we switched to the
first slot-averaged model at larger Reynolds number. Aside from this difference, the
solutions from both models at lower R were in qualitative agreement, although in
the first model the bifurcations in behaviour occurred at slightly higher values of R.
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Finally, we close this section by considering briefly what happens on varying G.
The main effect of this parameter in linear theory is to rescale the wavenumber
and R. In particular, when we reduce G, the maximum growth rates shift to higher
wavenumber and the longest wave is no longer the most dominant. Instead, higher
wavenumbers are expected to grow more quickly, suggesting that wave interactions
could be important near onset. We show a sample solution in figure 12 which
illustrates one of the more common types of behaviour. When wavetrains containing
more than a single peak are initiated in the domain, an adjustment phase occurs
beyond the initial saturation wherein waves attract one another and collide to form
larger waves and ‘coarsen’ the spatial pattern. In figure 12, this process continues until
only a single steadily propagating wave remains in the domain. Coarsening dynamics
indicate that the most unstable wave predicted by linear theory is not necessarily the
disturbance that is observed at finite amplitude. Instead, the character of tremor may
be given by the length of the conduit.

6. Discussion
6.1. Volcanic tremor

Tremor accompanies nearly all volcanic eruptions and is a common eruption precursor
(Konstantinou & Schlindwein 2002). However, the characteristics of tremor can vary
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considerably. The signal may originate from as deep as 40 km below ground level,
or as shallow as a few hundred metres (Aki & Koyanagi 1981). It can have a
gradual or abrupt onset, be harmonic or anharmonic, and last minutes, days or
months (Konstantinou & Schlindwein 2002). Typically, the signal comes from less
than 10 km depth, and the frequency spectra display a distribution of sharp peaks
concentrated between 0.1–7 Hz. There can be systematic changes in tremor during
eruptions including what appear to be period doublings and halvings.

Given the range of tremor properties, depths of origin and association with all
styles of eruptions (explosive, effusive; magmatic, phreatic; passive degassing), there
may be multiple origins of volcanic tremor. Several mechanisms for tremor generation
have been proposed including bubble growth or collapse, jerky crack propagation,
oscillations of magma chambers, resonance of fluid-filled cracks and flow-induced
oscillations of conduits (Julian 1994; Konstantinou & Schlindwein 2002). Models
involving resonance require a disturbance to trigger oscillations and while there are
many plausible sources of so-called ‘long-period’ events, which decay after seconds
or tens of seconds, tremor requires a disturbance that is sustained for minutes or
even months. Sustained resonance could be caused by continued formation of shock
waves (Morrissey & Chouet 2001) or gas slugs (Cruz & Chouet 1997; James et al.
2004), however, these seem to require special circumstances and do not explain tremor
during volcanic eruptions of all styles and compositions. By contrast, flow-induced
oscillations in the conduit walls could provide a source of sustained seismicity, lasting
as long as flow continued at a sufficient speed. Moreover, although the sample results
presented by Julian involve very high fluid velocities (45–110 m s−1) and frequencies
at the high end of tremor (∼5 Hz), his model can explain the apparent nonlinear
phenomena observed at several volcanoes (Julian 2000; Konstantinou 2002).

The theory we have presented amplifies further on Julian’s mechanism: a linear
stability analysis indicates that flow-induced oscillations can appear at arbitrarily low
(but non-zero) Reynolds numbers. Furthermore, the stability of the system depends
on the crack aspect ratio, fluid speed and elastic wave speeds. However, up to this
point we have not considered the physical parameters relevant to volcanic tremor. To
this end, we return to dimensional units (restoring the tildes to decorate dimensionless
variables) and record the dimensionless critical wavenumber, k̃cr , below which the
system is unstable to long waves. From (4.7), with k̃ ∼ 1 (which corresponds to waves
of wavelength comparable to the length of the crack), we find

1 ∼ R

G
=

ρU 2

ρsεβ2
or U ∼

(
ερs

ρ

)1/2

β, (6.1)

where β is the true dimensional shear wave speed. Evidently, stability does not depend
directly on viscosity, but the more viscous the fluid, the greater the pressure gradient
required to drive flow at a given velocity through a crack with a given thickness.

