
High Performance Cholesky and

Symmetric Indefinite

Factorizations with Applications

Jonathan David Hogg

Doctor of Philosophy

University of Edinburgh

2010

Abstract

The process of factorizing a symmetric matrix using the Cholesky (LLT) or indefinite (LDLT)
factorization of A allows the efficient solution of systems Ax = b when A is symmetric. This
thesis describes the development of new serial and parallel techniques for this problem and
demonstrates them in the setting of interior point methods.

In serial, the effects of various scalings are reported, and a fast and robust mixed precision
sparse solver is developed. In parallel, DAG-driven dense and sparse factorizations are developed
for the positive definite case. These achieve performance comparable with other world-leading
implementations using a novel algorithm in the same family as those given by Buttari et al. for
the dense problem. Performance of these techniques in the context of an interior point method
is assessed.

3

4

Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Jonathan David Hogg)

5

6

Acknowledgements

I would like to thank my PhD supervisor Julian Hall for all his help and interest over the years.
Among the other staff members at Edinburgh, I would like to single out my second supervisor
Andreas Grothey for his support, and Jacek Gondzio who took on the role of supervising me
for some projects.

My colleagues at RAL are also deserving of praise, with much of the work at the core of
this thesis done during my year working with them. Specific thanks to Jennifer Scott and John
Reid for correcting various technical reports and teaching me how to write better — both code
and English.

My proofreader and girlfriend Gwen Fyfe, for reading and checking the English, even if most
of the mathematics went over her head. Also for support and kisses.

Many improvements and corrections were also suggested by the Thesis examiners Jacek
Gondzio and Patrick Amestoy.

Finally to my office mates and fellow PhD students down the years, for their support and
conversation: Kristian Woodsend, Danny Hamilton, Hugh Griffiths, Ed Smith, and the rest.

I will breifly mention the research that didn’t quite work out or make it into this thesis:
deficient basis simplex methods, structured algebraic modelling languages, parallel generalised
upper bound simplex codes and reduced interior point methods.

7

8

Contents

Abstract 3

I Background 17

1 Coding for modern processors 19

1.1 Programming language . 19

1.2 Overview . 19

1.3 Caches . 20

1.4 Branch prediction . 21

1.5 SIMD instructions . 22

1.6 BLAS . 22

1.7 Parallel programming models . 22

1.7.1 OpenMP . 22

1.7.2 MPI . 23

1.7.3 POSIX threads . 23

1.7.4 Task-based . 23

1.8 IEEE floating point . 24

1.9 Machines . 24

2 Solving linear systems 27

2.1 Dense Cholesky factorization . 27

2.1.1 Serial implementation . 28

2.1.2 Traditional parallel implementation . 29

2.1.3 DAG-based parallel implementation . 30

2.2 Symmetric indefinite factorization . 31

2.3 Sparse matrices . 32

2.4 Sparse symmetric factorization . 32

2.4.1 Preorder . 35

2.4.2 Analyse . 35

2.4.3 Factorize . 38

2.4.4 Solve . 40

2.4.5 Parallel sparse Cholesky . 40

2.5 Sparse symmetric indefinite factorization . 41

2.5.1 Scaling . 41

2.6 Out-of-core working . 43

2.7 Refinement of direct solver results . 43

2.7.1 Iterative refinement . 43

2.7.2 FGMRES . 44

2.7.3 Mixed precision . 44

2.8 HSL solvers . 45

2.8.1 MA57 . 45

2.8.2 HSL MA77 . 45

9

3 Interior point methods 47

3.1 Karush-Kahn-Tucker conditions . 47

3.2 Solution of the KKT systems . 48

3.3 Higher order methods . 49

3.3.1 Mehrotra’s predictor-corrector algorithm 50

3.3.2 Higher order correctors . 50

3.4 Practical implementation . 50

3.4.1 Augmented and normal equations . 51

3.4.2 Numerical errors . 51

3.5 Nonlinear optimization . 52

II Improved algorithms 53

4 Which scaling? 57

4.1 Why scale? . 57

4.2 The scalings . 57

4.3 Methodology . 58

4.3.1 Performance profiles . 59

4.4 Numerical experiments . 59

4.4.1 Scaling by the radix . 59

4.4.2 Use of unscaled matrix for refinement . 60

4.4.3 Comparison of hybrid scalings . 60

4.4.4 Overall results . 63

4.5 Interesting problems . 66

4.6 Conclusions . 66

5 A mixed-precision solver 71

5.1 Mixed precision . 71

5.2 Test environment . 72

5.3 On single precision . 72

5.4 Basic algorithm . 73

5.4.1 Solving in single . 75

5.5 Iterative refinement . 75

5.6 Preconditioned FGMRES . 76

5.7 Design and implementation of the mixed-precision strategy 80

5.7.1 MA79 factor solve . 80

5.7.2 MA79 refactor solve . 82

5.7.3 MA79 solve . 82

5.7.4 Errors and warnings . 82

5.8 Numerical results . 83

5.9 Conclusions and future directions . 84

6 Scheduling priorities for dense DAG-based factorizations 87

6.1 Introduction . 87

6.2 Task dispatch . 87

6.3 Prioritisation . 89

6.4 Implementation . 93

6.5 Numerical results . 95

6.5.1 Choice of scheduling technique . 95

6.5.2 Scalability . 96

6.5.3 Block sizes . 97

6.5.4 Comparison with other codes . 97

6.6 Conclusions . 98

10

7 A DAG-based sparse solver 101
7.1 Solver framework . 101

7.1.1 Analyse . 101
7.1.2 Solve . 102

7.2 Nodal data structures . 102
7.3 Tasks . 102
7.4 Task dispatch engine . 105
7.5 Increasing cache locality in update between . 106
7.6 PaStiX . 108

7.6.1 The PaStiX algorithm . 108
7.6.2 Major differences . 109

7.7 Numerical results . 110
7.7.1 Test environment . 110
7.7.2 Dense comparison . 111
7.7.3 Effect of node amalgamation . 112
7.7.4 Block size . 113
7.7.5 Local task stack size . 113
7.7.6 Speedups and speed for HSL MA87 . 114

7.8 Comparisons with other solvers . 115
7.9 Comparisons on other architectures . 118
7.10 Future work . 118

8 Improved algorithms applied to interior point methods 121
8.1 DAG-driven symmetric-indefinite solver . 121

8.1.1 Modifications . 122
8.1.2 Results on general problems . 122

8.2 Ipopt interfaces . 125
8.3 Numerical results . 126

8.3.1 Netlib results . 126
8.3.2 Larger problem results . 129

8.4 Conclusions . 130

9 Conclusions and Future Work 131

A Test set details 141

B Full Ipopt results 155
B.1 Netlib lp problems . 155
B.2 Mittelmann benchmark problems . 159

11

12

Notation

Notational conventions

Capital italic letters, e.g. A,L, P Matrices.
Bold lower case italic letters, e.g. b,x Vectors.
Lower case italic letters, e.g. i, ǫ Scalars.
Subscripted italic lower case i-th component of vector x.

letters,
e.g. xi

Double subscripted lower case Entry in row i, column j of matrix A.
italic letters,

e.g. aij

Double subscripted capital Sub-block of matrix A in position (i, j).
italic letters,

e.g. Aij

Superscripted with brackets, Value of variable at superscripted
e.g. x(k), H(j)

iteration.
Calligraphic subscripted letter, Lower-triangular non-zero set of

e.g. Aj
corresponding matrix e.g. A.

Subscripted with brackets, Submatrix of A containing rows
e.g. A(i:j)(k:l) i to j, and columns k to l.

Value with hat, e.g. x̂ Exact analytic solution.

Specific variables and matrices

A Matrix to be factorized (n× n); alternatively the constraint matrix for a
linear program (m× n).

D Diagonal matrix with either 1× 1 or 2× 2 blocks on the diagonal.
I The identity matrix.
L Lower triangular matrix; factor of A = LLT or A = LDLT .
P Permutation matrix.
S Scaling matrix.
b Right hand side matrix in the equation Ax = b.
e The vector of all ones.
ei The ith column of the identity matrix.
x Unknown vector to be determined.
ǫ Machine epsilon value under IEEE arithmetic.

13

14

Introduction

The solution of the system
Ax = b

is one of the fundamental building blocks of numerical algorithms from optimization to struc-
tural modelling and statistics. The fast and accurate solution is critical for disciplines as wide
ranging as engineering, chemistry, bioinformatics and social science. Such problems are normally
categorised according to the properties of the matrix A. The principal split is into symmetric
and unsymmetric problems; the symmetric case is simplest and algorithms that exploit this are
generally faster than those that do not. Historically, many fast unsymmetric algorithms have
evolved as generalisations of symmetric ones. Thus, in this thesis, we shall consider only the
symmetric case.

The other common categorical split is into dense and sparse. A matrix A is considered to
be sparse in a given context if a sparsity-exploiting algorithm gives better performance than
a dense one. As processor speed has risen the most computationally challenging problems
typically feature matrices that are both sparse and structured due to the limited way such
large problems are generated. Exceptions of course exist, such as those encountered in various
branches of data mining. This thesis will concentrate substantially on sparse matrices.

With the explosion of multicore processors in the desktop computers typically used by re-
searchers, all algorithms must become parallel in order to fully exploit the available processing
power. This has been referred to as “the end of the free lunch,” where performance of numerical
algorithms has stopped continuously improving as a result of ever increasing transistor densi-
ties in computer processors. The return of vector processing in the form of general purpose
computing on graphics processing units (GPGPU) represents another fundamental change to
underlying architectural assumptions that must be addressed. Future manycore systems are
likely to exhibit features of both.

To support the new work in this thesis, the first three chapters (Part I) present existing
work in the field and establish a solid theoretical foundation on which the new work set out in
the remaining chapters (Part II) is based. Chapter 1 gives the context of modern computing,
Chapter 2 the theoretical and practical basis to the practical solution of linear equations and
Chapter 3 presents a basic theory of Interior Point Methods that represent a major use of linear
solvers.

The contributions of this thesis presented in Part II are the development of several novel
and practical methods to address the solution of Ax = b for large sparse symmetric matrices on
modern architectures. The requirement to address numerical stability has the potential to seri-
ously disrupt sparse matrix factorization, and Chapter 4 surveys scaling techniques that reduce
the impact of badly scaled problems. On both multicore and GPU platforms significant differ-
ences between single and double precision computational speeds can be exploited to accelerate
solution through the use of the practical mixed precision techniques developed in Chapter 5. To
fully exploit current and future multicore and manycore architectures fine-grained and adap-
tive parallelism must be exploited. DAG-based dense and sparse Cholesky factorizations are
described in Chapters 6 and 7 that expose and exploit such parallelism. Finally Chapter 8 takes
the work of previous chapters and applies it in the context of interior point methods.

15

16

Part I

Background

17

Chapter 1

Coding for modern processors

Modern processors have many special hardware features to allow the fast, efficient and safe
execution of standard operations. While most of these are primarily aimed at common desktop
applications and games, many may also be exploited for high performance computing (HPC).

Modern compilers are written to generate code that uses these hardware features, but are
limited by their heuristic understanding of an algorithm. For example a typical compiler will
be able to generate vectorised versions of simple loops, however a more complicated (but equiv-
alent) loop will not meet the compiler’s requirements for vectorisation. Through the careful
reformulation of our algorithms we can state useful information more clearly and explicitly to
the compiler, avoiding problematic language features. The limiting case of such reformulation
is hand-optimized code, though that is undesirable except in a small number of critical sections.

This chapter presents a quick tour of those features we need to pay explicit attention to in a
linear algebra context, along with common techniques for dealing with them. The descriptions
herein draw on many sources including my personal experience, but in particular the work of
Biggar et al. [2005] and the Intel optimization guides [Intel Corporation 2006; 2007].

1.1 Programming language

Almost all results in this thesis are based on codes written using Fortran 95 [ISO 1997] with
some Fortran 2003 [ISO 2004] features (particularly allocatable components of derived types).
Common HPC languages are Fortran and C/C++, and as expertise was more readily available
in the former it was chosen. Further, for work which became part of (or used) the HSL software
library [HSL 2007] the use of Fortran was essential.

1.2 Overview

Current supercomputers and desktops are built around commodity multicore processors. For
our purposes these can be viewed as a number of processing cores grouped into one or more
processor packages. These processor packages also include a small amount of fast memory,
known as cache, which is connected to one or more of the cores. Externally each processor
package is connected to the main memory, in addition to peripherals such as disk or network
resources. Clusters are a collection of such computing nodes connected via a network. Figure 1.1
shows a typical HPC node containing two quad core Intel processors.

There are three major constraints to how fast a program will run [Graham et al. 2004]:

Execution speed: How many floating point operations can the core complete per unit time?
Normally measured in floating point operations per second (FLOPS).

memory bandwidth: How fast can we supply data to the core to be operated on?
Normally measured in Megabytes per second (MB/s).

Memory latency: What is the delay between requesting data and receiving it?
Normally measured in either nanoseconds or cycles.

19

Main Memory

L2
Cache

L2
Cache

Core 4

Core 5

Core 6

Core 7

L2
Cache

L2
Cache

Package 0 Package 1 Package 2 Package 3

Processor 0 Processor 1

Core 0

Core 1

Core 2

Core 3

L1 L1 L1

L1 L1

L1

L1 L1

Figure 1.1: Typical HPC node

In an ideal world we would be limited only by execution speed. However most numerical codes
are constrained by the memory properties.

1.3 Caches

In order to address both memory bandwidth and latency issues, a hierarchy of caches exists. A
cache is a smaller and faster memory which holds a partial copy of main memory; if accessing
a memory location which is already cached, then you will wait fewer cycles for the data than if
it came from main memory.

Memory is divided into cache lines (typically 8 bytes), and the most recently accessed cache
lines are kept in memory. When a memory request is made it is first requested from the cache;
if it is not present then a cache miss occurs and the newly accessed cache line is retrieved from
main memory, replacing the least recently referenced line in the cache. Specific cache lines from
main memory are normally only stored in a limited number of possible locations in cache. This
reduces the hardware and/or time required to locate the given line when it is required. The
extreme of this optimization is a directly mapped cache, though this typically leads to high
cache eviction rates and the consequent large number of cache misses this can cause. Typical
caches in modern processors are 8 or 16 way associative (each cache line can be in one of either
8 or 16 places).

To reduce cache misses hardware prefetching is commonly used to bring lines in to cache
before they are requested. Special hardware detects memory access patterns with a fixed stride,
predicting which cache lines will be required next. Software prefetching, where the programmer
or compiler inserts special prefetch instructions, may also be used.

Consider, for example, performing a naive matrix-vector multiplication. We loop over the
matrix columnwise as it is stored in column-major order. On the first multiply we bring the
data for a11 and x1 into cache. As these entries sit on a cache line this also brings in (say)
a21, a31, a41, x2, x3 and x4. As we progress the prefetcher notices that two stride one access
sequences are occurring, and requests the cache line containing a51 before we require it. If we
continue to the end of the first column, the prefetcher has brought entries a12 and xn+1 into
cache. Clearly we will use the entries of A, but not the (non-existent) entries of x: there is
some wastage. Eventually we will have run out of space in our cache, so the least recently
touched entries, A(1:m)1 will be evicted to make room. The x entries are kept in cache as they
are continuously reused.

There are up to three levels of cache between main memory and each processing core in
common chips today. In this hierarchy each cache is smaller and faster than the one below it
(with main memory at the bottom and the core at the top). The cache closest to the processor
is known as the level 1 cache, the next is the level 2, and so forth. Typical cache characteristics
are given in Table 1.1.

Techniques to exploit caches attempt to maximize computation with data once it has been
loaded into cache. This can normally be achieved for dense linear algebra through the use of
block data formats and blocked algorithms, with carefully tuned block sizes. Some advanced
compilers can automatically reorder and block nested loops for optimal performance; this can be

20

Pentium IV Intel Core 2 AMD Istanbul
Size 16KiB 32KiB 64KiB

Level 1 Latency 12 3 -
Size 1-2MiB 2-6MiB 512KiB

Level 2
Latency 18-20 14 -
Size - - 6MiB

Level 3 Latency - - -
Size 1-64GiB

Main Memory
Latency 100+

Table 1.1: Cache characteristics for common processors. Latency is in clocks for floating point
operations.

encouraged by keeping such loops simple with an inner iteration count that is clearly constant
across outer iterations.

If blocking is not possible then a constant stride access pattern, preferably of stride one,
should be used. This allows the hardware prefetcher and compiler to prevent all but a few cache
misses. The small stride means that fewer virtual memory lookups have to be performed and
fewer cache lines are used.

The full exploitation of caches can result in an order of magnitude difference in performance
for codes which have a high ratio of floating point operations to memory footprint, such as
matrix-matrix multiplication.

1.4 Branch prediction

If we consider a single processing core, we find that it is not a simple black box. Each operation
goes through a number of different stages, at a rate of one per clock cycle. These stages form a
pipeline typically between 12 and 20 stages in length. Splitting of instructions into micro-ops
and using out-of-order execution allows much of the top level cache latency to be effectively
hidden. However, if a branch is encountered there is a problem: we must complete the branch
comparison before we can determine the subsequent operations.

This problem is tackled by predicting which branch will be taken based on heuristics and
past experience. This typically works well for loops (which repeat on most iterations) and for
conditions which are either occasionally true or occasionally false. It does not work well where
both branches have a similar likelihood of being taken. However, even with prediction, branches
represent an overhead which is best avoided.

We can reduce the number of branch predictions required by reordering static conditions
outside of loops. For example, if a debugging flag is set at the start of the program but is
tested in an inner loop, we could instead have two loops: one for when the debugging flag is set,
and one for when it is not. This avoids the overhead of the branching operation and reduces
the number of entries in the branch prediction table, particularly if the compiler unrolls the
loop. Algorithms can also be carefully written to avoid the need for some tests on boundary
conditions by setting up a halo of values which produce the correct behaviour. For example,
rather than testing if we are on the first or last iteration of a loop to avoid an out-of-bounds
array access, we can make the array larger and set the 0th and (n + 1)th entries to a value
which has no effect. An alternative is to duplicate the code inside the loop for these special
cases and only run the loop over indices 1 through n− 1.

The number of expensive branch mispredictions (which flush the pipeline) can be reduced by
reordering and/or combining nested conditional statements such that the majority of tests are
predictable. We can transform conditional numerical statements into functions instead. Con-
sider the equivalence of the following two lines of Fortran if a is either 0 or 1:

if(a.eq.0) b = b + 1
b = b + (1-a)

21

Level Type of operation Examples Speed (MFLOPS)
1 Vector-Vector daxpy y ← αx+ y 345

dgemv y ← αAx+ βy 736
2 Matrix-Vector dtrsv x← L−1x 714

dsyr A← αxxT +A 1531
dgemm C ← αAB + βC 9303

3 Matrix-Matrix dtrsm B ← αL−1B 9171

Table 1.2: The Basic Linear Algebra Subprograms. Speeds are maximum achieved over a range
of operation sizes measured on fox (see Table 1.4) using the Goto BLAS.

1.5 SIMD instructions

Commodity chips now include a variety of Single Instruction Multiple Data (SIMD) extensions
(SSE, SSE2, 3DNOW! etc.) aimed at multimedia decoding. These allow the use of instructions
which act on a vector of data and perform fused multiply-add and vector load operations more
efficiently than standard operations. They use additional special floating point units, and are
key to achieving full floating point performance.

While these operations are not available explicitly from Fortran, they can be produced by
vectorising compilers if the parallelism is clearly exhibited through the use of array slice notation
and/or simple explicit loops.

1.6 BLAS

Due to the dominance of dense matrix operations in common linear algebra codes, much opti-
mization effort has been concentrated upon them. This has resulted in a number of platform
specific libraries which share a common interface, known as the Basic Linear Algebra Subpro-
grams, or BLAS [Lawson et al. 1979; Dongarra et al. 1986; Dongarra et al. 1990].

The BLAS are split into three levels, representing different algorithmic complexities. These
are summarised in Table 1.2. Clearly the use of the higher level matrix-matrix operations is
preferable to multiple calls to lower level matrix-vector or vector-vector routines. This consid-
erably higher performance is due to the high computation to memory ratio, which allows full
exploitation of the caches.

1.7 Parallel programming models

As almost all computers are now equipped with multicore processors, and most supercomputers
consist of multiway-multicore nodes, it is essential to exploit parallelism to achieve good per-
formance. There is a plethora of available parallel programming models, however most are not
easily portable, or not available to Fortran programmers. This section summarises the main
models we shall consider.

1.7.1 OpenMP

OpenMP is designed to allow the programming of shared memory systems through the addi-
tion of extra directives to an otherwise serial code. These directives take the form of special
comments around sections of code which are to be parallellised. When an OpenMP compliant
compiler is used these sections of code are translated into the correct parallel (threaded) code.
If a non-OpenMP compilation is required, the same source code can be used to generate a serial
program with the same functionality.

OpenMP has a clearly defined memory model which does not directly map onto hardware,
but allows compilers to do clever and (hopefully) performance-enhancing tricks. All variables
are either global or thread private . Each thread has its own version of thread private variables,
and these may only be accessed by that thread. Global variables are shared between threads.
However the OpenMP memory model allows each thread to have its own transient copy. These

22

copies of the global variables are only guaranteed to be synchronised to the real variable when
an OpenMP flush directive is encountered (most common OpenMP directives imply one or
more flushes). Additional unrequested synchronisation of these transient copies can occur at
any time. Further, care must be taken with explicit flushes to ensure that code may not be
reordered by an optimizing compiler in a fashion that causes subtle bugs.

Rather than using OpenMP in its originally designed mode (for loops) we instead often use
it as a portable basis to build more complex schemes. These make heavy use of locks and the
flush directive. Locks are shared variables which may be set or unset using functions from
the OpenMP run-time library, and in their simplest form correspond to binary semaphores
[Dijkstra 1965]. Only one thread may have a lock set at any given time; other threads must
wait for the lock to be released before they can acquire it. For example if threads A and B
both attempt to acquire the lock by calling the subroutine omp set lock(lock), then only one
of them will return. The other will not return from that subroutine until the winning thread
releases the lock by calling omp unset lock(lock). The use of locks allows much finer control
over synchronisation than traditional atomic, barrier, or critical synchronisation as they
can be associated with particular elements of data structures and arrays.

OpenMP is not designed for use in a distributed memory configuration, though Intel sup-
port Cluster OpenMP [Intel Corporation 1996]. This translates the OpenMP programs into
a distributed memory application, though good performance is only really possible when the
computation work between synchronisations is large.

The OpenMP standard [OpenMP Architecture Review Board 2008] and the book Using
OpenMP [Chapman et al. 2008] are good sources of more detailed information. OpenMP is
directly supported by most major Fortran and C compilers.

1.7.2 MPI

MPI stands for Message Passing Interface, and is the most common method for programming
distributed memory machines. It can also be used on shared memory nodes, where it typically
performs well, but not as well as codes which take specific advantage of shared memory.

In this programming model, processes on different hosts send messages to each other contain-
ing data. Processes optionally block until they receive data needed to continue. More advanced
features of MPI-2 include one-sided communication (direct access to another process’s memory
space) and parallel I/O.

MPI supports both Fortran and C, and more detailed information can be found in the books
of Snir et al. [1996], Gropp et al. [1999] and the MPI standards [Message Passing Interface Forum
2008a; 2008b]. It is possible to combine MPI and OpenMP in the same program to reflect a
cluster of SMP machines, though the reward for the extra effort may not be worthwhile.

1.7.3 POSIX threads

The basic mechanism for multi-tasking under unix-like systems is process forking, where a single
process splits into two. The overheads of this mechanism are large, and the POSIX Threads
(PThreads) API was designed as a light-weight alternative. PThreads are now supported by
most operating systems. They can be easily accessed via C and thus wrapped for use from
Fortran if necessary. These are often used to implement OpenMP and MPI on shared memory
systems. We have chosen not to use this interface as there is no direct language support
for Fortran and full portability is not guaranteed. While PThreads offer a wider range of
synchonisation primitives than OpenMP (such as general semaphores and monitors), we do not
require anything more than simple locks, and benefit from the higher level thread management
interfaces offered by OpenMP.

1.7.4 Task-based

Recently there has been much work done on task-based parallelism. In this model the work
is split into tasks, which may optionally have dependencies. These tasks are then scheduled
on different processing cores until no work remains. During the execution of a task, additional
tasks may be added as dependencies are satisfied.

23

Single Double
Sign + Exponent + Significand 32 = 1 + 8 + 23 64 = 1 + 11 + 52
Epsilon (min ǫ : 1 + ǫ 6= 1) 2−24 ≈ 6.0× 10−8 2−53 ≈ 1.1× 10−16

Underflow Threshold 2−126 ≈ 1.2× 10−38 2−1022 ≈ 2.3× 10−308

Overflow Threshold (2− 2−23)× 2127 (2− 2−52)× 21023

≈ 3.4× 1038 ≈ 1.8× 10308

Table 1.3: Summary of the IEEE 754-2008 standard, comparing single and double precision.

The most recent OpenMP 3.0 standard [OpenMP Architecture Review Board 2008] adds
some limited tasking directives, while Intel has recently released its Thread Building Blocks
(TBB). The effectiveness of such methods has been demonstrated in dense linear algebra
through the PLASMA project [Buttari et al. 2006; Buttari et al. 2009; Song et al. 2009],
and various compilers and libraries have been developed to assist in their use. These include
SMP Superscalar (SMPSS) [Perez et al. 2008], Cilk [Randall 1998] and the work of Kurzak and
Dongarra [2009].

A single standard for task-based programming has not yet emerged, though it is hoped the
examples produced in this thesis will be considered during the evolution of what finally emerges.

1.8 IEEE floating point

Almost all common HPC platforms (with the notable exception of GPGPU) implement the full
IEEE floating point standard [IEEE 2008]. This offers guarantees on behaviour of numerical
calculations that are useful in error analysis, in addition to giving more portable numerical
behaviour.

Floating point numbers are represented by a sign bit and two integers. These integers are
the significand (mantissa), c, and the exponent, q, from which the value can be obtained using
the formula

(−1)s × c× 2q

where s is the sign bit, having value 0 or 1. Special values of the exponent q are used to signal
special values:

denormal number A value smaller than can be represented by the normal size of the ex-
ponent. Bits are borrowed from the significand to represent this number (with fewer
significant digits). This allows gradual underflow to be used for calculations involving
small numbers. Also known as subnormal numbers.

Infinity Can be positive or negative. Generated, for example, by division of a non-zero value
by zero.

NaN Not a Number, generated by otherwise undefined operations.

We have found that performance of denormal calculations on recent Intel chips seems to
have a large performance penalty, presumably due to a more limited execution pathway for this
special case. Many processors allow denormal numbers to be flushed to zero rather than stored;
doing so prevents the propagation of these values through calculations. For some problems it
is highly advantageous to enable this feature (one problem ran over 100 times faster once this
was enabled).

Various ranges of single (32-bit) and double (64-bit) precision numbers are given in Table 1.3.
The epsilon value is the smallest value such that 1 + ǫ and 1 have a distinct value. Overflow is
the largest representable number, and underflow is the smallest normal number.

1.9 Machines

In this thesis we report results on a wide range of machines which have changed over time. The
main machines used are detailed in Table 1.4, but software and compiler options vary between

24

curtis fox HPCx seras jhogg

Processor Model Pentium IV Xeon E5420 Power5 Athlon64 Xeon E5520
Clock 2.80 Ghz 2.50Ghz 1.50Ghz 1.83GHz 2.271 Ghz
Cores 1 2× 4 16× 1 1× 2 1× 4

Theoretical Peak (1/all cores) 10 / 80 6 / 96 10.1 / 36.3
dgemm Peak (1/all cores) 9.3 / 72.8 5.0 / 70.4 9.6 / 33.9

Memory 1GiB 32GiB 32GiB 2GiB 2GiB
1The E5520 can boost a single core to a frequency of 2.53Ghz if machine is lightly loaded

Table 1.4: Machines used in this thesis, peak speeds measured in Gflop/s.

experiments, and are detailed at relevant points in the text. We note that HPCx refers to a
single SMP node of the UK supercomputer.

25

26

Chapter 2

Solving linear systems

In this chapter we develop the theory to solve general equations of the form

AX = B (2.1)

for X . A is a n× n symmetric matrix, X is a n× k unknown matrix and B is a n× k matrix.
If A were not square then either the equations are inconsistent, or there is a space of

non-unique solutions. If A had full rank, but was not symmetric, then a solution can be
found through a generalisation of the symmetric methods discussed here (for example through
Gaussian elimination). Both of these cases are outwith the scope of this thesis.

Without loss of generality we shall consider only the case k = 1; if k > 1, then we can
instead solve k systems with a single right hand side. However, most methods discussed can be
efficiently extended to handle multiple right-hand sides. We hence consider

Ax = b. (2.2)

There are two broad approaches to the solution of such systems:

Direct Methods factorize A into the product of two or more matrices with which solves may
be easily made. For example, the Cholesky factorization for positive definite A finds
a lower triangular matrix L such that A = LLT . Major advantages of this approach
include the reuse of factors to solve repeatedly for different right-hand sides, and the
black-box nature of the solver that allows it to be readily applied to almost any problem.
The substantial disadvantage to these methods is that the computational effort can grow
much faster than the dimension n; for dense systems the computational effort typically
grows with the cube of n.

Iterative Methods employ an iterative scheme to reduce the error in an approximate solution
to (2.2). These methods normally only require the ability to form the product Ax, and
as such can have a lower complexity than direct methods, but only if a low iteration
count is achieved. In practice, preconditioning is often necessary for good performance,
so applicability is limited by the availability of a good preconditioner.

We cover direct methods in the majority of this chapter. First we address serial and parallel
dense Cholesky factorization in Section 2.1. Section 2.2 describes the related sparse indefinite
LDLT factorization, while Sections 2.4 and 2.5 tackles their sparse equivalents. Section 2.6 ad-
dresses out-of-core working while Section 2.7 describes iterative techniques for refining solutions
generated by these direct methods. Finally Section 2.8 describes some of the solver software we
use in this thesis.

2.1 Dense Cholesky factorization

If A is positive definite (all its eigenvalues are positive) then the unique matrix
factorization A = LLT exists. The proof of this statement (as given for Theorem 23.1 of

27

Algorithm 1 Cholesky, for in place factorization A = LLT

Require: Symmetric Positive Definite A
for j = 1, n do
ljj ← √ajj
L(j+1:n)j ← A(j+1:n)j/ljj
A(j+1:n)(j+1:n) ← A(j+1:n)(j+1:n) − L(j+1:n)jL

T
(j+1:n)j

end for

Numerical Linear Algebra [Trefethen and Bau III 1997]) is constructive through Algorithm 1,
and proceeds by induction. Making the inductive assumption that a unique LkL

T
k factorization

exists for a k × k positive definite matrix Ak, consider a single step of Algorithm 1 to a (k +
1)× (k + 1) matrix Ak+1. This yields the following partial factorization:

Ak+1 =

(

a11 wT

w K

)

=

(

l11 0
w/l11 I

)(

I 0
0 K −wwT /a11

)(

l11 wT /l11
0 I

)

.

Clearly the first diagonal entry is positive as Ak+1 is positive definite, so l11 =
√
a11 exists and

is real. Set Ak = K −wwT /a11 and observe that as the next lower right principal submatrix
of A, it is positive definite. By our inductive assumption, a unique LkL

T
k factorization of Ak

exists and may be substituted in. Hence if the factorization exists for k = 1, it exists for all
k > 1. A 1 × 1 positive definite matrix contains a single positive entry a11 and admits the
unique factorization

√
a11
√
a11

T .
Once we have obtained the factors L, we can solve the system Ax = b through simple

forward and backward substitution:

Ly = b

LTx = y.

This only requires the solution of two triangular systems. Counting the total number of floating
point operations we see that Cholesky factorization is an O(n3) algorithm.

Algorithm 1 is backwards stable [Wilkinson 1968]. However, it may suffer in the presence
of ill conditioning, though in practice this can be detected by monitoring the magnitude of the
diagonal entries as the factorization progresses. It can then be addressed internally but should
be reported to the user when a problem is encountered.

2.1.1 Serial implementation

Algorithm 1 can be reorganised to a block form as Algorithm 2, allowing the exploitation of level
3 BLAS for the computationally intensive components. These are matrix-matrix multiplies and
triangular solves. The remaining operation, factorizing the diagonal block, represents a small
number of operations on an amount of data that should fit in cache, and is performed using
the element-wise Cholesky factorization (Algorithm 1).

Algorithm 2 Right-looking block Cholesky, for in place factorization A = LLT

for j = 1, nblk do
Ljj ← factor(Ajj)
Lj(j+1:nblk) ← Aj(j+1:nblk)L

−T
jj

for k = j + 1, nblk do
A(j+1:nblk)k ← A(j+1:nblk)k − L(j+1:nblk)jL

T
kj

end for
end for

This algorithm is called right-looking as the outer product updates are applied to the right-
hand submatrix as they are generated. Algorithm 3 is a left-looking block Cholesky, applying
updates to the current block column before we factorize it. Experiments [Anderson and Don-
garra 1990] seem to show that there is little performance difference between these variants in

28

the serial case although, conceivably, differences in cache read and write performance could
result in one being more favourable than another on a particular machine.

Algorithm 3 Left-looking block Cholesky, for in place factorization A = LLT

for j = 1, nblk do
for k = 1, j − 1 do
A(j:nblk)j ← A(j:nblk)j − L(j:nblk)kL

T
jk

end for
Ljj ← factor(Ajj)
Lj(j+1:nblk) ← Aj(j+1:nblk)L

−T
jj

end for

These algorithms give performance very close to that of the level 3 BLAS they employ,
and the standard interface to such routines is LAPACK [Anderson et al. 1999]. Cholesky
factorization is performed by the routine potrf that expects the lower or upper part of A to be
entered in a full memory (ie n×n) column-major format. Traditionally Cholesky factorizations
using the packed format (n(n+1)/2 memory) have a lower performance due to the inability to
exploit level 3 BLAS. Better performance in this case can be achieved through the rearrangement
to a block-column [Anderson et al. 2005] or recursive [Andersen et al. 2001] format.

An alternative approach to optimizing such algorithms for serial execution is to encode the
algorithms in a format which exposes the potential reorderings to a heuristic-driven compiler
or library that can then formulate an optimal code for a given architecture. This approach is
taken by the authors of FLAME [Zee et al. 2008], and seems to produce results comparable
with the more traditional approaches.

2.1.2 Traditional parallel implementation

To expose parallelism while maintaining the cache friendly blocked form of the Cholesky fac-
torization, we rewrite our blocked Cholesky factorization once more as Algorithm 4. This form
has split the large panel updates of Algorithm 2 into operations involving only the blocks.

Algorithm 4 Fine-grained right-looking block Cholesky

for j = 1, nblk do
Ljj ← factor(Ajj)
for i = j + 1, nblk do
Lij ← AijL

−T
jj

for k = j + 1, i do
Aik ← Aik − LijL

T
kj

end for
end for

end for

There are three main block operations:

factorize(j) Factorize the block Ajj .

solve(i, j) Perform the triangular solve Lij ← LijA
−T
jj .

update(i, j, k) Perform the outer product update to block (i, j) from column k, Aij ← Aij −
LikL

T
jk.

Traditional approaches, such as that of ScaLAPACK [Blackford et al. 1997], merely paralellise
the two inner loops of our algorithm. This results in a profile such as that in Figure 2.1. Clearly
the major source of inefficiency is when processors are sitting idle waiting for the current loop to
complete. Near the start this inefficiency is small. However, towards the end of the factorization
(where the total number of tasks is small) this accounts for the majority of the time across all
processors.

Various techniques have been developed to overcome this problem, the most successful has
been the look-ahead method [Kurzak and Dongarra 2007; Strazdins 2001]. This method exploits

29

Factorize(i) Solve(i,j) Update(i,j, k)

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 7

Processor 8

Time

Figure 2.1: Parallel profile for right-looking Cholesky.

the left-looking formulation to overlap future update tasks for which the data is available with
current computations.

2.1.3 DAG-based parallel implementation

An evolution of the look-ahead method uses a dependency graph to schedule block operations.
Block operations (tasks) are represented as nodes, and order dependencies are represented as
directed edges. The result is a directed acyclic graph (DAG). DAG-driven linear algebra uses
either a static or dynamic schedule based on these graphs to allocate tasks to cores.

A Cholesky factorization is typically split into the three tasks of the previous section, with
the following dependencies,

factorize(j) depends on: update(j, j, k) for all k = 1, . . . , j − 1.

solve(i, j) depends on: update(i, j, k) for all k = 1, . . . , j − 1, factorize(j).

update(i, j, k) depends on: solve(i, k), solve(j, k).

For a small 4× 4 block matrix this results in the dependency DAG shown in Figure 2.2.

Dynamic scheduling uses the concept of a pool of ready tasks (those whose dependencies
have already been met). Each thread executes one task at a time. Once the task is finished a
global lock is acquired and dependent tasks are added to the ready pool if possible. The thread
then picks a task from the pool and releases the global lock. This approach is used for example
by the TBLAS [Song et al. 2009], though this does not account for data reuse.

Static scheduling allocates tasks to threads a priori and in order. Communication is then
limited to checking if dependencies are complete, which can be done without global locking. This
approach risks more stalls than the dynamic approach but also has much smaller communication
overheads. This approach is currently used by PLASMA [Buttari et al. 2009; Buttari et al.
2006].

A recent comparison by Agullo et al. [2009] suggests that the static scheduling of PLASMA
currently outperforms the dynamic scheduling of the TBLAS due to data reuse. They also
present a comparison with traditional methods showing DAG-based codes outperforming them
for Cholesky factorization. The competitiveness of DAG-based codes for other common LA-
PACK calls is limited by the introduction of additional operations to allow a task-based repre-
sentation.

Alternative scheduling techniques for DAG-driven Cholesky factorizations are the subject
of Chapter 6.

30

factorize(1)

solve(2,1)

solve(3,1)solve(4,1)

factorize(2)

solve(3,2)solve(4,2)

factorize(3)

solve(4,3)

factorize(4)

upda te (2 ,2 ,1)

upda te (3 ,2 ,1)upda te (4 ,2 ,1)

upda te (3 ,3 ,1)

upda te (4 ,3 ,1)

upda te (4 ,4 ,1)

upda te (3 ,3 ,2)upda te (4 ,3 ,2)

upda te (4 ,4 ,2)

upda te (4 ,4 ,3)

Figure 2.2: Dependency DAG for a 4× 4 block matrix.

2.2 Symmetric indefinite factorization

In the indefinite case the A = LLT factorization does not exist. Consider attempting to factorize

(

−1 1
1 1

)

.

Cholesky fails as we cannot take the square root of a negative number and remain real. Instead
we consider an alternative factorization PAPT = LDLT where D is block diagonal and P is a
permutation matrix. The diagonal blocks of D are the pivots for the factorization. Restricting
ourselves to 1× 1 pivots is clearly insufficient: consider

(

0 1
1 0

)

,

where we cannot symmetrically permute a non-zero to the top-left corner. If A has full rank, it is
instead sufficient to allow 2×2 pivots, as we can always symmetrically permute non-zero entries
onto the subdiagonal. This approach works as we effectively relax the constraint of pivoting
symmetrically in a very limited fashion. A naive implementation is shown as Algorithm 5.

This algorithm is naive as it does not take into account stability considerations. Consider
the factorization

(

ǫ 1
1 0

)

=

(

1
1/ǫ 1

)(

ǫ
−1/ǫ

)(

1 1/ǫ
1

)

,

that has large entries in the factors. Note that the pivoted LU factorization is stable,

(

1
1

)(

ǫ 1
1 0

)(

1
1

)

=

(

1
ǫ 1

)(

1 0
1

)

.

We clearly need to perform some pivoting for numerical stability. The most common such tech-

31

Algorithm 5 Naive symmetric indefinite factorization, performing PAPT = LDLT in place

j = 1
while j ≤ n do
if Ajj > 0 then
Choose a 1× 1 pivot, djj ← ajj .
Set s = 1.

else
Find k such that Akj 6= 0.
Symmetrically permute row/column k to position j + 1.
Choose a 2× 2 pivot, D(j:j+1)(j:j+1) ← A(j:j+1)(j:j+1) .
Set s = 2.

end if
L(j+1:n)(j:j+s−1) ← A(j+1:n)(j:j+s−1)D

−1
(j:j+s−1)(j:j+s−1)

A(j+s:n)(j+s−1:n) ← A(j+s:n)(j+s−1:n) − L(j+s:n)(j:j+s−1)D(j:j+s−1)(j:j+s−1)L
T
(j+s:n)(j+s−1)

j = j + s
end while

niques are Bunch-Parlett (full) [Bunch and Parlett 1971] and Bunch-Kaufman (rook) [Bunch
and Kaufman 1977] pivoting. Bunch-Kaufmann pivoting replaces the pivoting step of our naive
Algorithm 5 to obtain Algorithm 6, where the unusual value of µ derives from the stability
analysis of the algorithm and is chosen to minimize the growth factors.

