

January 2005
Intended for use with Mathematica 5.0 and higher

Software and manual written by Roman E. Maeder

Product managers: Jeffrey Bryant and Lars Hohmuth
Project manager: Jennifer Peterson
Document quality assurance: Rebecca Bigelow, Julienne Davison, Marcia Krause, and Jan Progen
Software quality assurance: Rachelle Bergmann, Jay Hawkins, and Cindie Strater
Package design: Jeremy Davis, Megan Gillette, and Richard Miske

Published by Wolfram Research, Inc., 100 Trade Center Drive, Champaign, Illinois 61820-7237, USA
phone: +1-217-398-0700; fax: +1-217-398-0747; email: info@wolfram.com; web: www.wolfram.com

© 2000–2005 MathConsult Dr. R. Mäder

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the author, Dr. R. Maeder, MathConsult Dr. R.
Mäder, and Wolfram Research, Inc.

MathConsult Dr. R. Mäder is the holder of the copyright to the Parallel Computing Toolkit software and documentation (“Product”) described in
this document, including without limitation such aspects of the Product as its code, structure, sequence, organization, “look and feel”, program-
ming language, and compilation of command names. Use of the Product, unless pursuant to the terms of a license granted by Wolfram Research,
Inc. or as otherwise authorized by law, is an infringement of the copyright.

The author, Dr. R. Maeder, MathConsult Dr. R. Mäder, and Wolfram Research, Inc. make no representations, express or implied, with
respect to this Product, including without limitations, any implied warranties of merchantability, interoperability, or fitness for a particular
purpose, all of which are expressly disclaimed. Users should be aware that included in the terms and conditions under which Wolfram
Research, Inc. is willing to license the Product is a provision that the author, Dr. R. Maeder, MathConsult Dr. R. Mäder, and Wolfram
Research, Inc. and its distribution licensees, distributors, and dealers shall in no event be liable for any indirect, incidental, or consequential
damages, and that liability for direct damages shall be limited to the amount of the purchase price paid for the Product.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and
omissions. The author, Dr. R. Maeder, MathConsult Dr. R. Mäder, and Wolfram Research, Inc. shall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in this document or the software it
describes, whether or not they are aware of the errors or omissions. The author, Dr. R. Maeder, MathConsult Dr. R. Mäder, and Wolfram
Research, Inc. do not recommend the use of the software described in this document for applications in which errors or omissions could
threaten life, injury, or significant loss.

Mathematica and MathLink are registered trademarks of Wolfram Research, Inc. All other trademarks used herein are the property of their
respective owners. Mathematica is not associated with Mathematica Policy Research, Inc. or MathTech, Inc.

T5051 378428 0105.rcm

Table of Contents
Preface.. v

Changes in Parallel Computing Toolkit Version 2.. vii

1 Introduction.. 1

Parallel Computation with Mathematica... 1

Requirements... 2

Overview of Remote Execution... 3

Simple Parallel Computations... 6

Cleaning Up.. 7

2 Starting Remote Kernels.. 9

MathLink Communication Modes... 9

Remote Execution Options.. 11

Passive Connections... 18

Configuring Parallel Computing Toolkit.. 20

Housekeeping.. 29

Resetting and Terminating Remote Kernels.. 33

3 Parallel Evaluation... 35

Sending Commands to Remote Kernels... 35

Parallel Evaluation of Expressions... 37

4 Concurrency: Managing Parallel Processes... 43

Processes and Processors.. 43

Starting and Waiting for Processes... 43

Working with Process IDs.. 48

Latency Hiding... 51

Examples... 52

The Scheduler... 58

5 Remote Definitions... 61

Exporting Definitions... 61

Loading Packages on Remote Kernels.. 64

Example: Eigenvalues of Matrices... 64

6 Virtual Shared Memory.. 67

Shared Memory versus Distributed Memory.. 67

Declaring Shared Variables.. 68

Synchronization... 72

7 Failure Recovery, Tracing, and Debugging.. 77

Failure of Remote Kernels... 77

Tracing and Debugging... 78

Aborting Parallel Programs... 83

8 Sample Parallel Mathematica Commands... 85

Parallel Animation and Plotting.. 86

Parallel Inner Products... 87

Examples... 87

Index.. 89

Preface

Parallel Computing Toolkit (PCT) brings parallel computation to anyone with access to more than one com-
puter on a network. It implements many parallel programming primitives and includes high-level com-
mands for the parallel execution of operations such as animation, plotting, and matrix manipulation. This
toolkit also supports many popular programming approaches such as parallel Monte Carlo simulation,
visualization, searching, and optimization. The implementation of all high-level commands is in Mathematica
source form and can serve as templates for building additional parallel programs.

PCT builds on Mathematica’s advanced symbolic programming language. It is written entirely in the Mathe-
matica language and uses Mathematica’s standard MathLink® protocol to communicate between any number
of Mathematica kernels. The kernels can run under any supported operating system including Unix, Linux,
Windows, and Macintosh. Individual machines can be single- or multiprocessor PCs and servers connected
through TCP/IP.

PCT supports all common parallel programming paradigms: shared or distributed memory; automatic or
explicit scheduling; and concurrency, including synchronization, locking, and latency hiding. It also sup-
ports failure recovery. In the event of a network, hardware, or software failure, the affected computation is
reassigned.

We gratefully acknowledge the support of Orion Multisystems, whose desktop cluster workstation DT-12
was used to perform most of the evaluations shown in the PCT documentation and examples.

Roman E. Maeder, October 2004

Changes in Parallel Computing Toolkit
Version 2

New Functionality

ParallelEvaluate[] has been extended to become a flexible tool for implementing many structural
operations (such as Map, Apply, Cases, Select, Count, MemberQ, FreeQ, Inner, Outer, and all associa-
tive functions) in parallel.

A new auxiliary command ParallelDispatch[] for sending different commands to different kernels is
the basis for the re-implementation of ParallelEvaluate[] and ParallelTable[].

Delayed definitions for shared variables are possible and cause the right sides to be evaluated on the remote
kernels.

Support for different process queue models has been added, including user-defined ones. Standard queues
provided are a FIFO queue (as in Version 1) and a new priority queue, as well as a faster unordered queue.

Processes can be queued with a user-defined priority that the scheduler takes into account when assigning
processes to processors.

There is more extensive debugging support and saving of trace output for later analysis.

If no remote kernels are available, all evaluations happen sequentially in the master kernel.

A new command RemoteNeeds[] for loading packages on remote kernels has been added.

Enhancements

ParallelEvaluate[], ParallelMap[], and ParallelTable[] do a single dispatch on each remote
kernel, taking relative processor speeds into account for optimal load balancing.

There are new commands ParallelSum[] and ParallelProduct[] to complement ParallelTa
ble[].

A new configuration variable $RemoteUserName for use in kernel launch command templates, such as
$RemoteCommand, has been added.

Send[kernel, cmd] returns kernel, so you can use it as an argument of Receive[].

Receive[] can take a list of kernels as the argument and waits for one result from each kernel while
allowing for callbacks, such as shared variables.

RemoteEvaluate[] allows callbacks and therefore shared variables.

A proper data type for remote kernels with improved diagnostic print formatting is included.

Aborting remote kernels is possible, provided the MathLink device used for the kernel connection supports
aborts. Resetting runaway kernels is possible in a wider set of circumstances, in many cases without an
actual abort.

Newly launched kernels inherit all previously exported environments, loaded packages, and declared
shared variables.

There is a new command ClearShared[] to unshare previously shared variables. The variables $Shared
Variables and $SharedDownValues give the lists of currently shared variables and downvalues,
respectively.

It is possible to extract a part of a shared variable and transmit only the requested part of the variable to the
remote kernel, rather than its whole value.

Process scheduling has much less latency.

Needs["Parallel`"] sets up PCT by loading the required parts and autoloading the optional extensions
(except for Parallel`Commands`).

viii Parallel Computing Toolkit

ParallelEvaluate[Dot[...]], ParallelEvaluate[Inner[...]], and ParallelDot/Parallel
Inner also parallelize tensors of rank 1 (vectors).

Obsolete Features

$TraceLevel is supported only for backwards compatibility. There is a nicer debugging facility in the
Parallel`Debug` package.

CloseSlave[] has been renamed Close[]; the old name is still supported.

Incompatibilities

The symbols $AvailableMachines, $RemoteCommand, and RemoteMachine are no longer in the global
context, but in Parallel`Configuration`. If PCT finds that global symbols with the same names exist
and have values, those values are picked up, so old initialization code should still work. (A shadowing
warning is emitted in this case.)

ResetSlaves[] no longer clears remote definitions. It is intended to clean up after an abort of the master
kernel. There is a new function ClearSlaves[] that clears all remote definitions and shared variables.

Queue[] and DoneQ[] no longer call QueueRun[]. Explicit scheduling code should be checked for any
necessary changes. In most cases, QueueRun[] is called implicitly when Wait[] or WaitOne[] is called,
so no changes will be necessary.

Use of $TraceLevel requires loading the debugging support package before loading PCT itself.

The default connection type for starting kernels on remote machines is LinkConnect rather than Link
Launch. LinkLaunch is still used for local kernels.

The default link protocol for remote kernels is TCPIP. Launching remote kernels prior to Mathematica 5
requires a LinkProtocol->"TCP" setting.

Changes in Version 2 ix

Limitations

There is no ParallelDo[], because Do[] makes sense only in the presence of side effects, which prevent a
naive parallelization.

x Parallel Computing Toolkit

1 Introduction

Parallel Computation with Mathematica

The MathLink communication protocol can be used to control several Mathematica kernel processes from
within Mathematica. This feature allows the implementation of a distributed-memory environment for
parallel programming. Parallel language constructs, such as a parallel version of Map, can easily be imple-
mented on top of these primitive operations.

Parallel Computing Toolkit (PCT) is written entirely in Mathematica and is therefore machine-independent. It
has been tested on Unix, Linux, Windows, and Macintosh platforms. This product can be used in heteroge-
neous networks. All client and application code is distributed through MathLink. No common file system is
necessary.

To perform computations in parallel, you need to be able to perform the following tasks:

• start processes and wait for processes to finish

• schedule processes on available processors

• exchange data between processes and synchronize access to common resources

In the Mathematica environment, the term processor refers to a running Mathematica kernel, whereas a job or
process is an expression to be evaluated.

Parallel Computing Toolkit Features

The main features of PCT are

• distributed memory, master/slave parallelism

• written in Mathematica

• machine independent

• MathLink communication with remote kernels

• exchange of symbolic expressions and programs with remote kernels, not only numbers and arrays

• heterogeneous network, multiprocessor machines, LAN, and WAN

• virtual process scheduling or explicit process distribution to available processors

• virtual shared memory, synchronization, locking

• latency hiding

• parallel functional programming and automatic parallelization support

• failure recovery, automatic reassignment of stranded processes on failed remote computers

Requirements

To use PCT, you need access to a number of remote computers capable of running Mathematica or use of a
multiprocessor local machine, a suitable network connection between your local computer and the remote
machines, and the required number of Mathematica licenses. Note that even if a network is set up, there may
be security restrictions that limit your ability to start Mathematica on remote computers.

2 Parallel Computing Toolkit

To start Mathematica on a remote computer, the remote computer must run an rsh/ssh daemon or other
remote login or execution service. The chapter Starting Remote Kernels contains detailed discussions of the
various available options.

An alternative approach that works on any computer equipped with a TCP/IP network, even without an
rsh daemon, is to manually start the desired kernels on each remote machine and then connect to the
waiting kernels from the local machine.

Overview of Remote Execution

The method used to start remote kernels depends on both the operating system of your local computer and
the types of remote computers you use. You can start kernels on remote computers that have an operating
system different from the one you are using locally.

This section covers typical PCT commands you would use to start remote kernels on Windows, Mac OS X,
or Unix systems. The chapter Starting Remote Kernels will describe how to start kernels manually and
provide details on the commands presented in this section.

PCT provides a high-level command LaunchSlave for connecting to and starting kernels on remote com-
puters. The command has the following general form.

LaunchSlave@"remotehost", "oscommands", "options"D
The variable remotehost is the name of the remote computer on which you will start a kernel. On a local
network, this can be a simple hostname. On a wide-area network, this would typically be a domain name,
such as host.example.com. If you have a multiprocessor and can therefore start kernels on your local
machine, use "localhost" rather than the computer name.

The oscommands argument is passed to the command interpreter on your computer; its form depends on
your operating system. This argument can be a series of commands that start a kernel. Certain values are
interpolated into the command string to make this feature more general. Typical oscommands are:

• ssh: The name of your local ssh client command. This command is used to establish a secure
connection to a remote computer. ssh is provided with most versions of Unix, and it is available as
third-party software for Windows.

Chapter 1: Introduction 3

• rsh: The name of your local rsh client command. It works in a similar way to ssh using a widely
supported standard protocol, but provides only minimal security features.

• winrsh: A Windows rsh client distributed with Mathematica for systems lacking rsh.

• math: The name of the command on the remote computer to start the Mathematica kernel. You may
have to give a full pathname such as /usr/local/bin/math.

• $mathkernel: The full pathname of the command used to start a local kernel.

A remote host may require your login name before you can establish a connection. In this case username,
your login name on the remote computer, will be part of the second argument of LaunchSlave.

Before running any commands, load PCT into your local Mathematica session with the Needs command.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

Working on a Unix or Macintosh Computer

To connect to a remote computer running Unix or Mac OS X and start a Mathematica kernel there, use

LaunchSlave@"remotehost"D
This command uses the value of the variable $RemoteCommand as the default oscommands argument. The
slots `1` through `4` are replaced by values such as remote hostname, linkname, login name, and
linkprotocol.

In[2]:= $RemoteCommand

Out[2]= ssh −x −f −l `3` `1` math −mathlink −linkmode Connect `4` −linkname '`2`' −noinit

If this is not appropriate for a particular remote host, you can supply your own custom command.

LaunchSlave@"remotehost",
"rsh `1` êusrêlocalêbinêmath −mathlink −linkmode Connect `4` −linkname '`2`' &"D

4 Parallel Computing Toolkit

To connect to your own local machine and start a kernel there (recommended for testing and if you have a
multiprocessor machine), use the following command.

In[3]:= LaunchSlave@"localhost"D
Out[3]= slave1@localhostD
Working on Windows

Please note that establishing connections to Windows requires third-party software (some of which is
available for free) and special installation. Please refer to the detailed discussion in Chapter 2, Starting
Remote Kernels. You, however, can easily establish connections from your local Windows PC.

To connect to a remote computer with an rsh daemon, use

LaunchSlave@"remotehost"D
This command uses the value of the variable $RemoteCommand as the default oscommands argument. The
slots `1` through `4` are replaced by values such as remote hostname, linkname, login name, and
linkprotocol.

In[2]:= $RemoteCommand

Out[2]= rsh `1` −n −l `3` "math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &"

If this is not appropriate for a particular remote host, you can supply your own custom command.