The estimate in (6.1) is actually quite natural for our conduit, and can be arrived at
more directly with dimensional analysis. The destabilizing inertial terms, ρ(ut + uux),
are order ρU 2/L. These are opposed by the pressure gradient, px ∼ p/L, arising from
the elastic stresses due to the deformation of the wall. Since the elastic displacements
are order H , we see immediately from the constitutive relation that p ∼ µH/L. The
balance of pressure gradient and inertia then gives (6.1).

To assess the feasibility of our model for generating volcanic tremor we consider
ε = 10−4 and β = 2 km s−1, which are towards the low end of physically possible
parameters. The estimate in (6.1) then suggests that flow speeds of tens of metres
per second are required for instability. Figure 13 shows a more refined calculation
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Figure 13. The curve on this plot of non-dimensional wavenumber versus average fluid
velocity represents neutral stability for flow through a crack with aspect ratio ε = 10−4 in a
solid with elastic wave speeds α = 4 km s−1 and β = 2 km s−1, computed according to (4.7) with
ρ = ρs .

based on the full expression of (4.7). However, even this figure indicates that with
these relatively low ε and β values, average fluid velocities of 13 m s−1 or more are
still required to induce oscillations. It might be possible for ε to be substantially less
than 10−4. However, even for ε = 10−6, as inferred by Cruz & Chouet (1997) for the
source of long-period seismic events at Galeras Volcano (based on a crack resonance
model), the critical average fluid velocity is still high.

The time scale associated with the instability is, in dimensional units, L/3U . Given
the flow speed, tremor periods therefore constrain the length of the crack: for
U = 10 m s−1, the expected oscillation frequency is order one cycles per second when
the crack length scale L is 10 m or so. In turn, this suggests a crack thickness (H )
of millimetres if ε = 10−4 (which is required to reduce the critical flow speeds for
instability). If tremor periods are as large as 10 s (e.g. Yamamoto et al. 2002) both the
crack length and thickness can be made a factor of ten larger (hundreds of metres and
centimetres, respectively). Thus, whilst the expected crack lengths are reasonable, and
the nonlinear dynamics of unstable waves seems to be able to rationalize features of
tremor spectra, the instability criterion remains far more constraining, and demands
very narrow cracks and high fluid velocities.

6.2. Aqueous and carbonaceous volcanic tremor?

In other words, for Julian’s mechanism to work, we require fluids to flow at speeds of
order 10 m s−1 through narrow cracks beneath volcanoes, which seems excessive for
subsurface flow of magma. Magma flow in the upper crust during explosive eruptions
and fire-fountaining can reach hundreds of metres per second (Dobran 2001; Mangan
& Cashman 1996). However, the viscosity of magma (10 to 1012 Pa s) makes sustained
velocities of 10 m s−1 unreasonable for subsurface magma flow that is not coincident
with, or immediately preceding, eruption at the surface. Therefore, it seems hard to
generate flow-induced oscillations with magma.

The required condition for instability is more easily achieved for liquids such as
groundwater or supercritical fluid exsolved from magma. These fluids have much
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lower viscosity than magma, allowing higher flow speeds, and do not have a large
density contrast with rock (so ρ/ρs is not overly small). In fact, aqueous fluids are
present at all volcanoes and eruptions of magma are typically preceded by increased
gas emissions indicative of subsurface flow. Furthermore, if a low viscosity fluid is
required for deep tremor, this could explain the general lack of long period seismicity
in recharge zones beneath intermediate and silicic volcanoes where there is magma
movement but the magma is not saturated in volatiles. However, this also begs the
question of whether we could expect to find high-speed flow of aqueous fluid at the
depths required to explain tremor.

To what depths are aqueous fluids present? There is growing evidence that magmas
a few kilometers below volcanoes are often saturated in volatiles (mixtures of H2O,
CO2, etc.; Wallace 2001), and consequently a free, low-viscosity fluid is expected at
such levels. However, volatile solubility increases with depth, suggesting that there
should be no free aqueous fluid below 10 km. Yet the deepest reported tremor
originated about 40 km below Kilauea Volcano (Aki & Koyanagi 1980). Nevertheless,
magmas can be saturated in volatiles at depths in excess of 10 km if there is sufficient
CO2 in the melt (e.g. Lowenstern 2001), and Gerlach et al. (2002) have calculated
that a low viscosity fluid could exsolve about 30 km under Kilauea. Though still
shallower than Aki & Koyanagi deepest tremor, this opens up the possibility that
a carbonaceous fluid played a role in generating those deep sustained vibrations. In
fact, substantial crystallization of stalled magma could lead to CO2 saturation and
fluid exsolution even at 40 km depth.

