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Preface

About A Beginner’s Guide

A Beginner’s Guideis written for those students in education, mathematics, science,
and engineering degree programs that require them to take calculus, differential equa-
tions, and linear algebra and is the ideal resource for those students who are required
or desire to use Mathematica in the introductory calculus, differential equations, and
linear algebra courses. Consequently,A Beginner’s Guideis especially appropriate and
written for students enrolled in these courses.

1. The text takes advantage of only those functions frequently used by beginning
users and least likely to be adjusted in subsequent editions of the software. Occa-
sionally, some code is presented to perform more sophisticated routines without
much expanation. You should adjust these functions for your own purposes.

2. Each chapter concludes with several exercises. The exercises are designed to
help you become more familiar with the mathematics as well as the computer
algebra system.

Many subject-specific Mathematica texts are available for the more specialized areas of
studies that students encounter in upper-division undergraduate and graduate courses.

A Beginner’s Guideis especially useful for students enrolled at institutions that use
both Mathematicaand Maple. Editions of A Beginner’s Guidefor both Maple and
Mathematicaare available. The examples in each edition are nearly identical, while
the software specific edition discusses the particular computer algebra system.

Cost ofA Beginner’s Guide

If you are a student enrolled in a mathematics course at Georgia Southern University,
Statesboro, Georgia, there is no cost to useA Beginner’s Guide. Otherwise, if you are
located within the United States, the cost of usingA Beginner’s Guideis $6.00. Please
include your e-mail address with your $6.00 so we can thank you when we receive it.
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If you are not located within the continental United States, the cost of usingA Begin-
ner’s Guideis a colorful postcard mailed with a pretty stamp from your area of the
world. Please include your e-mail address on your postcard so we can thank you when
we receive it. Please send your $6.00, if located within the United States, or postcard,
if not located within the United States, to

Jim Braselton
Department of Mathematics
P.O. Box 8093
Georgia Southern University
Statesboro, Georgia 30460-8093

Funds received are used for scholarships. Postcards are displayed around our offices.
In advance, we thank you for participating in the honor system. Contact us directly to
make arrangements to distributeA Beginner’s Guideto groups.

Remember thatA Beginner’s Guideis a work in progress. Please mail comments,
errors, and suggestions for improvement to the above address or by e-mail tojim-
bras@gsvms2.cc.gasou.edu. Although this is aPreliminary Editionof A Be-
ginner’s Guide, several individuals have already offered feedback on various drafts.
Thank you all for the time you have spent examiningA Beginner’s Guide.

Martha Abell

James Braselton

Lorraine Braselton

Statesboro, Georgia

February, 2002



Chapter 1

Getting Started with
Mathematica

We begin by introducing the essentials of Mathematica. The examples presented are
taken from algebra, trigonometry, and calculus topics that you are familiar with to assist
you in becoming acquainted with the Mathematica computer algebra system.

We assume that Mathematica has been correctly installed on the computer you are
using. If you need to install Mathematica on your computer, please refer to the docu-
mentation that came with the Mathematica software package.

1.1 Running Mathematica

Let’s begin our Mathematica session by starting Mathematica. Start Mathematica on
your computer system. If you are not already in Mathematica or cannot start it, look
for a folder or directory titled ”Mathematica”. Once you have located the Mathematica
folder (or directory) open it. The directory typically looks like that shown in Figure 1.1.
Using Windows or Macintosh mouse or keyboard commands, activate the Mathematica
program by clicking or double-clicking appropriately.

Figure 1.1: The Mathematica folder on a typical computer.

9
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Figure 1.2: A two-dimensional plot

Remark.ThroughoutA Beginner’s Guide, we assume that you are working in Mathe-
matica. If you are not working in Mathematica, locate the Mathematica folder or di-
rectory as described previously and start the Mathematica program. Ask for assistance
from your instructor or lab assistants, if necessary, to start the Mathematica program.

Once Mathematica has been started, computations can be carried out immediately.
Mathematica commands are typed and the black horizontal line is replaced by the
command, which is then evaluated by pressingENTER. Note that pressingENTER
or RETURN evaluates commands and pressingSHIFT-RETURN yields a new line.
Output is displayed below input. We illustrate some of the typical steps involved inWith some operating systems,ENTER eval-

uates commands andRETURN yields a new

line

working with Mathematica in the calculations that follow. In each case, we type the
command and pressENTER. Mathematica evaluates the command, displays the result,
and inserts a new horizontal line after the result. For example, entering

In[1]:= N[p,50]

Out[1]= 3.141592653589793238462643383279502884197169399375106

2.09749446

returns a 50-digit approximation ofp.

The next calculation can then be typed and entered in the same manner as the first. For
example, entering

In[2]:= Solve[xˆ3 - 2x + 1 == 0]

Out[2]= 9{x Ø 1},9x Ø
1

2
I - 1 -

0
5M=,9x Ø

1

2
I - 1 +

0
5M==

solves the equationx3 - 2x + 1 = 0 for x. Subsequent calculations are entered in the
same way. For example, entering

In[3]:= Plot[{Sin[x],2Cos[2x]},{x,0,3p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.5]}]

graphs the functionsy = sinx andy = 2 cos2x and on the interval[0,3p] shown in
Figure 1.2. Similarly, entering
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Figure 1.3: A three-dimensional plot

Figure 1.4: The file menu

In[4]:= Plot3D[Sin[x + Cos[y]],{x,0,4p},{y,0,4p},

PlotPoints- > {30,30}]

graphs the functionz = sin(x + cosy)) for 0 § x § 4p and 0§ y § 4p in Figure 1.3.

You can also enter input using thePalettes that are accessed from theFile menu. (See
Figure 1.4.) Two palettes are shown in Figure 1.5.

You can change how your input and output appear in your Mathematica notebook by
going toCell under the menu and selectingConvert To, Display As, Default Input
FormatType, Default Output FormatType , orDefault Inline FormatType as shown
in Figure 1.6. Portions ofInputForm or StandardForm can be selected, copied, and
pasted elsewhere in your Mathematica notebook. Additional adjustments can be made
from the Format menu. (See Figure 1.7.) This book includes real input and output from
Mathematica. Appearances of input and output may vary depending on the version of
Mathematica used, the fonts used to display input and output, the quality of the monitor,
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Figure 1.5: Two palettes that can be used to enter input

Figure 1.6: Available input and output display options
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Figure 1.7: Additional formatting options

and the resolution and type of printer used to print the Mathematica worksheet: the
results displayed on your computer may not be physically identical to those shown
here.

Mathematica sessions are terminated by by selectingQuit from theFile menu, or by
using a keyboard shortcut as with other applications. They can be saved by referring to
Savefrom theFile menu.

Remark.Input and text regions in notebook interfaces can be edited. Editing input
can create a notebook in which the mathematical output does not make sense in the
sequence it appears. It is also possible to simply go into a notebook and alter input
without doing any recalculation. This also creates misleading notebooks. Hence, com-
mon sense and caution should be used when editing the input regions of notebooks.
Recalculating all commands in the notebook will clarify any confusion.

In order for the Mathematica user to take full advantage of the capabilities of this soft-
ware, an understanding of its syntax is imperative. The goal ofA Beginner’s Guideis to
introduce the reader to the Mathematica commands and sequences of commands most
frequently used by beginning users in calculus, linear algebra, and differential equa-
tions courses. Although all of the rules of Mathematica syntax are far too numerous to
list here, knowledge of the following five rules equips the beginner with the necessary
tools to start using the Mathematica program with little trouble.

Five Basic Rules of Mathematica Syntax

1. The arguments of functions are given in brackets [...].

2. Every word of a built-in Mathematica function begins with a capital letter.

3. Multiplication is represented by a* or space between characters . Enter2*x*y
or 2x yto evaluate 2xy not2xy.
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Figure 1.8: Standard Mathematica packages

4. Powers are denoted by a ˆ. Enter(8*xˆ3)ˆ(1/3) to evaluate(8x3)1/3 =
81/3(x3)1/3 = 2x instead of8xˆ1/3, which returns8x/3.

5. Mathematica follows the order of operationsexactly. Thus, entering(1+x)ˆ1/x
returns(1+x)1

x while (1+x)ˆ(1/x) returns(1 + x)1/x.

Remark.If you get no response or an incorrect response, you may have entered
or executed the command incorrectly. In some cases, the amount of memory
allocated to Mathematica can cause a crash; like people, Mathematica is not
perfect and some errors can occur.

1.2 Loading Packages

Mathematica’s modularity, which gives Mathematica a great deal of flexibility, helps
minimize Mathematica’s memory requirements. Nevertheless, although Mathematica
contains many built-in functions that are loaded immediately when called, some other
functions are contained in packages that must be loaded separately.

We access Mathematica’s help facility from the menu to view a list of the available
package groups shown in Figure 1.8.

A particularly useful group of packages is contained in theGraphics directory. (See
Figure 1.9.)

Weillustrate the use of theFilledPlot package, which is contained in theGraphics
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Figure 1.9: A description of the standardGraphics andGeometrypackages

directory. (See Figure 1.10.)

Wefirst load the functions contained in theGraphics directory and then useFilled-
Plot to shade the region between the graphs ofy = sinx andy = cosx on the interval
[0,2p] shown in Figure 1.11.

In[5]:= << Graphics‘

In[6]:= FilledPlot[{Sin[x],Cos[x]},{x,0,2p},

AspectRatio- > Automatic]

1.3 Getting Help from Mathematica

Becoming competent with Mathematica can take a serious investment of time. Hope-
fully, messages that result from syntax errors are viewed lightheartedly. Ideally, instead
of becoming frustrated, beginning Mathematica users will find it challenging and fun to
locate the source of errors. Frequently, Mathematica’s error messages indicate where
the error(s) has (have) occurred. In this process, it is natural that one will become more
proficient with Mathematica.

As we have seen previously, you can access Mathematica’s help facility directly from
the menu (see Figures 1.12 and 1.13).

From the main help window, you can search a variety of topics, as illustrated in Figures
1.14 and 1.15.
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Figure 1.10: A description of theFilledPlot package
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Figure 1.11:y = sinx andy = cosx on the interval[0,2p]

Figure 1.12: Accessing Mathematica help from the menu
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Figure 1.13: The main help window

Figure 1.14: Help regardingPower
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Figure 1.15: The Mathematica Help browser
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You can obtain inline help using either? or ??. Generally,?Command returns basic
information regarding the syntax ofCommand while ??Command returns the basic
syntax as well as a list of associated options. For example, entering

In[7]:= ?Plot

"Plot[f,x,xmin,xmax]generatesaplotof

fasafunctionofxfromxmintoxmax.Plot[

f1,f2,...,x,xmin,xmax]plotsseveral

functionsfi."

returns the basic syntax for thePlot function. Similarly, entering?Plot3D returns
the basic syntax for thePlot3D function while entering??Plot3D returns the basic
syntax and options for thePlot3D function.

The Help Browser offers additional tutorial and assistance for beginners in theGet-
ting Started/Demossection. Many beginners find the topics included in theTour of
Mathematica particularly useful.
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1.4 Numerical Calculations and Built-In Functions

1.4.1 Numerical Calculations

The basic arithmetic operations (addition, subtraction, multiplication, and division) are
performed in the natural way with Mathematica. Mathematicapreciselyfollows the
standard order of operations.

1. ”a plusb” is entered asa + b.

2. ”a minusb” is entered asa - b.

3. ”a timesb” is entered asa * b.

4. ”a divided byb” is entered asa/b. Generally, if a andb are integers,a/b results
in the reduced fraction.

5. ”a raised to the powerb” is entered asa ˆ b.

Example 1. Calculate (a) 121+542; (b) 3231-9876; (c)(-23)(76); (d) (22341)(832748)(387281);
(e) 467

31 ; and(f) 12315
35 .
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Solution. These calculations are carried out in Figure 1.16. In (f), Mathematica sim-
plifies the quotient because the numerator and denominator have a common factor of
5. In each case, the input is typed and then evaluated by pressingENTER.

Figure 1.16: Arithmetic operations carried out in Mathematica.

The terman/m = m
0

an = I m
0

aMn
is entered asaˆ(n/m). Forn/m = 1/2, the command

Sqrt[a] can be used instead. Usually, the result is returned in unevaluated form but
N can be used to obtain numerical approximations to virtually any degree of accuracy.
With N[expr,n], Mathematica yields a numerical approximation ofexpr to n dig-
its of precision, if possible. At other times,Simplify can be used to produce the
expected results.

Example 2. Compute (a)
0

27 and (b)
3

0
82 = 82/3.

Solution. (a) Mathematica automatically simplifies
0

27 = 3
0

3.

In[8]:= Sqrt[27]

Out[8]= 3
0
3

We useN to obtain an approximation of
0

27. N[number] returns a numerical approxi-

mation ofnumber.
In[9]:= N[Sqrt[27]]

Out[9]= 5.19615

(b) Mathematica automatically simplifies 82/3.

In[10]:= 8ˆ(2/3)

Out[10]= 4
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When computing odd roots of negative numbers, Mathematica’s results are surprising
to the novice. Namely, Mathematica returns a complex number. We will see that this
has important consequences when graphing certain functions.

Example 3. Calculate (a)13 I- 27
64M2

and (b)I- 27
64M2/3

.

Solution. (a) Because Mathematica follows the order of operations,(-27/64)ˆ2/3
first computes(-27/64)2 and then divides the result by 3.

In[11]:= (-27/64)ˆ2/3

Out[11]=
243

4096

(b) On the other hand,(-27/64)ˆ(2/3) raises-27/64 to the 2/3 power. Mathe-
matica does not automatically simplifyI- 27

64M2/3
.

In[12]:= (-27/64)ˆ(2/3)

Out[12]=
9

16
(-1)2/3

However, when we useN, Mathematica returns the numerical version of the principal
root of I- 27

64M2/3
.

In[13]:= N[(-27/64)ˆ(2/3)]

Out[13]= -0.28125 + 0.487139 i

To obtain the result

K-
27
64

O
2/3

=
ÁËËËËËË
È

3

2
-27
64

˜̄
¯̄̄
¯̄
˘

2

= K-
3
4

O
2

=
9
16

,

which would be expected by most algebra and calculus students, we load theRe-
alOnly package that is contained in theMiscellaneousdirectory. Then,

In[14]:= << Miscellaneous‘RealOnly‘

In[15]:= (-27/64)ˆ(2/3)

Out[15]=
9

16

returns the result 9/16.

1.4.2 Built-in Constants

Mathematica has built-in definitions of many commonly used constants. In particular,
e º 2.71828 is denoted byE, p º 3.14159 is denoted byPi, andi =

0
-1 is denoted

by I. Usually, Mathematica performs complex arithmetic automatically.

Example 4. Entering

In[16]:= N[e,50]
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Out[16]= 2.718281828459045235360287471352662497757247093699959

7.496696760000000000000000000000000000000000000000108

returns a 50 digit approximation ofe. Entering

In[17]:= N[p,25]

Out[17]= 3.141592653589793238462643

returns a 25 digit approximation ofp. Entering

In[18]:= (3 + i)/(4 - i)

Out[18]=
11

17
+
7 i

17

performs the division(3 + i)/ (4 - i) and writes the result in standard form.

1.4.3 Built-In Functions

Mathematica contains numerous mathematical functions.

Functions frequently encountered by beginning users include the exponential func-
tion, Exp[x]; thenatural logarithm,Log[x]; the absolute value function,Abs[x];
the trigonometric functionsSin[x], Cos[x], Tan[x], Sec[x], Csc[x], and
Cot[x]; the inverse trigonometric functionsArcSin[x],ArcCos[x],ArcTan[x],
ArcSec[x],ArcCsc[x], andArcCot[x]; the hyperbolic trigonometric functions
Sinh[x],Cosh[x], andTanh[x]; and their inversesArcSinh[x],ArcCosh[x],
andArcTanh[x]. Generally, Mathematica tries to return an exact value unless oth-
erwise specified withN.

Several examples of the natural logarithm and the exponential functions are given next.
Mathematica often recognizes the properties associated with these functions and sim-
plifies expressions accordingly.

Example 5. Entering

In[19]:= N[Exp[-5]]

Out[19]= 0.00673795 N[number] returns a numerical approxi-

mation ofnumber.returns an approximation ofe-5 = 1/e5. Entering
Exp[x] computesex. EnterE to compute

e º 2.718.In[20]:= Log[Exp[3]]

Out[20]= 3 Log[x] computes lnx. lnx and ex are

inverse functions (lnex = x and eln x =

x) and Mathematica uses these proper-

ties when simplifying expressions involving

these functions.

computes lne3 = 3. Entering

In[21]:= Exp[Log[4]]

Out[21]= 4

computeseln 4 = 4. Entering

In[22]:= Abs[-p]

Out[22]= p
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computes| - p| = p. Entering Abs[x] returns the absolute valueo

In[23]:= Abs[(3 + 2i)/(2 - 9i)]

Out[23]=

2
13

85

computes|(3 + 2i)/ (2 - 9i)|. Entering

In[24]:= Sin[p/12]

Out[24]=
-1 +

0
3

2
0
2

computes the exact value of sin(p/12). Although Mathematica cannot compute the
exact value of tan 1000, enteringN[number] returns a numerical approxi-

mation ofnumber.
In[25]:= N[Tan[1000]]

Out[25]= 1.47032

returns an approximation of tan 1000. Similarly, entering

In[26]:= N[ArcSin[1/3]]

Out[26]= 0.339837

returns an approximation of sin-1(1/3) and entering

In[27]:= ArcCos[2/3]//N

Out[27]= 0.841069

returns an approximation of cos-1(2/3).

Mathematica is able to apply many identities that relate the trigonometric and expo-
nential functions using the functionsTrigExpand, TrigFactor, TrigReduce,
TrigToExp, andExpToTrig.

In[28]:= ?TrigExpand

"TrigExpand[expr]expandsouttrigonometric

functionsinexpr."

In[29]:= ?TrigFactor

"TrigFactor[expr]factorstrigonometricfunctions

inexpr."

In[30]:= ?TrigReduce

"TrigReduce[expr]rewritesproductsandpowers

oftrigonometricfunctionsinexprinterms

oftrigonometricfunctionswithcombinedarguments."

In[31]:= ?TrigToExp

"TrigToExp[expr]convertstrigonometricfunctions

inexprtoexponentials."

In[32]:= ?ExpToTrig

"ExpToTrig[expr]convertsexponentialsinexpr

totrigonometricfunctions."
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Example 6. Mathematica does not automatically apply the identity sin2 x+cos2 x = 1.

In[33]:= Cos[x]ˆ2 + Sin[x]ˆ2

Out[33]= Cos[x]2 + Sin[x]2

To apply the identity, we useSimplify. Generally, Simplify[expression]
attempts to simplifyexpression.

In[34]:= Simplify[Cos[x]ˆ2 + Sin[x]ˆ2]

Out[34]= 1

UseTrigExpand to multiply expressions or to rewrite trigonometric functions. In
this case, entering

In[35]:= TrigExpand[Cos[3x]]

Out[35]= Cos[x]3 - 3 Cos[x] Sin[x]2

writes cos 3x in terms of trigonometric functions with argumentx. We use theTri-
gReduce function to convert products to sums.

In[36]:= TrigReduce[Sin[3x]Cos[4x]]

Out[36]=
1

2
(-Sin[x] + Sin[7 x])

We useTrigExpand to write

In[37]:= TrigExpand[Cos[2x]]

Out[37]= Cos[x]2 - Sin[x]2

in terms of trigonometric functions with argumentx. We useExpToTrig convert
exponential expressions to trigonometric expressions.

In[38]:= ExpToTrig[1/2(Exp[x] + Exp[-x])]

Out[38]= Cosh[x]

Similarly, we useTrigToExp to convert trigonometric expressions to exponential
expressions.

In[39]:= TrigToExp[Sin[x]]

Out[39]=
1

2
i Ie-i x - ei xM

Usually, you can useSimplify to apply elementary identities.

In[40]:= Simplify[Tan[x]ˆ2 + 1]

Out[40]= Sec[x]2
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1.5 The Basics

Beginning users of Mathematica typically need to acquire the ability to define, manip-
ulate, and graph functions quickly. We illustrate how to perform these operations in the
context of several examples from algebra, trigonometry, and calculus. Selected topics
from calculus are discussed in more detail in Chapter 2. More sophisticated graphing
techniques than those discussed here are introduced as they are needed.

Be careful to enter expressions precisely because Mathematica follows the order of
operations in the standard order. Enteringxy defines the symbol ”xy”. On the other
hand, enteringx y or x*y denotes the product ofx and y, xy. Similarly, entering
(1+x)ˆ1/x computes

(1 + x)1

x

while entering(1+x)ˆ(1/x) computes

(1 + x)1/x

because Mathematica follows the order of operationsexactly.

For beginners, translations from standard mathematical notation to Mathematica can
be particularly problematic when trigonometric functions are involved. For example,
the expression sinx2 means that givenx, squarex, and compute the sine of the result. It
is entered in Mathematica usingSin[xˆ2]. On the other hand, the expression sin2 x
means that givenx, compute the sine ofx, and square the result. The expression is
entered in Mathematica usingSin[x]ˆ2.

1.5.1 Elementary Operations on Functions of a Single Variable

In Mathematica, an elementary function of a single variable,y = f (x) = expression in x,
is typically defined using the form

f[x_]=expression in x.

Once the functiony = f (x) has been defined, a basic graph is generated withPlot:

Plot[f[x],{x,a,b}]

graphsy = f (x) for a § x § b.

Example 7. Entering

In[41]:= Expand[(2x + 1)(3x - 1)(x - 1)]

Out[41]= 1 - 2 x - 5 x2 + 6 x3
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Figure 1.17: A basic graph off (x) = 6x3 - 5x2 - 2x + 1 for -1 § x § 3/2

expands(2x + 1)(3x - 1)(x - 1) = 6x3 - 5x2 - 2x + 1. Entering

In[42]:= f[x ] = 6xˆ3 - 5xˆ2 - 2x + 1

Out[42]= 1 - 2 x - 5 x2 + 6 x3

definesf (x) = 6x3 - 5x2 - 2x + 1 and

In[43]:= Plot[f[x],{x,-1,3/2}]

graphsf (x) = 6x3 - 5x2 - 2x + 1 for -1 § x § 3/2 in Figure 1.17.

For details regardingPlot and its options enter?Plot or ??Plot or access help
from the menu. (See Figure 1.18.) Frequently usedPlot options are illustrated in the
following examples.

Equations are solved withSolve:

Solve[lhs==rhs,x]

attempts to solve the equationlhs = rhs for x;

Solve[{system of equations},{variables}]

attempts to solvesystem o f equationsfor variables. In Mathematica, be sure to placeRemember to include a semi-colon if you

wish to suppress the result.adouble equals sign (==) between the left and right-hand side of each equation.

Example 8. Graphg(x) =
0

4-x2

x2-1
.

Solution. In Mathematica, the square root function,
0

x, is represented bySqrt[x].
We define g(x) and then graphg(x) for -10 § x § 10 with Plot in Figure 1.19. Similarly, the absolute value function,|x|, is

represented byAbs[x].

We havechosen[-10,10] because it is a typ-

ical first choice for many students.

Observe that we obtain numerous error messages, although the resulting plot appears
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Figure 1.18: ThePlot help window

reasonable. Notice that the plot is only shown for-2 § x § 2, not-10 § x § 10 as
requested

In[44]:= g[x ] = Sqrt[4 - xˆ2]/(xˆ2 - 1)

Out[44]=

0
4 - x2

-1 + x2

In[45]:= Plot[g[x],{x,-10,10}]

Plot :: "plnr" : "g[x] is not a machine-size real

numberatx = -9.99999916666666699‘."

Plot :: "plnr" : "g[x] is not a machine-size real

numberatx = -9.18866016854168421‘."

Plot :: "plnr" : "g[x] is not a machine-size real

numberatx = -8.30382400281252586‘."

General :: "stop" : "FurtheroutputofPlot :: p̈lnr

¨

will be suppressed during this calculation."

Proceeding more carefully, we find the domain ofg(x). The domain ofg(x) consists
of the values ofx where the radicand is nonnegativeand the denominator is not equal
to zero. We solvex2 - 1 = 0 with Solve. To solve 4- x2 ¥ 0 we useInequal-
itySolve, which is contained in theInequalitySolve package located in the
Algebra directory.

In[46]:= << Algebra‘InequalitySolve‘
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Figure 1.19: Mathematica attempts to choose an appropriate viewing window
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Figure 1.20: A good graph ofg(x)

In[47]:= Solve[xˆ2 - 1 == 0]

Out[47]= {{x Ø -1},{x Ø 1}}

In[48]:= InequalitySolve[4 - xˆ2 >= 0,x]

Out[48]= -2 § x § 2

Weconclude that the domain is[-2, -1) » (-1,1) » (1,2].

We now usePlot to graphg(x) for -2 § x § 2 in Figure 1.20. We use thePlo-
tRange option to specify that thex-values displayed correspond to-2 § x § 2 and
they-values displayed correspond to-10 § y § 10.

In[49]:= Plot[g[x],{x,-2,2},PlotRange- > {-10,10}]

Of course, vertical lines are never the graphs of functions. In this example, the vertical
lines correspond to the vertical asymptotesx = 1 andx = -1 of g(x).

Example 9. Solve

x = y - 1
x2 = 2y + 6
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for x andy.

Solution. We illustrate several techniques. First, we useSolve to solve the system
for x andy.

In[50]:= Solve[{x == y - 1,xˆ2 == 2y + 6}]

Out[50]= {{y Ø -1,x Ø -2},{y Ø 5,x Ø 4}}

By hand, we solve each equation fory and obtainy = x + 1 andy = 1
2(x2 - 6). Then,

1
2

(x2 - 6) = x + 1

1
2

x2 - x - 4 = 0

x2 - 2x - 8 = 0
(x - 4)(x + 2) = 0

sox = 4 or x = -2. We perform the same steps using Mathematica withSimplify
andFactor.

Remark.Simplify[expression] attempts to simplifyexpression; Factor[expression]
attempts to factorexpression.

In[51]:= s1 = Simplify[1/2(xˆ2 - 6) - (x + 1)]

Out[51]= -4 - x +
x2

2

In[52]:= Factor[s1]

Out[52]=
1

2
(-4 + x) (2 + x)

Wealso illustrate using theSolve function to solve1
2(x2 - 6) = x + 1.

In[53]:= xvals = Solve[1/2(xˆ2 - 6) == (x + 1)]

Out[53]= {{x Ø -2},{x Ø 4}}

Finally, we usePlot to graphy = x + 1 andy = 1
2(x2 - 6) together for-3 § x § 5

in Figure 1.21. We illustrate the use of thePlotStyle andAspectRatio options.
PlotStyle->{GrayLevel[0],GrayLevel[0.3]} specifies that the first plot
be generated in black and the second in gray.AspectRatio->Automatic speci-
fies that the plot be generated to scale.

In[54]:= Plot[{x + 1,1/2(xˆ2 - 6)},{x,-3,5},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

AspectRatio- > Automatic]

In the figure, we see thatx + 1 ¥ 1
2(x2 - 6) for -2 § x § 4. Thus, the area of the region

bounded by the graphs ofy = x + 1 andy = 1
2(x2 - 6) is

‡
4

-2
C(x + 1) -

1
2

(x2 - 6)G dx.

Generally,Integrate[f[x],{x,a,b}] attempts to evaluateŸ
b

a
f (x) dx. Thus,
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Figure 1.21: Graphs ofy = x + 1 andy = 1
2(x2 - 6)
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Figure 1.22: Graph off (x)

In[55]:= Integrate[(x + 1) - 1/2(xˆ2 - 6),{x,-2,4}]

Out[55]= 18

computesŸ
4

-2
A(x + 1) - 1

2(x2 - 6)E dx = 18.

Example 10. Graph

f (x) = (1 + x)1/x

for 0 < x § 5.

Solution. The domain off (x) is (0, ¶). After definingf (x), we usePlot to graphf (x)
for 0 < x § 5 in Figure 1.22.

In[56]:= f[x ] = (1 + x)ˆ(1/x)

Out[56]= (1 + x)
1
x

In[57]:= Plot[f[x],{x,0,5},PlotRange- > {0,5},

AspectRatio- > Automatic]

Even thoughf (x) is undefined ifx = 0, Mathematica does not complain when we
instruct it to begin the plot atx = 0. In the plot, we see thatx = 0 does not appear to
be an asymptote and appears as though limxØ0+ f (x) exists. We useTable to computeTable[a[k],{k,n,m}] generates the

sequencean, an+1, an+2 . . . am-1, am. the value off (x) for x = 1, 1/10, . . ., 1/100000– values ofx ”near” x = 0.

In[58]:= Table[{10ˆ(-k)//N,f[10ˆ(-k)//N]},{k,0,5}]
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Out[58]= {{1.,2.},{0.1,2.59374},

{0.01,2.70481},

{0.001,2.71692},

{0.0001,2.71815},

{0.00001,2.71827}}

Notice that the function values appear to be getting closer toe º 2.718. In fact, in
calculus, we learn that

lim
xØ0+

(1 + x)1/x = e.

Mathematica is able to calculate this limit withLimit. Limit[f[x],x->a attempts to compute

limxØa f (x)
In[59]:= Limit[f[x],x- > 0]

Out[59]= e

Example 11. Let f (x) = 6x3 - 5x2 - 2x + 1. (a) Evaluatef (2) and f (1). (b) Compute
and simplify f (1+h)- f (1)

h . (c) Find limhØ0
f (1+h)- f (1)

h . (d) Solve f (x) = 0. (e) Graphf (x).
(f) Graph f (x) together with the line tangent to the graph off (x) at the point withx-
coordinatex = 1. (g) Find f £(x). (h) Solve f £(x) = 0 exactly and numerically. (i) Find

Ÿ f (x) dx. (j) EvaluateŸ
1/3

-1/2
f (x) dx.

Solution. After defining f (x), we compute f (2) and f (1).

In[60]:= f[x ] = 6xˆ3 - 5xˆ2 - 2x + 1

Out[60]= 1 - 2 x - 5 x2 + 6 x3

In[61]:= f[2]

Out[61]= 25

In[62]:= f[1]

Out[62]= 0

We compute f (1+h)- f (1)
h naming the results1.

In[63]:= s1 = (f[1 + h] - f[1])/h

Out[63]=
1 - 2 (1 + h) - 5 (1 + h)2 + 6 (1 + h)3

h

s1 is then simplified withSimplify and nameds2.

In[64]:= s2 = Simplify[s1]

Out[64]= 6 + 13 h + 6 h2

The limit of s2 ash Ø 0 is computed withLimit.

In[65]:= Limit[s2,h- > 0]

Out[65]= 6

Note that the entire computation can be combined into a single command.
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Figure 1.23: Graph off (x)

In[66]:= Limit[(f[1 + h] - f[1])/h,h- > 0]

Out[66]= 6

UsingFactor, we seethat the zeros off (x) arex = 1/3, 1, and-1/2.

In[67]:= Factor[f[x]]

Out[67]= (-1 + x) (1 + 2 x) (-1 + 3 x)

We confirm by solvingf (x) = 0 with Solve.

In[68]:= Solve[f[x] == 0]

Out[68]= 99x Ø -
1

2
=,9x Ø

1

3
=,{x Ø 1}=

A basic graph of f (x) is generated withPlot in Figure 1.23.

In[69]:= Plot[f[x],{x,-1,3/2}]

Becausef (1) = 0 and the slope of the line tangent to the graph off (x) at the point with
x-coordinatex = 1 is 6, an equation of the line tangent to the graph off (x) at the point
(1,0) is y - 0 = 6(x - 1) or y = 6(x - 1). Wegraph f (x) andy = 6(x - 1) with Plot in
Figure 1.24.

In[70]:= Plot[{f[x],6(x - 1)},{x,-3/2,3/2},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]}]

We find f £(x) with ’.f’[x] computesdy/dx= f £(x).

In[71]:= df = f£[x]

Out[71]= -2 - 10 x + 18 x2

We useSolve to find that f £(x) = 0 if x = 5
18 ≤ 1

18

0
61 and name these valuesdf0.

In[72]:= df0 = Solve[f£[x] == 0]

Out[72]= 99x Ø
1

18
I5 -

0
61M=,9x Ø

1

18
I5 +

0
61M==

We then useN to obtain approximations of the exact values.N[number] returns an approximation of

number.
In[73]:= N[df0]
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Figure 1.24: Graphs off (x) andy = 6(x - 1)

Out[73]= {{x Ø -0.156125},

{x Ø 0.711681}}

Finally, we useIntegrate to evaluateŸ f (x) dx andŸ
1/3

-1/2
f (x) dx. Integratef[x],x] attempts to

evaluate Ÿ f (x), dx while Inte-

gratef[x],x,a,b] attempts to

computeŸ
b

a
f (x) dx.

In[74]:= Integrate[f[x],x]

Out[74]= x - x2 -
5 x3

3
+
3 x4

2

In[75]:= i0 = Integrate[f[x],{x,-1/2,1/3}]

Out[75]=
1625

2592

In[76]:= N[i0]

Out[76]= 0.626929

The results indicate thatŸ f (x) dx = 3
2x4 - 5

3x3 - x2 + x + C andŸ
1/3

-1/2
f (x) dx = 1625

2592 º
0.6269.

Example 12. Let

f (t) =
t3

t2 - 1
.

(a) Compute and simplify limhØ0
f (t+h)- f (t)

h . (b) Computef £(t) and f ££(t). (c) Graph
f (t), f £(t), and f ££(t).

Solution. After defining f (t), we compute f (t+h)- f (t)
h , naming the results1.

In[77]:= f[t ] = tˆ3/(tˆ2 - 1)

Out[77]=
t3

-1 + t2

In[78]:= s1 = (f[t + h] - f[t])/h

Out[78]=
- t3

-1+t2
+ (h+t)3

-1+(h+t)2

h
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s1 is simplified withTogether. (Together[fraction] writes complex frac-
tions as a single fraction.)

In[79]:= s2 = Together[s1]

Out[79]=
-h2 - 3 h t - 3 t2 + h2 t2 + 2 h t3 + t4

(-1 + t2) (-1 + h2 + 2 h t + t2)

Limit is used to compute limhØ0
f (t+h)- f (t)

h . Theresult is f £(t).

In[80]:= Limit[s2,h- > 0]

Out[80]=
-3 t2 + t4

(-1 + t2)
2

Weobtain the same result usingTogether and’ in df.

In[81]:= df = f£[t]//Together

Out[81]=
-3 t2 + t4

(-1 + t2)
2

We solvef £(t) = 0 with Solve.

In[82]:= Solve[df == 0]

Out[82]= 9{t Ø 0},{t Ø 0},9t Ø -
0
3=,9t Ø

0
3==

We compute and simplifyf ££(t) with Together and’’ and then useSolve to solve
f ££(t) = 0.

In[83]:= d2f = f££[t]//Together

Out[83]=
2 (3 t + t3)

(-1 + t2)
3

In[84]:= Solve[d2f == 0]

Out[84]= 9{t Ø 0},9t Ø -i
0
3=,9t Ø i

0
3==

Finally, we usePlot to graphf (t), f £(t), and f ££(t) together in Figure 1.25, illustrating
the use of thePlotRange, PlotStyle, andAspectRatio options.

In[85]:= Plot[{f[t],df,d2f},

{t,-6,6},PlotRange- > {-5,5},PlotStyle- >

{GrayLevel[0],Dashing[{0.01}],GrayLevel[0.3]},

AspectRatio- > Automatic]

Be especially careful when manipulating trigonometric functions.

Example 13. Let f (q) = sin 2q + 2 cosq, 0 § q § 2p. (a) Solve f £(q) = 0. (b) Graph
f (q) and f £(q).

Solution. After defining f (q), we useD to computef £(q) and then useSolve to solve
f £(q) = 0.D[f[x],x] computes f £(x);

D[f[x],{x,n}] computesf (n)(x).
In[86]:= f[q ] = Sin[2q] + 2Cos[q]

Out[86]= 2 Cos[q] + Sin[2 q]
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Figure 1.25: Graphs off (t), f £(t), and f ££(t)

In[87]:= df = D[f[q],q]

Out[87]= 2 Cos[2 q] - 2 Sin[q]

In[88]:= Solve[df == 0,q]

Solve :: "ifun" : "Inversefunctionsarebeingused

bySolve, so some solutions may not be found."

Out[88]= 99q Ø -
p

2
=,9q Ø

p

6
=,9q Ø

5 p

6
==

Notice that-p/2 is not between 0 and 2p. Moreover,p/6 and5p/6 arenot the only
solutions of f £(q) = 0 between 0 and 2p. Proceeding by hand, we use the identity
cos 2q = 1 - 2 sin2 q and factor:

2 cos2q - 2 sinq = 0
1 - 2 sin2 q - sinq = 0
2 sin2 q + sinq - 1 = 0

(2 sinq - 1)(sinq + 1) = 0

so sinq = 1/2 or sinq = -1. Because we are assuming that 0§ q § 2p, weobtain the
solutionsq = p/6, 5p/6, or 3p/2. We perform the same steps with Mathematica. expression /. x->y+ replaces

all occurrences of x in

expressionby y.
In[89]:= s1 = TrigExpand[df]

Out[89]= 2 Cos[q]2 - 2 Sin[q] - 2 Sin[q]2

In[90]:= s2 = s1/.Cos[q]ˆ2- > 1 - Sin[q]ˆ2

Out[90]= -2 Sin[q] - 2 Sin[q]2 + 2 I1 - Sin[q]2M

In[91]:= Factor[s2]

Out[91]= -2 (1 + Sin[q]) (-1 + 2 Sin[q])

Finally, we graphf (q) and f £(q) with Plot in Figure 1.26. Note that the plot is drawn
to scale because we include the optionAspectRatio->Automatic.
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Figure 1.26: Graphs off (q) and f £(q)

In[92]:= Plot[{f[q],df},{q,0,2p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

AspectRatio- > Automatic]

If Solve is unsuccessful in solving an equation or numerical results are desired,
FindRoot[equation,{x,a}] attempts to numerically solveequationfor x near
x º a.

Example 14. Find the first three nonnegative solutions ofx = tanx.

Solution. Weattempt to solvex = tanx with Solve.

In[93]:= Solve[x == Tan[x],x]

Solve :: "tdep" : "Theequationsappeartoinvolve

transcendentalfunctionsofthevariablesin

anessentiallynon - algebraicway."
Out[93]= Solve[x == Tan[x],x]

We next graphy = x andy = tanx together in Figure 1.27.

In[94]:= Plot[{x,Tan[x]},{x,0,4p},PlotRange- > {-4p,4p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]}]
Remember that vertical lines are never the

graphs of functions. In this case, the repre-

sent the vertical asymptotes at odd multiples

of p/2.

In the graph, we see thatx = 0 is a solution. This is confirmed withFindRoot.
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Figure 1.27:y = x andy = tanx

In[95]:= FindRoot[x == Tan[x],{x,0}]

Out[95]= {x Ø 0.}

The second solution is near 4 while the third solution is near 7. UsingFindRoot
together with these initial approximations locates the second two solutions.

In[96]:= FindRoot[x == Tan[x],{x,4}]

Out[96]= {x Ø 4.49341}

In[97]:= FindRoot[x == Tan[x],{x,7}]

Out[97]= {x Ø 7.72525}

1.5.2 Elementary Parametric and Polar Plots

To graph the parametric equationsx = x(t), y = y(t), a § t § b, use

ParametricPlot[{x[t],y[t]},{t,a,b}]

(see Figure 1.28) and to graph the polar functionr = r(q), a § q § b, use

PolarPlot[r[theta],{theta,alpha,beta}].

(See Figure 1.29.) ThePolarPlot function is contained in theGraphics package
which is located in theGraphics directory.

Example 15. Graph the parametric equations

x = t + sin 2t
y = t + sin 3t

, -2p § t § 2p.
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Figure 1.28: Mathematica’s help for parametric plots

Figure 1.29: Mathematica’s help for polar plots



1.5. THE BASICS 41

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Figure 1.30:(x(t), y(t)), -2p § t § 2p

Solution. After definingx andy, we useParametricPlot to graph the parametric
equations in Figure 1.30.

In[98]:= x[t ] = t + Sin[2t];

y[t ] = t + Sin[3t];

ParametricPlot[

{x[t],y[t]},{t,-2p,2p},AspectRatio- > Automatic]

In calculus we learn that

y£ =
dy
dx

=
dy/dt
dx/dt

and y££ =
d2y

dx2 =
d
dx

K
dy
dx

O =
dy£/dt
dx/dt

.

For illustrative purposes, we perform these computations using’ andSimplify. We
computedx/dt anddy/dt in dx anddy, respectively.y£ = dy/dxis formed indydx.

In[99]:= dx = x£[t]

dy = y£[t]

dydx = dy/dx
Out[99]= 1 + 2 Cos[2 t]

Out[99]= 1 + 3 Cos[3 t]

Out[99]=
1 + 3 Cos[3 t]

1 + 2 Cos[2 t]

Next, we compute and simplifydy£/dt in d2ydx.

In[100]:= d2ydx = Simplify[D[dydx,t]]
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Figure 1.31: Graph ofr = cos(8p/3)

Out[100]=
-15 Sin[t] + 4 Sin[2 t] - 3 (3 Sin[3 t] + Sin[5 t])

(1 + 2 Cos[2 t])2

Finally, y££ = d2y/dx2 is computed and simplified ind2ydx2.

In[101]:= d2ydx2 = Simplify[d2ydx/dx]

Out[101]=
-15 Sin[t] + 4 Sin[2 t] - 3 (3 Sin[3 t] + Sin[5 t])

(1 + 2 Cos[2 t])3

Example 16. Graphr = cos(8q/3) for 0 § q § 6p.

Solution. After loading theGraphics package and definingr, we usePolarPlot
to graph the polar equation in Figure 1.31.

In[102]:= << Graphics‘Graphics‘

r[q ] = Cos[8q/3];

PolarPlot[r[q],{q,0,6p},AspectRatio- > Automatic]

In calculus, we learn that the length of the graph of the polar equationr = f (q), a §
q § b is

L = ‡
b

a

2

r2 + K
dr
dq

O
2

dq.

Weillustrate how this computation can be carried out with Mathematica.
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After computingdr/dq in dr, we compute and simplifyr2 + (dr/dq)2 in s1.

In[103]:= dr = r£[q]

Out[103]= -
8

3
SinA

8 q

3
E

In[104]:= s1 = Simplify[r[q]ˆ2 + drˆ2]

Out[104]=
1

18
J73 - 55 CosA

16 q

3
EN

We then computeL = Ÿ
6p

0

1
r2 + (dr/dq)2 dq in s2. However, the result is given in

terms of theEllipticE function, a function not typically encountered by beginning
users.

In[105]:= s2 = Integrate[Sqrt[s1],{q,0,6p}]

Out[105]= 12 EllipticEA -
55

9
E

N is used to obtain a more meaningful approximation.

In[106]:= N[s2]

Out[106]= 36.3669

1.5.3 Three-Dimensional and Contour Plots; Graphing Equations

An elementary function of two variables,z = f (x, y) = expression in x and y, is typi-
cally defined using the form

f[x_,y_]=expression in x and y.

Once a function has been defined, a basic graph is generated withPlot3D:

Plot3D[f[x,y],{x,a,b},{y,c,d}]

graphsf (x, y) for a § x § b andc § y § d.

For details regardingPlot3D and its options enter?Plot3D or ??Plot3D. (See
Figure 1.32.) Frequently used options are illustrated in the following examples.

Graphs of several level curves ofz = f (x, y) are generated with

ContourPlot[f[x,y],{x,a,b},{y,c,d}].

For details regardingContourPlot and its options enter?ContourPlot or??ContourPlot.
(See Figure 1.33.)
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Figure 1.32: ThePlot3D help window

Example 17. Let

f (x, y) =
x2y

x4 + 4y2 .

(a) Calculatef (1, -1). (b) Graphf (x, y) and several contour plots off (x, y) on a region
containing(0,0).

Solution. After defining f (x, y), we evaluatef (1, -1) = -1/5.

In[107]:= f[x ,y ] = xˆ2y/(xˆ4 + 4yˆ2)

Out[107]=
x2 y

x4 + 4 y2

In[108]:= f[1,-1]

Out[108]= -
1

5

Next, we usePlot3D to graph f (x, y) for -1/2 § x § 1/2 and-1/2 § y § 1/2 in
Figure 1.34. We illustrate the use of theAxes, Boxed, andPlotPoints options.

In[109]:= Plot3D[f[x,y],{x,-1/2,1/2},{y,-1/2,1/2},

Axes- > Automatic,Boxed- > False,PlotPoints- > {50,50}]

Two contour plots are generated withContourPlot. The second illustrates the use of
thePlotPoints, Frame, ContourShading, Axes, andAxesOrigin options.
(See Figure 1.35.)
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Figure 1.33: TheContourPlot help window
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Figure 1.34: Three-dimensional plot off (x, y)
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Figure 1.35: Two contour plots off (x, y)

In[110]:= ContourPlot[f[x,y],{x,-1/2,1/2},{y,-1/2,1/2},

PlotPoints- > {50,50}]

In[111]:= ContourPlot[f[x,y],{x,-1/2,1/2},

{y,-1/2,1/2},PlotPoints- > {60,60},Frame- > False,

ContourShading- > False,Axes- > Automatic,

AxesOrigin- > {0,0}]

ContourPlot is especially useful when graphing equations. The graph of the equa-
tion f (x, y) = C, where C is a constant, is the same as the contour plot ofz = f (x, y)
corresponding toC. That is, the graph of f (x, y) = C is the same as the level curve of
z = f (x, y) corresponding toz = C.

Example 18. Graph the unit circle,x2 + y2 = 1.

Solution. We first graphz = x2 + y2 for -4 § x § 4 and-4 § y § 4 with Plot3D in
Figure 1.36.

In[112]:= Plot3D[xˆ2 + yˆ2,{x,-4,4},{y,-4,4}]

The graph ofx2 + y2 = 1 is thegraph ofz = x2 + y2 corresponding toz = 1. We use
ContourPlot together with theContours option to graph this equation in Figure
1.37.

In[113]:= ContourPlot[xˆ2 + yˆ2,{x,-3/2,3/2},{y,-3/2,3/2},

Contours- > {1},ContourShading- > False]

Multiple graphs can be generated as well. As an illustration, we graphx2 + y2 = C for
C = 1, 4, and 9 in Figure 1.38.
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Figure 1.36: Three-dimensional plot ofz = x2 + y2
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Figure 1.37: The unit circle,x2 + y2 = 1
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Figure 1.38: Graphs ofx2 + y2 = 1, x2 + y2 = 4, andx2 + y2 = 9

In[114]:= ContourPlot[xˆ2 + yˆ2,{x,-4,4},{y,-4,4},

Contours- > {1,4,9},ContourShading- > False,

PlotPoints- > {50,50}]

We can useParametricPlot3D to generate graphs of surfaces defined parametri-
cally.

Example 19. A parametrization ofUmbilic Torus NC is given byr(s, t) = x(s, t)i +
y(s, t)j + z(s, t)k, -p § s § p, -p § t § p, where

x = C7 + cosK
1
3

s- 2tO + 2 cosK
1
3

s+ tOG sins

y = C7 + cosK
1
3

s- 2tO + 2 cosK
1
3

s+ tOG coss

and

z = sinK
1
3

s- 2tO + 2 sinK
1
3

s+ tO .

Graph the torus.

Solution. We definex, y, andz.

In[115]:= x[s ,t ] = (7 + Cos[1/3s - 2t] + 2Cos[1/3s + t])Sin[s];

y[s ,t ] = (7 + Cos[1/3s - 2t] + 2Cos[1/3s + t])Cos[s];

z[s ,t ] = Sin[1/3s - 2t] + 2Sin[1/3s + t];
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Figure 1.39: Umbilic torus

The torus is then graphed withParametricPlot3D in Figure 1.39. We illustrate
the use of thePlotPoints option.

In[116]:= ParametricPlot3D[{x[s,t],y[s,t],z[s,t]},

{s,-p,p},{t,-p,p},PlotPoints- > {40,40}]

1.6 Exercises

1. Solve

x - 2y - 4 = 0
6x + 2y - 10 = 0

and confirm your result graphically.

2. (a) Graphy = x andy = x2. (b) Find the points at which the graphs intersect.

3. Let f (x) = 2x - x2. (a) Graph f (x) for -1 § x § 3 to scale. (b) Compute and
simplify f (x+h)- f (x)

h .

4. (a) Graphy = sinx andy = cosx to scale for 0§ x § 2p. (b) Find all intersection
pointsexactly.

5. (a) Find the points where the graphs ofy = x - 1 andy = x2 - x - 1 intersect. (b)
Graph the equations together to confirm your result.

6. Solve

x + y = 0
x3 - 5x - y = 0
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and confirm your result graphically.

7. Graphx = y3 - 4y2 + 3y andx = y2 - y together. Locate allx andy-intercepts
and intersection points.



Chapter 2

Calculus

Chapter 2 introduces Mathematica’s calculus commands. The examples used to illus-
trate the various commands are similar to examples routinely done in three semester
calculus courses.

2.1 Limits

One of the first topics discussed in calculus is that of limits. Mathematica can be used
to investigate limits graphically and numerically. In addition, Mathematica uses the
command

Limit[f[x],x->a]

to find limxØa f (x), the limit of f (x) asx approaches the valuea, wherea can be a finite
number, positive infinity (¶), or negative infinity (-¶). Mathematica usesInfinity
to represent¶.

Remark.Todefine a function of a single variable,f (x) = expression in x, enterf[x_]=expression in x.
To generate a basic plot ofy = f (x) for a § x § b, enterPlot[f[x],{x,a,b}].

Example 20. Use a graph and table of values to investigate limxØ0
sin 3x

x .

Solution. We clear all prior definitions off , define f (x) = sin 3x
x , and then graphf (x) Clear[f] clears all prior definitions off ,

if any. Clearing function definitions before

defining new ones helps eliminate any possi-

ble confusion and/or ambiguities.

on the interval[-p, p] with Plot.

In[117]:= Clear[f]

f[x ] = Sin[3x]/x;

Plot[f[x],{x,-p,p}]

51
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Figure 2.1: Graph off (x) = sin 3x
x on the interval[-p, p].

From the graph shown in Figure 2.1, we might, correctly, conclude that limxØ0
sin 3x

x =
3. Further evidence that limxØ0

sin 3x
x = 3 can be obtained by computing the values of

f (x) for values ofx ”near” 0. In the following, we useRandom to definexvals to beRandom[Real,{a,b}] returns a ”ran-

dom” real number betweena andb. Because

we are generating ”random” numbers, your

results will differ from those obtained here.

a table of 6 ”random” real numbers. The first number inxvals is between-1 and1,
the second between-1/10 and 1/10, and so on.

In[118]:= xvals = Table[Random[Real,{-1/10ˆn,1/10ˆn}],{n,0,5}]

Out[118]= {0.244954,0.0267254,

0.00433248,-0.000864136,

-0.0000995605,1.8335410-6}

We then useMap to compute the value off (x) for eachx in xvals.Map[f,{x1,x2,x3,...,xn}] returns

the set{ f (x1), f (x2), ..., f(xn)}.
In[119]:= Map[f,xvals]

Out[119]= {2.73719,2.99679,

2.99992,3.,

3.,3.}

From these values, we might again correctly deduce that limxØ0
sin 3x

x = 3. Of course,
these results do not prove that limxØ0

sin 3x
x = 3 but they are helpful in convincing us

that limxØ0
sin 3x

x = 3.

2.1.1 Computing Limits

Some limits involving rational functions can be computed by factoring the numerator
and denominator.

Example 21. Compute

lim
xØ-9/2

2x2 + 25x + 72

72- 47x - 14x2 .
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Solution. We definefrac1 to be the rational expression2x2+25x+72
72-47x-14x2 . We then attempt

to compute the value of2x2+25x+72
72-47x-14x2 if x = -9/2 by usingReplaceAll (/.) to evaluate

frac1 if x = -9/2 but see that it is undefined.

In[120]:= frac1 = (2xˆ2 + 25x + 72)/(72 - 47x - 14xˆ2);

frac1/.x- > -9/2
Power :: "infy" :

"Infiniteexpression10 encountered."
¶ :: "indet" : "Indeterminateexpression0

InterpretationBox[C̈omplexInfinity,̈

DirectedInfinity[]] encountered."

Out[120]= Indeterminate

Factoring the numerator and denominator withFactor,Numerator, andDenominator,
we see that

lim
xØ-9/2

2x2 + 25x + 72

72- 47x - 14x2 = lim
xØ-9/2

(x + 8) (2x + 9)
(8 - 7x) (2x + 9)

= lim
xØ-9/2

x + 8
8 - 7x

.