LaunchSlave@"remotehost", $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4` −linkmode Connect −linkname `2`'"D
To connect to your own local machine and start a kernel there, use the following command.

In[3]:= LaunchSlave@"localhost"D
Out[3]= slave2@localhostD

Chapter 1: Introduction 5

Simple Parallel Computations

Once you have successfully started at least one remote kernel, you can begin to use PCT.

First, you can ask each remote kernel to identify itself. The result is a list of each remote kernel’s unique ID,
the remote host’s name, Mathematica’s identifier for the remote operating system, the remote kernel’s pro-
cess ID, and the Mathematica version running on the remote computer.

In[10]:= TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

Out[10]//TableForm=
ID host OS process Mathematica Version
4 prokyon UltraSPARC 11293 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
5 sirius UltraSPARC 20025 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
6 delia Linux 1304 5.0 for Linux HNovember 18, 2003L
You can try to run the same Mathematica command on all remote computers. Normally, all the results
returned should agree. Here a definite integration is performed on each of the three remote kernels.

In[11]:= RemoteEvaluateA‡
1

∞

x−2 Å xE
Out[11]= 81, 1, 1<
Here four definite integrals with different lower bounds are computed in parallel.

In[12]:= ParallelTableAIntegrateA Sin@xD
cccccccccccccccccccccc
Sqrt@xD , 8x, i π, ∞<E, 8i, 0, 4<E

Out[12]= 9$%%%%%%%πcccc
2
, $%%%%%%%πcccc

2
−è!!!!!!!!2 π FresnelS@è!!!!2 D, $%%%%%%%πcccc

2
−è!!!!!!!!2 π FresnelS@2D,

$%%%%%%%πcccc
2

−è!!!!!!!!2 π FresnelS@è!!!!6 D, $%%%%%%%πcccc
2

−è!!!!!!!!2 π FresnelS@2 è!!!!2 D=
The remaining chapters of the documentation will provide many more examples of typical parallel computa-
tions you can perform with the help of PCT.

6 Parallel Computing Toolkit

Cleaning Up

When you have completed your parallel computations, you should stop all remote kernels before exiting
your local Mathematica kernel and front end.

In[13]:= CloseSlaves@D
Out[13]= 8zombie@localhostD, zombie@siriusD, zombie@deliaD<

Chapter 1: Introduction 7

2 Starting Remote Kernels

Configurations of local computing infrastructure vary widely from site to site. Unfortunately, there is no
simple way to accommodate all possible setups. This chapter describes the various configurations in detail,
so the content is fairly technical. Your local system administrator may be able to help you set up remote
connections.

The way to start a remote (slave) kernel depends on the operating systems of the local and remote machines,
the properties of the network, and the security measures in effect. Note that you can also start slave kernels
on the local machine where the master kernel is running. This is particularly useful for testing and on
multiprocessor machines.

MathLink Communication Modes

PCT uses MathLink to communicate with remote kernels. Once a connection has been established, it is used
for any further communication with the remote kernel. The MathLink connection provides a machine-inde-
pendent channel for Mathematica expressions between the controlling (master) kernel and the remote (slave)
kernels.

In general, establishing a connection to a remote kernel requires two steps. First, the remote kernel must be
started, then it must be instructed to establish a MathLink connection to the master kernel. Both of these
tasks can be performed with the command LaunchSlave[]. Depending on its arguments, it uses various
MathLink commands to achieve the result.

Active Connection (LinkLaunch)

An active connection is initiated from the master kernel by using the MathLink function Linkg
Launch["oscommands", options]. The argument oscommands is an operating system command that makes a
connection to a remote machine and starts a Mathematica kernel on that remote machine.

LinkLaunch[] is used by default for launching slave kernels on the local machine in the form Launchg
Slave["localhost",options]. The PCT command LaunchSlave["remotehost","oscommands", Connecg
tionType→LinkLaunch] also uses the active connection method.

Callback Connection (LinkCreate)

For kernels on remote machines, it is generally better to establish separate MathLink connections than to use
the command channel opened by LinkLaunch. The master kernel opens a MathLink link in Listen mode
using LinkCreate[], then the remote kernel is instructed to connect to the listening link.

The following command creates a link to which remote kernels can connect.

LaunchSlave["remotehost", "oscommands", options]

The oscommands is usually a template that may contain the sequences `1`, `2`, `3`, and `4`, which are
replaced by values computed by the code in LaunchSlave. `1` is replaced by the hostname, `2` by the
name of the link created, `3` by the user name, and `4` by the MathLink linkprotocol specification for
nondefault protocols. Examples for the use of these placeholders is given in the examples that follow.

Passive Connection

Active or callback connections may not be available because of operating system deficiencies or security
measures. If this is the case, another method for establishing a connection is available. You can manually
start a kernel on a remote machine and instruct it to open a TCPIP port on which to listen for connection
requests. This is usually achieved by providing the command-line arguments -mathlink -linkcreate
to the command to start the kernel, usually math. (Under Windows, add -linkprotocol TCPIP.) The
started kernel will tell you the ports on which it is listening.

In the master kernel you can make a connection to a listening kernel with the following MathLink command

LinkConnect["port1@hostname,port2@hostname"]

The PCT command ConnectSlave["port1@hostname,port2@hostname"] will connect to a listening remote
kernel.

10 Parallel Computing Toolkit

Link Objects

The result of a successful LinkLaunch or LinkConnect connection is a MathLink link object having the
following form.

LinkObject[name,number,...]

The name is taken from the argument of LinkLaunch or LinkConnect and allows you to identify the
object. PCT keeps track of the available remote kernels by maintaining a list of such link objects in the
variable $Slaves. To obtain the raw link object from a remote kernel object, use LinkObject[kernel].

Remote Execution Options

To use active or callback connections, you need a way to execute a command to start Mathematica on the
remote computer.

The available methods for remote command execution depend on the operating system of the master and
slave machines. The network applications rsh and ssh are standard under Unix. Under Windows you can
use any rsh program that may be provided with the system or available from a number of sources, or use
winrsh, which is supplied with Mathematica.

Your local machine, from which you want to initiate a connection, needs an ssh or rsh client program; the
remote machine needs a corresponding daemon.

Remote Execution under Unix and Mac OS X

To make a connection from your local Unix or Mac OS X machine you can use the rsh or ssh programs.

The shell ssh is a replacement for rsh that offers secure cryptographic authentication and encryption of the
communication between the local and remote machines. It is, therefore, usable in situations where the rsh
security is insufficient such as on the internet. If your site is requiring ssh, please contact your system
administrator about your local setup. PCT has been tested with Version 2 of ssh.

Chapter 2: Starting Remote Kernels 11

Using ssh

To test whether ssh is configured correctly, the following command can be given in a shell window.

ssh remotehost math

Here, remotehost is the name of the remote machine and math is the command to start a Mathematica kernel
on the remote machine. If the remote machine is outside of the local area network, then remotehost must be a
fully qualified domain name. If the math command is not on the search path, the full pathname can be given
instead, for example /usr/local/bin/math.

It is a good idea to try to establish a connection in a shell window to see whether everything is set up cor-
rectly before trying to use the given remote host in PCT. If everything is fine, the remote kernel should print
the familiar In[1]:= prompt. You can then use Quit[] to terminate the remote kernel and the connection to
the remote machine.

Once ssh is working, you can use the following command to start a kernel on a remote Unix machine.

LaunchSlave["remotehost","ssh -f `1` math -mathlink -linkmode Connect
-linkname '`2`'"]

The placeholder `1` is replaced by the remote hostname remotehost, `2` is replaced by the link specification
of the link created by LinkCreate[]. The resulting command is then executed by the operating system.
LaunchSlave[] supports a number of additional placeholders to accommodate more complicated situa-
tions, see the section Configuring Parallel Computing Toolkit.

If you leave out the second argument, the following default is used.

$RemoteCommand

ssh −x −f −l `3` `1` math −mathlink −linkmode Connect `4` −linkname '`2`' −noinit

For an active connection that uses standard input and output as MathLink transport, use the following
command.

LaunchSlave["remotehost","ssh `1` math -mathlink",
ConnectionType->LinkLaunch]

The placeholder `1` is replaced by the remote host name remotehost. The resulting command is then exe-
cuted by the operating system.

12 Parallel Computing Toolkit

You may have to prefix the remote kernel command math with the appropriate pathname on the remote
machine, such as /usr/local/bin/math.

rsh

The following shell command starts an interactive Mathematica kernel on a remote machine.

rsh remotehost math

Here, remotehost is the name of the remote machine and math is the command to start a Mathematica kernel.
If the remote machine is outside of the local area network, then remotehost must be a fully qualified domain
name. If the math command is not on the search path, the full pathname can be given instead, for example
/usr/local/bin/math.

It is a good idea to try to establish a connection in a shell window to see whether everything is set up cor-
rectly before trying to use the given remote host in PCT. If everything is fine, the remote kernel should print
the familiar In[1]:= prompt. You can then use Quit[] to terminate the remote kernel and the connection to
the remote machine.

Once rsh is working, you can use the following PCT command to start a kernel on a remote Unix machine,
using a callback connection.

LaunchSlave["remotehost","rsh `1` math -mathlink -linkmode Connect
-linkname '`2`' &"]

The placeholder `1` is replaced by the remote hostname remotehost, `2` is replaced by the link specification
of the link created by LinkCreate[]. The resulting command is then executed by the operating system.

For an active connection that uses standard input and output as MathLink transport, use the following
command.

LaunchSlave["remotehost","rsh `1` math -mathlink",
ConnectionType->LinkLaunch]

The placeholder `1` is replaced by the remote host name remotehost. The resulting command is then exe-
cuted by the operating system.

You may have to prefix the remote kernel command math with the appropriate pathname, such as
/usr/local/bin/math.

Chapter 2: Starting Remote Kernels 13

To start a kernel on a remote Windows machine, the remote machine must have an rsh daemon running.
You can start a remote kernel on a Windows machine from a Unix host by using commands similar to those
explained in the section Remote Execution under Windows. For example, issue the following command on a
local Unix machine to start a remote kernel on a remote Windows host.

LaunchSlave["remoteWindowshost",
"rsh `1` math -mathlink -linkmode Connect -linkname `2` &"]

Security considerations

You can only use rsh if you are allowed to log into the remote machine without a password. For this to
work, your local machine must be in the remote machine’s /etc/hosts.equiv or ~/.rhosts file. See the
Unix Manual for rlogin and rsh for more details and consult your system administrator.

Starting kernels on your local machine

For testing, and if you have a multiprocessor machine available, you can also start kernels on your local
machine where you operate the master kernel and the front end.

LaunchSlave["localhost"]

This command uses the value of the variable $mathkernel as the command to launch a kernel. It should
be set up suitably for your Mathematica installation.

A typical value for Unix is shown here.

$mathkernelêusrêlocalêWolframêMathematicaê5.0êExecutablesêmath −noinit −mathlink

Here is a typical value for Mac OS X.

$mathkernelêMathematica\ 5.0.appêContentsêMacOSêMathKernel −noinit −mathlink

Remote machines running Mac OS X

No math script is installed on Mac OS X. To launch a remote kernel on a Mac OS X machine, you can either
give the full pathname of the MathKernel executable or write your own math script; see the support pages
support.wolfram.com/applicationpacks/parallel for more information.

14 Parallel Computing Toolkit

The kernel is typically at $InstallationDirectory/Contents/MacOS/MathKernel. Because the
pathname contains space characters, it needs to be enclosed in double quotes and the space escaped by a
backslash. Here is an example of a command to launch a kernel on a Mac OS X machine.

LaunchSlave["remotehost","ssh -f `1` \"/Mathematica\\ 5.1.app/Contents/Macg
OS/MathKernel\" -mathlink -linkmode Connect `4` -linkname '`2`'"]

Remote Execution under Windows

Under Windows you can use any available rsh program or winrsh.exe, which is supplied with Mathemat-
ica, to start remote kernels. The remote kernel can then establish a TCPIP connection back to the local kernel.
This is most easily done by creating a MathLink object locally to which the remote kernel can establish a
callback connection.

On the remote end, the Mathematica kernel command-line arguments -linkmode Connect -linkprotog
col TCPIP -linkname port1@host,port2@host instruct the kernel to connect to an open port on your local
machine, host. PCT will provide the port1@host,port2@host argument for you. Use `2` to interpolate it into
the command string.

You need a rsh daemon for all remote machines. Note that Mathematica does not provide an rsh daemon.

If your version of Windows includes rsh, you can use these arguments to LaunchSlave to make connec-
tions to remote hosts.

LaunchSlave["remotehost"]

This command uses the following template for starting the remote kernel.

$RemoteCommand

rsh `1` −n −l `3` "math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &"

The first placeholder `1` will be replaced by the hostname remotehost as usual; the second placeholder `2`
will be replaced by a link object created on the local machine to which the remote kernel can connect. The
placeholder `3` is replaced by the username. If the remote host does not require a login username, omit the
-l `3` option. The placeholder `4` is replaced by the correct -linkprotocol setting.

Chapter 2: Starting Remote Kernels 15

You may have to prefix the remote kernel command math with the appropriate pathname, such as
/usr/local/bin/math for a remote Unix system. Be sure to give the correct user name for connecting to
the remote machine.

The winrsh client

Mathematica for Windows ships with an rsh client winrsh.exe that can be used if no rsh command is
available. To use this client to make connections to remote hosts, use these arguments to LaunchSlave.

LaunchSlave["remotehost",
$winrsh<>" -m -h `1` -l `3` -t 2 'math -mathlink `4` -linkmode Connect
-linkname `2`'"]

You can make this command the default by setting $RemoteCommand like this.

$RemoteCommand = $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4` −linkmode Connect −linkname `2`'"

The $winrsh command opens a window. The connection will not be established and will appear to hang
until the window has closed. The option -t 2 instructs winrsh to close the window after two seconds.

The command winrsh.exe is found in the SystemFiles\FrontEnd\Binaries\Windows folder inside
your Mathematica installation. PCT provides a variable $winrsh that contains the complete pathname
appropriate for your installation.

$winrsh

"C:\Program Files\Wolfram Research\
Mathematica\5.0\SystemFiles\FrontEnd\Binaries\Windows\winrsh"

In case of problems, you can open an MS-DOS window and try winrsh there. You can do something like
the following.

"C:\Program Files\Wolfram
Research\Mathematica\5.0\SystemFiles\FrontEnd\Binaries\Windows\winrsh.exe
"-h remotehost -l username 'dir'

Then winrsh should open a window and display a directory listing, dir, of the remote host.

16 Parallel Computing Toolkit

Available third-party software

A list of third-party rsh daemons and clients can be found at support.wolfram.com/applicationpacks/
parallel. (The author, MathConsult Dr. R. Mäder, and Wolfram Research, Inc. do not endorse any of the
products listed at that URL. We provide this information in the hope that it may be useful.)