Volatile-rich fluids can also be generated at great depths by dehydration metamor-
phism of subducted oceanic crust. Tremor has recently been detected in the mantle
at two subduction zones at depths where the down-going slab is expected to reach
high enough temperatures for water release (Obara 2002; Rogers & Dragert 2003).
The generation of tremor in the portion of the mantle where one would expect a
separate water phase is consistent with a mechanism based on the flow of low viscosity
fluids.

We conclude that although magma transport is unlikely to generate flow-induced
oscillations, rapid flow of H2O- or CO2-rich fluids is a possible source for tremor
(a) in the upper several kilometers of crust where aqueous fluids are present,
(b) at greater depth where the magma has high CO2 content, and (c) in the mantle
above dehydrating subducted crust. Moreover, the same mechanism could produce
‘long-period’ events if the fluid only intermittingly achieves sufficient speed to induce
wall oscillations. Note that a relatively dense fluid phase is essential, otherwise the den-
sity contrast with rock does not favour instability, which precludes a mechanism based
on vapour flow.

6.3. Conclusions

Our stability analysis indicates that some fluids, conduit geometries and eruption
styles are more likely to cause tremor by flow-induced oscillations than others. In
particular, we have found that narrow conduits and high fluid speeds tend to generate
flow-induced tremor. Also, as we argue in Appendix B, planar conduits seem far more
unstable than tube-like fluid conduits. Except for shallow seismicity during explosive
or fountaining activity, maintaining sufficient fluid speeds (>10 m s−1) by realistic
pressure gradients to induce oscillations requires sustained flow of low-viscosity
aqueous or carbonaceous fluid rather than magma. These conclusions are consistent
with observations by McNutt (2002) in a study of tremor from 50 eruptions at 31
volcanoes comparing tremor characteristics and corresponding eruption parameters.
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McNutt lists four trends in the data:

1) large eruptions produce stronger tremor than small ones;
2) fissure eruptions produce stronger tremor than circular vents for the same

fountain height;
3) eruptions with higher gas content produce stronger tremor than those with low

gas content at the same volcano; and
4) phreatic eruptions [eruptions that eject broken rock and vapour but no magma]

produce stronger tremor than magmatic eruptions [eruptions that do eject magma] for
the same VEI [Volcanic Explosivity Index, a measure of the magnitude and intensity of
an eruption].’

Much remains to be done. First, and foremost, is to change the conduit geometry:
an arguably more plausible configuration involves a relatively short conduit, bounded
by fluid reservoirs at either end. In this latter case, flow instability arises when the walls
rock back and forth in near unison, and the mathematical description invokes normal
modes rather than waves. A key physical issue that must be addressed is whether
the flushing action of the flow down the finite conduit can suppress instability (the
periodic boundaries we have considered here allow waves to re-enter the conduit and
continue to grow).

For the volcanic application, we must further develop the comparison with observa-
tions. The sole observations used here were the rough characteristics of tremor and the
geological conditions. However, there are detailed seismic studies of tremor sources
and decomposition of the outgoing elastic wavefield, both of which should be taken
into consideration in testing the theoretical model. We note that the flow instability
generates roughly equal amounts of shear-wave and compressional-wave radiation
(χ ∼ φ), and that the seismic signature may be similar to that already explored in
acoustic resonance models for tremor (Chouet 2003, and references therein).
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Appendix A. Short-wave results
In this Appendix, we present some of the details of the short-wave stability theory

of the boundary-layer model. First, consider the limit β → ∞, with α/β held fixed.
Then, D ∼ 2k(1 − β2/α2). Thus, considering k � 1, we find

c ∼

√
2kG

R

(
1 − β2

α2

)
. (A 1)

The first imaginary correction to c appears at order k−1/4:

Im(c) ∼ −1

2

[
G(1 − β2/α2)

2kR3

]1/4

or Re(Λ) ∼ −1

2

[
k3G(1 − β2/α2)

2R3

]1/4

. (A 2)
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Secondly, let β and α remain order one for k � 1. Then, if c remains order unity
(specifically order β),

D(k, −ikc) → kαβ2

c2
√

α2 − c2

[
4

αβ

√
(α2 − c2)(β2 − c2) −

(
2 − c2

β2

)2
]

≡ kDR(c). (A 3)