Full pivoting uses the column that minimizes the growth factor (that is the ratio of the
largest element in the pivotal column before and after pivoting) as a pivot, requiring a full
scan of the matrix. Rook pivoting instead determines a pivot with a limited growth factor by
scanning only the row and column of the current candidate pivot.

2.3 Sparse matrices

A matrix is sparse if it is worth exploiting the presence of zero values, typically meaning that
most of the entries are zero. Such zeroes are referred to as structural zeros, differentiated from
numerical zeros that are handled explicitly (that is treated as if they were non-zero). Numerical
zeros often result from cancellation, or are introduced deliberately to allow the exploitation of
more efficient data structures. When there are only a handful of non-zeroes per column it
is crucial for efficiency that this is exploited. However, for certain computations (such as
symmetric factorizations) it can be advantageous to exploit sparsity when a small percentage
of the matrix is non-zero. A typical data structure for storing a sparse matrix will store for
each column:

• The number of non-zeros.

• The row indices of the non-zeros.

• The values of the non-zeros (corresponding to the row indices).

Typically the number of non-zeros is stored as an offset into the arrays containing the row
indices and the numerical values.

Sparse matrix structures are equivalent to graphs. We define the graph of a sparse matrix
by mapping columns to nodes and non-zeros to edges. If entry (i, j) in the matrix is non-zero,
then there is an edge from node i to node j. Clearly if the matrix is symmetric we can replace
the pairs of directed edges with an undirected edge. Diagonal entries are normally implicitly
assumed to exist, and are omitted from the graph. Figure 2.3 shows a symmetric sparse matrix
and its equivalent graph. Permutations of a matrix are equivalent to renumbering the nodes of
the corresponding graph.

2.4 Sparse symmetric factorization

Algorithm 7 gives the obvious sparse variant of Algorithm 1.

32

Algorithm 6 Symmetric indefinite factorization with Bunch-Kaufmann pivoting, performing
PAPT = LDLT in place

µ = (1 +
√
17)/8

j = 1
while j ≤ n do
Determine largest off-diagonal element in column j, λ = |arj| = max(|a(j+1)j |, . . . , |anj |).
if ajj > µλ then
Choose a 1× 1 pivot, djj ← √ajj .
Set s = 1.

else
Determine largest off-diagonal element in row/column r,

σ = |apr| = max(|ar1|, . . . , |ar(r−1)|, |a(r+1)r|, . . . , |anr|).
if σ|ajj | ≥ µλ2 then
Choose a 1× 1 pivot, djj ← √ajj .
Set s = 1.

else if |arr| ≥ µσ then
Symmetrically permute row/column r to position j.
Choose a 1× 1 pivot, djj ← √ajj .
Set s = 1.

else
Symmetrically permute rows/columns r and p to positions j and j + 1 respectively.
Choose a 2× 2 pivot, D(j:j+1)(j:j+1) ← A(j:j+1)(j:j+1) .
Set s = 2.

end if
end if
L(j+1:n)(j:j+s−1) ← A(j+1:n)(j:j+s−1)D

−1
(j:j+s−1)(j:j+s−1)

A(j+s:n)(j+s−1:n) ← A(j+s:n)(j+s−1:n) − L(j+s:n)(j:j+s−1)D(j:j+s−1)(j:j+s−1)L
T
(j+s:n)(j+s−1)

j = j + s
end while

• • • • •
• • • • •
• • •

• •
• • • •

• • • •
• • • •
• • • • •

1

2

4

7

8

3

6

5

Figure 2.3: Sparse matrix structure and its equivalent graph.

33

Algorithm 7 Basic sparse Cholesky factorization

for j = 1, n do
ljj ← √ajj

(factor).
for i ∈ {i : lij 6= 0} do
lij ← lij/ajj

(solve).
end for
for i ∈ {i : lij 6= 0} do
for k ∈ {k > i : lkj 6= 0} do
aki ← aki − lij lkj

(update).
end for

end for
end for

P =

(

1 2 3 4 5 6 7 8
3 5 2 1 4 6 7 8

)

•
• •
• •

• ◦ ◦ •
• ◦ •

• ◦ ◦ ◦ •
• ◦ ◦ ◦ • • •
• • ◦ ◦ • • ◦ •

LLT = A

•
•

• •
• •
• • ◦ •

• •
• • ◦ • •
• • • • ◦ •

LLT = PAPT

Figure 2.4: Fill-in of the factors L with and without a fill-reducing permutation. Original
entries drawn from A are represented as •, and fill in by ◦.

Obviously aki may be a structural zero initially but takes a non-zero value due to the update
operation; these new non-zeros generated during the factorization are known as fill-in. As an
operation on a graph, each elimination corresponds to removing the corresponding node from
the graph, and forming a clique from its neighbours. Any new edges are fill-in. At most (r−1)2

fill-ins can be introduced, where r is the number of neighbours for that node (its degree).
Typically the factors L are considerably denser than the original matrix A. The amount of
fill-in can be dramatically reduced through the application of a symmetric permutation to the
matrix before starting the factorization. Figure 2.4 shows the fill-in generated with two different
permutations of the same matrix.

Looping over only the non-zeros and allowing sufficient space for fill-in to occur is a non-
trivial problem. It is possible to predict the non-zero pattern of L before we begin the factor-
ization to surmount this problem. This is typically known as the symbolic factorize or analyse
phase of the sparse factorization.

There are typically four such phases in a sparse Cholesky factorization:

Preorder Permutes A symmetrically to reduce fill-in.

Analyse Determines the non-zero structure of the factors and plans the numerical computa-
tion. (Though some of these may in fact be numerical non-zeros due to cancellation).

Factorize Performs the actual numerical computation.

Solve Solves LLTx = b via forward and backward substitution.

34

Each phase is now addressed in more detail.

2.4.1 Preorder

Preordering is the process of determining a symmetric permutation of A such that the number
of non-zeros of L is minimized. The problem of finding an optimal ordering is NP-complete
[Yannakakis 1981], so we use heuristic methods. The most common approaches are usually
variants either of Minimum Degree (eg MMD, AMD) or Nested Dissection (eg MeTiS).

Minimum degree attempts to minimize fill-in by choosing to eliminate the node with the
smallest degree at each stage, thus minimizing (r − 1)2 (the maximum potential fill-in). Two
main variants are Multiple Minimum Degree (MMD), where as many as possible non-adjacent
nodes are removed at each stage, and Approximate Minimum Degree (AMD), where an ex-
pensive update step is replaced by a cheaper approximate update. The papers of George and
Liu [1989] and Heggernes et al. [2001] give a more in-depth description of the algorithm and its
variants, along with implementation details.

Nested dissection uses a recursive method which repeatedly identifies a small set of separators
which partition the graph into two pieces and removes them from the graph. A fuller description
can be found in the MeTiS paper [Karypis and Kumar 1995].

It is worth noting that all these algorithms can employ supernode detection in order to
increase efficiency. These supernodes also aid in later stages of the factorization (supernodes
are defined in section 2.4.2).

Some Cholesky codes will try several different ordering algorithms and then use the best
one (in terms of fill-in) for the actual factorization. While this results in a more expensive
preordering phase, the saving on the factorize phase is large enough to justify it. In cases
where a matrix with the same non-zero pattern is factorized repeatedly, such as interior point
methods, it is highly recommended.

Table 2.1 shows the fill-in of some matrices under different orderings and the resulting speed
of the factorization phase. COLAMD and AMD are both taken from Tim Davis’ Sparse Matrix
programs, MeTiS uses the well known library of the same name, and NESDIS is a MeTiS-based
nested dissection algorithm included in CHOLMOD. Matrices are drawn from the factorization
performed in the first phase of an interior point method for problems drawn from the Netlib
linear programming [Gay 1985] and Kennington [Carolan et al. 1990] test sets. All timings are
for the factorize phase of CHOLMOD running on a single core of seras using the Goto BLAS
(single threaded). Clearly the factorization time is directly affected by the number of non-zeros
in the factors, as these require additional operations to compute and keep track of. There is
no clear winning choice between the orderings on these problems, though on the denser PDS
problems the nested dissection problems do better.

2.4.2 Analyse

At a minimum, the analyse phase determines storage requirements for each column of L. It
often also pre-computes information that is useful in the factorize phase.

Traditionally the non-zero pattern of L is found using a scheme such as Algorithm 8. Here
we use the calligraphic Aj = {i : Aij 6= 0, i ≥ j} and Lj = {i : Lij 6= 0} to represent the lower
triangular non-zero sets of the columns of the matrix and its factors (as A is symmetric the
upper triangular structure is easily obtained from that of the lower triangle). The vector π is
used to simplify this computation, but actually represents a structure known as the elimination
tree that will be described presently.

This algorithm exploits an essential property of the sparse factorization: the non-zero pat-
tern of a column is inherited by all columns that the update touches. A corollary of this is that
the first such updated column will also update the same set of non-zeros (and hence columns),
possibly with some additional entries. We can hence define a tree as the reduction of the data
dependency graph of the factors. Each row/column becomes a node, whose parent is given by
the first non-zero entry below the diagonal in the factor L. The remaining non-zeros are given
by the path from a node to the root of the tree. This is known as the elimination tree, and is
represented by the vector π (also known as the parent function) calculated in Algorithm 8. The

35

25fv47 cre-a dcp1 ken-07
nnz time nnz time nnz time nnz time

COLAMD 39534 0.0059 37116 0.0072 228142 0.0495 15529 0.0039
AMD 34372 0.0056 35897 0.0073 257969 0.0496 15319 0.0039
MeTiS 33925 0.0049 37588 0.0068 231209 0.0485 16095 0.0039
NESDIS 32385 0.0046 37696 0.0076 226892 0.0465 15319 0.0036

ken-11 ken-13 ken-18 pds-02
nnz time nnz time nnz time nnz time

COLAMD 133221 0.0301 353474 0.0730 2.23e+06 0.4545 44486 0.0086
AMD 133087 0.0303 349175 0.0727 2.32e+06 0.4527 44267 0.0088
MeTiS 137043 0.0296 378309 0.0752 2.53e+06 0.4658 44788 0.0081
NESDIS 132958 0.0307 351710 0.0726 2.43e+06 0.4585 42551 0.0072

pds-06 pds-10 pds-20
nnz time nnz time nnz time

COLAMD 593816 0.1904 1.63e+06 0.5877 6.83e+06 3.8849
AMD 600597 0.1655 1.61e+06 0.5829 6.98e+06 3.9840
MeTiS 401383 0.0952 1.23e+06 0.3063 5.35e+06 2.0859
NESDIS 365900 0.0684 1.16e+06 0.2644 4.64e+06 1.5250

Table 2.1: Amount of fill-in and time required for factorization using CHOLMOD with the
orderings: COLAMD [Davis et al. 2004], AMD [Amestoy et al. 2004], MeTiS [Karypis and
Kumar 1998] and the NESDIS provided as part of CHOLMOD [Chen et al. 2008].

Algorithm 8 Normal (left-looking) analyse algorithm

Initialise π(:) = n+ 1
for i = 1 to n do
Li = Ai

for all j : π(j) = i do
Li = Li ∪ Lj

end for
if(L\{i} 6= φ) π(j) = minL\{i}

end for

36

•
•

• • •
• •

• ◦ ◦ •
•

• ◦ ◦ ◦ • •
• ◦ • • •

1 2

3

4

5 6

7

8

Figure 2.5: A matrix and its elimination tree.

•
•
•

• • •
• •

• ◦ ◦ •
• • ◦ ◦ ◦ •

• ◦ • • •

1

2

2

3

3

3

4

5

5

4

6

3

7

2

8

1

Figure 2.6: Matrix and its elimination tree, after some reordering. Numbers on the left are
node numbers. Numbers in the bottom right are column non-zero counts.

entry π(i) gives the parent of node i in the elimination tree, or has the value n+ 1 to indicate
it is a root. Figure 2.5 demonstrates this concept.

Any ordering on the nodes of the elimination tree such that each node has a higher index
than its children has a corresponding permutation of A that does not change the amount of
fill-in. A postordering of the tree has this property and will place columns with similar non-zero
patterns next to each other. (A postorder being a numbering that corresponds to a depth first
search order).

The paper of Liu [1990] covers elimination trees and their properties in great detail.

Supernodes

We define a supernode as a set of consecutive columns with the same non-zero pattern (up to
entries above the diagonal). These are characterised in the adjacency graph by a clique and
may be exploited in the preordering phase. Detection in the elimination tree is easy if non-zero
counts for each column are known: supernodes are direct lines of descent with an extra non-
zero added at each level, and can be reordered to be consecutive. A full algorithm is given, for
example, in Liu et al. [1993]. Figure 2.6 shows the previous matrix partitioned into supernodes,
along with its elimination tree.

37

A supernode can be stored as a dense submatrix of L. We can hence exploit the level 3
BLAS for operations within and between such constructs. The reduction of the elimination tree
which consists of supernodes is known as the assembly tree.

Unfortunately the number of supernodes in sparse matrices is typically small, limiting the
scope for efficient operations. To increase the applicability of the BLAS we relax the requirement
for matching non-zero patterns. We look for paths within the elimination tree with columns
that have similar non-zero patterns (identified by a small difference in column counts) and
combine these into artificial supernodes. This corresponds to introducing explicit zeros into
our computations. Large performance increases are observed in most cases. This is due to the
increased cache efficiency of the BLAS and the reduced number of sparse scatter operations
involved in the updates. Ashcraft [1989] describes a number of algorithms for the identification
of such supernodes.

Finding the elimination tree

In the next section we describe several algorithms which rely on having the elimination tree
available. The elimination tree can be efficiently computed by Liu’s algorithm [Liu 1986], shown
here as Algorithm 9. Consider the construction of L on a row by row basis working from left
to right. If an entry Lij is non-zero then either:

• It is the first non-zero in column j. We set π(j) = i.

• There is an entry in column j above this one. Entry Liπ(j) is non-zero.

This is equivalent to proceeding up the partially constructed elimination tree until we find the
current root. We then add the current row at the top of the subtree. This algorithm is made
more efficient through the use of path compression: as we ascend the tree we store a shortcut
pointing to the new top of the tree, which we know will be i. These shortcuts are stored using
a virtual forest, represented in Algorithm 9 by π̄(:).

Algorithm 9 Liu’s algorithm with path compression for finding the elimination tree of A

for i = 1 to n do
for all j ∈ Ai do
k = j
while π̄(k) 6= 0 do
l = π̄(k)
π̄(k) = i
k = l

end while
π(k) = π̄(k) = i

end for
end for

Determining column counts

When using supernodes we only need the row entries for each supernode rather than each
column. Further, we can generate the row indices on the fly in the factorize phase if we wish.
It is hence useful if the column counts can be determined in fewer than O(nz(L)) operations
(i.e. without simulating the factorization as in Algorithm 8). Such an algorithm is given by
Gilbert et al. [1994]. Row and column counts are determined without explicitly determining the
non-zero structure, using only a precalculated elimination tree and the non-zero structure of
A. Once such column counts are known, supernode amalgamation may be performed allowing
a much less demanding symbolic factorization to take place.

2.4.3 Factorize

Given the structural non-zero pattern, storage requirements and supernodes of L we can conduct
the numerical factorization of A. There are two main schemes for implementing a sparse

38

T

−1

(c) (d)

(b)

=

(a)

Figure 2.7: The various stages of a supernodal factorization.

factorization: supernodal and multifrontal. The differences relate to how updates between
nodes are handled. Supernodal schemes are the direct translation of our dense algorithms to
the sparse case, applying updates directly to the factor L in its final storage space. Multifrontal
schemes instead pass a temporary partially-summed (square) submatrix up the assembly tree.
The partially-summed submatrix contributions from each child are assembled into a single
triangular matrix at each node and a partial dense Cholesky factorization is performed. In this
section we shall only describe the supernodal variant. A fuller description of the multifrontal
method can be found in the book of Duff, Erisman and Reid [1986].

The supernodal algorithm exists in both left- and right-looking flavours. Rothberg and
Gupta [1993] claim that the particular casting makes little difference to performance; we shall
hence focus only on the right-looking variant.

Consider Figure 2.7. Each supernode consists of one or more consecutive columns with
the same non-zero pattern. We store only these non-zeros to achieve the trapezoidal matrix
shown in (a). The upper part of the triangle may stored explicitly as zeros to allow the use
of more efficient full format BLAS, instead of the slower but more memory efficient packed
format BLAS. Once a given supernode is ready to be factorized we perform a standard dense
factorization of the diagonal block (for example using the LAPACK routine potrf). We then
perform a triangular solve with these factors and the rectangular part of the supernode, shown
as (b), for which we may use the level 3 BLAS routine trsm. Alternatively, this factorization
and solve may be carefully combined on some machines for a small performance gain.

We then iterate over ancestors of the node in the assembly tree. For each parent we identify
the rows of the current supernode corresponding the parent’s columns, and then form the outer
product of those rows and the part of the supernode below those columns (shown as (c)). The
resultant matrix, generated by the level 3 BLAS routine gemm, is placed into a temporary
buffer. The rows and columns of this buffer are then matched against elements of the ancestral
node and are added to them in a sparse scatter operation. Demmel et al. [1999] recommend
panelling these updates so that the temporary buffer matrix does not leave cache.

39

2.4.4 Solve

Solves are easily performed using the supernodal factors, as shown in Algorithm 10. If multiple
right hand sides are given we can even exploit level 3 BLAS routines. Different routines are
usually used for forward and backward solves to exploit the data structure. If the data is stored
by columns this typically means a right-looking forward solve and a left-looking backward solve.

Algorithm 10 Supernodal solve

x = b

for all Supernodes s in ascending order do
(S refers to the indices within the supernode. N refers to the indices
on the path between s and the root of the elimination tree. D refers to the diagonal
block submatrix corresponding to the rows and columns S. N refers to the dense
matrix storing the entries of the supernode below D.)

Triangular solve on supernode: DxS = xS (Use trsv).
Modify non-supernode portion of x: xN = xN −RxS (Use gemv).

end for
for all Supernodes s in descending order do
Modify non-supernode portion of x: xN = xN −RTxS (Use gemv).
Triangular solve on supernode: DTxS = xS (Use trsv).

end for

2.4.5 Parallel sparse Cholesky

Most parallel implementations of sparse Cholesky in the literature rely on the elimination tree to
expose data dependencies that can be exploited. Children of any given node may be factorized
independently, and any node of the elimination tree may be factored as soon as its children are
ready. This is tree-level parallelism.

Often the majority of the work in a sparse factorization resides in the few nodes at the
top of the tree, giving tree-level parallelism limited utility. We instead exploit techniques used
for parallel dense Cholesky. This is known as node-level parallelism. Codes often switch from
tree-level to node-level parallelism dynamically.

PARDISO [Schenk and Gärtner 2004; 2006], TAUCS [Irony et al. 2004; Rotkin and Toledo
2004] and PaStiX [Hénon et al. 2002] all exploit a third level of parallelism, which the authors of
PARDISO term pipelining parallelism. This level of parallelism is obtained by allowing multiple
updates from a node’s descendants to occur in parallel, though the exact mechanisms involved
vary between these codes.

PARDISO performs a left looking factorization (detailed in Schenk et al. [1999]). The ex-
ternal (inter-supernodal) update operations are parallelised. Once a supernode has been factor-
ized, a relevant update task is added to queues associated with each of its ancestral supernodes.
When all relevant descendants are completed and the ancestral supernode is scheduled on a
thread, these updates are performed in a left-looking manner. The processor will wait on the
task queue until all required update tasks have been completed; it will then perform the internal
factorization. Large supernodes are broken into multiple smaller supernodes to generate suffi-
cient parallelism near the root of the tree. These smaller supernodes are alternatively known as
panels by Schenk, however in this thesis we call them block columns for reasons that will become
apparent in Chapter 7. Further efforts to improve performance in PARDISO have resulted in a
two-level factorization. Leaf subtrees are established that are processed on single nodes, elim-
inating any need to communicate via shared memory with other threads. After these small
subtrees are completed the previously described parallel mechanism takes over.

TAUCS performs a multifrontal factorization using a recursive task-based parallel scheme
through the programming language cilk. As this is a multifrontal code, expansion of updates
into multiple ancestors is not a feasible parallel mechanism. Instead the update between a
parent and child is broken into multiple operations corresponding to different target blocks in
the parent, and these are executed in parallel. A recursive block data structure is used to ensure
cache locality regardless of how fine grained the update operations become.

40

PaStiX is a supernodal factorization based on task graphs that is designed for distributed
memory architectures (though threading is used to exploit SMP nodes). While the description
of Hénon et al. [2002] is focused more on distributed memory and scheduling issues, so far
as we can determine the following data structure is used. Given the supernode partition of
the assembly tree, the matrix is divided into blocks using this partition for both rows and
columns. Each block is stored densely, with zero rows as required, but omitting rows that
would otherwise be at the start or end of a block. This approach appears to work surprisingly
well. The processing of each block column is then either treated as a single task (for smaller
block columns), or as a set of tasks, one for each block, and a task DAG is drawn between them.
Much attention is paid to minimizing communication and a simulation of the factorization is
performed during the analysis phase so that blocks can be assigned to processors in a near
optimal fashion. The resulting fixed schedule is then used for the factorize phase. A more in
depth explanation of PaStiX is provided in Section 7.6.

Other well known parallel sparse codes which support Cholesky/symmetric indefinite fac-
torizations include: CHOLMOD [Chen et al. 2008], MUMPS [Amestoy et al. 2001; Amestoy
et al. 2006], SuperLU {MT,DIST} [Li and Demmel 2003; Li 2005], and WSMP [Gupta et al.
2001; Gupta et al. 1997]. These all work on similar principles to those already described. A
comprehensive summary of sparse codes can be found in [Davis 2006], while an in depth serial
comparison of the top symmetric indefinite codes is present by Gould et al. [2007].

2.5 Sparse symmetric indefinite factorization

We can adapt the sparse Cholesky factorization to produce a LDLT factorization much as
we did in the dense case. However, full Bunch-Kaufmann pivoting produces much fill in as it
deviates from the fill-reducing ordering. Instead we use a threshold based approach, following
Duff and Reid [1983; 1996]. We accept a 1× 1 pivot if

ajj ≥ µmax
i6=j

aij ,

limiting the growth of off-diagonal entries to at most 1/µ; typically µ = 0.01 or µ = 0.1. If we
cannot find a 1× 1 pivot then we test for a 2× 2 pivot which satisfies

(

ajj a(j+1)j

a(j+1)j a(j+1)(j+1)

)−1(
maxi6=j,j+1 aij

maxi6=j,j+1 ai(j+1)

)−1

≤
(

µ−1

µ−1

)−1

.

If the pivot cannot be found it is delayed, meaning that the column is moved up to the parent
supernode where we again attempt to find a pivot. This introduces additional non-zeros into
the factors.

Variations on this concept include searching for large off-diagonal entries within the supern-
ode (rather than just using entry j+1), and the use of Bunch-Kaufmann pivoting restricted to
pivots within the supernode [Schenk and Gärtner 2006].

Alternately, or in combination, static pivoting may be used. In this case a small perturbation
is added to problematic pivots so as to limit the growth of the factors. We hence have a
factorization of

PAPT + E = LDLT

where E is diagonal with small (mostly zero) entries. Similar approaches are mentioned multiple
times in the literature [Gill and Murray 1974; Li and Demmel 1998; Duff and Pralet 2007]. Arioli
et al. [2007] give theoretical and practical results on recovery of accurate solutions from such a
perturbed factorization, and suggest that the perturbation should have the value

√
ǫ where ǫ is

the machine precision.

2.5.1 Scaling

Under either real or static pivoting, encountering poor pivots is undesirable. In the static
case they lead to numerical inaccuracies, but when real pivoting is done the delayed pivots

41

introduce additional floating point operations (due to fill-in), additional data movement and
other overheads. The use of scaling can reduce or eliminate such delayed pivots.

In the symmetric indefinite case a scaling is given by the diagonal matrix S, and we aim
to factorize SPAP−1S = LDLT . A good scaling is one that minimizes the number of delayed
pivots; no simple mathematical property has yet been found that achieves this. Many scalings
aim for some form of equilibriated row, column or entry norms.

We shall now describe some common scalings. Readers are referred to Chapter 4 for an in
depth practical comparison of sparse scalings.

MC30

MC30 is the oldest scaling routine in the HSL subroutine library [HSL 2007] and is described as
a symmetric adaption of the method described in the paper of Curtis and Reid [1972].

We scale A = {aij} to the matrix Â = {âij} = SAS where

âij = aij exp(si + sj).

We choose si and sj to minimize the sum of the squares of logarithms of the absolute values of
the entries,

mins
∑

aij 6=0

(log |âij |)2

= mins
∑

aij 6=0

(log |aij |+ si + sj)
2 .

This is achieved by a specialised conjugate gradient algorithm.

MC64

MC64 finds a maximum matching of an unsymmetric matrix such that the largest entries are
moved on to the diagonal [Duff and Koster 2001]; this leads to an unsymmetric scaling such
that the scaled matrix has all ones on the diagonal and the off-diagonal entries are of modulus
less than or equal to one. The approach can be symmetrized by the method of Duff and Pralet
[2005], which essentially amounts to initially ignoring the symmetry of the matrix and then
averaging the relevant row and column scalings from the unsymmetric permutation.

In recent years, MC64 has been widely used in conjunction with both direct and iterative
methods. It is used in the sparse direct solver SuperLU of Demmel and Li [Demmel et al. 1999],
where it is particularly advantageous to put large entries on the diagonal because SuperLU
implements a static pivoting strategy that does not allow pivots to be delayed but rather
adheres to the data structures established by the analyse phase. Benzi, Haws and Tuma [2001]
report on the beneficial effects of scalings to place large entries on the diagonal when computing
incomplete factorization preconditioners for use with Krylov subspace methods.

The symmetrized version was developed following the success of MC64 on unsymmetric sys-
tems and symmetrically permutes large entries onto the sub-diagonal (they can not be placed on
the diagonal with a symmetric permutation) for inclusion in 2×2 pivots. This permutation can
be combined with heuristics for a compressed or constrained ordering to yield pivot sequences
that are often more stable than otherwise, but at a cost of additional fill-in [Duff and Pralet
2005].

MC77

MC77 uses an iterative procedure [Ruiz 2001] to attempt to make all row and column norms of
the matrix unity for a user-specified geometric norm ‖ · ‖p. We shall consider the infinity and
one norms in this paper. The infinity norm is the default within MC77 due to good convergence
properties. It produces a matrix whose rows and columns have maximum entry of exactly
one. The one norm produces a matrix whose row and column sums are exactly one (a doubly
stochastic matrix) and is, in some sense, an optimal scaling [Bauer 1963].

42

2.6 Out-of-core working

For some problems the factors L, and potentially the original matrix A, may not fit in the
available memory, despite the computation time being feasible. In this case we may store the
data we are not currently working with in files. Such an approach is said to be out of core.

The multifrontal method in particular is suited to such an approach since the working set is
limited to the current frontal matrix and its contributions, which can be easily handled using
stacks [Reid and Scott 2008; 2009b]. A virtual memory system, such as that of Reid and Scott
[2009a], may be used to provide an easy, efficient yet robust interface to the filesystem.

Performing the factorization out of core does not result in a large performance decrease
during factorization (as shown by Reid and Scott). However, the solve phase is considerably
slower as the factors must be read from disk twice: once each for the forward and backward
substitutions.

2.7 Refinement of direct solver results

While we will not cover pure iterative methods in this work, there is an important application
of them relating to direct methods: refinement of a solution to reduce the backwards error. We
discuss two such methods here, and note the implications for working in mixed precision.

2.7.1 Iterative refinement

Iterative refinement is a well known scheme that attempts to improve an approximate solution.
Often several steps of iterative refinement are required to obtain an acceptable solution. At
step k, we aim to reduce the residual,

r(k) = b−Ax(k). (2.3)

If x̂ is the exact solution satisfying Ax̂ = b we may write

x(k) = x̂− y(k+1),

and substitute into (2.3),

r(k) = b−Ax̂+Ay(k+1)

= Ay(k+1).

Here we have exploited x̂ being an exact solution. We can use our factorization to solve
Ay(k+1) = r(k) to find the (k + 1)st step update, y(k+1). We then obtain a new x(k+1) by

x(k+1) = x(k) + y(k+1).

Algorithm 11 Iterative refinement

Require: Matrix A, factorization of A, right-hand side b, maximum number of iterations
maxitr.
Solve Ax(1) = b (using factors).
Compute r(1) = b−Ax(1).
Set k = 1.
while residual large and k < maxitr do
Solve Ay(k+1) = r(k) (using factors).
Set x(k+1) = x(k) + y(k+1).
Compute r(k+1) = b−Ax(k+1).
Check for stagnation, exit if found.
Set k = k + 1.

end while
x = x(k)

43

This scheme is implemented as Algorithm 11. It is typical to use a scaled residual norm
such as

‖b−Ax‖
‖A‖‖x‖+ ‖b‖

to measure progress. Stagnation can often be detected by requiring a minimum decrease in the
residual norm at each stage, typically by at least a factor of two. For some very ill-conditioned
matrices it is possible that the solution will grow very quickly while the scaled norm does not:
we can detect these cases by monitoring the absolute norm ‖r(k)‖.

This procedure can be rewritten as a recurrence:

x(k+1) = x(k) + L−TL−1(b−Ax(k))

= L−TL−1b+ (I − L−TL−1A)x(k).

Taking the difference between the terms,

d(k) = x(k+1) − x(k)

= (I − L−TL−1A)(x(k) − x(k−1))

= (I − L−TL−1A)d(k−1)

= (I − L−TL−1A)kd(0),

meaning the algorithm is convergent in exact arithmetic if the spectral radius of (I−L−TL−1A)
is less than one. Related results can be proved in both fixed precision and mixed precision
arithmetic, see for example the book of Higham [2002].

Iterative refinement can be viewed as a standard iterative method preconditioned by a solve
using the direct method. It is this view that leads logically to applying other iterative methods,
such as in the next section.

2.7.2 FGMRES

The Flexible Generalised Minimum RESidual (FGMRES) method [Saad 1994; 2003] is a Krylov
subspace technique for unsymmetric matrices that allows different preconditioners at each iter-
ation. Practical experience [Arioli and Duff 2009; Arioli et al. 2007] shows that this method is
better at refining solutions than symmetric methods such as conjugate gradients, or methods
with a fixed preconditioner such as standard GMRES. Theoretical and practical results [Ari-
oli and Duff 2009] show that stronger convergence is possible than with iterative refinement,
though the iterations are considerably more expensive.

The seeming need for an unsymmetric method that allows for a non-constant preconditioner
may be explained through the observation that, in finite arithmetic, solves from a direct method
are unsymmetric and depend on the right-hand side.

The basic method is outlined as it applies to our problem in Algorithm 12. The maximum
number of iterations, restart, differentiates a family of related algorithms; a particular member
is referred to as FGMRES(restart). The reason for the naming of this parameter is that an
outer algorithm is often used that effectively restarts the FGMRES algorithm every restart

iterations for both numerical and practical reasons. First, while the restart parameter may
be as large as desired, the data and number of iterations required grow as O(restart2n) and
the number of direct method solves grows as O(restart). Secondly, the surrogate measure of
the residual norm,

∥

∥‖r‖e(1) −H(j)y(j)
∥

∥, may not detect convergence reliably, especially if the
outer measure of convergence is not the 2-norm. Finally, in finite arithmetic, the orthogonality
between vectors v(k) will deteriorate as restart increases. However, a balance is necessary
as a minimum value of restart must be achieved to allow optimization in a Krylov space of
sufficiently large dimension to achieve fast convergence.

2.7.3 Mixed precision

The theoretical results for iterative refinement and FGMRES have been carefully constructed to
have no assumption on the precision of the direct solve. This allows the possibility to perform

44

Algorithm 12 Basic FGMRES(restart) algorithm for refining a solution of Ax = b

Require: A, factorization of A, right-hand side x, restart parameter restart.
Solve Ax = b.
Compute r = b−Ax.
Initialise v(1) = r/‖r‖, y(0) = 0, j = 0
while

∥

∥‖r‖e1 −H(j)y(j)
∥

∥ ≥ γ(‖A‖‖x‖+ ‖b‖) and j <restart do
j = j + 1 (Increment iteration counter).
Solve Az(j) = v(j) and compute w = Az(j)

(Precondition by direct solve).
Orthogonalize w against v(1), . . . ,v(j) to obtain a new w. Set v(j+1) = w/‖w‖.
Form H(j), a trapezoidal basis for the Krylov subspace spanned by v(1), . . . ,v(j)

(Using Arnoldi process, for full details see [Saad 2003]).
y(j) = argminy

∥

∥‖r‖e1 −H(j)y(j)
∥

∥

(Minimize residual over the Krylov subspace).
end while
Set Z(j) =

[

z(1) · · · z(j)
]

.

Compute x = x+ Z(j)y(j), r = b− Ax.

the expensive direct method factorization in low precision (fast but inaccurate) and refine the
solution in higher precision (slow but obtaining a more accurate result). A result of Skeel [1980]
shows that this is possible for iterative refinement, while Arioli and Duff [2009] present the
corresponding result for FGMRES. This has been further examined both theoretically and
practically by many authors, including [Buttari et al. 2008; Buttari et al. 2007; Demmel et al.
2006; Demmel et al. 2009]. Chapter 5 describes the development of such a practical mixed
precision code for sparse symmetric systems.

2.8 HSL solvers

There are two major sparse symmetric indefinite solvers in the HSL software library [HSL 2007]
that we shall refer to. These are MA57 and HSL MA77, and are now briefly described.

2.8.1 MA57

MA57 is a multifrontal solver is initially described by Duff [2004]. It has evolved to use the
scaling and pivoting strategies of Duff and Pralet [2005; 2007].

In addition to the normal facilities (analysis, factorize and solve phases), MA57 also offers
options for the solution of multiple right-hand sides, computation of partial solutions, error
analysis, matrix modification, and the facility to stop and restart. It also offers the ability to
set control parameters affecting any part of the solution process, though it is normal to use the
defaults which have been tuned by the authors.

Further, built-in scaling is available through a symmetrized version of the well-known pack-
age MC64 [Duff and Koster 2001], and MA57 is also capable of determining a preordering using
variants of the minimum degree algorithm or multilevel nested dissection algorithms. It features
an advanced heuristic [Duff and Scott 2005] to choose between these ordering algorithms.

2.8.2 HSL MA77

HSL MA77 [Reid and Scott 2008; 2009b] is also a multifrontal solver that is designed to solve
positive definite and indefinite sparse symmetric systems. A different inner kernel is used in each
case to achieve the best performance. The fundamental difference between MA57 and HSL MA77

is that the latter is an out-of-core solver capable of holding all the data out of core, enabling
the solution of much larger problems. Further, care has been taken to allow the addressing of
fronts with 64-bit integers. This is essential as some problems require the factorization of dense
matrices containing this many elements.

45

It exploits the virtual memory system of Reid and Scott [2009a] to minimize overheads due
to the out-of-core approach while remaining robust. The ability to work in core is also available,
though some overhead from the out-of-core design remains. Despite this, on problems that MA57
is able to solve, the performance of HSL MA77 is favourable in the factorization phase, though
the solve phase can be comparatively slow.

While full control over the factorization is still available, the large range of support routines
that come with MA57 are not present. The user is expected to supply their own ordering and
scaling. This reflects the limited availability of subroutines capable of performing these routines
in an out-of-core fashion for large problems.

46

Chapter 3

Interior point methods

This chapter shows the use of symmetric matrix factorization in an important application:
interior point methods. We briefly develop the theory of primal-dual interior point methods
(IPMs) and address crucial numerical elements as they apply to matrix factorizations. Much of
the theory presented here is covered in greater detail by the book Primal-Dual Interior Point
Methods [Wright 1997].

We consider the general optimization problem

max f(x)

subject to g(x) = 0

x ≥ 0,

where x ∈ R
n, f : Rn → R, and g : Rn → R

m. When f(x) and g(x) are linear functions of x,
we have a linear programming problem (LP) that has the general form

max cTx

subject to Ax = b

x ≥ 0,

(3.1)

where c ∈ R
n, b ∈ R

m and A is a m×n matrix. In this chapter we shall develop theory for only
the linear case, however quadratic and general nonlinear programming involves the solution of
similar systems, as described at the end of the chapter.

3.1 Karush-Kahn-Tucker conditions

The LP (3.1) is referred to as the primal form. We can define the associated Lagrangian function

L(x,y, z) = cTx− yT (Ax− b)− zT (x− 0),

with y ∈ R
m and z ∈ R

n. We observe that the solution of (3.1) is equivalent to the uncon-
strained optimization

max
x≥0

min
y

z≥0

L(x,y, z). (3.2)

Finding the stationary point yields first order conditions for optimality

ATy + z = c

Ax = b

xizi = 0 ∀ i
x, z ≥ 0.

(dual feasibility)

(primal feasibility)

(complementarity)

(positivity)

(3.3)

These are known as the Karush-Kahn-Tucker, or KKT, conditions.

47

Reversing the order of optimizations in (3.2) yields the dual problem, with general form

min bTy

subject to ATy + z = c

z ≥ 0.

In the linear case the primal and dual problems share the same optimal set.

3.2 Solution of the KKT systems

Interior point methods are essentially a variant of the Newton iteration. We solve the first
three equations of (3.3) with all iterates satisfying the positivity condition. As the exact com-
plementarity condition xizi = 0 ∀ i makes this problem very difficult to solve with the Newton
iteration, we instead use a relaxed form, xizi = σµ ∀ i. The scalar parameters σ and µ will be
explained later, but are chosen such that the products xizi are driven to zero as the iteration
progresses. This leads to the following equation for the Newton direction:

AT I
A
Z X

∆x

∆y

∆z

 =

c−ATy − z

b−Ax
σµe− ZXe

 . (3.4)

We use the convention that X is the diagonal matrix with the values of the vector x on the
diagonal (likewise for Z and z); e is the vector of all ones.

The basic primal-dual interior point method is shown as Algorithm 13. This form does not
have any guarantees of convergence, but presents the main ideas. We find a descent direction
that reduces the infeasibilities, and proceed along it such that x and z remain positive. The
scalar µ is known as the complementarity gap, and is the average value of xizi at each step.
The complementarity gap is driven towards zero by the centring parameter σ, that aims to
reduce µ at each iteration. In practice, the algorithm as stated will take many iterations to
reach optimality (if it does so at all). Taking the full step to the boundary along each descent
direction is likely to limit the length of the future steps. Additionally, getting too close to the
boundary will result in an ill-conditioned matrix for (3.4) with accompanying errors.

Algorithm 13 The basic primal-dual interior point method

Require: Starting point (x,y, z) : x, z ≥ 0, centring parameter σ, convergence tolerance ǫ.

Calculate µ = x
T
z

n
.

while (‖ATy + z − c‖, ‖Ax− b‖, µ) ≥ ǫ do
Determine the Newton direction by solving (3.4).
Find step length α = argmax {α ∈ [0, 1] : (x, z) + α(∆x,∆z) ≥ 0} .
Take step (x,y, z)← (x,y, z) + α(∆x,∆y,∆z).

Calculate µ = x
T
z

n
.

end while

We define the central path for a problem as the unique curve parametrised by µ that satisfies
the perturbed KKT system

ATy + z = c

Ax = b

xizi = µ ∀i = 1, . . . , n.

This is an idealised trajectory where the complementarity products xizi are always equal. A
method where iterates remain within a neighbourhood of this path is said to be path-following.

We reproduce the path-following method given as Algorithm IPF by Wright [1997] as our

48

Algorithm 14. The particular neighbourhood used in this case is

N−∞(γ, β) =

{

(x,y, z) :
‖(b−Ax, c−ATy − z)‖∞

µ
≤ β
‖(b(0) −Ax(0), c−ATy(0) − z(0))‖∞

µ(0)
,

(x, z) > 0, xizi ≥ γµ ∀i = 1, . . . , n

}

.

The neighbourhood is large when it is far from the optimum, but gets narrower as it approaches
the optimal set. This is shown for a simple problem in Figure 3.1, with the shaded neighbour-
hood getting much smaller as the path converges to the optimum. The other condition that
the neighbourhood imposes is that the primal and dual infeasibilities decrease at the same rate
as, or faster than, the complementarity gap µ. This final condition is useful to ensure that
reduction of all residuals in the solution of the KKT system occurs at the same rate.

Algorithm 14 Algorithm IPF from the book Primal-Dual Interior-Point Methods: A path
following infeasible primal-dual interior point method

Require: Neighbourhood parameters γ ∈ (0, 1) and β ≥ 1, minimum and maximum centring
parameters σmin and σmax, starting point (x,y, z) : x, z ≥ 0.

Calculate µ = x
T
z

n
.

loop
Choose σ ∈ [σmin, σmax] and solve system (3.4) to find the Newton direction.
Determine the step length α as the largest value in the interval [0,1] that satisfies the
conditions:

(x,y, z) + α(∆x,∆y,∆z) ∈ N−∞(γ, β)

and
(x+ α∆x)T (z + α∆z)

n
≤ (1− 0.01α)µ.

Take step (x,y, z)← (x,y, z) + α(∆x,∆y,∆z).