If you have an ssh client installed on Windows, you may be able to connect to a remote Unix or Mac OS X
slave using ssh. Neither PCT nor Mathematica supply an ssh client for Windows, but there are several avail-
able commercially. You can then use the following command to launch remote kernels.

LaunchSlave["remotehost","ssh -x -f -l `3` `1` \"math -mathlink -linkmode
Connect `4` -linkname '`2`' </dev/null >&/dev/null &\""]

The exact arguments needed may vary with network and machine configurations.

Starting a kernel on a local Windows machine

For testing and in multiprocessor machines, you can conveniently start a kernel on the local machine. Use
this command.

LaunchSlave["localhost"]

This command uses the value of the variable $mathkernel as the command to launch a kernel. It should
be set up suitably for your Mathematica installation.

$mathkernel

"C:\Program Files\Wolfram Research\Mathematica\5.0\MathKernel"

Remote machines running Mac OS X

No math script is installed on Mac OS X. To launch a remote kernel on a Mac OS X machine, you can either
give the full pathname of the MathKernel executable or write your own math script; see the support pages
support.wolfram.com/applicationpacks/parallel for more information.

The kernel is typically at $InstallationDirectory/Contents/MacOS/MathKernel. Because the
pathname contains space characters, it needs to be enclosed in double quotes and the space escaped by a
backslash. Here is an example of a command to launch a kernel on a Mac OS X machine.

Chapter 2: Starting Remote Kernels 17

LaunchSlave["remotehost","ssh `1` \"\"/Mathematica\\ 5.1.app/Contents/Macg
OS/MathKernel\" -mathlink -linkmode Connect `4` -linkname '`2`'
</dev/null >&/dev/null &\""]

Passive Connections

If your local computer does not provide an rsh client or the remote computer does not provide an rsh
daemon, you have to start the required remote kernels manually on each remote computer.

These command-line options should be given to the kernel command on the remote machines.

-mathlink -linkcreate

Under Windows, you should add -linkprotocol TCPIP.

The kernel will start up and tell you the address or linkname where it is listening. Addresses have the form
port@host or port1@host,port2@host, where port is a TCP port number (a decimal integer) and host is the
computer’s name.

With this information, you can establish a connection from your local kernel to the remote one with the
following command.

ConnectSlave["port1@host,port2@host"]

Under Windows, you should include the option setting LinkProtocol->"TCPIP".

Alternatively, ConnectSlave can take an already established MathLink link object as its argument.

Note that you may be able to use a Telnet application to log in to a remote computer, so you can give the
commands described in the following section from your local machine. Otherwise, you will have to enter
the command at the computer’s console.

18 Parallel Computing Toolkit

Unix and Mac OS X Remote Computers

To start a kernel on Unix, give the following command in a shell or Telnet window.

math -mathlink -linkcreate

Mathematica will output the listening ports on standard output. If math is not on your search path, give an
absolute pathname, such as /usr/local/bin/math.

Once you receive the listening port information, you can connect to the waiting remote kernel from your
local computer with the command ConnectSlave["linkname",LinkProtocol->"TCPIP"] (you can
omit the option setting on a Unix local computer).

Windows Remote Computer

To start a kernel on Windows, give the following command in an MS-DOS window on the remote computer.

math -mathlink -linkcreate -linkprotocol TCPIP

Mathematica will open a small panel that displays the ports on which it is listening. You must close this panel
before the connection can be used.

Once you have the listening port information, connect to the waiting remote kernel from your local com-
puter with the command ConnectSlave["linkname",LinkProtocol->"TCPIP"].

Using a Running Kernel

You can also prepare a running kernel as a remote kernel for parallel computations. Start the kernel by
double-clicking the MathKernel (not Mathematica) icon or starting math in a shell window. You can then
create the required link from within the Mathematica kernel as follows.

 1. Launch (double-click) MathKernel. Do not launch Mathematica! A window with the prompt
In[1]:= appears.

 2. At the In[1]:= prompt, give the following command shown here with the expected form of the
result.

Chapter 2: Starting Remote Kernels 19

In[1]:= lnk = LinkCreate@LinkProtocol −> "TCPIP", LinkMode −> ListenD
LinkObject@port1@host,port2@host, 2, 2D

 3. Take note of the port numbers that appears in place of port.

 4. At the next input prompt, In[2]:=, give the following command. No output will be produced.

In[2]:= $ParentLink = lnk

With this information, you can now connect to the waiting remote kernel from your local computer with the
command ConnectSlave["port1@host,port2@host"].

Configuring Parallel Computing Toolkit

This section lists the commands available in PCT and shows you how you can prepare a configuration file to
automate the task of starting the remote kernels that are usually available to you.

Launching Remote Kernels

To start a remote kernel and add it to the list of available slave processors, use the command LaunchSlave.

LaunchSlave["remotehost", "oscommands"]

use the operating system (shell) command oscommands to start
a kernel on a remote machine named remotehost and have it
connect to a link created on the local machine

LaunchSlave["remotehost", "oscommands", ConnectionType->LinkLaunch]
use the operating system (shell) command oscommands to start
a kernel on a remote machine named remotehost using Linkg
Launch (no separate MathLink connections)

LaunchSlave["localhost", "oscommands"]
use the operating system (shell) command oscommands to start
a kernel on the local machine (using LinkLaunch)

20 Parallel Computing Toolkit

LaunchSlave["localhost"]

use the operating system (shell) command stored in
$mathkernel to start a kernel on the local machine

LaunchSlave["remotehost"]
use the operating system (shell) command stored in
$RemoteCommand to start a kernel

$ProcessorID a unique integer assigned to each remote kernel (numbers are
assigned starting with 1)

Starting remote kernels.

The argument oscommands can be a template containing the character sequences `1` for connection type
LinkLaunch and `1` through `4` for connection type LinkConnect.

placeholder meaning

`1` hostname the remote hostname, the first argument of
LinkLaunch

`2` link name the name of the link object created

`3` remote user the username on the remote machine, the
value of $RemoteUserName, which
defaults to $UserName

`4` protocol a suitable -linkprotocol proto setting for
the MathLink argument list

Placeholders in operating system command templates.

If there is no LinkProtocol->"proto" setting in LaunchSlave, the placeholder `4` expands to the empty
string for local connections (to use the native default protocol) and to -linkprotocol TCPIP for remote
connections. If an explicit LinkProtocol->"proto" setting exists, `4` expands to -linkprotocol proto.

To connect to a Mathematica 4.2 remote kernel, use LinkProtocol->"TCP" in the LaunchSlave com-
mand.

Chapter 2: Starting Remote Kernels 21

The following options can be given in LaunchSlave.

option name default value

InitCode $InitCode a sequence of commands (wrapped inside
Hold) to send to each remote kernel upon
startup

ConnectionType Automatic the MathLink connection type, which can be
either LinkLaunch or LinkCreate; by
default, LinkLaunch is used for local
kernels, and LinkCreate is used for
remote kernels

LinkProtocol Automatic this option is passed on to LinkLaunch or
LinkCreate by default, "TCPIP" is used
for remote kernels, and no setting is used
for local kernels

LinkHost "" this option is passed on to LinkCreate; it
can be used to specify the interface on
which the link is listening

ProcessorSpeed 1 an estimate of the relative speed of the
remote kernel

Options of LaunchSlave.

The default value of the variable $InitCode is Hold[$DisplayFunction=Identity;].

These options can also be given to ConnectSlave[].

If all or most of your remote hosts can be reached with the same command, you can set $RemoteCommand
to a suitable command template that is used by default in LaunchSlave.

For Unix and Mac OS X, the default value is

$RemoteCommand="ssh -x -f -l `3` `1` math -mathlink -linkmode Connect
`4` -linkname '`2`' -noinit";

22 Parallel Computing Toolkit

One requirement is that the command return quickly, even though Mathematica keeps running. If it does not
return, you can put the command into the background with a setting like the following.

$RemoteCommand="ssh -n -x -f -l `3` `1` math -mathlink -linkmode Connect
`4` -linkname '`2`' -noinit &";

Under Windows, $RemoteCommand is set by default to

$RemoteCommand="rsh `1` -n -l `3` \"math -mathlink -linkmode Connect `4`
-linkname `2` -noinit >& /dev/null &\"";

To use winrsh.exe, if no rsh is available, use

$RemoteCommand=$winrsh<>" -m -h `1` -l `3` -t 2 'math -mathlink `4`
-linkmode Connect -linkname `2`'";

If $RemoteCommand is set up correctly, you can simply use the following commands to start a kernel on
remote hosts named, for example, host1 and host2.

LaunchSlave["host1"]
LaunchSlave["host2"]

To connect to your local machine (recommended for testing and if you have a multiprocessor machine), you
should be able to use

LaunchSlave["localhost"]

You may want to verify that $mathkernel contains the appropriate command for invoking a local kernel
by evaluating $mathkernel.

$mathkernel

Using Passive Connections

For passive connections, you should manually start the remote kernels with the -linkcreate argument as
described earlier, note the ports on which the remote kernels are listening, and use ConnectSlave for each
remote kernel.

Chapter 2: Starting Remote Kernels 23

ConnectSlave["linkname"] connect to a listening link on the given computer

ConnectSlave[link] connect to an existing MathLink object

Connecting to listening kernels.

Port numbers will usually be different each time you start a remote kernel; therefore, this method cannot
easily be automated.

Preparing a Host Description List

To automate the task of starting remote kernels, you can prepare a list of available machines.

RemoteMachine["remotehost", "oscommands"]
a host description for a computer named remotehost using the
command oscommands for connection and using the default
connection type defined for LaunchSlave

RemoteMachine["remotehost"]
host description for a computer named remotehost using the
default command $RemoteCommand for connection

"remotehost" simple hostname; shortcut for RemoteMachine["remotehost"]

$RemoteCommand the default oscommands to use

RemoteMachine["localhost"]
host description for the local machine

$mathkernel the default command to start a local kernel

Host description entries.

The command LaunchSlaves[list] takes a list of such host descriptions as an argument and tries to
establish a connection to each of the hosts listed.

Finally, you can assign a list of host descriptions to the global variable $AvailableMachines and use
LaunchSlaves[] without an argument, which will consult this variable.

24 Parallel Computing Toolkit

Defining a Default Configuration

Note that you can put assignments for $AvailableMachines and $RemoteCommand into your personal
Mathematica kernel startup file init.m.

You do not need to load PCT to define a default configuration. There is a smaller package Parallel`Cong
figuration` that you can load instead.

Needs@"Parallel`Configuration "̀D
Alternatively, you can put assignments for $AvailableMachines and $RemoteCommand into a notebook
and evaluate them to set up the connections. You can use one of the samples here as a template. Copy the
appropriate cell group into a new notebook and save it under a name such as UnixInit.nb or Windows-
Init.nb. Then you can simply open this notebook and evaluate its cells to set up your remote kernels.

Sample configuration for Windows

Some of the input cells in this template have been made inactive (not evaluatable), because they contain
commands for optional features. Enable these cells on a case-by-case basis according to your needs. These
commands will evaluate properly only if you have access to a Windows machine on which to start a kernel
and you substitute valid values for variable arguments.

Load PCT.

Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Enable optional features as desired.

Needs@"Parallel`Commands`"D
Set your default remote command if the default is not suitable.

$RemoteCommand = "rsh `1` −n −l `3` \"math −mathlink −

linkmode Connect `4` −linkname `2` −noinit >& êdevênull &\"";

Set the default remote username if it is different from your local username.

$RemoteUserName = "name";

Chapter 2: Starting Remote Kernels 25

If you have ssh available, you can set $RemoteCommand to use ssh.

$RemoteCommand =

"ssh `1` −x −f −l `3` \"math −mathlink −

linkmode Connect `4` −linkname `2` <êdevênull >& êdevênull &\"";

Use winrsh.exe if neither rsh nor ssh are available.

$RemoteCommand = $winrsh <>

" −m −h `1` −l `3` −t 2 'math −mathlink `4`−linkmode Connect −linkname `2`'";

Set the default initialization for your remote kernels.

$InitCode = Hold@$DisplayFunction = Identity;D;
List any normally available machines, filling in the hostname variable in each entry.

$AvailableMachines = 8
RemoteMachine@"hostname1"D,
RemoteMachine@"hostname2"D<;

Now you can try to start a remote kernel on all defined remote machines.

LaunchSlaves@$AvailableMachinesD
You can also put LaunchSlave or ConnectSlave commands for special cases here and evaluate them as
needed.

LaunchSlave@"specialhost", "special template", optionsD
Start a kernel on the local machine.

LaunchSlave@"localhost"D
Connect to a manually started remote kernel.

ConnectSlave@"port1ûhost,port2ûhost", LinkProtocol → "TCPIP"D

26 Parallel Computing Toolkit

Now verify that all remote kernels are operating correctly by collecting information about them.

TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

After finishing your computations, you should close all connections.

CloseSlaves@D
Sample configuration for Unix and Mac OS X

Some of the input cells in this template have been made inactive (not evaluatable), because they contain
commands for optional features. Enable these cells on a case-by-case basis according to your needs. These
commands will evaluate properly only if you have access to a Unix machine on which to start a kernel and
you substitute valid values for variable arguments.

Load PCT.

Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Enable optional features as desired.

Needs@"Parallel`Commands`"D
Set your default $RemoteCommand.

$RemoteCommand = "ssh −x −f −l `3` `1` math −

mathlink −linkmode Connect `4` −linkname '`2`' −noinit";

Set the default remote username if it is different from your local username.

$RemoteUserName = "name";

Set the default initialization for your remote kernels.

$InitCode = Hold@$DisplayFunction = Identity;D;

Chapter 2: Starting Remote Kernels 27

List any normally available machines.

$AvailableMachines = 8
RemoteMachine@"hostname1"D,
RemoteMachine@"hostname2"D<;

Now you can try to start a remote kernel on all defined remote machines.

LaunchSlaves@$AvailableMachinesD
You can also put LaunchSlave or ConnectSlave commands for special cases here and evaluate them as
needed.

LaunchSlave@"specialhost", "special template", optionsD
Start a kernel on the local machine.

LaunchSlave@"localhost"D
Connect to a manually started remote kernel.

ConnectSlave@"port1ûhost,port2ûhost"D
Now verify that all remote kernels are operating correctly by collecting information about them.

TableForm@
RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $ProcessID, $Version<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "process", "Mathematica Version"<<D

After finishing your computations, close all connections.

CloseSlaves@D
Kernel Initialization

To prevent the execution of the initialization commands you may have put into your init.m file, add the
argument -noinit to any kernel invocation command. This is recommended unless you have put specific
commands for initializing remote kernels into init.m.

You can put your remote kernel initialization commands into the PCT variable $InitCode.

28 Parallel Computing Toolkit

Housekeeping

The list of available remote kernels is given in $Slaves. This is a read-only variable that contains the active
kernel objects you have previously opened with LaunchSlaves, LaunchSlave, or ConnectSlave.

Length[$Slaves] gives you the number of currently connected remote machines or the degree of
parallelism.