The fraction(x + 8)/ (8 - 7x) is namedfrac2 and the limit is evaluated by computing
the value offrac2 if x = -9/2.

In[121]:= Factor[Numerator[frac1]]

Out[121]= (8 + x) (9 + 2 x)

In[122]:= Factor[Denominator[frac1]]

Out[122]= -(9 + 2 x) (-8 + 7 x)

In[123]:= frac2 = Simplify[frac1]

Out[123]=
8 + x

8 - 7 x Simplify[expression] attempts to

simplify expression.In[124]:= frac2/.x- > -9/2

Out[124]=
7

79

We conclude that

lim
xØ-9/2

2x2 + 25x + 72

72- 47x - 14x2 =
7
79

.

Wecan also use theLimit command to evaluate frequently encountered limits.

Limit[f[x],x->a]

attempts to compute limxØa f (x).

Thus, entering

In[125]:= Limit[(2xˆ2 + 25x + 72)/(72 - 47x - 14xˆ2),x- > -9/2]

Out[125]=
7

79

computes limxØ-9/2
2x2+25x+72
72-47x-14x2 = 7/79 .
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Example 22. Calculate each limit: (a) limxØ-5/3
3x2-7x-20

21x2+14x-35
; (b) limxØ0

sinx
x ; (c) limxØ¶ I1 + 1

x Mx
;

(d) limxØ0
e3x-1

x ; (e) limxØ¶ e-2x
0

x; and(f) lim xØ1+ I 1
ln x - 1

x-1M.

Solution. In each case, we useLimit to evaluate the indicated limit. Entering

In[126]:= Limit[(3xˆ2 - 7x - 20)/(21xˆ2 + 14x - 35),x- > -5/3]

Out[126]=
17

56

computes

lim
xØ-5/3

3x2 - 7x - 20

21x2 + 14x - 35
=

17
56

;

and entering

In[127]:= Limit[Sin[x]/x,x- > 0]

Out[127]= 1

computes

lim
xØ0

sinx
x

= 1.

Mathematica represents¶ by Infinity. Thus, entering

In[128]:= Limit[(1 + 1/x)ˆx,x- > ¶]

Out[128]= e

computes

lim
xØ¶

K1 +
1
x

O
x

= e.

Entering

In[129]:= Limit[(Exp[3x] - 1)/x,x- > 0]

Out[129]= 3

computes

lim
xØ0

e3x - 1
x

= 3.

Entering

In[130]:= Limit[Exp[-2x]Sqrt[x],x- > ¶]

Out[130]= 0

computes limxØ¶ e-2x
0

x = 0, and enteringBecause lnx is undefined forx § 0, a right-
hand limit is mathematically necessary, even
though Mathematica’sLimit function com-
putes the limit correctly without the distinc-
tion.

In[131]:= Limit[1/ Log[x] - 1/(x - 1),x- > 1]

Out[131]=
1

2

computes

lim
xØ1+

K
1

ln x
-

1
x - 1

O =
1
2

.
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Wecan often use theLimit command to compute symbolic limits.

Example 23. If $P is compoundedn times per year at an annual interest rate ofr, the
value of the account,A, after t years is given by

A = K1 +
r
n

O
nt

.

The formula for continuously compounded interest is obtained by taking the limit of
this expression ast Ø ¶.

Solution. The formula for continuously compounded interest,A = Pert , is obtained
usingLimit.

In[132]:= Limit[p(1 + r/n)ˆ(n t),n- > ¶]

Out[132]= er t p

2.1.2 One-Sided Limits

In some cases, Mathematica can compute certain one sided limits . The command

Limit[f[x],x->a,Direction->1]

attempts to compute limxØa- f (x) while

Limit[f[x],x->a,Direction->-1]

attempts to compute limxØa+ f (x).

Example 24. Compute (a) limxØ0+ |x|/x; (b) limxØ0- |x|/x; (c) limxØ0+ e-1/x; and (d)
limxØ0- e-1/x.

Solution. Even though limxØ0 |x|/x does not exist, limxØ0+ |x|/x = 1 andlimxØ0- |x|/x =
-1, as we see usingLimit together with theDirection->1 andDirection->-
1 options, respectively.

In[133]:= Limit[Abs[x]/x,x- > 0]

Out[133]= 1

In[134]:= Limit[Abs[x]/x,x- > 0,Direction- > -1]

Out[134]= 1

In[135]:= Limit[Abs[x]/x,x- > 0,Direction- > 1]

Out[135]= -1
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Figure 2.2: Graph ofy = e-1/x on the interval[-3/2,3/2].

TheDirection->-1 andDirection->1 options are used to calculate the correct
values for (c) and (d), respectively. For (c), we have:

In[136]:= Limit[1/x,x- > 0]

Out[136]= ¶

In[137]:= Limit[1/x,x- > 0,Direction- > -1]

Out[137]= ¶

In[138]:= Limit[1/x,x- > 0,Direction- > 1]

Out[138]= -¶

In[139]:= Limit[Exp[-1/x],x- > 0]

Out[139]= 0

Similarly, for (d) we have:

In[140]:= Limit[Exp[-1/x],x- > 0,Direction- > 1]

Out[140]= ¶

In[141]:= Limit[Exp[-1/x],x- > 0,Direction- > -1]

Out[141]= 0

We confirm these results by graphingy = e-1/x with Plot in Figure 2.2.

In[142]:= Plot[Exp[-1/x],{x,-3/2,3/2},

PlotRange- > {{-1,1},{0,10}}]

TheLimit command together with theDirection->1 andDirection->-1 op-
tions is a ”fragile” command and should be used with caution because its results are
unpredictable, especially for the beginner. It is wise to check or confirm results using
a different technique for nearly all problems faced by the beginner.
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2.2 Differential Calculus

2.2.1 Definition of the Derivative

Thederivative of y = f (x) is

lim
hØ0

f (x + h) - f (x)
h

, (2.1)

provided this limit exists.

TheLimit command can be used along withSimplify to compute the derivative
of a function using the definition of the derivative.

Remark.Todefine a function of a single variable,f (x) = expression in x, enterf[x_]=expression in x.
To generate a basic plot ofy = f (x) for a § x § b, enterPlot[f[x],{x,a,b}].

Example 25. Use the definition of the derivative to compute the derivative of (a)f (x) =
x + 1/x, (b) g(x) =

0
x + 1/

0
x and (c)h(x) = sin 2x.

Solution. For (a) and (b), we first definef and g, compute the difference quotient,
( f (x + h) - f (x)) /h, simplify the difference quotient withSimplify, anduseLimit
to calculate the derivative.

In[143]:= f[x ] = x + 1/x;

s1 = (f[x + h] - f[x])/h

Out[143]=
h - 1

x + 1
h+x

h

In[144]:= s2 = Simplify[s1]

Out[144]=
-1 + h x + x2

x (h + x)

In[145]:= Limit[s2,h- > 0]

Out[145]=
-1 + x2

x2

In[146]:= g[x ] = 1/Sqrt[x]

s1 = (g[x + h] - g[x])/h

Out[146]=
1

0
x

Out[146]=
- 10

x
+ 10

h+x

h

In[147]:= s2 = Together[s1]

Out[147]=

0
x -

0
h + x

h
0
x

0
h + x

In[148]:= Limit[s2,h- > 0]

Out[148]= -
1

2 x3/2

For (c), we defineh and then useTrigExpand to simplify the difference quotient. We
useLimit to compute the derivative. The result indicates thatd

dx (sin 2x) = 2 cos2x.
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In[149]:= h[x ] = Sin[2x];

s2 = (h[x + h] - h[x])/h

Out[149]=
-Sin[2 x] + Sin[2 (h + x)]

h

In[150]:= s2 = TrigExpand[s2]

Out[150]=
1

h
I2 Cos[h] Cos[x]2 Sin[h] - 2 Cos[x] Sin[x]+

2 Cos[h]2 Cos[x] Sin[x] - 2 Cos[x] Sin[h]2 Sin[x]-

2 Cos[h] Sin[h] Sin[x]2M

In[151]:= s3 = Limit[s2,h- > 0]

Out[151]= 2 Cos[2 x]

If the derivative ofy = f (x) exists atx = a, a geometric interpretation off £(a) is that
f £(a) is the slope of the line tangent to the graph ofy = f (x) at the point(a, f(a)).

To motivate the definition of the derivative, many calculus texts choose a value ofx,
x = a, and then draw the graph of the secant line passing through the points(a, f(a))
and(a + h, f(a + h)) for ”small” values ofh to show that ash approaches 0, the secant
line approaches the tangent line. An equation of the secant line passing through the
points(a, f(a)) and(a + h, f(a + h)) is given by

y - f (a) =
f (a + h) - f (a)

(a + h) - a
(x - a) or y =

f (a + h) - f (a)
h

(x - a) + f (a).

Example 26. If f (x) = 9 - 4x2, graph f (x) together with the secant line containing
(1, f (1)) and(1 + h, f(1 + h)) for various values ofh.

Solution. We define f (x) = 9 - 4x2 and y(x, h) to be a function returning the line
containing(1, f (1)) and(1 + h, f(1 + h)).

In[152]:= f[x ] = 9 - 4xˆ2;

y[x ,h ] = (f[1 + h] - f[1])/h(x - 1) + f[1];

In the following, we useDo to show the graphs off (x) andy(x, h) for h = 1,2, . . . ,9.
The resulting animation can be played and controlled from the Mathematica menu.
(See Figure 2.3.)

In[153]:= Do[Plot[{f[x],y[x,1/h]},

{x,-3,3},PlotRange- > {-10,10}],

{h,1,10}]

If instead the command is entered as

In[154]:= listofgraphics = Table[Plot[{f[x],y[x,1/h]},{x,-3,3},

PlotRange- > {-10,10},DisplayFunction- > Identity],

{h,1,10}]

In[155]:= toshow = Partition[listofgraphics,3]

In[156]:= Show[GraphicsArray[toshow]]



2.2. DIFFERENTIAL CALCULUS 59

Figure 2.3: An animation
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Figure 2.4: A graphics array
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the result is displayed as a graphics array. (See Figure 2.4.)

The functionsD and’ are used to differentiate functions. Assuming thaty = f (x) is
differentiable,

1. D[f[x],x] computes and returnsf £(x) = d f /dx,

2. f’[x] computes and returnsf £(x) = d f /dx,

3. f’’[x] computes and returnsf (2)(x) = d2 f /dx2, and

4. D[f[x],{x,n}] computes and returnsf (n)(x) = dn f /dxn.

Mathematica knows the numerous differentiation rules, including the product, quotient,
and chain rules. Thus, entering

In[157]:= Clear[f,g]

D[f[x]g[x],x]
Out[157]= g[x] f£[x] + f[x] g£[x]

shows us that d
dx( f (x) ÿ g(x) = f £(x)g(x) + f (x)g£(x); entering

In[158]:= Together[D[f[x]/g[x],x]]

Out[158]=
g[x] f£[x] - f[x] g£[x]

g[x]2

shows us that d
dx( f (x)/g(x)) = ( f £(x)g(x) - f (x)g£(x))/ (g(x))2; and entering

In[159]:= D[f[g[x]],x]

Out[159]= f£[g[x]] g£[x]

shows us that d
dx( f (g(x)) = f £ (g(x)) g£(x).

Example 27. Compute the first and second derivatives of (a)y = x4 + 4
3x3 - 3x2, (b)

f (x) = 4x5 - 5
2x4 - 10x3, (c) y =

0
e2x + e-2x, and(d) y = (1 + 1/x)x.

Solution. For (a), we useD.

In[160]:= D[xˆ4 + 4/3xˆ3 - 3xˆ2,x]

Out[160]= -6 x + 4 x2 + 4 x3

In[161]:= D[xˆ4 + 4/3xˆ3 - 3xˆ2,{x,2}]

Out[161]= -6 + 8 x + 12 x2

For (b), we first definef and then use’ together withFactor to calculate and factor
f £(x) and f ££(x).

In[162]:= f[x ] = 4xˆ5 - 5/2xˆ4 - 10xˆ3;

Factor[f£[x]]

Factor[f££[x]]
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Out[162]= 10 x2 (1 + x) (-3 + 2 x)

Out[162]= 10 x I - 6 - 3 x + 8 x2M

For (c), we usesimplify together withD to calculate and simplifyy£ andy££.

In[163]:= D[Sqrt[Exp[2x] + Exp[-2x]],x]

Out[163]=
-2 e-2 x + 2 e2 x

2
0
e-2 x + e2 x

In[164]:= D[Sqrt[Exp[2x] + Exp[-2x]],{x,2}]//Simplify

Out[164]=

0
e-2 x + e2 x (1 + 6 e4 x + e8 x)

(1 + e4 x)
2

By hand, (d) would require logarithmic differentiation. The second derivative would
be particularly difficult to compute by hand. Mathematica quickly computes and sim-
plifies each derivative.

In[165]:= Simplify[D[(1 + 1/x)ˆx,x]]

Out[165]=
I1 + 1

x
Mx I - 1 + (1 + x) LogA1 + 1

xEM
1 + x

In[166]:= Simplify[D[(1 + 1/x)ˆx,{x,2}]]

Out[166]=
I1 + 1

x
Mx I - 1 + x - 2 x (1 + x) LogA1 + 1

xE + x (1 + x)2 LogA1 + 1
xE2M

x (1 + x)2

The commandMap[f,list] applies the functionf to each element of the listlist.
Thus, if you are computing the derivatives of a large number of functions, you can use
Map together withD.

Remark.A built-in Mathematica function isthreadable if f[list] returns the same
result asMap[f,list]. Many familiar functions likeD andIntegrate are thread-
able.

Example 28. Compute the first and second derivatives of sinx, cosx, tanx, sin-1 x,
cos-1 x, andtan-1 x.

Solution. Notice that lists are contained in braces. Thus, entering

In[167]:= Map[D[#,x]&,

{Sin[x],Cos[x],Tan[x],ArcSin[x],ArcCos[x],ArcTan[x]}]

Out[167]= 9Cos[x],-Sin[x],Sec[x]2,
1

0
1 - x2

,-
1

0
1 - x2

,
1

1 + x2
=

computes the first derivative of the three trigonometric functions and their inverses
while entering

In[168]:= Map[D[#,{x,2}]&,

{Sin[x],Cos[x],Tan[x],ArcSin[x],ArcCos[x],ArcTan[x]}]

Out[168]= 9 - Sin[x],-Cos[x],2 Sec[x]2 Tan[x],
x

(1 - x2)
3/2 ,

-
x

(1 - x2)
3/2 ,-

2 x

(1 + x2)
2

=



62 CHAPTER 2. CALCULUS

computes the second derivative of the three trigonometric functions and their inverses.
BecauseD is threadable, the same results are obtained with

In[169]:= D[

{Sin[x],Cos[x],Tan[x],ArcSin[x],ArcCos[x],ArcTan[x]},

x]

Out[169]= 9Cos[x],-Sin[x],Sec[x]2,
1

0
1 - x2

,-
1

0
1 - x2

,
1

1 + x2
=

In[170]:= D[

{Sin[x],Cos[x],Tan[x],ArcSin[x],ArcCos[x],ArcTan[x]},

{x,2}]

Out[170]= 9 - Sin[x],-Cos[x],2 Sec[x]2 Tan[x],
x

(1 - x2)
3/2 ,

-
x

(1 - x2)
3/2 ,-

2 x

(1 + x2)
2

=

Implicit Differentiation

If an equation contains two variables,x andy, implicit differentiation can be carried
out by explicitly declaringy to be a function ofx, y = y(x), andusingD or by using the
Dt command.

Example 29. Findy£ = dy/dxif (a) cos(exy) = x and (b) ln(x/y) + 5xy = 3y.

Solution. For (a) we illustrate the use ofD. Notice that we are careful to specifically
indicate thaty = y(x). First we differentiate with respect tox

In[171]:= s1 = D[Cos[Exp[x y[x]]] - x,x]

Out[171]= BoxData(-1 - ex y[x] Sin[ex y[x]] (y[x] + x y£[x]))

and then we solve the resulting equation fory£ = dy/dxwith Solve.

In[172]:= Solve[s1 == 0,y£[x]]

Out[172]= BoxData({{y£[x] Ø -
e-x y[x] Csc[ex y[x]] (1 + ex y[x] Sin[ex y[x]] y[x])

x
}})

For (b), we useDt. When usingDt, we interpretDt[x]= 1 andDt[y]= y£ = dy/dx.
Thus, entering

In[173]:= s2 = Dt[Log[x/y] + 5x y - 3y]

Out[173]= 5 y Dt[x] - 3 Dt[y] + 5 x Dt[y] +
y J Dt[x]

y - x Dt[y]
y2

N

x

In[174]:= s3 = s2/.{Dt[x]- > 1,Dt[y]- > dydx}

Out[174]= -3 dydx + 5 dydx x + 5 y +
J - dydx x

y2
+ 1

yN y

x

In[175]:= Solve[s3 == 0,dydx]

Out[175]= 99dydx Ø -
y (1 + 5 x y)

x (-1 - 3 y + 5 x y)
==
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Figure 2.5: f (x) together with its tangent at(1, f (1))

shows us that if ln (x/y) + 5xy = 3y,

y£ =
dy
dx

= -
(1 + 5xy)y

(5xy- 3y - 1)x

2.2.2 Tangent Lines

If f £(a) exists, we interpretf £(a) to be the slope of the line tangent to the graph of
y = f (x) at the point(a, f(a)). An equation of the tangent is given by

y - f (a) = f £(a)(x - a) or y = f £(a)(x - a) + f (a)

Example 30. Find an equation of the line tangent to the graph off (x) = 9 - 4x2 at the
point (1, f (1)).

Solution. After defining f , we seethat f (1) = 5 and f £(1) = -8

In[176]:= f[x ] = 9 - 4xˆ2;

f[1]

f£[1]

Out[176]= 5

Out[176]= -8

so an equation of the line tangent toy = f (x) at the point(1,5) is y - 5 = -8(x - 1) or
y = -8x + 13. We can visualize the tangent at(1, f (1)) with Plot. (See Figure 2.5.)

In[177]:= Plot[{f[x],f£[1](x - 1) + f[1]},{x,-3,3},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

PlotRange- > {-10,10}]
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Figure 2.6: An animation

In addition, we can view a sequence of lines tangent to the graph of a function for
a sequence ofx values usingDo. In the following, we useDo to generate graphs of
y = f (x) andy = f £(a)(x - a) + f (a) for fifty equally spaced values ofa between-3
and 3. (See Figure 2.6.)

In[178]:= Do[Plot[{f[x],f£[a](x - a) + f[a]},{x,-3,3},PlotStyle- >

{GrayLevel[0],GrayLevel[0.3]},PlotRange- > {-10,10}],

{a,-2,2,4/49}]

On the other hand,

In[179]:= listofgraphics = Table[

Plot[{f[x],f£[a](x - a) + f[a]},{x,-3,3},PlotStyle- >

{GrayLevel[0],GrayLevel[0.3]},PlotRange- > {-10,10},

DisplayFunction- > Identity],{a,-2,2,4/8}];

toshow = Partition[listofgraphics,3];

Show[GraphicsArray[toshow]]

graphsy = f (x) andy = f £(a)(x- a) + f (a) for nine equally spaced values ofa between
-3 and 3 and displays the result as a graphics array. (See Figure 2.7.)

In the graphs, notice that where the tangent lines have positive slope (f £(x) > 0), f (x)
is increasing while where the tangent lines have negative slope (f £(x) < 0), f (x) is
decreasing.

Parametric Equations and Polar Coordinates

For theparametric equations{x = f (t), y = g(t)}, t œ I ,

y£ =
dy
dx

=
dy/dt
dx/dt

=
g£(t)
f £(t)

and

y££ =
d2y

dx2 =
d
dx

dy
dx

=
d/dt(dy/dx)

dx/dt
.
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Figure 2.7: f (x) together with various tangents

If {x = f (t), y = g(t)} has a tangent line at the point( f (a), g(a)), parametric equations
of the tangent are given by

x = f (a) + t f £(a) and y = g(a) + tg£(a). (2.2)

If g£(a) ∫ 0, we can eliminate the parameter from (2.2)

x - f (a)
f £(a)

=
y - g(a)

g£(a)

y - g(a) =
g£(a)
f £(a)

(x - f (a))

and obtain an equation of the tangent line in point-slope form.

In[180]:= l = Solve[x[a] + t x£[a] == cx,t]

r = Solve[y[a] + t y£[a] == cy,t]

Out[180]= BoxData({{t Ø -
-cx + x[a]

x£[a]
}})

Out[180]= BoxData({{t Ø -
-cy + y[a]

y£[a]
}})

Example 31 (The Cycloid). Thecycloid has parametric equations

x = t - sint and y = 1 - cost.

Graph the cycloid together with the line tangent to the graph of the cycloid at the point
(x(a), y(a)) for various values ofa between-2p and 4p.
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Solution. After definingx andy we use’ to computedy/dt anddx/dt. We then com-
putedy/dx= (dy/dt)/ (dx/dt) andd2y/dx2.

In[181]:= x[t ] = t - Sin[t];

y[t ] = 1 - Cos[t];

dx = x£[t]

dy = y£[t]

dydx = dy/dx
Out[181]= 1 - Cos[t]

Out[181]= Sin[t]

Out[181]=
Sin[t]

1 - Cos[t]

In[182]:= dypdt = Simplify[D[dydx,t]]

Out[182]=
1

-1 + Cos[t]

In[183]:= secondderiv = Simplify[dypdt/dx]

Out[183]= -
1

(-1 + Cos[t])2

We then useParametricPlot to graph the cycloid for-2p § t § 4p, naming the
resulting graphp1.

In[184]:= p1 = ParametricPlot[{x[t],y[t]},{t,-2p,4p},

PlotStyle- > {{GrayLevel[0],Thickness[0.01]}},

DisplayFunction- > Identity];

Next, we useTable to definetoplot to be 40 tangent lines (2.2) using equally
spaced values ofa between-2p and 4p. We thengraph each linetoplot and name
the resulting graphp2. Finally, we showp1 andp2 together with theShow function.
The resulting plot is shown to scale because the lengths of thex andy-axes are equal and
we include the optionAspectRatio->1. In the graphs, notice that on intervals for
whichdy/dxis defined,dy/dxis a decreasing function and, consequently,d2y/dx2 < 0.
(See Figure 2.8.)

In[185]:= toplot = Table[

{x[a] + t x£[a],y[a] + t y£[a]},{a,-2p,4p,6p/39}];

p2 = ParametricPlot[Evaluate[toplot],

{t,-2,2},PlotStyle- > GrayLevel[0.5],

DisplayFunction- > Identity];

Show[p1,p2,AspectRatio- > 1,PlotRange- > {-3p,3p},

DisplayFunction- > $DisplayFunction]

Example 32 (Orthogonal Curves).Two linesL1 andL2 with slopesm1 andm2, re-
spectively, areorthogonal if their slopes are negative reciprocals:m1 = -1/m2. Ex-
tended to curves, we say that the curvesC1 andC2 areorthogonal at a point of inter-
section if their respective tangent lines to the curves at that point are orthogonal.

Show that the family of curves with equationx2 + 2xy - y2 = C is orthogonal to the
family of curves with equationy2 + 2xy- x2 = C.
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Figure 2.8: The cycloid with various tangents

Solution. We begin by definingeq1 andeq2 to be the left-hand sides of the equations
x2 + 2xy- y2 = C andy2 + 2xy- x2 = C, respectively.

In[186]:= eq1 = xˆ2 + 2x y - yˆ2;

eq2 = yˆ2 + 2x y - xˆ2;

We thenuseDt to differentiate andSolve to findy£ = dy/dx. Because the derivatives
are negative reciprocals, we conclude that the curves are orthogonal. We confirm this
graphically by graphing several members of each family withContourPlot and
showing the results together. (See Figure 2.9.)

In[187]:= BoxData({s1 = Dt[eq1]/.{Dt[x]- > 1,Dt[y]- > dydx}, Solve[s1 ==
0,dydx]})

Out[187]= 2 x + 2 dydx x + 2 y - 2 dydx y

Out[187]= 99dydx Ø -
x + y

x - y
==

In[188]:= BoxData({s2 = Dt[eq2]/.{Dt[x]- > 1,Dt[y]- > dydx}, Solve[s2 ==
0,dydx]})

Out[188]= -2 x + 2 dydx x + 2 y + 2 dydx y

Out[188]= 99dydx Ø -
-x + y

x + y
==
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Figure 2.9:x2 + 2xy- y2 = C andy2 + 2xy- x2 = C for various values ofC

In[189]:= cp1 = ContourPlot[eq1,{x,-5,5},{y,-5,5},

ContourShading- > False,ContourStyle- > GrayLevel[0],

Frame- > False,Axes- > Automatic,AxesOrigin- > {0,0},

DisplayFunction- > Identity,PlotPoints- > 60];

cp2 = ContourPlot[eq2,{x,-5,5},{y,-5,5},

ContourShading- > False,ContourStyle- > GrayLevel[0.4],

Frame- > False,Axes- > Automatic,AxesOrigin- > {0,0},

DisplayFunction- > Identity,PlotPoints- > 60];

Show[cp1,cp2,DisplayFunction- > $DisplayFunction]

2.2.3 The First Derivative Test and Second Derivative Test

Examples 30 and 31 illustrate the following properties of the first and second derivative.

Theorem 1. Let y= f (x) be continuous on[a, b] and differentiable on(a, b).

1. If f £(x) = 0 for all x in (a, b), then f(x) is constant on[a, b].

2. If f £(x) > 0 for all x in (a, b), then f(x) is increasing on[a, b].

3. If f £(x) < 0 for all x in (a, b), then f(x) is decreasing on[a, b].

For the second derivative, we have the following theorem.
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Theorem 2. Let y= f (x) have a second derivative on(a, b).

1. If f ££(x) > 0 for all x in (a, b), then thegraph of f(x) is concave up on(a, b).

2. If f ££(x) < 0 for all x in (a, b), then thegraph of f(x) is concave down on(a, b).

The critical points correspond to those points on the graph ofy = f (x) where the
tangent line is horizontal or vertical; the numberx = a is acritical number if f £(a) = 0
or f £(x) does not exist ifx = a. Theinflection points correspond to those points on the
graph ofy = f (x) where the graph ofy = f (x) is neither concave up nor concave down.
Theorems 1 and 2 help establish the First Derivative Test and Second Derivative Test.

Theorem 3 (First Derivative Test). Let x = a be acritical number of a function y=
f (x) continuous on an open interval I containing x= a. If f (x) is differentiable on I,
except possibly at x= a, f(a) can be classified as follows.

1. If f £(x) changes from positive to negative at x= a, then f(a) is a relative maxi-
mum.

2. If f £(x) changes from negative to positive at x= a, then f(a) is a relative mini-
mum.

Theorem 4 (Second Derivative Test).Let x = a be a critical number of a function
y = f (x) and suppose that f££(x) exists on an open interval containing x= a.

1. If f ££(a) < 0, then f(a) is a relative maximum.

2. If f ££(x) > 0, then f(a) is a relative minimum.

Example 33. Graph f (x) = 3x5 - 5x3.

Solution. We begin by definingf (x) and then computing and factoringf £(x) and f ££(x).

In[190]:= f[x ] = 3xˆ5 - 5xˆ3;

d1 = Factor[f£[x]]

d2 = Factor[f££[x]]

Out[190]= 15 (-1 + x) x2 (1 + x)

Out[190]= 30 x I - 1 + 2 x2M

By inspection, we see that the critical numbers arex = 0, 1, and-1 while f ££(x) = 0
if x = 0, 1/

0
2, or -1/

0
2. Of course, these values can also be found withSolve as

done next incns andins, respectively.

In[191]:= cns = Solve[d1 == 0]

ins = Solve[d2 == 0]
Out[191]= {{x Ø -1},{x Ø 0},{x Ø 0},{x Ø 1}}

Out[191]= 9{x Ø 0},9x Ø -
1

0
2

=,9x Ø
1

0
2

==
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Figure 2.10: Graphs of| f £(x)|/ f £(x) and| f ££(x)|/ f ££(x)

Wefind the critical and inflection points by using/. (ReplaceAll) to compute f (x)
for each value ofx in cns andins, respectively. The result means that the critical
points are(0,0), (1, -2) and(-1,2); the inflection points are(0,0), (1/

0
2, -7

0
2/8),

and (-1/
0

2,7
0

2/8). We also see thatf ££(0) = 0 so Theorem 4 cannot be used to
classify f (0). On theother hand,f ££(1) = 30 > 0 and f ££(-1) = -30 < 0 so by
Theorem 4f (1) = -2 is arelative minimum andf (-1) = 2 is arelative maximum.

In[192]:= cps = {x,f[x]}/.cns

f££[x]/.cns

ips = {x,f[x]}/.ins
Out[192]= {{-1,2},{0,0},{0,0},{1,-2}}

Out[192]= {-30,0,0,30}

Out[192]= 9{0,0},9 -
1

0
2
,

7

4
0
2

=,9 1
0
2
,-

7

4
0
2

==

We can graphically determine the intervals of increase and decrease by noting that if
f £(x) > 0 ( f £(x) < 0), | f £(x)|/ f £(x) = 1 (| f £(x)|/ f £(x) = -1). Similarly, the intervals for
which the graph is concave up and concave down can be determined by noting that if
f ££(x) > 0 ( f ££(x) < 0), | f ££(x)|/ f ££(x) = 1 (| f ££(x)|/ f ££(x) = -1). We usePlot to graph
| f £(x)|/ f £(x) and| f ££(x)|/ f ££(x) in Figure 2.10.

In[193]:= Plot[{Abs[d1]/d1,Abs[d2]/d2},{x,-2,2},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

PlotRange- > {-2,2}]

From the graph, we see thatf £(x) > 0 for x in (-¶, -1) » (1, ¶), f £(x) < 0 for
x in (-1,1), f ££(x) > 0 for x in (-1/

0
2,0) » (1/

0
2, ¶), and f ££(x) < 0 for x in

(-¶, -1/
0

2) » (0,1/
0

2). Thus, the graph off (x) is

• increasing and concave down forx in (-¶, -1),

• decreasing and concave down forx in (-1, -1/
0

2),
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Figure 2.11:f (x) for -2 § x § 2 and-4 § y § 4

• decreasing and concave up forx in (-1/
0

2,0),

• decreasing and concave down forx in (0,1
0

2),

• decreasing and concave up forx in (1/
0

2,1), and

• increasing and concave up forx in (1, ¶).

We also see thatf (0) = 0 is neither a relative minimum nor maximum. To see all
points of interest, our domain must contain-1 and 1 while our range must contain-2
and 2. We choose to graphf (x) for -2 § x § 2; we choose the range displayed to be
-4 § y § 4. (See Figure 2.11.)

In[194]:= Plot[f[x],{x,-2,2},PlotRange- > {-4,4}]

Remember to be especially careful when working with functions that involve odd roots.

Example 34. Graph f (x) = (x - 2)2/3(x + 1)1/3.

Solution. We begin by defining f (x) and then computing and simplifyingf £(x) and
f ££(x) with ’ andSimplify.

In[195]:= f[x ] = (x - 2)ˆ(2/3)(x + 1)ˆ(1/3);

d1 = Simplify[f£[x]]

d2 = Simplify[f££[x]]

Out[195]=
x

(-2 + x)1/3 (1 + x)2/3

Out[195]= -
2

(-2 + x)4/3 (1 + x)5/3

By inspection, we see that the critical numbers arex = 0, 2, and-1. We cannot use
Theorem 4 to classifyf (2) and f (-1) becausef ££(x) is undefined ifx = 2 or -1. On
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Figure 2.12:f (x) for -2 § x § 3

the other hand,f ££(0) < 0 so f (0) = 22/3 is a relative maximum. By hand, we make a
sign chart to see that the graph off (x) is

• increasing and concave up on(-¶, -1),

• increasing and concave down on(-1,0),

• decreasing and concave down on(0,2), and

• increasing and concave down on(2, ¶).

Hence, f (-1) = 0 is neither a relative minimum nor maximum whilef (2) = 0 is a
relative minimum by Theorem 3. To graphf (x), we load theRealOnly package and
then usePlot to graphf (x) for -2 § x § 3 in Figure 2.12.

In[196]:= << Miscellaneous‘RealOnly‘

f[0]

Plot[f[x],{x,-2,3}]
Out[196]= 22/3

2.2.4 Antidifferentiation

F(x) is anantiderivative of f (x) if F £(x) = f (x). The symbol

‡ f (x) dx

means ”find all antiderivatives off (x)”. Because all antiderivatives of a given function
differ by a constant, we usually find an antiderivative,F(x), of f (x) and then write

‡ f (x) dx = F(x) + C,
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whereC represents an arbitrary constant. The command

Integrate[f[x],x]

attempts to computeŸ f (x) dx. In the same way asD can differentiate many functions,
Integrate can antidifferentiate many functions. However, antidifferentiation is a
fundamentally difficult procedure so it is not difficult to find functionsf (x) for which
the commandIntegrate[f[x],x] returns unevaluated.

Example 35. Evaluate each of the following antiderivatives: (a)Ÿ 1
x2 e1/xdx, (b) Ÿ x2 cosx dx,

(c) Ÿ x2
0

1 + x2 dx, (d) Ÿ x2-x+2
x3-x2+x-1

dx, and(e) Ÿ sinx
x dx.

Solution. Entering

In[197]:= Integrate[1/xˆ2 Exp[1/x],x]

Out[197]= -e
1
x

shows us that Ÿ 1
x2 e1/xdx = -e1/x + C. Notice that Mathematica does not automatically

include the arbitrary constant,C. When computing several antiderivatives, you can
useMap to applyIntegrate to a list of antiderivatives. However, becauseInte-
grate is threadable,Map[Integrate[#,x]&,list] returns the same result as
Integrate[list,x], which we illustrate to compute (b), (c), and (d).

In[198]:= Integrate[{xˆ2 Cos[x],

xˆ2 Sqrt[1 + xˆ2],(xˆ2 - x + 2)/(xˆ3 - xˆ2 + x - 1)},

x]

Out[198]= 92 x Cos[x] - 2 Sin[x] + x2 Sin[x],
1
1 + x2 J

x

8
+
x3

4
N -

ArcSinh[x]

8
,-ArcTan[x] + Log[-1 + x]=

For (e), we see that there is not a ”closed form” antiderivative ofŸ sinx
x dxand the result

is given in terms of a definite integral, thesine integral function:

Si(x) = ‡
x

0

sint
t

dt.

In[199]:= Integrate[Sin[x]/x,x]

Out[199]= SinIntegral[x]

Usually, the first antidifferentiation technique discussed is the method ofu substitu-
tion. Suppose thatF(x) is an antiderivative off (x). Given

‡ f (g(x)) g£(x) dx,
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we letu = g(x) so thatdu = g£(x) dx. Then,

‡ f (g(x)) g£(x) dx = ‡ f (u) du = F(u) + C = F (g(x)) + C,

whereF(x) is an antiderivative off (x). After masteringu-substitutions, theintegration
by parts formula ,

‡ u dv= uv- ‡ v du, (2.3)

is introduced.

Example 36. EvaluateŸ 2x
0

4x - 1dx.

Solution. We useIntegrate to evaluate the antiderivative. Notice that the result is
verycomplicated.

In[200]:= Integrate[2ˆx Sqrt[4ˆx - 1],x]

Out[200]=
21+x

0
-1 + 4x

2 Log[2] + Log[4]
- J2x

0
1 - 4x Hypergeometric2F1A

1

2
,
Log[2]

Log[4]
,1 +

Log[2]

Log[4]
,4xE Log[4]Ní

I
0

-1 + 4x Log[2] (2 Log[2] + Log[4])M

Proceeding by hand, we letu = 2x. Then, du = 2x ln 2dx or, equivalently, 1
ln 2du =

2x dx

In[201]:= D[2ˆx,x]

Out[201]= 2x Log[2]

soŸ 2x
0

4x - 1dx = 1
ln 2 Ÿ

0
u2 - 1du. We nowuseIntegrate to evaluateŸ

0
u2 - 1du

In[202]:= s1 = Integrate[Sqrt[uˆ2 - 1],u]

Out[202]=
1

2
u

1
-1 + u2 -

1

2
LogAu +

1
-1 + u2E

and then/. (ReplaceAll)to replaceu with 2x.

In[203]:= s1 /.u- > 2ˆx

Out[203]= 2-1+x
1

-1 + 22 x -
1

2
LogA2x +

1
-1 + 22 xE

Clearly, proceeding by hand results in a significantly simpler antiderivative than using
Integrate directly.
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2.3 Integral Calculus

2.3.1 Area

In integral calculus courses, the definite integral is frequently motivated by investigat-
ing the area under the graph of a positive continuous function on a closed interval. Let
y = f (x) be a non-negative continuous function on an interval[a, b] and letn be a
positive integer. If we divide[a, b] into n subintervals of equal length and letAxk-1, xkE
denote thekth subinterval, the length of each subinterval is(b- a)/n andxk = a+ kb-a

n .
The area bounded by the graphs ofy = f (x), x = a, x = b, andthe y-axis can be
approximated with the sum

n

‚
k=1

f Ixk
*M

b - a
n

, (2.4)

wherexk
* œ [xk-1, xk]. Typically, we takexk

* = xk-1 = a + (k - 1) b-a
n (the left endpoint

of thekth subinterval),xk
* = xk-1 = a+ kb-a

n (the right endpoint of thekth subinterval),
or xk

* = 1
2 Ixk-1 + xkM = a + 1

2(2k - 1) b-a
n (the midpoint of thekth subinterval). For

these choices ofxk
*, (2.4) becomes

b - a
n

n

‚
k=1

f Ka + (k - 1)
b - a

n
O (2.5)

b - a
n

n

‚
k=1

f Ka + k
b - a

n
O , and (2.6)

b - a
n

n

‚
k=1

f Ka +
1
2

(2k - 1)
b - a

n
O , (2.7)

respectively. Ify = f (x) is increasing on[a, b], (2.5) is an under approximation and
(2.6) is an upper approximation: (2.5) corresponds to an approximation of the area us-
ing n inscribed rectangles; (2.6) corresponds to an approximation of the area usingn
circumscribed rectangles. Ify = f (x) is decreasing on[a, b], (2.6) is an under approxi-
mation and (2.5) is an upper approximation: (2.6) corresponds to an approximation of
the area usingn inscribed rectangles; (2.5) corresponds to an approximation of the area
usingn circumscribed rectangles.

In the following example, we define the functionsleftsum[f[x],a,b,n],middlesum[f[x],a,b,n],
andrightsum[f[x],a,b,n] to compute (2.5), (2.7), and (2.6), respectively, and
leftbox[f[x],a,b,n],middlebox[f[x],a,b,n], andrightbox[f[x],a,b,n]
to generate the corresponding graphs. After you have defined these functions, you can
use them with functionsy = f (x) that you define.

Remark.Todefine a function of a single variable,f (x) = expression in x, enterf[x_]=expression in x.
To generate a basic plot ofy = f (x) for a § x § b, enterPlot[f[x],{x,a,b}].

Example 37. Let f (x) = 9 - 4x2. Approximate the area bounded by the graph ofy =
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Figure 2.13:f (x) for 0 § x § 3/2

f (x), x = 0, x = 3/2, and they-axis using (a) 100 inscribed and (b) 100 circumscribed
rectangles. (c) What is the exact value of the area?

Solution. We begin by defining and graphingy = f (x) in Figure 2.13.

In[204]:= f[x ] = 9 - 4xˆ2;

Plot[f[x],{x,0,3/2}]

The first derivative,f £(x) = -8x is negative on the interval sof is decreasing on
[0,3/2]. Thus, an approximation of the area using 100 inscribed rectangles is given by
(2.6) while an approximation of the area using 100 circumscribed rectangles is given
by (2.5). After defininingleftsum, rightsum, andmiddlesum, these values are
computed usingleftsum andrightsum. Theuse ofmiddlesum is illustrated as
well. Approximations of the sums are obtained withN.N[number] returns a numerical approxi-

mation ofnumber.
In[205]:= leftsum[f ,a ,b ,n ] := Module[{},

(b - a)/n Sum[f/.x- > a + (k - 1)(b - a)/n,{k,1,n}]];

rightsum[f ,a ,b ,n ] := Module[{},

(b - a)/n Sum[f/.x- > a + k(b - a)/n,{k,1,n}]];

middlesum[f ,a ,b ,n ] := Module[{},

(b - a)/n Sum[f/.x- > a + 1/2(2k - 1)(b - a)/n,{k,1,n}]];

In[206]:= l100 = leftsum[f[x],0,3/2,100]

N[l100]

r100 = rightsum[f[x],0,3/2,100]

N[r100]

m100 = middlesum[f[x],0,3/2,100]

N[m100]

Out[206]=
362691

40000
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Out[206]= 9.06728

Out[206]=
357291

40000

Out[206]= 8.93228

Out[206]=
720009

80000

Out[206]= 9.00011

Observe that these three values appear to be close to 9. In fact, 9 is the exact value of
the area of the region bounded byy = f (x), x = 0, x = 3/2, and they-axis. To help us
see why this is true, we defineleftbox, middlebox, andrightbox, and then use It is not important that you understand the

syntax of these three functions at this time.

Once you have entered the code, you can use

them to visualize the process for your own

functions,y = f (x).

these functions to visualize the situation usingn = 4, 16, and 32 rectangles in Figure
2.14.

In[207]:= leftbox[f ,a ,b ,n ,opts ] :=

Module[{z,p1,recs,ls},

z[k ] = a + (b - a)k/n;

p1 = Plot[f,{x,a,b},

PlotStyle- > {{Thickness[0.01],GrayLevel[0.3]}},

DisplayFunction- > Identity];

recs = Table[Rectangle[

{z[k - 1],0},{z[k],f/.x- > z[k - 1]}],{k,1,n}];

ls = Table[Line[{{z[k - 1],0},{z[k - 1],f/.x- > z[k - 1]},

{z[k],f/.x- > z[k - 1]},{z[k],0}}],{k,1,n}];

Show[Graphics[{GrayLevel[0.8],recs}],

Graphics[ls],p1,opts,Axes- > Automatic,

DisplayFunction- > $DisplayFunction]]

In[208]:= rightbox[f ,a ,b ,n ,opts ] :=

Module[{z,p1,recs,ls},

z[k ] = a + (b - a)k/n;

p1 = Plot[f,{x,a,b},

PlotStyle- > {{Thickness[0.01],GrayLevel[0.3]}},

DisplayFunction- > Identity];

recs = Table[Rectangle[

{z[k - 1],0},{z[k],f/.x- > z[k]}],{k,1,n}];

ls = Table[Line[{{z[k - 1],0},{z[k - 1],f/.x- > z[k]},

{z[k],f/.x- > z[k]},{z[k],0}}],{k,1,n}];

Show[Graphics[{GrayLevel[0.8],recs}],

Graphics[ls],p1,opts,Axes- > Automatic,

DisplayFunction- > $DisplayFunction]]
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In[209]:= middlebox[f ,a ,b ,n ,opts ] :=

Module[{z,p1,recs,ls},

z[k ] = a + (b - a)k/n;

p1 = Plot[f,{x,a,b},

PlotStyle- > {{Thickness[0.01],GrayLevel[0.3]}},

DisplayFunction- > Identity];

recs = Table[Rectangle[{z[k - 1],0},

{z[k],f/.x- > 1/2(z[k - 1] + z[k])}],{k,1,n}];

ls = Table[Line[

{{z[k - 1],0},{z[k - 1],f/.x- > 1/2(z[k - 1] + z[k])},

{z[k],f/.x- > 1/2(z[k - 1] + z[k])},{z[k],0}}],

{k,1,n}];

Show[Graphics[{GrayLevel[0.8],recs}],

Graphics[ls],p1,opts,Axes- > Automatic,

DisplayFunction- > $DisplayFunction]]

In[210]:= somegraphs = {{leftbox[f[x],0,3/2,4,

DisplayFunction- > Identity],middlebox[f[x],0,

3/2,4,DisplayFunction- > Identity],rightbox[

f[x],0,3/2,4,DisplayFunction- > Identity]},

{leftbox[f[x],0,3/2,16,DisplayFunction- > Identity],

middlebox[f[x],0,3/2,

16,DisplayFunction- > Identity],rightbox[

f[x],0,3/2,16,DisplayFunction- > Identity]},

{leftbox[f[x],0,3/2,32,DisplayFunction- > Identity],

middlebox[f[x],0,3/2,32,

DisplayFunction- > Identity],rightbox[f[x],

0,3/2,32,DisplayFunction- > Identity]}};

Show[GraphicsArray[somegraphs]]

Notice that asn increases, the under approximations increase while the upper approxi-
mations decrease.

These graphs help convince us that the limit of the sum asn Ø ¶ of the areas of the
inscribed and circumscribed rectangles is the same. We compute the exact value of
(2.5) with leftsum, evaluate and simplify the sum withSimplify, and compute
the limit asn Ø ¶ with Limit, We see that the limit is 9.

In[211]:= ls = leftsum[f[x],0,3/2,n]

ls2 = Simplify[ls]

Limit[ls2,n- > ¶]

Out[211]= -
27 In - n3 - n (1 + n) + 1

6 n (1 + n) (1 + 2 n)M

2 n3

Out[211]=
9 (-1 + 3 n + 4 n2)

4 n2

Out[211]= 9

Similar calculations are carried out for (2.6) and again we see that the limit is 9. We
conclude that the exact value of the area is 9.
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Figure 2.14:f (x) with 4, 16, and 32 rectangles

In[212]:= rs = rightsum[f[x],0,3/2,n]

rs2 = Simplify[rs]

Limit[rs2,n- > ¶]

Out[212]= -
27 I - n3 + 1

6 n (1 + n) (1 + 2 n)M

2 n3

Out[212]=
9 (-1 - 3 n + 4 n2)

4 n2

Out[212]= 9

For illustrative purposes, we confirm this result withmiddlesum.

In[213]:= ms = middlesum[f[x],0,3/2,n]

ms2 = Simplify[ms]

Limit[ms2,n- > ¶]

Out[213]= -
27 In - 4 n3 - 2 n (1 + n) + 2

3 n (1 + n) (1 + 2 n)M

8 n3

Out[213]= 9 +
9

8 n2

Out[213]= 9
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2.3.2 The Definite Integral

In integral calculus courses, we formally learn that thedefinite integral of the function
y = f (x) from x = a to x = b is

‡
b

a
f (x) dx = lim

|P|Ø0

n

‚
k=1

f Ixk
*M Dxk, (2.8)

provided that the limit exists. In (2.8),P = {a = x0 < x1 < x2 < ÿ ÿ ÿ < xn = b} is a
partition of[a, b], |P| is thenorm of P,

|P| = max{xk - xk-1|k = 1,2, . . . , n},

Dxk = xk - xk-1, andxk
* œ Axk-1, xkE.

The Fundamental Theorem of Calculusprovides the fundamental relationship between
differentiation and integration.

Theorem 5 (The Fundamental Theorem of Calculus).Suppose that y= f (x) is con-
tinuous on[a, b].

1. If F(x) = Ÿ
x

a
f (t) dt, then F is an antiderivative of f : F£(x) = f (x).

2. If G is any antiderivative of f , thenŸ
b

a
f (x) dx = G(b) - G(a).

Mathematica’sIntegrate command can compute many definite integrals. The com-
mand

Integrate[f[x],{x,a,b}]

attempts to computeŸ
b

a
f (x) dx. Because integration is a fundamentally difficult proce-

dure, it is easy to create integrals for which the exact value cannot be found explicitly.
In those cases, useN to obtain an approximation of its value or obtain a numerical
approximation of the integral directly with

NIntegrate[f[x],{x,a,b}].

Example 38. Evaluate (a)Ÿ
4

1
Ix2 + 1M /

0
x dx; (b) Ÿ

0
p/2

0
xcosx2 dx; (c) Ÿ

p

0
e2x sin2 2x dx;

(d) Ÿ
1

0
20

p
e-x2

dx; and(e) Ÿ
0

-1
3

0
u du.

Solution. Weevaluate (a)-(c) directly withIntegrate.

In[214]:= Integrate[(xˆ2 + 1)/Sqrt[x],{x,1,4}]

Out[214]=
72

5

In[215]:= Integrate[x Cos[xˆ2],{x,0,Sqrt[p/2]}]
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Out[215]=
1

2

In[216]:= Integrate[Exp[2x]Sin[2x]ˆ2,{x,0,p}]

Out[216]= -
1

5
+
e2 p

5

For (d), the result returned is in terms of theerror function , Erf[x], that is defined
by the integral

Erf[x] =
2

0
p ‡

x

0
e-t2

dt.

In[217]:= Integrate[2/Sqrt[p] Exp[-xˆ2],{x,0,1}]

Out[217]= Erf[1]

We useN to obtain an approximation of the value of the definite integral.

In[218]:= Integrate[2/Sqrt[p] Exp[-xˆ2],{x,0,1}]//N

Out[218]= 0.842701

(e) Recall that Mathematica does not return a real number when we compute odd roots
of negative numbers so the following result would be surprising to many students in an
introductory calculus course because it contains imaginary numbers.

In[219]:= Integrate[uˆ(1/3),{u,-1,0}]

Out[219]=
3

4
(-1)1/3

Therefore, we load theRealOnly package contained in theMiscellaneousdirectory
so that Mathematica. returns the real-valued third root ofu.

In[220]:= << Miscellaneous‘RealOnly‘

In[221]:= Integrate[uˆ(1/3),{u,-1,0}]

Out[221]= -
3

4

Improper integrals are computed usingIntegrate in the same way as other definite
integrals.

Example 39. Evaluate (a)Ÿ
1

0
ln x0

x
dx; (b) Ÿ

¶

-¶
20

p
e-x2

dx; (c) Ÿ
¶

1
1

x
0

x2-1
dx; (d) Ÿ

¶

0
1

x2+x4 dx;

(e) Ÿ
4

2
1

3
0

(x-3)2
dx; and(f) Ÿ

¶

-¶
1

x2+x-6
dx.

Solution. (a) This is an improper integral because the integrand is discontinuous on the
interval[0,1] but we see that the improper integral converges to-4.

In[222]:= Integrate[Log[x]/Sqrt[x],{x,0,1}]

Out[222]= -4

(b) This is an improper integral because the interval of integration is infinite but we see
that the improper integral converges to 2.
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In[223]:= Integrate[2/Sqrt[p] Exp[-xˆ2],{x,-¶,¶}]

Out[223]= 2

(c) This is an improper integral because the integrand is discontinuous on the interval
of integration and because the interval of integration is infinite but we see that the
improper integral converges top/2.

In[224]:= Integrate[1/(x Sqrt[xˆ2 - 1]),{x,1,¶}]

Out[224]=
p

2

(d) As with (c), this is an improper integral because the integrand is discontinuous on
the interval of integration and because the interval of integration is infinite but we see
that the improper integral diverges to¶.

(e) Recall that Mathematica does not return a real number when we compute odd roots
of negative numbers so the following result would be surprising to many students in an
introductory calculus course because it contains imaginary numbers.

In[225]:= Integrate[1/(x - 3)ˆ(2/3),{x,2,4}]

Out[225]= 3 - 3 (-1)1/3

Therefore, we load theRealOnly package contained in theMiscellaneousdirectory
so that Mathematica returns the real-valued third root ofx - 3.

In[226]:= << Miscellaneous‘RealOnly‘

In[227]:= Integrate[1/(x - 3)ˆ(2/3),{x,2,4}]

Out[227]= 6

(f) In this case, Mathematica warns us that the improper integral diverges.

To help us understand why the improper integral diverges, we note that that1
x2+x-6

=
1
5 I 1

x-2 - 1
x+3M and

‡
1

x2 + x - 6
dx = ‡

1
5

K
1

x - 2
-

1
x + 3

O dx =
1
5

ln K
x - 2
x + 3

O + C.

In[228]:= Integrate[1/(xˆ2 + x - 6),x]

Out[228]=
1

5
Log[-2 + x] -

1

5
Log[3 + x]
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Hence the integral is improper because the interval of integration is infinite and because
the integrand is discontinuous on the interval of integration so

‡
¶

-¶

1

x2 + x - 6
dx = ‡

-4

-¶

1

x2 + x - 6
dx+ ‡

-3

-4

1

x2 + x - 6
dx

+ ‡
0

-3

1

x2 + x - 6
dx+ ‡

2

0

1

x2 + x - 6
dx+ ‡

3

2

1

x2 + x - 6
dx+ ‡

¶

3

1

x2 + x - 6
dx

(2.9)

Evaluating each of these integrals,

we conclude that the improper integral diverges because at least one of the improper
integrals in (2.9) diverges.

In many cases, Mathematica can help illustrate the steps carried out when computing
integrals using standard methods of integration likeu-substitutions and integration by
parts.