Calculate µ = x
T
z

n
.

end loop

A detailed proof of the convergence of Algorithm 14 is given in Chapter 6 of Wright [1997].
The main thrust of the proof is to show that at each stage the sufficient decrease (or Armijo
condition),

(x+ α∆x)T (z + α∆z)

n
≤ (1− 0.01α)µ,

is satisfied. This follows largely from the final block of equations in (3.4) and the xizi ≥ γµ
condition from the neighbourhood. If µ satisfies this sufficient decrease condition, it must
converge to 0; as the iterate is within the neighbourhood N−∞(β, γ), the primal and dual
infeasibilities must also be converging to 0 at least as fast. Hence we may cease iterations once
µ falls below our desired tolerance and we will be near the optimum. If an exact solution is
required then we will need to use some form of simplex-like method to find a solution to the
KKT system.

3.3 Higher order methods

The consideration of IPMs as modified Newton methods logically leads to the consideration
of whether higher order non-linear equation solution methods can be adapted to provide yet
better convergence. This has been explored by considering IPMs as trajectory-following solvers.
A trajectory from the current iterate (x,y, z) to the solution set is defined such that the
descent direction given by solution of (3.4) represents a first order Taylor approximation to the
trajectory. Second order or higher approximations lead to the methods that will be described
in the next section.

49

Central Path

Optimum

Figure 3.1: Showing the constraints of a simple LP problem, with the central path and neigh-
bourhood marked.

3.3.1 Mehrotra’s predictor-corrector algorithm

Mehrotra [1992] tied together several existing threads of research to produce his well known
predictor-corrector algorithm, shown here as Algorithm 15. We essentially take an uncentred
Newton step, referred to as the predictor step or affine scaling direction, followed by a corrector
or centring step. The amount of centring is chosen by an adaptive heuristic such that strong
centring is performed if a large reduction in the complementarity gap is offered by the predictor
step. Another key feature of this method is that only a single matrix factorization is required
per iteration, as the same matrix is involved in both the predictor and corrector equations.

3.3.2 Higher order correctors

The central path we are aiming to follow is described by Vavasis and Ye [1996] as having very
tight turns that are not well described by a low order truncation of the Taylor series. This
suggests higher than second order correction in a strict trajectory following sense is likely to
be fruitless. Instead, Gondzio [Gondzio 1995; 1996; Colombo and Gondzio 2008] suggests using
higher order corrections to increase the step length α; this is successfully demonstrated in his
code HOPDM. As for the predictor-corrector algorithm, it requires multiple solves with the
same matrix factorization.

3.4 Practical implementation

So far we have presented the theoretical side of interior point methods. However, the success
or failure of an algorithm ultimately relies on practical performance. To this end a number of
important tricks are required. Those relating to the solution of the linear systems are relevant
to this thesis. These are addressed in the following sections.

50

Algorithm 15 The Mehrotra predictor-corrector algorithm

Require: (x(0),y(0), z(0)) : x(0), z(0) ≥ 0
loop
Solve

AT I
A
Z X

∆xaff

∆yaff

∆zaff

 =

c−ATy − z

b−Ax
−XZe

to find the predictor direction (∆xaff ,∆yaff ,∆zaff).
Determine αaff = argmax

{

α ∈ [0, 1] : (x, z) + α(∆xaff ,∆zaff) ≥ 0
}

.

Calculate µaff =
(x+ αxaff)T (z + αzaff)

n
.

Set σ = (µaff/µ)3.
Solve

AT I
A
Z X

∆xcor

∆ycor

∆zcor

 =

0
0

σµe−∆Xaff∆Zaffe

to find the corrector direction (∆xcor,∆ycor,∆zcor).
Define the full search direction (∆x,∆y,∆z) = (∆xaff ,∆yaff ,∆zaff) +
(∆xcor,∆ycor,∆zcor).
Determine step to boundary αmax = argmax {α ≥ 0 : (x, z) + α(∆x,∆z) ≥ 0}.
Set step length α = min(0.99αmax, 1).
Take step (x,y, z)← (x,y, z) + α(∆x,∆y,∆y).

end loop

3.4.1 Augmented and normal equations

The system (3.4) can rearranged to the following forms through substitution:

(

−X−1Z AT

A

)(

∆x

∆y

)

=

(

c−ATy − z −X−1(σµe−XZe)
b−Ax

)

, (3.5)

AXZ−1AT∆y = XZ−1(c−ATy − z)− Z(σµe−XZe) +A(b− Ax).

Both new forms are symmetric; the latter is also positive definite. The first is known as the
augmented system, while the second is the normal equations form. We are not aware of any
disadvantages in solving the augmented system in preference to the original system (3.4): the
growth in the matrix factors is unavoidable whether we restrict ourselves to eliminating ∆z

first or not. The reduction from the augmented system to the normal equations corresponds
to forcing the pivot order for the first n pivots to be 1, . . . , n. Numerical experience shows
that this can result in a much poorer factorization than if full pivoting is allowed due to
the extremal nature of some entries in XZ−1. However, the positive definite nature of the
normal equations allows the more efficient Cholesky factorization to be used rather than a
symmetric indefinite factorization. Fourer and Mehrotra [1993] report that the augmented
system approach was typically slower with their solver than the normal equations approach
on all but very dense problems (where the cost of forming AXZ−1AT dominates for normal
equations), but is numerically better. While technology has moved on since these experiments,
it would be logical to assume that similar results still hold as pivoting still requires additional
scanning of the matrix and eliminates some parallelism inherent in the Cholesky algorithm. For
some problem structures, the freedom of ordering for sparsity allowed by the augmented system
is essential to avoid the factors becoming dense.

3.4.2 Numerical errors

As the interior point iteration approaches an optimum point it is expected that some entries of
xi/zi will approach zero and others infinity. This would be expected to cause serious issues in
the reliability of results. However, due to the nature of the direction being calculated (i.e. the

51

nature of the right hand side) the solution can be shown to be sufficiently accurate to achieve
convergence [Wright 1994]. Indeed, Wright [1999] demonstrates that for the normal equation
the important result is that L̃T z − L̃T z̃ is small, where L̃ is the Cholesky factorization of a
matrix near AXZ−1AT , z̃ denotes the solution with this factor and z is the exact solution.
Wright goes on to show that a modified Cholesky factorization where small pivots are ignored
produces a good descent direction.

3.5 Nonlinear optimization

Interior Point Methods can be employed in the solution of nonlinear problems, the main dif-
ference being the appearance of a Hessian term in the top left of system (3.4) to require the
factorization of an augmented system matrix such as

(

H −X−1Z AT

A

)

.

This can clearly be tackled through similar algebra to the linear case, though the normal
equations are not so easily available unless the Hessian is diagonal or otherwise easy to invert.

52

Part II

Improved algorithms

53

Improved algorithms: introduction

This part of the thesis describes novel algorithms and original work aimed at improving the
solution of Ax = b through direct methods. The key resource on modern computers is mem-
ory bandwidth, but parallelism must often be exploited in order to become bound upon this
resource. Algorithms are explored that seek to minimize the memory bandwidth used while
aiming for strong scaling on modern multicore chips.

Chapter 4 attempts to reduce the number of delayed pivots generated during a factorization
through scaling the rows and columns of a matrix. A large number of delayed pivots can lead to
a substantial increase in the number of non-zeros that need to be stored, increasing the memory
bandwidth required in the factorization. In addition the number of floating point operations is
increased and the computational analysis performed in the analyse phase significantly deviated
from. This can potentially lead to load balance problems when running in parallel.

Chapter 5 attempts to reduce the memory bandwidth used by performing the matrix fac-
torization in single precision before using an iterative method to recover full double precision
accuracy. A practical set of heuristics is developed to achieve this aim for sufficiently large
matrices. These are implemented in a new library quality code, HSL MA79.

Chapter 6 addresses the problem of attempting to improve scaling of dense Cholesky fac-
torization on multicore chips. Existing task graph based schemes are explored and modest
performance gains through the use of critical path based scheduling are demonstrated. This
leads to the extension of such task based methods to the sparse case in Chapter 7. The resultant
code is shown to be highly competitive with other shared memory solvers, especially on large
problems. Attention is paid to minimizing memory traffic through modifications to the analysis
phase and an improved cache-aware scheduling policy.

Finally Chapter 8 draws these separate threads together and explores their performance in
an interior point context, a common application of direct methods. A mixed bag of results is
presented, with some techniques showing promise, and current deficiencies of other approaches
identified.

55

56

Chapter 4

Which scaling?

In this chapter we address the issue of matrix scalings. This description is based on our work
in [Hogg and Scott 2008], that is a technical report the author produced in collaboration with
Jennifer Scott while working at Rutherford Appleton Laboratory. The author wrote the test
harness and performed most of the experiments and data analysis, while Scott provided guidance
on background material, an in depth knowledge of sparse symmetric indefinite factorizations
and helped with the data analysis and presentation. Useful discussions relating to this work
were also held with John Reid, Iain Duff and Mario Arioli.

Our major scientific contribution is to carry out a systematic experimental study of several
scalings applied to a large number of practical problems, including some highly challenging
systems, and to form an opinion as to what work well.

A copy of the technical report is reproduced with kind permission of the copyright holders
at the rear of this thesis.

4.1 Why scale?

As noted in Section 2.5.1, scaling can drastically affect the factorization time for symmetric
indefinite systems. In this section we extend the work of Pralet [2004], presenting results of
experiments performed to evaluate different scalings available within the HSL library [HSL
2007]. Our primary aim is to reduce the time taken for the factorization subject to sufficient
accuracy being achieved. We demonstrate that this aim is highly correlated with reductions in
the number of delayed pivots encountered (and hence how closely we stick to the predictions of
the analyse phase).

However, for some problems time is not the primary concern. Accuracy and the ability to
find a solution are.

4.2 The scalings

We will consider the following scalings:

No Scaling Many problems can be solved without the use of scaling and, as our numerical
experiments will show, this often results in smaller residuals (before the application of
refinement) than if a scaling were used. Further, without the computational overhead of
scaling, total solution times can be faster.

MC30 See description in Section 2.5.1.

MC64 See description in Section 2.5.1.

MC77 See description in Section 2.5.1. We will use MC77 in the infinity and one norms, denoted
by MC77∞ and MC771 respectively.

57

Hybrid scalings We run multiple scalings upon the matrix, one after another. If different
scalings aim for different properties it may be that the combined scaling is better than
either individually.

This choice represents a restriction to those options available within the HSL library, and hence
does not consider other alternatives such as those others described in Section 2.5.1.

4.3 Methodology

In addition to the above scaling packages, we will use the following HSL codes, as shown in
Algorithm 16.

MA57 Multifrontal algorithm sparse symmetric solver. We use the default settings with the
following exceptions: we force the MeTiS [Karypis and Kumar 1999] ordering and disable
the internal call to the scaling routine MC64. All matrices are treated as indefinite (that
is, we allow numerical pivoting with a threshold parameter of µ = 0.01).

MA60 Reverse communication code implementing iterative refinement. We use the default max-
imum iteration limit of 16. The termination condition requires the error estimate to be
less than machine precision.

MI15 Reverse communication code implementing FGMRES. We use the MA57 factorization
and solve as a right-preconditioner, as per Arioli et al. [2007]). The maximum iteration
limit is 20, with a restart after 10 iterations (these parameters were chosen following
numerical experimentation). We use default termination conditions, but additionally
allow termination when the absolute value of the residual falls below 10−16.

Algorithm 16 Algorithm for scaling test harness

Set x = (1, . . . , 1). Calculate b = Ax.
Calculate scaling matrix S using chosen algorithm.
Form Â = SAS.
Factorize Â using MA57.
Perform a solve using MA57. Record the residual.
Use MA60 iterative refinement with A. Record the residual.
Use MI15 FGMRES refinement with A. Record the residual.

We work with a test set taken from the University of Florida Sparse Matrix Collection [Davis
2007]. All real symmetric problems of dimension less than 100,000 were chosen, however any
problems where the predicted size of factors failed to fit in the memory of the test machine were
removed. This gives us 367 problems, of which 158 are positive semi-definite and 21 are singular;
we shall refer to this collection as Test Set 1 (further details are given in Appendix A).

All the tests were conducted on curtis (recall Table 1.4) using the g95 compiler with option
-O2 and the Goto BLAS [Goto and van de Geijn 2008]. All denormals were flushed to zero,
and all computations were performed in double precision. Reported times are CPU timings
acquired using the Fortran system clock() intrinsic, and are stated in seconds.

For each run the following information was recorded.

Delayed pivots We use the number of delayed pivots reported by MA57 as a predictor of speed
and, to some extent, numerical stability. Given an initial pivot order, the time and the
memory required to factorize and then solve the linear system will depend on the number
of delayed pivots. A large number of delayed pivots can also, in some cases, be indicative
of a numerically difficult factorization that would be unstable without pivoting.

Scaling time Assuming the required accuracy is attained with and without scaling, a scaling
that results in a faster factorization need not be advantageous if the combined time of
scaling, factorizing and solving exceeds the unscaled solution time. We are also interested
in the relative speeds of the different scaling algorithms.

58

Factorization time This is the time taken for the numerical factorization phase. For a given
pivot order and threshold parameter u, this will depend on the scaling used.

Total time This is total time taken for the scaling followed by the analyse, factorize and solve
phases of MA57 followed by refinement.

MA57 residual This is the scaled residual shown below evaluated using the original unscaled
matrix directly after a single solve with MA57.

β =
‖r‖∞

‖A‖∞‖x‖∞ + ‖b‖∞
, (4.1)

where r is the residual given by r = b − Ax. The infinity norm is given by ‖x‖∞ =
maxi |xi| and has an induced matrix norm ‖A‖∞ = maxi

∑

j |aij |.

Iterative refinement residual This is the residual after MA60 (iterative refinement).

FGMRES residual This is the residual after MI15 (FGMRES(10)).

4.3.1 Performance profiles

Due to the large size of our test set, we present most of our results using performance profiles,
as described in the paper of Dolan and Moré [2002].

If we have a set S of scalings, and a set T of problems, then we record a statistic sij ≥
0, i ∈ S, j ∈ T on each run. It is assumed that the smaller this statistic the better the solver
is considered to be. For example, sij might be the time for problem j using scaling i. We wish
to compare each statistic with the best value for any scaling on that problem.

Let ŝj = minj∈T {sij ; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define the indicator function

k(sij , ŝj , α) =

{

1 if sij ≤ αŝj
0 otherwise.

The performance profile of solver i is then given by the function

pi(α) =

∑

j∈T k(sij , ŝj , α)

|T | , α ≥ 1. (4.2)

As already noted, in this study, the statistics used are timings, the number of delayed pivots
and residual sizes. The range of α illustrated is chosen in each case to highlight the dominant
trends in the data.

4.4 Numerical experiments

4.4.1 Scaling by the radix

It was common practice in the past [Curtis and Reid 1972] to scale by a power of the radix (on
most modern machines, a power of two). When scaling a floating point value by a power of
the radix we merely add the power to the floating point value’s exponent, leaving the mantissa
unchanged. This increased both the accuracy and the speed on older machines.

Modern processors can apply a scaling by any floating point value in the same number of
cycles as scaling by a power of the radix, so the speed advantage no long applies. Further, some
machines have a radix as large as sixteen (though this is not common), which make scaling
by the radix a rather blunt instrument compared to pivot tolerances of u = 0.1. As a result
radix-based scaling has fallen out of favour.

In Figure 4.1, we report on using MC30- and MC64-based radix and non-radix scalings. These
results show that the radix scaling reduces the residual from the MA57 solver in more cases
than it does not, although in most cases the improvement is less than one order of magnitude.
Though not shown here, these advantages were almost eliminated after iterative refinement was
applied.

59

MC30

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC30 default
MC30 radix

(a) Number of delayed pivots

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC30 default
MC30 radix

(b) Residual without iterative refinement

MC64

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC64 default
MC64 radix

(a) Number of delayed pivots

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC64 default
MC64 radix

(b) Residual without iterative refinement

Figure 4.1: Performance profiles for radix and non-radix (default) scalings.

The number of delayed pivots shows an interesting property we have yet to explain. We
would expect the non-radix scaling to produce fewer delayed pivots as it has improved the
numerics of the problem; this is indeed the case with MC64, however with MC30 we see that the
converse is true.

For the remainder of the experiments in this chapter, we use a non-radix based scaling.

4.4.2 Use of unscaled matrix for refinement

It is worth noting that the unscaled matrix A should be retained for any iterative method used
to refine the solution computed by the direct solver. Figure 4.2 demonstrates that using the
scaled matrix will generally result in a larger residual (as measured with the original matrix).
This is easily explained because we are then, in effect, solving a perturbed system.

4.4.3 Comparison of hybrid scalings

We first consider what the ‘best’ prescaling for each scaling is (ie MC30 by itself or after MC64)
and then compare the performances of these best (combination) scalings before making our
final recommendations.

We found in each case there was little to be gained from prescaling in compensation for
the time overhead of doing two scalings rather than one. The results shown in Figure 4.3 for
pre-scalings of MC77∞ are typical. They suggest we should avoid MC30 as a prescaling, and that
MC64 and MC771 both slightly reduce the number of delayed pivots. However, use of MC77∞ by
itself gives the smallest MA57 residuals, though this advantage is eliminated by the use of an
iterative method.

In the remainder of this chapter we compare the performance of only straightforward scalings
(ie with no prescaling).

60

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

Original
Scaled

(a) Iterative refinement residual

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

Original
Scaled

(b) FGMRES residual

Figure 4.2: Performance profiles of the residuals after iterative refinement and after FGMRES
for the original and the MC64 scaled matrices.

61

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC77 Inf
MC30−MC77 Inf
MC64−MC77 Inf

MC77 One−MC77 Inf

(a) Number of delayed pivots

 0

 50

 100

 150

 200

 250

 300

 350

 1 10

MC77 Inf
MC30−MC77 Inf
MC64−MC77 Inf

MC77 One−MC77 Inf

(b) Time for scaling

 0

 50

 100

 150

 200

 250

 300

 350

 1 10

MC77 Inf
MC30−MC77 Inf
MC64−MC77 Inf

MC77 One−MC77 Inf

(c) Total solution time

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

MC77 Inf
MC30−MC77 Inf
MC64−MC77 Inf

MC77 One−MC77 Inf

(d) MA57 residuals

Figure 4.3: Performance profiles comparing various prescalings for MC77∞.

62

 0

 50

 100

 150

 200

 250

 300

 350

 1 10

MC30
MC64

MC77 One
MC77 Inf

Figure 4.4: Performance profile for time to find and apply scaling only.

4.4.4 Overall results

It is worth noting that, for each scaling, there are some problems on which it is the best, and if
it is important to reduce factorization time and/or the amount of fill-in, users may wish to try
a variety of scalings on a representative sample of their problems before deciding which to use.

Figure 4.4, presents a performance profile of the scaling times. It is clear that MC77∞ is
significantly faster than most other scalings, and that MC64 is significantly slower.

Straight forward performance profile comparisons of the scalings are presented in Figures
4.5–4.8. We note that after refinement (with iterative refinement or FGMRES) the residuals
are comparable in quality. Further, none of the scalings needed more than four iterations of
refinement on any problem.

Pralet [2004] reports that MC30 performs poorly on many indefinite problems, and our results
support this finding. In terms of the number of delayed pivots, all the other scalings perform
far better than no scaling, with comparable results for MC771 and MC64. With respect to the
scaling times, MC64 is slower than the other scalings while MC77∞ is the fastest. The total time
is lower for MC771 than for the other scalings but MC64 is slightly more robust (there are a small
number of problems on which both the MC77 scalings do not perform well). If we look at the
MA57 residuals, MC77∞ performs almost as well as no scaling, while MC30 generally performs
worse (however the difference in the residual quality is eliminated once an iterative method is
used).

To avoid distortions due to small problems (that are difficult to reliably time), we eliminate
those problems taking less than 0.1 seconds to solve under any scaling. The resultant perfor-
mance profile values, given by formula 4.2 at various values of α are shown in Table 4.1. A
problem is regarded as ‘not solved’ if it runs out of memory or αij > 10.

In order to see what effect the sparsity ordering has on the number of delayed pivots, data
are shown for both Approximate Minimum Degree (AMD) [Amestoy et al. 1996; 2004] and
MeTiS orderings. The AMD ordering is typically poorer than that generated by MeTiS for
large problems; as a result fewer problems could fit their predicted factors in available memory
and are not reported upon. It seems that general trends hold regardless of the ordering used.

If we require that a scaling enable the solution of a problem in a time no more than an
order of magnitude longer than the fastest possible then only MC771 and MC64 would meet the
requirement (though there is only one problem that MC77∞ does not succeed on). If we instead
look for the scaling which solved the greatest number of problems without taking more than
twice as long as the best possible then MC771 would slightly outperform MC64. It is not clear
whether these conclusion will hold if, in the future, we were to consider even larger problems.

We shall demonstrate in the next section that we have a choice between a reliable but very
slow MC64 scaling, and a fast but occasionally unreliable MC771 scaling.

63

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

No Scaling
MC30
MC64

MC77 Inf
MC77 One

Figure 4.5: Number of de-
layed pivots for best variants.

 0

 50

 100

 150

 200

 250

 300

 350

 1 10

MC30
MC64

MC77 Inf
MC77 One

Figure 4.6: Scaling times for
best variants.

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

No Scaling
MC30
MC64

MC77 Inf
MC77 One

Figure 4.7: Total times for
best variants.

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

No Scaling
MC30
MC64

MC77 Inf
MC77 One

Figure 4.8: MA57 residual for
best variants.

64

α No scale MC30 MC64 MC77∞ MC771
1.0 181 5 5 30 21
1.1 212 110 64 184 133
1.2 214 153 133 224 204
1.3 220 165 180 225 218
1.4 223 169 208 227 227
1.5 223 177 220 228 228
1.6 223 179 224 228 229
1.7 225 183 226 228 230
1.8 225 185 226 228 230
1.9 225 187 228 228 230
2.0 225 187 228 228 230

Not Solved 6 15 0 1 0
αmax - - 2.83 - 3.16

(a) MeTiS

α No scale MC30 MC64 MC77∞ MC771
1.0 151 17 15 37 27
1.1 180 58 45 129 93
1.2 183 98 81 166 143
1.3 187 115 108 181 169
1.4 187 131 131 189 185
1.5 188 137 147 190 190
1.6 189 141 164 192 193
1.7 191 148 171 192 194
1.8 191 151 185 192 195
1.9 191 153 190 192 195
2.0 191 153 194 194 195

Not Solved 4 15 0 0 0
αmax - - 3.80 8.94 3.26

(b) AMD

Table 4.1: Performance data for the larger problems that require more than 0.1 seconds to
solve. For each α interval the best results are highlighted in bold.

65

Name m Application Properties
FIDAP/ex14 3973 Fluid Dynamics Finite Element Indefinite
GHS indef/bloweybl 30003 Materials Problem Indefinite, Singular

(rank 30002)
GHS indef/copter2 55476 Fluid Dynamics Problem Indefinite
GHS indef/ncvxqp1 12111 Optimization Augmented System Indefinite
GHS indef/ncvxqp9 16554 Optimization Augmented System Indefinite
Oberwolfach/LFAT5000 19994 Model Reduction Positive Definite
Schenk IBMNA/c-30 5321 Non-Linear Optimization Indefinite
Schenk IBMNA/c-52 23948 Non-Linear Optimization Indefinite
Schenk IBMNA/c-54 31793 Non-Linear Optimization Indefinite
Schenk IBMNA/c-62 41731 Non-Linear Optimization Indefinite

Table 4.2: Ten interesting problems.

4.5 Interesting problems

We now examine ten problems more closely (see Table 4.2). These were chosen to illustrate
where some of the scalings do poorly. We note that all the problems are part of our main test
and the Schenk IBMNA problems are from a larger set of such problems (see Appendix A).

Results for these problems are given in Table 4.3, and the relative timings for the different
phases of MA57 are shown in Graphs 4.9 and 4.10. We display results for both AMD and MeTiS
orderings because, for our relatively small problems, the MeTiS time is a large proportion of
the total solution time compared to that for AMD. We note that, because the analyse phase
uses only the sparsity pattern, the analyse timings are independent of the scaling used.

These problems illustrate that, with the exception of MC30, there are problems for which
each scaling is, by some measure, optimal. They also demonstrate each of the scalings can
behave poorly. We note that, following iterative refinement, all residuals are comparable and
hence are omitted. The optimization problems, which are characterised by having a mixture
of extremely large and extremely small eigenvalues, provide the most challenging systems on
which none of the scalings does consistently well.

Let us first consider using no scaling. This, in general, results in small MA57 residuals (recall
Figure 4.8) and, without the scaling overhead, the total solution time can be small (copter2,
c-30, c-52). However there is a penalty in the large number of delayed pivots (LFAT5000,
ncvxqp1) and, in the extreme case (bloweybl), this can lead to the problem not being solved
because memory is exhausted.

While the results of the previous section tell us that MC771 is generally the best scaling in
terms of delayed pivots, problems ncvxqp1 and c-62 illustrate that its behaviour is erratic and
using MC64 can lead to significantly fewer delayed pivots. On the extremal problem c-62 the
impact on the factorize time of the number of delayed pivots was almost a factor of four. On
many of the problems, MC64 results in slightly larger MA57 residuals and problems ncvxqp9, c-30
and c-54 illustrate that MC64 can be expensive, with the total solution time for these relatively
small problems dominated by the scaling time. For larger problems, we anticipate that the time
to scale will be a small fraction of the total time regardless of the scaling used.

MC77∞ is competitive when we compare the total solution times, and it leads to small MA57
residuals. Furthermore, it appears to be the most robust for singular problems (although in our
tests we have not applied the MC64 modification suggested by Duff and Pralet [2005] where a
preprocessing is applied to deal with rank deficiency before a weighted matching is attempted,
designed to cope better with singular matrices).

4.6 Conclusions

We conclude that, while the performance of MC64 and MC771 is equally good for most problems,
MC64 is more consistent, with MC771 behaving poorly on a small minority of problems. This
must, however, be set against the amount of time required to compute the scaling: MC64 was

66

Delayed pivots MA57 Residual
Problem none MC30 MC64 MC77∞ MC771 none MC30 MC64 MC77∞ MC771
ex14 4825 839 586 735 692 1e-16 2e-13 5e-14 4e-14 3e-14
bloweybl - 9652 9652 10435 19559 - 1e-12 3e-12 7e-16 3e-13
copter2 120 108 110 118 60 1e-12 2e-12 1e-12 1e-12 1e-12
ncvxqp1 1.7e5 59697 13184 40234 38788 3e-19 8e-18 1e-13 2e-17 4e-17
ncvxqp9 6217 6147 2808 6234 3275 1e-16 1e-16 4e-19 6e-17 1e-16
LFAT5000 46309 13 13 13 13 1e-16 2e-16 2e-16 2e-16 2e-16
c-30 24 0 1 6 0 6e-17 7e-16 2e-16 4e-17 7e-16
c-52 950 17116 825 880 738 6e-17 1e-16 8e-18 2e-18 1e-16
c-54 7135 19012 1881 5395 2681 8e-17 2e-15 5e-14 2e-16 8e-17
c-62 5.5e5 5.5e5 1333 5.0e5 1.1e5 2e-16 2e-16 2e-14 4e-16 6e-15

Scaling Time Factorize Time
Problem none MC30 MC64 MC77∞ MC771 none MC30 MC64 MC77∞ MC771
ex14 - 0.025 0.088 0.016 0.023 0.273 0.033 0.023 0.025 0.023
bloweybl - 0.040 0.099 0.033 0.038 - 0.069 0.069 0.070 0.142
copter2 - 0.252 0.876 0.213 0.188 4.38 4.60 4.46 4.35 4.37
ncvxqp1 - 0.019 0.636 0.019 0.021 102. 14.5 2.34 8.75 8.09
ncvxqp9 - 0.017 0.532 0.020 0.019 0.161 0.160 0.552 0.158 0.063
LFAT5000 - 0.026 0.045 0.021 0.029 22.5 0.020 0.020 0.020 0.020
c-30 - 0.015 0.042 0.014 0.016 0.015 0.014 0.015 0.015 0.014
c-52 - 0.057 0.135 0.056 0.054 0.091 1.23 0.090 0.089 0.088
c-54 0 0.096 1.29 0.093 0.092 0.322 1.63 0.172 0.235 0.187
c-62 0 0.104 0.550 0.140 0.133 751. 752. 11.9 435.42 4.

Table 4.3: Results for ten interesting problems.

67

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nf

M
C
77

_O
ne

c
-6

2
 (

7
5
4
s
)

c
-5

4
 (

2
.6

4
s
)

c
-5

2
 (

1
.8

3
s
)

c
-3

0
 (

0
.1

2
s
)

L
F

A
T

5
0
0
0
 (

2
2
.8

s
)

n
c
v
x
q
p
9
 (

0
.7

8
s
)

n
c
v
x
q
p
1
 (

1
0
3
s
)

c
o
p
te

r2
 (

7
.1

9
)

b
lo

w
e
y
b
l
(0

.4
5
s
)

e
x
1
4
 (

0
.3

4
s
)

Times are normalized by the longest time for each problem (given in parentheses).

From the bottom to the top: analyse,scaling,factorize,iterative refinement.

Figure 4.9: Showing relative timing dedicated to each part of the solve process, using MeTiS
ordering.

68

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

no
ne

M
C
30

M
C
64

M
C
77

_I
nfM

C
77

_O
ne

c
-5

4
 (

1
2
.4

s
)

c
-5

2
 (

2
.0

0
s
)

c
-3

0
 (

0
.0

7
s
)

L
F

A
T

5
0
0
0
 (

9
8
.4

s
)

n
c
v
x
q
p
9
 (

0
.6

9
s
)

n
c
v
x
q
p
1
 (

2
4
.2

s
)

c
o
p
te

r2
 (

9
.8

5
s
)

b
lo

w
e
y
b
l
(0

.2
5
s
)

e
x
1
4
 (

0
.3

2
s
)

Times are normalized by the longest time for each problem (given in parentheses).

From the bottom to the top: analyse,scaling,factorize,iterative refinement.
Note: c-62 with the AMD ordering failed to factorize due to lack of memory.

Figure 4.10: Showing relative timing dedicated to each part of the solve process, using AMD
ordering.

69

by far the most expensive to compute and, for the size of problems tested, sometimes led to
large total solution times. MC64 is also observed to occasionally produce MA57 residuals that
are two or three orders of magnitude larger than MC771, but we found these could be reduced
by using MC77∞ as a prescaling. Either MC64 (possibly prescaled by MC77∞) or MC771 would
make a good default approach for a direct solver. We would, however, recommend that the user
perform some initial experiments if they have multiple related problems to solve. We note that
for larger problems the scaling time may not be a significant proportion of the total solution
time, so MC64 may prove better on this domain. MC30 is probably best avoided for indefinite
problems.

A small number of steps of iterative refinement will, in most cases, remove any significant
differences in the size of the residuals. If iterative refinement is undesirable, for example when
using an out-of-core facility, MC77∞ may be the best choice (although it may suffer a very large
number of delayed pivots for some problems).

Finally, we remark that, for our test matrices, it was often not necessary to do any scaling
at all. However, without scaling the worst case behaviour was more extreme than for any of
the scalings we tried and, of course, we do not know if the test data were prescaled before being
included in the University of Florida sparse matrix collection.

70

Chapter 5

A mixed-precision solver

We consider the development of a fast and robust mixed precision sparse symmetric solver.
This work described in this chapter has been accepted for publication in ACM Transactions on
Mathematical Software as [Hogg and Scott 2010a]. The user interface design was jointly drafted
by the author and Scott, but the majority of the implementation (that is the complex mixed
precision wrapper around the existing codes) was done by the author, with quality control
and additional testing performed by Scott. We are again grateful to John Reid, Iain Duff
and Mario Arioli for useful discussions relating to this work. Additionally, helpful comments
were received from three anonymous referees while the paper was under review. Our major
scientific contribution is the engineering of a robust solver written in Fortran which realises
the idea of a mixed precision solver suggested by theoretical papers, developing a methodology
for combining iterative refinement and FGMRES in a tuned and robust fashion. The resultant
software, HSL MA79, is now part of the HSL software library [HSL 2007], which is freely available
under license to academics.

A preprint of the paper is reproduced with kind permission of the copyright holders at the
rear of this thesis. HSL software may be obtained from
http://www.hsl.rl.ac.uk/.

5.1 Mixed precision

A mixed precision solver is one that aims to achieve a high (double precision) accuracy solution
through the use of a mixture of single and double precision operations. The use of single
precision is motivated by the higher execution speeds of single precision operations, but at
some stage must use double precision to improve the accuracy. In this section we describe how
the use of a single precision symmetric indefinite (or Cholesky) factorization may be used as a
preconditioner to a double precision iterative method.

Aiming for the same accuracy as performing the factorization in double precision is conven-
tional: most direct solvers use double precision arithmetic. Double precision is normally the
highest precision for which hardware is optimized, and so is a sensible choice. However, the
accuracy required when solving a system of equations is application dependent, and may be
lower than required. If the required accuracy is less than about 10−5 (which may be all that is
appropriate if, for example, the problem data are not known to high accuracy), single precision
may often be used. If a problem is very ill conditioned, high precision may be necessary to
obtain a solution that is accurate to at least a modest number of significant figures. Regardless,
common practice remains that double-precision accuracy is requested by users: either out of
actual need, or just to be safe.

Motivated by recent studies and theoretical developments [Arioli and Duff 2009; Buttari
et al. 2007; Buttari et al. 2008] demonstrating that simple high precision iterative methods
can be effectively preconditioned by a lower precision factorization, we design and develop a
library-quality mixed-precision sparse solver for symmetric linear systems.

71

5.2 Test environment

All reported experiments in this section are performed on a single core of fox, using the
gfortran-4.3 compiler with -O1 optimization and a serial version of the Goto BLAS [Goto
and van de Geijn 2008]. All timings are elapsed times measured using the Fortran intrinsic
system clock and are given in seconds. We set the option to flush denormal numbers to zero,
based on poor performance of some problems in initial experiments if this was not done.

We work with two test sets; all but three of the problems are drawn from the University of
Florida Sparse Matrix Collection [Davis 2007] and all are symmetric with either real or integer
valued entries.

Test Set 2: Small to medium matrices with n ≥ 1000 and at most 107 entries in the upper
(or lower) triangular part. This set comprises 330 problems.

Test Set 3: Medium to large matrices with n ≥ 10000. This set comprises 232 problems.

We note that 170 problems belong to both sets. The problems are held as two test sets because it
is more practical to perform a lot of tests on the smaller test problems. Furthermore, MA57 is not
able to solve the largest problems in Test Set 3 (because of insufficient memory); for these, the
out-of-core facilities offered by HSL MA77 are needed. In all our experiments, we use threshold
partial pivoting with the threshold parameter set to u = 0.01 (thus, all the test problems are
treated as indefinite, even though some are known to be positive definite). Furthermore, we
scale the test problems using the HSL package MC77 (the ∞-norm scaling is used)1.

5.3 On single precision

As noted in Chapter 2, modern sparse direct solvers have two major numerical operations: the
use of Level 3 BLAS, and a sparse scatter operation. The speed of the BLAS operations is
limited largely by latency and the flop rate, but the scatter operations are limited more by
memory bandwidth and latency. With the recent emergence of multicore processors and with
future chips likely to have ever larger numbers of cores, the data transfer rate and memory
latency are expected to become an ever tighter constraint [Graham et al. 2004]. In the context
of these operations, using single-precision arithmetic in preference to double offers significant
reductions in data movement as well as memory usage.

The storage requirements for a sparse direct solver are dominated by that required for the
matrix factor L which, due to fill-in, generally contains many more entries than the original
sparse matrix A. Using single precision gives storage savings of 50% for L, enabling the solver to
be used to solve larger problems. Single precision has potential to be particularly advantageous
for an out-of-core solver because the amount of disk access is also approximately halved and
the in-core working set is doubled. We note that in the dense case the matrix factors are the
same size as the original matrix and so, in the symmetric case, the memory saving using single
precision is only 25% (when we keep a double-precision copy of A in addition to the factors so
that refinement can be performed).

In addition to the advantages of memory savings and reduced data movement, single-
precision arithmetic is currently more highly optimized (and hence faster) than double-precision
computation on a number of architectures, such as commodity Intel chips, Cell processors and
general-purpose computing on graphics cards (GPGPU). Buttari, Dongarra, and Kurzak [2007]
report differences as great as a factor of ten in speed. Thus it is highly advantageous to carry
out as much computation as possible on these chips using single precision arithmetic.

Figure 5.1 compares the performance of matrix-matrix multiplies (level 3 BLAS) in single
(sgemm) and double (dgemm) precision, for square matrices up to order 1000. Since gemm oper-
ations are used extensively within modern sparse direct solvers (including MA57 and HSL MA77),
this demonstrates the potential advantage of performing the factorization using single preci-
sion. Figure 5.2 shows how this translates into a performance gain for the factorization phase
of MA57 (here the test set comprises the subset of Test Set 2 problems that take at least 0.01

1In our tests, the direct solvers were unable to solve problems GHS indef/boyd1 and GHS indef/aug3d with
this choice of scaling so, in these instances, we scale using MC64 [Duff 2004; Duff and Koster 2001].

72

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000

M
F

L
O

P
S

m=n=k

sgemm
dgemm

Figure 5.1: The performance of single (sgemm) and double (dgemm) precision matrix-matrix
multiplication for a range of sizes of square matrices.

seconds to factorize in double precision on our test machine). While we do not see gains of quite
the factor of two that is achieved for sgemm, we do see worthwhile improvements on the larger
problems, that is, those taking longer than about 1 second to factorize. Here gemm operations
dominate the factorization time, whereas on the smaller problems, integer operations as well as
book keeping are more dominant and for such problems there may be little reward in terms of
computation time in pursuing a mixed-precision approach.

There was also one test matrix (not shown in Figure 5.2) for which the ratio of the single-
precision to the double-precision factorization time was well in excess of two. This was an
indefinite problem and although in both cases the sparsity ordering was the same, during the
factorization the pivot sequence was modified to maintain numerical stability. In the double-
precision factorization more delayed pivots were generated than in the single-precision case,
resulting in a much higher operation count.

5.4 Basic algorithm

Our aim is to perform a single-precision factorization and then, if necessary, use double-precision
post-processing to recover a solution to the desired precision. For maximum efficiency, we want
to try the cheapest algorithm first and, only if this fails, resort to applying more computation-
ally expensive alternatives. In the worst case, we fall back to performing a double-precision
factorization.

We require that the computed solution x satisfies β ≤ γ, where γ is a parameter chosen by
the user and β is the scaled residual given by the equation (5.1).

β =
‖r‖∞

‖A‖∞‖x‖∞ + ‖b‖∞
, (5.1)

where r is the residual given by r = b − Ax (the infinity norm is given by ‖x‖∞ = maxi |xi|
and has an induced matrix norm ‖A‖∞ = maxi

∑

j |aij |). If β ≤ γ is satisfied we say that the
requested accuracy has been achieved. This provides a stopping criteria in our algorithms. We
note that in the case where we scale A prior to the factorization, the unscaled matrix is retained
for any iterative method used to refine the solution and β is calculated with the unscaled A for
checking the accuracy (recall Section 4.4.2).

Algorithm 17 summarises the basic mixed-precision approach. The factorization is per-
formed in single precision then, if the scaled residual β exceeds γ, iterative refinement in double
precision is performed. If the requested accuracy has not yet been achieved, FGMRES (in
double precision) is used and, finally, if β is still too large, a switch is made to double precision
and the computation is restarted.

73

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.01 0.1 1 10 100 1000 10000

ti
m

e
(d

o
u
b
le

)/
ti
m

e
(s

in
g
le

)

time(double)

Figure 5.2: The ratios of the times required by the factorization phase of the sparse direct solver
MA57 when run in single and double precision (the problems are a subset of Test Set 2).

Algorithm 17 Mixed-precision solver

Input: Requested accuracy γ
Set prec = single.
loop
Factorize PAPT as LDLT using precision prec.
Solve Ax = b and compute β.
if β ≤ γ then exit.
Perform iterative refinement (Algorithm 18).
if β ≤ γ then exit.
Perform FGMRES (Algorithm 19).
if β ≤ γ then exit.
if prec = single then
Set prec = double.

else
Set error flag and exit.

end if
end loop

74

5.4.1 Solving in single

Clearly the solution using the single-precision factors could be implemented in a number of
ways depending on what precision conversions are performed.

In this work we will use “solve using single” to mean that the input vector b is converted
from double to single precision, a solve is performed in single, and then the result x is converted
from single to double. The conversions are performed by a copy to a temporary variable. These
transitory variables only exist for the duration of the solve where they are required.

An alternative, which we shall call “solve using double”, is to convert the single-precision
factors L from single to double and then perform the solve completely in double precision. To
avoid the overhead of storing the factors in double precision we have written a special solve
subroutine which converts the factors from single to double as required during the solve. The
double-precision versions are discarded after use.

One would expect solves using single precision to execute faster, and this is indeed the
case. However the accuracy of solves using double precision is higher; that is to say, that we
compute x = L−TL−1b more accurately for the given L, which has the same accuracy in either
precision. This may enable iterative methods preconditioned by the solve to converge faster.
This is demonstrated for FGMRES in Section 5.6.