The Remote Kernel Object

The properties of the remote kernel objects can be obtained with these functions.

ProcessorID[kernel] a unique integer assigned to each kernel

ProcessorName[kernel] the name of the machine on which the kernel is running

ProcessorSpeed[kernel] an estimate of the relative of the remote processor

LinkObject[kernel] the raw MathLink LinkObject that connects to the remote
kernel

Host description entries.

To get a nicely formatted listing of properties of the remote kernel connections, use this command. The
command is followed by output from a sample session.

TableForm@
Through@8Identity, ProcessorID, ProcessorName, ProcessorSpeed, LinkObject<@#DD & ê@
$Slaves,

TableHeadings −> 8None, 8"slave", "id", "name", "speed", "link"<<D
slave id name speed link

slave1@localhostD 1 localhost 1 LinkObject@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink, 2, 2D
slave2@siriusD 2 sirius 1 LinkObject@44320@denebola,44321@denebola, 3, 3D
slave3@siriusD 3 sirius 1 LinkObject@44323@denebola,44324@denebola, 4, 4D
slave4@prokyonD 4 prokyon 1 LinkObject@44326@denebola,44327@denebola, 5, 5D
slave5@deliaD 5 delia 1 LinkObject@44332@denebola,44333@denebola, 6, 6D

Chapter 2: Starting Remote Kernels 29

Remote Properties

The variable $ProcessorID is set on each remote kernel to its own processor ID (pid).

To get a nicely formatted listing of this and other standard properties of the remote kernels, use this com-
mand. The command is followed by output from a sample session.

TableForm@RemoteEvaluate@8$ProcessorID, $MachineName, $SystemID, $Version, $CommandLine, $ParentLink<D,
TableHeadings −> 8None, 8"ID", "host", "OS", "Mathematica Version",

"CommandLine", "Parent Link"<<, TableDepth → 2D
ID host OS Mathematica Version
1 denebola UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
2 sirius UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
3 sirius UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
4 prokyon UltraSPARC 5.0 for Sun Solaris HUltraSPARCL HNovember 26, 2003L
5 delia Linux 5.1 for Linux HOctober 25, 2004L

Troubleshooting

If you get an error message and the result $Failed when using LaunchSlave, the connection could not be
established. There are a number of reasons this can happen:

• The remote computer cannot be reached over the network, or you do not have sufficient privileges to
execute remote commands on the computer.

• The remote computer does not run an ssh or rsh daemon. Such daemons are standard under Unix
and Mac OS X and available as third-party products under Windows.

• Mathematica may not be installed correctly on the remote computer, the math command may not be
on your search path, or you do not have a sufficient number of Mathematica licenses.

• Your remote execution command on Windows has exceeded the low, arbitrary limit on command
length that Microsoft imposes on command execution. Please refer to the section Remote Execution
under Windows for more details. In most cases, PCT will tell you that running the command has
failed with exit code -1.

30 Parallel Computing Toolkit

You can still continue to use any remote kernels that you could launch correctly; failed connections will
never be used by PCT.

The variable $Slaves gives the current list of remote connections that started up normally. If there is at
least one, you can continue to work with PCT. Evaluating the expression $Slaves will return the value of
this variable.

To diagnose network problems, you can use the netstat operating system command in a Unix shell or
MS-DOS window. You should try command-line arguments to find which will work on your operating
system; most likely it will be one of the following.

netstat-a-p tcp
netstat-a-f inet
netstat-a-t

The output of netstat will list existing TCP connections to remote computers. Each remote kernel will
occupy one or two such TCP connections.

Tracing MathLink Commands

With debugging and tracing enabled, LinkLaunch[] will show you which MathLink commands it runs to
establish a connection with a remote kernel. To use these features, you have to load the debugging package
before loading PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

Now you can enable MathLink tracing.

In[3]:= SetOptions@$DebugObject, Trace → 8MathLink<D
Out[3]= 8Trace → 8MathLink<<

Chapter 2: Starting Remote Kernels 31

Sample trace of a callback connection

This sample output shows how a default connection to a remote host is established. The output shown is

• the LinkCreate[] command used to establish a listening link on the local machine

• the resulting link created

• the command run to start the remote kernel with all placeholders filled in

• the exit code of this command (should be 0)

• the remote kernel object of the new kernel

In[4]:= LaunchSlave@"sirius"D
MathLink: Creating listening link with

LinkCreate@Sequence@LinkProtocol → TCPIP, LinkHost → , LinkHost → DD
MathLink: Link created as LinkObject@34946@prokyon,34947@prokyon, 2, 2D

MathLink: Running command "ssh −x −f −l maeder sirius math −mathlink −linkmode
Connect −linkprotocol TCPIP −linkname '34946@prokyon,34947@prokyon' −noinit"

MathLink: Command returned 0

Out[4]= slave1@siriusD
Sample trace of a LinkLaunch connection

This sample output shows how a default connection to the local host is established. The output shown is

• the LinkLaunch[] command used to start the kernel, containing the operating system command to
start the kernel itself and the LinkLaunch[] options used

• the resulting link created

• the remote kernel object of the new kernel

32 Parallel Computing Toolkit

In[5]:= LaunchSlave@"localhost"D
MathLink: Launching kernel on localhost with LinkLaunch@

Sequence@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink,
LinkProtocol → Automatic, LinkHost → , LinkProtocol → Automatic, LinkHost → DD

MathLink: Link launched as LinkObject@êhomeêprokyonêmathêDistê501êExecutablesêmath −noinit −mathlink, 3, 3D
Out[5]= slave2@localhostD
To turn off tracing when you are done, use the following.

In[6]:= SetOptions@$DebugObject, Trace → 8<D
Out[6]= 8Trace → 8<<
Resetting and Terminating Remote Kernels

Resetting Kernels

After aborting the master kernel during a parallel computation and if remote kernels do not respond, you
can try to reset them and bring them back into a usable state.

Abort[kernel] aborts a kernel (interrupt any running evaluations)

ResetSlaves[] discards any processes in the queue and aborts all running
evaluations

Aborting and resetting kernels.

ResetSlaves can be used after a parallel computation has been aborted with the menu command Kernel @
Abort Evaluation, or ·Î.Ï.

For some remote kernel connections, notably for kernels started on remote machines using LinkLaunch,
there may be no way to interrupt them. If a remote evaluation takes too long or is in an infinite loop, you
must terminate the remote kernel process using the appropriate operating system command.

Chapter 2: Starting Remote Kernels 33

Clearing Kernels

Between different parallel computations, you may want to make sure that all remote kernels delete any
variable definitions that may have been set. Rather than terminating and restarting all kernels, you can use
ClearSlaves.

ClearSlaves[] clears all variables in the remote kernel’s Global` context
and forgets any shared variables and exported environments

Clearing definitions.

Definitions for symbols in contexts other than Global` are not cleared.

Any definitions of global symbols exported with ExportEnvironment will become unavailable. Any
shared global variables will become unshared.

Terminating Kernels

When you are done with your parallel computations, close any open remote kernel connections. This frees
the resources occupied on the remote machines and closes the open network connections.

Close@kernelD closes the given connection link and removes it from
$Slaves

CloseSlaves[] terminates all open connections

Terminating kernels.

Note that exiting the local master kernel may or may not close the open connections cleanly. Always use
CloseSlaves[] before exiting the master kernel.

34 Parallel Computing Toolkit

3 Parallel Evaluation

Sending Commands to Remote Kernels

Recall that connections to remote kernels, as opened by LaunchSlave, are represented as kernel objects.
See the chapter Starting Remote Kernels for details. The commands in this section take such kernel objects as
arguments and send or receive Mathematica expressions to remote kernels using these links. In the following,
the variable link is a kernel returned by LinkLaunch or LinkConnect.

Low-Level Send and Receive

Send[link, cmd] sends cmd for evaluation to the remote kernel connected to
link; returns link

Send[{links…}, cmd] sends cmd for evaluation to all remote kernels listed

ReceiveIfReady[link] returns a result waiting on the given link; returns $NotReady
if no result is waiting

ReceiveIfReady[link, h] wraps the result in h[…] before returning it

Receive[link] waits for a result on the given link and returns it

Receive[{links…}] waits for a result on each of the links and returns them in a list

Receive[links, h] wraps the results in h[…] before returning them
RemoteEvaluate[cmd, link] sends cmd for evaluation to the remote kernel connected to

link, then waits for the result and returns it
RemoteEvaluate[cmd,
{links…}]

sends cmd for evaluation to the remote kernels given, then
waits for the results and returns them

RemoteEvaluate[cmd] sends cmd for evaluation to all remote kernels and returns the
list of results; equivalent to RemoteEvaluate[cmd,
$Slaves]

Sending and receiving commands to and from remote kernels.

Send has the attribute HoldRest so that the given command is not evaluated before it is sent to the remote
kernel. RemoteEvaluate has the attribute HoldFirst.

RemoteEvaluate[cmd, link] is equivalent to the combination Send[link, cmd]; Receive[link].

With ReceiveIfReady[link], you can poll several open links for results.

You cannot use RemoteEvaluate while a concurrent computation involving Queue or Wait is in progress.
See the chapter Concurrency: Managing Parallel Processes for details.

Values of Variables

Values of variables defined on the local master kernel are usually not available to remote kernels. If a
command you send for evaluation refers to a variable, it usually will not work as expected. The following
piece of code will return False because the symbol a will most likely not have any value at all on the
remote kernel.

a = 2;
RemoteEvaluate@a === 2, linkD

A convenient way to insert variable values into unevaluated commands is to use With, as demonstrated in
the following command.

With@8a = 2<, RemoteEvaluate@a === 2, linkD D
The symbol a is replaced by 2, then the expression 2 === 2 is sent to the remote kernel where it evaluates to
True.

If you need variable values and definitions carried over to the remote kernels, use ExportEnvironment or
the package Parallel`VirtualShared`, which is part of PCT.

Iterators, such as Table and Do, work in the same way with respect to the iterator variable. Therefore, a
statement like the following will not do the expected thing. The variable i will not have a value on the
remote kernel.

Table@RemoteEvaluate@i2, linkD, 8i, 1, 10<D

36 Parallel Computing Toolkit

You can use the following command to accomplish the intended iteration on the remote kernel. This substi-
tutes the value of i into the argument of RemoteEvaluate.

Table@With@8i = i<, RemoteEvaluate@i2, linkDD, 8i, 1, 10<D
Pattern variables, constants, and pure function variables will work as expected on the remote kernel. Each of
the following three examples will produce the expected result.

Function@i, RemoteEvaluate@i2DD@5D
f@i_D := RemoteEvaluate@i2D
With@8i = 5<, RemoteEvaluate@i2DD

Parallel Evaluation of Expressions

Dispatching Evaluations to Remote Kernels

ParallelDispatch[h[e1,e2,…,en],{k1,k2,…,km}]

evaluates ei on kernel ki and returns h@ r1, r2, … rnD,
where ri is the result of evaluating ei;
the default list of kernels is $Slaves

ParallelEvaluate@h@e1,e2,…,enD,f,combD
evaluates f@h@e1,e2,…,enDD in parallel
by distributing chunks f @h@ei,ei+1,…,ei+kDD to all
kernels and combining the results with comb@D

ParallelEvaluate@h@e1,e2,…,enD,fD
the default combiner comb is h, if h has attribute Flat, and
Join otherwise

ParallelEvaluate@h@e1,e2,…,enDD
the default function f is Identity

Basic parallel dispatch of evaluations.

Chapter 3: Parallel Evaluation 37

In ParallelDispatch[h[e1,e2,…, en],{k1,k2,…,km}], the number m of kernels must be at least as large
as the number n of expressions. ParallelDispatch has the attribute HoldFirst so that h[e1,e2,…, en]
is not evaluated on the master kernel before the parallelization.

ParallelDispatch[{e1,e2,…, en},{k1,k2,…,kn}] is equivalent to Receive[Inner[g
Send,{k1,k2,…,kn},{e1,e2,…, en}]].

ParallelEvaluate@h@e1, e2, …, enD, f, combD breaks h@e1, e2, …, enD into as many pieces
h@ei, ei+1, …, ei+kD as there are remote kernels, evaluates f @h@ei, ei+1, …, ei+kDD in parallel (using Parallelg
Dispatch[]), then combines the results ri using comb[r1,r2,…,rm]. ParallelEvaluate has the attribute
HoldFirst so that h[e1,e2,…, en] is not evaluated on the master kernel before the parallelization.

The size of the pieces of the input expression is chosen to be proportional to the remote processor speed
estimates for optimal load balancing.

ParallelEvaluate

ParallelEvaluate is a general and powerful command with default values for its arguments that are
suitable for evaluating elements of containers such as lists and associative functions.

Evaluating List-like Containers

If the result of applying the function f to a list is again a list, ParallelEvaluate@8e1, e2, …, en<, fD
simply applies f to pieces of the input list and joins the partial results together.

In[1]:= ParallelEvaluate@81, 2, 3, 4, 5, 6, 7, 8, 9<, PrimeD
Out[1]= 82, 3, 5, 7, 11, 13, 17, 19, 23<
The result is the same as that of Prime[{1,2,3,4,5,6,7,8,9}], but the computation is done in parallel.

The default function is Identity, therefore, ParallelEvaluate@8e1, e2, …, en<D simply evaluates the
elements ei in parallel.

In[2]:= ParallelEvaluate@81 + 2, 2 + 3, 3 + 4, 4 + 5, 5 + 6<D
Out[2]= 83, 5, 7, 9, 11<
If the result of applying the function f to a list is not a list, a custom combiner has to be chosen.

38 Parallel Computing Toolkit

The function Function[li,Count[li,_?OddQ] counts the number of odd elements in a list. To find the
total number of odd elements, add the partial results together.

In[3]:= ParallelEvaluate@81, 2, 3, 4, 5, 6, 7, 8, 9<, Function@li, Count@li, _?OddQDD, PlusD
Out[3]= 5

Evaluating Associative Operations

If the operation h in h@e1, e2, …, enD is associative (has attribute Flat), the identity

h@e1, e2, …, enD = h@h@e1, e2, …, eiD, h@ei+1, ei+2, …, enDD
holds; with the default combiner being h itself, the operation is parallelized in a natural way. Here all
numbers are added in parallel.

In[4]:= ParallelEvaluate@1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9D
Out[4]= 45

In[5]:= ParallelEvaluate@GCD@4, 6, 8, 10DD
Out[5]= 2

Parallel Mapping and Iterators

The commands in this section are fundamental to parallel programming in Mathematica.

ParallelEvaluate[h[e1,e2,...]] evaluates the elements ei in parallel and returns h[r1, r2, …],
where ri is the result of evaluating ei

ParallelMap[f, h@ e1, e2, ...DE evaluates h[f @e1D, f @e2D , …] in parallel.