Example 40. Evaluate (a)Ÿ
e3

e
1

x
0

ln x
dx and (b)Ÿ

p/4

0
xsin 2x dx.

Solution. (a) We letu = ln x. Then,du = 1
xdxsoŸ

e3

e
1

x
0

ln x
dx = Ÿ

3

1
10
u
du = Ÿ

3

1
u-1/2du,

which we evaluate withIntegrate. The new lower limit of integration is 1 be-

cause ifx = e, u = ln e = 1. The new upper

limit of integration is 3 because ifx = e3,

u = ln e3 = 3.

In[229]:= Integrate[1/Sqrt[u],{u,1,3}]

Out[229]= -2 + 2
0
3

To evaluate (b), we letu = x fl du = dx anddv = sin 2x dxfl v = - 1
2 cos 2x.
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In[230]:= u = x;

dv = Sin[2x];

In[231]:= du = D[x,x]

v = Integrate[Sin[2x],x]
Out[231]= 1

Out[231]= -
1

2
Cos[2 x]

In[232]:= v du

Out[232]= -
1

2
Cos[2 x]

The results mean that

‡
p/4

0
xsin 2x dx= -

1
2

xcos 2xG
p/4

0
+

1
2 ‡

p/4

0
cos 2x dx

= 0 +
1
2 ‡

p/4

0
cos 2x dx.

The resulting indefinite integral is evaluated withIntegrate

In[233]:= u v - Integrate[v du,x]

Out[233]= -
1

2
x Cos[2 x] +

1

4
Sin[2 x]

In[234]:= Integrate[x Sin[2x],x]

Out[234]=
1

4
(-2 x Cos[2 x] + Sin[2 x])

and the definite integral is evaluated withIntegrate.

2.3.3 Approximating Definite Integrals

Because integration is a fundamentally difficult procedure, Mathematica is unable to
compute a ”closed form” of the value of many definite integrals. In these cases, numer-
ical integration can be used to obtain an approximation of the definite integral usingN
together withIntegrate or NIntegrate.

Example 41. Evaluate

‡
3

0
p

0
e-x2

cosx3 dx.

Solution. In this case, Mathematica is unable to evaluate the integral withInte-
grate.

In[235]:= i1 = Integrate[Exp[-xˆ2] Cos[xˆ3],{x,0,pˆ(1/3)}]
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Out[235]= ‡
p1/3

0
e-x2 Cos[x3]„x

An approximation is obtained withN.

In[236]:= N[i1]

Out[236]= 0.701566

Instead of usingIntegrate followed byN, you can useNIntegrate to numeri-
cally evaluate many integrals.

NIntegrate[f[x],{x,a,b}]

attempts to approximateŸ
b

a
f (x) dx. Thus, entering

In[237]:= NIntegrate[Exp[-xˆ2] Cos[xˆ3],{x,0,pˆ(1/3)}]

Out[237]= 0.701566

returns the same result as that obtained usingIntegrate followed byN.

In some cases, you may wish to investigate particular numerical methods that can be
used to approximate integrals. If needed you can redefine the functionsleftsum,
middlesum, andrightsum that were discussed previously. In addition we define
the functionssimpson, which implements Simpson’s rule, andtrapezoid, which
implements the trapezoidal rule, in the following example that can be used to investi-
gate approximations of definite integrals using those numerical methods.

Example 42. Let

f (x) = e-(x-3)2 cos(4(x-3)).

(a) Graphy = f (x) on the interval[1,5]. Use (b) Simpson’s rule withn = 4, (c) the
trapezoidal rule withn = 4, and (d) the midpoint rule withn = 4 to approximate

Ÿ
5

1
f (x) dx.

Solution. We define f , and then graphy = f (x) on the interval[1,5] with Plot in
Figure 2.15.

In[238]:= f[x ] = Exp[-(x - 3)ˆ2Cos[4(x - 3)]];

Plot[f[x],{x,1,5}]

After definingsimpson andtrapezoid,

In[239]:= simpson[f ,a ,b ,n ] := Module[{z,h},

h = (b - a)/n;

z[k ] = a + h k;

f0 = f/.x- > z[0];

fn = f/.x- > z[n];

h/3 (f0 + fn)+

h/3 Sum[(3 + (-1)ˆ(k + 1))f /. x- > z[k],{k,1,n - 1}]

]
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0.5

1

1.5

2

Figure 2.15:f (x) for 1 § x § 5

In[240]:= trapezoid[f ,a ,b ,n ] := Module[{z,h},

h = (b - a)/n;

z[k ] = a + h k;

f0 = f/.x- > z[0];

fn = f/.x- > z[n];

h/2 (f0 + fn) + h Sum[f /. x- > z[k],{k,1,n - 1}]

]

we use these functions andmiddlesum, which was defined earlier, to approximateBe sure to redefinemiddlesum if you have

not already used it during your current Math-

ematica session before executing the follow-

ing commands.

Ÿ
5

1
f (x) dx usingn = 4 rectangles. In each case,N is used to evaluate the sum.

In[241]:= s1 = simpson[f[x],1,5,4]

N[s1]

t1 = trapezoid[f[x],1,5,4]

N[t1]

m1 = middlesum[f[x],1,5,4]

N[m1]

Out[241]=
2

3
e-4 Cos[8] +

1

3
I2 + 8 e-Cos[4]M

Out[241]= 6.9865

Out[241]= 1 + 2 e-Cos[4] + e-4 Cos[8]

Out[241]= 6.63468

Out[241]= 2 e- Cos[2]
4 + 2 e- 9 Cos[6]

4

Out[241]= 2.44984

Weobtain an accurate approximation of the value of the integral usingNIntegrate.

In[242]:= NIntegrate[f[x],{x,1,5}]

Out[242]= 3.761
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Figure 2.16:y = sinx andy = cosx on the interval[0,2p]

Notice that withn = 4 rectangles, the midpoint rule gives the best approximation.
However, asn increases, Simpson’s rule gives a better approximation as we see using
n = 50 rectangles.

In[243]:= simpson[f[x],1,5,50]//N

trapezoid[f[x],1,5,50]//N

middlesum[f[x],1,5,50]//N

Out[243]= 3.76445

Out[243]= 3.7913

Out[243]= 3.74623

2.3.4 Area

Suppose thaty = f (x) andy = g(x) are continuous on[a, b] and thatf (x) ¥ g(x) for
a § x § b. Then, thearea of the region bounded by the graphs ofy = f (x), y = g(x),
x = a, andx = b is

A = ‡
b

a
[ f (x) - g(x)] dx. (2.10)

Example 43. Find the area between the graphs ofy = sinx and y = cosx on the
interval[0,2p].

Solution. We graphy = sinx andy = cosx on the interval[0,2p] in Figure 2.16. The
graph ofy = cosx is gray.

In[244]:= Plot[{Sin[x],Cos[x]},{x,0,2p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

AspectRatio- > Automatic]

To find the upper and lower limits of integration, we must solve the equation sinx =
cosx for x.

In[245]:= Solve[Sin[x] == Cos[x],x]
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Solve :: "ifun" : "Inversefunctionsarebeingused

bySolve, so some solutions may not be found."

Set :: "write" : "TagPower in DownValues[

Power] is Protected."

Out[245]= 99x Ø -
3 p

4
=,9x Ø

p

4
==

Thus, for 0§ x § 2p, sinx = cosx if x = p/4 or x = 5p/4. Hence, the area of the
region between the graphs is given by

A = ‡
p/4

0
[cosx - sinx] dx+ ‡

5p/4

p/4
[sinx - cosx] dx+ ‡

2p

5p/4
[cosx - sinx] dx.

(2.11)

Notice that if we take advantage of symmetry we can simplify (2.11) to

A = 2‡
5p/4

p/4
[sinx - cosx] dx. (2.12)

Weevaluate (2.12) withIntegrate to see that the area is 4
0

2.

In[246]:= 2 Integrate[Sin[x] - Cos[x],{x,p/4,5p/4}]

Out[246]= 4
0
2

In cases when we cannot calculate the points of intersection of two graphs exactly, we
can frequently useFindRoot to approximate the points of intersection.

Example 44. Let

p(x) =
3
10

x5 - 3x4 + 11x3 - 18x2 + 12x + 1

and

q(x) = -4x3 + 28x2 - 56x + 32.

Approximate the area of the region bounded by the graphs ofp andq.

Solution. After definingp andq, wegraph them on the interval[-1,5] in Figure 2.17
to obtain an initial guess of the intersection points of the two graphs.

In[247]:= p[x ] = 3/10xˆ5 - 3xˆ4 + 11xˆ3 - 18xˆ2 + 12x + 1;

q[x ] = -4xˆ3 + 28xˆ2 - 56x + 32;

Plot[{p[x],q[x]},{x,-1,5},PlotRange- > {-15,20},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]}]

The x-coordinates of the three intersection points are the solutions of the equation
p(x) = q(x). Although Mathematica can solve this equation exactly, approximate solu-
tions are more useful for the problem and obtained withFindRoot.
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Figure 2.17:p andq on the interval[-1,5]

In[248]:= FindRoot[p[x] == q[x],{x,1}]

FindRoot[p[x] == q[x],{x,2}]

FindRoot[p[x] == q[x],{x,4}]
Out[248]= {x Ø 0.772058}

Out[248]= {x Ø 2.29182}

Out[248]= {x Ø 3.86513}

All threeFindRoot commands can be combined together if we useMap as illustrated
next.

In[249]:= intpts = Map[FindRoot[p[x] == q[x],{x,#}]&,{1,2,4}]

Out[249]= {{x Ø 0.772058},{x Ø 2.29182},

{x Ø 3.86513}}

In[250]:= intpts[[1,1,2]]

Out[250]= 0.772058

Using the roots to the equationp(x) = q(x) and the graph we see thatp(x) ¥ q(x) for
0.772§ x § 2.292 andq(x) ¥ p(x) for 2.292§ x § 3.865. Hence, an approximation of
the area bounded byp andq is given by the sum

‡
2.292

0.772
[p(x) - q(x)] dx+ ‡

3.865

2.292
[q(x) - p(x)] dx.

These two integrals are computed withNIntegrate.

In[251]:= intone = NIntegrate[p[x] - q[x],

{x,intpts[[1,1,2]],intpts[[2,1,2]]}]

inttwo = NIntegrate[q[x] - p[x],

x,intpts[[2,1,2]],intpts[[3,1,2]]}]
Out[251]= 5.26912

Out[251]= 6.92599
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and added to see that the area is approximately 12.195.

In[252]:= intone + inttwo

Out[252]= 12.1951

Parametric Equations

If the curve,C, defined parametrically byx = x(t), y = y(t), a § t § b is a nonnegative
continuous function ofx andx(a) < x(b) the area under the graph ofC and above theGraphically,y is a function ofx, y = y(x), if

the graph ofy = y(x) passes the vertical line

test.

x-axis is

‡
x(b)

x(a)
y dx= ‡

b

a
y(t)x£(t)dt.

Example 45 (The Astroid). Find the area enclosed by theastroid x = sin3 t, y =
cos3 t, 0 § t § 2p.

Solution. We begin by definingx andy and then graphing the asteroid withPara-
metricPlot in Figure 2.18.

In[253]:= x[t ] = Sin[t]ˆ3;

y[t ] = Cos[t]ˆ3;

ParametricPlot[

{x[t],y[t]},{t,0,2p},AspectRatio- > Automatic]

Observe thatx(0) = 0 andx(p/2) = 1 and thegraph of the asteroid in the first quadrant
is given byx = sin3 t, y = cos3 t, 0 § t § p/2. Hence, the area of the astroid in the first
quadrant is given by

‡
p/2

0
y(t)x£(t) dt = 3‡

p/2

0
sin2 t cos4 t dt

and the total area is given by

A = 4‡
p/2

0
y(t)x£(t) dt = 3‡

p/2

0
sin2 t cos4 t dt =

3
8

p º 1.178,

which is computed withIntegrate and then approximated withN.

In[254]:= area = 4 Integrate[y[t] x£[t],{t,0,p/2}]

Out[254]=
3 p

8

In[255]:= N[area]

Out[255]= 1.1781
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Figure 2.18: The astroidx = sin3 t, y = cos3 t, 0 § t § 2p

Polar Coordinates

For problems involving ”circular symmetry” it is often easier to work in polar coor-
dinates. The relationship between(x, y) in rectangular coordinates and(r, q) in polar
coordinates is given by

x = r cosq y = r sinq

and

r2 = x2 + y2 tanq =
y
x

.

If r = f (q) is continuous and non-negative fora § q § b, then theareaA of the region
enclosed by the graphs ofr = f (q), q = a, andq = b is

A =
1
2 ‡

b

a
[ f (q)]2 dq =

1
2 ‡

b

a
r2 dq.

Example 46. TheLemniscate of Bernoulli is given by

Ix2 + y2M2
= a2 Ix2 - y2M ,

wherea is a constant. (a) Graph the Lemniscate of Bernoulli ifa = 2. (b) Find the area
of the region bounded by the Lemniscate of Bernoulli.
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Figure 2.19: The Lemniscate
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Figure 2.20: The portion of the Lemniscate in quadrant 1

Solution. This problem is much easier solved in polar coordinates so we first convert
the equation from rectangular to polar coordinates with/. and then solve forr with
Solve.

In[256]:= lofb = (xˆ2 + yˆ2)ˆ2 == aˆ2(xˆ2 - yˆ2);

topolar = lofb/.{x- > r Cos[t],y- > r Sin[t]}

Out[256]= Ir2 Cos[t]2 + r2 Sin[t]2M2 == a2 Ir2 Cos[t]2 - r2 Sin[t]2M

In[257]:= Solve[topolar,r]//Simplify

Out[257]= 9{r Ø 0},{r Ø 0},9r Ø -a
0
Cos[2 t]=,9r Ø a

0
Cos[2 t]==

These results indicate that an equation of the Lemniscate in polar coordinates isr2 =
a2 cos 2q. The graph of the Lemniscate is then generated in Figure 2.19 usingPo-
larPlot, which is contained in theGraphics package located in theGraphics
directory.

In[258]:= << Graphics‘Graphics‘

PolarPlot[{-2 Sqrt[Cos[2t]],2Sqrt[Cos[2t]]},{t,0,2p}]

The portion of the Lemniscate in quadrant one is obtained by graphingr = 2 cos2q,
0 § q § p/4.

In[259]:= PolarPlot[2Sqrt[Cos[2t]],{t,0,p/4}]

Then, taking advantage of symmetry, the area of the Lemniscate is given by

A = 2 ÿ
1
2 ‡

p/4

-p/4
r2 dq = 2‡

p/4

0
r2 dq = 2‡

p/4

0
a2 cos 2q dq = a2,

which we calculate withIntegrate.
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In[260]:= Integrate[2 aˆ2 Cos[2 t],{t,0,p/4}]

Out[260]= a2

2.3.5 Arc Length

Let y = f (x) be a function for whichf £(x) is continuous on an interval[a, b]. Then the
arc length of the graph ofy = f (x) from x = a to x = b is given by

L = ‡
b

a

2

K
dy
dx

O
2

+ 1dx (2.13)

The resulting definite integrals used for determining arc length are usually difficult to
compute because they involve a radical. In these situations, Mathematica is helpful
with approximating solutions to these types of problems.

Example 47. Find the length of the graph of

y =
x4

8
+

1

4x2

from (a)x = 1 tox = 2 and (b) fromx = -2 tox = -1.

Solution. With no restrictions on the value ofx,
0

x2 = |x|. Notice that Mathematica

does not automatically algebraically simplify
1

I dy
dxM2

+ 1 because Mathematica does
not know ifx is positive or negative.

In[261]:= y[x ] = xˆ4/8 + 1/(4xˆ2);

i1 = Factor[y£[x]ˆ2 + 1]

Out[261]=
(1 + x2)

2
(1 - x2 + x4)

2

4 x6

In[262]:= i2 = PowerExpand[Sqrt[i1]]

Out[262]=
(1 + x2) (1 - x2 + x4)

2 x3 PowerExpand[expr] simplifies radicals

in the expressionexpr.In fact, for (b),x is negative so

1
2

2
Ix6 + 1M2

x6 = -
1
2

x6 + 1

x3 .

Mathematica simplifies

1
2

2
Ix6 + 1M2

x6 =
1
2

x6 + 1

x3 .

and correctly evaluates the arc length integral (2.13) for (a).
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Figure 2.21:x =
0

2t2, y = 2t - 1
2t3

In[263]:= Integrate[Sqrt[y£[x]ˆ2 + 1],{x,1,2}]

Out[263]=
33

16

For (b), we compute the arc length integral (2.13).

In[264]:= Integrate[Sqrt[y£[x]ˆ2 + 1],{x,-2,-1}]

Out[264]=
33

16

As we expect, both values are the same.

Parametric Equations

If the smooth curve,C, defined parametrically byx = x(t), y = y(t), t œ [a, b] isC is smooth if both x£(t) andy£(t) are con-

tinuous on(a, b) and not simultaneously zero

for t œ (a, b).

traversed exactly once ast increases fromt = a to t = b, the arclength ofC is given by

L = ‡
b

a

2

K
dx
dt

O
2

+ K
dy
dt

O
2

dt (2.14)

Example 48. Find the length of the graph ofx =
0

2t2, y = 2t - 1
2t3, -2 § t § 2.

Solution. For illustrative purposes, we graphx =
0

2t2, y = 2t - 1
2t3 for -3 § t § 3 (in

black) and-2 § t § 2 (in thick black) in Figure 2.21.

In[265]:= x[t ] = tˆ2 Sqrt[2];y[t ] = 2t - 1/2tˆ3;

p1 = ParametricPlot[{x[t],y[t]},

{t,-3,3},DisplayFunction- > Identity];

p2 = ParametricPlot[{x[t],y[t]},{t,-2,2},PlotStyle- >

Thickness[0.01],DisplayFunction- > Identity];

Show[p1,p2,DisplayFunction- > $DisplayFunction,

PlotRange- > All]
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Mathematica is able to compute the exact value of the arc length (2.14) although the
result is quite complicated.

In[266]:= Factor[x£[t]ˆ2 + y£[t]ˆ2]

Out[266]=
1

4
I4 - 4 t + 3 t2M I4 + 4 t + 3 t2M

In[267]:= i1 = Integrate[2 Sqrt[x£[t]ˆ2 + y£[t]ˆ2],{t,0,2}]

Out[267]=
1

18
K96

0
3 - K32 i

2

6 J1 +
1

2
I2 - 4 i

0
2MN

2

1 +
1

2
I2 + 4 i

0
2M EllipticEA

i ArcSinhA

2
1

2
I2 + 4 i

0
2ME,-1 +

1

9
I2 - 4 i

0
2MEOí

JI2 + 4 i
0
2M

3/2
J - 1 +

1

9
I2 - 4 i

0
2MNN-

1
1
2 + 4 i

0
2

K16 i

2

6 J1 +
1

2
I2 - 4 i

0
2MN

2

1 +
1

2
I2 + 4 i

0
2M EllipticFA

i ArcSinhA

2
1

2
I2 + 4 i

0
2ME,-1 +

1

9
I2 - 4 i

0
2MEO+

K32 i

2

6 J1 +
1

2
I2 - 4 i

0
2MN

2

1 +
1

2
I2 + 4 i

0
2M EllipticFA

i ArcSinhA

2
1

2
I2 + 4 i

0
2ME,-1 +

1

9
I2 - 4 i

0
2MEOí

JI2 + 4 i
0
2M

3/2
J - 1 +

1

9
I2 - 4 i

0
2MNNO

A more meaningful approximation is obtained withN or usingNIntegrate.

In[268]:= N[i1]

Out[268]= 13.7099 - 1.1842410-15 i

In[269]:= NIntegrate[2 Sqrt[x£[t]ˆ2 + y£[t]ˆ2],{t,0,2}]

Out[269]= 13.7099

Weconclude that the arc length is approximately 13.71.
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Figure 2.22:r = q for 0 § q § 10p

Polar Coordinates

If the smooth polar curveC given byr = f (q), a § q § b is traversed exactly once asq
increases froma to b, the arc length ofC is given by

L = ‡
b

a

2

K
dr
dq

O
2

+ r2 dq (2.15)

Example 49. Find the length of the graph ofr = q, 0 § q § 10p.

Solution. We begin by definingr and then graphingr with PolarPlot in Figure
2.22.

In[270]:= << Graphics‘Graphics‘

r[t ] = t;

PolarPlot[r[t],{t,0,10p},AspectRatio- > Automatic]

Using (2.15), the length of the graph ofr is given byŸ
10p

0

0
1 + q2 dq. The exact value

is computed withIntegrate

In[271]:= ev = Integrate[Sqrt[r£[t]ˆ2 + r[t]ˆ2],{t,0,10p}]

Out[271]= 5 p
1
1 + 100 p2 +

1

2
ArcSinh[10 p]

and then approximated withN.

In[272]:= N[ev]
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Figure 2.23:g(x) for 0 § x § p

Out[272]= 495.801

Weconclude that the length of the graph is approximately 495.8.

2.3.6 Solids of Revolution

Volume

Let y = f (x) be a non-negative continuous function on[a, b]. Thevolume of the solid
of revolution obtained by revolving the region bounded by the graphs ofy = f (x),
x = a, x = b, andthex-axis about thex-axis is given by

V = p ‡
b

a
[ f (x)]2 dx. (2.16)

If 0 § a < b, thevolume of the solid of revolution obtained by revolving the region
bounded by the graphs ofy = f (x), x = a, x = b, andthe x-axis about they-axis is
given by

V = 2p ‡
b

a
x f(x) dx (2.17)

Example 50. Let g(x) = xsin2 x. Find the volume of the solid obtained by revolving
the region bounded by the graphs ofy = g(x), x = 0, x = p, andthex-axis about (a) the
x-axis; and (b) they-axis.

Solution. After definingg, wegraphg on the interval[0, p] in Figure 2.23.

In[273]:= g[x ] = x Sin[x]ˆ2;

Plot[g[x],{x,0,p},AspectRatio- > Automatic]

The volume of the solid obtained by revolving the region about thex-axis is given by
(2.16) while the volume of the solid obtained by revolving the region about they-axis
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is given by (2.17). These integrals are computed withIntegrate and namedxvol
andyvol, respectively.N is used to approximate each volume.

In[274]:= xvol = Integrate[p g[x]ˆ2,{x,0,p}]

N[xvol]

Out[274]=
1

256
p I - 60 p + 32 p3M

Out[274]= 9.86295

In[275]:= yvol = Integrate[2 p x g[x],{x,0,p}]

N[yvol]

Out[275]=
1

12
p I - 6 p + 4 p3M

Out[275]= 27.5349

We can useParametricPlot3D to visualize the resulting solids by parametrically
graphing the equations given by

ÌÓ
Ô

x = r cost

y = r sint

z = g(r)

for r between 0 andp and t between-p and p to visualize the graph of the solid
obtained by revolving the region about they-axis and by parametrically graphing the
equations given by

ÌÓ
Ô

x = r

y = g(r) cost

z = g(r) sint

for r between 0 andp and t between-p and p to visualize the graph of the solid
obtained by revolving the region about thex-axis. (See Figures 2.24 and 2.25.) In
this case, we identify thez-axis as they-axis. Notice that we are simply using polar
coordinates for thex andy-coordinates, and the height above thex,y-plane is given by
z = g(r) becauser is replacingx in the new coordinate system.

In[276]:= ParametricPlot3D[{r,g[r]Cos[t],g[r]Sin[t]},

{r,0,p},{t,0,2p},PlotPoints- > {30,30}]

In[277]:= ParametricPlot3D[{r Cos[t],r Sin[t],g[r]},{r,0,p},

{t,0,2p},PlotPoints- > {30,30}]

Wenow demonstrate a volume problem that requires the method of disks.
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Figure 2.24:g(x) revolved about thex-axis
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Figure 2.25:g(x) revolved about they-axis



100 CHAPTER 2. CALCULUS

2 3 4 5

0.5

1

1.5

2

Figure 2.26:f (x) for 1 § x § 5

Example 51. Let

f (x) = e-(x-3) cos[4(x-3)].

Approximate the volume of the solid obtained by revolving the region bounded by the
graphs ofy = f (x), x = 1, x = 5, and thex-axis about thex-axis.

Solution. Proceeding as in the previous example, we first define and graphf on the
interval[1,5] in Figure 2.26.

In[278]:= f[x ] = Exp[-(x - 3)ˆ2 Cos[4(x - 3)]];

Plot[f[x],{x,1,5},AspectRatio- > Automatic]

In this case, an approximation is desired so we useNIntegrate to approximate the

integralV = Ÿ
5

1
p [ f (x)]2 dx.

In[279]:= NIntegrate[p f[x]ˆ2,{x,1,5}]

Out[279]= 16.0762

In the same manner as before,ParametricPlot3D can be used to visualize the
resulting solid by graphing the set of equations given parametrically by

ÌÓ
Ô

x = r

y = f (r) cost

z = f (r) sint

for r between 1 and 5 andt between 0 and 2p. In this case, polar coordinates are used
in they,z-plane with the distance from thex-axis given byf (x). Becauser replacesx
in the new coordinate system,f (x) becomesf (r) in these equations. See Figure 2.27

In[280]:= ParametricPlot3D[{r,f[r]Cos[t],f[r]Sin[t]},

{r,1,5},{t,0,2p},PlotPoints- > {45,35}]
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Figure 2.27:f (x) revolved about thex-axis

Surface Area

Let y = f (x) be a non-negative function for whichf £(x) is continuous on an interval
[a, b]. Then thesurface areaof the solid of revolution obtained by revolving the region
bounded by the graphs ofy = f (x), x = a, x = b, andthe x-axis about thex-axis is
given by

SA= 2p ‡
b

a
f (x)

2

1 + A f £(x)E2
dx. (2.18)

Example 52 (Gabriel’s Horn). Gabriel’s Horn is the solid of revolution obtained by
revolving the area of the region bounded byy = 1/x and thex-axis forx ¥ 1 about the
x-axis. Show that the surface area of Gabriel’s Horn is infinite but that its volume is
finite.

Solution. After defining f (x) = 1/x, we useParametricPlot3D to visualize a
portion of Gabriel’s Horn in Figure 2.28.

In[281]:= f[x ] = 1/x;

ParametricPlot3D[{r,f[r]Cos[t],f[r]Sin[t]},

{r,1,10},{t,0,2p},PlotPoints- > {40,40},

ViewPoint- > {-1.509, -2.739, 1.294}]
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Figure 2.28: A portion of Gabriel’s Horn

Using (2.18), the surface area of Gabriel’s Horn is given by the improper integral

SA= 2p ‡
¶

1

1
x

2

1 +
1

x4 dx = 2p lim
LØ¶

‡
L

1

1
x

2

1 +
1

x4 dx.

In[282]:= step1 = Integrate[2 p f[x] Sqrt[1 + f£[x]ˆ2],{x,1,capl}]

Integrate :: "gener" : "Unabletocheckconvergence"

Out[282]= -p I -
0
2 + ArcSinh[1]M+

2

1 +
1

capl4
p K - 1 +

capl2 ArcSinh[capl2]
1
1 + capl4

O

In[283]:= Limit[step1,capl- > ¶]

Out[283]= ¶

On the other hand, using (2.16) the volume of Gabriel’s Horn is given by the improper
integral

SA= 2p ‡
¶

1

1

x2 dx = p lim
LØ¶

‡
L

1

1

x2 dx,

which converges top.

In[284]:= step1 = Integrate[p f[x]ˆ2,{x,1,capl}]

Out[284]= p -
p

capl

In[285]:= Limit[step1,capl- > ¶]

Out[285]= p

In[286]:= Integrate[p f[x]ˆ2,{x,1,¶}]

Out[286]= p
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2.4 Series

2.4.1 Introduction to Sequences and Series

Sequences and series are usually discussed in the third quarter or second semester of
introductory calculus courses. Most students find that it is one of the most difficult
topics covered in calculus. Asequenceis a function with domain consisting of the
positive integers. Theterms of the sequence9an= area1, a2, a3, . . .. Thenth term is
an; the (n + 1)st term isan+1. If limnØ¶ an = L, we saythat 9an= convergesto L. If
9an= does not converge,9an= diverges. We can often prove that a sequence converges
by applying the following theorem.

Theorem 6. Every bounded monotonic sequence converges. A sequence9an= is monotonic if9an= is in-

creasing (an+1 ¥ an for all n) or decreasing

(an+1 § an for all n).In particular, Theorem 6 gives us the following special cases.

1. If 9an= has positive terms and is eventually decreasing,9an= converges.

2. If 9an= has negative terms and is eventually increasing9an= converges.

After you have defined a sequence, useTable to compute the first few terms of the
sequence.

1. Table[a[n],{n,1,m}] returnsa1, a2, a3, . . ., am.

2. Table[a[n],{n,k,m}] returnsak, ak+1, ak+2, . . ., am.

Example 53. Let

an =
50n

n!
.

Show that limnØ¶ an = 0.

Solution. We remark that the symboln! in thedenominator ofan represents thefacto-
rial sequence:

n! = n ÿ (n - 1) ÿ (n - 2) ÿ ÿ ÿ ÿ ÿ 2 ÿ 1.

We begin by definingan and then computing the first few terms of the sequence with
Table.

In[287]:= a[n ] = 50ˆn/n!;

afewterms = Table[a[n],{n,1,10}]

N[afewterms]
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Figure 2.29: The first few terms ofan

Out[287]= 950,1250,
62500

3
,
781250

3
,
7812500

3
,
195312500

9
,

9765625000

63
,
61035156250

63
,
3051757812500

567
,

15258789062500

567
=

Out[287]= {50.,1250.,20833.3,

260417.,2.60417106,

2.17014107,1.5501108,

9.68812108,5.38229109,

2.691141010}

The first few terms increase in magnitude. In fact, this is further confirmed by graphing
the first few terms of the sequence withListPlot in Figure 2.29. Based on the graph
and the values of the first few terms we might incorrectly conclude that the sequence
diverges.

In[288]:= ListPlot[afewterms]

However, notice that

an+1 =
50

n + 1
an fl

an+1

an

=
50

n + 1
.

Because 50/ (n + 1) < 1 for n > 49, we conclude that the sequence is decreasing
for n > 49. Because it has positive terms, it is bounded below by 0 so the sequence
converges by Theorem 6. LetL = limnØ¶ an. Then,

lim
nØ¶

an+1 = lim
nØ¶

50
n + 1

an

L = lim
nØ¶

50
n + 1

ÿ L

L = 0.

When we graph a larger number of terms, it is clear that the limit is 0. (See Figure
2.30.) In fact, it is a good exercise to show that for any real value ofx, limnØ¶

xn

n! = 0.
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Figure 2.30: The first 75 terms ofan

In[289]:= ListPlot[Evaluate[Table[a[k],{k,1,75}]]]

An infinite series is a series of the form

¶

‚
k=1

ak (2.19)

where9an= is a sequence. Thenth partial sum of (2.19) is

sn =
n

‚
k=1

ak = a1 + a2 + ÿ ÿ ÿ + an. (2.20)

Notice that the partial sums of the series (2.19) form a sequence9sn=. Hence, we say that
the infinite series (2.19)convergesto L if the sequence of partial sums9sn= converges
to L and write

¶

‚
k=1

ak = L.

The infinite series (2.19)divergesif the sequence of partial sums diverges. Given the
infinite series (2.19),

Sum[a[k],{k,1,n}]

calculates thenth partial sum (2.20). Insomecases, if the infinite series (2.19) con-
verges,

Sum[a[k],{k,1,Infinity}]
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can compute the value of the infinite sum. You should think of theSum function as a
”fragile” command and be certain to carefully examine its results.

Example 54. Determine whether each series converges or diverges. If the series con-
verges, findits sum. (a)⁄¶

k=1(-1)k+1 (b) ⁄¶
k=2

2
k2-1

(c) ⁄¶
k=0 ark

Solution. For (a), we compute thenth partial sum (2.20) insn with Sum.

In[290]:= sn = Sum[(-1)ˆ(k + 1),{k,1,n}]

Out[290]=
1

2
(1 - (-1)n)

Notice that the odd partial sums are 1:

s2n+1 =
1
2

I(-1)2n+1+1 + 1M =
1
2

(1 + 1) = 1

while the even partial sums are 0:

s2n =
1
2

I(-1)2n+1 + 1M =
1
2

(-1 + 1) = 0.

Weconfirm that the limit of the partial sums does not exist withlimit. Mathematica’s
result indicates that it cannot determine the limit.

In[291]:= Limit[sn,n- > ¶]

Out[291]= LimitA
1

2
(1 - (-1)n),n Ø ¶E

However, when we attempt to compute the infinite sum withSum, Mathematica is able
to determine that the sum diverges.

In[292]:= Sum[(-1)ˆ(k + 1),{k,1,¶}]

Sum :: "div" : "Sumdoesnotconverge."

Out[292]=
¶

‚
k=1

(-1)k+1

Thus, the series diverges.

For (b), we have atelescoping series. Using partial fractions,

¶

‚
k=2

2

k2 - 1
=

¶

‚
k=2

K
1

k - 1
-

1
k + 1

O

= K1 -
1
3

O + K
1
2

-
1
4

O + K
1
3

-
1
5

O + ÿ ÿ ÿ + K
1

n - 2
-

1
n

O + K
1

n - 1
-

1
n + 1

O + . . .

we see that thenth partial sum is given by

sn =
3
2

-
1
n

-
1

n + 1

andsn Ø 3/2 asn Ø ¶ so the series converges to 3/2:

¶

‚
k=2

2

k2 - 1
=

3
2

.
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Weperform the same steps with Mathematica usingSum andLimit.

In[293]:= sn = Sum[1/(k - 1) - 1/(k + 1),{k,2,n}]

Out[293]=
(-1 + n) (2 + 3 n)

2 n (1 + n)

In[294]:= Apart[sn]

Out[294]=
3

2
-
1

n
-

1

1 + n

In[295]:= Limit[sn,n- > ¶]

Out[295]=
3

2

(c) A series of the form⁄¶
k=0 ark is called ageometric series. We compute thenth

partial sum of the geometric series withSum.

In[296]:= sn = Sum[a rˆk,{k,0,n}]

Out[296]=
a (-1 + r1+n)

-1 + r

When usingLimit to determine the limit ofsn asn Ø ¶, we see that Mathematica
returns the limit unevaluated because Mathematica does not know the value ofr.

In[297]:= Limit[sn,n- > ¶]

Out[297]= LimitA
a (-1 + r1+n)

-1 + r
,n Ø ¶E

In fact, the geometric series diverges if|r | ¥ 1 and converges if|r | < 1. Observe that if
we simply compute the sum withsum, Mathematica returnsa/(1 - r) which is correct
if |r | < 1 but incorrect if |r | ¥ 1.

In[298]:= Sum[a rˆk,{k,0,¶}]

Out[298]=
a

1 - r

However, the result of entering

In[299]:= Sum[(-5/3)ˆk,{k,0,¶}]

Sum :: "div" : "Sumdoesnotconverge."

Out[299]=
¶

‚
k=0

J -
5

3
N
k

is correct because the series⁄¶
k=0 I- 5

3Mk
is geometric with|r | = 5/3 ¥ 1 and, conse-

quently, diverges. Similarly,

In[300]:= Sum[9 (1/10)ˆk,{k,1,¶}]

Out[300]= 1

is correct because⁄¶
k=1 9 I 1

10Mk
is geometric witha = 9/10 andr = 1/10 so the series

converges to

a
1 - r

=
9/10

1 - 1/10
= 1.
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2.4.2 Convergence Tests

Frequently used convergence tests are stated in the following theorems.

Theorem 7 (The Divergence Test).Let⁄¶
k=1 ak be an infinite series. IflimkØ¶ ak ∫ 0,

then⁄¶
k=1 ak diverges.

Theorem 8 (The Integral Test). Let ⁄¶
k=1 ak be an infinite series with positive terms.

If f (x) is a decreasing continuous function for which f(k) = ak for all k, then⁄¶
k=1 ak

andŸ
¶

1
f (x) dx either both converge or both diverge.

Theorem 9 (The Ratio Test).Let ⁄¶
k=1 ak be an infinite series with positive terms and

let r = limkØ¶
ak+1
ak

.

1. If r < 1, ⁄¶
k=1 ak converges.

2. If r > 1, ⁄¶
k=1 ak diverges.

3. If r = 1, the Ratio Test is inconclusive.

Theorem 10 (The Root Test).Let⁄¶
k=1 ak be an infinite series with positive terms and

let r = limkØ¶
k

0
ak.

1. If r < 1, ⁄¶
k=1 ak converges.

2. If r > 1, ⁄¶
k=1 ak diverges.

3. If r = 1, the Root Test is inconclusive.

Theorem 11 (The Limit Comparison Test). Let ⁄¶
k=1 ak and ⁄¶

k=1 bk be infinite se-
ries with positive terms and let L= limkØ¶

ak
bk

. If 0 < L < ¶, theneither both series
converge or both series diverge.

Example 55. Determine whether each series converges or diverges. (a)⁄¶
k=1 I1 + 1

k Mk

(b) ⁄¶
k=1

1
kp (c) ⁄¶

k=1
k
3k (d) ⁄¶

k=1
(k!)2

(2k)! (e) ⁄¶
k=1 I k

4k+1Mk
(f) ⁄¶

k=1
2

0
k+1

(
0

k+1)(2k+1)

Solution. (a) UsingLimit, we see that the limit of the terms ise ∫ 0 so theseries
diverges by the the Divergence test, Theorem 7.

In[301]:= Limit[(1 + 1/k)ˆk,k- > ¶]

Out[301]= e

It is a very good exercise to show that the limit of the terms of the series ise by hand.

Let L = limkØ¶ I1 + 1
k Mk

. Take the logarithm of each side of this equation and apply
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L’H ôpital’s rule:

ln L = lim
kØ¶

ln K1 +
1
k

O
k

ln L = lim
kØ¶

k ln K1 +
1
k

O

ln L = lim
kØ¶

ln I1 + 1
k M

1
k

ln L = lim
kØ¶

1
1+ 1

k
ÿ - 1

k2

- 1
k2

ln L = 1.

Exponentiating yieldsL = eln L = e1 = e. (b) A series of the form⁄¶
k=1

1
kp is called

a p-series. Let f (x) = x-p. Then, f (x) is continuous and decreasing forx ¥ 1 and
f (k) = k-p. Then,

‡
¶

1
x-pdx =

ÌÓ
Ô

¶, if p § 1

1/ (p - 1), if p > 1

so thep-series converges ifp > 1 anddiverges ifp § 1. If p = 1, the series⁄¶
k=1

1
k is

called theharmonic series.

In[302]:= s1 = Integrate[xˆ(-p),{x,1,¶}]

Out[302]= IfARe[p] > 1,
1

-1 + p
,‡

¶

1
x-p„xE

(c) Let f (x) = x ÿ 3-x. Then, f (k) = k ÿ 3-k and f (x) is decreasing forx > 1/ ln 3.

In[303]:= f[x ] = x 3ˆ(-x);

Factor[f£[x]]
Out[303]= -3-x (-1 + x Log[3])

In[304]:= Solve[-1 + x Log[3] == 0]

Out[304]= 99x Ø
1

Log[3]
==

UsingIntegrate, we see that the improper integralŸ
¶

1
f (x) dx converges.

In[305]:= ival = Integrate[f[x],{x,1,¶}]

N[ival]

Out[305]=
1 + Log[3]

3 Log[3]2

Out[305]= 0.579592

Thus, by the Integral test, Theorem 8, we conclude that the series converges. Note that
when applying the Integral test, if the improper integral converges its value isnot the
value of the sum of the series. In this case, we see that Mathematica is able to evaluate
the sum withSum and the series converges to 3/4.

In[306]:= Sum[k 3ˆ(-k),{k,1,¶}]
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Out[306]=
3

4

(d) If ak contains factorials, the Ratio test is a good first test to try. After definingak
we compute

lim
kØ¶

ak+1

ak

= lim
kØ¶

[(k+1)!]2

[2(k+1)]

(k!)2

(2k)!

= lim
kØ¶

(k + 1)! ÿ (k + 1)!
k! ÿ k!

(2k)!
(2k + 2)!

= lim
kØ¶

(k + 1)2

(2k + 2)(2k + 1)
= lim

kØ¶

(k + 1)
2(2k + 1)

=
1
4

.

Because 1/4 < 1, the series converges by the Ratio test. We confirm these results with
Mathematica.

Remark.UseFullSimplify instead ofSimplify to simplify expressions involv-
ing factorials.

In[307]:= a[k ] = (k!)ˆ2/(2k)!;

s1 = FullSimplify[a[k + 1]/a[k]]

Out[307]=
1 + k

2 + 4 k

In[308]:= Limit[s1,k- > ¶]

Out[308]=
1

4

Weillustrate that we can approximate the sum usingN andSum as follows.

In[309]:= ev = Sum[a[k],{k,1,¶}]

Out[309]=
1

27
I9 + 2

0
3 pM

In[310]:= N[ev]

Out[310]= 0.7364

(e) Because

lim
kØ¶

k

2

K
k

4k + 1
O
k

= lim
kØ¶

k
4k + 1

=
1
4

< 1,

the series converges by the Root test.

In[311]:= a[k ] = (k/(4k + 1))ˆk;

Limit[a[k]ˆ(1/k),k- > ¶]

Out[311]=
1

4

As with (d), we can approximate the sum withN andSum.

In[312]:= ev = Sum[a[k],{k,1,¶}]

Out[312]=
¶

‚
k=1

a[k]

In[313]:= N[ev]
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Out[313]= 0.265757

(f) We use the Limit Comparison test and compare the series to⁄¶
k=1

0
k

k
0

k
= ⁄¶

k=1
1
k ,

which diverges because it is ap-series withp = 1. Because

0 < lim
kØ¶

2
0

k+1
(
0

k+1)(2k+1)
1
k

= 1 < ¶

and the harmonic series diverges, the series diverges by the Limit Comparison test.

In[314]:= a[k ] = (2Sqrt[k] + 1)/((Sqrt[k] + 1)(2k + 1));

b[k ] = 1/k;

Limit[a[k]/b[k],k- > ¶]
Out[314]= 1

2.4.3 Alternating Series

An alternating seriesis a series of the form

¶

‚
k=1

(-1)kak or
¶

‚
k=1

(-1)k+1ak (2.21)

where9ak= is a sequence with positive terms.

Theorem 12 (Alternating Series Test).If 9ak= is decreasing andlimkØ¶ ak = 0, the
alternating series(2.21)converges.

The alternating series (2.21)converges absolutelyif ⁄¶
k=1 ak converges.

Theorem 13. If the alternating series(2.21)converges absolutely, it converges.

If the alternating series (2.21) converges but does not converge absolutely, we say that
it conditionally converges.

Example 56. Determine whether each series converges or diverges. If the series con-
verges, determine whether the convergence is conditional or absolute. (a)⁄¶

k=1
(-1)k+1

k

(b) ⁄¶
k=1(-1)k+1 (k+2)!

4k(k!)2 (c) ⁄¶
k=1(-1)k+1 I1 + 1

k Mk

Solution. (a) Because{1/k} is decreasing and 1/k Ø 0 ask Ø ¶, the series converges.
The series does not converge absolutely because the harmonic series diverges. Hence,
⁄¶

k=1
(-1)k+1

k , which is called thealternating harmonic series, converges conditionally.
We see that this series converges to ln 2 withSum.

In[315]:= a[k ] = (-1)ˆ(k + 1)/k;

Sum[a[k],{k,1,¶}]
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Out[315]= Log[2]

(b) We test for absolute convergence first using the Ratio test. Because

lim
kØ¶

((k+1)+2)!
4(k+1)[(k+1)!]2

(k+2)!
4k(k!)2

= lim
kØ¶

k + 2

4(k + 1)2 = 0 < 1,

In[316]:= a[k ] = (k + 1)!/(4ˆk (k!)ˆ2);

s1 = FullSimplify[a[k + 1]/a[k]]

Limit[s1,k- > ¶]

Out[316]=
2 + k

4 (1 + k)2

Out[316]= 0

the series converges absolutely by the Ratio test. Absolute convergence implies conver-

gence so the series converge. (c) Because limkØ¶ I1 + 1
k Mk

= e, limkØ¶(-1)k+1 I1 + 1
k Mk

does not exist, so the series diverges by the Divergence test. We confirm that the limit
of the terms is not zero withLimit.

In[317]:= a[k ] = (-1)ˆ(k + 1)(1 + 1/k)ˆk;

Sum[a[k],{k,1,¶}]

Sum :: "div" : "Sumdoesnotconverge."

Out[317]=
¶

‚
k=1

a[k]

In[318]:= Limit[a[k],k- > ¶]

Out[318]= LimitA(-1)1+k J1 +
1

k
N
k

,k Ø ¶E

2.4.4 Power Series

Let x0 be a number. A power series inx - x0 is a series of the form

¶

‚
k=0

ak Ix - x0Mk
. (2.22)

A fundamental problem is determining the values ofx, if any, for which the power
series converges.

Theorem 14. For the power series(2.22), exactly one of the following is true.

1. The power series converges absolutely for all values of x. The interval of con-
vergence is(-¶, ¶).
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2. There is a positive number r so that the series converges absolutely if x0-r < x <
x0+r. The series may or may not converge at x= x0-r and x= x0+r. The interval
of convergence will be one ofIx0 - r, x0 + rM, Ax0 - r, x0 + rM, Ix0 - r, x0 + rE, or
Ax0 - r, x0 + rE.

3. The series converges only if x= x0. The interval of convergence is9x0=.

Example 57. Determine the interval of convergence for each of the following power
series. (a)⁄¶

k=0
(-1)k

(2k+1)! x
2k+1 (b) ⁄¶

k=0
k!

1000k (x - 1)k (c) ⁄¶
k=1

2k
0

k
(x - 4)k

Solution. (a) We test for absolute convergence first using the Ratio test. Because

lim
kØ¶

ƒƒƒƒƒƒƒƒƒƒ

(-1)k+1

(2(k+1)+1)! x
2(k+1)+1

(-1)k

(2k+1)! x
2k+1

ƒƒƒƒƒƒƒƒƒƒ
= lim

kØ¶

1
2(k + 1)(2k + 3)

x2 = 0 < 1

In[319]:= a[x ,k ] = (-1)ˆk /(2k + 1)!xˆ(2k + 1);

s1 = FullSimplify[a[x,k + 1]/a[x,k]]

Limit[s1,k- > ¶]

Out[319]= -
x2

6 + 10 k + 4 k2
Out[319]= 0

for all values ofx, we conclude that the series converges absolutely for all values of
x; the interval of convergence is(-¶, ¶). In fact, we will see later that this series
converges to sinx:

sinx =
¶

‚
k=0

(-1)k+1

(2k + 1)!
x2k+1 = x -

1
3!

x3 +
1
5!

x5 -
1
7!

x7 + . . . ,

which means that the partial sums of the series converge to sinx. Graphically, we can
visualize this by graphing partial sums of the series together with the graph ofy = sinx.
Note that the partial sums of a series are a recursively defined function:sn = sn-1 + an,
s0 = a0. We use this observation to definep to be thenth partial sum of the series.
We use the formp[x_,n_]:=p[x,n]=... so that Mathematica ”remembers” the
partial sums computed. That is, oncep[x,3] is computed, Mathematica need not
recomputep[x,3] when computingp[x,4].

In[320]:= Clear[p]

p[x ,0] = a[0];

p[x ,n ] := p[x,n] = p[x,n - 1] + a[x,n]

In[321]:= p[x,2]

Out[321]= x -
x3

6
+

x5

120

In Figure 2.31 we graphpn(x) = ⁄n
k=0

(-1)k

(2k+1)! x
2k+1 together withy = sinx for n = 1,

5, and 10. In the graphs, notice that asn increases, the graphs ofpn(x) more closely
resemble the graph ofy = sinx.
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Figure 2.31:y = sinx together with the graphs ofp1(x), p5(x), andp10(x)

In[322]:= Plot[{Sin[x],p[x,1],p[x,5],p[x,10]},{x,-2p,2p},

PlotRange- > {-p,p},AspectRatio- > Automatic,

PlotStyle- > {GrayLevel[0],GrayLevel[0.3],

Dashing[{0.01}],{GrayLevel[0.3],Dashing[{0.01}]}}]

(b) As in (a), we test for absolute convergence first using the Ratio test. Because

lim
kØ¶

ƒƒƒƒƒƒƒƒƒ

(k+1)k!
1000k+1 (x - 1)k+1

k!
1000k (x - 1)k

ƒƒƒƒƒƒƒƒƒ
=

1
1000

(k + 1)|x - 1| =
ÌÓ
Ô

0, if x = 1

¶, if x ∫ 1
.

In[323]:= a[x ,k ] = k!/1000ˆk (x - 1)ˆk;

s1 = FullSimplify[a[x,k + 1]/a[x,k]]

Limit[s1,k- > ¶]

Out[323]=
(1 + k) (-1 + x)

1000
Out[323]= Indeterminate

Be careful of your interpretation of the result of theLimit command because Math-
ematica does not consider the casex = 1 separately: ifx = 1 the limit is 0. Because
0 < 1 the series converges by the Ratio test.

The series converges only ifx = 1; the interval of convergence is{1}. You should
observe that if you graph several partial sums for ”small” values ofn, you might in-
correctly conclude that the series converges. (c) Use the Ratio test to check absolute
convergence first:

lim
kØ¶

ƒƒƒƒƒƒƒƒƒƒƒ

2k+1
0

k+1
(x - 4)k+1

2k
0

k
(x - 4)k

ƒƒƒƒƒƒƒƒƒƒƒ
= lim

kØ¶
2

2
k

k + 1
|x - 4| = 2|x - 4|.

By the Ratio test, the series converges absolutely if 2|x-4| < 1. We solve this inequality
for x with InequalitySolve to see that 2|x - 4| < 1 if 7/2 < x < 9/2.

In[324]:= a[x ,k ] = 2ˆk /Sqrt[k] (x - 4)ˆk;

s1 = FullSimplify[Abs[a[x,k + 1]/a[x,k]]]

Limit[s1,k- > ¶]
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Out[324]= 2 AbsA

2
k

1 + k
(-4 + x)E

Out[324]= 2 Abs[-4 + x]

In[325]:= << Algebra‘InequalitySolve‘

InequalitySolve[2 Abs[x - 4] < 1,x]

Out[325]=
7

2
< x <

9

2

We checkx = 7/2 andx = 9/2 separately. Ifx = 7/2, the series becomes⁄¶
k=1(-1)k 10

k
,

which converges conditionally.

In[326]:= Simplify[a[x,k]/.x- > 7/2]

Out[326]=
(-1)k

0
k

On the other hand, ifx = 9/2, the series is⁄¶
k=1

10
k
, whichdiverges. We conclude that

the interval of convergence is[7/2,9/2).

In[327]:= Simplify[a[x,k]/.x- > 9/2]

Out[327]=
1

0
k

2.4.5 Taylor and Maclaurin Series

Let y = f (x) be a function with derivatives of all orders atx = x0. TheTaylor series
for f (x) aboutx = x0 is

¶

‚
k=0

f (k) Ix0M
k!

Ix - x0Mk
. (2.23)

TheMaclaurin series for f (x) is the Taylor series forf (x) aboutx = 0. If y = f (x) has
derivatives up to at least ordern at x = x0, thenth degreeTaylor polynomial for f (x)
aboutx = x0 is

pn(x) =
n

‚
k=0

f (k) Ix0M
k!

Ix - x0Mk
. (2.24)

Thenth degreeMaclaurin polynomial for f (x) is thenth degree Taylor polynomial for
f (x) aboutx = 0. Generally, finding Taylor and Maclaurin series using the definition is
a tedious task at best.

Example 58. Find the first few terms of (a) the Maclaurin series and (b) the Taylor
series aboutx = p/4 for f (x) = tanx.
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Solution. (a) After defining f (x) = tanx, we useTable together with/. andD to
computef (k)(0)/k! for k = 0, 1,. . ., 8.

In[328]:= f[x ] = Tan[x];

Table[

{k,D[f[x],{x,k}],D[f[x],{x,k}]/.x- > 0},{k,0,8}]

Out[328]= 9{0,Tan[x],0},91,Sec[x]2,1=,92,2 Sec[x]2 Tan[x],0=,
93,2 Sec[x]4 + 4 Sec[x]2 Tan[x]2,2=,
94,16 Sec[x]4 Tan[x] + 8 Sec[x]2 Tan[x]3,0=,
95,16 Sec[x]6 + 88 Sec[x]4 Tan[x]2 + 16 Sec[x]2 Tan[x]4,16=,
96,272 Sec[x]6 Tan[x]+

416 Sec[x]4 Tan[x]3 + 32 Sec[x]2 Tan[x]5,0=,
97,272 Sec[x]8 + 2880 Sec[x]6 Tan[x]2+

1824 Sec[x]4 Tan[x]4 + 64 Sec[x]2 Tan[x]6,272=,
98,7936 Sec[x]8 Tan[x] + 24576 Sec[x]6 Tan[x]3+

7680 Sec[x]4 Tan[x]5 + 128 Sec[x]2 Tan[x]7,

0==

Using the values in the table, we apply the definition to see that the Maclaurin series is

¶

‚
k=0

f (k)(0)
k!

xk = x +
1
3

x3 +
2
15

x5 +
17
315

x7 + . . .