Unless otherwise stated we will always use the solve using single precision and store all
vectors in double precision.

5.5 Iterative refinement

Algorithm 18 Mixed-precision iterative refinement

Input: Single precision factorization of A, requested accuracy γ,
minimum reduction δ and i maxitr.

Solve Ax1 = b (using single precision).
Compute r1 = b−Ax1 and β1 (using double precision).
Set k = 1.
while (βk > γ and k < i maxitr) do
Solve Ayk+1 = rk (using single precision).
Set xk+1 = xk + yk+1 (using double precision).
Compute rk+1 = b−Axk+1 and βk+1 (using double precision).
if βk+1 > δβk or ‖rk+1‖∞ ≥ 2‖rk‖∞ then Set error flag and exit (stagnation).
k = k + 1

end while
x = xk

Iterative refinement is a simple first order method used to improve a computed solution of
Ax = b; it is outlined in Algorithm 18. Here βk is the norm of the scaled residual (5.1) on
the kth iteration and i maxitr is the maximum number of iterations. The system Ax = b and
the correction equation Ayk+1 = rk are solved using the computed single-precision factors of
A. Skeel [1980] proved that, to reduce the scaled residual to a given precision, it is sufficient
to compute the residual and the correction in that precision. However, since we wish to obtain
residuals with double-precision accuracy using factors computed in single precision, we perform
the forward and back substitutions (which we refer to as the solves throughout the rest of
this chapter) in single precision and compute the residuals and corrected solution xk+1 in
double precision. This mixed-precision version of iterative refinement is also used by Buttari
et al. [2007; 2008], while Demmel et al. [2009] use a similar scheme for overdetermined least
squares problems, further developing bounds on the forward error.

Iterative refinement generally decreases the residual significantly for a number of iterations
before stagnating (that is, reaching a point after which little further accuracy is achieved),
although for some problems (including the test problems HB/bcsstm27, Cylshell/s3rmq4m1,
and GHS psdef/s3dkq4m2 that were considered in [Arioli and Duff 2009]), a large number of
iterations are needed before any substantial reduction in the residual is achieved. To detect

75

δ 0.001 0.01 0.05 0.07 0.08 0.1 0.2 0.3 0.4 0.5 ∞
Converged 194 227 252 256 258 259 264 265 265 265 268
Failed 136 103 78 74 72 71 66 65 65 65 62

Table 5.1: The number of problems in Test Set 2 for which iterative refinement achieved the
requested accuracy (γ = 5 × 10−15) using a range of values of the improvement parameter δ
(i maxitr= 10).

stagnation (and thus avoid performing unnecessary solves), we employ a minimum improvement
parameter δ. A large δ allows the iterative refinement to continue until the maximum number
of iterations has been performed. This increases the likelihood of convergence at the expense of
carrying out additional iterations for problems that have stagnated before reaching the requested
accuracy γ. The number of additional iterations can be reduced or eliminated by choosing a
small δ. The condition ‖rk+1‖∞ ≥ 2‖rk‖∞ detects numerical issues where xk+1 explodes but
the residual βk+1 remains small due to scaling by xk+1. For different values of δ, Table 5.1
reports the number of problems belonging to Test Set 2 that achieve the requested accuracy
when factorized using MA57 in single precision and then corrected using mixed-precision iterative
refinement. We see that values in the range [0.05, 0.5] have a similar success rate of just under
80%. We choose as our default δ = 0.3 as this provides a good compromise between the number
of problems that converged (259) and minimizing the wasted iterations on the remainder —
62% of the problems that failed with this δ used the same number of solves as for δ = 0.001, and
only 4 of the 65 required more than 2 additional iterations before stagnation was recognised.
We remark that the package MA57 includes an option to perform iterative refinement (using the
same precision as the factorization) and, by default, it uses δ = 0.5 (see also [Demmel et al.
2006] and [Higham 1997]).

Our implementation of iterative refinement also offers an option to terminate once a chosen
number i maxitr of iterations has been performed. An upper limit on the maximum number
of iterations can be established by considering the following example. Assume the initial scaled
residual is β = 10−7 and the default improvement parameter δ = 0.3 is used. If stagnation has
not occurred, after 13 iterations the scaled residual must be less than 1.6 × 10−14 and after
15 iterations, less than 4.8 × 10−15. Based on our experiments, we set the default value to
i maxitr = 10 (note that for most of our test examples we found that either the requested
accuracy was achieved or stagnation was recognised before this limit was reached).

5.6 Preconditioned FGMRES

For our examination of FGMRES, we use the 62 problems from Test Set 2 that failed to achieve
the requested accuracy using iterative refinement with any δ. We call this the Reduced Test

Set 2 .
In Algorithm 17, FGMRES [Saad 1994] refers to a right-preconditioned variant of FGMRES.

Arioli, Duff, Gratton, and Pralet [2007] have shown that, in cases where iterative refinement
fails, FGMRES may succeed and is more robust than either iterative refinement or GMRES.
Arioli and Duff [2009] prove that a mixed-precision computation, where the matrix factorization
is computed in single precision and the FGMRES iteration in double precision, gives a backward
stable algorithm. We note that their result is given for sufficiently large values of the restart
counter (k in Algorithm 19), and does not apply to our algorithm where this is small for practical
reasons.

Our variant of FGMRES, shown as Algorithm 19, is essentially that given by Arioli and Duff
[2009] but additionally uses an adaptive restart parameter. Here f maxitr is the maximum
number of iterations and e1 denotes the first column of the identity matrix. Algorithm 19
uses double precision throughout except for the solution of the systems involving A; for these
systems we have the ability to perform the forward and backward substitutions in either single
or double precision, as we detail below. Our adaptive restarting strategy relies on a similar
concept to the minimum improvement parameter in iterative refinement. We expect to reduce
the backward error in the outer iterations and, if the reduction is too small, we increase the
restart parameter (up to a specified maximum max restart). If there is no reduction in the

76

Algorithm 19 Mixed-precision FGMRES right preconditioned by a direct solver with adaptive
restarting (Norms here are 2-norms)

Input: Single precision factors of A, γ, δ, f maxitr, restart, max restart

Solve Ax = b.
Compute r = b−Ax and β.
Initialise j = 0;βold = β;xold = x.
while (β > γ and j < f maxitr) do
βold = β
Initialise v1 = r/‖r‖, y0 = 0, k = 0.
while (‖‖r‖e1 −Hkyk‖ ≥ γ(‖A‖‖x‖+ ‖b‖) and k < restart do
k = k + 1 (Increment restart counter).
j = j + 1 (Increment iteration counter).
Solve Azk = vk and compute w = Azk.
Orthogonalize w against v1, . . . ,vk to obtain a new w. Set vk+1 = w/‖w‖.
Form Hk, a trapezoidal basis for the Krylov subspace spanned by v1, . . . ,vk

(Full details of this step may be found in [Saad 2003]).
yk = argminy ‖‖r‖e1 −Hkyk‖
(Minimize residual over the Krylov subspace).

end while
Set Zk = [z1 · · · zk].
Compute x = x+ Zkyk, r = b−Ax and compute new β.
if β ≥ δβold then
restart = 2× restart

if restart > max restart then Set error flag and exit.
end if
if β > βold then
x = xold

else
xold = x;βold = β

end if
end while

77

restart = 1 2 4 8 16
Problems failed for both single and double 23 23 23 23 23
Problems solved by double but not single 5 5 5 5 5
Average difference in number of solves (see (5.2)) 14.9 15.6 16.2 12.9 12.9
Average ratio of number of solves (see (5.3)) 2.8 2.5 3.1 2.1 2.1

Table 5.2: A comparison of the performance of FGMRES using single and double-precision
solves following a single-precision factorization for a range of restart parameters on Reduced
Test Set 2 (δ = 0.3, f maxitr=128, max restart=128).

backward error β (although in exact arithmetic the convergence of FGMRES is non-increasing,
in finite-precision arithmetic the backward error may increase), we restore the solution from the
previous outer iteration before restarting. In our experiments, we compared adaptive restarting
with the use of a fixed restart parameter. We found that a small initial value for the adaptive
restart parameter (typically less than or equal to 4) reduced the number of iterations required
to obtain the requested accuracy and enabled us to solve some problems that failed to converge
with a fixed restart; the strategy had little effect for larger initial values. All FGMRES results
in this chapter are hence based on this adaptive restarting algorithm.

As we noted previously in Section 5.4.1, we may alternatively perform the solves with the
single precision factors of A using double precision. Our experiments using a range of values
for the adaptive restart parameter show that, in all cases, using double precision reduces the
total number of solves required compared to performing solves using single precision. Table 5.2
attempts to capture the extent to which the double-precision approach is better. Shown here
are:

• The number of problems that fail to converge using either single- or double-precision
solves.

• The number of problems that converge only using the double-precision solve.

• The arithmetic mean of the number of extra solves needed in single precision, that is,

1

|P|
∑

i∈P

(Solvesi(single)− Solvesi(double)) , (5.2)

where Solvesi(double) (Solvesi(single)) is the number of solves used for problem i when
performed in double (single) precision, and P is the set of problems on which both single-
and double-precision solves converge to the requested accuracy.

• The geometric mean of the ratio of the number of solves in single precision to the number
in double precision, that is,

(

∏

i∈P

Solvesi(single)

Solvesi(double)

)

1

|P|
. (5.3)

A possible explanation of the good behaviour of solves using double precision in FGMRES,
as opposed to the negligible gains for Iterative Refinement, is that FGMRES uses 2-norms
rather than the ∞-norms used elsewhere in this chapter. The 2-norms are prone to larger
error accumulation than the ∞-norms and double precision solves may help to counter this.
Alternatively, the solves using double precision may provide a more consistent preconditioner
than solves using single precision.

We comment that a constant number of failing problems regardless of the restart value is
what we expect from our adaptive restarting procedure.

The reduction in the number of solves when using double precision has to be set against
the increased time per solve compared to single precision. On our test computer the time for a
solve in double precision is approximately twice that in single precision, hence if the ratio of the
number of solves in single precision to those in double is more than two (as is the case in the last

78

restart
Problem

1 2 4 8 16
Boeing/bcsstk35 49 48 64 48 48
Boeing/bcsstk38 3 4 4 8 8
Boeing/crystk01 15 14 12 8 8
Boeing/crystk02 3 6 4 8 8
Boeing/crystk03 3 6 4 8 8
Boeing/msc01050 7 6 4 8 8
Cunningham/qa8fk 3 6 4 8 8
Cylshell/s3rmq4m1 11 10 8 8 8
Cylshell/s3rmt3m1 17 12 4 8 8
DNVS/ship 001 48 48 48 64 64
GHS indef/cont-201 25 24 20 16 16
GHS indef/cvxqp3 23 22 32 24 24
GHS indef/ncvxbqp1 11 8 8 8 8
GHS indef/ncvxqp5 10 10 8 8 8
GHS indef/sparsine 14 14 12 16 16
GHS indef/stokes128 1 2 4 8 8
GHS psdef/oilpan 11 10 8 8 8
GHS psdef/s3dkq4m2 40 16 16 8 8
GHS psdef/s3dkt3m2 17 16 16 16 16
GHS psdef/vanbody 31 30 28 24 24
Gset/G33 2 2 4 8 8
HB/bcsstm27 13 12 8 8 8
Koutsovasilis/F2 3 6 4 8 8
ND/nd3k 2 2 4 8 8
Oberwolfach/gyro 10 8 8 8 8
Oberwolfach/gyro k 10 8 8 8 8
Oberwolfach/t2dah 7 6 4 8 8
Oberwolfach/t2dah a 7 6 4 8 8
Oberwolfach/t2dal 7 6 4 8 8
Oberwolfach/t2dal a 7 6 4 8 8
Oberwolfach/t2dal bci 7 6 4 8 8
Oberwolfach/t3dh 3 6 4 8 8
Oberwolfach/t3dh a 3 6 4 8 8
Oberwolfach/t3dl 3 6 4 8 8
Oberwolfach/t3dl a 3 6 4 8 8
Pajek/Reuters911 15 12 12 8 8
Schenk IBMNA/c-56 31 30 28 16 16
Schenk IBMNA/c-62 31 30 28 24 24
Simon/olafu 16 12 16 8 8

Table 5.3: The number of solves performed within FGMRES for Reduced Test Set 2 using a
range of values for restart following unsuccessful iterative refinement. For each problem, the
best result is in bold. Results are shown for δ = 0.3, f maxitr= 64, and max restart=64. The
23 problems that failed for all values of restart are not shown.

79

line of Table 5.2) then double precision is faster, while also allowing us to solve more problems.
As a result, in the remainder of this chapter we use double-precision solves for FGMRES. Note
that iterative refinement will still use single-precision solves as similar experiments showed there
to be no significant benefit in using double precision. In particular, although more iterations
were carried out, iterative refinement still eventually stagnates on the problems belonging to
the Reduced Test Set 2.

In Table 5.3, we report the number of solves performed within FGMRES for a range of
values for the adaptive restart parameter on the 39 problems in the Reduced Test Set 2 for
which FGMRES was successful. The results indicate that restart = 4, 8 or 16 is generally the
best choice; we use as our default restart = 4. We observe that for some problems a higher
restart parameter results in a larger number of iterations. This is because the termination
conditions are only tested when the algorithm is restarted; higher values of restart test for
termination less frequently.

5.7 Design and implementation of the mixed-precision strat-

egy

We designed our implementation of Algorithm 17, HSL MA79, to be both robust and efficient,
catering for both positive definite and indefinite systems. Where possible it uses existing HSL
packages as its main building blocks to reduce maintenance overheads and increase robustness.
In particular, it uses: the direct solvers MA57 (in-core) and HSL MA77 (out-of-core), the MI15

implementation of FGMRES, and the scalings MC30, MC64, and MC77.
While we include a range of options, it is not our intention to incorporate all possibilities

available within the direct solvers MA57 and HSL MA77. If a user needs to use such an option we
hope our code will provide a framework from which they may work. Our main aim was to design
a general purpose package that is straightforward to use and, through the restriction on the
number of parameters that must be set, does not require the user to have a detailed knowledge
and understanding of all the different components of the algorithms used. As such we have
strayed from the traditional analyse/factorize distinction and emphasise the mixed-precision
nature by combining the factor and solve phases.

The following procedures are available to the user:

• MA79 factor solve accepts the matrix A, the right-hand sides b, and the requested accu-
racy. Based on the matrix, it selects whether to use MA57 or HSL MA77; by default, single
precision is selected as the initial precision. The code then implements Algorithm 17. The
matrix factorization is retained for further solves.

• MA79 refactor solve uses information returned from a prior call to MA79 factor solve

to reduce the time required to factorize and solve Ax = b. The sparsity pattern of A
must be unchanged since the call to MA79 factor solve; only the numerical values of the
entries of A and b may have changed. By default, the precision for the factorization is
chosen based on that used by MA79 factor solve. The matrix factorization is retained
for further solves.

• MA79 solve uses previously computed factors generated by MA79 factor solve (or al-
ternatively MA79 refactor solve) to solve further systems Ax = b. Multiple calls to
MA79 solve may follow a call to MA79 factor solve (or MA79 refactor solve).

• MA79 finalize should be called after all other calls are complete for a problem. It
deallocates the components of the derived data types and discards the matrix factors.

We now discuss the first three of the above procedures in more detail (the finalize routine
needs no further explanation).

5.7.1 MA79 factor solve

On the call to MA79 factor solve, the user must supply the entries in the lower triangular part
of A in compressed sparse column (CSC) format and may optionally supply a pivot order. If

80

no pivot order is supplied, one is computed using the analyse phase of the in core solver MA57.
Statistics on the forthcoming factorization (such as the maximum frontsize, the number of flops,
and the number of entries in the factor) are also computed. These are exact for the factorization
phase of MA57 if the problem is positive definite; otherwise, they are lower bounds for MA57 and
estimates of lower bounds for HSL MA77. By default, the statistics are used to choose the direct
solver. The in-core solver (MA57) is selected unless one or more of the following holds:

1. It is not possible to allocate the arrays required for in-core factorization. (We allow the
user to specify a maximum amount of memory, and if the predicted memory usage for
MA57 exceeds this, we use HSL MA77).

2. The matrix is positive definite with a maximum frontsize greater than 1500.

3. The matrix is not positive definite and the user-supplied pivot sequence includes 2 × 2
pivots (as these are only supported by the out-of-core solver HSL MA77).

4. The user has chosen to use the out-of-core solver (HSL MA77).

The choice in (2) was made on the basis of numerical experimentation by Reid and Scott
[2009b]. The main motivation for selecting MA57 as the default solver is that HSL MA77 is
primarily designed as an out-of-core solver and this incurs an overhead (recall the solve phase
is considerably slower than that of MA57). Furthermore, the process of refactorizing in double
precision is also more expensive for HSL MA77 because due to technical reasons it is necessary
to reload the matrix data and repeat its analysis phase (this can be avoided for MA57).

At the start of the factorization with the in-core solver, HSL MA79 allocates the required
arrays based on the analyse statistics. If larger work arrays are later needed because of delayed
pivots, HSL MA79 attempts to use the stop and restart facility offered by the in-core solver but,
if there is insufficient memory to allocate sufficiently large arrays, HSL MA79 switches to using
the out-of-core code. This may add a significant extra cost as MA77 analyse must be called
and the factorization completely restarted.

By default, HSL MA79 works in mixed precision following Algorithm 17 and its development
through the preceding sections. The user may, however, choose to perform the whole com-
putation in double precision. In this case, HSL MA79 provides a convenient interface to MA57

and HSL MA77 (albeit without the full flexibility and options offered by each of these packages
individually). This facilitates comparisons between mixed and double precision. Working in
double precision throughout may be advisable for very ill-conditioned systems or for very large
problems for which repeated calls to the solve routine MA79 solve are expected.

HSL MA79 includes a number of scaling options, provided by the HSL packages MC30 (Curtis
and Reid’s method minimizing the sum of logarithms of the entries [Curtis and Reid 1972]),
MC64 (symmetrized scaling based on maximum matching by Duff and Koster [Duff and Koster
2001; Duff and Pralet 2005]), and MC77 using the 1 or∞ norms (iterative process of simultaneous
norm equilibration [Ruiz 2001]). The default is the ∞ norm equilibration scaling from MC77

based on the results of the previous chapter.
HSL MA79 offers complete control of the parameters in Algorithms 18 and 19, in addition

to the ability to disable any particular method of recovering precision in Algorithm 17 (for
example, the user may specify that the use of iterative refinement is to be skipped). It also
supports tuning of the major parameters affecting the performance of the factorization phase,
such as the block size used by the dense linear algebra kernels that lie at the heart of the
multifrontal algorithm.

By default, the requested accuracy is achieved when β given by (5.1) is less than a user-
prescribed value γ. However, HSL MA79 also allows the user to specify, using an optional sub-
routine argument on the call to MA79 factor solve, an alternative measure of accuracy. If
present, it must compute a function β = f(A,x, b, r) that is compared to γ when testing for
termination. For example, it may be used to test for the requested accuracy in the 2-norm or
using a component-wise approach.

An important feature of MA79 factor solve is that it returns detailed information on the
solution process. This includes which solver was used and the precision, together with details
of the matrix factorization (the number of entries in the factor, the maximum frontsize, the
number of 2 × 2 pivots chosen, the numbers of negative and zero pivots) and information on

81

the refinement (the number of steps of iterative refinement, the number of FGMRES iterations
performed, and the total number of calls to the solution phase of MA57 or HSL MA77). In
addition, the full information type or array from the factorization code (MA57B or MA77 factor)
is returned to the user.

We note that the user can pass any number of right-hand sides b to MA79 factor solve.
In particular, the user can set the number of right-hand sides to zero. In this case, the routine
will only perform the matrix factorization in the requested (or default) precision.

5.7.2 MA79 refactor solve

We envisage that a user may want to factorize and solve a series of problems with the same
sparsity pattern as the original matrix A but different numerical values. In this case, HSL MA79

takes advantage of both the pivot sequence used within MA79 factor solve and the experience
gained on the initial factorization. Part of the gain is that we do not expect to need to run the
analysis phase of the direct solver a second time, with an additional gain through substantial
avoidance of the stop and restart mechanism used by the in-core solver when it runs out of
space.

On a call to MA79 refactor solve, the user must input the values of the entries in both
the lower and upper triangular parts of the new matrix in CSC format, with the entries in each
column in order of increasing row index. This format (which is the format the original matrix
is returned to the user in on exit from MA79 factor solve) is required so that HSL MA79 can
avoid, before the factorization begins, taking and manipulating additional copies of the matrix
(for large problems, this avoidance is important). Having the matrix in this form also has the
side benefit of allowing a more efficient matrix-vector product.

5.7.3 MA79 solve

After a call to MA79 factor solve, MA79 solvemay be called to solve for additional right-hand
sides. If an in-core solution has been performed, the cost of each additional solve is generally
small but, if the factors are held on disk (out-of-core), the solve time can be significant (see
[Reid and Scott 2009b]). If the solve is performed at the same time as the factorization, the
entries of L are used to perform the forward substitution as they are generated, cutting the
amount of data that must be read (and hence the time) for the solve approximately in half.

5.7.4 Errors and warnings

HSL MA79 issues two levels of errors: fatal errors that cause the computation to terminate
immediately and warnings that are intended to alert the user to what could be a problem but
which will not prevent the computation from continuing. In either case, a flag is set (with
a negative value for an error and a positive value for a warning) and a message is optionally
printed (the user controls the level of diagnostic printing). Examples of fatal errors include a
user-supplied pivot order that is not a permutation and calls to routines within the HSL MA79

package that are out of sequence.

A warning is issued if the user-supplied matrix data contains out-of-range indices (these
are ignored) or duplicated indices (the corresponding matrix entries are summed). A warning
is also issued if the matrix is found to be singular or if in-core solution was requested but
out-of-core solution is used because of insufficient main memory. Note that more than one
warning may be issued. At the end of the computation a warning is given if the requested
accuracy was not obtained after all allowable fall back options were attempted. In particular,
if the factorization has been performed in single precision, the requested accuracy may not be
achieved on a call to MA79 solve without resorting to a double precision factorization. In this
case, because this cannot occur within MA79 solve, the user should call MA79 refactor solve,
explicitly specifying the factorization is to be performed in double precision.

Full details of errors and warnings and of the levels of diagnostic printing are given in the
user documentation for HSL MA79.

82

 0

 0.5

 1

 1.5

 2

 2.5

 0.001 0.01 0.1 1 10 100 1000 10000

ti
m

e
(d

o
u
b
le

)/
ti
m

e
(m

ix
e
d
)

time(double)

Accuracy achieved with mixed precision (305 problems)
Fall back to double precision required (25 problems)

Figure 5.3: Ratio of total solution times with HSL MA79 in mixed-precision and double-precision
modes on Test Set 2 using MA57 as the solver, with accuracy γ = 5× 10−15.

5.8 Numerical results

In this section, we present results obtained using Version 1.1.0 of HSL MA79. This uses Version
3.2.0 of MA57 and Version 4.0.0 of HSL MA77. Our experiments are performed on the machine
fox (see Section 1.9) using the test sets described previously. The requested accuracy is β < 5×
10−15 and, unless stated otherwise, we use the default settings for all the HSL MA79 parameters
(in particular, the parameters chosen in Sections 5.5 and 5.6 are used to control the solution
recovery).

Figures 5.3 and 5.4 compare the performance of mixed precision and double precision for Test
Sets 2 and 3, respectively, with the in-core option selected as the direct solver within HSL MA79

for Test Set 2 and out-of-core for Test Set 3. If the requested accuracy is only achieved by
falling back on a double precision factorization, the mixed-precision time includes the double-
precision factorization time. From Figure 5.3, we see that, if the time taken by HSL MA79 in
double precision is less than about 1 second, there is generally little or no advantage in terms
of computational time in using mixed precision (in fact, for a number of problems, running
in double precision is almost twice as fast as using mixed precision). However, for the larger
problems within Test Set 2, mixed precision outperforms double precision by more than 50%.
For the problems in Test Set 3 with the out-of-core solver HSL MA77, on our test machine mixed
precision is only recommended if the double precision time is greater than about 10 seconds. For
problems that run more rapidly than this, the savings from the single precision factorization are
not large enough to offset the cost of the additional solves (which, in this case, involve reading
data from disk). Of course, if the user is prepared to accept a less accurate solution (that is,
the requested accuracy γ is chosen to be greater than 5 × 10−15), this will effect the balance
between the mixed-precision time (which will decrease as fewer refinement steps will be needed)
and the double-precision time (which, in many instances, will be unchanged).

In Table 5.4, we report the number and percentage of problems in each test set for which
the requested accuracy was achieved after iterative refinement both by itself and followed by
FGMRES. We also report the number of problems that had to fall back to a double preci-
sion factorization to achieve the requested accuracy and the number that failed to achieve

83

 0

 0.5

 1

 1.5

 2

 2.5

 0.01 0.1 1 10 100 1000 10000 100000

ti
m

e
(d

o
u
b
le

)/
ti
m

e
(m

ix
e
d
)

time(double)

Accuracy achieved with mixed precision (202 problems)
Fall back to double precision required (30 problems)

Figure 5.4: Ratio of total solution times with HSL MA79 in mixed-precision and double-precision
modes on test set 3 using HSL MA77 as the solver, with accuracy γ = 5× 10−15.

Test Set 2 Test Set 3
MA57 HSL MA77

After iterative refinement 265 81% 157 68%
After FGMRES 40 12% 45 19%
After fall back to double precision 24 7% 28 12%
Failed 1 <1% 2 1%

Table 5.4: Number of problems that exited at each stage of Algorithm 17 implemented as
HSL MA79.

this even in double precision. There were just two such problems: GHS indef/boyd1 and
GHS indef/blockqp1 (these had final scaled residuals of 6.2×10−14 and 2.9×10−14, respectively).

As expected, when mixed precision fails to reach the requested accuracy, HSL MA79 spends
longer establishing this fact than if double precision was used originally. Thus it is essential for a
potential user to experiment to see whether the mixed-precision approach will be advantageous
for his or her application and computing environment.

It is of interest to consider not only the total time taken to solve the system, but also the
times for each phase of the solution process in mixed precision and in double precision. Table 5.5
reports timings for the various phases for a subset of problems of different sizes from Test Set
3. The problems are ordered by the total solution time required using double precision. The
time for the analyse phase (which here includes the time to scale the matrix) is independent of
the precision.

5.9 Conclusions and future directions

In this chapter, we have explored a mixed-precision strategy that is capable of outperforming a
traditional double-precision approach for solving large sparse symmetric linear systems. Build-
ing on the recent work of Arioli and Duff [2009] and Buttari et al. [2008], we have designed and
developed a practical and robust sparse mixed precision solver; the new package HSL MA79 is

84

available within the HSL Library. Numerical experiments on a large number of problems have
shown that, in about 90% of our test cases, it is possible to use a mixed-precision approach
to get accuracy of 5 × 10−15; in the remaining cases, it is necessary to resort to computing a
double-precision factorization (or to accept a less accurate solution). HSL MA79 is designed to
allow an automatic fall back to double precision and is tuned to minimize the work performed
before this happens. However, although we have demonstrated robustness, our experience is
that, in terms of computational time, the advantage of using mixed precision is limited to large
problems (how large will depend on the direct solver used within HSL MA79, on the computing
platform, and also on the requested accuracy); the user is advised that experimentation with
his or her problems will be necessary to decide whether or not to use mixed precision.

Future work on HSL MA79 will focus on more efficiently recovering double-precision accuracy
in the case of multiple right-hand sides; this will lead to the replacement of the MI15 imple-
mentation of FGMRES with a specially modified variant of FGMRES, which may require a
different adaptive restarting strategy. We would also like to use HSL MA79 to solve problems
that are so large that it is only possible to compute and store a single precision factorization.

Throughout this chapter, we have considered factorizing A in single precision combined
with recovery using double precision. However, this does not have to be the case. Provided the
condition number of the matrix is less than the reciprocal of the requested accuracy γ, the theory
[Arioli and Duff 2009] supports recovery to arbitrary precision. In this case, the refinement must
be carried out in extended precision. It is also possible to perform a factorization in double
precision and then recover to higher precision. This would be the subject of a separate study.

85

T
o
ta
l

A
n
a
ly
se

F
a
ct
o
ri
ze

It
er
a
ti
v
e
re
fi
n
em

en
t

F
G
M
R
E
S

β
P
ro
b
le
m

m
d

m
d

m
d

m
d

m
d

H
B
/
bc
ss
tk
1
7

0
.3
0

0
.2
5

0
.1
0

0
.1
1

0
.1
4

0
.0
6

(5
)

-
-

-
1
.1
7
e-
1
5

1
.2
4
e-
1
6

B
oe
in
g/
cr
ys
tm

0
3

1
.0
8

1
.0
9

0
.6
4

0
.3
3

0
.4
4

0
.0
9

(3
)

-
-

-
3
.7
8
e-
1
6

4
.8
0
e-
1
6

B
oe
in
g/
bc
ss
tm

3
9

3
.8
6

3
.9
7

3
.6
6

0
.1
1

0
.3
0

0
.0
9

(2
)

-
-

-
2
.3
1
e-
1
5

1
.2
8
e-
1
6

R
o
th
be
rg
/
cf
d
1

6
.2
2

8
.4
1

2
.9
8

2
.4
8

5
.4
3

0
.6
9

(3
)

-
-

-
1
.4
1
e-
1
6

2
.3
2
e-
1
6

R
o
th
be
rg
/
cf
d
2

1
1
.8

1
4
.6

4
.9
7

5
.2
7

9
.6
2

1
.3
9

(3
)

-
-

-
1
.6
9
e-
1
6

2
.7
4
e-
1
6

IN
P
R
O
/
m
sd
oo
r

2
8
.7

2
0
.2

5
.3
9

9
.6
4

1
1
.8

2
.7
0

(3
)

-
1
0
.1

(8
)

-
2
.9
6
e-
1
6

2
.6
4
e-
1
6

N
D
/
n
d
6
k

2
9
.7

3
8
.8

5
.3
3

2
0
.3

3
3
.1

3
.7
7

(8
)

-
-

-
3
.6
7
e-
1
5

1
.6
8
e-
1
5

G
H
S
p
sd
ef
/
a
pa
ch
e2

6
1
.8

6
6
.1

1
9
.8

2
9
.1

4
6
.4

1
2
.5

(6
)

-
-

-
1
.7
9
e-
1
6

1
.4
3
e-
1
5

K
o
u
ts
o
va
si
li
s/
F
1

6
3
.5

7
9
.1

1
6
.9

3
6
.1

6
0
.1

9
.1
0

(4
)

-
-

-
1
.7
5
e-
1
5

2
.1
6
e-
1
6

L
in
/
L
in

5
7
.4

7
9
.9

1
0
.8

3
9
.3

6
6
.4

7
.2
6

(5
)

2
.6
9

(1
)

-
-

3
.2
0
e-
1
6

2
.0
3
e-
1
6

N
D
/
n
d
1
2
k

1
0
4

1
4
9

1
4
.5

7
8
.0

1
3
4

1
1
.5

(8
)

-
-

-
1
.0
0
e-
1
5

2
.0
7
e-
1
5

P
A
R
S
E
C
/
G
a
3
A
s3
H
1
2

3
4
8

5
3
7

2
1
.6

3
0
2

5
1
1

2
4
.3
0

(8
)

5
.8
6

(1
)

-
-

3
.2
7
e-
1
5

3
.3
7
e-
1
6

N
D
/
n
d
2
4
k

3
7
2

5
7
0

3
6
.5

2
9
7

5
3
2

3
6
.5

(9
)

-
-

-
1
.0
2
e-
1
5

2
.9
4
e-
1
5

G
H
S
in
d
ef
/
sp
a
rs
in
e

4
0
9

5
4
0

1
8
.4

3
1
4

5
1
7

5
.2
8

(2
)

4
.9
2

(1
)

7
0
.5

(1
6
)

-
4
.2
0
e-
1
6

3
.5
1
e-
1
6

P
A
R
S
E
C
/
S
i3
4
H
3
6

7
8
3

1
2
8
7

3
8
.7

7
0
6

1
2
3
6

3
7
.7

(6
)

1
2
.1

(1
)

-
-

4
.9
1
e-
1
6

2
.7
1
e-
1
6

G
H
S
p
sd
ef
/
a
u
d
ik
w

1
8
1
0

1
3
2
9

6
5
.7

6
2
0

1
2
6
2

1
2
0

(7
)

-
-

-
4
.6
7
e-
1
5

5
.8
4
e-
1
7

P
A
R
S
E
C
/
G
a
1
0
A
s1
0
H
3
0

1
1
8
7

2
0
4
6

5
1
.6

1
0
8
2

1
9
7
6

5
3
.3

(6
)

1
8
.7

(1
)

-
-

2
.9
6
e-
1
6

1
.9
6
e-
1
6

P
A
R
S
E
C
/
S
i8
7
H
7
6

6
0
5
8

9
3
1
0

1
5
3

4
7
0
3

8
8
1
5

1
2
0
2

(7
)

3
4
4

(1
)

-
-

6
.6
4
e-
1
6

1
.9
5
e-
1
6

T
a
b
le

5
.5
:
T
im

es
to

so
lv
e
A
x

=
b
fo
r
a
su
b
se
t
o
f
p
ro
b
le
m
s
fr
o
m

T
es
t
S
et

3
w
it
h
H
S
L
M
A
7
9
u
si
n
g
H
S
L
M
A
7
7
a
s
th
e
so
lv
er
.

m
d
en
o
te
s
m
ix
ed

p
re
ci
si
o
n
a
n
d
d
d
en
o
te
s
d
o
u
b
le

p
re
ci
si
o
n
.
T
h
e
n
u
m
b
er
s
in

p
a
re
n
th
es
es

a
re

it
er
a
ti
o
n
co
u
n
ts
.
-
in
d
ic
a
te
s

it
er
a
ti
v
e
re
fi
n
em

en
t
(o
r
F
G
M
R
E
S
)
w
a
s
n
o
t
re
q
u
ir
ed
.

86

Chapter 6

Scheduling priorities for dense

DAG-based factorizations

In this chapter we consider scheduling priorities for a DAG-based Cholesky factorization, and
present details of our own implementation. This work has been published as the technical
report [Hogg 2008], and the text is partially drawn from that report. The major scientific
contribution is to demonstrate that, for Cholesky factorization, complex scheduling schema
that take into account the critical path offer only a small performance benefit over simpler
methods. Additionally a library quality code, HSL MP54, has been produced, and is now part of
the HSL software library [HSL 2007]. It may be obtained from http://www.hsl.rl.ac.uk/.

We would like to thank Alfredo Buttari and Jack Dongarra for useful clarifications of their
work. Additional helpful comments were received from anonymous referees of the original paper,
that is reproduced with kind permission at the rear of this thesis.

6.1 Introduction

The reader is asked to recall the presentation of a parallel DAG-driven Cholesky factorization
from Section 2.1.3. As a reminder, we have divided a blocked Cholesky factorization into the
following tasks:

factorize(j) Factorize the block Ajj . Requires completion of all update(j, j, k) tasks for k =
1, . . . , j − 1.

solve(i, j) Perform the triangular solve Lij ← LijA
−T
jj . Requires completion of update(i, j, k)

tasks for all k = 1, . . . , j − 1 and additionally the factorize(j) task.

update(i, j, k) Perform the outer product update to block (i, j) from column k, Aij ← Aij −
LikL

T
jk. Requires completion of the tasks solve(i, k) and solve(j, k) (which may be the

same task if i = j).

In the remainder of this chapter, we shall address the task DAG using standard graph
terminology. Each task is represented by a node, with dependencies represented by directed
edges. If an edge from node a to node b exists then b is a child of a, with a as a parent of b.
A node with no parents is a root and a node with no children is a leaf. A path is an ordered
sequence of nodes connected by edges. Node b is a descendant of node a if there exists a path
from node a to node b.

6.2 Task dispatch

Algorithm 20 shows pseudo-code for how we might execute a task DAG using a task pool. The
task pool contains tasks, with subroutines get task() and add task() that allow us to retrieve
a task or add a new one. The algorithm retrieves a task, does the necessary work and then

87

Algorithm 20 Task dispatch code for a simple execution of the task DAG

Initialise dep(i, j) for 1 ≤ i ≤ j ≤ nblk to number of parents of corresponding factorize or
solve nodes.
loop
call get task(task)
select case(task)
case(factorize)
Perform Cholesky factorization of block (j, j).
for i = j + 1, nblk do
dep(i, j) = dep(i, j)− 1
if dep(i, j) == 0 then call add task(solve(i, j))

end for
case(solve)
Lij = AijL

−T
jj

dep(i, j) = −2
(Flag that this solve has been performed).

for k = j + 1, i do
if dep(k, j) == −2 then call add task(update(i, k, j))

end for
for k = i+ 1, nblk do
if dep(k, j) == −2 then call add task(update(k, i, j))

end for
case(update)
Aik = Aij − LikL

T
jk

dep(i, j) = dep(i, j)− 1
if dep(i, j) == 0 then
if i 6= j then
call add task(solve(i, j))

else
call add task(factorize(j))

end if
end if

end select
end loop

updates dependency information of other tasks, adding any for which the dependencies have
been satisfied.

The dep(:,:) array is initialised to contain the number of tasks that must be executed for a
block before we can execute a factorize or solve task as appropriate. Each time a dependency
(either an update from the left or the factorization of the diagonal block above) is met we
decrement this count, adding the task when there are no more dependencies to satisfy (clearly
the dependency count is equal to the number of edges entering the corresponding factorize or
solve node in the task DAG).

Once the task solve(i, j) has been placed in the task pool, the element dep(i, j) can be reused
as a flag to indicate whether that particular solve task has completed. After completion of the
task solve(i, j) we scan through the elements of dep(:,:) for column j checking which update
tasks may now be added to the task pool.

To run this algorithm in parallel (shared memory) we need to prevent data races. A data
race occurs when two threads are trying to read or write to the same location at once. We
avoid this in our code through the use of locks, as shown in Algorithm 21. We require locks
to prevent multiple threads accessing the same dep(:,:) variable simultaneously; to minimize
time spent waiting for locks we only perform the necessary operations while holding one. After
the numerical work for a solve has been completed only one thread should attempt to add
updates for any given column at once. Failure to do so could result in a task being generated
multiple times. An additional set of locks, one for each off-diagonal block and held in the array

88

update lock(:, :), is required to prevent more than one thread performing an update operation
on a block simultaneously. If a thread is unable to acquire the lock for its target block, it
performs the update into a buffer T , that is then added to a list of delayed updates for later
application. These updates are applied to the target block as part of the factorize or solve task
for that block. A final lock is used in the get task() and add task() subroutines to prevent more
than one thread modifying the task pool at once; while this could be a critical section, the lock
allows the use of more complex control logic.

As the algorithm is described, we can clearly generate a large number of temporary T buffers.
The following implementational tricks may be employed to reduce the memory used:

• Instead of generating a new T for each delayed update, attempt to add an existing one
for that block. This requires an additional lock to be associated with each update buffer,
but limits the number of buffers for any given block to be at most equal to the number
of threads minus one.

• Once available memory for temporary buffers is exhausted, wait on the lock for the target
block. However, this could result in poor performance if it is a common occurrence.

6.3 Prioritisation

We now consider associating a number with each task that we will refer to as its schedule. The
subroutine get task() is modified to always return the task in the pool with the lowest schedule.
This allows us to prioritise tasks so as to keep the number of available tasks on the pool large,
thus ensuring that processors are rarely idle waiting for tasks.

Buttari et al. [2009] recommend that tasks on the critical path (which they unusually define
as the path connecting all nodes with the highest number of outgoing edges: presumably to
maximize the number of available tasks) be executed with a high priority. We consider three
variations of their scheduling strategy:

• All nodes of the same type have the same priority. Nodes that typically have a higher
number of outgoing edges are scheduled first. (i.e. any factorize nodes are scheduled first,
then solves, then updates)

• Nodes with a higher number of outgoing edges are scheduled first.

• Nodes with a higher number of descendants are scheduled first.

The first two options are easily realised; for the third option we can calculate the number of
descendants using the following recurrence relations

descendants(factorize(j)) = # solves in col j +# updates from col j+
descendants(factorize(j + 1)) + 1

= (nblk − j) + 1
2 (nblk − j)(nblk − j + 1)+

descendants(factorize(j + 1)) + 1
descendants(solve(i, j)) = # updates from block + descendants(solve(i, j + 1)) + 1

= (nblk − j) + descendants(solve(i, j + 1)) + 1

descendants(update(i, j, k)) =

{

descendants(factorize(j)) + 1 i = j
descendants(solve(i, j)) + 1 i 6= j,

that have closed form solutions

descendants(factorize(j)) = 1
6 (nblk − j)(nblk − j + 1)(nblk − j + 5) + (nblk − j)

descendants(solve(i, j)) = i
(

nblk − 1
2 i +

3
2

)

− j
(

nblk − 1
2j +

3
2

)

+
descendants(factorize(i))

descendants(update(i, j, k)) =

{

descendants(factorize(j)) + 1 i = j
descendants(solve(i, j)) + 1 i 6= j.