ParallelTable[expr,{i,i0,i1,di},{j,j0,j1,dj},…]
builds Table@expr,8i,i0,i1,di<,8j,j0,j1,dj<,…D in parallel;
parallelization occurs along the
first HoutermostL iterator 8i, i0, i1,di <

ParallelSum[…] , ParallelProduct@…D
computes sums and products in parallel

Parallel evaluation, mapping, and tables.

Chapter 3: Parallel Evaluation 39

ParallelEvaluate has attribute HoldFirst, so that its argument is not evaluated on the local kernel.
After receiving the results, ri, the expression h@r1, r2, …D is further evaluated normally on the local kernel.
The symbol List is often used as the head h.

ParallelMap@f, h@e1, e2, …DD is a parallel version of f ê@ h@e1, e2, …D evaluating the individual
f@eiDin parallel rather than sequentially.

ParallelEvaluate and related commands use all available remote kernels on the list $Slaves.

Side Effects

Unless you use shared variables, the parallel evaluations performed are completely independent and cannot
influence each other. Furthermore, any side effects, such as assignments to variables, that happen as part of
evaluations will be lost. The only effect of a parallel evaluation is that its result is returned at the end.

Examples

First, load the package and then start several remote kernels.

In[1]:= Needs@"Parallel`"D
Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

The sine function is applied to the given arguments. Each computation takes place on a remote kernel.

In[2]:= ParallelMap@Sin, 80, π, 1.0<D
Out[2]= 80, 0, 0.841471<
This particular computation is almost certainly too trivial to benefit from parallel evaluation. The overhead
required to send the expressions Sin[0], Sin[π], and so on to the remote kernels and to collect the results
will be larger than the gain obtained from parallelization.

40 Parallel Computing Toolkit

Factoring integers of the form 111…1 takes more time, so this computation can benefit from parallelization.

In[3]:= ParallelMapAFactorInteger, 10^Range@20, 30D − 1
ccc

9
E

Out[3]= 88811, 1<, 841, 1<, 8101, 1<, 8271, 1<, 83541, 1<, 89091, 1<, 827961, 1<<,883, 1<, 837, 1<, 843, 1<, 8239, 1<, 81933, 1<, 84649, 1<, 810838689, 1<<,8811, 2<, 823, 1<, 84093, 1<, 88779, 1<, 821649, 1<, 8513239, 1<<,8811111111111111111111111, 1<<, 883, 1<, 87, 1<, 811, 1<, 813, 1<,837, 1<, 873, 1<, 8101, 1<, 8137, 1<, 89901, 1<, 899990001, 1<<,8841, 1<, 8271, 1<, 821401, 1<, 825601, 1<, 8182521213001, 1<<,8811, 1<, 853, 1<, 879, 1<, 8859, 1<, 8265371653, 1<, 81058313049, 1<<,883, 3<, 837, 1<, 8757, 1<, 8333667, 1<, 8440334654777631, 1<<, 8811, 1<,829, 1<, 8101, 1<, 8239, 1<, 8281, 1<, 84649, 1<, 8909091, 1<, 8121499449, 1<<,883191, 1<, 816763, 1<, 843037, 1<, 862003, 1<, 877843839397, 1<<,883, 1<, 87, 1<, 811, 1<, 813, 1<, 831, 1<, 837, 1<, 841, 1<,8211, 1<, 8241, 1<, 8271, 1<, 82161, 1<, 89091, 1<, 82906161, 1<<<
Alternatively, you can use ParallelTable. A list of the number of factors in 11 …1´̈ ¨̈ ¨≠ Æ¨¨̈

i
 is generated here.

In[4]:= ParallelTableA9i, Plus @@ H#@@2DD &L ê@ FactorIntegerA 10i − 1
cccccccccccccccccc

9
E=, 8i, 20, 30<E êê

TableForm

Out[4]//TableForm=
20 7
21 7
22 7
23 1
24 10
25 5
26 6
27 7
28 8
29 5
30 13

Chapter 3: Parallel Evaluation 41

Automatic Parallelization

ParallelEvaluate[cmd[list,arguments…]] recognizes if cmd is a Mathematica function that operates on a
list or other long expression in a way that can be easily parallelized and performs the parallelization automat-
ically. You do not need to figure out suitable f and comb for ParallelEvaluate@list, f, combD. The list of
commands that can be parallelized is kept in the variable $ParallelCommands.

In[5]:= $ParallelCommands

Out[5]= 8Cases, Select, Count, MemberQ, FreeQ,
Map, Apply, Outer, Inner, Dot, Table, Sum, Product<

In[6]:= ParallelEvaluate@Count@81, 2, 3, 4, 5, 6, 7<, _?PrimeQDD
Out[6]= 4

In[7]:= ParallelEvaluate@Map@f, 8a, b, c, d, e, f<DD
Out[7]= 8f@aD, f@bD, f@cD, f@dD, f@eD, f@fD<
In[8]:= ParallelEvaluateA8a, b, c, d<.ik

jjjjjjjjjjjj
w1 w2
x1 x2
y1 y2
z1 z2

y
{
zzzzzzzzzzzE

Out[8]= 8a w1 + b x1 + c y1 + d z1, a w2 + b x2 + c y2 + d z2<
Not all uses of these commands can be parallelized. A message is generated and the evaluation is performed
sequentially on the master kernel if necessary.

In[9]:= ParallelEvaluate@Apply@f, g@a, b, c, dDDD
ParallelEvaluate::nopar1 :

f @@ g@a, b, c, dD cannot be parallelized; evaluating it sequentially.

Out[9]= f@a, b, c, dD

42 Parallel Computing Toolkit

4 Concurrency: Managing Parallel
Processes

Processes and Processors

A process is simply a Mathematica expression being evaluated. A processor is a remote kernel that performs
such evaluations.

The command RemoteEvaluate discussed in the chapter Parallel Evaluation will send an evaluation to an
explicitly given processor, requiring you to keep track of available processors and processes yourself. The
scheduling functions discussed in this chapter perform these functions for you. You can create any number
of processes, many more than the number of available processors. If more processes are created than there
are processors, the remaining processes will be queued and serviced when a processor becomes available.

Starting and Waiting for Processes

The two basic commands are Queue[expr] to line up an expression for evaluation on any available proces-
sor, and Wait[pid] to wait until a given process has finished.

Each process in the queue is identified by its unique pid.

Queue[cmd] submits cmd for evaluation on a remote kernel and returns
the queued job’s pid

Queue[{vars…}, cmd] builds a closure for the local values of the given variables
before sending cmd to a remote kernel

QueueRun[] checks all remote kernels for available results and submits
waiting jobs to available remote kernels

DoneQ[pid] returns True if the given process has finished

Wait[pid] waits for the given process to finish and returns its result

Wait@8pid1, pid2, …<D waits for all given processes and returns the list of results

Wait[expr] waits for all pids contained in expr to finish and replaces
them by the results of the respective process

WaitOne@8pid1, pid2, …<D waits for one of the given processes to finish; it returns {res,
id, ids}, where id is the pid of the finished process, res is its
result, and ids is the list of remaining pids

Queuing processes.

WaitOne is nondeterministic. It returns an arbitrary process that has finished. If no process has finished, it
calls QueueRun until a result is available. The third element of the resulting list is suitable as an argument of
another call to WaitOne.

The functions Queue and Wait implement concurrency. You can start arbitrarily many processes, and they
will all be evaluated eventually on any available remote processors. When you need a particular result, you
can wait for any particular pid, or you can wait for all results using repeated calls to WaitOne.

QueueRun[] returns True if at least one job was submitted to a remote kernel or one result received from a
kernel, and False otherwise. Normally, you should not have to run QueueRun yourself. It is called at
appropriate places inside Wait and other functions. You need it only if you implement your own main loop
for a concurrent program.

44 Parallel Computing Toolkit

Load[] gives the sum of the lengths of the input queues of all
remote kernels

Load[kernel] gives the length of the input queue of a remote kernel

$QueueLength gives the length of the input queue of commands submitted
with Queue but not yet assigned to an available remote
kernel

ResetQueues[] waits for all running processes and abandons any queued
processes

System load and input queue size.

Basic Usage

To try the examples here, load PCT and then start a few local or remote kernels as described in the Introduc-
tion chapter.

In[1]:= Needs@"Parallel`"D
Queue the evaluation 1+1 for processing on a remote kernel. Note that Queue has the attribute HoldAll to
prevent evaluation of the expression before queueing. The value returned by Queue is the pid of the queued
process.

In[2]:= j1 = Queue@1 + 1D
Out[2]= pid1

After queuing a process, you can perform other calculations and eventually collect the result. If the result is
not yet available, Wait will wait for it.

In[3]:= Wait@j1D
Out[3]= 2

You can queue several processes. Here the expression 12, 22,…, 52 is queued for evaluation.

Chapter 4: Concurrency: Managing Parallel Processes 45

In[4]:= pids = Function@i, Queue@i^2DD ê@ 81, 2, 3, 4, 5<
Out[4]= 8pid2, pid3, pid4, pid5, pid6<
Next, wait for any one process to finish.

In[5]:= 8res, pid, pids< = WaitOne@pidsD
Out[5]= 81, pid2, 8pid3, pid4, pid5, pid6<<
Note the reassignment of pids to the list of remaining pids. Repeating the previous evaluation until the
pids list becomes empty allows you to drain the queue.

In[6]:= 8res, pid, pids< = WaitOne@pidsD
Out[6]= 84, pid3, 8pid4, pid5, pid6<<
You can also wait for all of the remaining processes to finish.

In[7]:= Wait@pidsD
Out[7]= 89, 16, 25<
A Note on the Use of Variables

If an expression e in Queue@eD involves variables with assigned values, care must be taken to ensure that
the remote kernels have the same variable values defined. Unless you use ExportEnvironment or shared
variables, locally defined variables will not be available to remote kernels. See the section Values of Vari-
ables in the chapter Parallel Evaluation for more information.

Here are a few common cases where there may be problems.

This assigns the value 2 to the variable a in the local master kernel.

In[8]:= a = 2;

You want to evaluate the expression Head[a] on a remote kernel. The result is not Integer, as it is on the
local kernel, because on the remote kernel the symbol a does not have a value.

46 Parallel Computing Toolkit

In[9]:= Head@aD
Out[9]= Integer

In[10]:= Wait@Queue@Head@aDDD
Out[10]= Symbol

You can use a local constant, and even name it a, to textually insert the value of a into the argument of
Queue.

In[11]:= With@8a = a<, Wait@Queue@Head@aDDDD
Out[11]= Integer

To make this frequent case simpler, you can use an optional first argument in Queue to declare the vari-
ables. The variables will then be inserted into the expression in the second argument.

In[12]:= Wait@Queue@8a<, Head@aDDD
Out[12]= Integer

The syntax Queue[{vars…},expr] is by design similar to Function[{vars…},expr]. Both form closures
where the variables are bound to their values.

Iterator variables behave in the same way. In the following two outputs, the parallel evaluation does not
give the correct result.

In[13]:= Table@i2, 8i, 1, 10<D
Out[13]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
In[14]:= Wait@Table@Queue@i2D, 8i, 1, 10<DD
Out[14]= 8i2, i2, i2, i2, i2, i2, i2, i2, i2, i2<
Insert the iterator variable as a constant or declare a closure to ensure that you are getting correct results, as
is done with the following command.

In[15]:= Wait@Table@Queue@8i<, i2D, 8i, 1, 10<DD
Out[15]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

Chapter 4: Concurrency: Managing Parallel Processes 47

Note that ParallelTable[] treats the iterator variable correctly.

In[16]:= ParallelTable@i2, 8i, 1, 10<D
Out[16]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
Working with Process IDs

Wait@8pid1, pid2, …<D is merely a simple form of a general mechanism to parallelize computations. Wait
can take any expression containing pids in its arguments and will wait for all associated processes to finish.
The pids will then be replaced by the results of their processes.

You can view Wait as the inverse of Queue; that is, Wait@Queue@exprDD gives expr, evaluated on a remote
kernel, just as expr itself is evaluated locally. Further, Wait@…Queue@e1D … Queue@enD …D is equivalent to
… e1 … en …, where each ei is evaluated in parallel. Here the ellipses represent an arbitrary surrounding
computation.

The pids generated by an instance of Queue should be left intact and should neither be destroyed nor
duplicated before Wait performs its task. The reason is that each of them represents an ongoing parallel
computation whose result should be collected exactly once.

Examples of expressions that leave pids intact follow.

• pids in a list are safe, because the list operation does not do anything to its arguments; it merely keeps
them together. Nested lists are also safe for the same reason.

Wait@8Queue@e1D, …, Queue@enD<D
• pids are symbolic objects that are not affected by Plus. They may be reordered, which is irrelevant.

Most arithmetic operations are safe.

Wait@Queue@e1D + … + Queue@enDD
• Mapping a function involving Queue onto a list is safe because the result will contain the list of the

pids.

Wait@Map@Queue@… # …D &, 8e1, …, en<DD

48 Parallel Computing Toolkit

• Table returns lists of pids and is, therefore, safe.

Wait@Table@Queue@8i<, exprD, 8i, 1, 10<DD
Examples of expressions that are not safe include the following.

• The Head operation will destroy the symbolic pid, as will other structural operations such as Length,
ByteCount, and so on.

Wait@Head@Queue@eDDD
• Multiplying a pid by 0 will destroy it.

Wait@0∗Queue@eDD
• Do does not return anything, so all pids are lost. A similar case is Scan.

Wait@Do@Queue@8i<, exprD, 8i, 1, 10<DD
To recover from a computation where pids were destroyed or duplicated, use the command Resetg
Queues[] or ResetSlaves[].

ProcessID[pid] a unique integer identifying the process

Process[pid] the expression representing the process

Scheduling[pid] the priority assigned to the process

ProcessState[pid] the state of the process: queued, running, finished

Properties of pids.

Here several processes are queued.

In[1]:= ids = Queue@2 + #, Scheduling → #D & ê@ Range@6D
Out[1]= 8pid1, pid2, pid3, pid4, pid5, pid6<
Because the scheduler has not yet been running, all the processes are still queued for evaluation.

Chapter 4: Concurrency: Managing Parallel Processes 49

In[2]:= TableForm@
Function@pid,

Through@8Identity, ProcessID, Process, Scheduling, ProcessState<@pidDDD ê@ ids,
TableHeadings → 8None, 8"pid", "ID", "expr", "prio", "state"<<D

Out[2]//TableForm=
pid ID expr prio state
pid1 1 2 + 1 1 queued

pid2 2 2 + 2 2 queued

pid3 3 2 + 3 3 queued

pid4 4 2 + 4 4 queued

pid5 5 2 + 5 5 queued

pid6 6 2 + 6 6 queued

To demonstrate how it works, the scheduler is invoked by hand.

In[3]:= QueueRun@D; QueueRun@D
Out[3]= False

Now some processes are running on the available processors; some may already have finished.