For (b), we repeat (a) usingx = p/4 instead ofx = 0

In[329]:= f[x ] = Tan[x];

Table[

{k,D[f[x],{x,k}],D[f[x],{x,k}]/.x- > p/4},{k,0,8}]

Out[329]= 9{0,Tan[x],1},91,Sec[x]2,2=,92,2 Sec[x]2 Tan[x],4=,
93,2 Sec[x]4 + 4 Sec[x]2 Tan[x]2,16=,
94,16 Sec[x]4 Tan[x] + 8 Sec[x]2 Tan[x]3,80=,
95,16 Sec[x]6 + 88 Sec[x]4 Tan[x]2 + 16 Sec[x]2 Tan[x]4,512=,
96,272 Sec[x]6 Tan[x]+

416 Sec[x]4 Tan[x]3 + 32 Sec[x]2 Tan[x]5,3904=,
97,272 Sec[x]8 + 2880 Sec[x]6 Tan[x]2+

1824 Sec[x]4 Tan[x]4 + 64 Sec[x]2 Tan[x]6,34816=,
98,7936 Sec[x]8 Tan[x] + 24576 Sec[x]6 Tan[x]3+

7680 Sec[x]4 Tan[x]5 + 128 Sec[x]2 Tan[x]7,

354560==

and then apply the definition to see that the Taylor series aboutx = p/4 is

¶

‚
k=0

f (k) Ix0M
k!

Ix - x0Mk
= 1 + 2 Jx -

p
4

N + 2 Jx -
p
4

N
2

+
8
3

Jx -
p
4

N
3

+

10
3

Jx -
p
4

N
4

+
64
15

Jx -
p
4

N
5

+
244
45

Jx -
p
4

N
6

+ . . .
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From the series, we can see various Taylor and Maclaurin polynomials. For example,
the third Maclaurin polynomial is

p3(x) = x +
1
3

x3

and the 4th degree Taylor polynomial aboutx = p/4 is

p4(x) = 1 + 2 Jx -
p
4

N + 2 Jx -
p
4

N
2

+
8
3

Jx -
p
4

N
3

+
10
3

Jx -
p
4

N
4

.

The command

Series[f[x],{x,x0,n}]

computes (2.23) to (at least) ordern - 1. Because of theO-term in the result that
represents the terms that are omitted from the power series forf (x) expanded about
the pointx = x0, the resultof entering aseries command is not a function that can
be evaluated ifx is a particular number. We remove the remainder (O-) term of the
power seriesSeries[f[x],{x,x0,n}] with the commandNormal and can then
evaluate the resulting polynomial for particular values ofx.

Example 59. Find the first few terms of the Taylor series forf (x) aboutx = x0. (a)
f (x) = cosx, x = 0 (b) f (x) = 1/x2, x = 1

Solution. Entering

In[330]:= Series[Cos[x],{x,0,4}]

Out[330]= 1 -
x2

2
+
x4

24
+ O[x]5

computes the Maclaurin series to order 4. Entering

In[331]:= Series[Cos[x],{x,0,14}]

Out[331]= 1 -
x2

2
+
x4

24
-

x6

720
+

x8

40320
-

x10

3628800
+

x12

479001600
-

x14

87178291200
+ O[x]15

computes the Maclaurin series to order 14. In this case, the Maclaurin series for cosx
converges to cosx for all realx. To graphically see this, we define the functionp. Given
n, p[n] returns the Maclaurin polynomial of degreen for cosx.

In[332]:= p[n ] := Series[Cos[x],{x,0,n}]//Normal

In[333]:= p[8]

Out[333]= 1 -
x2

2
+
x4

24
-

x6

720
+

x8

40320

We then graph cosx together with the Maclaurin polynomial of degreen = 2, 4, 8 and
16 on the interval[-3p/2,3p/2] in Figure 2.32. Notice that asn increases, the graph
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of the Maclaurin polynomial more closely resembles the graph of cosx. We would see
the same pattern if we increased the length of the interval and the value ofn.

In[334]:= somegraphs = Table[Plot[Evaluate[{Cos[x],p[2ˆn]}],

{x,-3p/2,3p/2},PlotRange- > {-3p/2,3p/2},

AspectRatio- > Automatic,

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

DisplayFunction- > Identity],

{n,1,4}]
Out[334]= BoxData({-Graphics-,-Graphics-,-Graphics-,-Graphics-})

In[335]:= toshow = Partition[somegraphs,2]

Out[335]= BoxData({{-Graphics-,-Graphics-},{-Graphics-,-Graphics-}})

In[336]:= Show[GraphicsArray[toshow]]

(b) After defining f (x) = 1/x2, we compute the first 10 terms of the Taylor series for
f (x) aboutx = 1 with Series.

In[337]:= f[x ] = 1/xˆ2;

p10 = Series[f[x],{x,1,10}]

Out[337]= 1 - 2 (x - 1) + 3 (x - 1)2 - 4 (x - 1)3 + 5 (x - 1)4 - 6 (x - 1)5+

7 (x - 1)6 - 8 (x - 1)7 + 9 (x - 1)8 - 10 (x - 1)9 + 11 (x - 1)10+

O[x - 1]11

In this case, the pattern for the series is relatively easy to see: the Taylor series forf (x)
aboutx = 1 is

¶

‚
k=0

(-1)k(k + 1)(x - 1)k.

This series converges absolutely if

lim
kØ¶

ƒƒƒƒƒƒƒƒ
(-1)k+1(k + 2)(x - 1)k+1

(-1)k(k + 1)(x - 1)k

ƒƒƒƒƒƒƒƒ
= |x - 1| < 1

or 0 < x < 2. The series diverges ifx = 0 andx = 2. In this case, the series converges
to f (x) on the interval(0,2).

In[338]:= a[x ,k ] = (-1)ˆk (k + 1) (x - 1)ˆk;

s1 = FullSimplify[Abs[a[x,k + 1]/a[x,k]]]

Out[338]= AbsA
(2 + k) (-1 + x)

1 + k
E

In[339]:= s2 = Limit[s1,k- > ¶]

Out[339]= Abs[-1 + x]

In[340]:= << Algebra‘InequalitySolve‘

InequalitySolve[s2 < 1,x]
Out[340]= 0 < x < 2

To see this, we graphf (x) together with the Taylor polynomial forf (x) aboutx = 1
of degreen for largen. Regardless of the size ofn, the graphs off (x) and the Taylor
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Figure 2.32: Graphs ofy = cosx together with its second, fourth, eighth, and sixteenth
Maclaurin polynomials
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Figure 2.33: Graph off (x) together with the sixteenth degree Taylor polynomial about
x = 1

polynomial closely resemble each other on the interval(0,2)–but not at the endpoints
or outside the interval. (See Figure 2.33.)

In[341]:= p[n ] := Series[f[x],{x,1,n + 1}]//Normal

In[342]:= Plot[Evaluate[{f[x],p[16]}],

{x,0,2},PlotRange- > {-5,45},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]}]

2.4.6 Taylor’s Theorem

Taylor’s theorem states the relationship betweenf (x) and the Taylor series forf (x)
aboutx = x0.

Theorem 15 (Taylor’s Theorem). Let y= f (x) have (at least) n+ 1 derivatives on an
interval I containing x= x0. Then, for every number xœ I, there is a number z between
x and x0 so that

f (x) = pn(x) + Rn(x),

where pn(x) is given by(2.24)and

Rn(x) =
f (n+1)(z)
(n + 1)!

Ix - x0Mn+1
. (2.25)

Example 60. Use Taylor’s theorem to show that

sinx =
¶

‚
k=0

(-1)k

(2k + 1)!
x2k+1
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Solution. Let f (x) = sinx. Then, for each value ofx, there is a numberz between 0
andx so that sinx = pn(x) + Rn(x) wherepn(x) = ⁄n

k=0
f (k)(0)

k! xk andRn(x) = f (n+1)(z)
(n+1)! xn+1.

Regardless of the value ofn, f (n+1)(z) is one of sinz, - sinz, cosz, or - cosz, which are
all bounded by 1. Then,

ƒƒƒƒsinx - pn(x)ƒƒƒƒ =
ƒƒƒƒƒƒƒƒ
f (n+1)(z)
(n + 1)!

xn+1
ƒƒƒƒƒƒƒƒ

ƒƒƒƒsinx - pn(x)ƒƒƒƒ §
1

(n + 1)!
|x|n+1

and xn

n! Ø 0 asn Ø ¶ for all real values ofx.

You should remember that the numberz in Rn(x) is guaranteed to exist by Taylor’s
theorem. However, from a practical point of view, you would rarely (if ever) need to
compute thezvalue for a particularx value.

For illustrative purposes, we show the difficulties. Suppose we wish to approximate
sinp/180 using the Maclaurin polynomial of degree 4,p4(x) = x - 1

6x3, for sinx. The The Maclaurin polynomial of degree 4 for

sinx is ⁄4
k=0

f (k) (0)
k! x4 = 0+x+0ÿx2 + -1)(3!

x
3

+

0 ÿ x4.

fourth remainder is

R4(x) =
1

120
cosz x5.

In[343]:= f[x ] = Sin[x];

r5 = D[f[z],{z,5}]/5! xˆ5

Out[343]=
1

120
x5 Cos[z]

If x = p/180 there is a numberz between 0 andp/180 so that

ƒƒƒƒƒƒƒ
R4 K

p
180

O
ƒƒƒƒƒƒƒ

=
1

120
cosz K

p
180

O
5

§
1

120
K

p
180

O
5

º 0.135µ 10-10,

which shows us that the maximum the error can be is1
120 I p

180M5
º 0.135µ 10-10.

In[344]:= maxerror = N[1/120 * (p/180)ˆ5]

Out[344]= 1.349610-11

Abstractly, the exact error can be computed. By Taylor’s theorem,z satisfies

f K
p

180
O = p4 K

p
180

O + R4 K
p

180
O

sin
p

180
=

1
180

p -
1

34992000
p3 +

1
22674816000000

p5 cosz

0 =
1

180
p -

1
34992000

p3 +
1

22674816000000
p5 cosz- sin

p
180

.

We graph the right-hand side of this equation withPlot in Figure 2.34. The exact
value ofz is thez-coordinate of the point where the graph intersects thez-axis.
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Figure 2.34: Findingz

In[345]:= p4 = Series[f[x],{x,0,4}]//Normal

Out[345]= x -
x3

6

In[346]:= exval = Sin[p/180]

p4b = p4/.x- > p/180

r5b = r5/.x- > p/180

Out[346]= SinA
p

180
E

Out[346]=
p

180
-

p3

34992000

Out[346]=
p5 Cos[z]

22674816000000

In[347]:= toplot = r5b + p4b - exval;

Plot[toplot,{z,0,p/180}]

We can useFindRoot to approximatez, if we increase the number of digits carried
in floating point calculations withWorkingPrecision.

In[348]:= exz =

FindRoot[toplot == 0,{z,0.004},WorkingPrecision- > 32]
Out[348]= {z Ø 0.003808614916554160794933316330124}

Alternatively, we can compute the exact value ofz with Solve

In[349]:= cz = Solve[toplot == 0,z]

Solve :: "ifun" : "Inversefunctionsarebeingused

bySolve, so some solutions may not be found."

Out[349]= 99z Ø -ArcCosA
648000 I - 194400 p + p3 + 34992000 SinA p

180EM

p5
E=,

9z Ø ArcCosA
648000 I - 194400 p + p3 + 34992000 SinA p

180EM

p5
E==

and then approximate the result withN.
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In[350]:= N[cz]

Out[350]= {{z Ø -0.00384232},

{z Ø 0.00384232}}

2.4.7 Other Series

In calculus, we learn that the power seriesf (x) = ⁄¶
k=0 ak Ix - x0Mk

is differentiable and
integrable on its interval of convergence. However, for series that are not power series
this result is not generally true. For example, in more advanced courses, we learn that
the function

f (x) =
¶

‚
k=0

1

2k sinI3kxM

is continuous for all values ofx but nowhere differentiable. We can use Mathematica
to help us see why this function is not differentiable. Let

fn(x) =
n

‚
k=0

1

2k sinI3kxM .

Notice thatfn(x) is defined recursively byf0(x) = sinx and fn(x) = fn-1(x)+ 1
2n sin(3nx).

Weuse Mathematica to recursively definefn(x).

In[351]:= f[n ] := f[n] = f[n - 1] + Sin[3ˆn x]/2ˆn;

f[0] = Sin[x];

We define fn(x) using the form

f[n_]:=f[n]=...

so that Mathematica ”remembers” the values it computes. Thus, to computef[5],
Mathematica uses the previously computed values, namelyf[4], to computef[5].
Note that we can produce the same results by definingfn(x) with the command

f[n_]:=...

However, the disadvantage of definingfn(x) in this manner is that Mathematica does
not ”remember” the previously computed values and thus takes longer to computefn(x)
for larger values ofn.

Next, we useTable to generatef3(x), f6(x), f9(x), and f12(x).

In[352]:= posums = Table[f[n],{n,3,12,3}]
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Out[352]= 9Sin[x] +
1

2
Sin[3 x] +

1

4
Sin[9 x] +

1

8
Sin[27 x],

Sin[x] +
1

2
Sin[3 x] +

1

4
Sin[9 x] +

1

8
Sin[27 x]+

1

16
Sin[81 x] +

1

32
Sin[243 x] +

1

64
Sin[729 x],Sin[x]+

1

2
Sin[3 x] +

1

4
Sin[9 x] +

1

8
Sin[27 x] +

1

16
Sin[81 x]+

1

32
Sin[243 x] +

1

64
Sin[729 x] +

1

128
Sin[2187 x]+

1

256
Sin[6561 x] +

1

512
Sin[19683 x],Sin[x] +

1

2
Sin[3 x]+

1

4
Sin[9 x] +

1

8
Sin[27 x] +

1

16
Sin[81 x] +

1

32
Sin[243 x]+

1

64
Sin[729 x] +

1

128
Sin[2187 x] +

1

256
Sin[6561 x]+

1

512
Sin[19683 x] +

Sin[59049 x]

1024
+
Sin[177147 x]

2048
+

Sin[531441 x]

4096
=

We now graph each of these functions and show the results as a graphics array with
GraphicsArray in Figure 2.35.

In[353]:= somegraphs = Map[Plot[#,{x,0,3p},

DisplayFunction- > Identity]&,posums];

toshow = Partition[somegraphs,2];

Show[GraphicsArray[toshow]]

From these graphs, we see that for large values ofn, thegraph of fn(x), although actu-
ally smooth, appears ”jagged” and thus we might suspect thatf (x) = limnØ¶ fn(x) =
⁄¶

k=0
1
2k sinI3kxM is indeed continuous everywhere but nowhere differentiable.

2.5 Multi-Variable Calculus

Mathematica is useful is investigating functions involving more than one variable. In
particular, the graphical analysis of functions that depend on two (or more) variables is
enhanced with the help of Mathematica’s graphics capabilities.

2.5.1 Limits of Functions of Two Variables

Mathematica’s graphics and numerical capabilities are helpful in investigating limits of
functions of two variables.

Example 61. Show that the limit

lim
(x,y)Ø(0,0)

x2 - y2

x2 + y2

does not exist.
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Figure 2.35: Approximating a function that is continuous everywhere but nowhere
differentiable

Solution. We begin by defining f (x, y) = x2-y2

x2+y2 . Next, we usePlot3D to graphz =
f (x, y) for -1/2 § x § 1/2 and-1/2 § y § 1/2. ContourPlot is used to graph sev-
eral level curves on the same rectangle. (See Figure 2.36.) (To define a function of two
variables,f (x, y) = expression in x and y, enterf[x_,y_]=expression in x and y.
Plot3D[f[x,y],{a,x,b},{y,c,d}] generates a basic graph ofz = f (x, y) for
a § x § b andc § y § d)

In[354]:= f[x ,y ] = (xˆ2 - yˆ2)/(xˆ2 + yˆ2);

p1 = Plot3D[f[x,y],{x,-0.5,0.5},{y,-0.5,0.5},

PlotPoints- > {40,40},DisplayFunction- > Identity];

p2 = ContourPlot[f[x,y],

{x,-0.5,0.5},{y,-0.5,0.5},PlotPoints- > 40,

ContourShading- > False,Axes- > Automatic,

AxesOrigin- > {0,0},DisplayFunction- > Identity];

Show[GraphicsArray[{p1,p2}]]

From the graph of the level curves, we suspect that the limit does not exist because
we see that near(0,0), z = f (x, y) attains many different values. We obtain further
evidence that the limit does not exist by computing the value ofz = f (x, y) for vari-
ous points chosen randomly near(0,0). We useTable andRandom to generate 13
ordered triples(x, y, f(x, y)) for x andy ”close to” 0. BecauseRandom is included in
the calculation, your results will almost certainly be different from those here. The first
column corresponds to thex-coordinate, the second column they- coordinate, and the
third column the value ofz = f (x, y).
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Figure 2.36: (a) 3-dimensional and (b) contour plots off (x, y)

In[355]:= r[n ] := {Random[Real,{-10ˆ(-n),10ˆ(-n)}],

Random[Real,{-10ˆ(-n),10ˆ(-n)}]}

In[356]:= r[1]

Out[356]= {5.25152,9.37514}

In[357]:= toevaluate = Table[r[n],{n,1,15}]

Out[357]= {{0.043922,0.0768676},

{-0.00775639,0.0039307},

{-0.0000561454,

-0.0000790007},

{0.0000536954,0.0000373069},

{3.2475210-6,7.4124310-6},

{1.7010510-7,-6.641210-7},

{-1.1523110-9,-8.6988210-8},

{3.8591410-9,4.1881410-9},

{-4.0704710-10,

7.0624810-10},

{8.1906810-11,4.6555110-11},

{1.6758110-12,

-8.2398210-12},

{8.4759310-13,

-8.2378510-13},

{7.2836110-14,

-5.9265810-14},

{6.2323210-15,

-2.1685510-15},

{-2.1549310-16,

4.8634310-16}}

In[358]:= Map[f[#[[1]],#[[2]]]&,toevaluate]
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Out[358]= {-0.507731,

0.591324,-0.328828,

0.348863,-0.677926,

-0.876866,-0.999649,

-0.0816327,-0.501298,

0.511638,-0.920559,

0.0284831,0.203308,

0.784009,-0.671783}

From the third column, we see thatz = f (x, y) does not appear to approach any partic-
ular value for points chosen randomly near(0,0). In fact, along the liney = mxwe see We choose lines of the formy = mxbecause

near(0,0) the level curves ofz = f (x, y) look

like lines of the formy = mx.

that

f (x, y) = f (x, mx) =
1 - m2

1 + m2 .

Hence as(x, y) Ø (0,0) alongy = mx, f (x, y) = f (x, mx) Ø 1-m2

1+m2 . Thus, f (x, y) does
not have a limit as(x, y) Ø (0,0).

In[359]:= v1 = Simplify[f[x,m x]]

v1 /.m- > 0

v1/.m- > 1

v1 /. m- > 1/2

Out[359]=
1 - m2

1 + m2

Out[359]= 1

Out[359]= 0

Out[359]=
3

5

In some cases, you can establish that a limit does not exist by converting to polar coor-
dinates. For example, in polar coordinates,f (x, y) = x2-y2

x2+y2 becomesf (r cosq, r sinq) =

2 cos2 q - 1

In[360]:= Simplify[f[r Cos[t],r Sin[t]]]

Out[360]= Cos[2 t]

and

lim
(x,y)Ø(0,0)

f (x, y) = lim
rØ0

f (r cosq, r sinq) = lim
rØ0

2 cos2 q - 1 = 2 cos2 q - 1 = cos 2q

depends onq.
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2.5.2 Partial and Directional Derivatives

Partial derivatives of functions of two or more variables are computed with Mathemat-
ica usingD. Forz = f (x, y),

1. D[f[x,y],x] computes∑ f
∑x = fx(x, y),

2. D[f[x,y],y] computes∑ f
∑y = fx(x, y),

3. D[f[x,y],{x,n}] computes∑n f
∑xn , and

4. D[f[x,y],y,x] computes∑2 f
∑y∑x = fxy(x, y), and

5. D[f[x,y],{x,n},{y,m}] computes∑n+m f
∑nx∑my.

The calculations are carried out similarly for functions of more than two variables.

Example 62. Calculatefx(x, y), fy(x, y), fxy(x, y), fyx(x, y), fxx(x, y), and fyy(x, y) if f (x, y) =

sin
1

x2 + y2 + 1.

Solution. After defining f (x, y) = sin
1

x2 + y2 + 1,

In[361]:= f[x ,y ] = Sin[Sqrt[xˆ2 + yˆ2 + 1]];

we illustrate the use ofD to compute the partial derivatives. Entering

In[362]:= D[f[x,y],x]

Out[362]=
x CosA

1
1 + x2 + y2E

1
1 + x2 + y2

computesfx(x, y).

Entering

In[363]:= D[f[x,y],y]

Out[363]=
y CosA

1
1 + x2 + y2E

1
1 + x2 + y2

computesfy(x, y).

Entering

In[364]:= D[f[x,y],x,y]//Together

Out[364]=
-x y CosA

1
1 + x2 + y2E - x y

1
1 + x2 + y2 SinA

1
1 + x2 + y2E

(1 + x2 + y2)
3/2

computesfyx(x, y).

Entering

In[365]:= D[f[x,y],y,x]//Together
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Out[365]=
-x y CosA

1
1 + x2 + y2E - x y

1
1 + x2 + y2 SinA

1
1 + x2 + y2E

(1 + x2 + y2)
3/2

computesfxy(x, y). Remember that under appropriate assumptions,fxy(x, y) = fyx(x, y).

Entering

In[366]:= D[f[x,y],{x,2}]//Together

Out[366]=
1

(1 + x2 + y2)
3/2

JCosA
1
1 + x2 + y2E + y2 CosA

1
1 + x2 + y2E-

x2
1
1 + x2 + y2 SinA

1
1 + x2 + y2EN

computesfxx(x, y).

Entering

In[367]:= D[f[x,y],{y,2}]//Together

Out[367]=
1

(1 + x2 + y2)
3/2

JCosA
1
1 + x2 + y2E + x2 CosA

1
1 + x2 + y2E-

y2
1
1 + x2 + y2 SinA

1
1 + x2 + y2EN

computesfyy(x, y).

Thedirectional derivative of z = f (x, y) in the direction of the unit vectoru = cosq i+
sinq j is The vectorsi andj are defined byi = X1,0\

andj = X0,1\.
Du f (x, y) = fx(x, y) cosq + fy(x, y) sinq,

provided thatfx(x, y) and fy(x, y) both exist.

If fx(x, y) and fy(x, y) both exist, thegradient of f (x, y) is the vector-valued function Calculus of vector-valued functions is dis-

cussed in more detail in the next section.

ı f (x, y) = fx(x, y)i + fy(x, y)j = Y fx(x, y), fy(x, y)] .

Notice that ifu = Xcosq,sinq\,

Du f (x, y) = ı f (x, y) ÿ Xcosq,sinq\ .

Example 63. Let

f (x, y) = 6x2y - 3x4 - 2y3.

(a) FindDu f (x, y) in the direction ofv = X3,4\. (b) Compute

DX3/4,4/5\ f K1
3

1
9 + 3

0
3,1O .

(c) Find an equation of the line tangent to the graph of 6x2y- 3x4 - 2y3 = 0 at thepoint

K 1
3

1
9 + 3

0
3,1O.
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Figure 2.37:f (x, y) = 6x2y - 3x4 - 2y3 for -2 § x § 2 and-2 § y § 3

Solution. After defining f (x, y) = 6x2y-3x4-2y3, wegraphz = f (x, y) with Plot3D in
Figure 2.37, illustrating thePlotPoints, PlotRange, andViewPoint options.

In[368]:= f[x ,y ] = 6xˆ2y - 3xˆ4 - 2yˆ3;

Plot3D[f[x,y],{x,-2,2},

{y,-2,3},PlotPoints- > 50,PlotRange- >

{{-2,2},{-2,3},{-2,2}},BoxRatios- > {1,1,1},

ViewPoint- > {1.887, 2.309, 1.6},ClipFill- > None]

(a) A unit vector,u, in the same direction asv is

v = [ 3
0

32 + 42
,

4
0

32 + 42
_ = [

3
5

,
4
5

_ .

In[369]:= v = {3,4};

u = v/Sqrt[v.v]

Out[369]= 93
5
,
4

5
=

Then,Du f (x, y) = Y fx(x, y), fy(x, y)] cotu, caculated indu.

In[370]:= gradf = {D[f[x,y],x],D[f[x,y],y]}

Out[370]= 9 - 12 x3 + 12 x y,6 x2 - 6 y2=

In[371]:= du = Simplify[grad.u]

Out[371]= -
12

5
I - 2 x2 + 3 x3 - 3 x y + 2 y2M
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(b) DX3/4,4/5\ f K 1
3

1
9 + 3

0
3,1O is calculated by evaluatingdu if x = 1

3

1
9 + 3

0
3 and

y = 1.

In[372]:= du1 = du/.{x- > 1/3Sqrt[9 + 3Sqrt[3]],y- > 1}//Simplify

Out[372]= -
4

5

0
3 K - 2 +

2

3 I3 +
0
3MO

(c) The gradient is evaluated ifx = 1
3

1
9 + 3

0
3 andy = 1.

In[373]:= nvec =

gradf/.{x- > 1/3Sqrt[9 + 3Sqrt[3]],y- > 1}//Simplify

Out[373]= 9 - 4

1
3 +

0
3,2

0
3=

Generally,ı f (x, y) is perpendicular to the level curves ofz = f (x, y), so

nvec = ı f K1
3

1
9 + 3

0
3,1O = [ fx K1

3

1
9 + 3

0
3,1O , fy K1

3

1
9 + 3

0
3,1O_

is perpendicular tof (x, y) = 0 at thepoint K 1
3

1
9 + 3

0
3,1O. Thus, an equation of theAn equation of the lineL containingIx0, y0M

and perpendicular ton = Xa, b\ is a Ix - x0M+

b Iy - y0M = 0.line tangent to the graph off (x, y) = 0 at thepoint K 1
3

1
9 + 3

0
3,1O is

fx K1
3

1
9 + 3

0
3,1O Kx -

1
3

1
9 + 3

0
3O + fy K1

3

1
9 + 3

0
3,1O (y - 1) = 0,

which we solve fory with Solve. We confirm this result by graphingf (x, y) = 0
usingContourPlot with theContours->{0} option inconf and then graphing
the tangent line intanplot. tanplot andconf are shown together withShow in
Figure 2.38.

In[374]:= conf = ContourPlot[

f[x,y],{x,-2,2},{y,-2,2},Contours- > {0},

PlotPoints- > 60,ContourShading- > False,

Frame- > False,Axes- > Automatic,AxesOrigin- > {0,0},

DisplayFunction- > Identity];

In[375]:= tanline = Solve[nvec[[1]]

(x - 1/3Sqrt[9 + 3Sqrt[3]]) + nvec[[2]](y - 1) == 0,

y]

Out[375]= 99y Ø -
-2

0
3 - 4

1
3 +

0
3 J - 1

3

1
9 + 3

0
3 + xN

2
0
3

==

In[376]:= tanplot = Plot[Evaluate[y/.tanline],

{x,-2,2},DisplayFunction- > Identity];

Show[conf,tanplot,DisplayFunction- > $DisplayFunction,

PlotRange- > {{-2,2},{-2,3}},AspectRatio- > Automatic]
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Figure 2.38: Level curves off (x, y)
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Figure 2.39:f (x, y) for -3 § x § 3 and-3 § y § 2

Example 64. Let

f (x, y) = (y - 1)2e-(x+1)2-y2
-

10
3

K-x5 +
1
5

y - y3O e-x2-y2
-

1
9

e-x2-(y+1)2
.

Calculateı f (x, y) and then graphı f (x, y) together with several level curves off (x, y).

Solution. We begin by defining and graphingz = f (x, y) with Plot3D in Figure 2.39.

In[377]:= f[x ,y ] = (y - 1)ˆ2Exp[-(x + 1)ˆ2 - yˆ2]-

10/3(-xˆ5 + 1/5y - yˆ3)Exp[-xˆ2 - yˆ2]-

1/9Exp[-xˆ2 - (y + 1)ˆ2];

In[378]:= Plot3D[f[x,y],{x,-3,3},{y,-3,3},PlotPoints- > 50,

ViewPoint- > {-1.99, 2.033, 1.833},PlotRange- > All];

conf = ContourPlot[f[x,y],{x,-3,3},

{y,-3,3},PlotPoints- > 60,ContourShading- > False,

Frame- > False,Axes- > Automatic,AxesOrigin- > {0,0},

DisplayFunction- > Identity];

In the three-dimensional plot, notice thatz appears to have five relative extrema: three
relative maxima and three relative minima. We also graph several level curves off (x, y)
with ContourPlot and name the resulting graphicconf. Thegraphic is not dis-
played because we include the optionDisplayFunction->Identity.

Next we calculatefx(x, y) and fy(x, y) usingSimplify andD. The gradient is the

vector-valued functionY fx(x, y), fy(x, y)].

In[379]:= gradf = {D[f[x,y],x],D[f[x,y],y]}//Simplify
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Figure 2.40: Contour plot off (x, y) along with several gradient vectors

Out[379]= 92
9

Je-x2-(1+y)2 x + 75 e-x2-y2 x4-

9 e-(1+x)2-y2 (1 + x) (-1 + y)2 - 6 e-x2-y2 x I5 x5 - y + 5 y3MN,

-
2

9
e
1+x2+y2-2 I1+x+x2+y+y2M

I - e2 x + 9 e2 y + 3 e1+2 x+2 y + e2 x I - 1 + 30 e1+2 y x5M y-

3 e2 y I6 + 17 e1+2 xM y2 + 9 e2 y y3 + 30 e1+2 x+2 y y4M=

To graph the gradient, we usePlotGradientField, which is contained in the
PlotField package. We usePlotGradientField to graph the gradient naming
the resulting graphicgradf. gradf andconf are displayed together usingShow.

In[380]:= << Graphics‘PlotField‘

gradfplot = PlotGradientField[f[x,y],

x,-3,3},{y,-3,3},DisplayFunction- > Identity];

Show[c

onf,gradfplot,DisplayFunction- > $DisplayFunction]

In the result (see Figure 2.40), notice that the gradient is perpendicular to the level
curves; the gradient is pointing in the direction of maximal increase ofz = f (x, y).

Classifying Critical Points

Let z = f (x, y) be a real-valued function of two variables with continuous second-order
partial derivatives. Acritical point of z = f (x, y) is a pointIx0, y0M in the interior of the
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domain ofz = f (x, y) for which

fx Ix0, y0M = 0 and fy Ix0, y0M = 0.

Critical points are classified by theSecond Derivatives(or Partials) test.

Theorem 16 (Second Derivatives Test).Let Ix0, y0M be a critical point of a function
z = f (x, y) of two variables and let

d = fxx Ix0, y0M fyy Ix0, y0M - A fxy Ix0, y0ME2
. (2.26)

1. If d > 0 and fxx Ix0, y0M > 0, then z= f (x, y) has arelative (or local) minimum
at Ix0, y0M.

2. If d > 0 and fxx Ix0, y0M < 0, then z= f (x, y) has arelative(or local) maximum
at Ix0, y0M.

3. If d < 0, then z= f (x, y) has asaddle pointat Ix0, y0M.

4. If d = 0, no conclusion can be drawn andIx0, y0M is called adegenerate critical
point.

Example 65. Find the relative maximum, relative minimum, and saddle points of
f (x, y) = -2x2 + x4 + 3y - y3.

Solution. After defining f (x, y), the critical points are found withSolve and named
critpts.

In[381]:= f[x ,y ] = -2xˆ2 + xˆ4 + 3y - yˆ3;

critpts =

Solve[{D[f[x,y],x] == 0,D[f[x,y],y] == 0},{x,y}]

Out[381]= {{x Ø -1,y Ø -1},{x Ø -1,y Ø 1},{x Ø 0,y Ø -1},

{x Ø 0,y Ø 1},{x Ø 1,y Ø -1},{x Ø 1,y Ø 1}}

We then definedfxx. GivenIx0, y0M, dfxx Ix0, y0M returns the ordered quadruplex0, y0,
(2.26) evaluated atIx0, y0M, and fxx Ix0, y0M.

In[382]:= dfxx[x0 ,y0 ] =

{x0,y0,D[f[x,y],{x,2}]D[f[x,y],{y,2}]-

D[f[x,y],x,y]ˆ2/.{x- > x0,y- > y0},

D[f[x,y],{x,2}]/.{x- > x0,y- > y0}}

Out[382]= 9x0,y0,-6 I - 4 + 12 x02M y0,-4 + 12 x02=

For example,

In[383]:= dfxx[0,1]

Out[383]= {0,1,24,-4}

shows us that a relative maximum occurs at(0,1). We then use/. (ReplaceAll) to
substitute the values in each element ofcritpts into dfxx.
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Figure 2.41: (a) Three-dimensional and (b) contour plots off (x, y)

In[384]:= dfxx[x,y]/.critpts

Out[384]= {{-1,-1,48,8},{-1,1,-48,8},{0,-1,-24,-4},

{0,1,24,-4},{1,-1,48,8},{1,1,-48,8}}

From the result, we see that(0,1) results in a relative maximum,(0, -1) results in a
saddle,(1,1) results in a saddle,(1, -1) results in a relative minimum,(-1,1) results in
a saddle, and(1, -1) results in a relative minimum. We confirm these results graphically
with a three-dimensional plot generated withPlot3D and a contour plot generated
with ContourPlot in Figure 2.41.

In[385]:= p1 = Plot3D[f[x,y],{x,-3/2,3/2},{y,-3/2,3/2},

PlotPoints- > 40,DisplayFunction- > Identity];

p2 = ContourPlot[f[x,y],

{x,-3/2,3/2},{y,-3/2,3/2},PlotPoints- > 40,

ContourShading- > False,DisplayFunction- > Identity];

Show[GraphicsArray[{p1,p2}]]

In the contour plot, notice that near relative extrema, the level curves look like circles
while near saddles they look like hyperbolas.

If the Second Derivatives test fails, graphical analysis is especially useful.

Example 66. Find the relative maximum, relative minimum, and saddle points of
f (x, y) = x2 + x2y2 + y4.

Solution. Initially we proceed in the exact same manner as in the previous example: we
define f (x, y) and compute the critical points. Several complex solutions are returned,
which we ignore.

In[386]:= f[x ,y ] = xˆ2 + xˆ2yˆ2 + yˆ4;

critpts =

Solve[{D[f[x,y],x] == 0,D[f[x,y],y] == 0},{x,y}]
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Out[386]= 9{x Ø 0,y Ø 0},9x Ø -
0
2,y Ø -i=,9x Ø -

0
2,y Ø i=,

9x Ø
0
2,y Ø -i=,9x Ø

0
2,y Ø i=,{y Ø 0,x Ø 0},

{y Ø 0,x Ø 0}=

We then compute the value of (2.26) at the real critical point, and the value offxx(x, y)
at this critical point.

In[387]:= dfxx[x0 ,y0 ] =

{x0,y0,D[f[x,y],{x,2}]D[f[x,y],{y,2}]-

D[f[x,y],x,y]ˆ2/.{x- > x0,y- > y0},

D[f[x,y],{x,2}]/.{x- > x0,y- > y0}}

Out[387]= 9x0,y0,-16 x02 y02 + I2 + 2 y02M I2 x02 + 12 y02M,2 + 2 y02=

In[388]:= dfxx[0,0]

Out[388]= {0,0,0,2}

The result shows us that the Second Derivatives test fails at(0,0).

In[389]:= p1 = Plot3D[f[x,y],{x,-1,1},{y,-1,1},PlotPoints- > 40,

DisplayFunction- > Identity,BoxRatios- > Automatic];

p2 = ContourPlot[f[x,y],{x,-1,1},

{y,-1,1},PlotPoints- > 40,Contours- > 20,

ContourShading- > False,DisplayFunction- > Identity];

Show[GraphicsArray[{p1,p2}]]

However, the contour plot off (x, y) near(0,0) indicates that an extreme value occurs at
(0,0). The three-dimensional plot shows that(0,0) is a relative minimum. (See Figure
2.42.)

TangentPlanes

Let z = f (x, y) be a real-valued function of two variables. If bothfx Ix0, y0M and
fy Ix0, y0M exist, then an equation of the plane tangent to the graph ofz = f (x, y) at

the pointIx0, y0, f Ix0, y0MM is given by

fx Ix0, y0M Ix - x0M + fy Ix0, y0M Iy - y0M - Iz- z0M = 0, (2.27)

wherez0 = f Ix0, y0M. Solving for z yields the function (of two variables)

z = fx Ix0, y0M Ix - x0M + fy Ix0, y0M Iy - y0M + z0. (2.28)

Symmetric equations of the line perpendicular to the surfacez = f (x, y) at the point
Ix0, y0, z0M are given by

x - x0

fx Ix0, y0M
=

y - y0

fy Ix0, y0M
=

z- z0

-1
(2.29)
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Figure 2.42: (a) Three-dimensional and (b) contour plots off (x, y)

and parametric equations are

ÌÓ
Ô

x = x0 + fx Ix0, y0M t

y = y0 + fy Ix0, y0M t

z = z0 - t

(2.30)

The plane tangent to the graph ofz = f (x, y) at the pointIx0, y0, f Ix0, y0MM is the ”best”
linear approximation ofz = f (x, y) near(x, y) = Ix0, y0M in the same way as the line tan-
gent to the graph ofy = f (x) at the pointIx0, f Ix0MM is the ”best” linear approximation
of y = f (x) nearx = x0.

Example 67. Find an equation of the plane tangent and normal line to the graph of at
f (x, y) = 4 - 1

4 I2x2 + y2M at the point(1,2,5/2).

Solution. We define f (x, y) and computefx(1,2) and fy(1,2).

In[390]:= f[x ,y ] = 4 - 1/4(2xˆ2 + yˆ2);

f[1,2]

dx = D[f[x,y],x]/.{x- > 1,y- > 2}

dy = D[f[x,y],y]/.{x- > 1,y- > 2}
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Figure 2.43: Graph off (x, y) with a tangent plane and normal line

Out[390]=
5

2
Out[390]= -1

Out[390]= -1

Using (2.28), an equation of the tangent plane isz = -1(x-1)-1(y-2)+ f (1,2). Using
(2.30), parametric equations of the normal line arex = 1 - t, y = 2 - t, z = f (1,2) - t.
We confirm the result graphically by graphingf (x, y) together with the tangent plane
in p1 usingPlot3D. We useParametricPlot3D to graph the normal line inp2
and then displayp1 andp2 together withShow in Figure 2.43.

In[391]:= p1 = Plot3D[f[x,y],{x,-1,3},{y,0,4},

DisplayFunction- > Identity,PlotPoints- > 40];

p2 = Plot3D[dx (x - 1) + dy (y - 2) + f[1,2],{x,-1,3},

{y,0,4},DisplayFunction- > Identity,PlotPoints- > 30];

p3 = ParametricPlot3D[{1 + dx t,2 + dy t,f[1,2] - t},

{t,-4,4},DisplayFunction- > Identity];

Show[p1,p2,p3,PlotRange- > {{-1,3},{0,4},{0,4}},

BoxRatios- > Automatic,

DisplayFunction- > $DisplayFunction]

Becausez = -1(x-1)-1(y-2)+ f (1,2) is the ”best” linear approximation off (x, y) near
(1,2), the graphs are very similar near(1,2) as shown in the three-dimensional plot. We
also expect the level curves of each near(1,2) to be similar, which is confirmed with
ContourPlot in Figure 2.44.
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Figure 2.44: Zooming in near(1,2)

In[392]:= p4 = ContourPlot[f[x,y],{x,0.75,1.25},{y,1.75,2.25},

ContourShading- > False,DisplayFunction- > Identity];

p5 = ContourPlot[dx (x - 1) + dy (y - 2) + f[1,2],

{x,0.75,1.25},{y,1.75,2.25},

ContourShading- > False,DisplayFunction- > Identity];

Show[GraphicsArray[{p4,p5}]]

Lagrange Multipliers

Certain types of optimization problems can be solved using the method ofLagrange
multipliersthat is based on the following theorem.

Theorem 17 (Lagrange’s Theorem).Let z = f (x, y) and z = g(x, y) be real-valued
functions with continuous partial derivatives and let z= f (x, y) have an extreme value
at a pointIx0, y0M on the smooth constraint curve g(x, y) = 0. If ıg Ix0, y0M ∫ 0, then
there is a real numberl satisfying

ı f Ix0, y0M = l ı g Ix0, y0M (2.31)

Graphically, the pointsIx0, y0M at which the extreme values occur correspond to the
points where the level curves ofz = f (x, y) are tangent to the graph ofg(x, y) = 0.

Example 68. Find the maximum and minimum values off (x, y) = xy subject to the
constraint14x2 + 1

9y2 = 1.

Solution. For this problem, f (x, y) = xy andg(x, y) = 1
4x2 + 1

9y2 - 1. Observe that
parametric equations for14x2 + 1

9y2 = 1 arex = 2 cost, y = 3 sint, 0 § t § 2p. In
Figure 2.45, we useParametricPlot3D to parametrically graphg(x, y) = 0 and
f (x, y) for x andy-values on the curveg(x, y) = 0 by graphing

ÌÓ
Ô

x = 2 cost

y = 3 sint

z = 0

and

ÌÓ
Ô

x = 2 cost

y = 3 sint

z = x ÿ y = 6 cost sint
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Figure 2.45:f (x, y) ong(x, y) = 0

for 0 § t § 2p. Our goal is to find the minimum and maximum values in Figure 2.45
and the points at which they occur.

In[393]:= f[x ,y ] = x y;

g[x ,y ] = xˆ2/4 + yˆ2/9 - 1;

In[394]:= s1 = ParametricPlot3D[{2 Cos[t],3 Sin[t],0},

{t,0,2p},DisplayFunction- > Identity];

s2 = ParametricPlot3D[{2 Cos[t],3 Sin[t],6 Cos[t]Sin[t]},

{t,0,2p},DisplayFunction- > Identity];

Show[s1,s2,BoxRatios- > Automatic,

DisplayFunction- > $DisplayFunction]

To implement the method of Lagrange multipliers, we computefx(x, y), fy(x, y), gx(x, y),
andgy(x, y) with D.
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In[395]:= fx = D[f[x,y],x]

fy = D[f[x,y],y]

gx = D[g[x,y],x]

gy = D[g[x,y],y]
Out[395]= y

Out[395]= x

Out[395]=
x

2

Out[395]=
2 y

9

Solve is used to solve the system of equations (2.31):

fx(x, y) = lgx(x, y)
fy(x, y = lgy(x, y)
g(x, y) = 0

for x, y, andl.

In[396]:= vals = Solve[{fx == l gx,fy == l gy,g[x,y] == 0},

{x,y,l}]

Out[396]= 99l Ø -3,x Ø -
0
2,y Ø

3
0
2

=,

9l Ø -3,x Ø
0
2,y Ø -

3
0
2

=,

9l Ø 3,x Ø -
0
2,y Ø -

3
0
2

=,

9l Ø 3,x Ø
0
2,y Ø

3
0
2

==

The corresponding values off (x, y) are found using/..

In[397]:= n1 = {x,y,f[x,y]}/.vals

Out[397]= 99 -
0
2,

3
0
2
,-3=,9

0
2,-

3
0
2
,-3=,9 -

0
2,-

3
0
2
,3=,

9
0
2,

3
0
2
,3==

In[398]:= N[n1]

Out[398]= {{-1.41421,2.12132,-3.},

{1.41421,-2.12132,-3.},

{-1.41421,-2.12132,3.},

{1.41421,2.12132,3.}}

We conclude that the maximum valuef (x, y) subject to the constraintg(x, y) = 0 is 3

and occurs atJ
0

2, 3
2

0
2N andJ-

0
2, - 3

2

0
2N. The minimum value is-3 andoccurs at

J-
0

2, 3
2

0
2N andJ

0
2, - 3

2

0
2N. We graph several level curves off (x, y) and the graph

of g(x, y) = 0 with ContourPlot and show the graphs together withShow. The
minimum and maximum values off (x, y) subject to the constraintg(x, y) = 0 occur at
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Figure 2.46: Level curves off (x, y) together withg(x, y) = 0

the points where the level curves off (x, y) are tangent to the graph ofg(x, y) = 0 as
illustrated in Figure 2.46.

In[399]:= cp1 = ContourPlot[f[x,y],{x,-3,3},

{y,-3,3},Contours- > 30,ContourShading- > False,

PlotPoints- > 40,DisplayFunction- > Identity];

cp2 = ContourPlot[

g[x,y],{x,-3,3},{y,-3,3},Contours- > {0},

ContourShading- > False,DisplayFunction- > Identity,

ContourStyle- > Thickness[0.01]];

Show[cp1,cp2,DisplayFunction- > $DisplayFunction]

2.5.3 Iterated Integrals

TheIntegrate command, used to compute single integrals, is used to compute iter-
ated integrals. The command

Integrate[f[x,y],{y,c,d},{x,a,b}]

attempts to compute the iterated integral

‡
d

c
‡

b

a
f (x, y) dx dy. (2.32)
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If Mathematica cannot compute the exact value of the integral, it is returned unevalu-
ated, in which case numerical results may be more useful. The iterated integral (2.32)
is numerically evaluated with the commandN or

NIntegrate[f[x,y],{y,c,d},{x,a,b}]

Example 69. Evaluate each integral: (a)Ÿ
4

2 Ÿ
2

1
I2xy2 + 3x2yM dx dy(b) Ÿ

2

0 Ÿ
2y

y2 I3x2 + y3M dx dy

(c) Ÿ
¶

0 Ÿ
¶

0
xye-x2-y2

dy dx(d) Ÿ
p

0 Ÿ
p

0
esinxydx dy

Solution. (a) First we computeŸ Ÿ I2xy2 + 3x2yM dx dywith Integrate. Second, we

computeŸ
4

2 Ÿ
2

1
I2xy2 + 3x2yM dx dywith Integrate.

In[400]:= Integrate[2x yˆ2 + 3xˆ2 y,y,x]

Out[400]=
x3 y2

2
+
x2 y3

3

In[401]:= Integrate[2x yˆ2 + 3xˆ2 y,{y,2,4},{x,1,2}]

Out[401]= 98

(b) We illustrate the same commands as in (a), except we are integrating over a non-
rectangular region.

In[402]:= Integrate[3xˆ2 + yˆ3,{x,yˆ2,2y}]

Out[402]= 8 y3 + 2 y4 - y5 - y6

In[403]:= Integrate[3xˆ2 + yˆ3,y,{x,yˆ2,2y}]

Out[403]= 2 y4 +
2 y5

5
-
y6

6
-
y7

7

In[404]:= Integrate[3xˆ2 + yˆ3,{y,0,2},{x,yˆ2,2y}]

Out[404]=
1664

105

(c) Improper integrals can be handled in the same way as proper integrals.

In[405]:= Integrate[x y Exp[-xˆ2 - yˆ2],x,y]

Out[405]=
1

4
e-x2-y2

In[406]:= Integrate[x y Exp[-xˆ2 - yˆ2],{x,0,¶},

{y,0,¶}]

Out[406]=
1

4

(d) In this case, Mathematica cannot evaluate the integral exactly so we useNInte-
grate to obtain an approximation.

In[407]:= Integrate[Exp[Sin[x y]],y,x]

Out[407]= ‡ ‡ eSin[x y]„x„y

In[408]:= NIntegrate[Exp[Sin[x y]],{y,0,p},{x,0,p}]

Out[408]= 15.5092
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Area, Volume, and Surface Area

Typical applications of iterated integrals include determining the area of a planar re-
gion, the volume of a region in three-dimensional space, or the surface area of a region
in three-dimensional space. The area of the planar regionR is given by

A = ‡ ‡
R

dA. (2.33)

If z = f (x, y) has continuous partial derivatives on a closed regionR, then the surface
area of the portion of the surface that projects ontoR is given by

SA= ‡ ‡
R

2

K
∑ f
∑x

O
2

+ K
∑ f
∑y

O
2

+ 1dA (2.34)

If f (x, y) ¥ g(x, y) on R, the volume of the region between the graphs off (x, y) and
g(x, y) is

V = ‡ ‡
R

( f (x, y) - g(x, y)) dA (2.35)

Example 70. Find the area of the regionR bounded by the graphs ofy = 2x2 and
y = 1 + x2.

Solution. We begin by graphingy = 2x2 andy = 1+ x2 with Plot in Figure 2.47. The
x-coordinates of the intersection points are found withSolve.

In[409]:= Plot[{2xˆ2,1 + xˆ2},{x,-3/2,3/2},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

AspectRatio- > Automatic]

In[410]:= Solve[2xˆ2 == 1 + xˆ2]

Out[410]= {{x Ø -1},{x Ø 1}}

Using (2.33) and taking advantage of symmetry, the area ofR is given by

A = ‡ ‡
R

dA = 2‡
1

0
‡

1+x2

2x2
dy dx,

which we compute withIntegrate.

In[411]:= 2 Integrate[1,{x,0,1},{y,2xˆ2,1 + xˆ2}]

Out[411]=
4

3

We conclude that the area ofR is 4/3.

If the problem exhibits ”circular symmetry,” changing to polar coordinates is often
useful. IfR = 9(r, q) ƒƒƒa § r § b,a § q § b =, then

‡ ‡
R

f (x, y) dA = ‡
b

a
‡

b

a
f (r cosq, r sinq) r dr dq.
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Figure 2.47:y = 2x2 andy = 1 + x2 for -3/2 § x § 3/2
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Example 71. Find the surface area of the portion of

f (x, y) =
1

4 - x2 - y2

that lies above the regionR = 9(x, y) ƒƒƒƒx
2 + y2 § 1=.

Solution. First, observe that the domain off (x, y) is

;(x, y)
ƒƒƒƒƒƒƒ
-

1
4 - y2 § x §

1
4 - y2, -2 § y § 2? = {(r, q)|0 § r § 2,0 § q § 2p} .

Similarly,

R = ;(x, y)
ƒƒƒƒƒƒƒ
-

1
1 - y2 § x §

1
1 - y2, -1 § y § 1? = {(r, q)|0 § r § 1,0 § q § 2p} .

With this observation, we useParametricPlot3D to graph f (x, y) in p1 and the
portion of the graph off (x, y) above R in p2 and show the two graphs together with
Show. We wish to find the area of the black region in Figure 2.48.

In[412]:= f[x ,y ] = Sqrt[4 - xˆ2 - yˆ2];

In[413]:= p1 = ParametricPlot3D[{r Cos[t],r Sin[t],

f[r Cos[t],r Sin[t]]},{r,0,2},{t,0,2p},

PlotPoints- > 45,DisplayFunction- > Identity];

p2 = ParametricPlot3D[

{r Cos[t],r Sin[t],f[r Cos[t],r Sin[t]],GrayLevel[0.3]},

{r,0,1},{t,0,2p},

PlotPoints- > 45,DisplayFunction- > Identity];

Show[p1,p2,DisplayFunction- > $DisplayFunction,

BoxRatios- > Automatic]

We compute fx(x, y), fy(x, y) and
1

A fx(x, y)E2
+ A fy(x, y)E2

+ 1 with D andSimplify.

In[414]:= fx = D[f[x,y],x]

fy = D[f[x,y],y]

Out[414]= -
x

1
4 - x2 - y2

Out[414]= -
y

1
4 - x2 - y2

Then, using (2.34), the surface area is given by

SA= ‡ ‡
R

2

K
∑ f
∑x

O
2

+ K
∑ f
∑y

O
2

+ 1dA

= ‡ ‡
R

21
4 - x2 - y2

dA

= ‡
1

-1
‡

0
1-y2

-
0

1-y2

21
4 - x2 - y2

dx dy.