Each of these approaches suggested by Buttari et al. potentially fail to prioritise long chains
of tasks, possibly causing task starvation at some future point in the execution. For example,

89

Algorithm 21 Task dispatch code with synchronisations

loop
call get task(task)
select case(task)
case(factorize)
Apply any updates from update list.
Perform Cholesky factorization of block (j, j).
for j = i+ 1, nblk do
Acquire lock(i, j)
dep(i, j) = dep(i, j)− 1
if dep(i, j) == 0 then call add task(solve(i, j))
Release lock(i, j)

end for
case(solve)
Apply any updates from update list.
Lij = AijL

−T
jj

dep(i, j) = −2
Acquire lock(j, j)
for k = j + 1, i do
if dep(k, j) == −2 then call add task(update(i, k, j))

end for
for k = i+ 1, nblk do
if dep(k, j) == −2 then call add task(update(k, i, j))

end for
Release lock(j, j)

case(update)
if Can acquire update lock(i, j) then
Aij = Aij − LikL

T
jk

Release update lock(i, j)
else
T = −LikL

T
jk

Place T upon update list for block Aij .
end if
Acquire lock(i, j)
dep(i, j) = dep(i, j)− 1
if dep(i, j) == 0 then
if i 6= j then
call add task(solve(i, j))

else
call add task(factorize(j))

end if
end if
Release lock(i, j)

end select
end loop

90

1

2

3 4 5

6

7

8

9

n

Figure 6.1: Difficult scheduling example

consider Figure 6.1 showing a somewhat artificial example of what could potentially go wrong:
picking the task with the largest number of outgoing edges means picking task 2, rather than
task 6 which is actually critical. Further, due to lack of tie breaking this could then be followed
by execution of tasks 3,4 and 5 before returning to the chain 6, 7, 8, 9, ... n. This leads us to
consider alternate strategies with a global view motivated by a more conventional definition of
critical path.

In this thesis, we define the critical path as the longest path from a root node to a leaf node.
This represents the shortest sequence of events that must be executed in serial if an infinite
number of processors is available and all tasks take the same amount of time (though the latter
of these assumptions is not generally the case and will later be relaxed). Figure 6.2 shows the
critical path for our 4× 4 example marked on the graph as the bold edges.

If we continue our assumptions that all tasks take an equal amount of time and that we
have sufficient processors to complete the critical path scheduling on time, then we can consider
each task to occupy a discrete time slice, numbered from 1. Our schedule number is derived
as the latest time slice in which a task can be scheduled so that we can still meet the critical
path. The numbering on Figure 6.2 shows such a scheduling for our 4× 4 example.

In general the critical path is unique and consists of all the factorize tasks and the shortest
path between them, that is, the tasks solve(j, j − 1) and update(j, j, j − 1) for j = 1, . . . , nblk.
We can thus derive the schedules for these tasks as

schedule(solve(j, j − 1)) = 3j − 4 j = 2, . . . , nblk
schedule(update(j, j, j − 1)) = 3j − 3 j = 2, . . . , nblk
schedule(factorize(j)) = 3j − 2 j = 1, . . . , nblk.

Using these we are able to formulate a recurrence relation for non-critical tasks

schedule(update(i, j, j)) =

{

schedule(solve(i, j))− 1 i 6= j
schedule(factorize(k))− 1 i = j

schedule(solve(i, j)) = min

(

min
k=j+1,i

[schedule(update(i, j, k))] ,

min
k=i+1,nblk

[schedule(update(k, i, j))]

)

− 1.

These equations are satisfied by the following closed form solutions:

schedule(factorize(j)) = j + 2j − 2
schedule(solve(i, j)) = i+ 2j − 2
schedule(update(i, j, k)) = i+ 2j − 3.

91

factorize(1)

solve(2,1)

solve(3,1)solve(4,1)

factorize(2)

solve(3,2)solve(4,2)

factorize(3)

solve(4,3)

factorize(4)

update(2,2,1)

update(3,2,1)update(4,2,1)

update(3,3,1)

update(4,3,1)

update(4,4,1)

update(3,3,2)update(4,3,2)

update(4,4,2)

update(4,4,3)

3

5

8

1

2

4 3

4 4 7

66 5

7 6

79

9

9

10

Figure 6.2: Scheduling for a 4× 4 Cholesky factorization.

92

If we now consider the case where we have insufficient processors to meet the critical path
(i.e., we cannot schedule tasks in such a way that the final task finishes in the time slot our
analysis has given it), will this schedule give a good prioritisation? Not always. Consider a
large collection of tasks that do not lie on the critical path, but require the completion of a
number of dependencies before they become available. The dependencies for these tasks are not
prioritised and, as a result, few tasks are available early in the execution sequence. However,
due to the regular nature of a dense Cholesky factorization, we believe that the above schedule
gives a near optimal scheduling provided that a sufficiently small block size is used.

We also consider relaxing the assumption that all tasks take the same amount of time. We
assume all blocks are of size nb and consider the flop counts to be as follows:

flops(factorize(j)) = 1
3nb

3 +O(nb2)
flops(solve(i, j)) = nb3

flops(update(i, j, k)) =

{

2nb3 i 6= j
nb3 i = j.

We hence give the factorize, solve and update tasks weights of 1, 3 or 6 as appropriate. If we
make no assumption on the critical path, this leads us to the recurrence relation

schedule(factorize(j)) = min
i=j+1,nblk

(schedule(solve(i, j)))− 1

schedule(solve(i, j)) = min

(

min
k=j+1,i

[schedule(update(i, k, j))] ,

min
k=i+1,nblk

[schedule(update(k, i, j))]

)

− 3

schedule(update(i, j, k)) =

{

schedule(solve(i, j))− 6 i 6= j
schedule(factorize(j))− 3 i = j.

With these new relations, we observe that there is no longer a single unique critical path.
Instead, we identify the set of tasks belonging to the union of all critical paths as factorize(1),
factorize(nblk), all solves and updates of the form update(i, j + 1, j). This represents updating
the whole of the next column as soon as possible. The reason this is so different from the
critical path of the previous scheme is that the process of updating and factoring the diagonal
is faster than that of updating the blocks below the diagonal required for the solve tasks. A
consequence of this is that all solves are on the critical path as they are required for these
updates. A special case is required when dealing with the final column as it has no solve tasks:
instead the factorize task becomes critical.

The following formulae represent an explicit solution of the above

schedule(factorize(j)) =

{

9(j − 1) + 1 j 6= nb
9(j − 1)− 1 j = nb

schedule(solve(i, j)) = 9(j − 1) + 2

schedule(update(i, j, k)) =

9(j − 1)− 4 i 6= j
9(j − 1)− 2 i = j 6= nb
9(j − 1)− 4 i = j = nb.

We observe that we may use the general formula in the special cases j = nb as this does not
affect the relative ordering, and thus the task scheduling.

6.4 Implementation

We implemented the algorithm described in the previous sections as the code HSL MP54 in the
HSL software library [HSL 2007]. It is written in Fortran 95 and has been primarily designed
to replace the current partial factorization kernel (HSL MA54) used in that library that uses
fork-join parallelism. The OpenMP 2.5 standard is used to implement our shared memory
parallelism.

In addition to a standard (complete) Cholesky factorization, our code also supports a less
common but related problem that arises as a dense subproblem in sparse multifrontal matrix

93

factorizations. This is the partial factorization

A =

(

A11 AT
21

A21 A22

)

=

(

L11

L21 I

)(

I
S22

)(

LT
11 LT

21

I

)

where the columns of A have been partitioned into two sets, one of which is fully factorized
and the other is updated by this factorization. The corresponding forward and backward
substitutions are

(

L11

L21 I

)

y = b and

(

LT
11 LT

21

I

)

x = ỹ.

Clearly these operations can be performed using a variant of the algorithm we have so far
described: omission of the relevant factorize task upon reaching the second set of columns is
sufficient. As our scheduling still prioritises factorizing the diagonal elements and solving we do
not see any need to rework the schedules for this case, and indeed the surfeit of update tasks
will allow us to smooth the tail of the computation.

Our code uses a job queue paradigm to allow multiple instances of HSL MP54 to be run
using the same team of threads if multiple independent jobs are available. Each factorization or
forward/back solve is considered as a job, which is itself composed of many tasks such as those
described in the previous sections. We have subroutines that place jobs in the job queue, but
do no work on it, and a work subroutine that actually performs these jobs. The current state
of the job queue and associated task pool are stored in a shared variable of type mp54 keep.
Each thread can join a pool of workers at any stage in a job, picking up the next available task
when it joins. This ability allows easy load balancing to be achieved at a level above that of
our code, for example in a tree-based parallel factorization of a sparse matrix.

We enforce the condition that for each job queue, no job may start before its predecessor
has completed. This simplifies the implementation and prevents naive users from introducing
data races.

Internally we use a blocked hybrid form similar to that of Anderson et al. [2005] for storing
the data in a BLAS-compatible fashion while still using near minimal storage. The user’s data is
by default rearranged from a lower packed format to this format as an additional task within the
factorization. Any columns that are not pivoted upon in a partial factorization are rearranged
back to lower packed format, enabling the user to perform manipulations easily. For example,
assembly in to other matrices in the case of sparse multifrontal factorizations.

Solves have also been written in a task DAG fashion and use the same blocking as the
factorization. However, as the balance between computation and data movement is different
these are not as efficient as if a smaller block size were used. We expect the overheads of a
rearrangement to such a format would outweigh any performance gains from doing so. If a large
number of solves are required then it may be worthwhile; we have not pursued this avenue of
research.

Our code implements two simple performance enhancements over the Algorithm of Sec-
tion 6.2. Firstly, a thread will keep a task for itself if it would otherwise become the task in the
pool with the highest priority. This improves cache efficiency as the task will reuse some of the
data from the current task. Secondly, as discussed in Section 6.2, we limit the amount of space
required for the delayed update by looking for an existing update to the same block; if we find
one we apply the update to it.

We note that for small (n < 2000) matrices, tuning of our code proved difficult due to
context switching of our codes by the host operating system. Further, because of overheads
inherent in communication, our code runs slower in parallel than in serial for very small matrices
(n < 200 on our test machine). We were able to increase the performance in these circumstances
by careful tuning of the get task() routine so only one thread is ever spinning while waiting for
tasks to appear in the queue. Other threads wait on a lock, making use of the far more efficient
spinlocking mechanism provided by the OpenMP implementation. This seems to have helped
reduce the number of cache misses on the threads doing actual work caused by use of the flush
directive on idle threads.

94

n Simple Max Child Max Descendants Fixed-CP Weighted-CP
100 1.6 1.6 (0%) 1.6 (0%) 1.6 (0%) 1.6 (0%)
200 6.1 6.1 (0%) 5.9 (-4%) 6.5 (7%) 6.1 (0%)
300 10.0 10.1 (1%) 10.1 (1%) 10.6 (6%) 10.6 (6%)
400 13.7 13.7 (0%) 14.3 (4%) 14.5 (6%) 14.1 (3%)
500 16.9 17.0 (1%) 17.4 (3%) 18.1 (7%) 17.7 (5%)
1000 28.6 28.6 (0%) 28.7 (0%) 29.7 (4%) 29.1 (2%)
1500 35.9 35.8 (0%) 35.3 (-2%) 35.8 (0%) 35.2 (-2%)
2000 40.5 40.7 (0%) 39.7 (-2%) 39.6 (-2%) 40.2 (-1%)
2500 43.3 43.9 (1%) 42.6 (-2%) 42.5 (-2%) 43.5 (0%)
5000 53.4 53.5 (0%) 51.8 (-3%) 52.4 (-2%) 54.4 (2%)

10000 61.5 61.6 (0%) 59.1 (-4%) 60.4 (-2%) 61.9 (1%)
20000 64.8 64.3 (-1%) 63.7 (-2%) 65.0 (0%) 65.5 (1%)

Table 6.1: Comparison of different scheduling for complete factorization of matrices on 8
threads. Speed is measured in Gflop/s on fox (peak dgemm performance 72.8 Gflops/s), and
percentages in brackets show performance gain over the Simple strategy.

6.5 Numerical results

We present results from two machines: fox and HPCx (recall Table 1.4). On fox we use the
Intel Fortran compiler v10.1 with options -fast -openmp. On HPCx we use the IBM xlf Fortran
compiler v10.1. Due to limited access, most of our results are reported on fox. For each set of
parameters (code, scheduling variant, order of matrix n, and number of threads nthread) we
experimented to find the optimal block size; the reported results are for these optimal choices.
We note that the performance was not overly sensitive to this, see Section 6.5.3.

6.5.1 Choice of scheduling technique

We consider results for the five different scheduling methods discussed in Section 6.3. We shall
refer to them by the following names

Simple All tasks of the same type have the same priority (method of Buttari et al.)

Max Child Tasks are prioritised by their number of children. The node with the largest
number of children goes first.

Max Descendants Tasks are prioritised by their number of descendants. The node with the
largest number of descendants goes first.

Fixed-CP Tasks are scheduled according to the critical path assuming all tasks take the same
amount of time.

Weighted-CP Tasks are scheduled according to the critical path with weightings based on
their operation counts.

Table 6.1 shows the average results for the complete factorization of a random diagonally-
dominant matrix. We believe the averages to be reliable to within 0.2 Gflop/s. They were
obtained by running factorizations until we had accumulated at least 1 second worth of com-
putation and then repeating this until the average was determined. However, we note that
performance for methods Simple and Max Child had a much higher variation that other meth-
ods. We believe this to be due to the lack of tie breaking for update tasks and the consequent
highly random execution sequence.

While it is disappointing that there is little difference between results, Weighted-CP seems
to give the best results on large problems; however Max Child and Fixed-CP do better in the
range n = 1500 to n = 2500. Following profiling for problems in this range we have determined
that Max Child has many fewer updates that are delayed, resulting in less work than for
Weighted-CP. This seems to be caused by a more random ordering of updates for Max Child:
Weighted-CP gives all updates to the same block the same schedule, resulting in more collisions

95

Factor Max Max
n

memory
Simple

Child Descendants
Fixed-CP Weighted-CP

1000 3,911 864 720 1,775 2,028 3,211
2500 24,424 3,281 4,374 6,926 6,561 6,561
5000 97,676 9,032 9,935 12,644 11,741 12,644
10000 390,665 14,306 18,207 29,912 16,907 23,409

Table 6.2: Comparing factor storage with maximum observed memory used for delayed updates
(fox, 8 threads, kilobytes).

1 thread 2 threads 4 threads 8 threads
n

Gflop/s Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup
500 5.6 8.6 1.5 13.4 2.4 17.7 3.2

1000 6.8 11.3 1.7 20.1 3.0 29.1 4.3
2500 7.6 14.5 1.9 26.9 3.5 43.5 5.7
5000 8.3 15.2 1.8 31.1 3.7 54.4 6.6
10000 8.6 17.1 2.0 33.6 3.9 61.9 7.2
20000 8.8 17.7 2.0 35.1 4.0 65.5 7.4

Table 6.3: Scalability of HSL MP54 on a range of problem sizes using fox (max dgemm perfor-
mance 9.3/72.8 on 1/8 threads).

that generate delayed updates. Fixed-CP does better than Weighted-CP on smaller problems,
for which we offer the hypothesis that our choice of weighting is poor for small block sizes,
where much of the time goes into the memory load rather than the floating-point operations.
We note however that even on these small problems we saw evidence of Max Child causing
task starvation mid-factorization due to a poor prioritisation of tasks. For larger problems the
design assumptions of Weighted-CP are more accurate and the time spent in application of
updates becomes negligible compared to other operations.

Table 6.2 shows the observed worst case memory usage for storage of our delayed updates.
It confirms that in practice this does not become excessive. If we wished to minimize it, then
we should choose either the Simple or Max Child schemes. As we are primarily concerned with
speed for large matrices rather than memory usage, the comparisons in the remainder of this
chapter shall use the Weighted-CP schedule (though on large machines it may be preferable to
prefer memory efficiency instead!).

6.5.2 Scalability

Tables 6.3 and 6.4 demonstrate the scalability of HSL MP54. We observe good scaling on large
problems, however smaller problems do not scale quite so well. This is because the efficiency
of the level 3 BLAS routines decreases with block size. In order to keep all threads fed for
small problems on many threads a significantly smaller block size must be used than on a single
thread, giving a lower efficiency than we would otherwise expect.

1 thread 2 threads 4 threads 8 threads 16 threads
n

Gflop/s Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup

500 3.2 5.4 1.7 8.5 2.7 11.3 3.5 11.8 3.7
1000 4.0 7.2 1.8 12.9 3.2 19.6 4.9 25.7 6.4
2500 4.6 8.8 1.9 16.2 3.5 28.0 6.1 46.2 10.0
5000 4.8 9.4 2.0 18.1 3.8 32.0 6.7 53.4 11.1
10000 4.9 9.8 2.0 19.3 3.9 36.7 7.5 65.5 13.4
20000 4.9 -1 - - 1 - 39.3 8.0 69.9 14.2
1 These results are not available due to time budget constraints

Table 6.4: Scalability of HSL MP54 on a range of problem sizes using HPCx (max dgemm perfor-
mance 5/70.4 on 1/16 threads).

96

n nb nblk
100 100 1
200 32 7
300 40 8
400 40 10
500 56 9

1000 104 10
1500 120 13
2000 184 12
2500 216 15
5000 340 15
10000 408 25
20000 968 21

Table 6.5: Optimal block sizes used for Weighted-CP using 8 threads on fox.

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 50 100 150 200 250 300

G
fl
o

p
/s

nb

Figure 6.3: Performance varying with nb for n = 2000 on 8 threads on fox.

6.5.3 Block sizes

Table 6.5 shows the block sizes used on fox to achieve the results shown previously for the
Weighted-CP schedule. We found that optimal block sizes are always multiples of 8, which we
observe is the number of double precision numbers per cache line: this helps avoid false sharing,
where a line of cache is being used by two different cores at the same time resulting in the cache
line being repeatedly invalidated (when the other core writes to it) and reread from memory.

The optimal block size seemed not to vary between the different schedules, and was not very
sensitive as long as nb was a multiple of 8, as is shown by Figure 6.3 for the case n = 2000.

Table 6.6 shows how the optimal nb varies with the number of threads in use. Based on
these results we recommend that the user aims to have nblk between 15 and 20 to estimate
a near optimal value of nb for large problems on 8 threads. For a larger number of threads a
slightly larger number of blocks should be used, as growth in the number of tasks is cubic in
nblk.

6.5.4 Comparison with other codes

Figure 6.4 compares the performance of our code with the following codes:

HSL MA54 Left-looking Cholesky factorization code with fork-join parallelism of loops (ver-

97

n 1 thread 2 threads 4 threads 8 threads
500 200 (3) 104 (5) 72 (7) 56 (9)

1000 200 (5) 156 (7) 128 (8) 104 (10)
2500 400 (7) 340 (8) 264 (10) 216 (12)
5000 400 (13) 480 (11) 400 (13) 340 (15)
10000 400 (25) 480 (21) 400 (25) 408 (25)

Table 6.6: Optimal block sizes for varying number of threads and n, with nblk shown in brackets,
using fox.

 0

 10

 20

 30

 40

 50

 60

 70

 100 1000 10000

G
fl
o
p
/s

n

HSL_MP54
HSL_MA54
MKL dpotrf
MKL dpptrf

Figure 6.4: Performance varying with size of matrix n for complete factorizations, using 8
threads on fox (dgemm peak 72.8Gflop/s).

sion 1.3.0).

HSL MP54 The DAG-based code described in this chapter.

MKL dpotrf Intel Math Kernel Library 10.0.1.014 full storage Cholesky factorization.

MKL dpptrf Intel Math Kernel Library 10.0.1.014 packed storage Cholesky factorization.

Clearly for matrices of nearly any size HSL MP54 offers the best performance on 8 threads.
The exception to this is n = 100 when it is faster to factorize the matrix in serial due to caching
issues and communication overheads.

Figure 6.5 shows a similar comparison on HPCx. Although we have not performed any
tuning for this architecture beyond selecting good block sizes (which do not substantially differ
from those on fox) we still get good performance, though the comparison with the vendor
implementations of dpptrf and dpotrf are not quite so favourable except on small matrices,
with all implementations close to peak performance on large matrices.

6.6 Conclusions

HSL MP54 is a Cholesky code that performs well on multicore machines, and has been found to
be a good kernel for sparse multifrontal factorizations, if a different kernel is used for small front
sizes. However, care must be taken with small front sizes, possibly using a different factorization
kernel, or exploiting parallelism at a higher level.

98

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 10000

G
fl
o
p
/s

n

HSL_MP54
ESSL dpotrf
ESSL dpptrf

Figure 6.5: Performance varying with size of matrix n for complete factorizations, 16 threads
on HPCx (dgemm peak 70.4Gflop/s).

We have shown that the effect of different scheduling schemes in DAG-based Cholesky
factorizations makes only a small difference, at most 7%. However, if the extra performance
is considered worthwhile, a scheme that takes the critical path should be used. Further, the
comparative times for different tasks must be taken into account when determining the critical
path. The use of a delayed updating mechanic leads to good performance for an additional
memory overhead of only 5% in the best performing case.

Future improvements to the scheduling may aim to reduce the number of threads attempting
to update a single target block at once during update tasks, and may focus more on being cache
efficient. The meaning of cache efficient may however change if all or many cores are sharing
the same on-chip cache at some level. See for example our modified task handling scheme of
Chapter 7.

It may also be of interest to replace our task handling mechanism with that of OpenMP 3.0
tasks or Intel Thread Building Blocks.

99

100

Chapter 7

A DAG-based sparse solver

In this chapter we apply the DAG techniques from the dense Cholesky factorization to the
equivalent sparse factorization. Achieving a worthwhile speed-up requires some exploitation of
novel data structures and the careful specification of an additional task type.

The work has been published as a joint article with Jennifer Scott and John Reid [Hogg
et al. 2010], and has been published in the SIAM Journal of Scientific Computing. The author
was responsible for the core numerical factorization routines, while Scott and Reid provided
a version of their analyse routine from HSL MA77 customised to use the new data structures.
Scott developed a library-quality interface and provided extensive testing. Although the text
of the paper was produced jointly, it was extensively revised by Reid for clarity. The major
scientific contribution of this chapter is the extension of the dense DAG-based scheme to the
sparse case and the careful implementation of this approach for multicore architectures. It is
hoped that by such an explicit task-based casting developments and libraries used for dense
linear algebra can be easily carried over into the sparse world. During the review process for
this paper the similarities of our scheme to that of PaStiX were raised, and these have been
addressed in Section 7.6.

The resultant article is reproduced at the rear of this thesis by permission of the copy-
right holders. The software produced is HSL MA87 that will be part of the HSL software li-
brary [HSL 2007]. It may be obtained by contacting the Numerical Analysis group at STFC
(hsl@stfc.ac.uk).

We build on the work of Chapter 6, where a dense DAG-driven Cholesky code was developed.
However the sparse DAG-based factorization code described in this chapter is a substantial
rewrite and improvement of the dense code HSL MP54. In particular we have made substantial
changes to how tasks are scheduled and use a different data storage format that suits the new
tasks from the sparse case.

7.1 Solver framework

The reader will recall from Section 2.4 that a sparse solver is split into four phases: preorder,
analyse, factorize and solve. For the purposes of this chapter we will assume a suitable preorder-
ing has already been obtained. The following two subsections will describe the modifications to
the analyse and solve phases, while the factorize phase is the subject of the remainder of this
chapter.

7.1.1 Analyse

The analyse phase of HSL MA87 is a modification of that of HSL MA77. The main purpose of the
latter is to take the user-supplied pivot sequence and use it to determine the assembly tree,
amalgamating nodes into supernodes to achieve good performance in the factorize phase (see
Section 2.4.2).

Before modification the analyse phase of HSL MA77 was designed to run out of core. For our
new solver this was modified to work in core and to use the new data structures described in

101

Section 7.2 when setting up the storage for L. For example, block dependency counts are easily
determined at this stage. A restricted reordering was added to improve cache locality, and this
is described in Section 7.5.

7.1.2 Solve

The solve phase takes one or more right-hand sides b and performs forward and back substitu-
tions using the permutation P and factor L to solve the systems Ly = Pb and LTP−1x = y.
This phase is normally limited by how fast the factor data can be read from main memory.

We currently implement this phase in serial, although parallelisation could be achieved along
similar lines to those used in Chapter 6. Our initial experiments along these lines revealed that
a very limited speedup was possible due to saturation of the bandwidth to main memory. A
full investigation of this phenomenon and possible solutions are beyond the scope of this thesis,
however it is addressed in a recent technical report by Hogg and Scott [2010b]. They report
that a single core is sufficient to saturate the memory bandwidth available to a full quad-core
processor, and as solve is a memory-bound operation this limits the speedup to little more
than the number of processor sockets in use. A range of approaches including compression are
implemented, but offer little practical gain in performance.

7.2 Nodal data structures

Since a node of the assembly tree represents a set of contiguous columns of L with the same
(or nearly the same) sparsity structure below a dense (or nearly dense) triangular submatrix,
we can hold it in memory as a dense trapezoidal matrix, as illustrated in Figure 7.1(a). We
refer to this matrix as the nodal matrix. We store this matrix using the row hybrid blocked
structure of Anderson et al. [2005] with the modification that “full” storage is used for the
blocks on the diagonal rather than storing only the actual entries (thus a rectangular array is
used to store the trapezoidal matrix). Using the row hybrid scheme rather than the column
hybrid scheme facilitates updates between nodes by removing any discontinuities at row block
boundaries. Storing the blocks on the diagonal in full storage allows us to exploit efficient BLAS
and LAPACK routines. This structure is illustrated in Figure 7.1(b). Note that the final block
on the diagonal is often trapezoidal.

If the number of columns in the nodal matrix is large, we use the block size nb specified
through a control parameter and most of the blocks will be of size nb × nb. We divide the
computation into tasks in which a single block is revised (details in Section 7.3). These tasks
correspond to the vertices of our implicitly-held DAG.

If the number of columns nc in the nodal matrix is less than nb but the number of rows is
large, using the block size nb can lead to small tasks and inefficient execution. We therefore
attempt to balance the number of entries in the blocks by basing the block size on the value
nb2/nc. We round the size up to a multiple of the cache line size since our experience is that
this enhances performance. Having block sizes that differ from node to node is unusual, but
our experience is that for some problems it gives a 5–10% performance improvement for little
extra complication.

Finally it is worth commenting that row-wise storage can be problematic if there is a need
to access data by columns, such as when pivoting. A further discussion on this is presented in
Section 8.1.

7.3 Tasks

We depart from the (row, column) block nomenclature used in the dense case of Chapter 6.
Instead each block is given a unique number that can be readily determined from the triplet
(node, row, column). We recast the dense tasks, together with the new update between task as
follows (and illustrate them graphically in Figure 7.2):

factorize(diag) Computes the traditional dense Cholesky factor Ldiag of the triangular part
of a block diag that is on the diagonal using the LAPACK subroutine potrf. If the

102

1
4 5
7 8 9
10 11 12 25
13 14 15 27 28
16 17 18 29 30
19 20 21 31 32
22 23 24 33 34

(a) Graphical view (b) Indices of entries

Figure 7.1: Row hybrid block structure for a nodal matrix.

block is trapezoidal, this is followed by a triangular solve of its rectangular part,

Lrect ⇐ LrectL
−T
diag,

using the BLAS subroutine trsm.

solve(dest, diag) Performs a triangular solve of the off-diagonal block dest by the Cholesky
factor Ldiag of the block diag on its diagonal. i.e.

Ldest ⇐ LdestL
−T
diag,

using the BLAS subroutine trsm.

update internal(dest, rsrc, csrc) Within a nodal matrix, performs the update

Ldest ⇐ Ldest − LrsrcL
T
csrc,

where Ldest is the matrix of the block dest, Lrsrc is the matrix of the off-diagonal block
rsrc with rows that correspond to the rows of Ldest, and Lcsrc is the matrix of those
rows of the off-diagonal block csrc that correspond to the columns of Ldest, see Figure
7.2(c). If dest is an off-diagonal block, we use the BLAS 3 kernel gemm for this. If dest
is a block on the diagonal, we use the BLAS 3 kernel syrk for the triangular part and
gemm for the rectangular part, if any.

update between(dest, snode, scol) Performs the update

Ldest ⇐ Ldest − LrsrcL
T
csrc,

where Ldest is a submatrix of the block dest of an ancestor of the node snode and Lrsrc

and Lcsrc are submatrices of contiguous rows of the block column scol of the node snode.
These blocks are uniquely determined by the destination block dest. Unless the number
of entries updated is very small, we exploit the BLAS 3 kernel gemm (and/or syrk for
a block that is on the diagonal) by placing its result in a buffer from which we add the
update into the appropriate entries of the destination block dest, see Figure 7.2(d).

Observe that unlike in the dense case, there are multiple leaves to the task DAG (and
potentially multiple roots): one for each leaf of the assembly tree.

We could have cast update between as an operation from a pair of blocks, but this would
cause the same destination block to be updated more than once from the same block column.
This is undesirable since contested writes cause more cache misses than contested reads (a write
may invalidate a cache line in another cache but a read cannot). As we are updating a single
block, the number of operations is bounded by 2nb3, so we are not generating a disproportionate
amount of work per task, but we do risk generating very little.

103

L
diag

L
rect

L
diag

L
dest

L
dest

L
csrc

L
rsrc

(a) factorize(diag) (b) solve(dest, diag)

Ldest ⇐ LdestL
−T
diag

(c) update internal(dest,
rsrc, csrc)

Ldest ⇐ Ldest − LrsrcL
T
csrc

L
dest

rsrc

snode

scol

Lrsrc
T

Lcsrc

csrc

BufferL

L

(d) update between(dest, snode, scol)

1. Form outer product LrsrcL
T
csrc into Buffer.

2. Distribute the results into the destination block Ldest.

Figure 7.2: Graphical interpretations of sparse DAG tasks.

104

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Problem Index

P
e
rc

e
n
ta

g
e
 o

f
fl
o
p
s

factorize_block + solve_block

update_internal

update_between

Figure 7.3: Percentage of flops in the different kinds of tasks.

In practice, it seems that the largest proportion of floating point operations are performed
in update between tasks. In Figure 7.3, we show the percentage of flops needed for the different
kinds of tasks for the test problems of Section 7.7.

Following the techniques of Section 6.2, we do not store the entire task DAG explicitly.
Instead a series of counts and flags is used in much the same way as the dense case. The only
real difference is that the update between tasks require slightly more complicated flag checking,
potentially depending on the completion of up to four blocks in the source column.

7.4 Task dispatch engine

We have improved on the task dispatch engine of Chapter 6 by using cache-specific stacks to
make the code more cache aware. In that chapter we found that complex prioritisation schemes
that take into account critical paths offer very limited benefit. As a result, in HSL MA87 we have
opted for a simpler prioritisation scheme, and instead favour cache awareness using a system of
local task stacks together with a single task pool.

For each shared cache, there is a small local stack holding tasks that are intended for use
by the threads sharing this cache. During the factorization, each thread adds or draws tasks
from the top of its local stack. It is a stack rather than a more complicated data structure
because this gives all the properties that are needed. Each stack has a lock to control access
by its threads.

When a thread completes the last update for a diagonal block, it executes the factorize
task for this block at once without putting it on its stack. This promotes both cache reuse
and the generation of further tasks. When a thread completes a solve task, it first places any
update between tasks generated on its stack, then places any update internal tasks generated.
Both will be above any stacked solve tasks. Since some of the data needed for an update is
likely to be in the local cache, cache reuse is encouraged naturally without the need for explicit
management.

If a local stack becomes full, a global lock is acquired and the bottom half (that is, the
tasks that have been in the stack the longest so that their data are unlikely still to be in the
local cache) is moved to the task pool. We give the tasks in the task pool different priorities,
in the descending order factorize, solve, update internal, update between, but our experience
has been that this does not significantly improve the execution time over using a single stack
for all the tasks in the task pool. To understand why this should be the case, note that, as

105

1 2 3 parent
4 4 4
5 5
6 6 6

7 7
8 8
9 9

1 2 3 parent
4 4 4
6 6 6

8 8
9 9

5 5
7 7

1 2 3 parent
8 8
9 9

4 4 4
6 6 6
5 5

7 7
(a) original (b) heuristic (c) optimal

Figure 7.4: Column lists for a node and its three children under different reorderings.

already observed, a factorize task is executed as soon as it is generated and so never reaches
the pool. When a factorize task completes, several solve tasks may be placed on the stack, one
of which is probably executed immediately. When an update task completes for an off-diagonal
block, a single solve task is placed on the stack and probably executed immediately. Few solve
tasks therefore reach the pool. It follows that prioritization mainly affects the update tasks and
update internal tasks will have already been favoured by the order in which they are added to
the local stacks.

When establishing update between tasks, it is convenient to search the path from the node
to the root through links to parents. This leads to the tasks being placed on the stack with those
nearest the root uppermost, so that these will be executed first. This is the opposite to the order
that will lead to early availability of further tasks. We tried reversing this order and indeed
found that the number of available tasks increased. This led to a larger task pool being needed
and to an increase in execution time. It seems that as long as there are sufficient tasks available
to keep the threads active, this is sufficient. On the basis of numerical experimentation, we
have set the default value for the initial size of the task pool to 25,000 (the size of the pool is
increased whenever necessary during execution). For many of the test problems of Section 7.7,
the task pool size did not exceed 10,000; the largest was approximately 22,000.

If a local task stack is empty, the thread tries to take a task from the task pool. Should
this also be empty, the thread searches for the largest local stack belonging to another cache. If
found, the tasks in the bottom half of this local stack are moved to the task pool (workstealing).
The thread then takes the task of highest priority from the pool as its next task.

To check the effect of having a stack for each cache, we tried two tests while running the
problems of Section 7.7. First, we ran with a stack for each thread. This led to a small loss of
performance (around 1% to 2% for the larger problems). Second, we disabled processor affinity,
which means that the threads are not required to share caches in the way the code expects.
This led to a similar loss of performance.

We also tried the effect of using the global lock to control the local stacks as well as the
global pool. We found that this had no noticeable effect on execution time on our test machine.

7.5 Increasing cache locality in update between

We note that variable ordering within a supernode is unrestricted. In this section we identify
a potential improvement that exploits this additional freedom to attempt to minimize cache
misses in update between tasks.

Using traditional variable ordering techniques during analyse can result in the update between
operation accessing non-sequential memory. Consider the third child in Figure 7.4(a). As chil-
dren 1 and 2 were encountered before child 3 while building the parent’s variable list, child 3’s
indices are non-contiguous when mapped into the parent’s index list. If variables 4 to 9 are
eliminated at the parent node then we are free to permute them as we wish, allowing us to
remedy this situation based on the following argument.

The exact elimination order at the parent derives from the order in which the children are
encountered. Consider the tree in Figure 7.5, with the children of a node encountered from left
to right. We define the variable list ij as those variables that are first encountered at node i

106

3

7

30

1 2

Figure 7.5: Partial assembly tree.

but are eliminated at node j. The list i
(k)
j is the sublist of ij containing those variables that

are encountered at node k, a sibling of node i. Then we can represent the elimination-ordered
variable lists as follows, using bold to indicate those variables eliminated at a node:

Node Variable list
1 111317130

2 221
(2)
3 231

(2)
7 271

(2)
30 230

3 132333172737130230330
7 172737 . . .77130230330 . . . 730
30 130230330 . . .730 . . .3030,

As we can see, each of node 1’s sublists is contiguous in its parent 3. However, this does not

hold for its sibling node 2. The variables in 2’s 1
(2)
j sublists are mapped non-contiguously into

1j at nodes 3, 7 and 30. This behaviour can be generalised to an entire subtree’s variables
by relabelling the list 172737 to 3̂7 and the list 130230330 to 3̂30. Thus we can state that the
first child’s lists have a contiguous map directly into its parent. Further, due to the recursive
relabelling, we can express the entire assembly tree as a series of disjoint paths along which all
operations are contiguous on these sublists. Each of these disjoint paths contains a node and
all its first descendants.

This suggests a heuristic for maximizing the number of contiguous operations. That is to
use a weighted postorder of the elimination tree such that the children of each node are ordered
by the number of variables they pass up to the parent, with the largest first. The result of this
is illustrated as Figure 7.4(b).

We may still have non-contiguous ordering with respect to the non-dominant children, how-
ever. We may have freedom to reorder the rows of the dominant child such that those rows
that also come from the second child are ordered last within it. Such an ordering is shown as
Figure 7.4(c). We note that this freedom may be more limited than is first apparent: the child’s
ordering will probably be limited by its own children.

A further improvement still would be to relax the elimination order requirement. We could
then, for example, express the variable list of node 3 as 132333171302723037330. However this
would result in Lcsrc being non-contiguous in update between tasks involving non-first children.

To avoid excessive complications within our code we have only considered the simple heuris-
tic strategy. Rather than using a weighted postorder, we have instead implemented an identical
effect through a post-processing of the variable lists. Results are shown in Table 7.1 for a small
number of representative problems. The five slowest problems have also been included (see
Section 7.7 for a description of the problems). Though reasonably modest, of particular note is
that the performance gains in parallel are often much more than merely an eighth of the serial
gains, leading to better speedups.

107

Without reordering With reordering
Problem 1 8 speedup 1 8 speedup

9 5.14 1.01 5.08 5.09 0.93 5.50
16 14.5 2.73 5.30 14.1 2.54 5.55
18 11.5 1.93 5.95 11.4 1.89 6.02
28 83.3 13.1 6.36 80.0 12.3 6.49
29 120.2 20.1 5.99 119.7 19.8 6.03
30 333.3 51.8 6.44 317.3 48.0 6.62
31 519.5 73.1 7.10 507.3 70.8 7.17
32 788.1 112.6 7.06 760.3 105.9 7.18

Table 7.1: Showing comparison of timings on 1 and 8 threads, plus the parallel speedup, with
and without reordering the children of each node.

7.6 PaStiX

During the review process of the paper [Hogg et al. 2010] it was observed that our task scheme
is similar to that used by PaStiX [Hénon et al. 2002]. In the following subsection we expand
on the brief description of PaStiX from Section 2.4.5. We then highlight the major differences
between that approach and our own. It is worth commenting that the results later in this
chapter demonstrate a substantial performance advantage of our code over PaStiX on multicore
machines.

7.6.1 The PaStiX algorithm

PaStiX follows the traditional sparse solver paradigm of using supernode identification and
amalgamation on the elimination tree to obtain an assembly tree in the analyse phase. The
analyse phase also computes a static scheduling for the parallel factorize phase, using a model
of computation and communication time.

The factorize phase diverges from tradition by not using a compressed sparse column or
related format. The structure used instead is illustrated in Figure 7.6. It divides the entire
matrix into blocks using a partition of variables based on the node of the assembly tree at which
they are eliminated. As the code is closely tied to a nested dissection ordering it can be easily
seen that many of these blocks will be zero; the resultant block sparsity pattern is stored. Each
non-zero block has its entries stored densely, possibly introducing explicit zero rows. Leading
and trailing zero rows are not stored.

The similarities with our approach come in the definition of tasks on this data structure.
Using the notation (j, k) to refer to block j in column k, PaStiX defines 4 such tasks:

pastix comp1d(k) factorizes the entire block column k and computes all update contribu-
tions. (There is no comparable task in our scheme.)

pastix factor(k) factorizes the diagonal block (k, k). (The same as our factorize task.)

pastix bdiv(j, k) performs the triangular solve of block (j, k) in column with the column’s
diagonal block (k, k). (The same as our solve task.)

pastix bmod(i, j, k) computes the update contribution to block (i, j) from the outer product
of blocks (i, k) and (j, k). (Similar to our update internal and update between tasks. Due
to the block data structure used there is no need to distinguish between them.)

The static scheduling phase works on the corresponding task DAG. There are two stages.
First each node is assigned to a set of candidate processes. Next a static schedule is determined
through simulation to select a single process for each task.

The candidate processes are determined by repeated bisection of the tree from the top down
such that there are similar amounts of work in each partition. Hence the root node’s set of
candidate processes is the set of all available processes. If the tree is balanced then at the next
level each child has half of the processes in its candidate set. Typically leaf subtrees with a
single candidate result.

108

Figure 7.6: Storage format used by PaStiX. Each non-zero block is stored densely.

Static scheduling is then performed by simulating runtime for each task. A task can be
executed by any process that is a candidate for its destination block’s node. Tasks are scheduled
one at a time on the candidate process where they can start executing earliest (after allowance
for communication time). The task ordering is given by a postordering of the assembly tree.
Once a task is scheduled the system model is updated and the next task is then scheduled

The factorize phase of PaStiX then executes this static scheduling to perform the factoriza-
tion.

7.6.2 Major differences

There are many differences between our approach and that of PaStiX. Major ones are:

• Shared memory: our approach is written for shared memory multicore processors,
and is able to take into account the shared caches that are often present. PaStiX is
fundamentally a distributed memory code that exploits shared memory parallelism in
SMP nodes. As a result different design choices have been made.

• Row storage: in our approach the entire block column is stored row-wise, rather than in
small blocks determined by the assembly tree. Beyond merely being an implementational
detail, this ensures that all possible divisions of the column into multiple blocks may be
used without penalty. This is exploited by using different row blocking in update between
than for the other tasks, allowing the use of the optimal block sizes when calling the BLAS:
in contrast, PaStiX is constrained to the block sizes given by its supernode partition. A
corollary to this is that we are able to generate fewer, bigger, tasks than PaStiX, reducing
overheads and increasing performance.