In[4]:= TableForm@
Function@pid,

Through@8Identity, ProcessID, Process, Scheduling, ProcessState<@pidDDD ê@ ids,
TableHeadings → 8None, 8"pid", "ID", "expr", "prio", "state"<<D

Out[4]//TableForm=
pid ID expr prio state
pid1 1 2 + 1 1 finished@3D
pid2 2 2 + 2 2 finished@4D
pid3 3 2 + 3 3 running@slave2@n1DD
pid4 4 2 + 4 4 running@slave3@n2DD
pid5 5 2 + 5 5 queued

pid6 6 2 + 6 6 queued

Wait[] invokes the scheduler until all processes are finished and returns their results. Note that the priori-
ties are not used with the default queue type, see the section The Scheduler, later in this chapter.

In[5]:= Wait@idsD
Out[5]= 83, 4, 5, 6, 7, 8<

50 Parallel Computing Toolkit

Latency Hiding

The latency is the communication overhead, the time period between the completion of one request and the
start of servicing a new one.

MathLink is a buffered stream. You can send additional requests before receiving all outstanding results. If
you can keep the buffers full at all times, there will be no latency; each remote processor will always be busy.

To turn on latency hiding, set $LoadFactor to a value larger than 1, such as 2 through 5. $LoadFactor
determines the maximum number of computations sent to a slave kernel before at least one of the results is
read. Here are two example commands that set latency hiding.

$LoadFactor = 3; H∗ enable latency hiding ∗L
$LoadFactor = 1; H∗ disable latency hiding ∗L

To benefit from latency hiding, you should plan to create many more processes than there are remote
kernels. You can create more processes using Queue or an appropriate parallel mapping or table construct.
If the number of processes is larger than $LoadFactor*Length[$Slaves], automatic load balancing is an
added benefit of this scheme. The faster processors will automatically service more processes.

Do not use latency hiding if you plan to create exactly one process for each remote kernel.

You should develop your program with the default $LoadFactor = 1 for easier debugging. Once your
program runs correctly, you can try to increase $LoadFactor and measure the effect on the elapsed time of
your computation. The smaller the remote computations are, the greater the benefit from latency hiding.

Latency hiding is incompatible with virtual shared memory. When you load Parallel`Virtualg
Shared`, the value of $LoadFactor will be permanently set to 1.

Chapter 4: Concurrency: Managing Parallel Processes 51

Examples

Before evaluating these examples, load the package and then start several remote kernels.

In[1]:= Needs@"Parallel`Parallel`"D
An Infinite Calculation

If you want to verify that the polynomials ⁄i=1
n+1 i xi-1 for n = 1, 2, … are all irreducible (an open conjecture),

factor the polynomials and then check that the length of the list of factors is 2, one factor being the overall
numerical factor.

This computation will continue forever. To stop it, abort the local evaluation by pressing ·Î.Ï or choosing
Kernel @ Abort Evaluation. After the abort, collect any waiting results, as follows.

Here is the definition of the polynomial in x with degree n.

In[2]:= poly@n_, x_D := ‚
i=1

n+1

i xi−1

You then make this definition known to all remote kernels.

In[3]:= ExportEnvironment@8poly<D;
For better performance, you turn on latency hiding by setting $LoadFactor to a value larger than 1.

In[4]:= $LoadFactor = 2;

Now you can start the computation, requiring that it print each result as it goes on. To stop the computation,
abort it by choosing Kernel @ Abort Evaluation or pressing ·Î.Ï. The explicit call of QueueRun[] is necessary
in such examples where you program your own scheduling details.

52 Parallel Computing Toolkit

In[5]:= d = 100; ids = 8<;
While@True,
While@$QueueLength m 0,

AppendTo@ids, Queue@8d<, 8d, Length@FactorList@poly@d, xDDD<DD;
d++;
If@! QueueRun@D, Break@DD;D;
If@Length@idsD > 0,8res, id, ids< = WaitOne@idsD;
Print@resDD;D 8101, 2<8103, 2<8100, 2<8102, 2<

Out[5]= $Aborted

Do not forget to collect the orphaned processes after an interrupt.

In[6]:= Wait@idsD
Out[6]= 88104, 2<, 8105, 2<, 8106, 2<, 8107, 2<, 8108, 2<<
Automatic Process Generation

A general way to parallelize many kinds of computation is to replace a function g occurring in a functional
operation by Composition@Queue, gD. This new operation will cause all instances of calls of the function
g to be queued for parallel evaluation. The result of this composition is a pid that will appear inside the
structure constructed by the outer computation where g occurred. To put back the results of the computa-
tion of g, wrap the whole expression in Wait. Wait will replace any pid inside its expression by the result
returned by the corresponding process.

Chapter 4: Concurrency: Managing Parallel Processes 53

Here are a few examples of such functional compositions.

Parallel mapping

A parallel version of Map is easy to develop. The sequential Map wraps a function f around all elements in a
list.

In[1]:= Map@f, 8a, b, c, d<D
Out[1]= 8f@2D, f@bD, f@cD, f@109D<
Simply use Composition@Queue, fD instead of f to schedule all mappings for parallel execution. The
result is a list of pids.

In[2]:= Map@Composition@Queue, fD, 8a, b, c, d<D
Out[2]= 8pid16, pid17, pid18, pid19<
Finally, simply wait for the processes to finish. Every pid will be replaced with the result of its associated
process.

In[3]:= Wait@%D
Out[3]= 8f@2D, f@bD, f@cD, f@109D<
Parallel inner products

To see how this works for symbolic inner products, assume you want a generalized inner product where d
is the common last dimension of a and first dimension of b. Think of p as Plus and t as Times.Ha.bLi1 i2 …in−1 k2 k3 …km = p@t@ai1 i2 …in−1 1, b1 k2 k3 …kmD, …, t@ai1 i2 …in−1 d, bdk2 k3 …kmDD
Here is an example with d = 2.

In[4]:= Inner@t, Array@a, 82, 2<D, Array@b, 82, 2<D, pD
Out[4]= 88p@t@2@1, 1D, b@1, 1DD, t@2@1, 2D, b@2, 1DDD,

p@t@2@1, 1D, b@1, 2DD, t@2@1, 2D, b@2, 2DDD<,8p@t@2@2, 1D, b@1, 1DD, t@2@2, 2D, b@2, 1DDD,
p@t@2@2, 1D, b@1, 2DD, t@2@2, 2D, b@2, 2DDD<<

54 Parallel Computing Toolkit

You can use Composition[Queue,p] in place of p in the previous expression to queue all calculations of p
for concurrent execution. The result is a tensor of pids.

In[5]:= Inner@t, Array@a, 82, 2<D, Array@b, 82, 2<D, Composition@Queue, pDD
Out[5]= 88pid20, pid21<, 8pid22, pid23<<
Now, simply wait for all processes in this expression.

In[6]:= Wait@%D
Out[6]= 88p@t@2@1, 1D, b@1, 1DD, t@2@1, 2D, b@2, 1DDD,

p@t@2@1, 1D, b@1, 2DD, t@2@1, 2D, b@2, 2DDD<,8p@t@2@2, 1D, b@1, 1DD, t@2@2, 2D, b@2, 1DDD,
p@t@2@2, 1D, b@1, 2DD, t@2@2, 2D, b@2, 2DDD<<

This scheduling is not optimal in terms of communication. One better possibility is to parallelize only along
the dimensions of a and send the tensor b once to each processor before scheduling the jobs. The command
ParallelInner in the Parallel`Commands` package uses this strategy.

Parallel tables and sums

This code generates a 5 µ 5 matrix of random numbers, where each row is computed in parallel.

In[7]:= Wait@Table@Queue@Table@Random@D, 85<DD, 85<DD
Out[7]= 880.126768, 0.775646, 0.120027, 0.657164, 0.091348<,80.617092, 0.954231, 0.80132, 0.237532, 0.856428<,80.665655, 0.57283, 0.952782, 0.314881, 0.0194191<,80.073742, 0.46934, 0.633294, 0.648699, 0.241248<,80.265634, 0.675514, 0.239893, 0.628718, 0.0933279<<
Here is a sum whose elements are computed in parallel. Each element of the sum is a numerical integration.

In[8]:= Wait@Sum@Queue@8k<, NIntegrate@x^H−1 − 1ê kL, 8x, 1, ∞<DD, 8k, 1, 8<DD
Out[8]= 36.

Here is the corresponding table of symbolic results. The value of Ÿ
1

¶
1ÅÅÅÅÅÅÅÅÅÅÅÅÅx1+1êk „ x is k.

Chapter 4: Concurrency: Managing Parallel Processes 55

In[9]:= TableForm@
Wait@Table@Queue@8k<, 8k, Integrate@x^H−1 − 1êkL, 8x, 1, ∞<D<D, 8k, 1, 8<DD,
TableDepth −> 2D

Out[9]//TableForm=
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8

Comparison with ParallelEvaluate

Parallel mapping, tables, and inner products were already introduced in the chapter Parallel Evaluation.
Those functions perform a single dispatch of part of the computation on each remote processors. The func-
tions in this chapter generate one process for each subproblem.

If all subproblems take the same amount of time, the functions such as ParallelMap[], ParallelTag
ble[] are faster. However, if the computation times of the subproblems are different, and not easy to
estimate in advance, it can be better to use Wait[… Queue[] …] as described in this section. If the num-
ber of processes generated is larger than the number of remote kernels, this method performs automatic
load balancing, because jobs are assigned to a kernel as soon as the previous job is done, and all kernels are
kept busy all the time.

Tracing

To observe how processes are scheduled, you can use tracing. To use these features, you have to load the
debugging package before loading PCT and starting several kernels.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
Now you can enable Queueing tracing.

56 Parallel Computing Toolkit

In[3]:= SetOptions@$DebugObject, Trace → 8Queueing<D
Out[3]= 8Trace → 8Queueing<<
Here several processes are queued showing how the queue grows in size.

In[4]:= ids = Queue@2 + #D & ê@ Range@4D
Queueing: pid1 queued H0L
Queueing: pid2 queued H1L
Queueing: pid3 queued H2L
Queueing: pid4 queued H3L

Out[4]= 8pid1, pid2, pid3, pid4<
Wait[] invokes the scheduler, which sends queued jobs to idle processors, collects results, and hands them
back to the application.

In[5]:= Wait@idsD
Queueing: pid1 on slave1@n1D
Queueing: pid2 on slave2@n2D
Queueing: pid1 done

Queueing: pid2 done

Queueing: pid3 on slave1@n1D
Queueing: pid4 on slave2@n2D
Queueing: pid1 dequeued

Queueing: pid2 dequeued

Queueing: pid3 done

Queueing: pid4 done

Queueing: pid3 dequeued

Queueing: pid4 dequeued

Out[5]= 83, 4, 5, 6<

Chapter 4: Concurrency: Managing Parallel Processes 57

To turn off tracing when you are done, use the following.

In[6]:= SetOptions@$DebugObject, Trace → 8<D
Out[6]= 8Trace → 8<<
The Scheduler

Whenever Queue[] is called, a process is entered into a queue on the master kernel. The scheduler Queueg
Run[] selects the first process in the queue as soon as a remote kernel is available. By choosing different
queue implementations, you can specify which process should be considered the first one. PCT provides a
number of queues that you can use, or you can write your own. Queues are implemented in packages that
you can load as needed.

Parallel`Queue`FIFO FIFOQueue: first in, first out

Parallel`Queue`Priority priorityQueue: user-definable priorities

Parallel`Queue`LIFO LIFOQueue: last in, first out (reverse)

Parallel`Queue`Interface interface definitions for all queues

Packages and queue types.

$Queue the queue of waiting processes

$QueueLength the number of processes in the queue

$QueueType gives the current queue type

SetQueueType@queueD changes the queue type to queue

Manipulating the queue.

This is the current queue type (the default).

In[1]:= oldType = $QueueType

Out[1]= Parallel`Queue`FIFO`FIFOQueue

58 Parallel Computing Toolkit

To use priority queues, for example, load the corresponding package.

In[2]:= Needs@"Parallel`Queue`Priority "̀D
In[3]:= ? priorityQueue

priorityQueue@D creates an empty queue.

Then change the queue type.

In[4]:= SetQueueType@priorityQueueD
Out[4]= priorityQueue

Now you can generate processes with optional priorities.

Queue[expr, Scheduling->p] queue expr with priority p

Specifying priorities.

In[5]:= ids = Queue@2 #, Scheduling → #D & ê@ Range@6D
Out[5]= 8pid1, pid2, pid3, pid4, pid5, pid6<
Each queue type implements the method Normal[] to give a list of the queue’s contents.

In[6]:= Normal@$QueueD
Out[6]= 8pid6, pid5, pid4, pid3, pid2, pid1<
The scheduler will schedule jobs with higher priority first. The order of the results is not affected.

In[7]:= Wait@idsD
Out[7]= 82, 4, 6, 8, 10, 12<
This resets the queue type to the default.

In[8]:= SetQueueType@oldTypeD
Out[8]= Parallel`Queue`FIFO`FIFOQueue

Chapter 4: Concurrency: Managing Parallel Processes 59

5 Remote Definitions

Remote kernels do not have access to the values of variables defined in the local master kernel, nor do they
have access to locally defined functions.

PCT contains a command ExportEnvironment that makes it easy to transport local variables and defini-
tions to all remote kernels. The main advantage of this method is that PCT does not need to be installed on
the remote kernels. All definitions are sent through the existing connection to the remote kernels.

Exporting Definitions

ExportEnvironment@8s1 , s2, … }] exports all definitions for symbols si to all remote kernels

ExportEnvironment@s1 , s2, …] the same as ExportEnvironment@8s1, s2, …<D
ExportEnvironment["Context`"] exports all definitions for all symbols in the given context

Exporting definitions.

ExportEnvironment has the attribute HoldAll to prevent the evaluation of the symbols.

ExportEnvironment exports the following kinds of definitions: OwnValues, DownValues, SubValues,
UpValues, DefaultValues, NValues.

ExportEnvironment sets the attributes of the remote symbols equal to the locally defined attributes,
except for attributes such as Protected and Locked.

Any old definitions existing on the remote side are cleared before the new definitions are made.

Examples

Before evaluating these examples, load PCT and then start several remote kernels.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Define a variable with a value and a function with attributes.

In[2]:= var = 5;

In[3]:= SetAttributes@func, ListableD
func@r_D := r^2

The remote kernels do not know the symbol var as demonstrated with the next evaluation.

In[5]:= RemoteEvaluate@Names@"var"DD
Out[5]= 88<, 8<<
Here is a subtle point. The following remote evaluation seems to work, even though the symbols are not
defined on the remote side.

In[6]:= RemoteEvaluate@func@varDD
Out[6]= 825, 25<
The reason is that the remote kernels return the unevaluated expression func@varD, because the function
and variable are not defined on the remote kernel. The master kernel evaluates the returned results further,
but it does so sequentially.

You can easily produce an example where the difference between remote and local evaluation becomes
apparent.

On the local kernel, the symbol var evaluates to 5, and the Head of 5 is Integer.