(2.36)
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Figure 2.48: The portion of the graph off (x, y) aboveR

However, notice that in polar coordinates,

R = {(r, q) |0 § r § 1,0 § q § 2p }

so in polar coordinates the surface area is given by

SA= ‡
2p

0
‡

1

0

2
0

4 - r2
r dr dq,

In[415]:= s1 = Simplify[Sqrt[1 + fxˆ2 + fyˆ2]]

Out[415]= 2

2

-
1

-4 + x2 + y2

In[416]:= s2 = Simplify[s1 /.{x- > r Cos[t],y- > r Sin[t]}]

Out[416]= 2

2
1

4 - r2

which is much easier to evaluate than (2.36). We evaluate the iterated integral with
Integrate

In[417]:= s3 = Integrate[r s2,{t,0,2p},{r,0,1}]

Out[417]= 2 I4 - 2
0
3M p

In[418]:= N[s3]

Out[418]= 3.36715

and conclude that the surface area isJ8 - 4
0

3N p º 3.367.

Example 72. Find the volume of the region between the graphs ofz = 4 - x2 - y2 and
z = 2 - x.
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Figure 2.49:z = 4 - x2 - y2 andz = 2 - x for -2 § x § 2 and-2 § y § 2

Solution. We begin by graphingz = 4 - x2 - y2 andz = 2 - x together withPlot3D
in Figure 2.49.

In[419]:= p1 = Plot3D[4 - xˆ2 - yˆ2,{x,-2,2},{y,-2,2},

PlotPoints- > 40,DisplayFunction- > Identity];

p2 = Plot3D[2 - x,{x,-2,2},{y,-2,2},

PlotPoints- > 40,DisplayFunction- > Identity];

Show[p1,p2,PlotRange- > {{-2,2},{-2,2},{-2,4}},

BoxRatios- > Automatic,

DisplayFunction- > $DisplayFunction]

The region of integration,R, is determined by graphing 4- x2 - y2 = 2 - x in Figure
2.50.

In[420]:= ContourPlot[4 - xˆ2 - yˆ2 - (2 - x),{x,-2,2},{y,-2,2},

Contours- > {0},ContourShading- > False,PlotPoints- > 50,

Frame- > False,Axes- > Automatic,AxesOrigin- > {0,0}]
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Figure 2.50: Graph of 4- x2 - y2 = 2 - x

Completing the square shows us that

R = ;(x, y)
ƒƒƒƒƒƒƒƒ
Kx -

1
2

O
2

+ y2 §
9
4

?

= ;(x, y)
ƒƒƒƒƒƒƒ
1
2

-
1
2

1
9 - 4y2 § x §

1
2

+
1
2

1
9 - 4y2, -

3
2

§ y §
3
2

? .

Thus, using (2.35), the volume of the solid is given by

V = ‡ ‡
R

AI4 - x2 - y2M - (2 - x)E dA

= ‡
3
2

- 3
2

‡
1
2 + 1

2

0
9-4y2

1
2 - 1

2

0
9-4y2

AI4 - x2 - y2M - (2 - x)E dx dy,

which we evaluate withIntegrate.

In[421]:= i1 = Integrate[(4 - xˆ2 - yˆ2) - (2 - x),{y,-3/2,3/2},

{x,1/2 - 1/2Sqrt[9 - 4yˆ2],1/2 + 1/2 Sqrt[9 - 4yˆ2]}]

Out[421]=
81 p

32

In[422]:= N[i1]

Out[422]= 7.95216

We conclude that the volume is81
32p º 7.952.
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Triple Iterated Integrals

Triple iterated integrals are calculated in the same manner as double iterated integrals.

Example 73. Evaluate

‡
p/4

0
‡

y

0
‡

y+z

0
(x + 2z) siny dx dz dy.

Solution. Entering

In[423]:= i1 = Integrate[(x + 2z) Sin[y],{y,0,p/4},{z,0,y},

{x,0,y + z}]

Out[423]= -
17
0
2

+
17 p

4
0
2

+
17 p2

32
0
2

-
17 p3

384
0
2

calculates the triple integral exactly withIntegrate.

An approximation of the exact value is found withN.

In[424]:= N[i1]

Out[424]= 0.157206

We illustrate how triple integrals can be used to find the volume of a solid when using
spherical coordinates.

Example 74. Find the volume of the torus with equation in spherical coordinatesr =
sinf.

Solution. Weproceed by graphing the torus withSphericalPlot3D in Figure 2.52,
which is contained in theParametricPlot3D package that is located in theGraph-
icsdirectory (see Figure 2.51).

In[425]:= << Graphics‘ParametricPlot3D‘

SphericalPlot3D[

in[f],{f,0,p},{q,0,2p},PlotPoints- > 40]

In general, the volume of the solid regionD is given by

V = ‡ ‡ ‡
D

dV.

Thus, the volume of the torus is given by the triple iterated integral

V = ‡
2p

0
‡

p

0
‡

sinf

0
r2 sinf dr df dq,
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Figure 2.51: Mathematica’s help forSphericalPlot3D
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Figure 2.52: A graph of the torus



2.6. VECTOR CALCULUS 153

In[426]:= i1 = Integrate[rˆ2 Sin[f],{q,0,2p},

{f,0,p},{r,0,Sin[f]}]

Out[426]=
p2

4

In[427]:= N[i1]

Out[427]= 2.4674

which we evaluate withIntegrate. We conclude that the volume of the torus is
1
4p2 º 2.467.

2.6 Vector Calculus

2.6.1 Basic Operations on Vectors

Wereview the elementary properties of vectors in in space. Let

u = Yu1, u2, u3] = u1i + u2j + u3k

and
v = Yv1, v2, v3] = v1i + v2j + v3k

be vectors in space. In space, thestandard unit vectors arei =

X1,0,0\, j = X0,1,0\, andk = X0,0,1\. With

the exception of the cross product, the vector

operations discussed here are performed in

the same way for vectors in the plane as they

are in space. In the plane, thestandard unit

vectors arei = X1,0\ andj = X0,1\.

1. u andv areequal if and only if their components are equal:

u = v ‹ u1 = v1, u2 = v2, andu3 = v3.

2. Thelength (or norm) of u is

¸u¸ =
1

u1
2 + u2

2 + u3
2.

3. If c is a scalar (number),
cu = Ycu1, cu2, cu3] .

4. Thesum of u andv is defined to be the vector

u + v = Yu1 + v1, u2 + v2, u3 + v3] .

5. If u ∫ 0, aunit vector with the same direction asu is A unit vector is a vector with length 1.

1
¸u¸

u =
11

u1
2 + u2

2 + u3
2

Yu1, u2, u3] .

6. u andv areparallel if there is a scalarc so thatu = cv.
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7. Thedot product of u andv is

u ÿ v = u1v1 + u2v2 + u3v3.

If q is the angle betweenu andv,

cosq =
u ÿ v

¸u¸ ¸v¸
.

Consequently,u andv are orthogonal ifu ÿ v = 0.

8. Thecross productof u andv is

u µ v =

ƒƒƒƒƒƒƒƒƒƒƒ

i j k
u1 u2 u3
v1 v2 v3

ƒƒƒƒƒƒƒƒƒƒƒ
= Iu2v3 - u3v2M i - Iu1v3 - u3v1M j + Iu1v2 - u2v1M k.

You should verify thatu ÿ (u µ v) = 0 andv ÿ (u µ v) = 0. Hence,u µ v is
orthogonal to bothu andv.

Topics from linear algebra (including determinants) are discussed in more detail in
the next chapter. For now, we illustrate several of the basic operations listed above.
In Mathematica, many vector calculations take advantage of functions contained in
theVectorAnalysis package located in theCalculus directory. Use Mathemat-
ica’s help facility to obtain general help regarding theVectorAnalysis package as
shown in Figure 2.53.

Example 75. Let u = X3,4,1\ andv = X-4,3, -2\. Calculate (a)u ÿ v, (b) u µ v, (c)
¸u¸, and(d) ¸v¸. (e) Find the angle betweenu andv. (f) Find unit vectors with the
same direction asu, v, andu µ v.

Solution. After loading theVectorAnalysis package, we defineu = X3,4,1\ and
v = X-4,3, -2\. Notice that to defineu = Yu1, u2, u3] with Mathematica, we use the
form

u={u1,u2,u3}.
Similarly, to defineu = Yu1, u2], we use the

form u={u1,u2}. We illustrate the use ofDotProduct andCrossProduct, both of which are con-
tained in theVectorAnalysis package, to calculate (a)-(d).

Remark.Generally,u.v returns the same result asDotProduct[u,b].

In[428]:= << Calculus‘VectorAnalysis‘

In[429]:= u = {3,4,1};

v = {-4,3,-2};

In[430]:= udv = DotProduct[u,v]

Out[430]= -2
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Figure 2.53: Mathematica’s help for theVectorAnalysis package

In[431]:= ucv = CrossProduct[u,v]

Out[431]= {-11,2,25}

In[432]:= n = Sqrt[u.u]

Out[432]=
0
26

In[433]:= nv = Sqrt[v.v]

Out[433]=
0
29

Weuse the formulaq = cos-1 I uÿv
¸u¸ ¸v¸ M to find the angleq betweenu andv.

In[434]:= ArcCos[u.v/(n nv)]

N[%]

Out[434]= ArcCosA -

2
2

377
E

Out[434]= 1.6437

Unit vectors with the same direction asu, v, andu µ v are found next.

In[435]:= normu = u/n

normv = v/nv

nucrossv = ucv/Sqrt[ucv.ucv]

Out[435]= 9 3
0
26

,2

2
2

13
,

1
0
26

=
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Figure 2.54: Orthogonal vectors

Out[435]= 9 -
4

0
29

,
3

0
29

,-
2

0
29

=

Out[435]= 9 -
11

5
0
30

,

1
2
15

5
,

2
5

6
=

Wecan graphically confirm that these three vectors are orthogonal by graphing all three
vectors with theListPlotVectorField3D function, which is contained in the
PlotField3D package. After loading thePlotField3D package, the command

ListPlotVectorField3D[listofvectors]

graphs the list of vectorslistofvectors. Each element oflistofvectors is
of the form{{u1,u2,u3},{v1,v2,v3}} where(u1, u2, u3) and(v1, v2, v3) are the
initial and terminal points of each vector. We show the vectors in Figure 2.54.

In[436]:= << Graphics‘PlotField3D‘

In[437]:= ListPlotVectorField3D[{{{0,0,0},normu},

{{0,0,0},normv},{{0,0,0},nucrossv}},

VectorHeads- > True]

In the plot, the vectors do appear to be orthogonal as expected.
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With the exception of the cross product, the calculations described above can also be
performed on vectors in the plane.

Example 76. If u andv are nonzero vectors, theprojection of u ontov is

projvu =
u ÿ v
¸v¸2 v.

Find projvu if u = X-1,4\ andv = X2,6\.

Solution. We defineu = X-1,4\ andv = X2,6\.

and then compute projvu.

In[438]:= u = {-1,4};

v = {2,6};

projvu = u.v v/v.v

Out[438]= 911
10

,
33

10
=

Finally, we graphu, v, and projvu together usingArrow andShow in Figure 2.55.

In[439]:= << Graphics‘Arrow‘

In[440]:= ?Arrow

"Arrow[start,finish,(opts)]isagraphics

primitiverepresentinganarrowstartingat

startandendingatfinish."

In[441]:= p1 = Show[Graphics[

{Arrow[{0,0},u],Arrow[{0,0},v],Thickness[0.03],

Arrow[{0,0},projvu,HeadScaling- > Relative]}],

Axes- > Automatic,AspectRatio- > Automatic,

DisplayFunction- > Identity];

In[442]:= p2 = Show[Graphics[{Arrow[{0,0},u],

Arrow[{0,0},v],Thickness[0.03],Arrow[{0,0},

projvu,HeadScaling- > Relative],GrayLevel[0.4],

Arrow[projvu,u,HeadScaling- > Relative]}],

Axes- > Automatic,AspectRatio- > Automatic,

DisplayFunction- > Identity];

In[443]:= Show[GraphicsArray[{p1,p2}]]

In the graph, notice thatu = projvu + Iu - projvuM and the vectoru - projvu is
perpendicular tov.
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Figure 2.55: Projection of a vector
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2.6.2 Vector-Valued Functions

Wenow turn our attention to vector-valued functions. In particular, we consider vector-
valued functions of the following forms.

Plane curves: r(t) = x(t)i + y(t)j (2.37)

Space curves: r(t) = x(t)i + y(t)j + z(t)k (2.38)

Parametric surfaces: r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k (2.39)

Vector fields in the plane: F(x, y) = P(x, y)i + Q(x, y)j (2.40)

Vector fields in space: F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k (2.41)

For the vector-valued functions (2.37) and (2.38), differentiation and integration is car-
ried out term-by-term, provided that all the terms are differentiable and integrable.
Suppose thatC is a smooth curve defined byr(t), a § t § b.

1. If r£(t) ∫ 0, theunit tangent vector, T(t), at t is

T(t) =
r£(t)

¸r£(t)¸
.

2. If T£(t) ∫ 0, theprincipal unit normal vector , N(t), is

N(t) =
T£(t)

¸T£(t)¸
.

3. Thearc length function, s(t), is

s(t) = ‡
t

a
¸r£(u)¸ du.

In particular, the length ofC on the interval[a, b] is Ÿ
b

a
¸r£(t)¸ dt.

4. Thecurvature, k, of C at t is It is a good exercise to show that the curva-

ture of a circle of radiusr is 1/ r.

k =
¸T£(t)¸
¸r£(t)¸

=
a(t) ÿ N(t)

¸v(t)¸2 =
¸r£(t) µ r££(t)¸

¸r£(t)¸3 ,

wherev(t) = r£(t) anda(t) = r££(t)

Example 77 (Folium of Descartes).Consider theFolium of Descartes,

r(t) =
3at

1 + t3 i +
3at2

1 + t3 j

for t ∫ -1, if a = 1. (a) Findr£(t), r££(t) andŸ r(t) dt. (b) FindT(t) andN(t). (c) Find
the curvature,k. (d) Find the length of the loop of the Folium.
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Solution. (a) After definingr(t),

In[444]:= r[t ] = {3 a t/(1 + tˆ3),3 a tˆ2/(1 + tˆ3)};

a = 1;

we computer£(t) andŸ r(t) dt with ’, ’’ andIntegrate, respectively. We name
r£(t) dr, r££(t) dr2, andŸ r(t) dt ir.

In[445]:= dr = Simplify[r£[t]]

dr2 = Simplify[r££[t]]

ir = Integrate[r[t],t]

Out[445]= 9 3 - 6 t3

(1 + t3)
2 ,-

3 t (-2 + t3)

(1 + t3)
2

=

Out[445]= 918 t2 (-2 + t3)

(1 + t3)
3 ,

6 (1 - 7 t3 + t6)

(1 + t3)
3

=

Out[445]= 9
0
3 ArcTanA

-1 + 2 t
0
3

E - Log[1 + t] +
1

2
LogA1 - t + t2E,

LogA1 + t3E=

(b) Mathematica does not automatically make assumptions regarding the value oft, so
does not algebraically simplify̧r£(t)¸ as we might typically do unless we usePow-
erExpand.PowerExpand[Sqrt[x2̂]] returnsx

In[446]:= nr = PowerExpand[Sqrt[dr.dr]//Simplify]

Out[446]=
3

0
1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8

(1 + t3)
2

The unit tangent vector,T(t) is formed inut.

In[447]:= ut = 1/nr dr//Simplify

Out[447]= 9 1 - 2 t3
0
1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8

,

-
t (-2 + t3)

0
1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8

=

Weperform the same steps to compute the unit normal vector,N(t). In particular, note
thatdutb = ¸T£(t)¸.

In[448]:= dut = D[ut,t]//Simplify

Out[448]= 9 2 t (-2 + t3) (1 + t3)
2

(1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8)
3/2 ,

-
2 (-1 + 3 t6 + 2 t9)

(1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8)
3/2

=

In[449]:= duta = dut.dut//Simplify

Out[449]=
4 (1 + t3)

4

(1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8)
2

In[450]:= dutb = PowerExpand[Sqrt[duta]]

Out[450]=
2 (1 + t3)

2

1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8
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In[451]:= nt = 1/dutb dut//Simplify

Out[451]= 9 t (-2 + t3)
0
1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8

,

1 - 2 t3
0
1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8

=

(c) We use the formulak = ¸T£(t)¸
¸r£(t)¸ to determine the curvature incurvature.

In[452]:= curvature = Simplify[dutb/nr]

Out[452]=
2 (1 + t3)

4

3 (1 + 4 t2 - 4 t3 - 4 t5 + 4 t6 + t8)
3/2

Wegraphically illustrate the unit tangent and normal vectors atr(1) = X3/2,3/2\. First,
we compute the unit tangent and normal vectors ift = 1 using/..

In[453]:= ut1 = ut/.t- > 1

Out[453]= 9 -
1

0
2
,

1
0
2

=

In[454]:= nt1 = nt/.t- > 1

Out[454]= 9 -
1

0
2
,-

1
0
2

=

We thencompute the curvature ift = 1 in smallk. The center of the osculating circle
atr(1) is found inx0 andy0. The radius of the osculating circle is 1/k; the

position vector of the center isr + 1
k N.

In[455]:= smallk = curvature/.t- > 1

N[smallk]

N[1/smallk]

x0 = r[t][[1]] - dr.dr

r[[2]]/(dr[[1]]dr2[[2]] - dr2[[1]]dr[[2]])/.t- > 1

y0 = r[t][[2]]-

r.dr dr[[2]]/(dr[[1]]dr2[[2]] - dr2[[1]]dr[[2]])/.t

- > 1

Out[455]=
8

0
2

3
Out[455]= 3.77124

Out[455]= 0.265165

Out[455]=
21

16

Out[455]=
21

16

We now load theArrow package and graphr(t) with ParametricPlot. Theunit
tangent and normal vectors atr(1) are graphed witharrow in a1 anda2. Theos-
culating circle atr(1) is graphed withCircle in c1. All four graphs are displayedGraphics[Circle[{x0, y0}, r]]

is a two-dimensional graphics object that

represents a circle of radiusr centered at

the point(x0, y0). UseShow to display the

graph.

together withShow in Figure 2.56.

In[456]:= << Graphics‘Arrow‘
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Figure 2.56: The Folium with an osculating circle

In[457]:= p1 = ParametricPlot[Evaluate[r[t]],{t,-100,100},

PlotRange- > {{-2,3},{-2,3}},PlotPoints- > 200,

AspectRatio- > 1,DisplayFunction- > Identity];

p2 = Show[Graphics[{Circle[{x0,y0},1/smallk],

Arrow[r[1],r[1] + ut1],Arrow[r[1],r[1] + nt1]}],

DisplayFunction- > Identity];

Show[p1,p2,DisplayFunction- > $DisplayFunction]

(d) The loop is formed by graphingr(t) for t ¥ 0. Hence, the length of the loop is given
by the improper integralŸ

¶

0
¸r(t)¸ dt, whichwe compute withNIntegrate.

In[458]:= NIntegrate[nr,{t,0,¶}]

Out[458]= 4.91749

Recall that thegradient of z = f (x, y) is the vector-valued functionı f (x, y) = Y fx(x, y), fy(x, y)].
Similarly, we define thegradient of w = f (x, y, z) to be

ı f (x, y, z) = Y fx(x, y, z), fy(x, y, z), fz(x, y, z)] =
∑ f
∑x

i +
∑ f
∑y

j +
∑ f
∑z

k. (2.42)

A vector fieldF is conservativeif there is a functionf , called apotential function,
satisfyingı f = F. In the special case thatF(x, y) = P(x, y)i+Q(x, y)j, F is conservative
if and only if

∑P
∑y

=
∑Q
∑x

.
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Thedivergenceof the the vector fieldF(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is
the scalar field

divF = ı ÿ F =
∑P
∑x

+
∑Q
∑y

+
∑R
∑z

. (2.43)

TheDiv command, which is contained in theVectorAnalysis package, can be
used to find the divergence of a vector field:

Div[{P(x,y,z),Q(x,y,z),R(x,y,z)},Cartesian[x,y,z]]

computes the divergence ofF(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Thelapla-
cian of the scalar fieldw = f (x, y, z) is defined to be

div (ı f ) = ı ÿ (ı f ) = ı
2 f =

∑2 f

∑x2 +
∑2 f

∑y2 +
∑2 f

∑z2 = Û f . (2.44)

In the same way thatDiv computes the divergence of a vector field,Laplacian,
which is also contained in theVectorAnalysis package, computes the laplacian of
a scalar field.

Thecurl of the vector fieldF(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is

curlF(x, y, z) = ı µ F(x, y, z)

=

ƒƒƒƒƒƒƒƒƒƒƒ

i j k
∑

∑x
∑

∑y
∑

∑z

P(x, y, z) Q(x, y, z) R(x, y, z)

ƒƒƒƒƒƒƒƒƒƒƒ

= K
∑R
∑y

-
∑Q
∑z

O i - K
∑R
∑x

-
∑P
∑z

O j + K
∑Q
∑x

-
∑P
∑y

O k.

(2.45)

If F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k, F is conservative if and only if
curlF(x, y, z) = 0, in which caseF is said to beirrotational .

Example 78. Determine if

F(x, y) = I1 - 2x2M ye-x2-y2
i + I1 - 2y2M xe-x2-y2

j

is conservative. IfF is conservative find a potential function forF.

Solution. We define P(x, y) = I1 - 2x2M ye-x2-y2
andQ(x, y) = I1 - 2y2M xe-x2-y2

. Then
we useD andSimplify to see thatPy(x, y) = Qx(x, y). Hence,F is conservative.

In[459]:= p[x ,y ] = (1 - 2xˆ2)y Exp[-xˆ2 - yˆ2];

q[x ,y ] = (1 - 2yˆ2)x Exp[-xˆ2 - yˆ2];

In[460]:= Simplify[D[p[x,y],y]]

Simplify[D[q[x,y],x]]

Out[460]= e-x2-y2 I - 1 + 2 x2M I - 1 + 2 y2M
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Out[460]= e-x2-y2 I - 1 + 2 x2M I - 1 + 2 y2M

We useIntegrate to find f satisfyingı f = F.

In[461]:= i1 = Integrate[p[x,y],x] + g[y]

Out[461]= e-x2-y2 x y + g[y]

In[462]:= Solve[D[i1,y] == q[x,y],g£[y]]

Out[462]= BoxData({{g£[y] Ø 0}})

In[463]:= f = i1/.g[y]- > 0

Out[463]= e-x2-y2 x y

Remember that the vectorsF are perpendicular to the level curves off . To seethis, we
normalizeF in uv.

In[464]:= uv = {p[x,y],q[x,y]}/

Sqrt[{p[x,y],q[x,y]}.{p[x,y],q[x,y]}]//

Simplify

Out[464]= 9 -
e-x2-y2 (-1 + 2 x2) y

2

e
-2 Ix2+y2M

(y2 + 4 x4 y2 + x2 (1 - 8 y2 + 4 y4))

,

-
e-x2-y2 x (-1 + 2 y2)

2

e
-2 Ix2+y2M

(y2 + 4 x4 y2 + x2 (1 - 8 y2 + 4 y4))

=

We then graph several level curves off in cpwith ContourPlot and several vectors
of uv with PlotVectorField, which iscontained in thePlotField package, inSee Figure 4.20.

fp. We show the graphs together withShow in Figure 2.57.

In[465]:= << Graphics‘PlotField‘

cp = ContourPlot[f,{x,-3/2,3/2},{y,-3/2,3/2},

ontours- > 15,ContourShading- > False,PlotPoints- > 60,D

isplayFunction- > Identity];

In[466]:= fp = PlotVectorField[uv,{x,-3/2,3/2},{y,-3/2,3/2},

DisplayFunction- > Identity];

Power :: "infy" :

"Infiniteexpression1:0 encountered."

Power :: "infy" :

"Infiniteexpression1:0 encountered."

In[467]:= Show[cp,fp,DisplayFunction- > $DisplayFunction]

Note that we can usePlotGradientField, which is contained in thePlotField
package, to graph several vectors ofı f . However, the vectors are scaled and it can be
difficult to see that the vectors are perpendicular to the level curves off . The advantage
of proceeding this way is that by graphing unit vectors, it is easier to see that the vectors
are perpendicular to the level curves off in the resulting plot.
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Figure 2.57: The vectorsF are perpendicular to the level curves off

Example 79. (a) Show that

F(x, y, z) = -10xy2i + I3z3 - 10x2yM j + 9yz2k

is irrotational. (b) Findf satisfyingı f = F. (c) Compute divF andı
2 f .

Solution. (a) After definingF(x, y, z), we useCurl, which is contained in theVec-
torAnalysis package, to see that curlF(x, y, z) = 0.

In[468]:= << Calculus‘VectorAnalysis‘

In[469]:= BoxData({Clear[f], f[x ,y ,z ] = {-10x yˆ2,3zˆ3-10xˆ2 y,9 y z ˆ2}})

Out[469]= 9 - 10 x y2,-10 x2 y + 3 z3,9 y z2=

In[470]:= Curl[f[x,y,z]]

Out[470]= {0,0,0}

(b) We then useIntegrate to findw = f (x, y, z) satisfyingı f = F.

In[471]:= i1 = Integrate[f[x,y,z][[1]],x] + g[y,z]

Out[471]= -5 x2 y2 + g[y,z]

In[472]:= i2 = D[i1,y]

Out[472]= BoxData(-10 x2 y + g(1,0)[y,z])

In[473]:= BoxData(Solve[i2 == f[x,y,z][[2]],g(1,0)[y,z]])

Out[473]= BoxData({{g(1,0)[y,z] Ø 3 z3}})
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In[474]:= i3 = Integrate[3zˆ3,y] + h[z]

Out[474]= 3 y z3 + h[z]

In[475]:= i4 = i1/.g[y,z]- > i3

Out[475]= -5 x2 y2 + 3 y z3 + h[z]

In[476]:= Solve[D[i4,z] == f[x,y,z][[3]]]

Out[476]= BoxData({{h£[z] Ø 0}})

In[477]:= lf = -5 x2 y2 + 3 y z3;

ı f is orthogonal to the level surfaces off . To illustrate this, we useContour-
Plot3D, which is contained in theContourPlot3D package, to graph the level
surface ofw = f (x, y, z) corresponding tow = -1 for -2 § x § 2, -2 § y § 2, and
-2 § z § 2 in pf. We then usePlotGradientField3D, which is contained in the
PlotField3D package, to graph several vectors in the gradient field off over the
same domain ingradf. The two plots are shown together withShow in Figure 2.58.
In the plot, notice that the vectors appear to be perpendicular to the surface.

In[478]:= << Graphics‘PlotField3D‘

<< Graphics‘ContourPlot3D‘

In[479]:= pf = ContourPlot3D[lf,{x,-2,2},{y,-2,2},{z,-2,2},

PlotPoints- > {5,7},DisplayFunction- > Identity];

In[480]:= gf = PlotGradientField3D[lf,{x,-2,2},{y,-2,2},

{z,-2,2},DisplayFunction- > Identity];

In[481]:= Show[pf,gf,DisplayFunction- > $DisplayFunction]

For (c), we take advantage ofDiv andLaplacian. As expected, the results are the
same.

In[482]:= Div[f[x,y,z],Cartesian[x,y,z]]

Out[482]= -10 x2 - 10 y2 + 18 y z

In[483]:= Laplacian[lf,Cartesian[x,y,z]]

Out[483]= -10 x2 - 10 y2 + 18 y z

2.6.3 Line Integrals

If F is continuous on the smooth curveC with parametrizationr(t), a § t § b, theline
integral of F onC is

‡
C
F ÿ dr = ‡

b

a
F ÿ r£(t) dt (2.46)

If F is conservative andC is piecewise smooth, line integrals can be evaluated using
theFundamental Theorem of Line Integrals.
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Figure 2.58:ı f is orthogonal to the level surfaces off
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Theorem 18 (Fundamental Theorem of Line Integrals).If F is conservative and the
curve C defined byr(t), a § t § b is piecewise smooth,

‡
C
F ÿ dr = f (r(b)) - f (r(a)) (2.47)

whereF = ı f .

Example 80. Find ŸC
F ÿ dr whereF(x, y) = (e-y - ye-x) i + (e-x - xe-y) i andC is

defined byr(t) = cost i + ln (2t/p) j, p/2 § t § 4p.

Solution. We see that F is conservative withD and find thatf (x, y) = xe-y + ye-x

satisfiesı f = F with Integrate.

In[484]:= f[x ,y ] = {Exp[-y] - y Exp[-x],Exp[-x] - x Exp[-y]};

r[t ] = {Cos[t],Log[2t/p]};

In[485]:= BoxData({D[f[x,y][[1]],y]//Simplify,D[f[x,y][[2]],x]//Simplify })

Out[485]= -e-x - e-y

Out[485]= -e-x - e-y

In[486]:= lf = Integrate[f[x,y][[1]],x]

Out[486]= e-y x + e-x y

Hence, using (2.47),

‡
C
F ÿ dr = (xe-y + ye-x)]

x=1,y=ln 8
x=0,y=0 =

3 ln 2
e

+
1
8

º 0.890.

In[487]:= xr[t ] = Cos[t];

yr[t ] = Log[2 t/p];

{xr[p/2],yr[p/2]}

{xr[4p],yr[4p]}

Out[487]= {0,0}

Out[487]= {1,Log[8]}

In[488]:= Simplify[lf/.{x- > 1,y- > Log[8]}]

N[%]

Out[488]=
1

8
+
Log[8]

e
Out[488]= 0.889984

If C is a piecewise smooth simple closed curve andP(x, y) andQ(x, y) have continuous
partial derivatives,Green’s theoremrelates the line integralò C

(P(x, y) dx+ Q(x, y) dy)
to a double integral.Weassume that the symbolò means to eval-

uate the integral in the positive (or counter-

clockwise) direction.
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Figure 2.59:y = x2 andy =
0

x, 0 § x § 1

Theorem 19 (Green’s Theorem).Let C be a piecewise smooth simple closed curve in
the plane and R the region bounded by C. If P(x, y) and Q(x, y) have continuous partial
derivatives on R,

®
C

(P(x, y) dx+ Q(x, y) dy) = ‡ ‡
R

K
∑Q
∑x

-
∑P
∑y

O dA. (2.48)

Example 81. Evaluate

®
C

(ex - siny) dx+ (cosx - e-y) dy

whereC is the boundary of the region betweeny = x2 andx = y2.

Solution. After definingP(x, y) = ex - siny andQ(x, y) = cosx - e-y, we usePlot to
determine the regionRbounded byC in Figure 2.59.

In[489]:= p[x ,y ] = Exp[-x] - Sin[y];

q[x ,y ] = Cos[x] - Exp[-y];

Plot[{xˆ2,Sqrt[x]},{x,0,1.1},

PlotStyle- > {GrayLevel[0],GrayLevel[0.3]},

AspectRatio- > Automatic]
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Using (2.48),

®
C

(ex - siny) dx+ (cosx - e-y) dy = ‡ ‡
R

K
∑Q
∑x

-
∑P
∑y

O dA

= ‡ ‡
R

(cosy - sinx) dA

= ‡
1

0
‡

0
x

x2
(cosy - sinx) dy dx,

In[490]:= dqdp = Simplify[D[q[x,y],x] - D[p[x,y],y]]

Out[490]= Cos[y] - Sin[x]

which we evaluate withIntegrate.

In[491]:= Integrate[dqdp,{x,0,1},{y,xˆ2,Sqrt[x]}]

N[%]

Out[491]= -2 -

2
p

2
FresnelCA

2
2

p
E -

2
p

2
FresnelSA

2
2

p
E + 4 Sin[1]

Out[491]= 0.151091

Notice that the result is given in terms of theFresnelS andFresnelC functions,
which are defined by

FresnelS[x] = ‡
x

0
sinJ

p
2

t2N dt and FresnelC[x] = ‡
x

0
cosJ

p
2

t2N dt.

A more meaningful approximation is obtained withN. We conclude thatŸ
1

0 Ÿ
0

x

x2 (cosy - sinx) dy dxº
0.151.

2.6.4 Surface Integrals

Let Sbe the graph ofz = f (x, y) (y = h(x, z), x = k(y, z)) andlet Rxy (Rxz, Ryz) be the
projection ofSonto thexy (xz, yz) plane. Then,

‡ ‡
S

g(x, y, z) dS= ‡ ‡
Rxy

g (x, y, f(x, y))

2

A fx(x, y)E2
+ A fy(x, y)E2

+ 1dA (2.49)

= ‡ ‡
Rxz

g (x, h(x, z), z)

2

Ahx(x, z)E2
+ Ahz(x, z)E2

+ 1dA (2.50)

= ‡ ‡
Rxy

g (k(y, z), y, z)

2

Aky(y, z)E2
+ Akz(y, z)E2

+ 1dA. (2.51)

If S is defined parametrically by

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, (s, t) œ R
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the formula

‡ ‡
S

g(x, y, z) dS= ‡ ‡
R

g (r(s, t)) ≈≈≈≈rs µ rt
≈≈≈≈ dA, (2.52)

where

rs =
∑x
∑s

i +
∑y
∑s

j +
∑z
∑s

k and rt =
∑x
∑t

i +
∑y
∑t

j +
∑z
∑t

k,

is also useful.

Theorem 20 (The Divergence Theorem).Let Q be any domain with the property that
each line through any interior point of the domain cuts the boundary in exactly two
points, and such that the boundary S is a piecewise smooth closed, oriented surface
with unit normaln. If F is a vector field that has continuous partial derivatives on Q,For our purposes, a surface isoriented if it

has two distinct sides.then

‡ ‡ ‡
Q

ı ÿ F dV = ‡ ‡ ‡
Q

div F dV = ‡ ‡
S
F ÿ n dS (2.53)

In (2.53),Ÿ Ÿ S
Fÿn dSis called theoutward flux of the vector fieldF across the surface

S. If S is a portion of the level curveg(x, y) = C for someg, then a unit normal vector
n may be taken to be either

n =
ıg

¸ ı g¸
or n = -

ıg
¸ ı g¸

.

If S is defined parametrically by

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, (s, t) œ R,

aunit normal vector to the surface is

n =
rs µ rt

¸rs µ rt ¸

and (2.53) becomes

‡ ‡
S
F ÿ n dS= ‡ ‡

R
F ÿ Irs µ rt M dA.

Example 82. Find the outwardflux of the vector field

F(x, y, z) = Ixz+ xyz2M i + Ixy+ x2yzM j + Iyz+ xy2zM k

through the surface of the cube cut from the first octant by the planesx = 1, y = 1, and
z = 1.

Solution. By the Divergence theorem,

‡ ‡
cube surface

F ÿ n dA = ‡ ‡ ‡
cube interior

ı ÿ F dV.
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Hence, without the Divergence theorem, calculating the outward flux would require
six separate integrals, corresponding to the six faces of the cube. After definingF, we
computeı ÿ F with Div. Div is contained in theVectorAna

package. You do not need to reload th

torAnalysis package if you have

loaded it during yourcurrent Math

session.

In[492]:= << Calculus‘VectorAnalysis‘

In[493]:= f[x ,y ,z ] = {x z + x y zˆ2,x y + xˆ2y z,y z + x yˆ2 z};

In[494]:= divf = Div[f[x,y,z],Cartesian[x,y,z]]

Out[494]= x + y + x y2 + z + x2 z + y z2

The outward flux is then given by

‡ ‡ ‡
cube interior

ı ÿ F dV = ‡
1

0
‡

1

0
‡

1

0
ı ÿ F dz dy dx= 2,

which we compute withIntegrate.

In[495]:= Integrate[divf,{z,0,1},{y,0,1},{x,0,1}]

Out[495]= 2

Theorem 21 (Stoke’s Theorem).Let S be an oriented surface with finite surface area,
unit normaln, and boundary C. LetF be a continuous vector field defined on S such
that the components ofF have continuous partial derivatives at each nonboundary
point of S. Then,

®
C
F ÿ dr = ‡ ‡

S
curl F ÿ n dS. (2.54)

In other words, the surface integral of the normal component of the curl ofF taken
overSequals the line integral of the tangential component of the field taken overC. In
particular, ifF = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then

‡
C

(P(x, y, z)dx+ Q(x, y, z)dy+ R(x, y, z)dz) = ‡ ‡
S

curl F ÿ n dS.

Example 83. Verify Stoke’s theorem for the vector field

F(x, y, z) = Ix2 - yM i + Iy2 - zM j + Ix + z2M k

andS the portion of the paraboloidz = f (x, y) = 9 - Ix2 + y2M, z ¥ 0.

Solution. After loading theVectorAnalysis package, we defineF and f . Thecurl
of F is computed withCurl in curlF.

In[496]:= << Calculus‘VectorAnalysis‘

In[497]:= capf[x ,y ,z ] = {xˆ2 - y,yˆ2 - z,x + zˆ2};

f[x ,y ] = 9 - (xˆ2 + yˆ2);
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In[498]:= curlcapf = Curl[capf[x,y,z],Cartesian[x,y,z]]

Out[498]= {1,-1,1}

Next, we define the functionh(x, y, z) = z - f (x, y). A normal vector to the surface is
given byıh. A unit normal vector,n, is then given byn = ıh

¸ıh¸ , which is computed in
un.

In[499]:= BoxData({h[x ,y ,z ] = z-f[x,y], normtosurf = Grad[h[x,y,z],Cartesian[x,y,z]]})

Out[499]= -9 + x2 + y2 + z

Out[499]= {2 x,2 y,1}

In[500]:= un = Simplify[normtosurf/Sqrt[normtosurf.normtosurf]]

Out[500]= 9 2 x
1
1 + 4 x2 + 4 y2

,
2 y

1
1 + 4 x2 + 4 y2

,
1

1
1 + 4 x2 + 4 y2

=

The dot product curlF ÿ n is computed ing.

In[501]:= g = Simplify[curlcapf.un]

Out[501]=
1 + 2 x - 2 y

1
1 + 4 x2 + 4 y2

Using the surface integral evaluation formula (2.49), In this example,R, the projection off (x, y)

onto thexy-plane, is the region bounded by

the graph of the circlex2 + y2 = 9.

‡ ‡
S

curl F ÿ n dS= ‡ ‡
R

g (x, y, f(x, y))

2

A fx(x, y)E2
+ A fy(x, y)E2

+ 1dA

= ‡
3

-3
‡

0
9-x2

-
0

9-x2
g (x, y, f(x, y))

2

A fx(x, y)E2
+ A fy(x, y)E2

+ 1dy dx

= 9p,

which we compute withIntegrate.

In[502]:= tointegrate = Simplify[(g/.z- > f[x,y])*

Sqrt[D[f[x,y],x]ˆ2 + D[f[x,y],y]ˆ2 + 1]]

Out[502]= 1 + 2 x - 2 y

In[503]:= i1 = Integrate[tointegrate,{x,-3,3},

{y,-Sqrt[9 - xˆ2],Sqrt[9 - xˆ2]}]

Out[503]= 9 p

To verify Stoke’s theorem, we must compute the associated line integral. Notice that
the boundary ofz = f (x, y) = 9 - (x2 + y2), z = 0, is the circlex2 + y2 = 9 with
parametrizationx = 3 cost, y = 3 sint, z = 0, 0 § t § 2p. This parametrization is
substituted intoF(x, y, z) and namedpvf.

In[504]:= pvf = capf[3Cos[t],3Sin[t],0]

Out[504]= 99 Cos[t]2 - 3 Sin[t],9 Sin[t]2,3 Cos[t]=

To evaluate the line intgral along the circle, we next define the parametrization of the
circle and calculatedr. The dot product ofpvf anddr represents the integrand of the
line integral.



174 CHAPTER 2. CALCULUS

In[505]:= r[t ] = {3Cos[t],3Sin[t],0};

dr = r£[t]
Out[505]= {-3 Sin[t],3 Cos[t],0}

In[506]:= tointegrate = pvf.dr;

As before withx andy, we instruct Mathematica to assume thatt is real, compute the
dot product ofpvf anddr and evaluate the line integral withIntegrate.

In[507]:= Integrate[tointegrate,{t,0,2p}]

Out[507]= 9 p

As expected, the result is 9p.

2.7 Exercises

1. Compute the following by hand and check your results with Mathematica:

(a) d
dx J x2

2 + 1
3x3 N

(b) d
dx (xe-x)

(c) d
dt Icos

0
t +

0
costM

(d) d
dt I1 + 1

t Mt

(e) d
dxx

sinx

2. Evaluate the following antiderivatives by hand and check your results with Math-
ematica:

(a) Ÿ J x2

2 + 1
3x3 N dx

(b) Ÿ xe-x dx

(c) Ÿ 1
t sinI 1

t2 M dt

3. Let f (x) = x2 sin2 (1/x) for x ∫ 0 and f (0) = 0. (a) Show thatx = 0 is acritical
number of f (x). (b) Explain why Theorem 3 can or cannot be used to classify
f (0). (c) Classify f (0).

4. (a) Evaluate limxØ0
sinx

x . (b) EvaluateŸ sinx
x dx and carefully use the Fundamen-

tal Theorem of Calculus to verify your result.

5. Determine the intervals for whichf (x) = x1/3(x- 4)1/3(x- 6)2/3 is increasing and
decreasing. Generate a graph off (x) that confirms your results.

6. Classify the relative extreme values off (x) = 2 cosx+ sin 2x, 0 § x § 2p. Graph
f (x) on this interval.

7. Determine the intervals for whichf (x) = 3
0

x(x + 4) is increasing, decreasing,
concave up, and concave down. Graphf (x).
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8. Let R be the region in the first quadrant bounded by the graphs ofy = sinx,
x = 0, x = p and thex-axis. Find the volume of the solid obtained by revolving
R about (a) thex-axis, (b) they-axis, (c) the horizontal liney = 2, and (d) the
vertical linex = -1.

9. LetRbe the region in the first quadrant bounded by the graphs ofy = x - x2 and
the x-axis. Find the volume of the solid obtained by revolvingR about (a) the
x-axis, (b) they-axis, (c) the linex = 1, and (d) the liney = 1. (e) Are the results
the same as the results obtained in the following exercise? Why or why not?

10. LetR be the region bounded by the graphs ofy = x andy = x2. Find thevolume
of the solid obtained by revolvingR about (a) thex-axis, (b) they-axis, (c) the
line x = 1, and (d) the liney = 1. (e) Are the results the same as the results
obtained in the previous exercise? Why or why not?

11. Determine if the following improper integrals converge or diverge.

(a) Ÿ
¶

-¶
1

t2+1
dt

(b) Ÿ
¶

-¶
1

x2+3x+2
dx

12. Determine if the following series converge or diverge.

(a) ⁄¶
k=1 I k

k+1000Mk

(b) ⁄¶
k=1(-1)k+1ksinI 1

k M
(c) ⁄¶

k=1 10-k!

13. Determine the interval of convergence of each power series.

(a) ⁄¶
k=0

k!
2k! x

k

(b) ⁄¶
k=1

3k

k (x - 1)k

(c) ⁄¶
k=1

1
k3k (x + 1)k

(d) ⁄¶
k=0 J k2

1+k2 N
k
xk

14. Find the Maclaurin series for lnI 1+x
1-xM. What is the interval of convergence for

this series?

15. (a) Show that
¶

‚
k=0

1

2k cosI3kxM

converges absolutely for all values ofx. (b) Use term-by-term differentiation to
differentiate

f (x) =
¶

‚
k=0

1

2k cosI3kxM .

State (at least) three particular values ofx that are not 2p-multiples of each other
for which the resulting series diverges. (c) Provide graphical evidence thatf (x)
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is continuous everywhere but nowhere differentiable. Write a short paragraph
providing justification for the graphs you provide.

16. Let

an =
n!

1000n .

(a) Compute and graph the first few terms of the sequence. (b) Based on (a),
do you think the sequence converges or diverges? (c) By hand, determine if the
sequence converges or diverges.

17. Show that

lim
(x,y)Ø(0,0)

x2y

x4 + y2

does not exist.Hint: The level curves off (x, y) = x2y
x4+y2 near(0,0) look like

parabolas of the formy = ax2.

18. Find fx(0,0), fy(0,0), fxy(0,0), and fyx(0,0) if

f (x, y) =
ÌÓ
Ô

xy(y2-x2)
x2+y2 , if (x, y) ∫ (0,0)

0, if (x, y) = (0,0)
.

19. Find the relative maximum, relative minimum, and saddle points off (x, y) =
6x2y - 3x4 - 2y3. Confirm your results with both three-dimensional and contour
plots.

20. Find the outwardflux of the vector field

F(x, y, z) = x2i + y2j + z2k

through the surfaceSenclosed by the hemispherez =
0

1 - x2 - z2 and the plane
z = 0.

21. Show that the curvature of the circle with parametric equations,x = r cost,
y = r sint, 0 § t § 2p is 1/ r.

22. Verify Stoke’s theorem for the vector field

F(x, y, z) = Iy2 - zM i + Ix + z2M j + Ix2 - 1M k

andS the portion of thez = f (x, y) = 25- I9x2 + 16y2M, z ¥ 0.

23. A parametrization of theMöbius strip is given byr(s, t) = x(s, t)i + y(s, t)j +
z(s, t)k, 0 § s § p, -1 § t § 1, wherex = (4-t sins) cos 2s, y = (4-t sins) sin 2s,
andz = t coss. Graph the M̈obius strip.

24. Let f (x) = IxsinI 1
x MM2

for x ∫ 0 and f (0) = 0. (a) Show thatx = 0 is acritical
number. (b) Explain why the First Derivative Test can or cannot be used to clas-
sify this critical number. Use a graph to support your explanation. (c) Classify
x = 0.
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25. LetSbe the surface given parametrically byr(s, t) = x(s, t)i + y(s, t)j + z(s, t)k,
0 § s § 1/2, 0 § t § 4p, where x = scost - 1

2s2 cos 2t, y = -ssint - 1
2s2 sin 2t,

andz = 4
3s3/2 cosI 3

2tM. (a) GraphS. (b) Explain why or why notS is orientable.
Hint: Graphn = rsµrt

¸rsµrt ¸ . (c) If Sis orientable, find the area ofS. Note: Sis called
Maeder’s Owl Minimal Surface.
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Chapter 3

Linear Algebra

Chapter 3 discusses Mathematica’s linear algebra commands.

The examples used to illustrate the various commands are similar to examples routinely
done in a one semester linear algebra course and include solving systems of linear
equations and finding eigenvalues and eigenvectors of a square matrix.

3.1 Linear Systems of Equations

Given a linear system of equations, we can solve it quickly by eliminating variables in
an efficient way. Given a linear system of equations, performing the operations of

1. interchanging the order of the equations,

2. multiplying an equation by a nonzero number, and

3. adding a nonzero multiple of one equation to another

result in a system equivalent to the original.

Example 84. Solve

x + y + z = 2 (3.1)

x - 2y + 2z = 7 (3.2)

x + 3y + 2z = 2 (3.3)

Solution. We methodically eliminate. We eliminatex from (3.2) and (3.3) by adding

179
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-1µ (3.1) to (3.2) and (3.3) which results in

x + y + z = 2 (3.4)

-3y + z = 5 (3.5)

2y + z = 0 (3.6)

Multiplying (3.5) by- 1
3 gives us

x + y + z = 2 (3.7)

y -
1
3

z = -
5
3

(3.8)

2y + z = 0 (3.9)

Wenow eliminatey from (3.9) by adding-2µ (3.8) to (3.9) giving us

x + y + z = 2 (3.10)

y -
1
3

z = -
5
3

(3.11)

5
3

z =
1
3

(3.12)

Multiplying (3.12) by 3
5 results in

x + y + z = 2 (3.13)

y -
1
3

z = -
5
3

(3.14)

z = 2 (3.15)

where we see thatz = 2. Substitutingz = 2 into (3.14) shows us thaty = -1. Substi-
tuting y = -1 andz = 2 into (3.13) shows us thatx = 1. The solution to the system is
x = 1, y = -1, z = 2.

We confirm this result withSolve.

In[508]:= Solve[{x + y + z == 2,x - 2y + 2z == 7,x + 3y + 2z == 2}]

Out[508]= {{x Ø 1,y Ø -1,z Ø 2}}

In the example, notice that the most difficult part is writing the variables. Also, it
doesn’t matter what we call the variables: solving

x1 + x2 + x3 = 2

x1 - 2x2 + 2x3 = 7

x1 + 3x2 + 2x3 = 2

is the same as solving (3.1)-(3.3).
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Definition 1 (Matrix). A matrix is a rectangular array.

In a text, we usually denote matrices with bold letters.

Example 85. (a)

A =
ÁËËËËËË
È

1 1 1 2
1 -2 2 7
1 3 2 2

˜̄
¯̄̄
¯̄
˘

is a 3µ 2 matrix because it has three columns and two rows. The entries in this matrix
are numbers. (b) Ifz = f (x, y) andz = g(x, y) are functions for which the first partial
derivatives exist, From a practical point of view, compute

∑ f /∑x = fx by assuming that all variables

exceptx are constant.J =
ÁËËËË
È

∑ f
∑x

∑ f
∑y

∑g
∑x

∑g
∑y

˜̄
¯̄̄
˘

= K fx(x, y) fy(x, y)
gx(x, y) gy(x, y)O

is a 2µ 2 matrix because it has two rows and two columns. The entries of this matrix
would usually be functions ofx andy. (c) If x andy are differentiable functions oft,

x = x(t) andy = y(t), andx is the 2µ 1 matrixx = Kx
yO, the matrix

x£ =
d
dt

Kx
yO = K

dx
dt
dy
dt

O = Kx£

y£O

is a 2µ 1 matrix because it has two rows and one column. A matrix with one column
is called acolumn vector. Similarly, a matrix with one row is called arow vector. If
the context is clear, the word row or column is omitted and a matrix with one column
(or row) is referred to as avector.

If A hasn rows andm columns, we can write it as

A =

ÁËËËËËËËËËË
È

a11 a12 a13 . . . a1m
a21 a22 a23 . . . a2m

∂ ∂ ∂ ∏ ∂

an1 an2 an3 . . . anm

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

or A = Iai j M ,

where the entry in theith row and jth column ofA is denoted byai j , which isdefined
in Mathematica by entering

capa={{a11,a12,...,a1m},{a21,a22,...,a2m},...,{an1,an2,...,anm}}.

After you have definedA =capa, capa[[i]] returns theith row of A. UseMa-
trixForm to display a matrix in traditional row-and-column form.

Given the linear system withn equations andm unknowns,

a11x1 + a12x2 + . . . a1mxm = b1

a21x1 + a22x2 + . . . a2mxm = b2

∂

an1x1 + an2x2 + . . . anmxm = bn

(3.16)



182 CHAPTER 3. LINEAR ALGEBRA

we can associate it with the matrix

A =

ÁËËËËËËËËËË
È

a11 a12 a13 . . . a1m b1
a21 a22 a23 . . . a2m b2

∂ ∂ ∂ ∏ ∂ ∂

an1 an2 an3 . . . anm bm

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.

Similarly, given a matrix, we can associate it with a linear system of equations.

Example 86. (a)

ÌÓ
Ô

x = 1

y = -2
›fl K1 0 1

0 1 -2O

(b)

ÌÓ
Ô

x - y = 3

2x + y = 6
›fl K1 -1 3

2 1 6O

(c)

ÌÓ
Ô

2x + 2y = 3

4x + 4y = 5
›fl K2 2 3

4 4 5O

(d)

ÌÓ
Ô

x + z = 1

y - z = 0
›fl

ÁËËËËËË
È

1 0 1 1
0 1 -1 0
0 0 0 0

˜̄
¯̄̄
¯̄
˘

Thus, performing the row operations of

1. interchanging the rows of a matrix,

2. multiplying a row of a matrix by a nonzero number, and

3. adding a nonzero multiple of one row to another row of a matrix

correspond to the operations of

1. interchanging the order of the equations,

2. multiplying an equation by a nonzero number, and

3. adding a nonzero multiple of one equation to another

to the corresponding system of linear equations and vice-versa.
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Example 87. Solve

-3x + 2y - 2z = -10
3x - y + 2z = 7
2x - y + z = 6.

Solution. The associated matrix isA =
ÁËËËËËË
È

-3 2 -2 -10
3 -1 2 7
2 -1 1 6

˜̄
¯̄̄
¯̄
˘
, defined in capa, and

then displayed in traditional row-and-column form withMatrixForm.

In[509]:= Clear[capa]

In[510]:= capa = {{-3,2,-2,-10},{3,-1,2,7},{2,-1,1,6}};

MatrixForm[capa]

Out[510]= K
-3 2 -2 -10
3 -1 2 7
2 -1 1 6

O

We eliminate methodically. First, we multiply row 1 by-1/3 so that the first entry in
the first column is 1.

In[511]:= capa = {-1/3capa[[1]],capa[[2]],capa[[3]]}

Out[511]= 991,-
2

3
,
2

3
,
10

3
=,{3,-1,2,7},{2,-1,1,6}=

We now eliminate below. First, we multiply row 1 by-3 and add it to row 2 and then
we multiply row 1 by-2 and add it to row 3.