• Reuse of data in cache: through the use of local cache stacks, we achieve a good reuse
of data that is in cache. For the majority of tasks at least one of the blocks involved has
been recently used in a previous task. In contrast, PaStiX uses a strategy more concerned
with the earliest start time; as our strategy allows any thread to tackle any task we are
less constrained in seeking load balance.

• Reduced number of operations on zero: our approach avoids the extra computations
on zero rows that the PaStiX approach requires by using dense blocks rather than non-
zero rows. The update between tasks are as a result less efficient as they are performing a
sparse update rather than the dense one of PaStiX, though less data movement is typically

109

Identifier n nz(A) nz(L) Gflops Application/description

1. CEMW/tmt sym 726.7 2.9 30.0 9.38 Electromagnetics
2. Schmid/thermal2 1228.0 4.9 51.6 14.6 Unstructured thermal FEM
3. Rothberg/gearbox∗ 153.7 4.6 37.1 20.6 Aircraft flap actuator
4. DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint
5. Boeing/pwtk 217.9 5.9 48.6 22.4 Pressurised wind tunnel
6. Chen/pkustk13∗ 94.9 3.4 30.4 25.9 Machine element, 21 noded solid
7. GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis
8. Rothberg/cfd2 123.4 1.6 38.3 32.7 CFD pressure matrix
9. DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector/contact
10. DNVS/shipsec8 114.9 3.4 35.9 38.1 Ship section
11. DNVS/shipsec1 140.9 4.0 39.4 38.1 Ship section
12. GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis
13. DNVS/fcondp2∗ 201.8 5.7 52.0 48.2 Oil production platform
14. Schenk AFE/af shell3 504.9 9.0 93.6 52.2 Sheet metal forming matrix
15. DNVS/troll∗ 213.5 6.1 64.2 55.9 Structural analysis
16. AMD/G3 circuit 1585.5 4.6 97.8 57.0 Circuit simulation
17. GHS psdef/bmwcra 1 148.8 5.4 69.8 60.8 Automotive crankshaft model
18. DNVS/halfb∗ 224.6 6.3 65.9 70.4 Half-breadth barge
19. Um/2cubes sphere 101.5 0.9 45.0 74.9 Electromagnetics
20. GHS psdef/ldoor 952.2 23.7 144.6 78.3 Large door
21. DNVS/ship 003 121.7 4.1 60.2 81.0 Ship structure—production
22. DNVS/fullb∗ 199.2 6.0 74.5 100 Full-breadth barge
23. GHS psdef/inline 1 503.7 18.7 172.9 144 Inline skater
24. Chen/pkustk14∗ 151.9 7.5 106.8 146 Civil engineering. Tall building
25. GHS psdef/apache2 715.2 2.8 134.7 174 3D structural problem
26. Koutsovasilis/F1 343.8 13.6 173.7 219 AUDI engine crankshaft
27. Oberwolfach/boneS10 914.9 28.2 277.8 282 Bone micro-finite element model
28. ND/nd12k 36.0 7.1 116.5 505 3D mesh problem
29. JGD Trefethen/

Trefethen 20000 20.0 0.3 90.7 652 Integer matrix
30. ND/nd24k 72.0 14.4 320.6 2054 3D mesh problem
31. bone010 986.7 36.3 1076.4 3876 Bone micro-finite element model
32. audikw 1 943.7 39.3 1242.3 5804 Automotive crankshaft model

Table 7.2: Test matrices and their characteristics. n denotes the order of A in thousands; nz(A)
and nz(L) are the number of entries in the lower triangular part of A and in L (without node
amalgamation), respectively, in millions; ∗ indicates only the sparsity pattern is provided.

required. In particular, the cache friendly limited reordering of Section 7.5 ensures that
for our largest update operations the data is contiguous.

7.7 Numerical results

7.7.1 Test environment

The experiments we report on in this chapter were all performed on our multicore test machine
fox, with additional tests on a newer architecture machine jhogg. Details of both are given
in Table 1.4. The Intel Fortran compiler v11.0 was used with the options -fast -openmp, and
the BLAS library was the Intel MKL v10.1. The sparse matrices used are listed in Table 7.2.
This set comprises 32 examples that arise from a range of practical applications. In selecting
the test set, our aim was to choose a wide variety of large-scale problems. Each problem is
available from the University of Florida sparse matrix collection [Davis 2007].

For all tests, the right-hand side b is generated so that the required solution x is the vector
of ones. When only the sparsity pattern of a matrix was available, reproducible pseudo-random
off-diagonal entries in the range (0, 1) were generated.

Unless stated otherwise, runs are performed using all 8 cores on our test machine fox and
all control parameters used by HSL MA87 are given their default settings. All times are elapsed

110

n HSL MA87(a) HSL MA87(b) HSL MP54 mkl

100 0.71 0.74 1.63 3.25
500 15.3 15.0 17.7 20.7
1000 31.3 30.3 29.3 35.1
1500 40.8 40.0 35.7 42.6
2000 48.8 47.2 40.8 47.3
2500 51.8 50.9 44.3 51.4
5000 62.2 61.9 55.8 57.3

10000 66.3 65.1 63.7 64.4
20000 69.6 68.9 67.9 67.1

Table 7.3: A comparison of dense Cholesky implementations. Speeds in Gflop/s are reported.

times, in seconds, measured using the system clock. Unfortunately, we found that when the
elapsed time on 8 cores was less than a second, it could vary by 20% to 30% between runs.
Occasionally, a time would be greater by much more than this. We believe that the occasional
very slow runs were caused by an executing thread being asked to perform a system task. In
each experiment we therefore averaged over ten complete runs of each of the problems except
28, 29, 30, 31, 32, which are averaged over three. In the following subsection, we refer to these
five problems, that each require more that 500 Gflops, as the slow subset.

Ordering is performed before the analyse phase is called by calling the MeTiS routine
METIS NodeND [Karypis and Kumar 1998; 1999]. In Table 7.2, we include the number of mil-
lions of entries in the matrix factor (denoted by nz(L)) with this pivot sequence before node
amalgamation is performed.

7.7.2 Dense comparison

We can trivially represent a dense problem as a sparse one with a single node that contains all
n variables. This allows us to compare the efficiency of the dense tasks within HSL MA87 with
other dense Cholesky factorization implementations (although it should be noted that HSL MA87

accepts a different data format and hence avoids the reordering that they may require).

In Table 7.3 comparisons are given for randomly generated dense matrices of order up to
20000. Results for the following codes are presented:

HSL MA87(a): HSL MA87 with processor affinity enabled. Processor affinity refers to whether
threads are tied to specific processors, or the operating system is allowed to move them.
For our cache management techniques to reflect the actual physical circumstance, proces-
sor affinity needs to be enabled. On our test machine with the Intel compiler we do this
by setting the environment variable KMP AFFINITY to compact.

HSL MA87(b): HSL MA87 without processor affinity enabled.

HSL MP54: dense DAG code described in Chapter 6. It is designed to perform both partial and
complete Cholesky factorizations.

mkl: LAPACK Cholesky factorization subroutine (dpotrf) supplied by Intel MKL 10.1, which
we believe uses a DAG-based algorithm.

The test results were averaged over ten runs. For each run, the factorization times for different
problems of the same size were accumulated until the total elapsed time was at least one second;
the average speed in Gflop/s was then calculated.

Results are reported in Table 7.3: comparing HSL MA87 with HSL MP54 and dpotrf, we
see that HSL MA87 is competitive for sufficiently large n (n greater than about 2000) and its
advantage over the other codes increases with n. However, its performance compares less
favourably for small problems. This is due to workstealing with the relatively small blocks
used for optimal performance on these problems causing an excessive number of blocks to be
switched between caches. In the sparse case, we do not anticipate this will cause problems since

111

nz(L) (millions)
Problem

1 8 16 32 64

3 37. 39. 41. 44. 49.
16 98. 119. 139. 172. 228.
22 74. 76. 79. 86. 101.
28 117. 117. 118. 119. 121.
29 91. 92. 94. 96. 99.
30 321. 322. 323. 326. 331.
31 1076. 1090. 1108. 1135. 1183.
32 1242. 1257. 1275. 1303. 1359.

Factorize times Solve times
Problem

1 8 16 32 64 1 8 16 32 64

3 0.91 0.83 0.86 0.83 0.89 0.27 0.27 0.29 0.31 0.34
16 5.00 2.77 2.59 2.61 3.04 1.52 1.09 1.24 1.49 1.80
22 2.70 2.57 2.59 2.64 2.89 0.50 0.51 0.53 0.58 0.66
28 22.5 15.3 13.7 12.3 11.1 0.75 0.74 0.74 0.76 0.74
29 119.9 40.8 27.5 19.9 15.7 0.62 0.58 0.59 0.65 0.61
30 80.4 58.4 53.1 48.0 44.1 2.05 2.02 2.03 2.08 2.03
31 72.0 71.0 70.7 70.8 71.4 6.82 6.86 7.00 7.19 7.39
32 109. 107. 106. 106. 106. 7.82 7.85 8.01 8.23 8.43

Table 7.4: Comparison of the number of entries in L (in millions) and the factorize and solve
times for values of the node amalgamation parameter nemin in the range 1 to 64. The fastest
factorize times (and those within 3 per cent of the fastest) are in bold.

there are many more tasks and more than one initial task. Workstealing should only play a
real role near the start and end of the factorization.

Processor affinity seems to marginally enhance the performance of HSL MA87 unless n is
small. Tests on sparse problems also showed a very moderate gain from use of affinity (about
2%). For all future tests involving HSL MA87 we do use processor affinity, but for tests with
other codes we do not (if a code does not exploit processor affinity it typically results in poor
performance).

7.7.3 Effect of node amalgamation

The HSL MA87 strategy of amalgamating nodes of the tree is taken from HSL MA77 and explained
in [Reid and Scott 2009b]. A child is amalgamated with its parent if both involve fewer than
a given number, nemin, of eliminations. This is very simple heuristics and offers little control
over increases in the amount of data stored and amount of computation required. In particular,
the heuristic can be quite poor for small matrices where the relative increase in density is high.

In Table 7.4, we show the factorize times for the slow subset (problems 28 to 32), where
nemin value 64 gave the best performance,and for three others to represent the three kinds
of behaviour that we saw in the rest: flat (3), U-shaped (22) and nemin=1 much slower (16).
Apart from the slow subset, nemin=32 was almost always within 3% of the best.

Also shown are the number of entries in L and the solve times. The examples were chosen
to also illustrate the three kinds of behaviour shown in solve times: rising slowly (3,22,31,32),
flat (28, 29, 30), and nemin=1 much slower (26). For some problems the number of entries in L
grows rapidly with nemin and this leads to rising solve times (16, 22).

These considerations led us to use 32 as our default nemin value. However, if the number
of entries in L increases slowly with nemin, it can be advantageous to use an even larger value.
It may be advantageous to run with nemin=8 if a large number of solves are to be performed
(for example in iterative refinement).

112

Single core factorize times 8-core factorize times
Problem

128 192 256 320 384 448 128 192 256 320 384

3 4.30 4.13 4.09 4.08 4.06 4.06 0.77 0.80 0.82 0.84 0.94
15 10.07 9.58 9.36 9.33 9.30 9.25 1.67 1.63 1.63 1.67 1.77
22 17.5 16.3 16.1 15.9 15.8 15.8 2.79 2.60 2.61 2.69 2.69
28 90.9 82.6 80.0 79.0 79.2 80.1 14.5 12.6 12.3 12.4 13.1
29 148. 125. 120. 117. 117. 116. 23.8 20.5 19.8 19.7 20.6
30 394. 331. 318. 313. 312. 316. 63.8 50.3 48.0 48.1 50.1
31 580. 528. 508. 499. 492. 488. 82.9 73.4 70.9 69.5 69.6
32 884. 794. 761. 747. 735. 729. 128. 110. 106. 104. 103.

Table 7.5: Comparison of the factorize times for different block sizes nb. The fastest times (and
those within 3 per cent of the fastest) are in bold.

No local Stack size
Problem stack 10 50 100 200 300

3 0.92 0.86 0.86 0.82 0.84 0.85
15 1.80 1.74 1.63 1.63 1.59 1.61
16 3.14 2.80 2.60 2.58 2.58 2.61
28 12.8 12.7 12.4 12.3 12.2 12.1
29 20.3 20.3 20.0 19.8 19.7 19.5
30 49.9 49.5 48.7 48.0 47.4 47.2
31 74.0 73.6 71.3 70.9 70.7 70.8
32 110. 110. 107. 106. 106. 106.

Table 7.6: Comparison of the factorize times for different local task stack sizes. The fastest
times (and those within 3 per cent of the fastest) are in bold.

7.7.4 Block size

The block size nb was discussed in Section 7.2. In Table 7.5, we report the factorize time for a
range of block sizes on a single core and on 8 cores. As before, we show results for three cases
with longer factorization times, and three cases representing the behaviour of the others. The
fastest times (and those within 3 per cent of the fastest) are in bold. We see that, on a single
core, the best times are obtained using a larger block size than on 8 cores, but in our tests the
reductions in time using nb > 256 are less than 5 per cent. On eight cores, 192 and 256 almost
always gave good times; hence we have chosen a default block size of 256.

7.7.5 Local task stack size

In Section 7.4, we discussed the use of local task stacks. In Table 7.6, we report the factorization
times for a range of local task stack sizes and also for when there is no local task stack. Improve-
ments over having no local task stack are usually in the range of 10% to 20%. The exceptions
were in the slowest cases, where the gain was only about 5%. It is never disadvantageous to
use a local stack. These results have led us to choose 100 as our default stack size.

For three of the slow problems, we show in Table 7.7 the number of leaf nodes (initially a
factorize block task is put into the global task pool for each leaf), the total number of tasks, the
number of tasks taken directly from the local stacks, the number of tasks sent to the global task
pool because a local stack became full, and the number of tasks moved to the global task pool
by workstealing. We see that the number of tasks moved by workstealing is small. Provided
the stack size is at least 100, a good proportion of the tasks are executed directly.

For the smaller problems, the local stacks became full for only eight cases when the stack size
was 100. This happened most often for problem 19, also shown in Table 7.7. Next was problem
26, where 750 tasks were moved to the pool because of a full stack. For a further 6 problems,
fewer than 400 tasks were moved to the pool because of a full stack. For the remaining smaller

113

Leaves Tasks Stack Direct Full Workstealing
Problem (103) (103) size (103) (103) (103)

19 0.88 48 10 19 28 0.14
50 40 7 0.30
100 45 1 0.43
200 46 0 0.54
300 46 0 0.47

28 0.06 124 10 19 105 0.16
50 45 78 0.47
100 66 56 0.81
200 92 30 1.61
300 108 13 1.83

29 0.06 241 10 21 221 0.13
50 46 195 0.39
100 63 177 1.25
200 97 144 0.89
300 119 121 1.76

32 5.58 772 10 232 534 0.16
50 573 192 0.92
100 703 60 2.84
200 751 11 3.57
300 759 4 3.95

Table 7.7: Tasks taken directly from local stacks, moved to pool because of a full stack, and
moved to pool because of workstealing on 8 cores.

Stack size 10 Stack size 100
Problem

with without with without
2 1.24 1.30 1.23 1.28

17 1.86 1.96 1.71 2.05
27 7.54 7.67 7.10 11.08
28 12.7 12.8 12.3 16.3
29 20.3 20.2 19.8 21.9
30 49.5 49.8 48.0 49.7
31 73.6 73.7 70.8 85.9
32 109.7 110.0 105.8 139.3

Table 7.8: Factorize times with and without workstealing on 8 cores. Default values for other
parameters. The times within 3% of the fastest are in bold.

problems, none of the local stacks became full. With a stack size of 200, a local stack became
full only for problem 22 and only 100 tasks were moved to the task pool because of this.

Although the workstealing figures in Table 7.7 are small, workstealing is important for load
balance and its importance increases with the local stack size. To illustrate this, in Table 7.8
we present times on 8 cores with and without workstealing using local stack sizes of 10 and 100.

7.7.6 Speedups and speed for HSL MA87

One of our concerns is the speedup achieved by HSL MA87 as the number of cores increases. In
Figure 7.7, we plot the speedups in the factorize times when 2, 4, and 8 cores are used. We see
that the speedup on 2 cores is close to 2, on 4 cores it is generally more than 3 and for the largest
problems (in terms of nz(L)) it exceeds 3.6. On 8 cores, HSL MA87 achieves speedups of more
than 6 for many of the largest problems and for all but three test problems, the speedup exceeds
5. The two largest problems achieve a speedup of almost 7.2 on 8 cores. This deterioration in
speedup is to be expected due to shared resources in a multicore environment. Our machine
has two processor packages, each with its own memory bus, and thus we expect good speedup

114

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Problem Index

s
in

g
le

 c
o
re

 t
im

e
/t
im

e

8 cores

4 cores

2 cores

Figure 7.7: The ratios of the factorize times on 2, 4 and 8 cores to the factorize time on 1 core.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Problem Index

G
fl
o
p
/s

Figure 7.8: The speeds in Gflop/s on 8 cores.

on 2 out of the 8 cores. When we switch to using 4 cores, we are sharing a memory link between
each pair of threads. Finally, going to all 8 cores shares level 2 cache pairwise and a memory
link between each set of 4 threads.

Of course, our primary concern is the actual speed achieved. We show the speeds in Gflop/s
on 8 cores in Figure 7.8. Here we compute the flop count from a run with the node amalgamation
parameter nemin having the value 1. We note that for 14 of our 30 test problems, the speed
exceeds 36.4 Gflop/s, which is half the maximum dgemm speed (recall Table 1.4). Furthermore,
on all but four of the problems, it is greater than 24.3 Gflop/s, which is a third of the dgemm

maximum. The top speed achieved is 54.8 Gflop/s.

7.8 Comparisons with other solvers

We wish to compare the performance of HSL MA87 with some of the other readily available
solvers. These have all been described previously in Section 2.4.5:

PARDISO Version 4.0.0, ifort 10.1 version. The same MeTiS ordering used for HSL MA87 was
supplied to PARDISO.

115

0 5 10 15 20 25 30

1

2

4

Problem Index

T
im

e
/(

H
S

L
_
M

A
8
7
 t
im

e
)

PARDISO

TAUCS

PaStiX

Figure 7.9: The ratios of the PARDISO, TAUCS and PaStiX factorize times to the HSL MA87

factorize time (single core).

TAUCS Version 2.2, compiled with Cilk 5.4.6 under gcc. (Will not compile with icc, so
potentially unfair to compare against codes compiled under ifort. However, experiments
indicate HSL MA87 performance is similar under gfortran to ifort.) No option for supplying
an ordering seems to exist, so TAUCS was allowed to use its own MeTiS routine. The
solver was explicitly told to use its multifrontal cilk factorization option.

PaStiX Version 5.1.2, release 2200, compiled with icc 10.1 and ifort 11.0. Runs were performed
with a single MPI process, but multiple threads, as this gave the best performance. Rather
than passing in an ordering, PaStiX was allowed to use its built-in SCOTCH routine, as
the results with a supplied ordering were very poor.

Comparisons on one and eight cores

We first compare the performance of the above packages with that of HSL MA87 when run on
a single core of our test machine. The ratios of the factorize times for each package to the
factorize time for HSL MA87 are given in Figure 7.9. Values above one indicate a code was
slower than HSL MA87, and below indicate it was faster. For the majority of problems HSL MA87

is marginally faster than PARDISO, and considerably faster than TAUCS and PaStiX. For the
largest problems we are consistently better than PARDISO, by a good margin. As PARDISO
was found to have excellent serial performance by Gould, Hu and Scott [2007], this shows that
we are very competitive even in serial.

In Figure 7.10 the ratios of the factorize times for PARDISO, TAUCS and PaStiX to the
factorize time for HSL MA87 on 8 cores are given. Some ratios are omitted as they are outside the
plotted range. We see that for most problems TAUCS and PaStiX are generally uncompetitive,
and HSL MA87 outperforms PARDISO, significantly so as the number of floating point operations
becomes large. On the largest problems TAUCS and PaStiX are much more competitive, but
PARDISO is slower than either. We are at least 50% faster than all the other codes on the two
biggest problems.

Finally in Figure 7.11 we show a comparison of achieved speedups in an attempt to illustrate
the potential, rather than implementation, of the different strategies. This picture is very similar
to that for the speed on 8 processors, so we will not comment on it further.

We believe the relatively poor performance of PARDISO on the largest problems is due to
its lack of a 2 dimensional blocking to exploit parallelism in update and factorization of large
nodes near the root of the tree.

116

0 5 10 15 20 25 30

1

2

4

8

Problem Index

T
im

e
/(

H
S

L
_
M

A
8
7
 t
im

e
)

PARDISO

TAUCS

PaStiX

Figure 7.10: The ratios of the PARDISO, TAUCS and PaStiX factorize times to the HSL MA87

factorize time (8 cores).

0 5 10 15 20 25 30

1

2

8

4

Problem Index

(H
S

L
_
M

A
8
7
 s

p
e
e
d
u
p
)/

s
p
e
e
d
u
p

PARDISO

TAUCS

PaStiX

Figure 7.11: The ratios of HSL MA87 speed-up to those of PARDISO, TAUCS and PaStiX (8
cores).

117

Intel Nehalem AMD Shanghai
Architecture Intel(R) Xeon(R) CPU E5540 AMD Opteron 2376
Clock 2.53 GHz 2.30 GHz
Cores 2× 4 2× 4
Level-1 cache 128 K on each core 128 K on each core
Level-2 cache 128 K on each core 512 K on each core
Level-3 cache 8192 K shared by 4 cores 6144 K shared by 4 cores
Memory 24 GB for all cores 16 GB for all cores
BLAS Intel MKL 11.0 Intel MKL 11.0
Compiler Intel 11.0 with option -fast Intel 11.0 with options

-ipo -O3 -no-prec-div -static -msse3

Table 7.9: Specifications of two further test machines.

0 5 10 15 20 25 30

1

2

4

Problem Index

P
A

R
D

IS
O

 t
im

e
/H

S
L
_
M

A
8
7
 t
im

e

1 core

8 cores

Figure 7.12: Comparison of HSL MA87 and PARDISO factorize times on the Intel Nehalem
architecture.

7.9 Comparisons on other architectures

So far all results have been reported on fox. We end this section by presenting runs on two
further multicore machines, briefly summarised in Table 7.9. Since the results already reported
indicate that PARDISO is the most competitive, we give results in Figures 7.12 and 7.13
comparing only it and HSL MA87. Due to licencing issues we use the MKL 11.0 version of
PARDISO to obtain these results. As on fox, we compare favourably with PARDISO, again
significantly outperforming it on the largest problems.

7.10 Future work

We believe that our cache-aware scheduler can be improved to more accurately model the
caching arrangements of whatever machine we are using, rather than just the shared level-2
caches on our current system. A recursive layer based approach would even allow us to model
MPI and out-of-core storage as further levels of cache. Tasks would filter up and down through
different levels of cache to reflect the location of relevant data. A queue containing the next
few scheduled tasks would allow data to be prefetched from lower layers before it is required,
thus enabling the latency to be effectively hidden. A good heuristic for selecting tasks may be
able to match current approaches in minimizing communication volume. These modifications
are, however, outside the scope of this thesis.

Buttari et. al. [2009] discuss a version of their dense DAG code for LU factorization that
incorporates a pairwise partial pivoting strategy. It may be possible to build on this approach

118

0 5 10 15 20 25 30

1

2

4

Problem Index

P
A

R
D

IS
O

 t
im

e
/H

S
L
_
M

A
8
7
 t
im

e

1 core

8 cores

Figure 7.13: Comparison of HSL MA87 and PARDISO factorize times on the AMD Shanghai
architecture.

in the sparse symmetric indefinite case. We present a preliminary variant that attempts to do
this in the next chapter. It follows the work of Reid and Scott [Reid and Scott 2009b]: if a
pivot is rejected at a given node for failing to meet stability criteria, the corresponding column
is pushed up the assembly tree to become part of the parent node (the pivot is delayed).

119

120

Chapter 8

Improved algorithms applied to

interior point methods

Interior point methods, as described in Chapter 3, spend the vast majority of their computa-
tional time in the determination of a descent direction through the solution of a linear system.
In this chapter we give results for our new solvers in this context. The open source non-linear
interior point code Ipopt [Wächter and Biegler 2006] is used to embed the linear solvers in a
real world context.

As Ipopt requires the solution of indefinite rather than positive-definite systems, Section 8.1
describes the modifications of HSL MA87 necessary to handle a LDLT factorization. The techni-
calities of Ipopt interfaces are then described in Section 8.2, with results on linear programming
problems in Section 8.3. Finally, some brief conclusions are presented in Section 8.4.

8.1 DAG-driven symmetric-indefinite solver

Our code HSL MA87, described in Chapter 7, is a competitive parallel Cholesky factorization.
To convert this code into an indefinite factorization we must do the following:

Compute PAPT = LDLT , requiring at the very least that D is diagonal, with diagonal en-
tries of plus or minus one. More stably D is block-diagonal, with 1× 1 and 2× 2 blocks.
All factorization tasks and the solve phase must be updated to work with LD and L
rather than just with L.

Handle pivoting, requiring minimally that we detect and ignore or modify poor pivots. For
a stable factorization supernodal or Bunch-Kaufmann pivoting will be necessary. This
will require access to the fully updated column upon which we pivot, resulting in a reor-
ganisation of the task DAG.

The most basic rearrangement of our code is to just store the sign of the pivot and to form
LD on the fly. If the pivot is very small (has an absolute value less than some threshold small,
or relative to the largest entry in the rest of the column) then we could replace the diagonal with
a very large number and zero the rest of the column. Doing so effectively treats the column
as being empty and produces a zero for the corresponding part of a solution vector. This
modification was tested with Ipopt, but it was found that the numerical instability inherent in
the approach led to an excess number of interior point iterations.

Instead we have adapted HSL MA87 into a fully featured indefinite factorization code com-
parable to MA57 and HSL MA77. We will henceforth refer to this variant as DSIS (DAG-driven
Symmetric-Indefinite Solver). The version described in this section is a preliminary effort; a full
version that has been more fully developed will be completed in the future. This development
version has been designed and written with the assistance of Jennifer Scott and John Reid.

121

8.1.1 Modifications

The new version combines the factor and solve tasks to allow the full column to be used in
pivoting, that is performed using a modified HSL MA64 kernel [Reid and Scott 2009c] to provide
a pivoted partial factorization on each block column. We tested both storing LD and calculating
it from L and D on the fly. The first approached worked best in serial, while the latter worked
better in parallel when memory bandwidth was more limited. The code uses the calculation
approach as we are primarily interested in parallel performance.

The combination of the factor and solve tasks for a given column allows some simplifications
in the code for adding updates, as the entire column is handled by a single thread. Unfortunately
the relative sizes of the factor-solve and various update tasks are now heavily imbalanced. To
ensure sufficient work is always available when running in parallel we reduce the blocking factor
from that used in the positive-definite code, but still suffer from a long tail of (near) serial
execution at the root of the factorization.

The modifications of the HSL MA64 code restrict the factorization to a single block column
(the original performs a partial factorization on packed block columns). Both row-wise and
column-wise storage variants have been tried, and it was found that a hybrid variant that
uses the HSL MA87 row-wise storage for the update tasks but converts to and from column-wise
storage for the factor-solve task gave best performance. This is due to the need to repeatedly
scan data by columns during pivoting.

A further issue was dealing with delayed pivots. We have taken the simplistic approach of
merely passing any columns which have been rejected for pivoting to the next block column, or
the parent if there are no further block columns in the supernode. This can lead to some block
columns containing substantially fewer or greater numbers of actual columns than predicted
and can lead to highly unbalanced tasks.

The following pseudocode describes the current algorithm used for the factor solve task:

if this is the first column of a supernode then
ndelay = sum of delays from final column of child supernodes

else
ndelay = delays from preceding column of supernode

end if
Allocate a new array of sufficient size to store this block column’s data, plus an additional
ndelay columns
Copy this block column’s data into the first part of array, converting from row to column
storage in the process
Copy any delayed columns from child supernodes or preceding column as appropriate
Call block column pivoting algorithm (modified HSL MA64)
Convert eliminated columns back to row storage within the recently allocated array
Leave any delays in column storage ready for passing to parent or next column

8.1.2 Results on general problems

In an effort to judge how successful the version of the code used here is, we show results on some
general problems in Table 8.1. This compares our DSIS code with MA57, HSL MA77 run in-core,
and the Intel MKL version of PARDISO. All codes use default settings, except an ordering
(obtained through MA57) is supplied, internal scaling is disabled and the matrix is externally
scaled by MC771. This shows that our DSIS code is competitive on these problems, though is
rarely the best serial code due to design decisions optimizing parallel performance. PARDISO
has more limited pivoting options than the other codes: as a result of taking numerical short
cuts it is by far the fastest on the c-62 and aug3d problems. Similar performance can be
obtained from other codes by changing their control settings. However, doing so can lead to
failure to obtain an accurate solution.

122

Problem MA57 HSL MA77 PARDISO DSIS
Boeing/msc01050 0.010 0.004 0.006 0.004
Cylshell/s3rmt3m1 0.064 0.042 0.050 0.043
Boeing/bcsstk38 0.152 0.076 0.089 0.081
Boeing/crystk01 0.144 0.089 0.109 0.092
Schenk IBMNA/c-56 0.404 0.130 0.072 0.158
Simon/olafu 0.559 0.234 0.287 0.233
GHS indef/stokes128 0.713 0.250 0.225 0.254
GHS psdef/oilpan 1.45 0.986 0.917 1.02
GHS psdef/s3dkq4m2 2.94 1.80 2.12 1.89
DNVS/ship 001 3.54 2.14 2.39 2.20
Koutsovasilis/F2 4.48 2.42 2.88 2.54
Cunningham/qa8fk 7.00 4.13 4.68 4.29
ND/nd3k 8.94 5.13 5.43 4.80
Schenk IBMNA/c-62 19.7 7.26 1.77 9.85
Oberwolfach/t3dh 20.2 11.7 13.5 12.4
ND/nd6k 40.5 24.5 25.5 22.8
GHS indef/aug3d OOM 38.2 0.105 62.8
ND/nd12k 164.0 104.8 109.7 99.9
PARSEC/GaAsH6 482.7 325.9 375.8 312.9
GHS indef/sparsine 537.0 376.5 499.6 319.6

Table 8.1: Comparison results for DSIS on general problems, ordered by DSIS factorize time.
Results within 5% of the fastest are shown in bold. OOM indicates a problem for which a code
ran out of memory.

123

D
S
IS

T
im

e
(S
p
ee
d
u
p
)

P
ro
b
le
m

n
d
el
ay

1
2

4
8

P
A
R
D
IS
O

T
im

e
(S
p
ee
d
u
p
)

B
oe
in
g/
m
sc
0
1
0
5
0

0
0
.0
0
4

0
.0
1
3

(0
.3
0
)

0
.0
9
5

(0
.0
4
)

0
.0
6
4

(0
.0
6
)

0
.0
9
1

(0
.0
7
)

C
yl
sh
el
l/
s3
rm

t3
m
1

0
0
.0
4
3

0
.0
3
0

(1
.4
3
)

0
.0
7
3

(0
.5
9
)

0
.1
6
6

(0
.2
6
)

0
.1
2
2

(0
.4
1
)

B
oe
in
g/
bc
ss
tk
3
8

4
8

0
.0
8
1

0
.0
5
1

(1
.5
9
)

0
.1
3
4

(0
.6
0
)

0
.0
9
2

(0
.8
8
)

0
.1
1
0

(0
.8
1
)

B
oe
in
g/
cr
ys
tk
0
1

0
0
.0
9
2

0
.0
7
0

(1
.3
2
)

0
.1
3
7

(0
.6
8
)

0
.1
2
8

(0
.7
2
)

0
.0
3
8

(2
.8
3
)

S
ch
en

k
IB

M
N
A
/
c-
5
6

2
8
7

0
.1
5
8

0
.1
1
3

(1
.4
0
)

0
.1
6
2

(0
.9
8
)

0
.1
6
8

(0
.9
4
)

0
.0
8
3

(0
.8
7
)

S
im

o
n
/
o
la
fu

6
0
.2
3
3

0
.1
4
8

(1
.5
7
)

0
.0
8
8

(2
.6
6
)

0
.1
8
4

(1
.2
6
)

0
.1
1
0

(2
.6
2
)

G
H
S
in
d
ef
/
st
o
ke
s1
2
8

3
9
7
2

0
.2
5
4

0
.1
5
4

(1
.6
5
)

0
.1
6
1

(1
.5
8
)

0
.1
6
7

(1
.5
2
)

0
.1
0
9

(2
.0
6
)

G
H
S
p
sd
ef
/
o
il
pa
n

0
1
.0
2

0
.5
6
3

(1
.8
1
)

0
.3
6
5

(2
.7
9
)

0
.2
6
9

(3
.7
9
)

0
.2
0
3

(4
.5
3
)

G
H
S
p
sd
ef
/
s3
d
kq
4
m
2

0
1
.8
9

1
.0
5

(1
.8
0
)

0
.6
5
5

(2
.8
8
)

0
.4
5
3

(4
.1
7
)

0
.3
7
7

(5
.6
3
)

D
N
V
S
/
sh
ip

0
0
1

2
2
.2
0

1
.2
4

(1
.7
8
)

0
.7
2
8

(3
.0
3
)

0
.4
4
7

(4
.9
3
)

0
.4
4
2

(5
.4
1
)

K
o
u
ts
o
va
si
li
s/
F
2

0
2
.5
4

1
.4
0

(1
.8
1
)

0
.7
5
7

(3
.3
6
)

0
.5
4
0

(4
.7
0
)

0
.5
3
3

(5
.4
0
)

C
u
n
n
in
gh
a
m
/
qa
8
fk

0
4
.2
9

2
.3
9

(1
.8
0
)

1
.4
3

(3
.0
0
)

0
.8
6
4

(4
.9
6
)

0
.8
4
8

(5
.5
2
)

N
D
/
n
d
3
k

0
4
.8
0

2
.7
4

(1
.7
5
)

1
.7
2

(2
.7
8
)

1
.0
9

(4
.4
1
)

1
.1
0

(4
.9
5
)

S
ch
en

k
IB

M
N
A
/
c-
6
2

4
6
4
5
9

9
.8
5

7
.8
2

(1
.2
6
)

6
.4
4

(1
.5
3
)

5
.5
7

(1
.7
7
)

0
.4
1
4

(4
.2
7
)

O
be
rw

o
lf
a
ch
/
t3
d
h

0
1
2
.4

6
.8
3

(1
.8
1
)

3
.8
6

(3
.2
1
)

2
.3
0

(5
.4
0
)

2
.5
4

(5
.2
9
)

N
D
/
n
d
6
k

0
2
2
.8

1
2
.7

(1
.8
0
)

7
.5
2

(3
.0
3
)

4
.2
4

(5
.3
8
)

5
.6
1

(4
.5
4
)

G
H
S
in
d
ef
/
a
u
g3
d

2
3
2
9
4
3

6
2
.8

5
6
.7

(1
.1
1
)

5
3
.1

(1
.1
8
)

4
9
.1

(1
.2
8
)

0
.0
7
4

(1
.4
1
)

N
D
/
n
d
1
2
k

0
9
9
.9

5
5
.2

(1
.8
1
)

3
2
.0

(3
.1
3
)

1
7
.4

(5
.7
4
)

2
8
.2

(3
.8
9
)

P
A
R
S
E
C
/
G
a
A
sH

6
0

3
1
2
.9

1
7
4
.6

(1
.7
9
)

1
0
3
.2

(3
.0
3
)

5
6
.9

(5
.5
0
)

1
1
0
.8

(3
.3
9
)

G
H
S
in
d
ef
/
sp
a
rs
in
e

3
0

3
1
9
.6

1
7
9
.6

(1
.7
8
)

1
0
9
.8

(2
.9
1
)

6
0
.9

(5
.2
5
)

1
7
4
.0

(2
.8
7
)

T
a
b
le

8
.2
:
P
a
ra
ll
el

sc
a
li
n
g
re
su
lt
s
fo
r
th
e
fa
ct
o
ri
ze

p
h
a
se

o
f
D
S
IS

o
n
2
,
4
a
n
d
8
co
re
s.

T
h
e
n
d
el
ay

co
lu
m
n
g
iv
es

th
e
n
u
m
b
er

o
f
d
el
ay
ed

p
iv
o
ts

re
p
o
rt
ed

b
y

D
S
IS
.
F
a
ct
o
ri
za
ti
o
n
ti
m
e
a
n
d
sp
ee
d
u
p
is
re
p
o
rt
ed

fo
r
P
A
R
D
IS
O

o
n
8
co
re
s
fo
r
co
m
p
a
ri
so
n
p
u
rp
o
se
s.

124

We examine parallel performance in Table 8.2. This shows consistent scaling behaviour, with
an increase in the speedup as the problem size increases. For small and mid-sized problems
we are not as efficient as PARDISO, however for larger problems we are significantly faster.
As in the positive-definite case, this is probably caused by the choice between one and two
dimensional task decompositions.

The exception to the scaling behaviour occurs when large numbers of delayed pivots occur.
This results in much larger factor-solve tasks, giving effectively serial factorization processes.
Modifications to the code that would reduce these effects are beyond the scope of this chapter,
but are planned for a full release of this code.

8.2 Ipopt interfaces

Ipopt is a non-linear interior point solver that uses the augmented system approach. It is written
in C++ and implements interfaces to a number of solvers. We have written complementary
interfaces to the mixed precision solver HSL MA79 (Chapter 5) and the DSIS code described in the
previous section. We have additionally written an interface for HSL MA77 to allow comparisons
with that code.

The interface must support the following features:

• Perform the analyse phase once and reuse it for multiple factorizations and solves.

• Perform a factorization and allow multiple solves. This allows Ipopt to implement its own
iterative refinement.

• Detect deviations from expected inertia; indicate if the matrix is singular.

All these features are easily implemented for the HSL solvers.

We will use the following matrix factorization interfaces within Ipopt:

MA57 used with the standard Ipopt interface, but with internal MC64 scaling disabled (problems
are already scaled and this slowed the code down substantially on most problems). A
substantial difference from default MA57 settings is the choice of pivoting parameter u =
1× 10−8 (default in the Ipopt interface).

HSL MA77 used with a custom interface. maxstore is set to huge(0)/8 and bits=32. The
analyse phase of MA57 is used to obtain the ordering, and otherwise default parameters are
used except nemin=16 (this was found to be better on modern machines) and u = 1×10−8

(in line with existing MA57 interface).

HSL MA79 used with a custom interface and default parameters, except that the value of the
parameters small sp and small dp are set to 1 × 10−20 as this seems to give better
inertia detection in Ipopt. Again, u = 1 × 10−8 was chosen in line with existing Ipopt
practice. As Ipopt does not currently support iterative methods we have opted to just
require that HSL MA79 achieves double precision accuracy of β = 2× 10−15. If a fall back
to double precision factorization occurs then all future iterations will use a double rather
than mixed precision factorization as the condition of the matrix is likely to get worse
rather than better. While it may be possible to use reduced accuracy in early iterations
we have chosen not to investigate this.

DSIS as described in the Section 8.1, used with a custom interface and pivoting parameter
u = 1× 10−8.

PARDISO used with the standard Ipopt interface.

The use of such a small pivoting parameter is considered unusual to general linear algebra
practitioners, but is an established practice in optimization. This follows from practical experi-
ence in the optimization community and reflects the ability to correct numerical errors through
perturbations of the problem at a higher algorithmic level.

125

MA57 MA77 MA79 DSIS PARDISO
greenbea greenbea greenbea greenbea d6cube
pilot4 pilot4 pilot4 pilot4 dfl001

stocfor3 greenbea
pilot4

Table 8.3: Problems from the Netlib test set that failed to converge to an optimal solution with
each code.

8.3 Numerical results

We performed tests on fox using g++ 4.1.2 (default Ipopt optimization flags), ifort 11.1 (with
-g -xT -O3) and BLAS/LAPACK from the Intel MKL 10.1. The version of PARDISO used
was not from the MKL, but instead version 4.0 from the pardiso-project website. This was due
to advice that the MKL version did not support good inertia detection [Ipopt 2009; Schenk
2009], a required ability for Ipopt. Aside from controls on the linear solvers, default options
were used to run Ipopt. This results in poor performance on linear problems as design choice
have been made that favour robustness in the solution of non-linear problems. As some of
our test problems are non-linear we choose to use the same options for all problems (we are
comparing the linear algebra component rather than optimization algorithms after all).

As the test collections employed are large, full results have been placed in Appendix B, and
only summary results are presented here. We ran Ipopt using our solvers on both the historical
Netlib LP test set [Gay 1985] (to assess numerical reliability) and a selection from Mittleman’s
collection of benchmark problems [Mittelmann 2009] (to assess performance on larger systems).