In[7]:= Head@varD
Out[7]= Integer

62 Parallel Computing Toolkit

On the remote kernels, var stays a symbol, and its head is Symbol.

In[8]:= RemoteEvaluate@Head@varDD
Out[8]= 8Symbol, Symbol<
You can export the local definitions to the remote kernels.

In[9]:= ExportEnvironment@var, funcD
Now the remote evaluation gives the same result as the local one.

In[10]:= RemoteEvaluate@Head@varDD
Out[10]= 8Integer, Integer<
Exporting Contexts

ExportEnvironment["Context`"] exports all definitions for all symbols in the given context. Thus, you
can use the following to make all your interactively entered definitions known to the remote kernels.

In[11]:= ExportEnvironment@"Global`"D
Out[11]= 8Global`<
Exporting the context of a package you have loaded may not have the same effect on the remote kernels as
loading the package on each remote kernel. The reason is that loading a package may perform certain
initializations and it may also define auxiliary functions in other contexts (such as a private context). Also, a
package may load additional auxiliary packages that establish their own contexts.

ExportEnvironment["Context`"] is useful for exporting contexts for definitions that you have explicitly
set up to be used on remote kernels. There is a separate command RemoteNeeds[] for remote loading of
packages.

ClearSlaves[] clears any definitions for symbols in the Global` context on remote kernels.

Chapter 5: Remote Definitions 63

Loading Packages on Remote Kernels

RemoteNeeds["Context`"] calls Needs["Context`"] in all remote kernels

Loading packages.

RemoteNeeds["Context`"] is essentially equivalent to RemoteEvaluate[Needs["Context`"]], but it is
remembered and any newly launched remote kernels will be initialized as well.

Exporting the context of a package that you have loaded may not have the same effect on the remote kernels
as loading the package on each remote kernel with RemoteNeeds[]. The reason is that loading a package
may perform certain initializations and it may also define auxiliary functions in other contexts (such as a
private context). Also, a package may load additional auxiliary packages that establish their own contexts.

The next two commands load the standard package Geometry`Rotations` on the master kernel and all
remote kernels.

In[12]:= Needs@"Geometry`Rotations`"D
In[13]:= RemoteNeeds@"Geometry`Rotations`"D;
Note that packages other than the standard packages available to the master kernel may not be available on
remote kernels.

Example: Eigenvalues of Matrices

Definitions

The parameter prec gives the desired precision for the computation of the eigenvalues of a random nän
matrix.

In[1]:= prec = 18;

The function mat generates a random nän matrix with numeric entries.

In[2]:= mat@n_D := Table@Random@Real, 8−1, 1<, precD, 8n<, 8n<D

64 Parallel Computing Toolkit

The function tf measures the time it takes to find the eigenvalues.

In[3]:= tf@n_D := Timing@Eigenvalues@mat@nDDD@@1DD
Make all these definitions known to all slave processors with the following command.

In[4]:= ExportEnvironment@8prec, tf, mat<D;
Clear the local value of prec, since it is no longer needed. Then check that the definitions have been carried
over to the slave processors.

In[5]:= Clear@precD;
In[6]:= RemoteEvaluate@precD
Out[6]= 818, 18, 18<
A sample run

Here you measure the time it takes to find the eigenvalues of 5 ä5 to 25ä25 matrices. Because the computa-
tions happen on remote computers that differ in their processor speeds, the results do not necessarily form
an increasing sequence.

In[7]:= ParallelMap@tf, 85, 10, 15, 20, 25<D
Out[7]= 80.03 Second, 0.01 Second, 0.04 Second, 0.173974 Second, 0.288956 Second<
Alternatively, you can perform the same computation on each slave processor to measure their relative
speeds. Here you find the speed of calculating the eigenvalues of a 20 ä 20 matrix on each of three slave
processors.

In[8]:= RemoteEvaluate@tf@20DD
Out[8]= 80.43 Second, 0.09 Second, 0.164975 Second<

Chapter 5: Remote Definitions 65

6 Virtual Shared Memory

Shared Memory versus Distributed Memory

Special-purpose multiprocessing hardware comes in two types, shared memory and distributed memory. In a
shared-memory machine, all processors have access to a common main memory. In a distributed-memory
machine, each processor has its own main memory, and the processors are connected through a sophisti-
cated network. A collection of networked PCs is also a kind of distributed-memory parallel machine.

Communication between processors is an important prerequisite for all but the most trivial parallel process-
ing tasks. In a shared-memory machine, a processor can simply write a value into a particular memory
location, and all other processors can read this value. In a distributed-memory machine, exchanging values
of variables involves explicit communication over the network.

Virtual Shared Memory

Virtual shared memory is a programming model that allows processors on a distributed-memory machine to
be programmed as if they had shared memory. A software layer takes care of the necessary communication
in a transparent way.

PCT uses independent Mathematica kernels as parallel processors. It is clear that these kernels do not share a
common memory, even if they happen to reside on the same machine. The package Parallel`Virtualg
Shared`, which is part of PCT, implements virtual shared memory for these remote kernels.

The package is normally set up to be autoloaded the first time you declare a shared variable. To load it
explicitly, use

Needs@"Parallel`VirtualShared "̀D
The result is a simple programming model. If a variable a is shared, any kernel that reads the variable
(simply by evaluating it), reads a common value that is maintained by the master kernel. Any kernel that

changes the value of a, for example by assigning it with a = val, will modify the one global copy of the
variable a, so that all other kernels that subsequently read the variable will see its new value.

The drawback of a shared variable is that every access for read or write requires communication over the
network, so it is slower than access to a local unshared variable.

Declaring Shared Variables

SharedVariables@8s1, s2, …<D declares the symbols si as shared variables

SharedVariables@s1, s2, …D same as SharedVariables@8s1, s2, …<D
SharedDownValues@8f1, f2, …<D declares the symvols fi as shared functions or data types

SharedDownValues@f1, f2, …D same as SharedDownValues@8f1, f2, …<D
Declaring shared variables and downvalues.

The command SharedVariables has the attribute HoldAll to prevent evaluation of the given variables,
which usually have values.

The effect of SharedVariables or SharedDownValues is that all currently connected and newly
launched remote kernels will perform all accesses to the shared variables through the master kernel.

$SharedVariables the list of currently shared variables (wrapped in Hold[])

$SharedDownValues the list of currently shared downvalues (wrapped in
Hold[])

ClearShared@s1, s2, …D unshares the given variables or downvalues

ClearShared[] unshares all variables and downvalues

Manipulating the set of shared variables and downvalues.

Clearing kernels with ClearSlaves[] will also clear any shared variables and downvalues.

68 Parallel Computing Toolkit

SharedVariables

A variable s that has been declared shared with SharedVariables@sD exists only in the master (local)
kernel. The following operations on a remote kernel are redefined so that they have the described effect.

s evaluation of the variable will consult the master kernel for
the variable’s current value

s = e, s := e assigning a value to s will perform the assignment in the
master kernel

s++, s--, ++s, --s the increment/decrement operation is performed in the
master kernel (this operation is atomic and can be used for
synchronization)

TestAndSet[s,e] if s has no value or its value is Null, set the value to e;
otherwise, do nothing and return the current value of s (this
operation is atomic and can be used for synchronization)

Part[Unevaluated[s],i] extracts a part of s; the operation will transmit only the
requested part over the MathLink connection, not the whole
value of s

s[[i]]= e replaces the specified part of the variable with a new value;
the old value of s must have the necessary structure to
permit the part assignment

Operations on shared variables.

For technical reasons, every shared variable must have a value. If the variable in the master kernel does not
have a value, it is set to Null.

Note that other forms of assignments, such as conditional assignments involving side conditions, are not
supported.

The customary form of part extraction, s[[i]], will transmit the whole value of s to the slave kernels. Use
Part[Unevaluated[s],i] to transmit only the ith component.

If a variable is Protected at the time you declare it as shared, remote kernels can only access the variable,
but not change its value.

Chapter 6: Virtual Shared Memory 69

SharedDownValues

A symbol f that has been declared shared with SharedDownValues@fD exists only in the master (local)
kernel. The following operations on a remote kernel are redefined so that they have the described effect.

f[i], f[i, j], … evaluation of the function or array element f[i], etc., will
consult the master kernel for the symbol’s current
downvalue

f[i] = e, f[i, j] = e, f[i] := e, … defining a value for f[i], etc., will perform the definition in
the master kernel

f[[i]]++, f[[i]]--, ++f[[i]],
--f[[i]]

performs the increment/decrement operation in the master
kernel (this operation is atomic and can be used for
synchronization)

TestAndSet[f[i], e] if f[i] has no value or its value is Null, sets the value to e;
otherwise, does nothing and returns the current value of
f[i] (this operation is atomic and can be used for
synchronization)

Operations on shared functions.

For technical reasons, every expression of the form f@…D must have a value. If the expression f@…D in the
master kernel does not evaluate, the result is set to Null.

Note that other forms of assignments, such as conditional assignments involving side conditions, are not
supported.

You can define shared functions, as in the following. Be sure that the symbol x does not have a value in
either the remote kernels or in the master kernel. The symbol x should not be a shared variable.

f@x_D := x^2

If you make a delayed assignment on a remote kernel, the right side of the definition will be evaluated on
the remote kernel when you use the function. In an immediate assignment, it is evaluated on the master
kernel.

f@x_D = x^2

70 Parallel Computing Toolkit

If you make a delayed assignment on the master kernel, the right side of the definition will be evaluated on
the master kernel when you use the function. To cause the right side to be evaluated on the remote kernel
nevertheless, use SendBack[].

f@x_D := SendBack@x^2D
You can implement indexed variables or arrays using shared downvalues of the form x@1D, x@2D, and so
forth.

If a function is Protected when you declare it as shared, remote kernels can only use it, but not change its
definition.

Basic Example

Load PCT, then start a few local or remote kernels.

In[1]:= Needs@"Parallel`Debug`"D
Needs@"Parallel`"D

Assign the initial value 17 to x and declare x as a shared variable.

In[2]:= x = 17;
SharedVariables@xD

At least two remote kernels should be running. Assign them to two variables for easier use.

In[4]:= r1 = $Slaves@@1DD; r2 = $Slaves@@2DD;
The kernel r1 now has access to the common value of x.

In[5]:= RemoteEvaluate@x, r1D
Out[5]= 17

Kernel r2 can change the value of x to 18.

In[6]:= RemoteEvaluate@x = 18, r2D
Out[6]= 18

Chapter 6: Virtual Shared Memory 71

The local copy of x on the master kernel has been changed as well.

In[7]:= x

Out[7]= 18

Kernel r1 sees the new value, too.

In[8]:= RemoteEvaluate@x, r1D
Out[8]= 18

Synchronization

In a situation where several concurrently running remote kernels access the same shared variable for read-
ing and writing, there is no guarantee that the value of a variable is not changed by another process between
the time you read a value and write a new value. Any other new value that another process wrote in the
meantime would get overwritten.

Example: Critical Sections

This classic example of uncontrolled access to a shared variable illustrates the problem. To try out this
example, you should have between two and 10 remote kernels running.

The code inside the first argument of ParallelMap is the client code that is executed independently on the
available remote kernels. The code reads the shared variable y, stores its value in a local variable a, per-
forms some computations (here simulated with Pause), and then wants to increment the value of y by
setting it to a + 1. But by that time, the value of y is most likely no longer equal to a, because another pro-
cess will have changed it.

72 Parallel Computing Toolkit

In[9]:= SharedVariables@yD;
In[10]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;H∗ begin critical section ∗L
a = y;
Pause@Random@DD;
y = a + 1H∗ end critical section ∗LL &,

Range@10DD
Out[11]= 81, 2, 3, 1, 2, 2, 1, 2, 1, 2<
If this code were run sequentially (by changing ParallelMap into Map), the final value of y would be 10,
but with enough parallel processes, it will most likely be lower.

In[12]:= y

Out[12]= 3

The code between reading the variable y and setting it to a new value is called a critical section. During its
execution, no other process should read or write y. To reserve a critical section, a process can acquire an
exclusive lock before entering the critical section and release the lock after leaving the critical section.

PCT provides the operation TestAndSet[lck,e] to acquire a lock. The argument lck must be a shared
variable; once a process has set lck to a unique value, no other process should set lck. To release the lock, the
process that acquired it simply sets lck to Null.

Here is the previous example with the additional code to implement locking. The processes use the unique
integer function parameter # as the value of the lock. This value is guaranteed to be different for each
process. To acquire the lock, a process performs TestAndSet@lck, #D and then checks whether the result is
equal to #. If it is, the locking was successful. If it is not, some other process currently holds the lock. The
returned value will even tell you which process holds the lock.

If locking fails, you have no choice but to try again until you eventually succeed. Note that between
attempts to acquire the lock (inside While) the process waits for a while. Otherwise, processes waiting to
acquire a lock that is reserved for another process will put a heavy load on the master kernel.

Chapter 6: Virtual Shared Memory 73

In[13]:= SharedVariables@8y, lck<D;
In[14]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;
While@TestAndSet@lck, #D =!= #, Pause@0.2DD; H∗ acquire lock ∗L
a = y;
Pause@Random@DD;
y = a + 1;
lck = Null; H∗ release lock ∗L
a + 1L &,

Range@10DD
Out[15]= 81, 5, 6, 2, 8, 9, 7, 10, 3, 4<
In[16]:= y

Out[16]= 10

Locking slows down a computation because remote processes may have to wait for one another. In this
example, the result is essentially a sequential execution. You should keep critical sections as short as possi-
ble. If a process sets a lock but never releases it, a deadlock may occur in which any other process waiting to
acquire the lock will wait forever.

You can also use other atomic operations such as lck++ for locking purposes.

Tracing the Computation of This Example

For debugging shared variable operations, you can enable tracing provided you loaded the debug package
before PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
In[3]:= SharedVariables@8y, lck<D;

74 Parallel Computing Toolkit

Now you can enable SharedMemory tracing.

In[4]:= SetOptions@$DebugObject, Trace → 8SharedMemory<D
Out[4]= 8Trace → 8SharedMemory<<
In[5]:= y = 0;

ParallelMap@H
Pause@0.4 Random@DD;
While@TestAndSet@lck, #D =!= #, Pause@0.2DD;
a = y;
Pause@Random@DD;
y = a + 1;
lck = Null;
a + 1L &,

Range@4DD
SharedMemory: slave6@n2D: TestAndSet@lck, 2D | 2

SharedMemory: slave6@n2D: y | 0

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 2

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 2

SharedMemory: slave6@n2D: y = 1 | 1

SharedMemory: slave6@n2D: lck = Null | Null

SharedMemory: slave8@n4D: TestAndSet@lck, 4D | 4

SharedMemory: slave8@n4D: y | 1

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

Chapter 6: Virtual Shared Memory 75

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 4

SharedMemory: slave8@n4D: y = 2 | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 4

SharedMemory: slave8@n4D: lck = Null | Null

SharedMemory: slave7@n3D: TestAndSet@lck, 3D | 3

SharedMemory: slave7@n3D: y | 2

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 3

SharedMemory: slave7@n3D: y = 3 | 3

SharedMemory: slave7@n3D: lck = Null | Null

SharedMemory: slave5@n1D: TestAndSet@lck, 1D | 1

SharedMemory: slave5@n1D: y | 3

SharedMemory: slave5@n1D: y = 4 | 4

SharedMemory: slave5@n1D: lck = Null | Null

Out[6]= 84, 1, 3, 2<
In[7]:= SetOptions@$DebugObject, Trace → 8<D;

76 Parallel Computing Toolkit

7 Failure Recovery, Tracing, and
Debugging

Failure of Remote Kernels

A remote kernel in use may fail at any time, due to hardware, network, or software problems. A failure of a
remote kernel will be noticed the next time PCT tries to send a command to the kernel or tries to read a
result from it. The error message Parallel::rdead is used to notify you of a failed remote kernel.