In[512]:= capa = {capa[[1]],-3capa[[1]] + capa[[2]],

-2capa[[1]] + capa[[3]]}

Out[512]= 991,-
2

3
,
2

3
,
10

3
=,{0,1,0,-3},90,

1

3
,-

1

3
,-

2

3
==

Observe that the first nonzero entry in the second row is 1. We eliminate below this
entry by adding-1/3 times row 2 to row 3.

In[513]:= capa = {capa[[1]],capa[[2]],-1/3 capa[[2]] + capa[[3]]}

Out[513]= 991,-
2

3
,
2

3
,
10

3
=,{0,1,0,-3},90,0,-

1

3
,
1

3
==

Wemultiply the third row by-3 so that the firstnonzero entry is 1.

In[514]:= capa = {capa[[1]],capa[[2]],-3capa[[3]]}

MatrixForm[capa]

Out[514]= 991,-
2

3
,
2

3
,
10

3
=,{0,1,0,-3},{0,0,1,-1}=

Out[514]= K
1 -

2

3

2

3

10

3
0 1 0 -3
0 0 1 -1

O
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This matrix is equivalent to the system

x -
2
3

y +
2
3

z =
10
3

y = -3
z = -1,

which shows us that the solution isx = 2, y = -3, z = -1.

Working backwards confirms this. Multiplying row 2 by 2/3 and adding to row 1 and
then multiplying row 3 by-2/3 and adding to row 1 results in

In[515]:= capa = {2/3 capa[[2]] + capa[[1]],capa[[2]],capa[[3]]};

capa = {-2/3 capa[[3]] + capa[[1]],capa[[2]],capa[[3]]};

MatrixForm[capa]

Out[515]= K
1 0 0 2
0 1 0 -3
0 0 1 -1

O

which is equivalent to the systemx = 2, y = -3, z = -1.

Equivalent results are obtained withRowReduce.

In[516]:= capa = {{-3,2,-2,-10},{3,-1,2,7},{2,-1,1,6}};

capa = RowReduce[capa]

MatrixForm[capa]
Out[516]= {{1,0,0,2},{0,1,0,-3},{0,0,1,-1}}

Out[516]= K
1 0 0 2
0 1 0 -3
0 0 1 -1

O

Finally, we confirm the result directly withSolve.

In[517]:= Solve[{-3x + 2y - 2z == -10,3x - y + 2z == 7,2x - y + z == 6}]

Out[517]= {{x Ø 2,y Ø -3,z Ø -1}}

As illustrated in the example,RowReduce can be used to perform the elementary
row operations on a matrix. Generally,RowReduce[A] reducesA to reduced row
echelon form.

Example 88. Solve

-3x1 + 2x2 + 5x3 = -12
3x1 - x2 - 4x3 = 9
2x1 - x2 - 3x3 = 7.

Solution. The associated matrix isA =
ÁËËËËËË
È

-3 2 5 -12
3 -1 -4 9
2 -1 -3 7

˜̄
¯̄̄
¯̄
˘
, which is reduced to

row echelon form withRowReduce.
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In[518]:= capa = {{-3,2,5,-12},{3,-1,-4,9},{2,-1,-3,7}};

rrcapa = RowReduce[capa];

MatrixForm[rrcapa]

Out[518]= K
1 0 -1 2
0 1 1 -3
0 0 0 0

O

The result shows that the original system is equivalent to

x1 - x3 = 2
x2 + x3 = -3

or
x1 = 2 + x3
x2 = -3 - x3

sox3 is free. That is,for any real numbert, a solution to the system is

ÁËËËËËË
È

x1
x2
x3

˜̄
¯̄̄
¯̄
˘

=
ÁËËËËËË
È

2 + t
-3 - t

t

˜̄
¯̄̄
¯̄
˘

=
ÁËËËËËË
È

2
-3
0

˜̄
¯̄̄
¯̄
˘

+ t
ÁËËËËËË
È

1
-1
1

˜̄
¯̄̄
¯̄
˘

.

The system has infinitely many solutions.

Equivalent results are obtained withSolve.

In[519]:= Solve[{-3x1 + 2x2 + 5x3 == -12,3x1 - x2 - 4x3 == 9,

2x1 - x2 - 3x3 == 7}]

Solve :: "svars" : "Equationsmaynotgivesolutions

foralls̈olvev̈ariables."

Out[519]= {{x1 Ø 2 + x3,x2 Ø -3 - x3}}

In[520]:= Solve[{-3x1 + 2x2 + 5x3 == -12,

3x1 - x2 - 4x3 == 9,2x1 - x2 - 3x3 == 7},

{x1,x2}]

Out[520]= {{x1 Ø 2 + x3,x2 Ø -3 - x3}}

Example 89. Solve

-3x1 + 2x2 + 5x3 = -14
3x1 - x2 - 4x3 = 11
2x1 - x2 - 3x3 = 8.

Solution. The associated matrix isA =
ÁËËËËËË
È

-3 2 5 -14
3 -1 -4 11
2 -1 -3 8

˜̄
¯̄̄
¯̄
˘
, which is reduced to

row echelon form withRowReduce.

In[521]:= capa = {{-3,2,5,-14},{3,-1,-4,11},{2,-1,-3,8}};

RowReduce[capa]//MatrixForm

Out[521]= K
1 0 -1 0
0 1 1 0
0 0 0 1

O
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The result shows that the original system is equivalent to

x1 - x3 = 0
x2 + x3 = 0

0 = 1.

Of course, 0 is not equal to 1: the last equation is false. The system has no solutions.

We check the calculation withSolve. In this case, the results indicate thatSolve
cannot find any solutions to the system.

In[522]:= Solve[{-3x1 + 2x2 + 5x3 == -14,3x1 - x2 - 4x3 == 11,

2x1 - x2 - 3x3 == 8}]

Out[522]= {}

Generally, if Mathematica returns nothing, the result means either that there is no solu-
tion or that Mathematica cannot solve the problem. In such a situation, we must always
check using another method, which we will do in Section 3.3.

Example 90. The nullspaceof A is the set of solutions to the system of equations

Ax = 0. Find the nullspace ofA =

ÁËËËËËËËËËËËËËËË
È

3 2 1 1 -2
3 3 1 2 -1
2 2 1 1 -1

-1 -1 0 -1 0
5 4 2 2 -3

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

.

Solution. Observe that row reducing(A|0) is equivalent to row reducingA. After
definingA, we useRowReduce to row reduceA.

In[523]:= capa = {{3,2,1,1,-2},{3,3,1,2,-1},

{2,2,1,1,-1},{-1,-1,0,-1,0},{5,4,2,2,-3}};

RowReduce[capa]//MatrixForm

Out[523]= K

1 0 0 0 -1
0 1 0 1 1
0 0 1 -1 -1
0 0 0 0 0
0 0 0 0 0

O

The result indicates that the solutions ofAx = 0 are

x =

ÁËËËËËËËËËËËËËËË
È

x1
x2
x3
x4
x5

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

=

ÁËËËËËËËËËËËËËËË
È

t
-s- t
s+ t

s
t

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

= s

ÁËËËËËËËËËËËËËËË
È

0
-1
1
1
0

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

+ t

ÁËËËËËËËËËËËËËËË
È

1
-1
1
0
1

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

,

wheresandt are any real numbers. The dimension of the nullspace, thenullity , is 2; a
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Figure 3.1: Mathematica’s help forNullSpace

basis for the nullspace is

ÌÓ
Ô

ÁËËËËËËËËËËËËËËË
È

0
-1
1
1
0

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

,

ÁËËËËËËËËËËËËËËË
È

1
-1
1
0
1

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯̄
˘

̨̋

ˇ

.

You can use the commandNullSpace (see Figure 3.1 to find a basis of the nullspace
directly.

In[524]:= NullSpace[capa]

Out[524]= {{1,-1,1,0,1},{0,-1,1,1,0}}

3.2 Matrix Operations

The matrix operations of addition, subtraction, and scalar multiplication are performedA scalar is a number.
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in the natural way.

1. If A = Iai j M andB = Ibi j M aren µ m, A ≤ B = Iai j ≤ bi j M. That is, ifA andB
have the same dimensions, the sum (difference) is the matrix obtained by adding
(subtracting) the corresponding entries.If A and B do not have the same dimen-

sions, the operations of matrix addition and

subtraction are not defined.
2. If c is a scalar andA = Iai j M, cA = Icai j M. That is, to multiply a matrix by a

scalar quantity, multiply each entry of the matrix by the scalar quantity.

Matrix multiplication is more complicated for the beginner. IfA = Iai j M and isn µ k

andB = Ibi j M is k µ m, AB is defined to be the matrix

C = Ici j M (3.17)

where

ci j = ai1b1 j + ai2b2 j + ÿ ÿ ÿ + aikbk j =
k

‚
u=1

aiubu j. (3.18)

That is, ifA = Iai j M and isnµk andB = Ibi j M is kµm, AB is the matrixC = Ici j M where
ci j is obtained by multiplying each entry in theith row ofA by the corresponding entry
in the jth column ofB and adding the result. Note that ifA andB do not have the
appropriate dimensions, the matrix product isnot defined.

If the matrix product is defined, enterA.B to compute the productAB.

Example 91. Let A = K-8 -5 -3
-3 9 5 O, B =

ÁËËËËËË
È

7 5
4 6
5 -5

˜̄
¯̄̄
¯̄
˘
, C =

ÁËËËËËË
È

4 -8 -9
9 4 -6
7 6 5

˜̄
¯̄̄
¯̄
˘
, andD =

K-5 9
-6 -5O. If defined, perform each computation: (a)AB, (b) BAC, (c)AB+D, (d)

AC, and(e)BC.

Solution. After definingA, B, C, andD,

In[525]:= capa = {{-8,-5,-3},{-3,9,5}};

capb = {{7,5},{4,6},{5,-5}};

capc = {{4,-8,-9},{9,4,-6},{7,6,5}};

capd = {{-5,9},{-6,-5}};

we perform each defined calculation. Entering

In[526]:= capa.capb

MatrixForm[%]
Out[526]= {{-91,-55},{40,14}}

Out[526]= J-91 -55
40 14

N

computesAB. Entering
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In[527]:= capb.capa.capc

MatrixForm[%]
Out[527]= {{-166,632,599},{232,644,336},{-1010,-320,445}}

Out[527]= K
-166 632 599
232 644 336

-1010 -320 445
O

computesBAC. Entering

In[528]:= capa.capb + capd

MatrixForm[%]
Out[528]= {{-96,-46},{34,9}}

Out[528]= J-96 -46
34 9

N

computesAB + D. Entering

In[529]:= capa.capc

MatrixForm[%]
Out[529]= {{-98,26,87},{104,90,-2}}

Out[529]= J-98 26 87
104 90 -2

N

computesAC. Entering

returns an error message becauseBC is not defined.

Example 92. Thenµ n identity matrix is the matrixI with 1’s down the diagonal and
0’s elsewhere. IfA is n µ n, AI = IA = A. We verify this equation ifA is 2µ 2.

In[530]:= id2 = {{1,0},{0,1}};

{{a,b},{c,c}}.id2//MatrixForm

id2.{{a,b},{c,d}}//MatrixForm

Out[530]= Ja b
c c

N

Out[530]= Ja b
c d

N

3.3 Determinants

Let A = Iai j M be ann µ n matrix. Thecofactor of ai j is (-1)i+ jCi j , where Ci j is the
(n - 1) µ (n - 1) matrix obtained by deleting theith row and jth column ofA. The
determinant of A is
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Definition 2 (Determinant). Thedeterminantof the1 µ 1 matrix A = (a) is a. The

determinantof the2 µ 2 matrixA = Ka b
c dO is

|A| =
ƒƒƒƒƒƒƒ
a b
c d

ƒƒƒƒƒƒƒ
= ad - bc.

For n > 2, thedeterminantof the nµ n matrix A is defined inductively by

|A| = ‚
i

(-1)i+ jai j
ƒƒƒƒCi j

ƒƒƒƒ . (3.19)

If A is a square matrix, the commandDet[A] computes the determinant ofA.

Example 93. Calculate the determinant of (a)A =
ÁËËËËËË
È

-6 -2 -5
-9 0 -1
9 0 -8

˜̄
¯̄̄
¯̄
˘

and (b)B =

ÁËËËËËËËËËË
È

2 -8 1 -5
8 -5 8 4
7 1 7 -9

-8 -8 3 8

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.

Solution. (a) To compute|A| by hand, we choose to expand along the second column:

ƒƒƒƒƒƒƒƒƒƒƒ

-6 -2 -5
-9 0 -1
9 0 -8

ƒƒƒƒƒƒƒƒƒƒƒ
= (-1)1+2 ÿ -2 ÿ

ƒƒƒƒƒƒƒ
-9 -1
9 -8

ƒƒƒƒƒƒƒ
= 2 ÿ (72- -9) = 162.

Wecheck the calculation withDet. For (b), we useDet.

In[531]:= Det[{{-6,-2,-5},{-9,0,-1},{9,0,-8}}]

Out[531]= 162

In[532]:= Det[{{2,-8,1,-5},{8,-5,8,4},{7,1,7,-9},

{-8,-8,3,8}}]
Out[532]= 11047

3.3.1 Inverses

MatricesA andB are inverses ifAB = BA = I. If A has an inverse, we denote the
inverse byA-1. The square matrixA has an inverse if and only if|A| ∫ 0.

If |A| ∫ 0, the inverse ofA can be computed using the formula

A-1 =
1

|A|
Aa, (3.20)

whereAa is thetranspose of the cofactor matrix.Thecofactor matrix , Ac, of A is the matrix

obtained by replacing each element ofA by

its cofactor.
If A has an inverse, reducing the matrix(A|I) to reduced row echelon form results in
(I|A-1). This method is often easier to implement than (3.20).
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It is particularly useful to memorize the inverse formula for a 2µ 2 matrix: if A =

Ka b
c dO and|A| ∫ 0,

A-1 =
1

|A|
K d -b

-c a O =
1

ad - bc
K d -b

-c a O .

In[533]:= RowReduce[{{a,b,1,0},{c,d,0,1}}]

Out[533]= 991,0,
d

-b c + a d
,

b

b c - a d
=,90,1,-

c

-b c + a d
,

a

-b c + a d
==

If A has an inverse, the commandInverse[A] computesA-1.

In[534]:= Inverse[{{a,b},{c,d}}]

Out[534]= 99 d

-b c + a d
,-

b

-b c + a d
=,9 -

c

-b c + a d
,

a

-b c + a d
==

Example 94. CalculateA-1 if A =
ÁËËËËËË
È

-2 2 1
0 -2 2

-2 -1 -1

˜̄
¯̄̄
¯̄
˘
.

Solution. After definingA andI =
ÁËËËËËË
È

1 0 0
0 1 0
0 0 1

˜̄
¯̄̄
¯̄
˘
, we compute|A| = 12, soA-1 exists.

In[535]:= << LinearAlgebra‘MatrixManipulation‘;

capa = {{2,-2,1},{0,-2,2},{-2,-1,-1}};

i3 = {{1,0,0},{0,1,0},{0,0,1}};

In[536]:= Det[capa]

Out[536]= 12

We useAppendRows (see Figure 3.2 to form the matrix(A|I) AppendRows is contained in theMatrix-

Manipulation package that is located in

theLinearAlgebra directory.
In[537]:= ai3 = AppendRows[capa,i3];

MatrixForm[ai3]

Out[537]= K
2 -2 1 1 0 0
0 -2 2 0 1 0

-2 -1 -1 0 0 1
O

and then useRowReduce to reduce(A|I) to row echelon form.

In[538]:= RowReduce[ai3]

Out[538]= 991,0,0,
1

3
,-

1

4
,-

1

6
=,90,1,0,-

1

3
,0,-

1

3
=,

90,0,1,-
1

3
,
1

2
,-

1

3
==

The result indicates thatA-1 =
ÁËËËËËË
È

1/3 -1/4 -1/6
-1/3 0 -1/3
-1/3 1/2 -1/3

˜̄
¯̄̄
¯̄
˘
. We check this result withIn-

verse.
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Figure 3.2: TheMatrixManipulation package
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In[539]:= Inverse[capa]

Out[539]= 991
3
,-

1

4
,-

1

6
=,9 -

1

3
,0,-

1

3
=,9 -

1

3
,
1

2
,-

1

3
==

3.3.2 Linear Systems of Equations

Consider the linear system

a11x1 + a12x2 + ÿ ÿ ÿ + a1nxn = b1

a21x1 + a22x2 + ÿ ÿ ÿ + a2nxn = b2

∂

an1x1 + an2x2 + ÿ ÿ ÿ + annxn = bn.

(3.21)

In matrix form, the system is written asAx = b, where

A =

ÁËËËËËËËËËË
È

a11 a12 . . . a1n
a21 a22 . . . a2n

∂ ∂ . . . ∂

an1 an2 . . . ann

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, x =

ÁËËËËËËËËËË
È

x1
x2
∂

xn

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, and b =

ÁËËËËËËËËËË
È

b1
b2
∂

bn

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.

If A is invertible, it follows thatAx = b has solution

x = A-1b.

Cramer’s Rule

An alternative method of solvingAx = b is given byCramer’s rule.

Let Ai denote the matrix obtained by replacing theith column ofA by b. Then,

xi =
ƒƒƒƒAi

ƒƒƒƒ
|A|

.

The commandLinearSolve[A,b] (see Figure 3.3) solvesAx = b for x.

Example 95. Solve each system: (a)

2x1 - 2x2 - 2x3 + x4 = 1
-x1 - 2x2 + 2x3 + x4 = -2

2x1 - x2 + 2x3 = 1
-2x1 + 2x2 - x3 - x4 = 2

(b)

-7x1 + 4x2 + 15x3 + 18x4 = -7
-x1 + x2 + 3x3 + 3x4 = -1

5x1 - 2x2 - 9x3 - 12x4 = 5
-4x1 + 2x2 + 8x3 + 10x4 = -4.
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Figure 3.3: Mathematica’s help forLinearSolve
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Solution. (a) In matrix form, the system is equivalent toAx = b, whereA =

ÁËËËËËËËËËË
È

2 -2 -2 1
-1 -2 2 1
2 -1 2 0

-2 2 -1 -1

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

,

x =

ÁËËËËËËËËËË
È

x1
x2
x3
x4

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, andb =

ÁËËËËËËËËËË
È

1
-2
1
2

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

. After definingA andb, we seethatA-1 exists by computing

|A| = 9 with Det.

In[540]:= << LinearAlgebra‘MatrixManipulation‘;

capa = {{2,-2,-2,1},

{-1,-2,2,1},{2,-1,2,0},{-2,2,-1,-1}};

b = {1,-2,1,2};

In[541]:= Det[capa]

Out[541]= 9

The inverse is then found withInverse.

In[542]:= ai = Inverse[capa]

Out[542]= 99 -
1

9
,-

1

3
,0,-

4

9
=,9 -

8

9
,-

2

3
,-1,-

14

9
=,9 -

1

3
,0,0,-

1

3
=,

9 -
11

9
,-

2

3
,-2,-

26

9
==

We obtain the solution by computingA-1b =

ÁËËËËËËËËËË
È

-1/3
-11/3

-1
-23/3

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

. The result indicates thatx1 =

-1/3, x2 = -11/3, x3 = -1, andx4 = -23/3.

In[543]:= ai.b

Out[543]= 9 -
1

3
,-

11

3
,-1,-

23

3
=

We check the result withLinearSolve.

In[544]:= LinearSolve[capa,b]

Out[544]= 9 -
1

3
,-

11

3
,-1,-

23

3
=

Alternatively, we check the result by reducing the augmented matrix(A|b) to row
echelon form withAppendRows andRowReduce.

In[545]:= b = Map[{#}&,b]

Out[545]= {{1},{-2},{1},{2}}

In[546]:= augb = AppendRows[capa,b]

Out[546]= {{2,-2,-2,1,1},{-1,-2,2,1,-2},{2,-1,2,0,1},

{-2,2,-1,-1,2}}

In[547]:= RowReduce[augb]//MatrixForm
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Out[547]= K

1 0 0 0 -
1

3
0 1 0 0 -

11

3
0 0 1 0 -1

0 0 0 1 -
23

3

O

(b) In matrix form, the system is equivalent toAx = b, whereA =

ÁËËËËËËËËËË
È

-7 4 15 18
-1 1 3 3
5 -2 -9 -12

-4 2 8 10

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

,

x =

ÁËËËËËËËËËË
È

x1
x2
x3
x4

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, andb =

ÁËËËËËËËËËË
È

-7
-1
5

-4

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

. After defininingA andb, we usedet to see that|A| = 0–

A-1 does not exist. Consequently, the system may have no solutions or infinitely many
solutions.

In[548]:= capa = {{-7,4,15,18},

{-1,1,3,3},{5,-2,-9,-12},{-4,2,8,10}};

b = {-7,-1,5,-4};

In[549]:= Det[capa]

Out[549]= 0

We useAppendRows to form the augmented matrix(A|b),

In[550]:= bvec = Map[{#}&,b]

Out[550]= {{-7},{-1},{5},{-4}}

In[551]:= augb = AppendRows[capa,bvec];

MatrixForm[augb]

Out[551]= K
-7 4 15 18 -7
-1 1 3 3 -1
5 -2 -9 -12 5

-4 2 8 10 -4

O

which we then reduce usingRowReduce. The result indicates that the system has
infinitely many solutions.

In[552]:= RowReduce[augb]//MatrixForm

Out[552]= K
1 0 -1 -2 1
0 1 2 1 0
0 0 0 0 0
0 0 0 0 0

O

By hand, we write the solutions as follows. Letsandt denote real numbers. Then, any
solution to the system takes the form

ÁËËËËËËËËËË
È

x1
x2
x3
x4

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

=

ÁËËËËËËËËËË
È

1
0
0
0

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

+ s

ÁËËËËËËËËËË
È

1
-2
1
0

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

+ t

ÁËËËËËËËËËË
È

2
-1
0
1

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.
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We check the result withLinearSolve. Note thatLinearSolve only returns one
solution.

In[553]:= LinearSolve[capa,b]

Out[553]= {1,0,0,0}

However, when we useSolve, weobtain infinitely many solutions.

In[554]:= capa.{x[1],x[2],x[3],x[4]} == b

Out[554]= {-7 x[1] + 4 x[2] + 15 x[3] + 18 x[4],

-x[1] + x[2] + 3 x[3] + 3 x[4],5 x[1] - 2 x[2] - 9 x[3] - 12 x[4],

-4 x[1] + 2 x[2] + 8 x[3] + 10 x[4]} ==

{-7,-1,5,-4}

In[555]:= Solve[capa.{x[1],x[2],x[3],x[4]} == b]

Solve :: "svars" : "Equationsmaynotgivesolutions

foralls̈olvev̈ariables."
Out[555]= {{x[1] Ø 1 + x[3] + 2 x[4],x[2] Ø -2 x[3] - x[4]}}

3.4 Eigenvalues and Eigenvectors

Let A be annµ n matrix. l is aneigenvalueof A if there is anonzerovector,v, called
aneigenvector, satisfying

Av = lv. (3.22)

We find the eigenvalues ofA by solving thecharacteristic polynomial

|A - lI| = 0 (3.23)

for l. Once we find the eigenvalues, the corresponding eigenvectors are found by
solving

(A - lI) v = 0 (3.24)

for v.

If A is a square matrix,

Eigenvalues[A]

finds the eigenvalues ofA,

Eigenvectors[A]

finds the eigenvectors, and
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Eigensystem[A]

finds the eigenvalues and corresponding eigenvectors.CharacteristicPolynomial[A,lambda]
finds the characteristic polynomial ofA.

Example 96. Find the eigenvalues and corresponding eigenvectors for each of the fol-

lowing matrices. (a)A = K-3 2
2 -3O (b) A = K1 -1

1 3 O (c) A =
ÁËËËËËË
È

0 1 1
1 0 1
1 1 0

˜̄
¯̄̄
¯̄
˘

(d)

A = K-1/4 2
-8 -1/4O

Solution. (a) We begin by finding the eigenvalues. Solving

|A - lI| =
ƒƒƒƒƒƒƒ
-3 - l 2

2 -3 - l

ƒƒƒƒƒƒƒ
= l2 + 6l + 5 = 0

gives usl1 = -5 andl2 = -1.

Observe that the same results are obtained usingCharacteristicPolynomial
andEigenvalues.

In[556]:= capa = {{-3,2},{2,-3}};

CharacteristicPolynomial[capa,l]//Factor

e1 = Eigenvalues[capa]

Out[556]= (1 + l) (5 + l)

Out[556]= {-5,-1}

We now find the corresponding eigenvectors. Letv1 = Kx1
y1

O be an eigenvector corre-

sponding tol1, then

IA - l1IM v1 = 0

CK-3 2
2 -3O - (-5) K1 0

0 1OG Kx1
y1

O = K0
0O

K2 2
2 2O Kx1

y1
O = K0

0O ,

which row reduces to

K1 1
0 0O Kx1

y1
O = K0

0O .

That is,x1 + y1 = 0 orx1 = -y1. Hence, for any value ofy1 ∫ 0,

v1 = Kx1
y1

O = K-y1
y1

O = y1 K-1
1 O
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is an eigenvector corresponding tol1. Of course, this represents infinitely many vec-

tors. But, they are all linearly dependent. Choosingy1 = 1 yieldsv1 = K-1
1 O. Note that

you might have choseny1 = -1 andobtainedv1 = K 1
-1O. However, both of our results

are ”correct” because these vectors are linearly dependent.

Similarly, lettingv2 = Kx2
y2

O be an eigenvector corresponding tol2 we solveIA - l2IM v1 =

0:

K-2 2
2 -2O Kx2

y2
O = K0

0O or K1 -1
0 0 O Kx2

y2
O = K0

0O .

Thus,x2 - y2 = 0 orx2 = y2. Hence, for any value ofy2 ∫ 0,

v2 = Kx2
y2

O = Ky2
y2

O = y2 K1
1O

is an eigenvector corresponding tol2. Choosingy2 = 1 yieldsv2 = K1
1O. We confirm

these results usingRowReduce.

In[557]:= i2 = {{1,0},{0,1}};

ev1 = capa - e1[[1]] i2
Out[557]= {{2,2},{2,2}}

In[558]:= RowReduce[ev1]

Out[558]= {{1,1},{0,0}}

In[559]:= ev2 = capa - e1[[2]] i2

RowReduce[ev2]
Out[559]= {{-2,2},{2,-2}}

Out[559]= {{1,-1},{0,0}}

Weobtain the same results usingEigenvectors andEigensystem.

In[560]:= Eigenvectors[capa]

Eigensystem[capa]
Out[560]= {{-1,1},{1,1}}

Out[560]= {{-5,-1},{{-1,1},{1,1}}}

(b) In this case, we see thatl = 2 has multiplicity 2. There is only one linearly

independent eigenvector,v = K-1
1 O, corresponding tol.

In[561]:= capa = {{1,-1},{1,3}};

Factor[CharacteristicPolynomial[capa,l]]

Eigenvectors[capa]

Eigensystem[capa]



200 CHAPTER 3. LINEAR ALGEBRA

Out[561]= (-2 + l)2

Out[561]= {{-1,1},{0,0}}

Out[561]= {{2,2},{{-1,1},{0,0}}}

(c) The eigenvaluel1 = 2 has corresponding eigenvectorv1 =
ÁËËËËËË
È

1
1
1

˜̄
¯̄̄
¯̄
˘
. Theeigenvalue

l2,3 = -1 has multiplicity 2. In this case, there are two linearly independent eigenvec-

tors corresponding to this eigenvalue:v2 =
ÁËËËËËË
È

-1
0
1

˜̄
¯̄̄
¯̄
˘

andv3 =
ÁËËËËËË
È

-1
1
0

˜̄
¯̄̄
¯̄
˘
.

In[562]:= capa = {{0,1,1},{1,0,1},{1,1,0}};

Factor[CharacteristicPolynomial[capa,l]]

Eigenvectors[capa]

Eigensystem[capa]

Out[562]= -(-2 + l) (1 + l)2

Out[562]= {{-1,0,1},{-1,1,0},{1,1,1}}

Out[562]= {{-1,-1,2},{{-1,0,1},{-1,1,0},{1,1,1}}}

(d) In this case, the eigenvaluesl1,2 = - 1
4 ≤ 4i are complex conjugates. We see that the

eigenvectorsv1,2 = K1
0O ≤ K0

2O i are complex conjugates as well.

In[563]:= capa = {{-1/4,2},{-8,-1/4}};

Eigenvectors[capa]

Eigensystem[capa]

Out[563]= {{i,2},{-i,2}}

Out[563]= 99 -
1

4
- 4 i,-

1

4
+ 4 i=,{{i,2},{-i,2}}=

3.5 Exercises

1. LetA = K 1 5
-2 3O, B = K 3 5

-5 2O, C = K0 1 1
1 -3 3O, D =

ÁËËËËËË
È

-4 3
-3 5
2 4

˜̄
¯̄̄
¯̄
˘
, andE =

ÁËËËËËË
È

-1 0 -1
1 -1 0
1 1 0

˜̄
¯̄̄
¯̄
˘
. If defined, calculate each of the following by hand and confirm

your result with Mathematica. If the operation is not defined, state why.

(a) |A|

(b) A - B
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(c) BA

(d) A-1

(e) |E|

(f) E-1

(g) AD

(h) DA

(i) (CD) + B

(j) (AE) - C

(k) (CD) E

(l) (DC) E

2. Calculate:

(a)
ƒƒƒƒƒƒƒ
7 6

-2 -9

ƒƒƒƒƒƒƒ

(b)

ƒƒƒƒƒƒƒƒƒƒƒ

-5 -1 -4
6 -7 -8
7 4 -6

ƒƒƒƒƒƒƒƒƒƒƒ

(c)

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

-5 -6 -2 -3
3 -3 -4 8

-7 - 6 2 2
-6 -6 0 2

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

3. Find the eigenvalues and corresponding eigenvectors for each matrix.

(a) A = K-2 2
2 -2O

(b) A = K-1 0
-2 -1O

(c) A = K0 -1
2 -2O

(d) A =
ÁËËËËËË
È

1 0 0
0 -1 1
1 0 0

˜̄
¯̄̄
¯̄
˘

(e) A =
ÁËËËËËË
È

0 1 -1
-1 0 0
0 0 1

˜̄
¯̄̄
¯̄
˘

4. Solve each of the following linear systems using at least two different methods.
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(a)

-14x1 - 2x2 + x3 - x4 = 1
-8x1 - x2 + x3 - x4 = -1

8x1 - 2x2 + x3 = -8
16x1 + 2x2 - x3 + x4 = -2

(b)

-14x1 - 2x2 + x3 + 18x4 = 3
-8x1 - x2 + x3 + 10x4 = 1

8x1 - 2x2 + x3 - 4x4 = -8
16x1 + 2x2 - x3 - 20x4 = -4

(c)

-14x1 - 2x2 + 12x3 - 12x4 = 5
-8x1 - x2 + 7x3 - 7x4 = 3

8x1 - 2x2 - 10x3 + 10x4 = -6
16x1 + 2x2 - 14x3 + 14x4 = -6

(d)

-14x1 - 2x2 + 12x3 - 12x4 = 4
-8x1 - x2 + 7x3 - 7x4 = 2

8x1 - 2x2 - 10x3 + 10x4 = -6
16x1 + 2x2 - 14x3 + 14x4 = -5



Chapter 4

Differential Equations

Chapter 4 discusses Mathematica’s differential equations commands. The examples
used to illustrate the various commands are similar to examples routinely done in a one
semester differential equations course.

4.1 First-Order Differential Equations

4.1.1 Separable Equations

Because they are solved by integrating, separable differential equations are usually the
first introduced in the introductory differential equations course.

Definition 3 (Separable Differential Equation). A differential equation of the form

f (y) dy = g(x) dx (4.1)

is called a first-orderseparable differential equation.

Wesolve separable differential equations by integrating.

Remark.The command

DSolve[y’[t]==f[t,y[t]],y[t],t]

attempts to solvey£ = dy/dt = f (t, y) for y. (See Figure 4.1.)

Example 97. Solve each of the following equations. (a)y£ - y2 sint = 0 (b) y£ =
ay I1 - 1

K yM, K, a > 0 constant.

203
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Figure 4.1: Mathematica’sDSolve help window
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Figure 4.2: Several solutions ofy£ - y2 sint = 0

Solution. (a) The equation is separable:

1

y2 dy = sint dt

‡
1

y2 dy = ‡ sint dt

-
1
y

= - cost + C

y =
1

cost + C
.

We check our result withDSolve.

In[564]:= sola = DSolve[y£[t] - y[t]ˆ2Sin[t] == 0,y[t],t]

Out[564]= 99y[t] Ø
1

-C[1] + Cos[t]
==

Observe that the result is given as a list. The formula for the solution is the second part
of the first part of the first part ofsola.

In[565]:= sola[[1,1,2]]

Out[565]=
1

-C[1] + Cos[t]

We then graph the solution for various values ofC with Plot in Figure 4.2. To graph the list of functions

list for a § x § b, enter

Plot[Evaluate[list],{x,a,b}].
In[566]:= toplota = Table[sola[[1,1,2]]/.C[1]- > -i,{i,2,10}]

Out[566]= 9 1

2 + Cos[t]
,

1

3 + Cos[t]
,

1

4 + Cos[t]
,

1

5 + Cos[t]
,

1

6 + Cos[t]
,

1

7 + Cos[t]
,

1

8 + Cos[t]
,

1

9 + Cos[t]
,

1

10 + Cos[t]
=

In[567]:= Plot[Evaluate[toplota],{t,0,2p},PlotRange- > {0,1},

AxesOrigin- > {0,0}]
expression /. x->y replaces all oc-
currences ofx in expressionby y. Ta-
ble[a[k],{k,n,m}] generates the list
an, an+1, . . ., am-1, am.
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(b) After separating variables, we use partial fractions to integrate.

y£ = ayK1 -
1
K

yO
1

ay I1 - 1
K yM

dy = dt

1
a

K
1
y

+
1

K - y
O = dt

1
a

(ln |y| - ln |K - y|) = C1t
y

K - y
= Ceat

y =
CKeat

Ceat - 1

We check the calculations with Mathematica. First, we useApart to find the partial
fraction decomposition of 1

ay(1- 1
K y) .

In[568]:= s1 = Apart[1/(a y (1 - 1/k y)),y]

Out[568]=
1

y a
-

1

(-k + y) a

Then, we useIntegrate to check the integration.

In[569]:= s2 = Integrate[s1,y]

Out[569]=
Log[y]

a
-
Log[-k + y]

a

Last, we use useSolve to solve 1
a (ln |y| - ln |K - y|) = ct for y.

In[570]:= Solve[s2 == c t,y]

Out[570]= 99y Ø
ec t a k

-1 + ec t a ==

Wecan useDSolve to find a general solution of the equation

In[571]:= solb = DSolve[y£[t] == a y[t] (1 - 1/k y[t]),y[t],t]

Out[571]= 99y[t] Ø
et a k

et a - eC[1]
==

as well as find the solution that satisfies the initial conditiony(0) = y0.

In[572]:= solc = DSolve[{y£[t] == y[t] (1 - y[t]),y[0] == y0},y[t],t]

Out[572]= 99y[t] Ø
et y0

1 - y0 + et y0
==

The equationy£ = ay I1 - 1
K yM is called theLogistic equation (or Verhulst equation)

and is used to model the size of a population that is not allowed to grow in an un-
bounded manner. Assuming thaty(0) > 0, then all solutions of the equation have the
property that limtØ¶ = K.

To see this, we seta = K = 1 andusePlotVectorField, which is contained in theSee Figure 4.20.

PlotField package that is located in theGraphics directory to graph the direction
field associated with the equation in Figure 4.3.
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1 2 3 4 5

0.2
0.4
0.6
0.8

1
1.2
1.4

Figure 4.3: A typical direction field for the Logistic equation

1 2 3 4 5

0.5

1

1.5

2

2.5

Figure 4.4: A typical direction field for the Logistic equation along with several solu-
tions

In[573]:= << Graphics‘PlotField‘;

pvf = PlotVectorField[{1,y(1 - y)},{t,0,5},

{y,0,5/2},HeadLength- > 0,Axes- > Automatic]

The property is more easily seen when we graph various solutions along with the di-
rection field as done next in Figure 4.4.

In[574]:= toplot = Table[solc[[1,1,2]]/.y0- > i/5,{i,1,12}];

sols = Plot[Evaluate[toplot],

{t,0,5},DisplayFunction- > Identity];

Show[pvf,sols]

4.1.2 Linear Equations

Definition 4 (First-Order Linear Equation). A differential equation of the form

a1(t)
dy
dt

+ a0(t)y = f (t), (4.2)

where a1(t) is not identically the zero function, is a first-orderlinear differential equa-
tion.

Assuming thata1(t) is not identically the zero function, dividing (4.2) bya1(t) gives us
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thestandard form of the first-order linear equation:

dy
dt

+ p(t)y = q(t). (4.3)

If q(t) is identically the zero function, we say that the equation ishomogeneous. The
corresponding homogeneous equationof (4.3) is

dy
dt

+ p(t)y = 0. (4.4)

Observe that (4.4) is separable:

dy
dt

+ p(t)y = 0

1
y

dy = -p(t) dt

ln ƒƒƒyƒƒƒ = - ‡ p(t) dt + C

y = Ce- Ÿ p(t) dt.

Notice that any constant multiple of a solution to a linear homogeneous equation is also
a solution. Now suppose thaty is any solution of (4.3) andyp is a particular solution ofA particular solution is a specific solution

to the equation that does not contain any ar-

bitrary constants.

(4.3). Then,

Iy - ypM£
+ p(t) Iy - ypM = y£ + p(t)y - Iyp

£ + p(t)ypM
= q(t) - q(t) = 0.

Thus,y- yp is a solution to the corresponding homogeneous equations of (4.3). Hence,

y - yp = Ce- Ÿ p(t) dt

y = Ce- Ÿ p(t) dt + yp

y = yh + yp,

whereyh = Ce- Ÿ p(t) dt. That is, a general solution of (4.3) is

y = yh + yp,

whereyp is a particular solution to the nonhomogeneous equation andyh is a general
solution to the corresponding homogeneous equation. Thus, to solve (4.3), we need to
first find a general solution to the corresponding homogeneous equation,yh, which we
can accomplish through separation of variables, and then find a particular solution,yp,
to the nonhomogeneous equation.

If yh is a solution to the corresponding homogeneous equation of (4.3) then for any
constantC, Cyh is also a solution to the corresponding homogeneous equation. Hence,
it is impossible to find a particular solution to (4.3) of this form. Instead, we search
for a particular solution of the formyp = u(t)yh, where u(t) is not a constant function.



4.1. FIRST-ORDER DIFFERENTIAL EQUATIONS 209

Assuming that a particular solution,yp, to (4.3) has the formyp = u(t)yh, differentiating
gives us

yp
£ = u£yh + uyh

£

and substituting into (4.3) results in

yp
£ + p(t)yp = u£yh + uyh

£ + p(t)uyh = q(t).

Becauseuyh
£ + p(t)uyh = u Ayh

£ + p(t)yhE = u ÿ 0 = 0, we obtain yh is a solution to the corresponding homo-

geneous equation soyh
£ + p(t)yh = 0.

u£yh = q(t)

u£ =
1
yh

q(t)

u£ = eŸ p(t) dtq(t)

u = ‡ eŸ p(t) dtq(t) dt

so

yp = u(t) yh = Ce- Ÿ p(t) dt ‡ eŸ p(t) dtq(t) dt.

Because we can include an arbitrary constant of integration when evaluatingŸ eŸ p(t) dtq(t) dt,
it follows that we can write a general solution of (4.3) as

y = e- Ÿ p(t) dt ‡ eŸ p(t) dtq(t) dt. (4.5)

Thus, first-order linear equations can always be solved, although the resulting integrals
may be difficult or impossible to evaluate exactly.

Mathematica is able to solve the general form of the first-order equation, the initial-
value problemy£ + py = q, y(0) = y0,

In[575]:= DSolve[y£[t] + p[t]y[t] == q[t],y[t],t]

Out[575]= 99y[t] Ø e- Ÿ
t
0
p[DSolve‘t]„DSolve‘t C[1] + e- Ÿ

t
0
p[DSolve‘t]„DSolve‘t

‡
t

0
eŸ

DSolve‘t
0

p[DSolve‘t]„DSolve‘t q[DSolve‘t]„DSolve‘t==

In[576]:= DSolve[{y£[t] + p[t]y[t] == q[t],y[0] == y0},y[t],t]

Out[576]= 99y[t] Ø e- Ÿ
t
0
p[DSolve‘t]„DSolve‘t Jy0+

‡
t

0
eŸ

DSolve‘t
0

p[DSolve‘t]„DSolve‘t q[DSolve‘t]„DSolve‘tN==

as well as the corresponding homogeneous equation,

In[577]:= DSolve[y£[t] + p[t]y[t] == 0,y[t],t]

Out[577]= 99y[t] Ø e- Ÿ
t
0
p[DSolve‘t]„DSolve‘t C[1]==

In[578]:= DSolve[{y£[t] + p[t]y[t] == 0,y[0] == y0},y[t],t]

Out[578]= 99y[t] Ø e- Ÿ
t
0
p[DSolve‘t]„DSolve‘t y0==

although the results contain unevaluated integrals.
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Example 98 (Exponential Growth). Let y = y(t) denote the size of a population at
time t. If y grows at a rate proportional to the amount present,y satisfies

dy
dt

= ay, (4.6)

wherea is thegrowth constant. If y(0) = y0, using (4.5) results iny = y0eat . We use
DSolve to confirm this result.

In[579]:= DSolve[{y£[t] == a y[t],y[0] == y0},y[t],t]

Out[579]= {{y[t] Ø et a y0}}
dy
dt = k Iy - ysM models Newton’s Law of

Cooling: the rate at which the temperature,

y(t), changes in a heating/cooling body is

proportional to the difference between the

temperature of the body and the constant

temperature,ys, of the surroundings.

Example 99. Solve each of the following equations: (a)dy
dt = k Iy - ysM, y(0) = y0, k

andys constant (b)y£ - 2ty = t (c) ty£ - y = 4t cos 4t - sin 4t

Solution. By hand, we rewrite the equation and obtain

dy
dt

- ky = -kys

A general solution of the corresponding homogeneous equation

dy
dt

- ky = 0

is yh = ekt. Becausek and-kys are constants, we suppose that a particular solution of
the nonhomogeneous equation,yp, has the formyp = A, whereA is a constant.

Assuming thatyp = A, we havey£
p = 0 and substitution into the nonhomogeneousThis will turn out to be a lucky guess. If there

is not a solution of this form, we will not be

able to find it.

equation gives us

dyp

dt
- kyp = -KA = -kys so A = ys.

Thus, a general solution isy = yh + yp = Cekt + ys. Applying the initial condition
y(0) = y0 results iny = ys + (y0 - ys)ekt.

We obtain the same result withDSolve. We graph the solution satisfingy(0) = 75
assuming thatk = -1/2 andys = 300 in Figure 4.5. Notice thaty(t) Ø ys ast Ø ¶.

In[580]:= sola = DSolve[{y£[t] == k(y[t] - ys),y[0] == y0},y[t],t]

Out[580]= 99y[t] Ø ek t (y0 - ys) + ys==

In[581]:= tp = sola[[1,1,2]]/.{k- > -1/2,ys- > 300,y0- > 75};

Plot[tp,{t,0,10}]

(b) The equation is in standard form and we identifyp(t) = -2t. Then, the integrating
factor ism(t) = eŸ p(t),dt = e-t2

. Multiplying the equation by the integrating factor,m(t),
results in

e-t2
(y£ - 2ty) = te-t2

or
d
dt

Jye-t2N = te-t2
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Figure 4.5: The temperature of the body approaches the temperature of its surroundings

Integrating gives us

ye-t2
= -

1
2

e-t2
+ C or y = -

1
2

+ Cet2
.

We confirm the result withDSolve.

In[582]:= DSolve[y£[t] - 2t y[t] == t,y[t],t]

Out[582]= 99y[t] Ø -
1

2
+ et

2
C[1]==

(c) In standard form, the equation isy£ - y/t = (4t cos 4t - sin 4t)/t so p(t) = -1/t. The
integrating factor ism(t) = eŸ p(t),dt = e- ln t = 1/t and multiplying the equation by the
integrating factor and then integrating gives us

1
t

dy
dt

-
1

t2 y =
1

t2 (4t cos 4t - sin 4t)

d
dt

K
1
t
yO =

1

t2 (4t cos 4t - sin 4t)

1
t
y =

sin 4t
t

+ C

y = sin 4t + Ct,

where we use theIntegrate function to evaluateŸ 1
t2 (4t cos 4t - sin 4t) dt = sin 4t

t +
C.

In[583]:= Integrate[(4 t Cos[4t] - Sin[4t])/tˆ2,t]

Out[583]=
Sin[4 t]

t

We confirm this result withDSolve.

In[584]:= sol =

DSolve[y£[t] - y[t]/t == (4 t Cos[4t] - Sin[4t])/t,y[t],t]

Out[584]= {{y[t] Ø t C[1] + Sin[4 t]}}
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Figure 4.6: Every solution satisfiesy(0) = 0

In the general solution, observe thatevery solution satisfiesy(0) = 0. That is, the
initial-value problem

dy
dt

-
1
t
y =

1

t2 (4t cos 4t - sin 4t), y(0) = 0

has infinitely many solutions. We see this in the plot of several solutions that is gener-
ated withPlot in Figure 4.6.

In[585]:= toplot = Table[sol[[1,1,2]]/.C[1]- > i,{i,-5,5}];

Plot[Evaluate[toplot],{t,-2p,2p},

PlotRange- > {-2p,2p},AspectRatio- > 1]

4.1.3 Nonlinear Equations

Mathematica can solve a variety of nonlinear first-order equations that are typically
encountered in the introductory differential equations course.

Example 100. Solve each: (a)(ycosx + 2xey) dx+Isiny + x2ey - 1M dy = 0 (b) Iy2 + 2xyM dx-
x2dy = 0

Solution. (a) Notice that(ycosx + 2xey) dx + Isiny + x2ey - 1M dy = 0 can be written
asdy/dx= - (ycosx + 2xey) / Isinx + x2ey - 1M.
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The equation is an example of anexact equation. A theorem tells us that the equationSee your text for details.

M(x, y)dx+ N(x, y)dy = 0

is exact if and only if ∑M/∑y = ∑N/∑x.

In[586]:= m = Cos[x] + 2 x Exp[y];

n = Sin[y] + xˆ2Exp[y] - 1;

D[m,y]

D[n,x]
Out[586]= 2 ey x

Out[586]= 2 ey x

We solve exact equations by integrating. LetF(x, y) = C satisfy(ycosx + 2xey) dx +
Isiny + x2ey - 1M dy = 0. Then,

F(x, y) = ‡ (cosx + 2xey) dx = sinx + x2ey + g(y),

whereg(y) is a function ofy.

In[587]:= f1 = Integrate[m,x]

Out[587]= ey x2 + Sin[x]

We next find thatg£(y) = siny - 1 sog(y) = - cosy - y. Hence, a general solution of
the equation is

sinx + x2ey - cosy = C.

In[588]:= f2 = D[f1,y]

Out[588]= ey x2

In[589]:= f3 = Solve[f2 + c == n,c]

Out[589]= {{c Ø -1 + Sin[y]}}

In[590]:= Integrate[f3[[1,1,2]],y]

Out[590]= -y - Cos[y]

We confirm this result withDSolve. Notice that Mathematica warns us that it cannot
solve fory explicitly and returns the same implicit solution obtained by us.

In[591]:= mf = m/.y- > y[x];

nf = n/.y- > y[x];

sol = DSolve[mf + nf y£[x] == 0,y[x],x]

Solve :: "tdep" : "Theequationsappeartoinvolve

transcendentalfunctionsofthevariablesin

anessentiallynon - algebraicway."

Out[591]= SolveAey[x] x2 - Cos[y[x]] + Sin[x] - y[x] == C[1],{y[x]}E

Graphs of several solutions are graphed withContourPlot in Figure 4.7.
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Figure 4.7: Graphs of several solutions of(ycosx + 2xey) dx+ Isiny + x2ey - 1M dy = 0

In[592]:= sol[[1,1]]

Out[592]= ey[x] x2 - Cos[y[x]] + Sin[x] - y[x]

In[593]:= sol2 = sol[[1,1]]/.y[x]- > y

Out[593]= ey x2 - y - Cos[y] + Sin[x]

In[594]:= cvals = Table[

sol2/.{x- > -3p/2,y- > i},{i,0,6p,6p/24}]//

N

Out[594]= {22.2066,

48.2128,106.254,

233.647,512.735,

1124.85,2468.28,

5416.56,11885.2,

26074.5,57196.7,

125457.,275169.,

603531.,1.32372106,

2.9033106,6.36776106,

1.39663107,3.0632107,

6.71846107,1.47355108,

3.2319108,7.08847108,

1.5547109,3.40989109}

In[595]:= ContourPlot[sol2,{x,-3p,3p},{y,0,6p},

ContourShading- > False,Frame- > False,Axes- > Automatic,

AxesOrigin- > {0,0},Contours- > cvals,PlotPoints- > 60]
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(b) We can writeIy2 + 2xyM dx - x2dy = 0 asdy/dx = Iy2 + 2xyM /x2. A first-order
equation ishomogeneousif it can be written in the form

dy/dx= F(y/x).

Homogeneous equations are reduced to separable equations with either the substitution
y = ux or x = vy.

In this case, we have thatdy/dx= (y/x)2 + 2(y/x) so the equation is homogeneous.

Let y = ux. Then, dy = u dx+ x du. Substituting intoIy2 + 2xyM dx - x2dy = 0 and
separating gives us

Iy2 + 2xyM dx- x2dy = 0
Iu2x2 + 2ux2M dx- x2(u dx+ x du) = 0

Iu2 + 2uM dx- (u dx+ x du) = 0
Iu2 + uM dx = -x du

1
u (u + 1)

du = -
1
x

dx.

Integrating the left and right-hand sides of this equation withIntegrate,

In[596]:= Integrate[1/(u(u + 1)),u]

Out[596]= Log[u] - Log[1 + u]

In[597]:= Integrate[-1/x,x]

Out[597]= -Log[x]

exponentiating, resubstitutingu = y/x, and solving for y gives us

ln |u| - ln |u + 1| = - ln |x| + C
u

u + 1
= C/x

y/x
y/x+ 1

= C/x

y =
Cx

x - C
.

In[598]:= Solve[(y/x)/(y/x + 1) == c/x,y]

Out[598]= 99y Ø -
c x

c - x
==

We confirm this result withDSolve and then graph several solutions withPlot in
Figure 4.8.

In[599]:= sol = DSolve[y[x]ˆ2 + 2x y[x] - xˆ2y£[x] == 0,y[x],x]

Out[599]= 99y[x] Ø -
x2 C[1]

-1 + x C[1]
==

In[600]:= toplot = Table[sol[[1,1,2]]/.C[1]- > i,{i,-5,5}];

Plot[Evaluate[toplot],{x,-5,5},PlotRange- > {-5,5},

AspectRatio- > Automatic]
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Figure 4.8: Graphs of several solutions ofIy2 + 2xyM dx- x2dy = 0

4.1.4 Numerical Methods

If numerical results are desired, useNDSolve (see Figure 4.9):

NDSolve[{y’[t]==f[t,y[t]],y[t0]==y0},y[t],{t,a,b}]

attempts to generate a numerical solution of

ÌÓ
Ô

dy
dt = f (t, y)

y It0M = y0

valid for a § t § b.

Example 101. Consider

dy
dt

= It2 - y2M siny, y(0) = -1.

(a) Determiney(1). (b) Graphy(t), -1 § t § 10.

Solution. We first remark thatDSolve can neither exactly solve the differential equa-
tion y£ = It2 - y2M siny nor find the solution that satisfiesy(0) = -1.

In[601]:= sol = DSolve[y£[t] == (tˆ2 - y[t]ˆ2)Sin[t],y[t],t]

Out[601]= BoxData(DSolve[y£[t] == Sin[t] (t2 - y[t]2),y[t],t])
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Figure 4.9: UsingNDSolve
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Figure 4.10: Graph of the solution toy£ = It2 - y2M siny, y(0) = -1

In[602]:= sol =

DSolve[{y£[t] == (tˆ2 - y[t]ˆ2)Sin[t],y[0] == y0},y[t],t]

Out[602]= BoxData(DSolve[{y£[t] == Sin[t] (t2 - y[t]2),y[0] == y0},y[t],t])

However, we obtain a numerical solution valid for 0§ t § 1000 using theNDSolve
function.