8.3.1 Netlib results

As Netlib problems are relatively small by today’s standards we consider them mainly in the
context of numerical accuracy and the ability to solve difficult problems. All codes were able
to solve most problems within 3000 iterations, though PARDISO failed on several where others
succeeded. The failed problems are listed in Table 8.3.

Considering the 90 problems for which an optimum was obtained, the various codes produced
iteration counts within 10% of each other on 63 problems. The remaining 27 are tabulated
in Table 8.4. The main reason for these vastly differing results is the action taken when a
matrix is found to have the wrong inertia (that is the matrix is determined to be singular
or have the wrong number of negative pivots). In this case Ipopt will add a small multiple
of the identity matrix to the upper left portion of the augmented system matrix (3.5). This
reduces the condition number, but gives a poorer Newton direction, normally resulting in a
larger iteration count. This is done in the linear case because obtaining an incorrect inertia is
normally indicative of poor conditioning in the factorized matrix having lead to inaccurate signs
of pivots (equivalent in a Cholesky factorization to finding negative pivots). In the non-linear
case inertia correction is additionally used to detect and overcome non-convexity. An indication
that this has occurred often is a large difference between iteration and factorization counts in
Table 8.4.

The other reason some solvers require more iterations is that the iterates (x, z) are perturbed
away from their boundaries if iterative refinement is unable to produce a sufficiently small
residual. This perturbation often causes significantly more iterations to be required before
convergence is achieved.

We can now suggest a reason for the significant differences between the performance of
PARDISO and the other codes. PARDISO doesn’t allow pivots to be delayed between super-
nodes, instead it uses a weighted-matching based permutation to move large pivots close to the
diagonal. This permutation often pays off and results in the smaller iteration counts observed,
however it is sometimes insufficient to overcome the ill conditioning, giving significantly larger
iteration counts or failing to converge at all.

Full timing results are again included in Appendix B. We shall only comment to say that on
these (typically very small) problems MA57 substantially outperformed the other codes on almost
all problems. The performance of HSL MA77 and PARDISO was similar on problems for which

126

Iteration (Factorization) count
Problem

MA57 HSL MA77 HSL MA79 DSIS PARDISO
25fv47 203 (211) 205 (220) 257 (308) 206 (218) 203 (204)
bnl2 287 (344) 277 (304) 289 (362) 279 (307) 306 (330)
boeing2 62 (73) 63 (70) 57 (61) 60 (62) 57 (58)
bore3d 194 (202) 195 (202) 194 (239) 206 (211) 137 (140)
cycle 171 (344) 195 (400) 171 (346) 187 (375) 110 (125)
degen2 78 (141) 62 (107) 102 (217) 96 (158) 64 (65)
degen3 276 (283) 62 (118) 84 (169) 63 (120) 353 (374)
etamacro 113 (117) 113 (120) 113 (117) 114 (120) 80 (81)
finnis 237 (496) 153 (173) 149 (177) 154 (174) 147 (148)
greenbeb 2718 (3745) 2319 (2578) 2295 (2512) 2729 (3808) 2081 (2136)
lotfi 58 (71) 55 (57) 55 (62) 61 (69) 55 (57)
maros 783 (1245) 830 (1204) 813 (1351) 819 (1176) 508 (509)
perold 1317 (1323) 1152 (1156) 1278 (1285) 1346 (1350) 1344 (1345)
pilot we 229 (230) 229 (231) 271 (306) 229 (230) 229 (230)
pilot87 363 (519) 337 (367) 317 (372) 360 (419) 306 (307)
pilotnov 340 (431) 340 (424) 340 (430) 340 (421) 290 (291)
recipe 50 (92) 45 (52) 48 (57) 45 (78) 33 (34)
scorpion 35 (43) 35 (43) 35 (42) 45 (90) 37 (38)
scrs8 85 (120) 85 (100) 116 (241) 83 (101) 83 (84)
share1b 356 (357) 357 (359) 325 (337) 355 (356) 359 (360)
ship04s 59 (63) 59 (66) 59 (66) 59 (63) 48 (49)
ship08l 85 (89) 85 (92) 83 (88) 85 (89) 94 (95)
ship08s 158 (163) 156 (163) 162 (173) 157 (161) 71 (72)
ship12l 99 (103) 66 (74) 66 (80) 67 (72) 69 (70)
ship12s 100 (104) 100 (107) 105 (118) 100 (104) 70 (71)
stocfor3 159 (161) 140 (147) 158* (163) 159 (160) 159 (160)
wood1p 72 (118) 73 (123) 72 (117) 72 (113) 81 (82)

Table 8.4: The 27 problems in Netlib on which iteration counts varied by more than ten per cent
for problems that converged. Bold font indicates iteration counts within 10% of the best, and
numbers in brackets indicate the actual number of factorizations performed. A star indicates
that the problem did not reach an optimal solution.

127

they had similar factorization counts, and DSIS was typically slightly slower as in Section 8.1.
The performance of HSL MA79 was highly erratic, but when performing well typically took longer
than MA57 but less time than HSL MA77.

128

Iterations Time per
Problem Run time (Factorizations) factorization

Solver: MA57 HSL MA79 MA57 HSL MA79 MA57 HSL MA79

Test Set 4
cont11 246.9 235.2 64 (66) 62 (65) 3.74 3.62
cont1 57.5 80.2 50 (52) 48 (50) 1.11 1.60
cont4 80.6 116.3 84 (86) 81 (83) 0.94 1.40
neos1 378.6 193.5 269 (271) 269 (271) 1.40 0.71
neos2 378.5 327.1 309 (313) 309 (313) 0.93 1.05
neos3 1189.9 325.7 22 (29) 18 (20) 41.03 16.28
Test Set 5
bearing 400 66.6 90.5 16 (16) 16 (16) 4.16 5.65
cont5 1 96.8 149.1 16 (26) 17 (23) 3.72 6.48
cont5 2 1 669.8 1560.7 69 (178) 95 (209) 3.76 7.47
cont5 2 2 431.8 480.4 62 (121) 50 (73) 3.57 6.58
cont5 2 3 505.9 596.8 76 (144) 59 (91) 3.51 6.56
cont5 2 4 221.4 181.3 14 (25) 12 (18) 8.85 10.07
dirichlet 120 569.0 1824.9 56 (119) 56 (119) 4.78 15.34
ex1 160 43.6 53.1 10 (11) 10 (11) 3.96 4.83
ex1 320 41.9 53.2 9 (10) 9 (10) 4.19 5.31
ex4 2 320 43.8 53.8 10 (11) 10 (11) 3.98 4.80
NARX CFy 1593.8 292.4 352 (878) 241 (595) 1.82 0.49

Table 8.5: Showing comparative performance of the mixed precision solver HSL MA79 against
its base solver for some larger problems on Test Sets 4 and 5. The fastest solution time is in
bold.

8.3.2 Larger problem results

We have drawn two sets of problems from those collected by Mittlemann [2009]:

Test Set 4 Linear problems with factorization times greater than one second under MA57.

Test Set 5 Nonlinear problems with factorization times greater than one second under MA57.

All tests on these problems were limited to one hour of run time and 32GiB of virtual memory.
We give full details of the test sets in Appendix A, with full results appearing in Appendix B.
When run in parallel both solvers could give slightly different solutions to the serial case due
to changes in the order of operations. This sometimes resulted in wildly different iteration and
factorization counts. To get results meaningful in comparison to the serial case we ran each
problem 3 times and give the results from the problem with the closest iteration count to the
serial run, or an average if there is a tie.

We will now consider separately the effectiveness of the mixed precision solver HSL MA79 and
the parallel solver DSIS.

Mixed precision

Table 8.5 shows comparative results for MA57 and HSL MA79; these are compared as in all
the listed problems MA57 was chosen as the base solver for HSL MA79. The wall clock time,
iteration and factorization counts are presented, together with the computed average time per
factorization. This computed quantity gives an idea of the performance gained, but is not
an ideal measure for comparison as different paths are taken through the problem, resulting
in different matrices to be factored (possibly with significantly different numbers of delayed
pivots). Further, it does not attempt to remove time spent in function evaluations and Hessian
computations, which may represent non-trivial amounts of time for the nonlinear problems.

Of these problems 6 out of the 17 ran faster with HSL MA79 than with MA57, however most
of the rest ran considerably slower with the mixed precision approach. This was likely due to
requiring too many steps of iterative refinement to recover a good descent direction. However,

129

Problem DSIS PARDISO
threads= 1 2 4 8 8

Test Set 4
cont1 115.5 88.9 (1.30) 73.1 (1.58) 62.6 (1.85) 31.2 (1.69)
cont4 166.3 138.7 (1.20) 110.8 (1.50) 96.5 (1.72) 95.0 (1.42)
neos1 802.5 728.9 (1.10) 508.9 (1.58) 401.6 (2.00) 422.6 (3.00)
neos2 898.6 713.0 (1.26) 554.1 (1.62) 430.3 (2.09) 395.4 (2.73)
neos3 550.6 416.9 (1.32) 291.0 (1.89) 244.0 (2.26) 1411.3 (2.53)
ns1687037 404.9 345.3 (1.17) 303.9 (1.33) 241.8 (1.67) 193.3 (2.56)
Test Set 5
bearing 400 70.6 65.6 (1.08) 62.2 (1.14) 61.4 (1.15) 57.9 (1.16)
cont5 1 65.7 48.3 (1.36) 40.2 (1.63) 33.6 (1.96) 9.6 (2.88)
cont5 2 1 307.4 237.2 (1.30) 143.5 (2.14) 114.2 (2.69) 19.0 (3.25)
cont5 2 4 130.2 87.2 (1.49) 76.1 (1.71) 72.6 (1.79) 33.25 (1.65)
dirichlet 120 441.7 315.0 (1.40) 234.7 (1.88) 195.3 (2.26) 205.2 (2.82)
ex1 160 52.5 41.8 (1.26) 34.5 (1.52) 32.3 (1.63) 15.3 (1.80)
ex1 320 44.3 35.0 (1.27) 29.6 (1.50) 26.7 (1.66) 14.4 (1.78)
ex4 2 320 52.5 41.8 (1.26) 34.4 (1.53) 31.3 (1.68) 15.3 (1.80)

Table 8.6: Showing parallel performance of the solver DSIS inside Ipopt. Results for PARDISO
(on 8 threads only) are supplied for comparison. All times are wall clock times, and parallel
speedups are shown in brackets.

we achieve impressive speedups on some problems (neos3, NARX CFy) and moderate speedups
on others. Overall this seems to mimic the results for mixed precision on general matrices: for
some problems it works really well, but for others it is considerably worse.

The interface could be improved to run one iteration in double precision and one in mixed
precision and then choose the faster factorization method. This would hopefully give the best
performance with little penalty.

Parallel

Table 8.6 shows the performance of DSIS when used in parallel. While it does not perform as
well as PARDISO, it still produces comparable speedups on most problems. The performance
gap is largely due to encountering large numbers of delayed pivots in these problems. As
we recall from our tests on general indefinite problems this causes the DSIS factorization to
serialise. Despite this, it is of particular interest to observe that on 8 threads it significantly
beats the serial performance of all the HSL solvers (that is MA57, HSL MA77 and HSL MA79).

The relatively low parallel efficiencies given by both PARDISO and DSIS are caused by
several factors, including serial overheads inside Ipopt, the repeated stop-starting of the parallel
regions and the execution of a large number of forward and back solves that only run in serial.
If parallelism could be induced throughout the interior point code then better speedups would
be expected (though may be limited by memory bandwidth in the solve phase).

8.4 Conclusions

We have shown that significant gains in the performance of interior point methods can be
achieved through the use of the methods we have developed. In particular for certain problems
the mixed precision approach can achieve a solution in roughly half the time.

While the performance of DSIS is sometimes disappointing compared to PARDISO at
present, the results of HSL MA87 for positive-definite problems suggest that with further de-
velopment it could become competitive. Even as is, it offers worthwhile gains over a serial code
if a multicore machine is available, especially on larger problems where existing one dimensional
parallel dissections fail to exploit the full extent of parallelism available in the problem.

130

Chapter 9

Conclusions and Future Work

This thesis has presented a number of techniques and investigations aimed at accelerating direct
methods for the solution of Ax = b for symmetric A on modern multicore machines.

Particular success has been demonstrated for the solution of large sparse symmetric systems
with the development of library quality codes that exploit mixed precision and DAG-based
techniques. However, limited success was obtained when applying these techniques to interior
point methods.

Future work would logically proceed down several paths.
The simplest of these is to change the way delayed pivots are propagated within the calcu-

lation. The current technique of passing them to the next block column in the supernode or
tree often results in the same poor pivot candidates being scanned repeatedly and additionally
causes substantial load imbalance. Modifying the task representation so that block columns
with insufficient pivots are back filled when using subsequent columns is one obvious method to
examine; this would result in similar behavior with respect to the number of column scans and
delayed pivots exhibited by existing codes, such as the out-of-core multifrontal code HSL MA77.
Other methods could also be experimented with, for example each dense submatrix factoriza-
tion could use use recursive bisection to build a binary tree of block columns, and failed pivots
could then flow up the tree, reducing the number of examination from the number of block
columns to the log there of.

Another obvious strand to pursue is to explore alternative pivoting techniques to avoid or
limit the need for columnwise scanning and/or delayed pivots. The constrained or compressed
weighted matching based orderings of Duff and Pralet [2007] could be pursued, possibly with
a block diagonal variant of the random butterfly matrix scaling described by Parker [1995].
Alternatively, or in conjunction, an a posteri approach to pivoting could be taken. Bunch-
Kaufamann pivoting could be performed restricted to the diagonal block of each block column,
and growth measured in the blocks below the diagonal with each triangular solve task. If a
pivot is found to have been poor then the block column is reverted to a previously version
and full pivoting performed. Such a technique would accelerate factorizations that do not
encounter more than a handful of delayed pivots by removing the need to scan and update
entire columns during the factor or factor solve task. In our experience many problems exhibit
this characteristic after scaling has been applied.

The scheduler is a rich source of research problems, especially when considered in combina-
tion with supernode amalgamation. It may even be profitable from a minimizing communication
point of view to use different supernode amalgamations at different points in the calculation.
The design of the sparse DAG code developed here allows the scheduler to be easily swapped
out, allowing easy experimentation with this technique. It is unclear how far from optimal
current supernode amalgamation techniques are and the development of an accurate computa-
tional model could aid in the study of such. Finally, to many users the repeatability of results
is more critical than performance. Our current scheduling algorithm gets different (but equally
numerically valid) answers on each run due to differing orders in which update tasks are per-
formed. It is hence of interest to develop an algorithm capable of delivering repeatable results
for minimal loss of performance.

With respect to improving performance with interior point problems, one reason for the

131

relatively poor performance described is the heavy reliance of the tested interior point code
on aggressive iterative refinement. This results in much of the time being spent in the solve
rather than factorize phase. As the solve phase is strongly memory-bound, scaling on multicore
systems is extremely limited. Further work will be to examine the solve phase in detail and
determine what techniques can be used to reduce the memory bandwidth used.

Finally, the manycore future may well feature GPU or GPU-like architectures. It would be
worthwhile to explore how direct solvers can be adapted to run on such chips that are extremely
efficient with dense vector operations but relatively inefficient with sparse operations. Memory
bandwidth is higher with these chips, but is also more critical than ever for performance.

132

Bibliography

Agullo, E., Hadri, B., Ltaief, H., and Dongarra, J. 2009. Comparative study of
one-sided factorizations with multiple software packages on multi-core hardware. In SC ’09:
Proceedings of the Conference on High Performance Computing Networking, Storage and Anal-
ysis. ACM, 1–12. Also appears as UT-CS-09-640.

Amestoy, P. R., Davis, T. A., and Duff, I. S. 1996. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications 17, 886–905.

Amestoy, P. R., Davis, T. A., and Duff, I. S. 2004. Algorithm 837: AMD, an approximate
minimum degree ordering algorithm. ACM Transactions on Mathematical Software 30, 3, 381–
388.

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. 2001. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications 23, 1, 15–41.

Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., and Pralet, S. 2006. Hybrid
scheduling for the parallel solution of linear systems. Parallel Computing 32, 2, 136–156.

Andersen, B. S., Gustavson, F., and Wasniewski, J. 2001. A recursive formulation of
Cholesky factorization of a matrix in packed storage. ACM Transactions on Mathematical
Software 27, 2, 214–244. Also appears as LAPACK Working Note 146.

Anderson, B. S., Gunnels, Gustavson, F., Reid, J. K., and Wasniewski, J. 2005. A
fully portable high performance minimal storage hybrid format Cholesky algorithm. ACM
Transactions on Mathematical Software 31, 2, 201–227.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.

1999. LAPACK Users’ Guide, Third ed. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Anderson, E. and Dongarra, J. J. 1990. Evaluating block algorithm variants in LAPACK.
In Proceedings of the Fourth SIAM Conference on Parallel Processing for Scientific Computing.
Society for Industrial and Applied Mathematics, 3–8. Also appears as LAPACK Working Note
19.

Arioli, M. and Duff, I. S. 2009. Using FGMRES to obtain backward stability in mixed
precision. Electronic Transaction on Numerical Analysis 33, 31–44. Also appears as RAL-
TR-2008-006.

Arioli, M., Duff, I. S., Gratton, S., and Pralet, S. 2007. A note on GMRES precondi-
tioned by a perturbed LDLT decomposition with static pivoting. SIAM Journal on Scientific
Computing 29, 5, 2024–2044.

Ashcraft, C. and Grimes, R. 1989. The influence of relaxed supernode partitions on the
multifrontal method. ACM Transactions on Mathematical Software 15, 4, 291–309.

Bauer, F. L. 1963. Optimally scaled matrices. Numerische Mathematik 5, 1 (12), 73–87.

133

Benzi, M., Haws, J. C., and Tuma, M. 2001. Preconditioning highly indefinite and non-
symmetric matrices. SIAM Journal on Scientific Computing 22, 4, 1333–1353.

Biggar, P. and Gregg, D. 2005. Sorting in the presence of caches and branch predic-
tors. Technical Report TR-2005-57, Department of Computer Science, Trinity College Dublin.
August.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I.,
Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
and Whaley, R. C. 1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Bunch, J. R. and Kaufman, L. 1977. Some stable methods for calculating inertia and
solving symmetric linear systems. Mathematics of Computation 31, 137, 163–179.

Bunch, J. R. and Parlett, B. N. 1971. Direct methods for solving symmetric indefinite
systems of linear equations. SIAM Journal on Numerical Analysis 8, 4, 639–655.

Buttari, A., Dongarra, J., and Kurzak, J. 2007. Limitations of the playstation 3 for
high performance cluster computing. Tech. Rep. CS-07-594, University of Tennessee Computer
Science.

Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Luszczek, P., and Tomov, S.

2006. The impact of multicore on math software. In Proceedings of Workshop on State-of-the-
art in Scientific and Parallel Computing (Para06).

Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P., and Tomov, S. 2008. Using
mixed precision for sparse matrix computations to enhance the performance while achieving
64-bit accuracy. ACM Transactions on Mathematical Software 34, 17:1–17:22.

Buttari, A., Dongarra, J., Langou, J., Luszczek, P., and Kurzak, J. 2007. Mixed
precision iterative refinement techniques for the solution of dense linear systems. Int. Journal
of High Performance Computing Applications 21, 4, 457–466.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. 2009. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Computing 35, 1, 38–53. also
appears as LAPACK Working Note 191.

Carolan, W. J., Hill, J. E., Kennington, J. L., Niemi, S., and Wichmann, S. J. 1990.
An empirical evaluation of the KORBX algorithms for military airlift applications. Operations
Research 38, 2, 240–248.

Chapman, B., Jost, G., and Pas, R. V. D. 2008. Using OpenMP. The MIT Press.

Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transac-
tions on Mathematical Software 35. Article 22 (14 pages).

Colombo, M. and Gondzio, J. 2008. Further development of multiple centrality correctors
for interior point methods. Computational Optimization and Applications 41, 3, 277–305.

Curtis, A. R. and Reid, J. K. 1972. On the automatic scaling of matrices for Gaussian
elimination. IMA Journal of Applied Mathematics 10, 1, 118–124.

Davis, T. 2007. The University of Florida sparse matrix collection. Technical report, Univer-
sity of Florida. http://www.cise.ufl.edu/∼davis/techreports/matrices.pdf.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM.

Demmel, J., Hida, Y., Kahan, W., Li, X. S., Mukherjeek, S., and Riedy, E. J. 2006.
Error bounds from extra precise iterative refinement. ACM Transactions on Mathematical
Software 32, 2, 325–351.

134

Demmel, J., Hida, Y., Li, X. S., and Riedy, E. J. 2009. Extra-precise iterative refinement
for overdetermined least squares problems. ACM Transactions on Mathematical Software 35, 4.
Also LAPACK Working Note 188.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. 1999.
A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and
Applications 20, 3, 720–755.

Dijkstra, E. W. 1965. Cooperating sequential processes. Tech. rep., Technological Univer-
sity, Eindhoven. September.

Dolan, E. D. and Moré, J. J. 2002. Benchmarking optimization software with performance
profiles. Mathematical Programming 91, 2, 201–213.

Dolan, E. D., Moré, J. J., and Munson, T. S. 2004. Benchmarking optimization soft-
ware with COPS 3.0. Technical Report ANL/MCS-273, Mathematics and Computer Science
Division, Argonne National Laboratory. 2.

Dongarra, J. J., Croz, J. D., Hammarling, S., and Duff, I. S. 1990. A set of level 3
basic linear algebra subprograms. ACM Transactions on Mathematical Software 16, 1, 1–17.

Dongarra, J. J., Croz, J. D., Hammarling, S., and Hanson, R. J. 1986. An ex-
tended set of Fortran basic linear algebra subprograms. ACM Transactions on Mathematical
Software 14, 1–17.

Duff, I. S. 2004. MA57 — a new code for the solution of sparse symmetric definite and
indefinite systems. ACM Transactions on Mathematical Software 30, 118–154.

Duff, I. S., Erisman, A. M., and Reid, J. K. 1986. Direct methods for sparse matrices.
Oxford Science Publications, Oxford.

Duff, I. S. and Koster, J. 2001. On algorithms for permuting large entries to the diagonal
of a sparse matrix. SIAM Journal on Matrix Analysis and Applications 22, 4, 973–996.

Duff, I. S. and Pralet, S. 2005. Strategies for scaling and pivoting sparse symmetric
indefinite problems. SIAM Journal on Matrix Analysis and Applications 27, 2, 313–340. Also
appears as RAL-TR-2004-020.

Duff, I. S. and Pralet, S. 2007. Towards a stable static pivoting strategy for the sequential
and parallel solution of sparse symmetric indefinite systems. SIAM Journal on Matrix Analysis
and Applications 29, 1007–1024.

Duff, I. S. and Reid, J. K. 1983. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Transactions on Mathematical Software 9, 302–325.

Duff, I. S. and Reid, J. K. 1996. Exploiting zeros on the diagonal in the direct solution of
indefnite sparse symmetric linear systems. ACM Transactions on Mathematical Software 22, 2,
227–257.

Duff, I. S. and Scott, J. A. 2005. Towards an automatic ordering for a symmetric sparse
direct solver. Technical Report RAL-TR-2006-001, Rutherford Appleton Laboratory.

Fourer, R. and Mehrotra, S. 1993. Solving symmetric indefinite systems in an interior-
point method for linear programming. Mathematical Programming 62, 1, 15–39.

Gay, D. M. 1985. Electronic mail distribution of linear programming test problems. Mathe-
matical Programming Society COAL Newsletter 13, 10–12.

George, A. and Liu, W. H. 1989. The evolution of the minimum degree ordering algorithm.
SIAM Review 31, 1, 1–19.

Gilbert, J. R., Ng, E. G., and Peyton, B. W. 1994. An efficient algorithm to compute
row and column counts for sparse Cholesky factorization. SIAM Journal on Matrix Analysis
and Applications 15, 4, 1075–1091.

135

Gill, P. E. and Murray, W. 1974. Newton-type methods for unconstrained and linearly
constrained optimization. Mathematical Programming 7, 1, 311–350.

Gondzio, J. 1995. HOPDM (version 2.12) — a fast LP solver based on a primal-dual interior
point method. European Journal of Operational Research 85, 221–225.

Gondzio, J. 1996. Multiple centrality corrections in a primal-dual method for linear pro-
gramming. Computational Optimization and Applications 6, 2, 137–156.

Goto, K. and van de Geijn, R. 2008. High performance implementation of the level-3
BLAS. ACM Transactions on Mathematical Software 35, 1, 1–14.

Gould, N. I. M., Scott, J. A., and Hu, Y. 2007. A numerical evaluation of sparse
direct solvers for the solution of large sparse symmetric linear systems of equations. ACM
Transactions on Mathematical Software 33, 2, 10:1 – 10:32.

Graham, S. L., Snir, M., and Patterson, C. A. 2004. Getting Up to Speed: The Future
of Supercomputing. National Academies Press.

Gropp, W., Lusk, E., and Thakur, R. 1999. Using MPI-2, Advanced Features of the
Message-Passing Interface. The MIT Press.

Gupta, A., Joshi, M., and Kumar, V. 2001. WSMP: A high-performance serial and parallel
sparse linear solver. Technical Report RC 22038 (98932), IBM T.J. Watson Reserach Center.
www.cs.umn.edu/˜agupta/doc/wssmp-paper.ps.

Gupta, A., Karypis, G., and Kumar, V. 1997. Highly scalable parallel algorithms for
sparse matrix factorization. IEEE Trans. Parallel and Distributed Systems 8, 5, 502–520.

Heggernes, P., Eisenstat, S., Kumfert, G., and Pothen, A. 2001. The computational
complexity of the minimum degree algorithm.

Hénon, P., Ramet, P., and Roman, J. 2002. PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems. Parallel Computing 28, 2, 301–321.

Higham, N. J. 1997. Iterative refinement for linear systems and LAPACK. IMA Journal of
Numerical Analysis 17, 495–509.

Higham, N. J. 2002. Accuracy and Stability of Numerical Algorithms. SIAM.

Hogg, J. D. 2008. A DAG-based parallel Cholesky factorization for multicore systems.
Technical Report RAL-TR-2008-029, Rutherford Appleton Laboratory.

Hogg, J. D., Reid, J. K., and Scott, J. A. 2010. Design of a multicore sparse Cholesky
solver using DAGs. SIAM Journal on Scientific Computing 32, 6, 3627–3649.

Hogg, J. D. and Scott, J. A. 2008. The effects of scalings on the performance of a
sparse symmetric indefinite solver. Technical Report RAL-TR-2008-007, Rutherford Appleton
Laboratory.

Hogg, J. D. and Scott, J. A. 2010a. A fast and robust mixed-precision solver for the solu-
tion of sparse symmetric linear systems. ACM Transactions on Mathematical Software 37, 2.
to appear. Preprint as RAL-TR-2008-023.

Hogg, J. D. and Scott, J. A. 2010b. A note on the solve phase of a multicore solver.
RAL-TR-2010-007.

HSL. 2007. A collection of Fortran codes for large-scale scientific computation. See
http://www.cse.clrc.ac.uk/nag/hsl/.

IEEE. 2008. IEEE standard for floating-point arithmetic. IEEE Std 754-2008 , 1–58.

Intel Corporation. 1996. Cluster OpenMP User’s Guide. Intel Corporation.

136

Intel Corporation. 2006. IA-32 Intel architecture optimization: reference manual. Intel
Corporation. URL: http://www.intel.com/design/pentium4/manuals/index new.htm.

Intel Corporation. 2007. Intel 64 and IA-32 Intel Architectures Optimization Reference
Manual. Intel Corporation.

Ipopt 2009. Ticket #88: Working interface for Intel MKL Pardiso. https://projects.coin-
or.org/Ipopt/ticket/88.

Irony, D., Shklarski, G., and Toledo, S. 2004. Parallel and fully recursive multifrontal
cholesky. Journal of Future Generation Computer Systems 20, 3, 425–440.

ISO 1997. ISO 1539-1997. The Fortran 95 standard.

ISO 2004. ISO/IEC 1539-1:2004. The Fortran 2003 standard.

Karypis, G. and Kumar, V. 1995. A fast and high quality multilevel scheme for partitioning
irregular graphs. In International Conference on Parallel Processing. 113–122.

Karypis, G. and Kumar, V. 1998. METIS - family of multilevel partitioning algorithms.
See http://glaros.dtc.umn.edu/gkhome/views/metis.

Karypis, G. and Kumar, V. 1999. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 359–392.

Kurzak, J. and Dongarra, J. 2009. Fully dynamic scheduler for numerical computing
on multicore processors. Tech. Rep. 220, LAPACK Working Note. June. Also appears as
UT-CS-09-643.

Kurzak, J. and Dongarra, J. J. 2007. Implementing linear algebra routines on multi-core
processors with pipelining and a look ahead. In Applied Parallel Computing: State of the
Art in Scientific Computing, B. Kågström, E. Elmoth, J. Dongarra, and J. Wasniewski, Eds.
147–156. Also appears as LAPACK Working Note 178.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. 1979. Basic linear
algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software 5, 3,
308–323.

Li, X. S. 2005. An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software 31, 3, 302–325.

Li, X. S. and Demmel, J. W. 1998. Making sparse Gaussian elimination scalable by static
pivoting. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM).

Li, X. S. and Demmel, J. W. 2003. SuperLU DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM Transactions on Mathematical Soft-
ware 29, 2.

Liu, J. W. 1986. A compact row storage scheme for Cholesky factors using elimination trees.
ACM Transactions on Mathematical Software 12, 2, 127–148.

Liu, J. W. 1990. The role of elimination trees in sparse factorization. SIAM Journal on
Matrix Analysis and Applications 11, 1, 134–172.

Liu, J. W. H., Ng, E. G., and Peyton, B. W. 1993. On finding supernodes for sparse
matrix computations. SIAM Journal on Matrix Analysis and Applications 14, 1, 242–252.

Maurer, H. and Mittelmann, H. D. 2000. Optimization techniques for solving elliptic
control problems with control and state constraints. part 1: Boundary control. Computational
Optimization and Applications 16, 29–55.

Mehrotra, S. 1992. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization 2, 4, 575–601.

137

Message Passing Interface Forum 2008a. MPI: A Message-Passing Interface Standard, version
1.3. Message Passing Interface Forum.

Message Passing Interface Forum 2008b. MPI: A Message-Passing Interface Standard, version
2.1. Message Passing Interface Forum.

Mittelmann, H. D. 2001. Sufficient optimality for discretized parabolic and elliptic control
problems. In Fast solution of discretized optimization problems, K.-H. Hoffmann, R. Hoppe, ,
and V. Schulz, Eds. Birkhaeuser.

Mittelmann, H. D. 2009. Decision tree for optimization software (benchmarks).
http://plato.asu.edu/bench.html.

Mittelmann, H. D., Pendse, G., Rivera, D. E., and Lee, H. 2007. Optimization-based
design of plant-friendly multisine signals using geometric discrepancy criteria. Computational
Optimization and Applications 38, 173–190.

Mittelmann, H. D. and Troeltzsch, F. 2001. Sufficient optimality in a parabolic control
problem. In Proceedings of the first International Conference on Industrial and Applied Math-
ematics in Indian Subcontinent, P. Manchanda, A. Siddiqi, , and M. Kocvara, Eds. Kluwer.

OpenMP Architecture Review Board 2008. OpenMP Application Programming Interface, v3.0.
OpenMP Architecture Review Board.

Parker, D. 1995. Random butterfly transformations with applications in computational
linear algebra. Tech. rep., University of California.

Perez, J. M., Badia, R. M., and Labarta, J. 2008. A dependency-aware task-based
programming environment for multi-core architectures. In Proceedings of the 2008 IEEE In-
ternational Conference on Cluster Computing. 142–151.

Pralet, S. 2004. Constrained orderings and scheduling for parallel sparse linear algebra.
Ph.D. thesis, CERFACS.

Randall, K. H. 1998. Cilk: Efficient multithreaded computing. Ph.D. thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

Reid, J. K. and Scott, J. A. 2008. An efficient out-of-core sparse symmetric indefinite
direct solver. Technical Report RAL-TR-2008-024, Rutherford Appleton Laboratory.

Reid, J. K. and Scott, J. A. 2009a. Algorithm 891: A Fortran virtual memory system.
ACM Transactions on Mathematical Software 36, 1, 1–12.

Reid, J. K. and Scott, J. A. 2009b. An out-of-core sparse Cholesky solver. ACM Trans-
actions on Mathematical Software 36, 2, 1–33.

Reid, J. K. and Scott, J. A. 2009c. Partial factorization of a dense symmetric indefinite
matrix. Technical Report RAL-TR-2009-015, Rutherford Appleton Laboratory.

Rothberg, E. and Gupta, A. 1993. An evaluation of left-looking, right-looking and mul-
tifrontal approaches to sparse Cholesky factorization on hierarchical memory machines. Int.
Journal of High Speed Computing 5, 4, 537–593. Also appears as STAN-CS-91-1377.

Rotkin, V. and Toledo, S. 2004. The design and implementation of a new out-of-core
sparse Cholesky factorization method. ACM Transactions on Mathematical Software 30, 1,
19–46.

Ruiz, D. 2001. A scaling algorithm to equilibrate both rows and columns norms in matrices.
Tech. Rep. RAL-TR-2001-034, Rutherford Appleton Laboratory.

Saad, Y. 1994. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on
Scientific and Statistical Computing 14, 461–469.

138

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems , 2 ed. SIAM, 273–275.

Schenk, O. 2009. [Ipopt] IPOPT and PARDISO. Message to Ipopt mailing list.
http://list.coin-or.org/pipermail/ipopt/2009-June/001583.html.

Schenk, O. and Gärtner, K. 2004. Solving unsymmetric sparse systems of linear equations
with PARDISO. Journal of Future Generation Computer Systems 20, 475–487.

Schenk, O. and Gärtner, K. 2006. On fast factorization pivoting methods for sparse
symmetric indefinite systems. Electronic Transaction on Numerical Analysis 23, 158–179.

Schenk, O., Gärtner, K., and Fichtner, W. 1999. Efficient sparse LU factorization
with left-right looking strategy on shared memory multiprocessors. BIT Numerical Mathe-
matics 30, 1, 158–176.

Skeel, R. D. 1980. Iterative refinement implies numerical stability for Gaussian elimination.
Mathematics of Computation 35, 817–832.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., and Dongarra, J. 1996.
MPI, The Complete Reference. The MIT Press.

Song, F., YarKhan, A., and Dongarra, J. 2009. Dynamic task scheduling for linear
algebra algorithms on distributed-memory multicore systems. Tech. Rep. UT-CS-09-638, Uni-
versity of Tennessee. Apr.

Strazdins, P. E. 2001. A comparison of lookahead and algorithmic blocking techniques
for parallel matrix factorization. Int. Journal of Parallel and Distributed Systems and Net-
works 4, 1 (June), 26–35.

Trefethen, L. N. and Bau III, D. 1997. Numerical Linear Algebra. SIAM.

Vavasis, S. A. and Ye, Y. 1996. A primal-dual interior point method whose running time
depends only on the constraint matrix. Mathematical Programming 74, 1, 79–120.

Wächter, A. and Biegler, L. 2006. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Program-
ming 106, 1, 25–57.

Wilkinson, J. H. 1968. Á priori error analysis of algebraic processes. In Proceedings Inter-
national Conference of Mathematicians. 629–639.

Wright, S. J. 1994. Stability of linear equations solvers in interior-point methods. SIAM
Journal on Matrix Analysis and Applications 16, 1287–1307.

Wright, S. J. 1997. Primal-Dual Interior-Point Methods. SIAM.

Wright, S. J. 1999. Modified cholesky factorizations in interior-point algorithms for linear
programming. SIAM Journal on Optimization 9, 4, 1159–1191.

Yannakakis, M. 1981. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods 2, 12, 77–79.

Zee, F. G. V., Bientinesi, P., Low, T. M., and van de Geijn, R. A. 2008. Scalable
parallelization of flame code via the workqueuing model. ACM Transactions on Mathematical
Software 34, 2 (Mar.).

139

140

Appendix A

Test set details

Details of test problems drawn from the University of Florida sparse matrix collection [Davis
2007]. Summary details taken from its index:

m is the number of rows and columns in the matrix.

nnz(A) is the number of non-zeroes in the matrix (both upper and lower triangles).

Pos Def indicates whether the matrix is positive definite.

Singular indicates whether a matrix is structurally singular.

Test Set X indicates whether a matrix is a member of that test set.