If the failed kernel had any processes assigned to it, these processes will be lost. If you are using Wait for
one of these processes, your program will never terminate because the process will never return.

Because PCT keeps track of the commands submitted to remote kernels, it can reassign these commands to
another available remote kernel if a remote kernel fails. Alternatively, it may simply terminate the waiting
processes with the result $Failed, which indicates failure. The chosen behavior is determined by the value
of the variable $RecoveryMode.

$RecoveryMode gives the current setting of the failure recovery mode

$RecoveryMode = None does not perform any failure recovery

$RecoveryMode = Abandon lets processes assigned to a failed kernel return with the
result $Failed (default)

$RecoveryMode = ReQueue reassigns processes on the failed kernel to another kernel

Possible failure recovery modes.

The ReQueue recovery mode lets you finish a computation as long as at least one kernel remains usable.
However, it may give wrong results if the remote computations produce side effects or your computation
depends on a certain number of available remote kernels. Side effects are usually present if you use virtual

shared memory. There is also the possibility of a deadlock if a process on a failed kernel acquired, but never
released, a shared resource.

You can use the Abandon recovery mode to implement your own failure recovery method.

Failure recovery affects only processes started with Queue[] and collected with Wait[]. Other parallel
commands, such as ParallelEvaluate[], cannot handle a failed remote kernel and always return
$Failed in such cases.

Tracing and Debugging

Debugging concurrent programs can be tricky. PCT offers a tracing facility that lets you monitor the
progress of your computation. To use these features, you have to load the debugging package before load-
ing PCT.

In[1]:= Needs@"Parallel`Debug`"D
In[2]:= Needs@"Parallel`"D
SetOptions[$DebugObject,
opts…]

sets debug options of PCT

Options@$DebugObjectD gives the current debug option settings

Trace→{tracers…} sets trace events

TraceHandler→handler specifies how trace events should be handled; possible
values include Print and Save

TraceList[] gives the current list of trace events

newTraceList[] initializes the trace list

Debugging functions.

78 Parallel Computing Toolkit

OptionValues[Trace] gives the list of possible tracers

MathLink traces MathLink events

SendReceive traces Send/Receive operations

Queueing traces process scheduling (Queue/Wait)

SharedMemory traces shared variable access (available only if the Virtual
Shared package has been loaded)

Tracers.

Tracing Events

To see certain events, specify the desired class of events in SetOptions[$DebugObject,Trace
->{tracers…}]. From then on everytime one of the selected events occurs, a message is printed.

In[3]:= SetOptions@$DebugObject, Trace → 8SendReceive<D
Out[3]= 8Trace → 8SendReceive<<

ParallelEvalute uses Send and Receive internally, so you can see how the computation is divided
into parts that are sent to remote kernels.

In[4]:= ParallelEvaluate@81, 2, 3, 4, 5<, PrimeD
SendReceive: Sending to slave9@localhostD: Prime@81, 2, 3<D Hq=1L
SendReceive: Sending to slave10@localhostD: Prime@84, 5<D Hq=1L
SendReceive: Receiving from slave9@localhostD: 82, 3, 5< Hq=0L
SendReceive: Receiving from slave10@localhostD: 87, 11< Hq=0L

Out[4]= 82, 3, 5, 7, 11<

To turn off tracing, specify the empty list as tracers.

In[5]:= SetOptions@$DebugObject, Trace → 8<D
Out[5]= 8Trace → 8<<

Chapter 7: Failure Recovery, Tracing, and Debugging 79

Saving Trace Events

Instead of printing trace events, PCT can save them in a list for later analysis. First, configure the tracing
system to save the events and initialize the trace list.

In[6]:= SetOptions@$DebugObject, TraceHandler → SaveD
Out[6]= 8TraceHandler → Save<

In[7]:= newTraceList@D
Now specify which events to trace as before.

In[8]:= SetOptions@$DebugObject, Trace → 8SendReceive<D
Out[8]= 8Trace → 8SendReceive<<

Run your computation.

In[9]:= ParallelEvaluate@81, 2, 3, 4, 5<, PrimeD
Out[9]= 82, 3, 5, 7, 11<

The list of events is now available in TraceList[], which is best viewed in TableForm.

In[10]:= TableForm@TraceList@D, TableDepth → 2,
TableHeadings → 8Automatic, 8"Trigger", "Event"<<D

Out[10]//TableForm=
Trigger Event

1 SendReceive Sending to slave9@localhostD: Prime@81, 2, 3<D Hq=1L
2 SendReceive Sending to slave10@localhostD: Prime@84, 5<D Hq=1L
3 SendReceive Receiving from slave9@localhostD: 82, 3, 5< Hq=0L
4 SendReceive Receiving from slave10@localhostD: 87, 11< Hq=0L

To reset the list, use newTraceList[] and to end tracing, turn it off as before.

In[11]:= SetOptions@$DebugObject, Trace → 8<D
Out[11]= 8Trace → 8<<

80 Parallel Computing Toolkit

To switch back to printing trace events, use the following.

In[12]:= SetOptions@$DebugObject, TraceHandler → PrintD
Out[12]= 8TraceHandler → Print<

The Format of Trace Events

MathLink

MathLink trace messages are described in the chapter Starting Remote Kernels.

SendReceive

A SendReceive trace message has the format

Sending to slave : expr Hq = nL

or

Receiving from slave : expr Hq = nL

where slave is the kernel involved, expr is the expression sent or received, and n is the size of the kernel’s
queue.

Queueing

A Queueing trace message has one of these formats (pid is a process ID, slave a remote kernel).

• A process is queued (with Queue[]). n is the length of the queue.

pid queued HnL

• A process is sent to a remote kernel.

pid on slave

• A process has finished and has been received from a remote kernel.

pid done

• A process has been returned to the application (inside Wait[] or WaitOne[]).

pid dequeued

Chapter 7: Failure Recovery, Tracing, and Debugging 81

SharedMemory

A SharedMemory trace message has the format

slave : access

where slave is the kernel that accessed the shared variable, and access describes how the variable was
accessed.

• The value of the variable var was requested and val was returned.

var Ø val

• The remote kernel asked to change the variable var to val. The new value val was returned.

Hvar = valL Ø val

• The value of a part of the variable var was requested and val was returned.

varPspecT Ø val

• The remote kernel asked to change a part of the variable var to val.

HvarPspecT = valL Ø val

• The remote kernel asked for exclusive access to the variable var, setting it to val. The request was
granted because var was currently unused.

TestAndSet@var, valD → val

• The remote kernel asked for exclusive access to the variable var, setting it to val. The request was
denied because var already had the different value old set by another process.

TestAndSet@var, valD → old

• The remote kernel released exclusive access to the variable var.

Hvar = NullL → Null

For shared downvalues, the expression var in the preceding examples will be a normal expression whose
head is the shared downvalue, such as f@…D.

82 Parallel Computing Toolkit

Aborting Parallel Programs

You can interrupt and abort the local (master) kernel during a concurrent computation. Any evaluations
already on remote kernels will continue to run. After an abort, wait for any processes still in the queues
using Wait, abandon them with ResetQueues, or abort the remote kernels with ResetSlaves[].

If you abort any other operation such as ParallelEvaluate[], you should follow it by ResetSlaves[].

ResetQueues[] waits for any running processes to finish and clears all
queues

ResetSlaves[] aborts all remote kernels and makes them available again

CloseSlaves[] closes the MathLink connections to all remote kernels

Recovering from interrupts and resetting remote kernels.

There is not always a reliable way to interrupt a remote kernel. A reliable way to interrupt a remote kernel is
not always available. ResetQueues[] waits for any running computations to finish normally to avoid an
interrupt. If this takes too long, try to abort the master kernel again and then use ResetSlaves[].

ResetSlaves[] tries to abort any remote kernels that are not responding. Kernels that fail to react are
closed.

If you quit the local kernel while a remote one is still doing a computation, the remote kernel may continue
running and should be aborted or eventually killed using the appropriate operating system command.

Chapter 7: Failure Recovery, Tracing, and Debugging 83

8 Sample Parallel Mathematica
Commands

PCT provides parallel implementations of several Mathematica commands. These are part of the Parallel`
Commands` package. Load this package with Needs["Parallel`Commands`"], after loading PCT.

Most parallel versions use ParallelMap or ParallelTable to distribute part of the computational work
to all available remote kernels. Others use Queue and Wait to create their own concurrent processes.

The basic parallel commands ParallelMap and ParallelTable are described in the chapter Parallel
Evaluation.

The implementations in this chapter are of a general nature and do not try to optimize the computation for a
particular number of kernels. Depending on the relation between the amount of parallel computation and
the size of the expressions that needs to be sent back and forth to the remote kernels, you may or may not
observe a speed increase over the standard sequential Mathematica commands.

The Parallel`Commands` package is distributed in source form. You are welcome to look at it and gain
insight for possible parallelization of your own algorithms. This package is covered under the PCT
copyright.

The new ParallelEvaluate[] in Version 2 of PCT made many of the implementations in this package
either trivial or obsolete. The package is provided mainly for backward compatibility.

Parallel Animation and Plotting

ParallelAnimate[command, iterator, options]

parallel version of Graphics`Animation`
Animate[command, iterator, options]

Ö

ParallelPlot3D[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of Plot3D[expr, {x, xmin, xmax}, {y, min,

ymax}, options]

ParallelDensityPlot[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of DensityPlot[expr, {x, xmin, xmax},

{y, min, ymax}, options]

ParallelContourPlot[expr, {x, xmin, xmax}, {y, min, ymax}, options]
parallel version of ContourPlot[expr, {x, xmin, xmax},
{y, min, ymax}, options]

ParallelParametricPlot3D[{x, y, z}, {u, u0, u1, (du)}, {v, v0, v1, (dv)}, options…]

parallel version of ParametricPlot3D[{x, y, z}, {u, u0,

u1, (du)}, {v, v0, v1, (dv)}, options]

Parallel animation and plotting.

Note that even though a graphic is computed in parallel, it is still rendered sequentially in the master kernel
and front end.

86 Parallel Computing Toolkit

Parallel Inner Products

ParallelInner[f, list1, list2, g]

parallel version of Inner[f, list1, list2, g]

ParallelDot[m1, m2] parallel version of Dot[m1, m2] or m1, m2; equivalent to
ParallelInner[Times, m1, m2, Plus]

Parallel inner products.

Parallelization happens along all dimensions of the first matrix or tensor. All computations involving g or
Plus with all elements of the second matrix or tensor are performed on the same remote processor.

Parallel computations cannot be nested.

Examples

Load PCT and the Parallel`Commands` packages and start a few remote kernels.

In[1]:= Needs@"Parallel`"D
Needs@"Parallel`Commands`"D

Parallel Computing Toolkit 2.0 HNovember 11, 2004L
Created by Roman E. Maeder

An Animation

Load the Graphics`Animation` package.

In[3]:= Needs@"Graphics`Animation`"D

Chapter 8: Sample Parallel Mathematica Commands 87

Try out the animation sequentially with a small number of frames.

In[4]:= Animate@Plot3D@Sin@x + tD Sin@y + t ê 2D, 8x, −2 π, 2 π<, 8y, −2 π, 2 π<,
PlotPoints −> 50, PlotRange −> 8−1, 1<D, 8t, 0, 4 π<, Frames −> 4, Closed −> TrueD;

-5

0

5
-5

0

5

-1

-0.5

0

0.5

1

-5

0

5

Now compute it in parallel with a larger number of frames.

In[5]:= ParallelAnimate@Plot3D@Sin@x + tD Sin@y + t ê 2D, 8x, −2 π, 2 π<, 8y, −2 π, 2 π<,
PlotPoints −> 50, PlotRange −> 8−1, 1<D, 8t, 0, 4 π<, Frames −> 24, Closed −> TrueD;

-5

0

5
-5

0

5

-1

-0.5

0

0.5

1

-5

0

5

Note that the rendering of the frames has to happen sequentially on the master kernel and the front end;
only their computation can be parallelized.

88 Parallel Computing Toolkit

Index
Attributes, 61

Calculations, infinite, 52
CloseSlaves, 34, 83
Commands, parallel, 85
Composition, 53
Computation, parallel, 1
Concurrency, 43
Configuration

Unix, 27
Windows, 25
Mac OS X, 27

Connection types, 9
ConnectSlave, 10, 24
Contexts, exporting, 64

Deadlock, 74
Definitions, remote, 61
DoneQ, 44

Eigenvalues, 64
Evaluation, parallel, 35
Execution, remote, 3
ExportEnvironment, 61

Inner, 54

Kernel, remote, 9

LaunchSlave, 10, 20
LinkConnect, 10
LinkCreate, 10
LinkLaunch, 9
LinkObject, 11
localhost, 14

MathLink, 1
Memory, shared, 67

Network, 30
noinit, 28
Nondeterminism, 44

Parallel`, 4
ParallelAnimate, 86
ParallelContourPlot, 86
ParallelDensityPlot, 86
ParallelDot, 87
ParallelEvaluate, 37
ParallelInner, 87
Parallelization, automatic, 42
ParallelMap, 39
ParallelParametricPlot3D, 86
ParallelPlot3D, 86
ParallelTable, 39
Process ID, 43
Processes, 43

queueing, 44
Processors, 43

Queue, 44
QueueRun, 44

Receive, 35
ReceiveIfReady, 35
Recovery, 77
RemoteEvaluate, 35
RemoteMachine, 24
ResetQueues, 83
ResetSlaves, 33, 83
rsh, 13

Send, 35
SharedDownValues, 68
SharedVariables, 68
Side effect, 40
Slave, 9

ssh, 12
Synchronization, 72

TCPIP, 15
TestAndSet, 69
Tracing, 77

Unix, 13

Variables
remote, 36
shared, 68

VirtualShared, 67

Wait, 44
WaitOne, 44
Windows, 15
winrsh, 16

$AvailableMachines, 25
$LoadFactor, 51
$mathkernel, 23
$ProcessorID, 21
$RemoteCommand, 22
$Slaves, 29

90 Parallel Computing Toolkit