In[603]:= sol = NDSolve[{y£[t] == (tˆ2 - y[t]ˆ2)Sin[y[t]],y[0] == -1},

y[t],{t,0,1000}]

Out[603]= BoxData({{y[t] Ø InterpolatingFunction[{{0.,1000.}}," <> "][t]}})

Enteringsol /.t->1 evaluates the numerical solution ift = 1.

In[604]:= sol /.t- > 1

Out[604]= {{y[1] Ø -0.766014}}

The result means thaty(1) º -.766. We usePlot command to graph the solution for
0 § t § 10 in Figure 4.10.

In[605]:= Plot[Evaluate[y[t]/.sol],{t,0,10}]

Example 102 (Logistic Equation with Predation). Incorporating predation into the
logistic equation, y£ = ay I1 - 1

K yM, results in

dy
dt

= ayK1 -
1
K

yO - P(y),

whereP(y) is a function ofy describing the rate of predation. A typical choice forP is
P(y) = ay2/ (b2 + y2) becauseP(0) = 0 andP is bounded above: limtØ¶ P(y) < ¶.

Remark.Of course, if limtØ¶ y(t) = Y, then limtØ¶ P(y) = aY2/ (b2 + Y2). Generally,
however, limtØ¶ P(y) ∫ a because limtØ¶ y(t) § K ∫ ¶, for someK ¥ 0, in the
predation situation.
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Figure 4.11: (a) Direction field and (b) direction field with three solutions

If a = 1, a = 5 andb = 2, graph the direction field associated with the equation as well
as various solutions if (a)K = 19 and (b)K = 20.

Solution. (a) We defineeqn[k] to be

dy
dt

= yK1 -
1
K

yO -
5y2

4 + y2 .

In[606]:= << Graphics‘PlotField‘

In[607]:= eqn[k ] = y£[t] == y[t](1 - 1/k y[t]) - 5y[t]ˆ2/(4 + y[t]ˆ2);

We use PlotVectorField to graph the direction field in Figure 4.11 (a) and then
the direction field along with the solutions that satisfyy(0) = .5, y(0) = .2, andy(0) = 4
in Figure 4.11 (b).

In[608]:= pvf19 = PlotVectorField[{1,y(1 - 1/19 y) - 5yˆ2/(4 + yˆ2)},

{t,0,10},{y,0,6},Axes- > Automatic,HeadLength- > 0,

DisplayFunction- > Identity];

In[609]:= n1 = NDSolve[{eqn[19],y[0] == 0.5},y[t],{t,0,10}];

n2 = NDSolve[{eqn[19],y[0] == 2},y[t],{t,0,10}];

n3 = NDSolve[{eqn[19],y[0] == 4},y[t],{t,0,10}];

In[610]:= solplot = Plot[Evaluate[y[t]/.{n1,n2,n3}],

{t,0,10},PlotStyle- > Thickness[0.01],

DisplayFunction- > Identity];

The same results can be obtained usingMap.

In[611]:= numsols = Map[NDSolve[

{eqn[19],y[0] == #},y[t],{t,0,10}]&,{0.5,2,4}];

solplot = Plot[Evaluate[y[t]/.numsols],

{t,0,10},PlotStyle- > Thickness[0.01],

DisplayFunction- > Identity];

In[612]:= Show[GraphicsArray[{pvf19,Show[pvf19,solplot]}]]

In the plot, notice that all nontrivial solutions appear to approach an equilibrium solu-
tion. We determine the equilibrium solution by solvingy£ = 0
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Figure 4.12: Direction field

In[613]:= eqn[19][[2]]

Out[613]= J1 -
y[t]

19
N y[t] -

5 y[t]2

4 + y[t]2

In[614]:= Solve[eqn[19.][[2]] == 0,y[t]]

Out[614]= {{y[t] Ø 0.},{y[t] Ø 0.923351},

{y[t] Ø 9.03832 - 0.785875 i},

{y[t] Ø 9.03832 + 0.785875 i}}

to see that it is y º 0.923.

(b) We carry out similar steps for (b). First, we graph the direction field withPlotVec-
torField in Figure 4.12.

In[615]:= pvf20 = PlotVectorField[{1,y(1 - 1/20 y) - 5yˆ2/(4 + yˆ2)},

{t,0,10},{y,0,20},Axes- > Automatic,

HeadLength- > 0,AspectRatio- > 1/GoldenRatio];

We then useMap together with NDSolve to numerically find the solution satisfying
y(0) = .5i, for i = 1, 2, . . ., 40 and name the resulting listnumsols. Thefunctions
contained innumsols are graphed withPlot in solplot.

In[616]:= numsols =

Map[NDSolve[{eqn[20],y[0] == #},y[t],{t,0,10}]&,

Table[0.5i,{i,1,40}]];

solplot = Plot[Evaluate[y[t]/.numsols],

{t,0,10},PlotStyle- > Thickness[0.005],

DisplayFunction- > Identity];

Last, we display the direction field along with the solution graphs insolplot using
Show in Figure 4.13.

In[617]:= Show[pvf20,solplot]

Notice that there are three nontrivial equilibrium solutions that are found by solving
y£ = 0.
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Figure 4.13: Direction field with several solutions

In[618]:= Solve[eqn[20.][[2]] == 0,y[t]]

Out[618]= {{y[t] Ø 0.},{y[t] Ø 0.926741},

{y[t] Ø 7.38645},

{y[t] Ø 11.6868}}

In this case,y º .926 andy º 11.687 are stable whiley º 7.386 is unstable.

4.2 Second-Order Linear Equations

We now present a concise discussion of second-order linear equations, which are ex-
tensively discussed in the introductory differential equations course.

4.2.1 Basic Theory

Thegeneral form of thesecond-order linear equationis

a2(t)
d2y

dt2
+ a1(t)

dy
dt

+ a0(t)y = f (t), (4.7)

wherea2(t) is not identically the zero function.

Thestandard form of the second-order linear equation (4.7) is

d2y

dt2
+ p(t)

dy
dt

+ q(t)y = f (t). (4.8)

Thecorresponding homogeneous equationof (4.8) is

d2y

dt2
+ p(t)

dy
dt

+ q(t)y = 0. (4.9)

A general solutionof (4.9) isy = c1y1 + c2y2 where



222 CHAPTER 4. DIFFERENTIAL EQUATIONS

1. y1 andy2 are solutions of (4.9), and

2. y1 andy2 arelinearly independent.

If y1 andy2 are solutions of (4.9), theny1 andy2 arelinearly independent if and only
if the Wronskian,

W I9y1, y2=M =
ƒƒƒƒƒƒƒ
y1 y2
y1

£ y2
£

ƒƒƒƒƒƒƒ
= y1y2

£ - y1
£y2, (4.10)

is not the zero function. Ify1 andy2 are linearly independent solutions of (4.9), we call
the setS = 9y1, y2= a fundamental set of solutionsfor (4.9).

Let y be a general solution of (4.8) andyp be a particular solution of (4.8). It followsA particular solution,yp, is a solution that

does not contain any arbitrary constants. thaty - yp is a solution of (4.9) soy - yp = yh whereyh is a general solution of (4.9).
Hence,y = yh + yp. That is, to solve the nonhomogeneous equation, we need a general
solution,yh, of the corresponding homogeneous equation and a particular solution,yp,
of the nonhomogeneous equation.

4.2.2 Constant Coefficients

Suppose that the coefficient functions of (4.7) are constants:a2(t) = a, a1(t) = b, and
a0(t) = c and thatf (t) is identically the zero function. In this case, (4.7) becomes

ay££ + by£ + cy = 0. (4.11)

Now suppose thaty = ekt, k constant, is a solution of (4.11). Then,y£ = kekt and
y££ = k2ekt. Substitution into (4.11) then gives us

ay££ + by£ + cy = ak2ekt + bkekt + cekt

= ekt Iak2 + bk + cM = 0.

Becauseekt ∫ 0, the solutions of (4.11) are determined by the solutions of

ak2 + bk + c = 0, (4.12)

called thecharacteristic equationof (4.11).

Theorem 22. Let k1 and k2 be the solutions of(4.12).

1. If k1 ∫ k2 are real and distinct, two linearly independent solutions of(4.11)are
y1 = ek1t and y2 = ek2t ; a general solution of(4.11)is

y = c1ek1t + c2ek2t .

2. If k1 = k2, two linearly independent solutions of(4.11)are y1 = ek1t and y2 =
tek1t ; a general solution of (4.11)is

y = c1ek1t + c2te
k1t .
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3. If k1,2 = a ≤ bi, b ∫ 0, two linearly independent solutions of(4.11)are y1 =
eat cosbt and y2 = eat sinbt; a general solution of(4.11)is

y = eat Ic1 cosbt + c2 sinbtM .

Example 103. Solve each of the following equations. (a) 6y££ + y£ - 2y = 0 (b) y££ +
2y£ + y = 0 (c) 16y££ + 8y£ + 145y = 0

Solution. (a) The characteristic equation is 6k2 + k - 2 = (3k + 2)(2k - 1) = 0 with
solutionsk = -2/3 andk = 1/2. We check with eitherFactor or Solve.

In[619]:= Factor[6kˆ2 + k - 2]

Solve[6kˆ2 + k - 2 == 0]

Out[619]= (-1 + 2 k) (2 + 3 k)

Out[619]= 99k Ø -
2

3
=,9k Ø

1

2
==

Then, a fundamental set of solutions is9e-2t/3, et/2= and a general solution is

y = c1e-2t/3 + c2et/2.

Of course, we obtain the same result withDSolve.

In[620]:= DSolve[6y££[t] + y£[t] - 2y[t] == 0,y[t],t]

Out[620]= 99y[t] Ø e-2 t/3 C[1] + et/2 C[2]==

(b) The characteristic equation isk2 + 2k + 1 = (k + 1)2 = 0 with solutionk = -1,
which has multiplicity two, so a fundamental set of solutions is9e-t , te-t = and a general
solution is

y = c1e-t + c2te
-t .

Wecheck the calculation in the exact same way as in (a).

In[621]:= Factor[kˆ2 + 2k + 1]

Solve[kˆ2 + 2k + 1 == 0]

DSolve[y££[t] + 2y£[t] + y[t] == 0,y[t],t]

Out[621]= (1 + k)2

Out[621]= {{k Ø -1},{k Ø -1}}

Out[621]= {{y[t] Ø e-t C[1] + e-t t C[2]}}

(c) The characteristic equation is 16k2 + 8k + 145= 0 with solutionsk1,2 = - 1
4 ≤ 3i so

a fundamental set of solutions is9e-t/4 cos 3t, e-t/4 sin 3t= and a general solution is

y = e-t/4 Ic1 cos 3t + c2 sin 3tM .

The calculation is verified in the same way as in (a) and (b).
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In[622]:= Factor[16kˆ2 + 8k + 145,GaussianIntegers- > True]

Solve[16kˆ2 + 8k + 145 == 0]

DSolve[16y££[t] + 8y£[t] + 145y[t] == 0,y[t],t]
Out[622]= ((1 - 12 i) + 4 k) ((1 + 12 i) + 4 k)

Out[622]= 99k Ø -
1

4
- 3 i=,9k Ø -

1

4
+ 3 i==

Out[622]= 99y[t] Ø e-t/4 C[2] Cos[3 t] - e-t/4 C[1] Sin[3 t]==

Example 104. Solve

64
d2y

dt2
+ 16

dy
dt

+ 1025y = 0, y(0) = 1,
dy
dt

(0) = 2.

Solution. A general solution of 64y££+16y£+1025y = 0 isy = e-t/8 Ic1 sin 4t + c2 cos 4tM.

In[623]:= gensol = DSolve[64y££[t] + 16y£[t] + 1025y[t] == 0,y[t],t]

Out[623]= 99y[t] Ø e-t/8 C[2] Cos[4 t] - e-t/8 C[1] Sin[4 t]==

Applying y(0) = 1 showsus thatc2 = 1.

In[624]:= e1 = y[t]/.gensol[[1]]/.t- > 0

Out[624]= C[2]

Computingy£

In[625]:= D[y[t]/.gensol[[1]],t]

Out[625]= -4 e-t/8 C[1] Cos[4 t] -
1

8
e-t/8 C[2] Cos[4 t]+

1

8
e-t/8 C[1] Sin[4 t] - 4 e-t/8 C[2] Sin[4 t]

and theny£(0), showsus that 4c1 - 1
8c2=2.

In[626]:= e2 = D[y[t]/.gensol[[1]],t]/.t- > 0

Out[626]= -4 C[1] -
C[2]

8

Solving forc1 andc2 with Solve shows us that c1 = 17
32 andc1 = 1.

In[627]:= cvals = Solve[{e1 == 1,e2 == 3}]

Out[627]= 99C[1] Ø -
25

32
,C[2] Ø 1==

Thus,y = e-t/8 I 17
32 sin 4t + cos 4tM, which we graph withPlot in Figure 4.14.

In[628]:= sol = y[t]/.gensol[[1]]/.cvals[[1]]

Out[628]= e-t/8 Cos[4 t] +
25

32
e-t/8 Sin[4 t]

In[629]:= Plot[sol,{t,0,8p}]

Weverify the calculation withDSolve.
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Figure 4.14: The solution to the initial-value problem tends to 0 ast Ø ¶

In[630]:= DSolve[

{64y££[t] + 16y£[t] + 1025y[t] == 0,y[0] == 1,y£[0] == 2},

y[t],t]

Out[630]= 99y[t] Ø e-t/8 JCos[4 t] +
17

32
Sin[4 t]N==

4.2.3 Undetermined Coefficients

If (4.7) has constant coefficients andf (t) is a product of termstn, eat , a constant,
cosbt, and/or sinbt, b constant,undetermined coefficientscan often be used to find
a particular solution of (4.7). The key to implementing the method is tojudiciously
choose the correct form ofyp.

Assume that a general solution,yh, of the corresponding homogeneous equation has
been found and that each term off (t) has the form

tneat cosbt or tneat cosbt.

For eachterm of f (t), write down theassociated set

F = 9tneat cosbt, tneat sinbt, tn-1eat cosbt, tn-1eat sinbt, . . . , eat cosbt, eat sinbt, = .

If any element ofF is a solution to the corresponding homogeneous equation, multiply
each element ofF by tm, wherem is the smallest positive integer so that none of the el-
ements oftmF are solutions to the corresponding homogeneous equation. A particular
solution will be a linear combination of the functions in all theF ’s.

Example 105. Solve

4
d2y

dt2
- y = t - 2 - 5 cost - e-t/2.
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Solution. The corresponding homogeneous equation is 4y££ - y = 0 with general solu-
tion yh = c1e-t/2 + c2et/2.

In[631]:= DSolve[4y££[t] - y[t] == 0,y[t],t]

Out[631]= 99y[t] Ø e-t/2 C[1] + et/2 C[2]==

A fundamental set of solutions for the corresponding homogeneous equation isS =
9e-t/2, et/2=. The associated set of functions fort - 2 is F1 = {1, t}, the associated set of
functions for-5 cost is F2 = {cost,sint}, and the associated set of functions for-e-t/2

is F3 = 9e-t/2=. Note that e-t/2 is an element ofS so we multiplyF3 by t resulting inNo element ofF1 is contained inS and no
element ofF2 is contained inS.

tF3 = 9te-t/2=.

Then, we search for a particular solution of the form

yp = A + Bt + Ccost + D sint + Ete-t/2,

whereA, B, C, D, andE are constants to be determined.

In[632]:= yp[t ] = a + b t + c Cos[t] + d Sin[t] + e t Exp[-t/2]

Out[632]= a + b t + e e-t/2 t + c Cos[t] + d Sin[t]

Computingy£
p andy££

p

In[633]:= dyp = yp£[t]

d2yp = yp££[t]

Out[633]= b + e e-t/2 -
1

2
e e-t/2 t + d Cos[t] - c Sin[t]

Out[633]= -e e-t/2 +
1

4
e e-t/2 t - c Cos[t] - d Sin[t]

and substituting into the nonhomogeneous equation results in

-A - Bt - 5Ccost - 5D sint - 4Ee-t/2 = t - 2 - 5 cost - e-t/2.

In[634]:= eqn = 4 yp££[t] - yp[t] == t - 2 - 5Cos[t] - Exp[-t/2]

Out[634]= -a - b t - e e-t/2 t - c Cos[t] - d Sin[t]+

4 J - e e-t/2 +
1

4
e e-t/2 t - c Cos[t] - d Sin[t]N ==

-2 - e-t/2 + t - 5 Cos[t]

Equating coefficients results in

-A = -2 - B = 1 - 5C = -5 - 5D = 0 - 4E = -1

soA = 2, B = -1,C = 1, D = 0, andE = 1/4.

In[635]:= cvals =

Solve[{-a == -2,-b == 1,-5c == -5,-5d == 0,-4e == -1}]

Out[635]= 99a Ø 2,b Ø -1,c Ø 1,d Ø 0,e Ø
1

4
==

yp is then given byyp = 2 - t + cost + 1
4te-t/2
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In[636]:= yp[t]/.cvals[[1]]

Out[636]= 2 - t +
1

4
e-t/2 t + Cos[t]

and a general solution is given by

y = yh + yp = c1e-t/2 + ct/2
e + 2 - t + cost +

1
4

te-t/2.

Note that-A - Bt - 5Ccost - 5D sint - 4Ee-t/2 = t - 2 - 5 cost - e-t/2 is true forall
values oft. Evaluating for five different values oft gives us five equations that we then
solve forA, B, C, D, andE, resulting in the same solutions as already obtained.

In[637]:= e1 = eqn/.t- > 0

Out[637]= -a - c + 4 (-c - e) == -8

In[638]:= e2 = eqn/.t- > p/2

e3 = eqn/.t- > p

e4 = eqn/.t- > 1

e5 = eqn/.t- > 2

Out[638]= -a - d -
b p

2
-
1

2
e e-p/4 p + 4 J - d - e e-p/4 +

1

8
e e-p/4 pN ==

-2 - e-p/4 +
p

2

Out[638]= -a + c - b p - e e-p/2 p + 4 Jc - e e-p/2 +
1

4
e e-p/2 pN == 3 - e-p/2 + p

Out[638]= -a - b -
e

0
e

- c Cos[1]-

d Sin[1] + 4 K -
3 e

4
0
e

- c Cos[1] - d Sin[1]O ==

-1 -
1

0
e

- 5 Cos[1]

Out[638]= -a - 2 b -
2 e

e
- c Cos[2]-

d Sin[2] + 4 J -
e

2 e
- c Cos[2] - d Sin[2]N ==

-
1

e
- 5 Cos[2]

In[639]:= Solve[{e1,e2,e3,e4,e5},{a,b,c,d,e}]//Simplify

Out[639]= 99d Ø 0,b Ø -1,a Ø 2,c Ø 1,e Ø
1

4
==

Last, we check our calculation withDSolve andsimplify.

In[640]:= sol2 =

DSolve[4y££[t] - y[t] == t - 2 - 5Cos[t] - Exp[-t/2],y[t],t]

Out[640]= 99y[t] Ø

e-t/2 C[1] + et/2 C[2] +
1

4
Ie-t/2 - 2 t + 2 Cos[t] - 4 Sin[t]M+

e-t/2 J2 et/2 +
t

4
-
1

2
et/2 t +

1

2
et/2 Cos[t] + et/2 Sin[t]N==

In[641]:= Simplify[sol2]



228 CHAPTER 4. DIFFERENTIAL EQUATIONS

Out[641]= 99y[t] Ø

1

4
e-t/2 I1 + 8 et/2 + t - 4 et/2 t + 4 C[1] + 4 et C[2]M + Cos[t]==

Example 106. Solvey££ + 4y = cos 2t, y(0) = 0, y£(0) = 0.

Solution. A general solution of the corresponding homogeneous equation isyh = c1 cos 2t+
c2 sin 2t. For thisequation,F = {cos 2t,sin 2t}. Because elements ofF are solutions to
the corresponding homogeneous equation, we multiply each element ofF by t result-
ing in tF = {t cos 2t, t sin 2t}. Therefore, we assume that a particular solution has the
form

yp = At cos 2t + Bt sin 2t,

whereA and B are constants to be determined. Proceeding in the same manner as
before, we computey£

p andy££
p

In[642]:= yp[t ] = a t Cos[2t] + b t Sin[2 t];

yp£[t]

yp££[t]
Out[642]= a Cos[2 t] + 2 b t Cos[2 t] + b Sin[2 t] - 2 a t Sin[2 t]

Out[642]= 4 b Cos[2 t] - 4 a t Cos[2 t] - 4 a Sin[2 t] - 4 b t Sin[2 t]

and then substitute into the nonhomogeneous equation

In[643]:= eqn = yp££[t] + 4yp[t] == Cos[2t]

Out[643]= 4 b Cos[2 t] - 4 a t Cos[2 t] - 4 a Sin[2 t]-

4 b t Sin[2 t] + 4 (a t Cos[2 t] + b t Sin[2 t]) ==

Cos[2 t]

Equating coefficients readily yieldsA = 0 andB = 1/4. Alternatively, remember that
-4Asin 2t + 4Bcos 2t = cos 2t is true forall values oft. Evaluating for two values oft
and then solving forA andB gives the same result.

In[644]:= e1 = eqn/.t- > 0

e2 = eqn/.t- > p/4

cvals = Solve[{e1,e2}]
Out[644]= 4 b == 1

Out[644]= -4 a == 0

Out[644]= 99a Ø 0,b Ø
1

4
==

It follows thatyp = 1
4t sin 2t andy = c1 cos 2t + c2 sin 2t + 1

4t sin 2t.

In[645]:= yp[t]/.cvals[[1]]

Out[645]=
1

4
t Sin[2 t]

In[646]:= y[t ] = c1 Cos[2t] + c2 Sin[2t] + 1/4 t Sin[2t]

Out[646]= c1 Cos[2 t] + c2 Sin[2 t] +
1

4
t Sin[2 t]
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Figure 4.15: The forcing function causes the solution to become unbounded ast Ø ¶

Applying the initial conditions

In[647]:= y£[t]

Out[647]= 2 c2 Cos[2 t] +
1

2
t Cos[2 t] +

1

4
Sin[2 t] - 2 c1 Sin[2 t]

In[648]:= cvals = Solve[{y[0] == 0,y£[0] == 0}]

Out[648]= {{c1 Ø 0,c2 Ø 0}}

results iny = 1
4t sin 2t, which we graph withPlot in Figure 4.15.

In[649]:= y[t]/.cvals[[1]]

Out[649]=
1

4
t Sin[2 t]

In[650]:= Plot[Evaluate[y[t]/.cvals[[1]]],{t,0,16p}]

Weverify the calculation withDSolve.

In[651]:= Clear[y]

DSolve[

y££[t] + 4y[t] == Cos[2t],y[0] == 0,y£[0] == 0},y[t],t]

Out[651]= 99y[t] Ø
1

4
t Sin[2 t]==

4.2.4 Variation of Parameters

Let S = 9y1, y2= be a fundamental set of solutions for (4.9). To solve the nonhomoge-A particular solution,yp, is a solution that

does not contain any arbitrary constants.neous equation (4.8), we need to find a particular solution,yp of (4.8). We search for a
particular solution of the form

yp = u1(t)y1(t) + u2(t)y2(t), (4.13)

whereu1 andu2 are functions oft. Differentiating (4.13) gives us Observe that it is pointless to search for solu-

tions of the formyp = c1y1 + c2y2 wherec1

andc2 are constants because for every choice

of c1 andc2, c1y1 + c2y2 is a solution to the

corresponding homogeneous equation.
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yp
£ = u1

£y1 + u1y1
£ + u2

£y2 + u2y2
£.

Assuming that

y1u1
£ + y2u2

£ = 0 (4.14)

results inyp
£ = u1y1

£ + u2y2
£. Computing the second derivative then yields

yp
££ = u1

£y1
£ + u1y1

££ + u2
£y2

£ + u2y2
££.

Substitutingyp, yp
£, andyp

££ into (4.8) and using the facts that

u1 Iy1
££ + p y1

£ + q y1M = 0 and u2 Iy2
££ + p y2

£ + q y2M = 0

(becausey1 andy2 are solutions to the corresponding homogeneous equation) results
in

d2yp

dt2
+ p(t)

dyp

dt
+ q(t)yp = u1

£y1
£ + u1y1

££ + u2
£y2

£ + u2y2
££ + p(t) Iu1y1

£ + u2y2
£M + q(t) Iu1y1 + u2y2M

= y1
£u1

£ + y2
£u2

£ = f (t).
(4.15)

Observe that (4.14) and (4.15) form a system of two linear equations in the unknowns
u1

£ andu2
£:

y1u1
£ + y2u2

£ = 0

y1
£u1

£ + y2
£u2

£ = f (t).
(4.16)

Applying Cramer’s rule gives us

u1
£ =

ƒƒƒƒƒƒƒ
0 y2

f (t) y2
£

ƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒ
y1 y2
y1

£ y2
£

ƒƒƒƒƒƒƒ

= -
y2(t) f (t)

W(S)
and u2

£ =

ƒƒƒƒƒƒƒ
y1 0
y1

£ f (t)

ƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒ
y1 y2
y1

£ y2
£

ƒƒƒƒƒƒƒ

=
y1(t) f (t)

W(S)
, (4.17)

whereW(S) is the Wronskian,W(S) =
ƒƒƒƒƒƒƒ
y1 y2
y1

£ y2
£

ƒƒƒƒƒƒƒ
. After integrating to obtainu1 andu2,

we formyp and then a general solution,y = yh + yp.

Example 107. Solvey££ + 9y = sec 3t, y(0) = 0, y£(0) = 0, 0 § t < p/6.

Solution. The corresponding homogeneous equation isy££ + 9y = 0 with general solu-
tion yh = c1 cos 3t +c2 sin 3t. Then, a fundamental set of solutions isS = {cos 3t,sin 3t}
andW(S) = 3, as we see usingDet, andSimplify.

In[652]:= fs = {Cos[3t],Sin[3t]};

wm = {fs,D[fs,t]};

wm//MatrixForm

wd = Simplify[Det[wm]]
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Out[652]= J Cos[3 t] Sin[3 t]
-3 Sin[3 t] 3 Cos[3 t]

N

Out[652]= 3

Weuse (4.17) to findu1 = 1
9 ln cos 3t andu2 = 1

3t.

In[653]:= u1 = Integrate[-Sin[3t]Sec[3t]/3,t]

u2 = Integrate[Cos[3t]Sec[3t]/3,t]

Out[653]=
1

9
Log[Cos[3 t]]

Out[653]=
t

3

It follows that a particular solution of the nonhomogeneous equation isyp = 1
9 cos 3t ln cos 3t+

1
3t sin 3t and a general solution isy = yh + yp = c1 cos 3t + c2 sin 3t + 1

9 cos 3t ln cos 3t +
1
3t sin 3t.

In[654]:= yp = u1 Cos[3t] + u2 Sin[3t]

Out[654]=
1

9
Cos[3 t] Log[Cos[3 t]] +

1

3
t Sin[3 t]

Identical results are obtained usingDSolve.

In[655]:= DSolve[y££[t] + 9y[t] == Sec[3t],y[t],t]

Out[655]= 99y[t] Ø C[2] Cos[3 t] +
1

9
Cos[3 t] Log[Cos[3 t]]+

1

3
t Sin[3 t] - C[1] Sin[3 t]==

Applying the initial conditions gives usc1 = c2 = 0 so we conclude that the solution to
the initial value problem isy = 1

9 cos 3t ln cos 3t + 1
3t sin 3t.

In[656]:= sol = DSolve[

{y££[t] + 9y[t] == Sec[3t],y[0] == 0,y£[0] == 0},y[t],t]

Out[656]= 99y[t] Ø
1

9
(Cos[3 t] Log[Cos[3 t]] + 3 t Sin[3 t])==

Wegraph the solution withPlot in Figure 4.16.

In[657]:= Plot[Evaluate[y[t]/.sol],{t,0,p/6}]

4.3 Higher-Order Linear Equations

4.3.1 Basic Theory

Thestandard form of the nth-order linear equation is

dny
dtn

+ an-1(t)
dn-1y

dtn-1 + ÿ ÿ ÿ + a1(t)
dy
dt

+ a0(t)y = f (t). (4.18)
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Figure 4.16: The domain of the solution is-p/6 < t < p/6

Thecorresponding homogeneous equationof (4.18) is

dny
dtn

+ an-1(t)
dn-1y

dtn-1 + ÿ ÿ ÿ + a1(t)
dy
dt

+ a0(t)y = 0. (4.19)

Let y1, y2, . . ., yn be n solutions of (4.19). The setS = 9y1, y2, . . . , yn= is linearly
independentif and only if the Wronskian,

W(S) =

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

y1 y2 y3 . . . yn
y1

£ y2
£ y3

£ . . . yn
£

y1
££ y2

££ y3
££ . . . yn

££

y1
(3) y2

(3) y3
(3) . . . yn

(3)

∂ ∂ ∂ . . . ∂

y1
(n-1) y2

(n-1) y3
(n-1) . . . yn

(n-1)

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

(4.20)

is not identically the zero function.S is linearly dependent if S is not linearly inde-
pendent.

If y1, y2, . . ., yn are n linearly independent solutions of (4.19), we say thatS =
9y1, y2, . . . , yn= is a fundamental set for (4.19) and ageneral solution of (4.19) is
y = c1y1 + c2y2 + c3y3 + ÿ ÿ ÿ + cnyn.

A general solution of (4.18) is y = yh + yp whereyh is a general solution of the
corresponding homogeneous equation andyp is a particular solution of (4.18).

4.3.2 Constant Coefficients

If

dny
dtn

+ an-1
dn-1y

dtn-1 + ÿ ÿ ÿ + a1
dy
dt

+ a0y = 0
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has real constant coefficients, we assume thaty = ekt and find thatk satisfies thechar-
acteristic equation

kn + an-1kn-1 + ÿ ÿ ÿ + a1k + a0 = 0. (4.21)

If a solution k of (4.21) has multiplicitym, m linearly independent solutions corre-
sponding tok are

ekt, tekt, . . . , tm-1ekt.

If a solutionk = a + bi, b ∫ 0, of (4.21) has multiplicitym, 2m linearly independent
solutions corresponding tok = a + bi (andk = a - bi) are

eat cosbt, eat sinbt, teat cosbt, teat sinbt, . . . , tm-1eat cosbt, tm-1eat sinbt

Example 108. Solve 12y£££ - 5y££ - 6y£ - y = 0.

Solution. The characteristic equation is

12k3 - 5k2 - 6k - 1 = (k - 1) (3k + 1) (4k + 1) = 0

with solutionsk1 = -1/3, k2 = -1/4 andk3 = 1. Factor[expression] attempts to fac-

tor expression.
In[658]:= Factor[12kˆ3 - 5kˆ2 - 6k - 1]

Out[658]= (-1 + k) (1 + 3 k) (1 + 4 k)

Thus, three linearly independent solutions of the equation arey1 = e-t/3, y2 = e-t/4 and
y3 = et ; a general solution isy = c1e-t/3 + c2e-t/4 + c3et . We check with DSolve.

In[659]:= DSolve[12y£££[t] - 5y££[t] - 6y£[t] - y[t] == 0,y[t],t]

Out[659]= 99y[t] Ø e-t/3 C[1] + e-t/4 C[2] + et C[3]==

Example 109. Solvey£££ + 4y£ = 0, y(0) = 0, y£(0) = 1, y££(0) = -1.

Solution. The characteristic equation isk3 + 4k = k(k2 + 4) = 0 with solutionsk1 = 0
andk2,3 = ≤2i that are found withSolve. Enter?Solve to obtain basic help regarding

theSolve function or see Figure 4.17.
In[660]:= Solve[kˆ3 + 4k == 0]

Out[660]= {{k Ø 0},{k Ø -2 i},{k Ø 2 i}}

Three linearly independent solutions of the equation arey1 = 1, y2 = cos 2t, and
y3 = sin 2t. A general solution isy = c1 + c2 sin 2t + c3 cos 2t.

In[661]:= gensol = DSolve[y£££[t] + 4y£[t] == 0,y[t],t]

Out[661]= 99y[t] Ø C[3] +
1

2
C[1] Cos[2 t] +

1

2
C[2] Sin[2 t]==

Application of the initial conditions shows us thatc1 = -1/4, c2 = 1/2, andc3 = 1/4
so the solution to the initial-value problem isy = - 1

4 + 1
2 sin 2t + 1

4 cos 2t. We verify
the computation withDSolve and graph the result withPlot in Figure 4.18.
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Figure 4.17: If you forget the syntax for a Mathematica function, take advantage of
Mathematica’s help facility. Here, we use the Help Browser to refresh our memory
regarding theSolve function.
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Figure 4.18: Graph ofy = - 1
4 + 1

2 sin 2t + 1
4 cos 2t

In[662]:= e1 = y[t]/.gensol[[1]]/.t- > 0

Out[662]=
C[1]

2
+ C[3]

In[663]:= e2 = D[y[t]/.gensol[[1]],t]/.t- > 0

e3 = D[y[t]/.gensol[[1]],{t,2}]/.t- > 0

Out[663]= C[2]

Out[663]= -2 C[1]

In[664]:= cvals = Solve[{e1 == 0,e2 == 1,e3 == -1}]

Out[664]= 99C[1] Ø
1

2
,C[2] Ø 1,C[3] Ø -

1

4
==

In[665]:= partsol = DSolve[

{y£££[t] + 4y£[t] == 0,y[0] == 0,y£[0] == 1,y££[0] == -1},

y[t],t]

Out[665]= 99y[t] Ø -
1

4
+
1

4
Cos[2 t] +

1

2
Sin[2 t]==

In[666]:= Plot[Evaluate[y[t]/.partsol],{t,0,2p},

AspectRatio- > Automatic]

Example 110. Find a differential equation with general solutiony = c1e-2t/3+c2te
-2t/3+

c3t
2e-2t/3 + c4 cost + c5 sint + c6t cost + c7t sint + c8t

2 cost + c9t
2 sint.

Solution. A linear homogeneous differential equation with constant coefficients that
has this general solution has fundamental set of solutions

S = 9e-2t/3, te-2t/3, t2e-2t/3,cost,sint, t cost, t sint, t2 cost, t2 sint=

Hence, in the characteristic equationk = -2/3 has multiplicity 3 whilek = ≤i has
multiplicity 3. The characteristic equation is

27Kk +
2
3

O
3

(k - i)3(k + i)3 = k9 + 2k8 +
13
3

k7 +
170
27

k6 + 7k5 +
62
9

k4 + 5k3 +
26
9

k2 +
4
3

k +
8
27

,

where we use Mathematica to compute the multiplication withExpand.

In[667]:= Expand[27(k + 2/3)ˆ3(kˆ2 + 1)ˆ3]

Out[667]= 8 + 36 k + 78 k2 + 135 k3 + 186 k4 + 189 k5 + 170 k6 + 117 k7+

54 k8 + 27 k9
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Thus, a differential equation with the indicated general solution is

d9y

dt9
+ 2

d8y

dt8
+

13
3

d7y

dt7
+

170
27

d6y

dt6
+ 7

d5y

dt5
+

62
9

d4y

dt4
+ 5

d3y

dt3
+

26
9

d2y

dt2
+

4
3

dy
dt

+
8
27

y = 0.

4.3.3 Undetermined Coefficients

For higher-order linear equations with constant coefficients, the method of undeter-
mined coefficients is the same as for second-order equations discussed in Section 4.2.3,
provided that the forcing function involves appropriate terms.

Example 111. Solve

d3y

dt3
+

2
3

d2y

dt2
+

145
9

dy
dt

= e-t , y(0) = 1,
dy
dt

(0) = 2,
d2y

dt2
(0) = -1.

Solution. The corresponding homogeneous equation,y£££ + 2
3y££ + 145

9 y£ = 0, has general
solutionyh = c1 + Ic2 sin 4t + c3 cos 4tM e-t/3 and a fundamental set of solutions for the
corresponding homogeneous equation isS = 91, e-t/3 cos 4t, e-t/3 sin 4t=.

In[668]:= DSolve[y£££[t] + 2/3y££[t] + 145/9y£[t] == 0,y[t],t]//

Simplify

Out[668]= 99y[t] Ø C[3] +
3

145
e-t/3

((12 C[1] - C[2]) Cos[4 t] + (C[1] + 12 C[2]) Sin[4 t])==

For e-t , the associated set of functions isF = 9e-t =. Because no element ofF is an
element ofS, we assume thatyp = Ae-t , where A is a constant to be determined. After
definingyp, we compute the necessary derivatives

In[669]:= yp[t ] = a Exp[-t];

yp£[t]

yp££[t]

yp£££[t]

Out[669]= -a e-t

Out[669]= a e-t

Out[669]= -a e-t

and substitute into the nonhomogeneous equation.

In[670]:= eqn = yp£££[t] + 2/3yp££[t] + 145/9yp£[t] == Exp[-t]

Out[670]= -
148

9
a e-t == e-t

Equating coefficients and solving forA gives usA = -9/148 soyp = - 9
148e

-t and a
general solution isy = yh + yp.SolveAlways[equation,variable]

attempts to solveequationso that it is true

for all values ofvariable.



4.3. HIGHER-ORDER LINEAR EQUATIONS 237

In[671]:= SolveAlways[eqn,t]

Out[671]= 99a Ø -
9

148
==

We verify the result withDSolve.

In[672]:= gensol = DSolve[y£££[t] + 2/3y££[t] + 145/9y£[t] == Exp[-t],

y[t],t]

Out[672]= 99y[t] Ø -
9 e-t

148
- J

3

145
-
36 i

145
N e

I- 1
3 -4 iM t

C[1]-

J
9

290
-

3 i

1160
N e

I- 1
3 +4 iM t

C[2] + C[3]==

To obtain a real-valued solution, we useComplexExpand:

In[673]:= ?ComplexExpand

"ComplexExpand[expr]expandsexprassuming

thatallvariablesarereal.ComplexExpand[

expr,x1,x2,...]expandsexprassuming

thatvariablesmatchinganyofthexiarecomplex."

In[674]:= s1 = ComplexExpand[y[t]/.gensol[[1]]]

Out[674]= -
9 e-t

148
+ C[3] - J

3

145
-
36 i

145
N e-t/3 C[1] Cos[4 t] - J

9

290
-

3 i

1160
N

e-t/3 C[2] Cos[4 t] + J
36

145
+
3 i

145
N e-t/3 C[1] Sin[4 t]-

J
3

1160
+
9 i

290
N e-t/3 C[2] Sin[4 t]

In[675]:= t1 = Coefficient[s1,Exp[-t/3]Cos[4t]]

Out[675]= J -
3

145
+
36 i

145
N C[1] - J

9

290
-

3 i

1160
N C[2]

In[676]:= t2 = Coefficient[s1,Exp[-t/3]Sin[4t]]

Out[676]= J
36

145
+
3 i

145
N C[1] - J

3

1160
+
9 i

290
N C[2]

In[677]:= t3 = C[3]

Out[677]= C[3]

In[678]:= Clear[c1,c2,c3]

s2 = Solve[{t1 == c1,t2 == c2,t3 == c3},{C[1],C[2],C[3]}]

Out[678]= 99C[1] Ø J -
1

6
- 2 iN (c1 + i c2),C[2] Ø J - 16 -

4 i

3
N (c1 - i c2),

C[3] Ø c3==

The result indicates that the form returned byDSolve is equivalent to

In[679]:= s3 = s1/.s2[[1]]//Simplify

Out[679]= c3 -
9 e-t

148
+ c1 e-t/3 Cos[4 t] + c2 e-t/3 Sin[4 t]

To apply the initial conditions, we computey(0) = 1, y£(0) = 2 andy££(0) = -1

In[680]:= e1 = (s3/.t- > 0) == 1

e2 = (D[s3,t]/.t- > 0) == 2

e3 = (D[s3,{t,2}]/.t- > 0) == -1
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Figure 4.19: The solution of the equation that satisfiesy(0) = 1, y£(0) = 2, andy££(0) =
-1

Out[680]= -
9

148
+ c1 + c3 == 1

Out[680]=
9

148
-
c1

3
+ 4 c2 == 2

Out[680]= -
9

148
-
143 c1

9
-
8 c2

3
== -1

and solve forc1, c2, andc3.

In[681]:= cvals = Solve[{e1,e2,e3}]

Out[681]= 99c1 Ø -
471

21460
,c2 Ø

20729

42920
,c3 Ø

157

145
==

The solution of the initial-value problem is obtained by substituting these values into
the general solution.

In[682]:= s3/.cvals[[1]]

Out[682]=
157

145
-
9 e-t

148
-
471 e-t/3 Cos[4 t]

21460
+
20729 e-t/3 Sin[4 t]

42920

We check by usingDSolve to solve the initial-value problem and graph the result with
Plot in Figure 4.19.

In[683]:= sol = DSolve[{y£££[t] + 2/3y££[t] + 145/9y£[t] == Exp[-t],

y[0] == 1,y£[0] == 2,y££[0] == -1},y[t],

t]

Out[683]= 99y[t] Ø
157

145
-
9 e-t

148
- J

471

42920
-
20729 i

85840
N e

I- 1
3 -4 iM t

-

J
471

42920
+
20729 i

85840
N e

I- 1
3 +4 iM t==

In[684]:= realsol = ComplexExpand[y[t]/.sol[[1]]]

Out[684]=
157

145
-
9 e-t

148
-
471 e-t/3 Cos[4 t]

21460
+
20729 e-t/3 Sin[4 t]

42920

In[685]:= Plot[realsol,{t,0,2p},AspectRatio- > Automatic]

Example 112. Solve

d8y

dt8
+

7
2

d7y

dt7
+

73
2

d6y

dt6
+

229
2

d5y

dt5
+

801
2

d4y

dt4
+ 976

d3y

dt3
+ 1168

d2y

dt2
+ 640

dy
dt

+ 128y = te-t + sin 4t + t.

Solution. Solving the characteristic equation

In[686]:= Solve[kˆ8 + 7/2kˆ7 + 73/2kˆ6 + 229/2kˆ5+

801/2kˆ4 + 976kˆ3 + 1168kˆ2 + 640k + 128 ==

0]
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Out[686]= 9{k Ø -1},{k Ø -1},{k Ø -1},9k Ø -
1

2
=,{k Ø -4 i},

{k Ø -4 i},{k Ø 4 i},{k Ø 4 i}=

shows us that the solutions arek1 = -1/2, k2 = -1 with multiplicity 3, andk3,4 =
≤4i, each with multiplicity 2. A fundamental set of solutions for the corresponding
homogeneous equation is

S = 9e-t/2, e-t , te-t , t2e-t ,cos 4t, t cos 4t,sin 4t, t sin 4t=

A general solution of the corresponding homogeneous equation is

yh = c1e-t/2 + Ic2 + c3t + c4t
2M e-t + Ic5 + c7tM sin 4t + Ic6 + c8tM cos 4t.

In[687]:= gensol = DSolve[D[y[t],{t,8}] + 7/2D[y[t],{t,7}]+

73/2D[y[t],{t,6}] + 229/2D[y[t],{t,5}]+

801/2D[y[t],{t,4}] + 976D[y[t],{t,3}]+

1168D[y[t],{t,2}] + 640D[y[t],t] + 128y[t] == 0,

y[t],t]

Out[687]= 99y[t] Ø

e-t C[1] + e-t t C[2] + e-t t2 C[3] + e-t/2 C[4] + C[6] Cos[4 t]+

t C[8] Cos[4 t] - C[5] Sin[4 t] - t C[7] Sin[4 t]==

The associated set of function forte-t is F1 = 9e-t , te-t =. We multiply F1 by tn, where
n is the smallest nonnegative integer so that no element oftnF1 is an element ofS:
t3F1 = 9t3e-t , t4e-t =. The associated set of functions for sin 4t is F2 = {cos 4t,sin 4t}.
We multiply F2 by tn, wheren is the smallest nonnegative integer so that no element of
tnF2 is an element ofS: t2F2 = 9t2 cos 4t, t2 sin 4t=. The associated set of functions for
t is F3 = {1, t}. No element ofF3 is an element ofS.

Thus, we search for a particular solution of the form

yp = A1t
3e-t + A2t

4e-t + A3t
2 cos 4t + A4t

2 sin 4t + A5 + A6t,

where theAi are constants to be determined.

After definingyp, we compute the necessary derivatives We have used Table twice for
typesetting purposes. You can
compute the derivatives usingTa-
ble[{n,D[yp[t],{t,n}]},{n,1,8}].In[688]:= yp[t ] = a[1]tˆ3Exp[-t] + a[2]tˆ4Exp[-t]+

a[3]tˆ2Cos[4t] + a[4]tˆ2Sin[4t] + a[5] + a[6]t

Out[688]= e-t t3 a[1] + e-t t4 a[2] + a[5] + t a[6] + t2 a[3] Cos[4 t]+

t2 a[4] Sin[4 t]

In[689]:= Table[{n,D[yp[t],{t,n}]},{n,1,4}]
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Out[689]= 991,3 e-t t2 a[1] - e-t t3 a[1]+

4 e-t t3 a[2] - e-t t4 a[2] + a[6] + 2 t a[3] Cos[4 t]+

4 t2 a[4] Cos[4 t] - 4 t2 a[3] Sin[4 t] + 2 t a[4] Sin[4 t]=,
92,6 e-t t a[1] - 6 e-t t2 a[1]+

e-t t3 a[1] + 12 e-t t2 a[2] - 8 e-t t3 a[2] + e-t t4 a[2]+

2 a[3] Cos[4 t] - 16 t2 a[3] Cos[4 t] + 16 t a[4] Cos[4 t]-

16 t a[3] Sin[4 t] + 2 a[4] Sin[4 t] - 16 t2 a[4] Sin[4 t]=,
93,6 e-t a[1] - 18 e-t t a[1] + 9 e-t t2 a[1] - e-t t3 a[1]+

24 e-t t a[2] - 36 e-t t2 a[2] + 12 e-t t3 a[2] - e-t t4 a[2]-

96 t a[3] Cos[4 t] + 24 a[4] Cos[4 t] - 64 t2 a[4] Cos[4 t]-

24 a[3] Sin[4 t] + 64 t2 a[3] Sin[4 t] - 96 t a[4] Sin[4 t]=,
94,-24 e-t a[1] + 36 e-t t a[1] - 12 e-t t2 a[1] + e-t t3 a[1]+

24 e-t a[2] - 96 e-t t a[2] + 72 e-t t2 a[2] - 16 e-t t3 a[2]+

e-t t4 a[2] - 192 a[3] Cos[4 t] + 256 t2 a[3] Cos[4 t]-

512 t a[4] Cos[4 t] + 512 t a[3] Sin[4 t] - 192 a[4] Sin[4 t]+

256 t2 a[4] Sin[4 t]==

In[690]:= Table[{n,D[yp[t],{t,n}]},{n,5,8}]

Out[690]= 995,60 e-t a[1] - 60 e-t t a[1] + 15 e-t t2 a[1] - e-t t3 a[1]-

120 e-t a[2] + 240 e-t t a[2] - 120 e-t t2 a[2] + 20 e-t t3 a[2]-

e-t t4 a[2] + 2560 t a[3] Cos[4 t] - 1280 a[4] Cos[4 t]+

1024 t2 a[4] Cos[4 t] + 1280 a[3] Sin[4 t]-

1024 t2 a[3] Sin[4 t] + 2560 t a[4] Sin[4 t]=,
96,-120 e-t a[1] + 90 e-t t a[1] - 18 e-t t2 a[1] + e-t t3 a[1]+

360 e-t a[2] - 480 e-t t a[2] + 180 e-t t2 a[2] - 24 e-t t3 a[2]+

e-t t4 a[2] + 7680 a[3] Cos[4 t] - 4096 t2 a[3] Cos[4 t]+

12288 t a[4] Cos[4 t] - 12288 t a[3] Sin[4 t]+

7680 a[4] Sin[4 t] - 4096 t2 a[4] Sin[4 t]=,
97,210 e-t a[1] - 126 e-t t a[1] + 21 e-t t2 a[1] - e-t t3 a[1]-

840 e-t a[2] + 840 e-t t a[2] - 252 e-t t2 a[2] + 28 e-t t3 a[2]-

e-t t4 a[2] - 57344 t a[3] Cos[4 t] + 43008 a[4] Cos[4 t]-

16384 t2 a[4] Cos[4 t] - 43008 a[3] Sin[4 t]+

16384 t2 a[3] Sin[4 t] - 57344 t a[4] Sin[4 t]=,
98,-336 e-t a[1]+

168 e-t t a[1] - 24 e-t t2 a[1] + e-t t3 a[1] + 1680 e-t a[2]-

1344 e-t t a[2] + 336 e-t t2 a[2] - 32 e-t t3 a[2] + e-t t4 a[2]-

229376 a[3] Cos[4 t] + 65536 t2 a[3] Cos[4 t]-

262144 t a[4] Cos[4 t] + 262144 t a[3] Sin[4 t]-

229376 a[4] Sin[4 t] + 65536 t2 a[4] Sin[4 t]==

and substitute into the nonhomogeneous equation, naming the resulteqn. At thispoint
we can either equate coefficients and solve forAi or use the fact thateqn is true forall
values oft.
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In[691]:= eqn = D[yp[t],{t,8}] + 7/2D[yp[t],{t,7}]+

73/2D[yp[t],{t,6}] + 229/2D[yp[t],{t,5}]+

801/2D[yp[t],{t,4}] + 976D[yp[t],{t,3}]+

1168D[yp[t],{t,2}] + 640D[yp[t],t] + 128yp[t] ==

t Exp[-t] + Sin[4t] + t//

Simplify

Out[691]= e-t (-867 a[1] + 7752 a[2] - 3468 t a[2]+

128 et a[5] + 640 et a[6] + 128 et t a[6])-

64 (369 a[3] - 428 a[4]) Cos[4 t]-

64 (428 a[3] + 369 a[4]) Sin[4 t] ==

t + e-t t + Sin[4 t]

We substitute in six values oft

In[692]:= sysofeqs = Table[eqn/.t- > n//N,{n,0,5}]
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Out[692]= {-867. a[1.]+

7752. a[2.]-

64. (369. a[3.]-

428. a[4.])+

128. a[5.]+

640. a[6.] == 0,

41.8332 (369. a[3.]-

428. a[4.])+

48.4354 (428. a[3.]+

369. a[4.])+

0.367879 (-867. a[1.]+

4284. a[2.]+

347.94 a[5.]+

2087.64 a[6.]) ==

0.611077,

9.312 (369. a[3.]-

428. a[4.])-

63.3189 (428. a[3.]+

369. a[4.])+

0.135335 (-867. a[1.]+

816. a[2.]+

945.799 a[5.]+

6620.59 a[6.]) ==

3.26003,

-54.0067 (369. a[3.]-

428. a[4.])+

34.3407 (428. a[3.]+

369. a[4.])+

0.0497871 (-867. a[1.]-

2652. a[2.]+

2570.95 a[5.]+

20567.6 a[6.]) ==

2.61279,

61.2902 (369. a[3.]-

428. a[4.])+

18.4258 (428. a[3.]+

369. a[4.])+

0.0183156 (-867. a[1.]-

6120. a[2.]+

6988.56 a[5.]+

62897.1 a[6.]) ==

3.78536,

-26.1173 (369. a[3.]-

428. a[4.])-

58.4285 (428. a[3.]+

369. a[4.])+

0.00673795

(-867. a[1.]-

9588. a[2.]+

18996.9 a[5.]+

189969. a[6.]) ==

5.94663}
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and then solve forAi .

In[693]:= coeffs =

Solve[sysofeqs,{a[1.],a[2.],a[3.],a[4.],a[5.],a[6.]}]

Out[693]= {{a[1.] Ø -0.00257819,

a[2.] Ø -0.000288351,

a[3.] Ø -0.0000209413,

a[4.] Ø -0.0000180545,

a[5.] Ø -0.0390625,

a[6.] Ø 0.0078125}}

yp is obtained by substituting the values forAi into yp and a general solution isy =
yh + yp. DSolve is able to find an exact solution.