The dispersion relation becomes

cR(3 − cς)

kG

{
1 +

(3 − cς)

(2c − 3)

[
1 +

2c√
3(2c − 3)

tan−1

√
3

2c − 3

]}−1

= DR(c), (A 4)

and so the leading-order eigenvalues correspond to zeros of DR(cr ), which gives the
Rayleigh waves. The imaginary correction to the Rayleigh wave speed, cR (which is
of order β), appears at higher order. Provided cR > 3/2, the growth rate follows from

Λr =
(2cR − 3)2

GD′
R(cR)

√
R

2k|cR|

[
1 +

2cR√
3(2cR − 3)

tan−1

√
3

(2cR − 3)

]−2

. (A 5)

If α and β are relatively large (though not as large as k), the Rayleigh wave speed is
also large, and we make further approximations to arrive at

Re(Λ) ∼ |cR|3/2
GD′

R(cR)

√
R

2k
. (A 6)

If β < 2, the Rayleigh wave speed can become smaller than 3/2 and a different scaling
of growth rate then results. We ignore this possibility here.

Appendix B. The cylindrical conduit
Magma mostly rises through the Earth’s brittle crust through fractures forming

sheets of magma. Lava sometimes erupts from linear fissures. However, flow is
usually localized by cooling, producing a cylindrical form at the top of the conduit.
We now briefly assess the feasibility of flow through a cylindrical conduit generating
tremor.

We consider a fluid-filled tube of length L and radius H in an elastic solid. The
cylindrical coordinate system (r, θ, z) is set so that the z-axis is in the centre of
the tube and the solid–fluid interface is at r =h(z, t). Flow is two-dimensional with
velocity field (v, 0, w).

We non-dimensionalize as for the planar conduit, with x and y replaced with z and r ,
respectively. The non-dimensional boundary-layer equations are

R(wt + wwz + vwr ) = −pz +
1

r
(rwr )r , pr = 0, (B 1)

and

wz +
1

r
(rv)r = 0. (B 2)

We content ourselves with a discussion of the linear problem using a slot-averaged
approximation. We take the velocity of the fluid to be

w(r, z, t) = 2W (z, t)

(
1 − r2

h2

)
, (B 3)
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so that the tube-averaged velocity is W (z, t) and the profile is parabolic. The radial
integrals of (B 1) and (B 2) then lead to the system,

R(h2W )t + 4
3
R(h2W 2)z = −h2pz − 8W, (h2)t + (h2W )z = 0. (B 4)

These equations support an equilibrium flow with W = 1, h = 1 and pz = −8.
A short diversion into solving the elasticity equations in cylindrical geometry with

a Fourier transform in z (with or without acceleration terms, and using the properties
of Bessel functions) yields the leading-order matching condition,

p =
2G

ε
[h(x, t) − 1]. (B 5)

(The dimensionless radial polar coordinates for the elastic solid must be taken to be
(R, Θ, Z), with R ∈ [ε, ∞), and expansion for small ε eventually yields (B 5).)

Linear stability analysis about the equilibrium leads to the dispersion relation,

2ikR

(
4

3
+

8Λ

3ik
− Λ2

k2

)
+ 16

(
2 +

Λ

ik

)
=

2ikG

ε
, (B 6)

and it is straightforward to show that waves are always stable.
A similar negative result can be obtained from a long-wave expansion of the

boundary-layer model in (B 1)–(B 2). In that case, we can establish that, if the model
is unstable, then the critical Reynolds number must be of order G/εk. This critical
condition can be written in the alternative form, U ∼ β(ρs/ρk)1/2 where β is the
dimensional elastic shear wave speed. By contrast, the equivalent condition for the
planar conduit is U ∼ β(εkρs/ρ)1/2. Thus, for wavelengths of order of the crack length
(k = 1), the flow speed required for instability in the cylindrical conduit is much higher
than in the planar conduit by a factor of order ε−1/2, and must exceed the elastic
wave speeds.

These results are striking in view of known results for instability in flow through
elastic tubes (i.e. the physiological problem; Pedley 1980), which occurs at finite
Reynolds number. One difference is that physiological models often use empirical
laws for the pressure and drag inside the tube. However, Kumaran’s (1995) results
also suggest that instability arises once flow speed exceeds a critical value, or if the
elastic wave speed is reduced below a threshold, which is consistent with the results
above if those critical elastic wave speeds are slower than the flow speed.
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