In[694]:= gensol = DSolve[D[y[t],{t,8}] + 7/2D[y[t],{t,7}]+

73/2D[y[t],{t,6}] + 229/2D[y[t],{t,5}]+

801/2D[y[t],{t,4}] + 976D[y[t],{t,3}]+

1168D[y[t],{t,2}] + 640D[y[t],t] + 128y[t] ==

t Exp[-t] + Sin[4t] + t,y[t],t]//

Simplify

Out[694]= 99y[t] Ø -
5

128
-
2924806 e-t

24137569
+

t

128
-
86016 e-t t

1419857
-

1270 e-t t2

83521
-
38 e-t t3

14739
-
e-t t4

3468
+ e-t C[1] + e-t t C[2]+

e-t t2 C[3] + e-t/2 C[4] + J
9041976373

199643253056000
-

107 t2

5109520
+

C[6] + t J -
1568449

45168156800
+ C[8]NN Cos[4 t]+

J
13794625331

798573012224000
+

20406 t

352876225
-

369 t2

20438080
- C[5] - t C[7]N

Sin[4 t]==

Vari ation of Parameters

In the same way as with second-order equations, we assume that a particular solution
of the nth order linear equation (4.18) has the formyp = u1(t)y1 + u2(t)y2 + ÿ ÿ ÿ +
un(t)yn, whereS = {y1, y2, . . . , yn} is a fundamental set of solutions to the corresponding
homogeneous equation (4.19). With the assumptions

yp
£ = y1u1

£ + y2u2
£ + ÿ ÿ ÿ + ynun

£ = 0

yp
££ = y1

£u1
£ + y2

£u2
£ + ÿ ÿ ÿ + yn

£un
£ = 0

∂

yp
(n-1) = y1

(n-2)u1
£ + y2

(n-2)u2
£ + ÿ ÿ ÿ + yn

(n-2)un
£ = 0

(4.22)
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we obtain the equation

y1
(n-1)u1

£ + y2
(n-1)u2

£ + ÿ ÿ ÿ + yn
(n-1)un

£ = f (t). (4.23)

Equations (4.22) and (4.23) form a system ofn linear equations in the unknownsu1
£,

u2
£, . . ., un

£. Applying Cramer’s rule,

ui
£ =

Wi(S)
W(S)

, (4.24)

whereW(S) is given by (4.20) andWi(S) is the determinant of the matrix obtained by
replacing theith column of

ÁËËËËËËËËËË
È

y1 y2 . . . yn
y1

£ y2
£ . . . yn

£

∂ ∂ . . . ∂

y1
(n-1) y2

(n-1) . . . yn
(n-1)

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

by

ÁËËËËËËËËËË
È

0
0
∂

f (t)

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.

Example 113. Solvey(3) + 4y£ = sec 2t.

Solution. A general solution of the corresponding homogeneous equation isyh = c1 +
c2 cos 2t + c3 sin 2t; a fundamental set isS = {1,cos 2t,sin 2t} with WronskianW(S) =
8.

In[695]:= yh = DSolve[y£££[t] + 4y£[t] == 0,y[t],t]

Out[695]= 99y[t] Ø C[3] +
1

2
C[1] Cos[2 t] +

1

2
C[2] Sin[2 t]==

In[696]:= s = {1,Cos[2t],Sin[2t]};

ws = {s,D[s,t],D[s,{t,2}]};

MatrixForm[ws]

Out[696]= K
1 Cos[2 t] Sin[2 t]
0 -2 Sin[2 t] 2 Cos[2 t]
0 -4 Cos[2 t] -4 Sin[2 t]

O

In[697]:= dws = Simplify[Det[ws]]

Out[697]= 8

In[698]:= dws = Det[ws]//Simplify

Out[698]= 8

Using variation of parameters to find a particular solution of the nonhomogeneous
equation, we lety1 = 1, y2 = cos 2t, andy3 = sin 2t and assume that a particular
solution has the formyp = u1y1 + u2y2 + u3y3. Using the variation of parameters
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formula, we obtain

u£
1 =

1
8

ƒƒƒƒƒƒƒƒƒƒƒ

0 cos2t sin 2t
0 -2 sin 2t 2 cos2t

sec 2t -4 cos2t -4 sin 2t

ƒƒƒƒƒƒƒƒƒƒƒ
=

1
4

sec 2t so u1 =
1
8

ln | sec 2t + tan 2t |,

u£
2 =

1
8

ƒƒƒƒƒƒƒƒƒƒƒ

1 0 sin 2t
0 0 2 cos 2t
0 sec 2t -4 sin 2t

ƒƒƒƒƒƒƒƒƒƒƒ
= -

1
4

so u2 = -
1
4

t

and

u£
3 =

1
8

ƒƒƒƒƒƒƒƒƒƒƒ

1 cos2t 0
0 -2 sin 2t 0
0 -4 cos2t sec 2t

ƒƒƒƒƒƒƒƒƒƒƒ
= -

1
2

tan 2t so u3 =
1
8

ln | cos 2t |,

where we useDet andIntegrate to evaluate the determinants and integrals.

In[699]:= u1p = 1/8

Det[{{0,Cos[2t],Sin[2t]},{0,-2Sin[2t],2Cos[2t]},

{Sec[2t],-4Cos[2t],-4Sin[2t]}}]//

Simplify

Out[699]=
1

4
Sec[2 t]

In[700]:= Integrate[u1p,t]

Out[700]= -
1

8
Log[Cos[t] - Sin[t]] +

1

8
Log[Cos[t] + Sin[t]]

In[701]:= u2p = Simplify[1/8 Det[{{1,0,Sin[2t]},{0,0,2Cos[2t]},

{0,Sec[2t],-4Sin[2t]}}]]

Out[701]= -
1

4

In[702]:= Integrate[u2p,t]

Out[702]= -
t

4

In[703]:= u3p = Simplify[1/8 Det[{{1,Cos[2t],0},{0,-2Sin[2t],0},

{0,-4Cos[2t],Sec[2t]}}]]

Out[703]= -
1

4
Tan[2 t]

In[704]:= Integrate[u3p,t]

Out[704]=
1

8
Log[Cos[2 t]]

Thus, a particular solution of the nonhomogeneous equation is

yp =
1
8

ln | sec 2t + tan 2t | -
1
4

t cos 2t +
1
8

ln | cos 2t | sin 2t

and a general solution isy = yh + yp. We verify the calculations usingDSolve returns
an equivalent solution.

In[705]:= gensol =

DSolve[y£££[t] + 4y£[t] == Sec[2t],y[t],t]//Simplify

Out[705]= 99y[t] Ø
1

8
(8 C[3] - 2 (t - 2 C[1]) Cos[2 t]-

Log[Cos[t] - Sin[t]] + Log[Cos[t] + Sin[t]]+

(4 C[2] + Log[Cos[2 t]]) Sin[2 t])==
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4.3.4 Nonlinear Higher-Order Equations

Generally, rigorous results regarding nonlinear equations are very difficult to obtain.
In some cases, analysis is best carried out numerically and/or graphically. In other
situations, rewriting the equation as a system can be of benefit, which is discussed in
the next section. (See Example 117.)

4.4 Systems of Equations

4.4.1 Linear Systems

Wenow consider first-order linear systems of differential equations:

X£ = A(t)X + F(t), (4.25)

where

X(t) =

ÁËËËËËËËËËË
È

x1(t)
x2(t)

∂

xn(t)

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, A(t) =

ÁËËËËËËËËËË
È

a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

∂ ∂ . . . ∂

an1(t) an2(t) . . . ann(t)

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

, and F(t) =

ÁËËËËËËËËËË
È

f1(t)
f2(t)

∂

fn(t)

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.

Homogeneous Linear Systems

The corresponding homogeneous system of (4.25) is

X£ = AX. (4.26)

In the same way as with the previously discussed linear equations, ageneral solution
of (4.25) isX = Xh + Xp whereXh is a general solution of (4.26) andXp is a
particular solutionof the nonhomogeneous system (4.25).A particular solution to a system of ordi-

nary differential equations is a set of func-

tions that satisfy the system but do not con-

tain any arbitrary constants. That is, a partic-

ular solution to a system is a set of specific

functions,containing no arbitrary constants,

that satisfy the system.

If F1, F2, . . ., Fn aren linearly independent solutions of (4.26), ageneral solutionof
(4.26) is

X = c1F1 + c2F2 + ÿ ÿ ÿ + cnFn = IF1 F2 . . . FnM
ÁËËËËËËËËËË
È

c1
c2
∂

cn

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

= FC,

where

F = IF1 F2 . . . FnM and C =

ÁËËËËËËËËËË
È

c1
c2
∂

cn

˜̄
¯̄̄
¯̄̄
¯̄̄
˘

.
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F is called afundamental matrix for (4.26). If F is a fundamental matrix for (4.26),
F£ = AF or F£ - AF = 0.

A(t) constant

Suppose thatA(t) = A has constant real entries. Letl be an eigenvalue ofA with
corresponding eigenvectorv. Then, velt is a solution ofX£ = AX.

If l = a+bi, b ∫ 0, is an eigenvalue ofA and has corresponding eigenvectorv = a+bi,
two linearly independent solutions ofX£ = AX are

eat (a cosbt - b sinbt) and eat (a sinbt + b cosbt) . (4.27)

Example 114. Solve each of the following systems. (a)X£ = K-1/2 -1/3
-1/3 -1/2O X (b)

ÌÓ
Ô

x£ = 1
2y

y£ = - 1
8x

(c)
ÌÓ
Ô

dx/dt = - 1
4x + 2y

dy/dt = -8x - 1
4y

Solution. (a) With Eigensystem, we seethat the eigenvalues and eigenvectors of

A = K-1/2 -1/3
-1/3 -1/2O are l1 = -1/6 andl2 = -5/6 andv1 = K-1

1 O andv2 = K1
1O,

respectively.

In[706]:= capa = {{-1/2,-1/3},{-1/3,-1/2}};

Eigensystem[capa]

Out[706]= 99 -
5

6
,-

1

6
=,{{1,1},{-1,1}}=

ThenX1 = K-1
1 O e-t/6 andX2 = K1

1O e-5t/6 are two linearly independent solutions of

the system so a general solution isX = K-e-t/6 e-5t/6

e-t/6 e-5t/6O Kc1
c2

O; a fundamental matrix is

F = K-e-t/6 e-5t/6

e-t/6 e-5t/6O.

We useDSolve to find a general solution of the system by entering

In[707]:= gensol = DSolve[{x£[t] == -1/2x[t] - 1/3y[t],

y£[t] == -1/3x[t] - 1/2y[t]},{x[t],y[t]},

t]

Out[707]= 99x[t] Ø e-5 t/6 C[1] - e-t/6 C[2],y[t] Ø e-5 t/6 C[1] + e-t/6 C[2]==

We graph the direction field withPlotVectorField, which is contained in the
PlotField package located in theGraphics directory, in Figure 4.21.

Remark.After you have loaded thePlotField package,

PlotVectorField[{f[x,y],g[x,y]},{x,a,b},{y,c,d}]
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Figure 4.20: ThePlotField package

generates a basic direction field for the system{x£ = f (x, y), y£ = g(x, y)} for a § x § b
andc § y § d. (See Figure 4.20.)

In[708]:= << Graphics‘PlotField‘

In[709]:= pvf = PlotVectorField[{-1/2x - 1/3y,-1/3x - 1/2y},

{x,-1,1},{y,-1,1},Axes- > Automatic]

Several solutions are also graphed withParametricPlot and shown together with
the direction field in Figure 4.22.

In[710]:= initsol = DSolve[{x£[t] == -1/2x[t] - 1/3y[t],

y£[t] == -1/3x[t] - 1/2y[t],x[0] == x0,y[0] == y0},

{x[t],y[t]},t]

Out[710]= 99x[t] Ø -e-5 t/6 J
1

2
(-x0 - y0) +

1

2
e2 t/3 (-x0 + y0)N,

y[t] Ø e-5 t/6 J
1

2
e2 t/3 (-x0 + y0) +

x0 + y0

2
N==
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Figure 4.21: Direction field forX£ = AX

In[711]:= t1 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > 1,y0- > i}],

{t,0,15},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],{i,-1,1,2/8}];

t2 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > -1,y0- > i}],

{t,0,15},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],{i,-1,1,2/8}];

t3 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > i,y0- > 1}],

{t,0,15},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],{i,-1,1,2/8}];

t4 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > i,y0- > -1}],

{t,0,15},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],{i,-1,1,2/8}];

In[712]:= Show[t1,t2,t3,t4,

pvf,DisplayFunction- > $DisplayFunction,

AspectRatio- > Automatic]

(b) In matrix form the system is equivalent to the systemX£ = K 0 1/2
-1/8 0 O X. As in

(a), we useEigensystem to see that the eigenvalues and eigenvectors ofmathb f A=



250 CHAPTER 4. DIFFERENTIAL EQUATIONS

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 4.22: Direction field forX£ = AX along with various solution curves

K 0 1/2
-1/8 0 O arel1,2 = 0 ≤ 1

4 i andv1,2 = K1
0O ≤ K 0

1/2O i.

In[713]:= capa = {{0,1/2},{-1/8,0}};

Eigensystem[capa]

Out[713]= 99 -
i

4
,
i

4
=,{{2 i,1},{-2 i,1}}=

Two linearly independent solutions are thenX1 = K1
0O cos1

4t-K 0
1/2O sin 1

4t = K cos1
4t

- 1
2 sin 1

4tO

andX2 = K1
0O sin 1

4t + K 0
1/2O cos1

4t = K sin 1
4t

1
2 cos1

4tO and a general solution isX = c1X1 +

c2X2 = K cos1
4t sin 1

4t
- 1

2 sin 1
4t 1

2 cos1
4tO Kc1

c2
O or x = c1 cos1

4t + c2 sin 1
4t andy = -c1

1
2 sin 1

4t +

1
2c2 cos1

4t.

As before, we useDSolve to find a general solution.

In[714]:= gensol = DSolve[{x£[t] == 1/2y[t],y£[t] == -1/8x[t]},

{x[t],y[t]},t]

Out[714]= 99x[t] Ø -2 C[1] CosA
t

4
E + 2 C[2] SinA

t

4
E,

y[t] Ø C[2] CosA
t

4
E + C[1] SinA

t

4
E==

Initial-value problems for systems are solved in the same way as for other equations.
For example, entering
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Figure 4.23: (a) Graph ofx(t) andy(t) (b) Parametric plot ofx(t) versusy(t)

In[715]:= partsol = DSolve[{x£[t] == 1/2y[t],

y£[t] == -1/8x[t],x[0] == 1,y[0] == -1},{x[t],y[t]},

t]

Out[715]= 99x[t] Ø -2 J -
1

2
CosA

t

4
E + SinA

t

4
EN,

y[t] Ø -CosA
t

4
E -

1

2
SinA

t

4
E==

finds the solution that satisfiesx(0) = 1 andy(0) = -1.

We graphx(t) andy(t) together as well as parametrically withPlot andParamet-
ricPlot, respectively, in Figure 4.23.

In[716]:= p1 = Plot[Evaluate[{x[t],y[t]}/.partsol],{t,0,8p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.4]},

DisplayFunction- > Identity];

p2 = ParametricPlot[

Evaluate[{x[t],y[t]}/.partsol],{t,0,8p},

DisplayFunction- > Identity,AspectRatio- > Automatic];

Show[GraphicsArray[{p1,p2}]]

Wecan also usePlotVectorField andParametricPlot to graph the direction
field and/or various solutions as we do next in Figure 4.24.

In[717]:= pvf = PlotVectorField[{1/2y,-1/8x},{x,-2,2},

{y,-1,1},DisplayFunction- > Identity];

In[718]:= initsol = DSolve[{x£[t] == 1/2y[t],

y£[t] == -1/8x[t],x[0] == x0,y[0] == y0},

{x[t],y[t]},t]

Out[718]= 99x[t] Ø -2 J -
1

2
x0 CosA

t

4
E - y0 SinA

t

4
EN,

y[t] Ø y0 CosA
t

4
E -

1

2
x0 SinA

t

4
E==
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Figure 4.24: Notice that all non-trivial solutions are periodic

In[719]:= t1 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > i,y0- > i}],

{t,0,8p},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],

{i,0,1,1/8}];

In[720]:= Show[t1,pvf,DisplayFunction- > $DisplayFunction,

AspectRatio- > Automatic]

(c) In matrix form, the system is equivalent to the systemX£ = K- 1
4 2

-8 - 1
4

O X. The

eigenvalues and corresponding eigenvectors ofA = K- 1
4 2

-8 - 1
4

O are found to bel1,2 =

- 1
4 ≤ 4i andv1,2 = K1

0O ≤ K0
2O i with Eigensystem.

In[721]:= capa = {{-1/4,2},{-8,-1/4}};

Eigensystem[capa]

Out[721]= 99 -
1

4
- 4 i,-

1

4
+ 4 i=,{{i,2},{-i,2}}=

A general solution is then

X = c1X1 + c2X2

= c1e-t/4 KK1
0O cos 4t - K0

2O sin 4tO + c2e-t/4 KK1
0O sin 4t + K0

2O cos 4tO

= e-t/4 Cc1 K cos 4t
-2 sin 4tO + c2 K sin 4t

2 cos4tOG = e-t/4 K cos 4t sin 4t
-2 sin 4t 2 cos4tO Kc1

c2
O

or x = e-t/4 Ic1 cos 4t + c2 sin 4tM andy = e-t/4 I2c2 cos 4t - 2c1 sin 4tM. We confirm this
result usingDSolve.

In[722]:= gensol = DSolve[

{x£[t] == -1/4x[t] + 2y[t],y£[t] == -8x[t] - 1/4y[t]},

{x[t],y[t]},t]



4.4. SYSTEMS OF EQUATIONS 253

Out[722]= 99x[t] Ø C[2] J -
1

2
i CosAJ4 +

i

4
N tE +

1

2
i CoshAJ

1

4
+ 4 iN tE+

1

2
SinAJ4 +

i

4
N tE -

1

2
i SinhAJ

1

4
+ 4 iN tEN+

C[1] J -
1

2
CosAJ4 +

i

4
N tE -

1

2
CoshAJ

1

4
+ 4 iN tE-

1

2
i SinAJ4 +

i

4
N tE +

1

2
SinhAJ

1

4
+ 4 iN tEN,

y[t] Ø C[2] JCosAJ4 +
i

4
N tE + CoshAJ

1

4
+ 4 iN tE+

i SinAJ4 +
i

4
N tE - SinhAJ

1

4
+ 4 iN tEN+

C[1] J - i CosAJ4 +
i

4
N tE + i CoshAJ

1

4
+ 4 iN tE+

SinAJ4 +
i

4
N tE - i SinhAJ

1

4
+ 4 iN tEN==

In[723]:= gensol[[1,1,2]]

Out[723]= C[2] J -
1

2
i CosAJ4 +

i

4
N tE +

1

2
i CoshAJ

1

4
+ 4 iN tE+

1

2
SinAJ4 +

i

4
N tE -

1

2
i SinhAJ

1

4
+ 4 iN tEN+

C[1] J -
1

2
CosAJ4 +

i

4
N tE -

1

2
CoshAJ

1

4
+ 4 iN tE-

1

2
i SinAJ4 +

i

4
N tE +

1

2
SinhAJ

1

4
+ 4 iN tEN

In[724]:= ComplexExpand[gensol[[1,1,2]]]//Simplify

Out[724]= (C[1] Cos[4 t] - C[2] Sin[4 t]) J - CoshA
t

4
E + SinhA

t

4
EN

In[725]:= (C[1] Cos[4 t] - C[2] Sin[4 t]) I - e-t/4M

In[726]:= ComplexExpand[gensol[[1,2,2]]]//Simplify

Out[726]= 2 (C[2] Cos[4 t] + C[1] Sin[4 t]) JCoshA
t

4
E - SinhA

t

4
EN

In[727]:= 2 (C[2] Cos[4 t] + C[1] Sin[4 t]) (e-t/4)

In this case, we obtained the real form of the solution by selecting the portion of the
expression that we wanted to write in terms of exponential functions

and then accessedTrigToExp from theAlgebraic Manipulation palette
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to obtain the result.

We use PlotVectorField andParametricPlot to graph the direction field
associated with the system along with various solutions in Figure 4.25.

In[728]:= pvf = PlotVectorField[{1/4x + 2y,-8x - 1/4y},

{x,-1,1},{y,-1,1},Axes- > Automatic,

DisplayFunction- > Identity];

In[729]:= initsol = DSolve[{x£[t] == -1/4x[t] + 2y[t],

y£[t] == -8x[t] - 1/4y[t],x[0] == x0,y[0] == y0},

{x[t],y[t]},t]

Out[729]= 99x[t] Ø x0 Cos[4 t] CoshA
t

4
E +

1

2
y0 CoshA

t

4
E Sin[4 t]-

x0 Cos[4 t] SinhA
t

4
E -

1

2
y0 Sin[4 t] SinhA

t

4
E,

y[t] Ø 2 J
1

2
y0 Cos[4 t] CoshA

t

4
E - x0 CoshA

t

4
E Sin[4 t]-

1

2
y0 Cos[4 t] SinhA

t

4
E + x0 Sin[4 t] SinhA

t

4
EN==

In[730]:= t1 = Table[ParametricPlot[

Evaluate[{x[t],y[t]}/.initsol/.{x0- > 1,y0- > i}],

{t,0,15},DisplayFunction- > Identity,

PlotStyle- > GrayLevel[0.3]],

{i,-1,1,2/8}];

In[731]:= Show[t1,pvf,DisplayFunction- > $DisplayFunction,

PlotRange- > {{-1,1},{-1,1}},AspectRatio- > Automatic]

Last, we illustrate how to solve an initial-value problem and graph the resulting solu-
tions by finding the solution that satisfies the initial conditionsx(0) = 100 andy(0) = 10
and then graphing the results withPlot andParametricPlot in Figure 4.26.

In[732]:= partsol = DSolve[{x£[t] == -1/4x[t] + 2y[t],

y£[t] == -8x[t] - 1/4y[t],x[0] == 100,y[0] == 10},

{x[t],y[t]},t]

Out[732]= 99x[t] Ø 100 Cos[4 t] CoshA
t

4
E + 5 CoshA

t

4
E Sin[4 t]-

100 Cos[4 t] SinhA
t

4
E - 5 Sin[4 t] SinhA

t

4
E,

y[t] Ø 2 J5 Cos[4 t] CoshA
t

4
E - 100 CoshA

t

4
E Sin[4 t]-

5 Cos[4 t] SinhA
t

4
E + 100 Sin[4 t] SinhA

t

4
EN==
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Figure 4.25: Various solutions and direction field associated with the system

In[733]:= p1 = Plot[Evaluate[{x[t],y[t]}/.partsol],{t,0,20},

PlotStyle- > {GrayLevel[0],GrayLevel[0.4]},

DisplayFunction- > Identity,PlotRange- > All];

p2 = ParametricPlot[

Evaluate[{x[t],y[t]}/.partsol],{t,0,20},

DisplayFunction- > Identity,AspectRatio- > Automatic];

Show[GraphicsArray[{p1,p2}]]
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Figure 4.26: (a) Graph ofx(t) andy(t) (b) Parametric plot ofx(t) versusy(t) (For help
with Show andGraphicsArray, use the Help Browser as shown in Figure 4.27)
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Figure 4.27: Mathematica’s help forGraphicsArray
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4.4.2 Nonhomogeneous Linear Systems

Generally, undetermined coefficients is difficult to implement for nonhomogeneous
linear systems as the choice for the particular solution must be very carefully made.

Variation of parameters is implemented in much the same way as for first-order linear
equations.

Let Xh be a general solution to the corresponding homogeneous system of (4.25),X
a general solution of of (4.25), andXp a particular solution of (4.25). It then follows
thatX - Xp is a solution to the corresponding homogeneous system soX - Xp = Xh
and, consequently,X = Xh + Xp.

A particular solution of (4.25) is found in much the same way as with first order linear
equations. LetF be a fundamental matrix for the corresponding homogeneous system.
We assume that a particular solution has the formXp = FU(t). Differentiating Xp
gives us

Xp
£ = F£U + FU£.

Substituting into (4.25) results in

F£U + FU£ = AFU + F
FU£ = F
U£ = F-1F

U = ‡ F-1F dt,

where we have used the fact thatF£U - AFU = (F£ - AF) U = 0. It follows that

Xp = F ‡ F-1F dt. (4.28)

A general solution is then

X = Xh + Xp

= FC + F ‡ F-1F dt

= F KC + ‡ F-1F dtO = F ‡ F-1F dt,

where we have incorporated the constant vectorC into the indefinite integralŸ F-1F dt.

Example 115. Solve the initial-value problem

X£ = K 1 -1
10 -1O X - K t cos 3t

t sint + t cos 3tO , X(0) = K 1
-1O .

Remark.In traditional form, the system is equivalent to

ÌÓ
Ô

x£ = x - y - t cos 3t

y£ = 10x - y - t sint - t cos 3t
, x(0) = 1, y(0) = -1.



258 CHAPTER 4. DIFFERENTIAL EQUATIONS

Solution. The corresponding homogeneous system isX£
h = K 1 -1

10 -1O Xh. Theeigen-

values and corresponding eigenvectors ofA = K 1 -1
10 -1O arel1,2 = ≤3i andv1,2 =

K1
1O ≤ K 0

-3O i, respectively.

In[734]:= capa = {{1,-1},{10,-1}};

Eigensystem[capa]

Out[734]= {{-3 i,3 i},{{1 - 3 i,10},{1 + 3 i,10}}}

A fundamental matrix isF = K sin 3t cos 3t
sin 3t - 3 cos3t cos 3t + 3 sin 3tO with inverseF-1 =

K
1
3 cos 3t + sin 3t - 1

3 cos 3t
- 1

3 sin 3t + cos 3t 1
3 sin 3t O.

In[735]:= fm = {{Sin[3t],Sin[3t] - 3Cos[3t]},

{Cos[3t],Cos[3t] + 3Sin[3t]}};

fminv = Inverse[fm]//Simplify

Out[735]= 991
3

Cos[3 t] + Sin[3 t],Cos[3 t] -
1

3
Sin[3 t]=,

9 -
1

3
Cos[3 t],

1

3
Sin[3 t]==

We now computeF-1F(t)

In[736]:= ft = {-t Cos[3t],-t Sin[t] - t Cos[3t]};

step1 = fminv.ft

Out[736]= 9(-t Cos[3 t] - t Sin[t]) JCos[3 t] -
1

3
Sin[3 t]N-

t Cos[3 t] J
1

3
Cos[3 t] + Sin[3 t]N,

1

3
t Cos[3 t]2 +

1

3
(-t Cos[3 t] - t Sin[t]) Sin[3 t]=

andŸ F-1F(t) dt.

In[737]:= step2 = Integrate[step1,t]

Out[737]= 9 1

864
I - 288 t2 + 36 Cos[2 t]-

216 t Cos[2 t] - 9 Cos[4 t] + 108 t Cos[4 t] - 16 Cos[6 t]+

48 t Cos[6 t] + 108 Sin[2 t] + 72 t Sin[2 t] - 27 Sin[4 t]-

36 t Sin[4 t] - 8 Sin[6 t] - 96 t Sin[6 t]M,
1

864
I72 t2 - 36 Cos[2 t] + 9 Cos[4 t] + 4 Cos[6 t] + 24 t Cos[6 t]-

72 t Sin[2 t] + 36 t Sin[4 t] - 4 Sin[6 t] + 24 t Sin[6 t]M=

A general solution of the nonhomogeneous system is thenF IŸ F-1F(t) dt + CM.

In[738]:= Simplify[fm.step2]
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Out[738]= 9 1

288
I27 Cos[t] - 4 II1 + 6 t + 18 t2M Cos[3 t] + 27 t Sin[t]-

Sin[3 t] + 6 t Sin[3 t] + 18 t2 Sin[3 t]MM,
1

288
I - 36 t Cos[t] - 4 I1 - 6 t + 18 t2M Cos[3 t] - 45 Sin[t]-

4 Sin[3 t] - 24 t Sin[3 t] + 72 t2 Sin[3 t]M=

It is easiest to useDSolve to solve the initial-value problem directly as we do next.

In[739]:= check = DSolve[{x£[t] == x[t] - y[t] - t Cos[3t],y£[t] ==

10x[t] - y[t] - t Sin[t] - t Cos[3t],x[0] == 1,y[0] == -1},

{x[t],y[t]},t]

General :: "spell1" : "Possiblespellingerror :

newsymbolnamëcheckïs similar

to existing symbol C̈heck.̈"

Out[739]= 99x[t] Ø
1

288
I - 9 Cos[t] + 297 Cos[3 t] - 72 t2 Cos[3 t]+

36 t Sin[t] + 192 Sin[3 t] - 24 t Sin[3 t]M,
y[t] Ø

1

288
I - 9 Cos[t] - 36 t Cos[t] - 279 Cos[3 t] - 72 t Cos[3 t]-

72 t2 Cos[3 t] - 45 Sin[t] + 36 t Sin[t] + 1107 Sin[3 t]-

24 t Sin[3 t] - 216 t2 Sin[3 t]M==

After using?Evaluate to obtain basic information regarding theEvaluate func-
tion, the solutions are graphed withPlot andParametricPlot in Figure 4.28.

In[740]:= ?Evaluate

"Evaluate[expr]causesexprtobeevaluatedeven

ifitappearsastheargumentofafunction

whoseattributesspecifythatitshouldbe

heldunevaluated."

In[741]:= p1 = Plot[Evaluate[{x[t],y[t]}/.check],{t,0,8p},

PlotStyle- > {GrayLevel[0],GrayLevel[0.4]},

DisplayFunction- > Identity];

p2 = ParametricPlot[

Evaluate[{x[t],y[t]}/.check],{t,0,8p},

DisplayFunction- > Identity,AspectRatio- > Automatic];

Show[GraphicsArray[{p1,p2}]]

4.4.3 Nonlinear Systems

Nonlinear systems of differential equations arise in numerous situations. Rigorous
analysis of the behavior of solutions to nonlinear systems is usually very difficult, if
not impossible.

To generate numerical solutions of equations, useNDSolve. (See Figure 4.9.)
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Figure 4.28: (a) Graph ofx(t) (in black) andy(t) (in gray) (b) Parametric plot ofx(t)
versusy(t)

Example 116 (Van-der-Pol’s equation). Van-der-Pol’s equationx££ + m Ix2 - 1M x£ +
x = 0 can be written as the system

x£ = y

y£ = -x - m Ix2 - 1M y.
(4.29)

If m = 2/3, x(0) = 1, andy(0) = 0, (a) findx(1) andy(1). (b) Graph the solution that
satisfies these initial conditions.

Solution. We useNDSolve together to solve (4.29) withm = 2/3 subject tox(0) = 1
andy(0) = 0. We name the resulting numerical solutionnumsol.

In[742]:= numsol = NDSolve[{x£[t] == y[t],

y£[t] == -x[t] - 2/3(x[t]ˆ2 - 1)y[t],x[0] == 1,y[0] == 0},

{x[t],y[t]},{t,0,30}]

Out[742]= BoxData({{x[t] Ø InterpolatingFunction[{{0.,30.}}," <> "][t],y[t] Ø
InterpolatingFunction[{{0.,30.}}," <> "][t]}})

We evaluatenumsol if t = 1 to see thatx(1) º .5128 andy(1) º -.9692.

In[743]:= {x[t],y[t]}/.numsol/.t- > 1

Out[743]= {{0.512849,-0.969199}}

Plot, ParametricPlot, andParametricPlot3D are used to graphx(t) and
y(t) together in Figure 4.29 (a); a three-dimensional plot,(t, x(t), y(t)) is shown in Figure
4.29 (b); a parametric plot is shown in Figure 4.29 (c); and the limit cycle is shown
more clearly in Figure 4.29 (d) by graphing the solution for 20§ t § 30.For help regardingShow and Graphic-

sArray, see Figure 4.27.)
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Figure 4.29: (a)x(t) andy(t) (b) A three-dimensional plot (c)x(t) versus y(t) (d) x(t)
versusy(t) for 20 § t § 30

In[744]:= p1 = Plot[Evaluate[{x[t],y[t]}/.numsol],{t,0,15},

PlotStyle- > {GrayLevel[0],GrayLevel[0.4]},

DisplayFunction- > Identity];

p2 = ParametricPlot3D[Evaluate[{t,x[t],y[t]}/.numsol],

{t,0,15},DisplayFunction- > Identity];

p3 = ParametricPlot[

Evaluate[{x[t],y[t]}/.numsol],{t,0,15},

AspectRatio- > Automatic,DisplayFunction- > Identity];

p4 = ParametricPlot[

Evaluate[{x[t],y[t]}/.numsol],{t,20,30},

AspectRatio- > Automatic,DisplayFunction- > Identity];

Show[GraphicsArray[{{p1,p2},{p3,p4}}]]

Linearization

Consider the autonomous system of the form An autonomous systemdoes not explicitly

depend on the independent variable,t. That

is, if you write the system omitting all argu-

ments, the independent variable (typicallyt)

does not appear.
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x1
£ = f1 Ix1, x2, . . . , xnM

x2
£ = f2 Ix1, x2, . . . , xnM
∂

xn
£ = fn Ix1, x2, . . . , xnM .

(4.30)

An equilibrium (or rest) point, E = Ix1
*, x2

*, . . . , xn
*M, of (4.30) is a solution of the

system

f1 Ix1, x2, . . . , xnM = 0

f2 Ix1, x2, . . . , xnM = 0

∂

fn Ix1, x2, . . . , xnM = 0.

(4.31)

TheJacobianof (4.30) is

J Ix1, x2, . . . , xnM =

ÁËËËËËËËËËËËËËË
È

∑ f1
∑x1

∑ f1
∑x2

. . . ∑ f1
∑xn

∑ f2
∑x1

∑ f2
∑x2

. . . ∑ f2
∑xn

∂ ∂ . . . ∂
∑ fn
∑x1

∑ fn
∑x2

. . . ∑ fn
∑xn

˜̄
¯̄̄
¯̄̄
¯̄̄
¯̄̄
¯
˘

.

The rest point,E, is locally stable if and only if all the eigenvalues ofJ(E) have
negative real part. IfE is not locally stable,E is unstable.

Example 117 (Duffing’s Equation). Consider the forcedpendulum equation with
damping,

x££ + kx£ + w sinx = F(t). (4.32)

Recall the Maclaurin series for sinx: sinx = x- 1
3! x

3+ 1
5! x

5- 1
7! x

7+ . . .. Using sinx º x,
(4.32) reduces to the linear equationx££ + kx£ + wx = F(t).

On the other hand, using the approximation sinx º x - 1
6x3, we obtain x££ + kx£ +

w Ix - 1
6x3M = F(t). Adjusting the coefficients ofx andx3 and assuming that F(t) =

F coswt gives usDuffing’s equation:

x££ + kx£ + cx+ ex3 = F coswt, (4.33)

wherek andc are positive constants.

Let y = x£. Then, y£ = x££ = F coswt - kx£ - cx - ex3 = F coswt - ky - cx - ex3 and
we can write (4.33) as the system

x£ = y

y£ = F coswt - ky- cx- ex3
(4.34)
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Assuming thatF = 0 results in the autonomous system

x£ = y

y£ = -cx- ex3 - ky.
(4.35)

The rest points of system (4.35) are found by solving

x£ = y
y£ = -cx- ex3 - ky,

resulting inE0 = (0,0).

In[745]:= Solve[{y == 0,-c x - e xˆ3 - k y == 0},{x,y}]

Out[745]= 9{y Ø 0,x Ø 0},9y Ø 0,x Ø -
i

0
c

0
e

=,9y Ø 0,x Ø
i

0
c

0
e

==

Wefind the Jacobian of (4.35) ins1, evaluate the Jacobian atE0,

In[746]:= s1 = {{0,1},{-c - 3e xˆ2,-k}};

s2 = s1/.x- > 0
Out[746]= {{0,1},{-c,-k}}

and then compute the eigenvalues withEigenvalues.

In[747]:= s3 = Eigenvalues[s2]

Out[747]= 91
2

J - k -

1
-4 c + k2N,

1

2
J - k +

1
-4 c + k2N=

Becausek andc are positive,k2 - 4c < k2 so the real part of each eigenvalue is always
negative ifk2 - 4c ∫ 0. Thus,E0 is locally stable.

For the autonomous system

x£ = f (x, y)
y£ = g(x, y),

Bendixson’s theorem states that iffx(x, y) + gy(x, y) is a continuous function that is
either always positive or always negative in a particular regionR of the plane, then the
system has no limit cycles inR. For (4.35) we have

d
dx

(y) +
d
dy

I-cx- ex3 - kyM = -k,

which is always negative. Hence, (4.35) has no limit cycles and it follows thatE0 is
globally, asymptotically stable.

In[748]:= D[y,x] + D[-c x - e xˆ3 - k y,y]

Out[748]= -k

We usePlotVectorField andParametricPlot to illustrate two situations that
occur. In Figure 4.30 (a), we usec = 1, e = 1/2, andk = 3. In this case,E0 is astable
node. On the other hand, in Figure 4.30 (b), we usec = 10, e = 1/2, andk = 3. In this
case,E0 is astable spiral.
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In[749]:= << Graphics‘PlotField‘

pvf1 =

PlotVectorField[{y,-x - 1/2xˆ3 - 3y},{x,-2.5,2.5},{

y,-2.5,2.5},DisplayFunction- > Identity];

In[750]:= numgraph[init ,c ,opts ] := Module[{numsol},

numsol = NDSolve[

{x£[t] == y[t],y£[t] == -c x[t] - 1/2x[t]ˆ3 - 3y[t],

x[0] == init[[1]],y[0] == init[[2]]},

{x[t],y[t]},{t,0,10}];

ParametricPlot[Evaluate[{x[t],y[t]}/.numsol],

{t,0,10},opts,DisplayFunction- > Identity]]

In[751]:= i1 = Table[numgraph[{2.5,i},1],{i,-2.5,2.5,1/2}];

i2 = Table[numgraph[{-2.5,i},1],{i,-2.5,2.5,1/2}];

i3 = Table[numgraph[{i,2.5},1],{i,-2.5,2.5,1/2}];

i4 = Table[numgraph[{i,-2.5},1],{i,-2.5,2.5,1/2}];

In[752]:= c1 = Show[i1,i2,i3,i4,

pvf1,PlotRange- > {{-2.5,2.5},{-2.5,2.5}},

AspectRatio- > Automatic];

In[753]:= pvf2 =

PlotVectorField[{y,-10x - 1/2xˆ3 - 3y},{x,-2.5,2.5},

{y,-2.5,2.5},DisplayFunction- > Identity];

In[754]:= i1 = Table[numgraph[{2.5,i},10],{i,-2.5,2.5,1/2}];

i2 = Table[numgraph[{-2.5,i},10],{i,-2.5,2.5,1/2}];

i3 = Table[numgraph[{i,2.5},10],{i,-2.5,2.5,1/2}];

i4 = Table[numgraph[{i,-2.5},10],{i,-2.5,2.5,1/2}];

In[755]:= c2 = Show[i1,i2,i3,i4,

pvf2,PlotRange- > {{-2.5,2.5},{-2.5,2.5}},

AspectRatio- > Automatic];

In[756]:= Show[GraphicsArray[{c1,c2}]]

Example 118 (Predator-Prey).Thepredator-prey equations take the form

dx
dt

= ax- bxy

dy
dt

= dxy- cy

wherea, b, c, andd are positive constants.x represents the size of the prey population
at timet while y represents the size of the predator population at timet. We useSolve
to calculate the rest points. In this case, there is one boundary rest point,E0 = (0,0)
and one interior rest point,E1 = (c/d, a/b).

In[757]:= rps = Solve[{a x - b x y == 0,d x y - c y == 0},{x,y}]

Out[757]= 9{x Ø 0,y Ø 0},9x Ø
c

d
,y Ø

a

b
==

The Jacobian is then found usingD.
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Figure 4.30: (a) The origin is a stable node (b) The origin is a stable spiral

In[758]:= jac = {{D[a x - b x y,x],D[a x - b x y,y]},

{D[d x y - c y,x],D[d x y - c y,y]}};

MatrixForm[jac]

Out[758]= Ja - b y -b x
d y -c + d x

N

E0 is unstable because one eigenvalue ofJ(E0) is positive. For the linearized system,
E1 is a center because the eigenvalues ofJ(E1) are complex conjugates.

In[759]:= Eigenvalues[jac/.rps[[2]]]

Out[759]= 9 - i
0
a

0
c,i

0
a

0
c=

In fact, E1 is a center for the nonlinear system as illustrated in Figure 4.31, where we
have useda = 1, b = 2, c = 2, andd = 1. Notice that there are multiple limit cycles
aroundE1 = (1/2,1/2).

In[760]:= BoxData({<< Graphics‘PlotField‘,pvf = PlotVectorField[{x-2x y,2x y-
y},{x,0,2},{y,0,2},DisplayFunction- > Identity]; })

In[761]:= numgraph[init ,opts ] := Module[{numsol},

numsol = NDSolve[

{x£[t] == x[t] - 2x[t]y[t],y£[t] == 2x[t]y[t] - y[t],

x[0] == init[[1]],y[0] == init[[2]]},

{x[t],y[t]},{t,0,50}];

ParametricPlot[Evaluate[{x[t],y[t]}/.numsol],

{t,0,10},opts,DisplayFunction- > Identity]]

In[762]:= i1 = Table[numgraph[{i,i}],{i,3/20,1/2,1/20}];

Show[i1,pvf,DisplayFunction- > $DisplayFunction,

PlotRange- > {{0,2},{0,2}},AspectRatio- > Automatic]

In this model, a stable interior rest state is not possible.
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Figure 4.31: Multiple limit cycles about the interior rest point

The complexity of the behavior of solutions to the system increase based on the as-
sumptions made. Typical assumptions include adding satiation terms for the predator
(y) and/or limiting the growth of the prey (x). Thestandard predator-prey equations
of Kolmogorov type,

x£ = axK1 -
1
K

xO -
mxy
a + x

y£ = yK
mx

a + x
- sO ,

(4.36)

incorporates both of these assumptions.

We useSolve to find the three rest points of system 4.36. LetE0 = (0,0), E1 = (k,0)
denote the two boundary rest points, andE2 the interior rest point.

In[763]:= rps = Solve[

{a x (1 - 1/k x) - m x y/(a + x) == 0,y (m x/(a + x) - s) == 0},

{x,y}]

Out[763]= 9{x Ø 0,y Ø 0},{y Ø 0,x Ø k},

9y Ø -
a (-k m + a s + k s) a

k (m - s)2
,x Ø -

a s

-m + s
==

The Jacobian,J, is calculated next ins1.
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In[764]:= s1 = {{D[a x (1 - 1/k x) - m x y/(a + x),x],

D[a x (1 - 1/k x) - m x y/(a + x),y]},

{D[y (m x/(a + x) - s),x],D[y (m x/(a + x) - s),y]}};

MatrixForm[s1]

Out[764]= K

m x y

(a + x)2
-
m y

a + x
-
x a

k
+ I1 -

x

k
M a -

m x

a + x
J -

m x

(a + x)2
+

m

a + x
N y -s +

m x

a + x

O

BecauseJ(E0) has one positive eigenvalue,E0 is unstable.

In[765]:= e0 = s1/.rps[[1]];

MatrixForm[e0]

eigs0 = Eigenvalues[e0]

Out[765]= Ja 0
0 -s

N

Out[765]= {-s,a}

The stability ofE1 is determined by the sign ofm- s- am/(a + k).

In[766]:= e1 = s1/.rps[[2]];

MatrixForm[e1]

eigs1 = Eigenvalues[e1]

Out[766]= K
-a -

k m

a + k
0

k m

a + k
- s

O

Out[766]= 9 k m

a + k
- s,-a=

The eigenvalues ofJ(E2) are quite complex.

In[767]:= e2 = s1/.rps[[3]];

MatrixForm[e2]

eigs2 = Eigenvalues[e2]

Out[767]= K

a s a

k (-m + s)
+

a2 m s (-k m + a s + k s) a

k (m - s)2 (-m + s) Ia - a s
-m+s

M2
+
a m (-k m + a s + k s) a

k (m - s)2 Ia - a s
-m+s

M
+ J1 +

a s

k (-m + s)
N a

a m s

(-m + s) Ia -

-

a (-k m + a s + k s) K a m s

(-m+s) Ia- a s
-m+sM2 + m

a- a s
-m+s

O a

k (m - s)2
-s -

a m

(-m + s) Ia

O

Out[767]= 9 1

2 k m (m - s)
I - s (a m - k m + a s + k s) a-

0
I - 4 k m (m - s) s Ik m2 - a m s - 2 k m s + a s2 + k s2M a+

s2 (a m - k m + a s + k s)2 a2MM,
1

2 k m (m - s)
I - s (a m - k m + a s + k s) a+

0
I - 4 k m (m - s) s Ik m2 - a m s - 2 k m s + a s2 + k s2M a+

s2 (a m - k m + a s + k s)2 a2MM=
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Instead, we compute the characteristic polynomial ofJ(E2), p(l) = c2l2 + c1l + c0,
and examine the coefficients.c2 is always positive.

In[768]:= cpe2 = CharacteristicPolynomial[e2,l]//Simplify

Out[768]=
a s a (m (-s + l) + s (s + l)) + k (m - s) (-s a (s + l) + m (s a + l2))

k m (m - s)

In[769]:= c0 = cpe2/.l- > 0//Simplify

Out[769]=
s (k (m - s) - a s) a

k m

In[770]:= c1 = Coefficient[cpe2,l]//Simplify

Out[770]=
s (k (-m + s) + a (m + s)) a

k m (m - s)

In[771]:= c2 = Coefficient[cpe2,lˆ2]//Simplify

Out[771]= 1

On the other hand,c0 andm- s- am/(a + k) have the same sign because

In[772]:= c0/eigs1[[1]]//Simplify

Out[772]=
(a + k) s a

k m

is always positive. In particular, ifm - s - am/(a + k) < 0, E1 is stable. Becausec0
is negative, by Descartes’ rule of signs, it follows thatp(l) will have one positive root
and henceE2 will be unstable.

On the other hand, ifm - s - am/(a + k) > 0 so thatE1 is unstable,E2 may be either
stable or unstable. To illustrate these two possibilities leta = K = m = 1 anda = 1/10.
Werecalculate.

In[773]:= a = 1;k = 1;m = 1;a = 1/10;

In[774]:= rps = Solve[

{a x (1 - 1/k x) - m x y/(a + x) == 0,y (m x/(a + x) - s) == 0},

{x,y}]

Out[774]= 9{x Ø 0,y Ø 0},{y Ø 0,x Ø 1},

9y Ø
10 - 11 s

100 (-1 + s)2
,x Ø -

s

10 (-1 + s)
==

In[775]:= s1 = {{D[a x (1 - 1/k x) - m x y/(a + x),x],

D[a x (1 - 1/k x) - m x y/(a + x),y]},

{D[y (m x/(a + x) - s),x],D[y (m x/(a + x) - s),y]}};

MatrixForm[s1]

Out[775]= K
1 - 2 x +

x y

I 1
10 + xM2

-
y

1
10 + x

-
x

1
10 + x

K -
x

I 1
10 + xM2

+
1

1
10 + x

O y -s +
x

1
10 + x

O

In[776]:= e2 = s1/.rps[[3]];

cpe2 = CharacteristicPolynomial[e2,l]//Simplify

Out[776]=
-11 s3 + s2 (21 - 11 l) - 10 l2 + s (-10 + 9 l + 10 l2)

10 (-1 + s)

In[777]:= c0 = cpe2/.l- > 0//Simplify

Out[777]= s -
11 s2

10
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In[778]:= c1 = Coefficient[cpe2,l]//Simplify

Out[778]=
(9 - 11 s) s

10 (-1 + s)

In[779]:= c2 = Coefficient[cpe2,lˆ2]//Simplify

Out[779]= 1

UsingInequalittySolve, we seethat

1. c0, c1, andc2 are positive if 9/11 < s < 10/11 while

2. c0 andc2 are positive andc1 is negative if 0< s < 9/11.

In[780]:= << Algebra‘InequalitySolve‘

InequalitySolve[c0 > 0 && c1 > 0,s]

Out[780]=
9

11
< s <

10

11

In[781]:= InequalitySolve[c0 > 0 && c1 < 0,s]

Out[781]= 0 < s <
9

11

In the first situation,E2 is stable; in the secondE2 is unstable.

Using s = 19/22, we graph the direction field associated with the system as well as
various solutions in Figure 4.32. In the plot, notice that all nontrivial solutions approach
E2 º (.63, .27); E2 is stable–a situation that cannot occur with the standard predator-
prey equations.

In[782]:= rps/.s- > 19/22//N

Out[782]= {{x Ø 0,y Ø 0},{y Ø 0,x Ø 1.},

{y Ø 0.268889,x Ø 0.633333}}

In[783]:= << Graphics‘PlotField‘

pvf = PlotVectorField[

a x (1 - 1/k x) - m x y/(a + x) ,y (m x/(a + x) - 19/22)},{

x,0,1},{y,0,1},DisplayFunction- > Identity];

In[784]:= numgraph[init ,s ,opts ] := Module[{numsol},

numsol = NDSolve[

{x£[t] == a x[t] (1 - 1/k x[t]) - m x[t] y[t]/(a + x[t]),

y£[t] == y[t] (m x[t]/(a + x[t]) - s),

x[0] == init[[1]],y[0] == init[[2]]},

{x[t],y[t]},{t,0,50}];

ParametricPlot[Evaluate[{x[t],y[t]}/.numsol],

{t,0,50},opts,DisplayFunction- > Identity]]

In[785]:= i1 = Table[numgraph[{1,i},19/22],{i,0,1,1/10}];

i2 = Table[numgraph[{i,1},19/22],{i,0,1,1/10}];

Show[i1,i2, pvf,DisplayFunction- > $DisplayFunction,

PlotRange- > {{0,1},{0,1}},AspectRatio- > Automatic]

On the other hand, usings = 8/11 (so thatE2 is unstable) in Figure 4.33 we see that all
nontrivial solutions appear to approach a limit cycle.
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Figure 4.32:s = 19/22

In[786]:= rps/.s- > 8/11//N

Out[786]= {{x Ø 0,y Ø 0},{y Ø 0,x Ø 1.},

{y Ø 0.268889,x Ø 0.266667}}

In[787]:= i1 = Table[numgraph[{1,i},8/11],{i,0,1,1/10}];

i2 = Table[numgraph[{i,1},8/11],{i,0,1,1/10}];

p1 = Show[i1,i2, pvf,

PlotRange- > {{0,1},{0,1}},AspectRatio- > Automatic,

DisplayFunction- > $DisplayFunction]

The limit cycle is shown more clearly in Figure 4.34.

In[788]:= numgraph[{0.759,0.262},

8/11,DisplayFunction- > $DisplayFunction,

PlotRange- > {{0,1},{0,1}},AspectRatio- > Automatic]

4.5 Exercises

1. Solve each of the following differential equations by hand and verify your result
with Mathematica.

(a) 12y££ + y£ - y = 0

(b) 9y££ + 6y£ + 1 = 0

(c) y££ + 1
64y = 0
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Figure 4.33:s = 8/11
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Figure 4.34: A better view of the limit cycle without the direction field
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(d) 9y££ + 6y£ + 82y = 0

(e) y£££ - y£ = 0

(f) y£££ - y££ + y£ - y = 0

(g) y£ + ky = 0, k constant

(h) y£ - ycott = sint

(i) y££ - k2y = 0, k > 0 constant

(j) y££ + k2y = 0, k > 0 constant

(k) y££ + y = 0, y(0) = 0, y£(0) = 0

(l) y££ + y = 1, y(0) = 0, y£(0) = 0

(m) y££ + y = sint, y(0) = 0, y£(0) = 0

(n) y££ + y = sect

(o) y£££ - y£ = 0

(p) y£££ + y£ = 1

(q) y£££ + y£ = et

(r) y£££ + y£ = sect

2. (a) Use Mathematica to solvey££ - 4ycot 4t = sin 4t. (b) Solvey££ - 4ycot 4t =
sin 4t by hand and simplify your solution to obtainy = (C + t) sin 4t, where C
is an arbitrary constant. (c) Show that the solutions obtained in (a) and (b) are
equivalent.

3. Find a differential equation with general solutiony = c1et + c2te
t + c3 cos 2t +

c4 sin 2t + c5t cos 2t + c6t sin 2t.

4. Is it possible for a linear differential equation with real constant coefficients to
have general solutiony = c1t

2 + c2t
3? If so, state a linear differential equation

with real constant coefficients that has general solutiony = c1t
2 + c2t

3. If not,
explain why.

5. Is it possible for a linear differential equation to have general solutiony = c1t
2 +

c2t
3? If so, state a linear differential equation that has general solutiony =

c1t
2 + c2t

3. If not, explain why.

6. (a) If there is no forcing (that is,F = 0), show that Duffing’s equation (see

Example 117) can be written as the system
ÌÓ
Ô

x£ = y

y£ = -cx- ex3 - ky
. (b) Find and

classify the rest points of this system. (c) Illustrate the stability by graphing
various solutions to this system ifk = c = 1 ande = 1

6.

7. (a) Look up the Existence and Uniqueness theorem for first-order linear equa-
tions in your text. (b) Does the fact that

dy
dt

-
1
t
y =

1

t2 (4t cos 4t - sin 4t), y(0) = 0

have infinitely many solutions contradict the Existence and Uniqueness theorem?
Why or why not?
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