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

ACUSIM
Pres Poisson 14822 715804 Yes • • •

Alemdar
Alemdar 6245 42581 •

AMD
G2 curcuit 150102 726674 Yes •
G3 curcuit 1585478 7660826 Yes •

Andrews
Andrews 60000 760154 Yes • •

Andrianov
ex3sta1 16782 678998 •
fxm4 6 18892 497844 •
ins2 309412 2751484 •
lp1 534388 1643420 •
lpl1 32460 328036 •
mip1 66463 10352819 •
net4-1 88343 2441777 •
net50 16320 945200 •
net75 23120 1489200 •
net100 29920 2033200 •
net125 36720 2557200 •
net150 43520 3121200 •
pattern1 19242 9323432 •

141

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Bai
bfwb62 62 342 •
bfwb398 398 2910 •
bfwb782 782 5982 •
mhd3200b 3200 18316 Yes • •
mhd4800b 4800 27520 Yes • •
mhdb416 416 2312 Yes •
odepb400 400 399 Yes •

Bates
Chem97ZtZ 2541 7361 Yes • •

BenElechi
BenElechi1 245874 13150496 Yes •

Bindel
ted B 10605 144759 Yes • • •
ted B unscaled 10605 144759 Yes • • •

Boeing
bcsstk34 588 21418 Yes •
bcsstk35 30237 1450163 • • •
bcsstk36 23052 1143430 Yes • • •
bcsstk37 25503 140977 • • •
bcsstk38 8032 355460 Yes • •
bcsstk39 46772 2060662 • • •
bcsstm34 588 24270 •
bcsstm35 30237 20619 Yes • • •
bcsstm36 23052 320606 Yes • • •
bcsstm37 25503 15525 Yes • • •
bcsstm38 8032 10485 Yes • •
bcsstm39 46772 46772 Yes • • •
crystk01 4875 315891 • •
crystk02 13965 968583 • •
crystk03 24696 1751178 • •
crystm01 4875 105339 Yes • •
crystm02 13965 322905 Yes • • •
crystm03 24696 583770 Yes • •
ct20stif 52329 2600295 Yes • • •
msc00726 726 34518 Yes •
msc01050 1050 26198 Yes • •
msc01440 1440 44998 Yes • •
msc04515 4515 97707 Yes • •
msc10848 10848 1229776 Yes • • •
msc23052 23052 1142686 Yes • • •
nasa1824 1824 39208 • •
pcrystk02 13965 968583 •
pcrystk03 24969 1751178 •
pct20stif 52329 2698463 •
pwtk 217918 11524432 Yes •

142

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Cannizzo
sts4098 4098 73256 Yes • •

Chen
pkustk01 22044 979380 •
pkustk02 10800 810000 •
pkustk03 63336 3130416 •
pkustk04 55590 4218660 •
pkustk05 37164 2205144 •
pkustk06 43164 2571768 •
pkustk07 16860 2418660 •
pkustk08 22209 3226671 •
pkustk09 33960 1583640 •
pkustk10 80676 4308984 •
pkustk11 87804 5217912 •
pkustk12 94653 7512317 •
pkustk13 94893 6616827 •
pkustk14 151926 14836504 •

Cote
vibrobox 12328 301700 • • •

Cunningham
m3plates 11107 6639 Yes • • •
qa8fk 66127 1660579 • • •
qa8fm 66127 1660579 Yes • • •

Clyshell
s1rmq4m1 5489 262411 Yes • •
s1rmt3m1 5489 217615 Yes • •
s2rmq4m1 5489 263351 Yes • •
s2rmt3m1 5489 217681 Yes • •
s3rmq4m1 5489 262943 Yes • •
s3rmt3m1 5489 217669 Yes • •
s3rmt3m3 5357 207123 Yes • •

DNVS
crplat2 18010 960946 •
fcondp2 201822 11294316 •
fullb 199187 11708077 •
halfb 224617 12387821 •
m t1 97578 9573570 Yes • •
ship 001 34920 3896496 Yes • •
ship 003 121728 3777036 Yes •
shipsec1 140874 3568176 Yes •
shipsec5 179860 4598604 Yes •
shipsec8 114919 3303553 Yes •
thread 29736 4444880 Yes • •
trdheim 22098 1935324 •
troll 213453 11985111 •
tsyl201 20685 2454957 •
x104 108384 8713602 Yes •

143

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

FIDAP
ex2 441 26839 •
ex3 1821 52685 Yes • •
ex4 1601 31849 • •
ex5 27 279 Yes •
ex9 3363 99471 Yes • •
ex10 2410 54840 Yes • •
ex10hs 2548 57308 Yes • •
ex12 3973 79077 • •
ex13 2568 75628 Yes • •
ex14 3251 65875 • •
ex15 6867 98671 Yes • •
ex32 1159 11047 • •
ex33 1733 22189 Yes • •

Gaertner
nopoly 10774 70842 • • •

GHS indef
a0nsdsil 80016 355034 • • •
a2nnsnsl 80016 347222 • •
a5esindl 60008 255004 • • •
aug2d 29008 76832 Yes • •
aug2dc 30200 80000 Yes • •
aug3d 24300 69984 Yes • •
aug3dcqp 35543 1228115 • • •
blockqp1 60012 640033 • • •
bloweya 30004 150009 • • •
bloweybl 30003 109999 Yes • • •
bloweybq 10001 49999 Yes • • •
bmw3 2 227362 11288630 •
boyd1 93279 1211231 • •
boyd2 466316 1500397 •
brainpc2 27607 179395 • • •
bratu3d 27792 173796 • • •
c-55 32780 403450 • • •
c-58 37595 552551 • • •
c-59 41282 480536 • • •
c-62ghs 41731 559339 • • •
c-63 44234 434704 • • •
c-68 64810 565996 • • •
c-69 67458 623914 • • •
c-70 68924 658986 • • •
c-71 76638 859520 • •
c-72 84064 707546 • • •
cont-201 80595 438795 • • •
cont-300 180895 985195 •
copter2 55476 759952 • • •
cvxqp3 17500 114962 • •
darcy003 389874 2097566 • •
dawson5 51537 1010777 • • •

144

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

GHS indef (cont.)
dixmaanl 60000 299998 • • •
d pretok 182730 1641672 • •
dtoc 24993 69972 Yes • • •
exdata 1 6001 2269500 • •
helm2d03 392257 2741935 • •
helm3d01 32226 428444 • • •
k1 san 67759 559774 Yes • • •
laser 3002 9000 • •
linverse 11999 95977 • • •
mario001 38434 240912 • • •
mario002 389874 2097566 • •
ncvxbqp1 50000 349968 • • •
ncvxqp1 12111 73963 • • •
ncvxqp3 75000 499964 • •
ncvxqp5 62500 424966 • •
ncvxqp7 87500 574962 • •
ncvxqp9 16554 54040 • • •
olesnik0 88263 744216 • • •
qpband 20000 45000 • • •
sit100 10262 61046 • • •
sparsine 50000 1548988 • •
spmsrtls 29995 229947 • • •
stokes64 12546 140034 • • •
stokes64s 12546 140034 • • •
stokes128 49666 558594 • • •
tuma1 22967 87760 • • •
tuma2 12992 49365 • • •
turon m 189924 1690876 • •

GHS psdef
apache1 80800 542184 Yes • • •
apache2 715176 4817870 Yes •
audikw 1 943695 74651847 Yes •
bmw7st 1 141347 7318399 Yes •
bmwcra 1 148770 10641602 Yes •
copter1 17222 211064 •
copter2 55476 759952 •
crankseg 1 52804 10614210 Yes • •
crankseg 2 63838 14148858 Yes • •
cvxbqp1 50000 349968 Yes • • •
finance256 37376 298496 •
ford1 18728 101576 •
ford2 100196 544688 •
gridgena 48962 512084 Yes • • •
hood 220542 9895422 Yes •
inline1 503712 36816170 Yes •
jnlbrng1 40000 199200 Yes • • •
minsurfo 40806 203622 Yes • • •
ldoor 952203 42493817 Yes •
obstclae 40000 197608 Yes • • •
oilpan 73752 2148558 Yes • • •

145

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

GHS psdef (cont.)
opt1 15449 1930655 •
pds10 16558 149658 •
pwt 36519 326107 •
ramage02 16830 2866352 •
s3dkq4m2 90449 5427725 Yes • • •
s3dkt3m2 90449 3686223 Yes • • •
srb1 54924 2962152 •
torsion1 40000 197608 Yes • • •
vanbody 47072 2239056 Yes • • •
wathen100 30401 471601 Yes • • •
wathen120 36441 565761 Yes • • •

Grund
meg4 5860 25258 • •

Gset
G6 800 38352 •
G7 800 38352 •
G8 800 38352 •
G9 800 38352 •
G10 800 38352 •
G11 800 3200 •
G12 800 3200 •
G13 800 3200 •
G18 800 9388 •
G19 800 9322 •
G20 800 9344 •
G21 800 9334 •
G27 2000 39980 • •
G28 2000 38890 • •
G29 2000 38890 • •
G30 2000 38890 • •
G31 2000 38890 • •
G32 2000 8000 • •
G33 2000 8000 • •
G34 2000 8000 • •
G39 2000 23556 • •
G40 2000 23532 • •
G41 2000 23570 • •
G42 2000 23558 • •
G56 5000 24996 Yes • •
G57 5000 20000 • •
G59 5000 59140 • •
G61 7000 34296 Yes • •
G62 7000 28000 • •
G64 7000 82918 • •
G65 8000 32000 • •
G66 9000 36000 • •
G67 10000 40000 • • •

146

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Gupta
gupta1 31802 2164210 •
gupta2 62064 4248286 •
gupta3 16783 9323427 •

HB
494 bus 494 1666 Yes •
662 bus 662 2474 Yes •
685 bus 685 3249 Yes •
1138 bus 1138 4054 Yes • •
bcsstk01 48 400 Yes •
bcsstk02 66 4356 Yes •
bcsstk03 112 640 Yes •
bcsstk04 132 3648 Yes •
bcsstk05 153 2423 Yes •
bcsstk06 420 7860 Yes •
bcsstk07 420 7860 Yes •
bcsstk08 1074 12960 Yes • •
bcsstk09 1083 18437 Yes • •
bcsstk10 1086 22070 Yes • •
bcsstk11 1473 34241 Yes • •
bcsstk12 1473 34241 Yes • •
bcsstk13 2003 83883 Yes • •
bcsstk14 1806 63454 Yes • •
bcsstk15 3948 117816 Yes • •
bcsstk16 4884 290378 Yes • •
bcsstk17 10974 428650 Yes • • •
bcsstk18 11948 149090 Yes • • •
bcsstk19 817 6853 Yes •
bcsstk20 485 3135 Yes •
bcsstk21 3600 26600 Yes • •
bcsstk22 138 696 Yes •
bcsstk23 3134 45178 Yes • •
bcsstk24 3562 159910 Yes • •
bcsstk25 15439 252241 Yes • • •
bcsstk26 1922 30336 Yes • •
bcsstk27 1224 56126 Yes • •
bcsstk28 4410 219024 Yes • •
bcsstk29 13992 619488 •
bcsstk30 28924 2043492 •
bcsstk31 35588 1181416 •
bcsstk32 44609 2014701 •
bcsstm01 48 24 Yes •
bcsstm02 66 66 Yes •
bcsstm04 132 132 Yes •
bcsstm05 153 153 Yes •
bcsstm06 420 420 Yes •
bcsstm07 420 7252 Yes •
bcsstm08 1074 1074 Yes • •
bcsstm09 1083 1083 Yes • •
bcsstm10 1086 22092 • •
bcsstm11 1473 1473 Yes • •

147

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

HB(cont.)
bcsstm12 1473 19659 Yes • •
bcsstm13 2003 21181 Yes • •
bcsstm19 817 817 Yes •
bcsstm20 485 485 Yes •
bcsstm21 3600 3600 Yes • •
bcsstm22 138 138 Yes •
bcsstm23 3134 3134 Yes • •
bcsstm24 3562 3562 Yes • •
bcsstm25 15439 15439 Yes • • •
bcsstm26 1922 1922 Yes • •
bcsstm27 1224 56126 • •
gr 30 30 900 7744 Yes •
lund a 147 2449 Yes •
lund b 147 2441 Yes •
nos1 237 1017 Yes •
nos2 957 4137 Yes •
nos3 960 15844 Yes •
nos4 100 594 Yes •
nos5 468 5172 Yes •
nos6 675 3255 Yes •
nos7 729 4617 Yes •
plat362 362 5786 Yes •
plat1919 1919 32399 Yes • •
saylr3 1000 3750 • •
saylr4 3564 22316 • •
sherman1 1000 3750 • •
zenios 2873 1314 Yes • •

INPRO
msdoor 415863 19173163 Yes •

Koutsovasilis
F1 343791 19173163 Yes •
F2 71505 5294285 • •

Li
pli 22695 1350309 •

Lin
Lin 256000 1766400 • •

Lourakis
bundle1 10581 770811 Yes • • •

Mathworks
Kuu 7102 340200 Yes • •
Muu 7102 170134 Yes • •

McRae
ecology1 1000000 4996000 •
ecology2 999999 4995991 Yes •

148

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Mulvey
finan512 74752 596992 Yes • • •
pfinan512 74752 596992 •

Nasa
nasa1824 1824 39208 Yes • •
nasa2146 2146 72250 Yes • •
nasa2910 2910 174296 Yes • •
nasa4704 4704 104756 Yes • •
nasarb 54870 2677324 Yes • •
pwt 36519 326107 •
shuttle eddy 10429 103599 •
skirt 125598 196520 •

ND
nd3k 9000 3279690 Yes • •
nd6k 18000 6897316 Yes • • •
nd12k 36000 14220946 Yes •
nd24k 72000 28715634 Yes •

Nemeth
nemeth01 9506 725054 • •
nemeth02 9506 394808 • •
nemeth03 9506 394808 • •
nemeth04 9506 394808 • •
nemeth05 9506 394808 • •
nemeth06 9506 394808 • •
nemeth07 9506 394812 • •
nemeth08 9506 394816 • •
nemeth09 9506 395506 • •
nemeth10 9506 401448 • •
nemeth11 9506 408264 • •
nemeth12 9506 446818 • •
nemeth13 9506 474472 • •
nemeth14 9506 496144 • •
nemeth15 9506 539802 • •
nemeth16 9506 587012 • •
nemeth17 9506 629620 • •
nemeth18 9506 695234 • •
nemeth19 9506 818302 • •
nemeth20 9506 971870 • •
nemeth21 9506 1173746 • •
nemeth22 9506 1358832 • •
nemeth23 9506 1506810 • •
nemeth24 9506 1506550 • •
nemeth25 9506 1511758 • •
nemeth26 9506 1511760 • •

Norris
fv1 9604 85264 Yes • •
fv2 9801 87025 Yes • •
fv3 9801 87025 Yes • •

149

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Oberwolfach
bone010 986703 47851783 Yes •
boneS01 127224 5516602 Yes • •
boneS10 914818 40878706 Yes •
filter2D 1668 10750 • •
filter3D 106437 2707179 • •
flowmeter0 9669 67391 • •
gas sensor 66917 1703365 • • •
gyro k 17361 1021159 Yes • • •
gyro m 17361 340341 Yes • • •
gyro 17361 1021159 Yes • • •
LF10 18 82 Yes •
LF10000 19998 99982 Yes • •
LFAT5 14 46 Yes •
LFAT5000 19994 79966 Yes • • •
rail 1357 1357 8985 • •
rail 5177 5177 35185 • •
rail 20209 20209 139233 • • •
rail 79841 79841 553921 • • •
spiral 1434 18228 • •
t2dah 11445 176117 • • •
t2dah a 11445 176117 • • •
t2dah e 11445 176117 Yes • • •
t2dal 4257 37465 • •
t2dal a 4257 37465 • •
t2dal bci 4257 37465 • •
t2dal e 4257 4257 Yes • •
t3dh 79171 4352105 • • •
t3dh a 79171 4352105 • • •
t3dh e 79171 4352105 • • •
t3dl 20360 509866 • • •
t3dl a 20360 509866 • • •
t3dl e 20360 20360 Yes • • •

Okunbor
aft01 8205 125567 Yes • •

Pajek
dictionary28 52652 178076 Yes •
GD97 b 47 264 Yes •
GD99 b 64 252 Yes •
geom 7343 23796 Yes • •
Journals 124 12068 Yes •
Reuters911 13332 296076 Yes • • •
Sandi authors 86 248 Yes •
Stranke94 10 90 •
USAir97 332 4252 Yes •

PARSEC
benzene 8219 242669 • •
CO 221119 7666057 •
Ga10As10H30 113081 6115633 •

150

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

PARSEC(cont.)
Ga19As19H42 133123 8884839 •
Ga3As3H12 61349 5970947 • •
Ga41As41H72 268096 18488476 •
GaAsH6 61439 3381809 • •
Ge87H76 112985 7892195 • •
Ge99H100 112985 8451395 • •
H2O 67024 2216736 • •
Na5 5832 305630 • •
Si10H16 17077 875923 • • •
Si2 769 17801 •
Si34H36 97569 5156379 • •
Si41Ge41H72 185639 15011265 •
Si5H12 19896 738598 • •
Si87H76 240369 10661631 •
SiH4 5041 171903 • •
SiNa 5743 198787 • •
SiO 33401 1317655 • •
SiO2 155331 11283505 •

Pothen
barth5 15606 107362 •
bodyy4 17546 121550 Yes • • •
bodyy5 18589 128853 Yes • • •
bodyy6 19366 134208 Yes • • •
mesh1e1 48 306 Yes •
mesh1em1 48 306 Yes •
mesh1em6 48 306 Yes •
mesh2e1 306 2018 Yes •
mesh2em5 306 2018 Yes •
mesh3e1 289 1377 Yes •
mesh3em5 289 1377 Yes •
onera dual 85567 419201 •
pwt 36519 326107 •
shuttle eddy 10429 103599 •
skirt 12598 196520 •
tandem dual 94069 460493 •
tandem vtx 18454 253350 •

Rajat
rajat06 10922 46983 •
rajat07 14842 63913 •
rajat08 19362 83443 •
rajat09 24482 105573 •
rajat10 30202 130303 •

Rothberg
3dtube 45330 3213618 •
cfd1 70656 1825580 Yes • • •
cfd2 123440 3085406 Yes • •
gearbox 153746 9080404 •
struct3 53570 1173694 •

151

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Schenk AFE
af 0 k101 503625 17550675 Yes •
af 1 k101 503625 17550675 Yes •
af 2 k101 503625 17550675 Yes •
af 3 k101 503625 17550675 Yes •
af 4 k101 503625 17550675 Yes •
af 5 k101 503625 17550675 Yes •
af shell1 504855 17562051 •
af shell2 504855 17562051 •
af shell3 504855 17562051 Yes •
af shell4 504855 17562051 Yes •
af shell5 504855 17579155 •
af shell6 504855 17579155 •
af shell7 504855 17579155 Yes •
af shell8 504855 17579155 Yes •
af shell9 504855 17588846 •
af shell10 1508065 52259885 •

Schenk IBMNA
c-18 2169 15145 • •
c-19 2327 21817 • •
c-20 2921 20445 • •
c-21 3509 32145 • •
c-22 3792 28870 • •
c-23 3969 31079 • •
c-24 4119 35669 • •
c-25 3797 49635 • •
c-26 4307 34537 • •
c-27 4563 30927 • •
c-28 4598 30590 • •
c-29 5033 43731 • •
c-30 5321 65693 • •
c-31 5339 78571 • •
c-32 5975 54471 • •
c-33 6317 56123 • •
c-34 6611 64333 • •
c-35 6537 62891 • •
c-36 7479 65941 • •
c-37 8204 74676 • •
c-38 8127 77689 • •
c-39 9271 116587 • •
c-40 9941 81501 • •
c-41 9769 101635 • •
c-42 10471 110285 • • •
c-43 11125 123659 • • •
c-44 10728 85000 • • •
c-45 13206 174452 • • •
c-46 14913 130397 • • •
c-47 15343 211401 • • •
c-48 18354 166080 • • •
c-49 21132 157040 • • •
c-50 22401 180245 • • •

152

N
a
m
e

m n
n
z(
A
)

P
o
s
D
ef

S
in
gu
la
r

T
es
t
S
et

1

T
es
t
S
et

2

T
es
t
S
et

3

Schenk IBMNA(cont.)
c-51 23196 203048 • • •
c-52 23948 202708 • • •
c-53 30235 355139 • • •
c-54 31793 385987 • • •
c-56 35910 380240 • • •
c-57 37833 403373 • • •
c-60 43640 298570 • • •
c-61 43618 310016 • • •
c-62 41731 559341 • • •
c-64 51035 707985 • • •
c-64b 51035 707601 • • •
c-65 48066 360428 • • •
c-66 49989 444853 • • •
c-66b 49989 444851 • • •
c-67 57975 530229 • • •
c-67b 57975 530583 • • •
c-73 169422 1279274 • •
c-73b 169422 1279274 •
c-big 345241 2340859 •

Schmid
thermal1 82654 574458 Yes • • •
thermal2 1228045 8580313 Yes •

Simon
olafu 16146 1015156 Yes • • •
raefsky4 19779 1316789 Yes • • •

UTEP
Dubcova1 16129 253009 Yes • • •
Dubcova2 65025 1030225 Yes • • •
Dubcova3 146689 3636643 Yes •

Wissgott
parabolic fem 525825 3674625 Yes •

Zaoui
kkt power 2063494 12771361 •

153

Optimization test sets

Test Set 4: Linear programming problems
Problem n m description
cont11 80396 160792 Linearized PDE
cont1 40398 160792 Linearized PDE
cont4 40398 160792 Linearized PDE
neos1 1892 131581 Unknown; submitted to NEOS
neos2 1560 132568 Unknown; submitted to NEOS
neos3 6624 512209 Unknown; submitted to NEOS
ns1687037 43749 50622 Unknown; submitted to NEOS
All problems were available from http://plato.asu.edu/ftp/lptestset/.

Test Set 5: Non-linear programming problems
Problem n m origin description
bearing 400 160000 0 1 Pressure distribution model
cont5 1 90600 90300 3 Parabolic boundary control problem
cont5 2 1 90600 90300 3 Parabolic boundary control problem
cont5 2 2 90600 90300 3 Parabolic boundary control problem
cont5 2 3 90600 90300 3 Parabolic boundary control problem
cont5 2 4 90600 90300 3 Parabolic boundary control problem
dirichlet 120 53881 241 1 Transition state problem
ex1 160 204798 103037 2 Elliptic control problem
ex1 320 203522 101761 2 Elliptic control problem
ex4 2 320 204798 103037 2 Elliptic control problem
NARX CFy 43973 46744 4 System identification

origins:
1 [Dolan et al. 2004] http://www-unix.mcs.anl.gov/ more/cops/
2 [Maurer and Mittelmann 2000] http://plato.asu.edu/ftp/ampl files/ellip ampl/
3 [Mittelmann 2001; Mittelmann and Troeltzsch 2001]

http://plato.asu.edu/ftp/ampl files/parabol ampl/
4 [Mittelmann et al. 2007] http://plato.asu.edu/ftp/ampl files/sysid ampl/

154

Appendix B

Full Ipopt results

Here we present full results on fox for IPOPT using a number of different sparse symmetric
indefinite solvers. Full details of the experimental setup are described in Section 8.3.

B.1 Netlib lp problems

The first table presents interior point iteration counts, with factorization counts in
brackets, a star indicates a failure to converge.

Table of Iteration Counts on Netlib lp test set
Iteration (Factorization) count

Problem
MA57 HSL MA77 HSL MA79 DSIS Pardiso

25fv47 203 (211) 205 (220) 257 (308) 206 (218) 203 (204)
80bau3b 232 (323) 213 (241) 219 (270) 214 (251) 216 (217)
adlittle 65 (66) 65 (66) 68 (73) 65 (66) 65 (66)
afiro 25 (28) 25 (28) 26 (31) 25 (27) 25 (26)
agg 175 (184) 171 (174) 188 (201) 171 (172) 171 (172)
agg2 166 (176) 164 (171) 167 (180) 164 (169) 164 (165)
agg3 165 (170) 165 (171) 166 (177) 168 (175) 165 (166)
bandm 78 (79) 78 (80) 78 (79) 78 (79) 78 (79)
beaconfd 37 (40) 35 (37) 35 (36) 35 (36) 35 (36)
blend 19 (20) 19 (20) 20 (29) 19 (20) 19 (20)
bnl1 195 (203) 195 (202) 201 (215) 195 (203) 199 (200)
bnl2 287 (344) 277 (304) 289 (362) 279 (307) 306 (330)
boeing1 85 (89) 84 (86) 84 (87) 84 (85) 84 (85)
boeing2 62 (73) 63 (70) 57 (61) 60 (62) 57 (58)
bore3d 194 (202) 195 (202) 194 (239) 206 (211) 137 (140)
brandy 85 (94) 85 (95) 83 (99) 85 (96) 87 (88)
capri 152 (153) 152 (153) 152 (155) 152 (153) 166 (168)
cycle 171 (344) 195 (400) 171 (346) 187 (375) 110 (125)
czprob 420 (427) 424 (426) 419 (422) 425 (429) 417 (418)
d2q06c 283 (292) 283 (291) 302 (369) 283 (290) 283 (284)
d6cube 53 (59) 53 (60) 54 (74) 53 (57) 42* (45)
degen2 78 (141) 62 (107) 102 (217) 96 (158) 64 (65)
degen3 276 (283) 62 (118) 84 (169) 63 (120) 353 (374)
dfl001 171 (178) 170 (177) 166 (179) 176 (362) 3000* (3351)
e226 71 (84) 69 (74) 69 (71) 69 (77) 69 (70)
etamacro 113 (117) 113 (120) 113 (117) 114 (120) 80 (81)
fffff800 392 (411) 393 (408) 395 (457) 392 (404) 389 (390)
finnis 237 (496) 153 (173) 149 (177) 154 (174) 147 (148)
fit1d 30 (31) 30 (31) 30 (31) 30 (31) 30 (31)
fit1p 122 (123) 122 (123) 122 (123) 122 (123) 122 (123)

155

Table of Iteration Counts on Netlib lp test set(cont.)
Iteration (Factorization) count

Problem
MA57 HSL MA77 HSL MA79 DSIS Pardiso

fit2d 38 (39) 38 (39) 38 (39) 38 (39) 38 (39)
fit2p 67 (68) 67 (68) 67 (68) 67 (68) 67 (68)
ganges 404 (426) 401 (411) 374 (399) 400 (417) 399 (400)
gfrd-pnc 144 (145) 144 (146) 144 (145) 144 (145) 144 (145)
greenbea 3000* (3004) 3000* (3007) 3000* (3004) 3000* (3004) 3000* (3001)
greenbeb 2718 (3745) 2319 (2578) 2295 (2512) 2729 (3808) 2081 (2136)
grow15 149 (155) 148 (155) 148 (155) 148 (154) 153 (154)
grow22 157 (163) 158 (164) 157 (164) 157 (163) 160 (161)
grow7 108 (114) 110 (117) 108 (114) 110 (116) 111 (112)
israel 135 (139) 135 (140) 139 (148) 132 (136) 135 (136)
kb2 45 (46) 45 (46) 48 (50) 45 (46) 45 (46)
lotfi 58 (71) 55 (57) 55 (62) 61 (69) 55 (57)
maros 783 (1245) 830 (1204) 813 (1351) 819 (1176) 508 (509)
nesm 531 (532) 533 (535) 538 (543) 510 (511) 539 (540)
perold 1317 (1323) 1152 (1156) 1278 (1285) 1346 (1350) 1344 (1345)
pilot 286 (287) 288 (291) 293 (299) 286 (287) 286 (287)
pilot ja 465 (513) 467 (516) 466 (523) 478 (530) 435 (436)
pilot we 229 (230) 229 (231) 271 (306) 229 (230) 229 (230)
pilot4 3000* (8758) 3000* (7847) 3000* (5507) 3000* (8291) 252* (255)
pilot87 363 (519) 337 (367) 317 (372) 360 (419) 306 (307)
pilotnov 340 (431) 340 (424) 340 (430) 340 (421) 290 (291)
recipe 50 (92) 45 (52) 48 (57) 45 (78) 33 (34)
sc105 19 (20) 19 (20) 19 (20) 19 (20) 19 (20)
sc205 26 (27) 26 (27) 26 (27) 26 (27) 26 (27)
sc50a 17 (18) 17 (18) 17 (18) 17 (18) 17 (18)
sc50b 15 (16) 15 (16) 15 (18) 15 (16) 15 (16)
scagr25 406 (407) 411 (413) 405 (407) 401 (402) 405 (406)
scagr7 138 (139) 138 (140) 139 (142) 138 (139) 138 (139)
scfxm1 144 (178) 136 (141) 135 (143) 135 (138) 135 (136)
scfxm2 356 (444) 329 (337) 328 (335) 329 (336) 328 (329)
scfxm3 423 (509) 399 (412) 397 (405) 399 (410) 397 (398)
scorpion 35 (43) 35 (43) 35 (42) 45 (90) 37 (38)
scrs8 85 (120) 85 (100) 116 (241) 83 (101) 83 (84)
scsd1 15 (16) 15 (16) 15 (18) 15 (16) 15 (16)
scsd6 17 (18) 17 (18) 17 (18) 17 (18) 17 (18)
scsd8 18 (19) 18 (19) 18 (19) 18 (19) 18 (19)
sctap1 41 (49) 41 (43) 41 (47) 41 (42) 41 (42)
sctap2 32 (37) 32 (34) 32 (37) 32 (33) 32 (33)
sctap3 31 (38) 31 (34) 31 (34) 31 (32) 31 (32)
seba 214 (215) 214 (216) 214 (215) 214 (215) 214 (215)
share1b 356 (357) 357 (359) 325 (337) 355 (356) 359 (360)
share2b 29 (30) 29 (31) 29 (30) 29 (30) 29 (30)
shell 560 (611) 560 (620) 611 (727) 560 (618) 560 (562)
ship04l 71 (75) 71 (78) 71 (82) 71 (75) 66 (71)
ship04s 59 (63) 59 (66) 59 (66) 59 (63) 48 (49)
ship08l 85 (89) 85 (92) 83 (88) 85 (89) 94 (95)
ship08s 158 (163) 156 (163) 162 (173) 157 (161) 71 (72)
ship12l 99 (103) 66 (74) 66 (80) 67 (72) 69 (70)
ship12s 100 (104) 100 (107) 105 (118) 100 (104) 70 (71)
sierra 60 (67) 58 (65) 58 (64) 58 (62) 58 (59)
stair 70 (71) 70 (73) 70 (71) 70 (71) 70 (71)
standata 52 (65) 52 (56) 52 (55) 52 (58) 52 (53)
standgub 53 (78) 53 (60) 53 (80) 53 (60) 52 (53)
standmps 69 (75) 69 (71) 69 (71) 69 (70) 69 (70)

156

Table of Iteration Counts on Netlib lp test set(cont.)
Iteration (Factorization) count

Problem
MA57 HSL MA77 HSL MA79 DSIS Pardiso

stocfor1 44 (45) 44 (46) 44 (45) 44 (45) 44 (45)
stocfor2 174 (178) 174 (176) 174 (178) 174 (175) 174 (175)
stocfor3 159 (161) 140 (147) ??? (163) 159 (160) 159 (160)
truss 64 (67) 64 (67) 64 (66) 65 (66) 64 (65)
tuff 143 (147) 144 (151) 141 (145) 144 (148) 133 (134)
vtp base 341 (342) 341 (342) 341 (343) 341 (342) 341 (342)
wood1p 72 (118) 73 (123) 72 (117) 72 (113) 81 (82)
woodw 70 (71) 70 (72) 70 (71) 70 (71) 70 (71)

The next table shows timing results for these codes. Again a star indicates failure
to converge to the optimum.

Table of run times on the Netlib lp test set
Overall run time

Problem
MA57 HSL MA77 HSL MA79 DSIS Pardiso

25fv47 1.11 3.27 3.62 2.87 7.58
80bau3b 4.99 14.52 7.41 14.91 10.20
adlittle 0.04 0.06 0.06 0.21 0.89
afiro 0.02 0.03 0.02 0.21 0.98
agg 0.28 0.65 0.42 0.83 1.58
agg2 0.48 0.96 0.89 1.04 1.79
agg3 0.47 1.00 0.74 1.04 1.98
bandm 0.12 0.24 0.18 0.42 0.58
beaconfd 0.06 0.09 0.08 0.22 0.98
blend 0.02 0.03 0.03 0.21 0.98
bnl1 0.61 1.73 1.26 1.65 4.21
bnl2 5.08 10.36 7.48 12.00 12.87
boeing1 0.17 0.33 0.24 0.42 1.06
boeing2 0.07 0.13 0.09 0.22 0.78
bore3d 0.22 0.43 0.28 0.62 1.39
brandy 0.11 0.20 0.18 0.22 0.78
capri 0.22 0.42 0.32 0.62 1.38
cycle 10.63 29.28 11.52 15.64 7.65
czprob 1.63 5.51 2.03 5.71 2.53
d2q06c 5.08 24.01 13.82 14.67 12.88
d6cube 1.18 3.79 2.53 5.38 5.32*
degen2 0.70 0.71 1.06 1.24 1.74
degen3 13.38 6.80 7.62 5.93 40.56*
dfl001 256.39 268.42 234.11 413.2 101.00
e226 0.12 0.23 0.13 0.22 0.83
etamacro 0.26 0.59 0.31 0.63 1.59
fffff800 1.15 3.16 2.67 2.86 2.39
finnis 0.87 0.85 0.56 0.83 1.16
fit1d 0.11 0.28 0.21 0.44 0.78
fit1p 0.38 1.11 0.90 1.04 1.18
fit2d 1.66 3.92 3.24 4.39 2.40
fit2p 1.50 4.20 3.86 3.99 1.58
ganges 1.66 4.51 2.52 4.28 2.59
gfrd-pnc 0.24 0.65 0.33 0.63 1.36
greenbea 47.00* 244.50* 105.37* 139.55* 265.19*
greenbeb 65.32 213.46 96.34 189.75 196.71
grow15 0.40 0.69 0.46 0.84 1.44
grow22 0.61 1.05 0.68 1.24 1.18
grow7 0.15 0.24 0.18 0.42 1.37

157

Table of run times on the Netlib lp test set (cont.)
Overall run time

Problem
MA57 HSL MA77 HSL MA79 DSIS Pardiso

israel 0.15 0.27 0.22 0.42 0.98
kb2 0.03 0.04 0.04 0.21 0.78
lotfi 0.07 0.11 0.11 0.22 0.98
maros 5.87 26.47 11.93 15.41 13.71
nesm 3.01 10.00 4.64 11.18 5.71
perold 5.71 20.61 7.05 14.59 12.44
pilot 9.83 27.94 12.82 21.95 25.89
pilot ja 4.62 19.73 6.00 9.75 14.66
pilot we 1.05 3.16 2.58 3.09 6.12
pilot4 46.27* 104.95* 69.64* 59.87* 3.48*
pilot87 74.95 102.77 66.45 85.89 66.61
pilotnov 60.92 52.68 24.08 29.55 11.45
recipe 0.06 0.07 0.06 0.22 0.73
sc105 0.02 0.03 0.02 0.22 0.98
sc205 0.03 0.05 0.04 0.22 0.98
sc50a 0.02 0.02 0.02 0.21 0.98
sc50b 0.02 0.02 0.02 0.22 0.98
scagr25 0.51 1.26 0.77 1.43 1.38
scagr7 0.08 0.16 0.11 0.22 0.58
scfxm1 0.25 0.44 0.35 0.63 1.18
scfxm2 1.07 2.12 1.44 2.05 1.99
scfxm3 1.77 4.06 1.82 3.88 2.99
scorpion 0.06 0.12 0.08 0.22 0.76
scrs8 0.22 0.51 1.12 0.63 1.18
scsd1 0.03 0.07 0.04 0.22 0.78
scsd6 0.05 0.12 0.06 0.23 0.98
scsd8 0.10 0.22 0.11 0.45 0.98
sctap1 0.08 0.15 0.12 0.22 0.98
sctap2 0.17 0.40 0.30 0.44 1.18
sctap3 0.23 0.58 0.41 0.65 0.97
seba 0.40 1.07 0.60 1.24 1.18
share1b 0.28 0.50 0.42 0.62 0.98
share2b 0.03 0.05 0.03 0.22 0.58
shell 1.26 3.98 2.86 3.87 2.60
ship04l 0.22 0.59 0.31 0.64 1.58
ship04s 0.14 0.37 0.20 0.43 1.38
ship08l 0.50 1.41 0.71 1.68 3.40
ship08s 0.50 1.50 0.72 1.86 2.37
ship12l 0.72 1.46 1.01 1.70 3.60
ship12s 0.39 1.17 0.81 1.67 2.77
sierra 0.33 0.71 0.39 0.85 2.38
stair 0.16 0.29 0.18 0.43 0.97
standata 0.12 0.29 0.17 0.43 0.78
standgub 0.14 0.32 0.23 0.43 1.38
standmps 0.16 0.37 0.21 0.43 0.78
stocfor1 0.04 0.06 0.05 0.22 0.78
stocfor2 0.95 3.13 1.35 2.88 2.19
stocfor3 7.66 37.16 10.66 25.23 11.28
truss 1.01 3.23 1.26 4.79 2.28
tuff 0.34 0.69 0.40 0.63 2.17
vtp base 0.29 0.58 0.43 0.82 1.37
wood1p 2.47 4.71 3.37 3.93 4.01
woodw 1.11 3.29 1.43 4.38 2.57

158

B.2 Mittelmann benchmark problems

The next table shows iteration and factorization counts on the larger problems
of Test Sets 4 and 5. Ipopt reported optimal solutions for all problems except
cont11, cont1, and cont4 where it reported convergence to a point of local
infeasibility. Deviations from this behaviour are indicated as follows:
f —failed to reach the optimal solution.
m—virtual memory exceeded 8GiB.
t —run time exceeded 1 hour.
d —out-of-core solver exceeded 100GiB of disk space.

Iteration (Factorization) count
Problem

MA57 HSL MA77 HSL MA79 DSIS Pardiso
Test Set 4
cont11 64 (66) 62 (66) 62 (65) 55 (58) 62 (64)
cont1 50 (52) 48 (52) 48 (50) 48 (50) 48 (50)
cont4 84 (86) 82 (86) 81 (83) 83 (85) 81 (83)
neos1 269 (271) 269 (271) 269 (271) 269 (271) 269 (270)
neos2 309 (313) 307 (309) 309 (313) 309 (313) 307 (308)
neos3 22 (29) 20 (25) 18 (20) 18 (21) 19 (20)
ns1687037 84 (85) 71 (73) d 84 (85) 84 (85)
Test Set 5
bearing 400 16 (16) 16 (16) 16 (16) 16 (16) 16 (16)
cont5 1 16 (26) 16 (23) 17 (23) 16 (18) 16 (17)
cont5 2 1 69 (178) 50 (74) 95 (209) 51 (90) 41 (42)
cont5 2 2 62 (121) 49 (75) 50 (73) 50 (75) 48 (49)
cont5 2 3 76 (144) 61 (95) 59 (91) 61 (99) 55 (56)
cont5 2 4 14 (25) 14 (25) 12 (18) 14 (22) 14 (15)
dirichlet 120 56 (119) 56 (119) 56 (119) 56 (119) 56 (119)
ex1 160 10 (11) 10 (12) 10 (11) 10 (11) 10 (11)
ex1 320 9 (10) 9 (11) 9 (10) 9 (10) 9 (10)
ex4 2 320 10 (11) 10 (12) 10 (11) 10 (11) 10 (11)
NARX CFy 352 (878) 160 (402) 241 (595) 278 (677) t (2945)

The next table reports serial execution times for Test Sets 4 and 5.

Overall run time
Problem

MA57 HSL MA77 HSL MA79 DSIS Pardiso
Test Set 4
cont11 246.9 234.7 235.2 233.4 76.0
cont1 57.5 182.6 80.2 115.5 52.6
cont4 80.6 270.2 116.3 166.3 134.5
neos1 378.6 722.6 193.5 802.5 1268.5
neos2 378.5 590.4 327.1 898.6 1079.0
neos3 1189.9 575.3 325.7 550.6 3570.0
ns1687037 708.3 494.2 d 404.9 495.3
Test Set 5
bearing 400 66.6 85.5 90.5 70.6 67.3
cont5 1 96.8 112.0 149.1 65.7 27.7
cont5 2 1 669.8 354.3 1560.7 307.4 61.9
cont5 2 2 431.8 345.5 480.4 260.4 73.7
cont5 2 3 505.9 454.1 596.8 366.0 82.8
cont5 2 4 221.4 183.5 181.3 130.2 54.9
dirichlet 120 569.0 532.3 1824.9 441.7 578.8
ex1 160 43.6 62.1 53.1 52.5 27.6
ex1 320 41.9 56.4 53.2 44.3 25.6
ex4 2 320 43.8 64.1 52.8 52.5 27.6
NARX CFy 1593.8 1312.4 292.4 3008.3 7300.0t

159

The next table reports the average time per factorization on Test Sets 4
and 5. These times may be misleading as different solvers are factorizing
different systems, possibly with significantly more difficult numerics. Further,
other Ipopt operations such as function evaluation and Hessian calculations
may cause significant variation, particularly for the non-linear problems of
Test Set 5.

Time per factorization
Problem

MA57 HSL MA77 HSL MA79 DSIS Pardiso
Test Set 4
cont11 3.74 3.56 3.62 4.02 1.19
cont1 1.11 3.51 1.60 2.31 1.05
cont4 0.94 3.14 1.40 1.96 1.62
neos1 1.40 2.67 0.71 2.96 4.70
neos2 0.93 1.91 1.05 2.87 2.84
neos3 41.03 22.93 16.28 26.22 178.50
ns1687037 8.33 6.77 - 4.76 5.83
Test Set 5
bearing 400 4.16 5.34 5.65 4.41 4.21
cont5 1 3.72 4.87 6.48 3.65 1.63
cont5 2 1 3.76 4.79 7.47 3.42 1.47
cont5 2 2 3.57 4.61 6.58 3.47 1.50
cont5 2 3 3.51 4.78 6.56 3.70 1.47
cont5 2 4 8.85 7.34 10.07 5.92 3.66
dirichlet 120 4.78 4.47 15.34 3.71 4.86
ex1 160 3.96 5.17 4.83 4.77 2.51
ex1 320 4.19 5.13 5.31 4.42 2.56
ex4 2 320 3.98 5.34 4.80 4.77 2.51
NARX CFy 1.82 3.26 0.49 4.44 2.48

The following table shows parallel performance and speedup of DSIS, with
Pardiso (on 8 threads only) included for comparison. Only the subset of
problems for which results on 8 threads were obtainable are shown.

Problem DSIS PARDISO
threads= 1 2 4 8 8

Test Set 4
cont11 233.4 fail (–) 105.3 (1.62) 92.3 (1.85) 45.9 (1.66)
cont1 115.5 88.9 (1.30) 73.1 (1.58) 62.6 (1.85) 31.2 (1.69)
cont4 166.3 138.7 (1.20) 110.8 (1.50) 96.5 (1.72) 95.0 (1.42)
neos1 802.5 728.9 (1.10) 508.9 (1.58) 401.6 (2.00) 422.6 (3.00)
neos2 898.6 713.0 (1.26) 554.1 (1.62) 430.3 (2.09) 395.4 (2.73)
neos3 550.6 416.9 (1.32) 291.0 (1.89) 244.0 (2.26) 1411.3 (2.53)
ns1687037 404.9 345.3 (1.17) 303.9 (1.33) 241.8 (1.67) 193.3 (2.56)
Test Set 5
bearing 400 70.6 65.6 (1.08) 62.2 (1.14) 61.4 (1.15) 57.9 (1.16)
cont5 1 65.7 48.3 (1.36) 40.2 (1.63) 33.6 (1.96) 9.6 (2.88)
cont5 2 1 307.4 237.2 (1.30) 143.5 (2.14) 114.2 (2.69) 19.0 (3.25)
cont5 2 2 260.4 222.6 (1.17) 181.6 (1.43) fail (–) 22.3 (3.30)
cont5 2 3 366.0 258.3 (1.42) 179.6 (2.04) fail (–) 24.2 (3.42)
cont5 2 4 130.2 87.2 (1.49) 76.1 (1.71) 72.6 (1.79) 33.25 (1.65)
dirichlet 120 441.7 315.0 (1.40) 234.7 (1.88) 195.3 (2.26) 205.2 (2.82)
ex1 160 52.5 41.8 (1.26) 34.5 (1.52) 32.3 (1.63) 15.3 (1.80)
ex1 320 44.3 35.0 (1.27) 29.6 (1.50) 26.7 (1.66) 14.4 (1.78)
ex4 2 320 52.5 41.8 (1.26) 34.4 (1.53) 31.3 (1.68) 15.3 (1.80)
NARX CFy 3008.3 2703.2 (1.11) fail (–) fail (–) fail (–)

160

Index

analyse phase, 34, 35, 101
assembly tree, 38
augmented system, 51

backward substitution, 28
basic linear algebra subprograms, see BLAS
BLAS, 22
branch prediction, 21

cache, 20
cache locality, 106
central path, 48

neighbourhood, 49
Cholesky factorization

block form, 28
dense, 27
left-looking, 29
parallel
task, 30
traditional, 29

right-looking, 28
sparse, 32

curtis, 25

delayed pivot, 41, 58
denormal number, 24
dependency, 88
direct method, 27
double precision, 24, 72
DSIS, 125
dynamic scheduling, 30

elimination tree, 35
epsilon, see machine epsilon
execution speed, 19
extended precision, 85

factorization
Cholesky, see Cholesky factorization
phase, 34, 38
symmetric indefinite, see symmetric in-

definite factorization
factorize

phase, 34
task, 30, 87, 103

FGMRES, 44
mixed precision, 77
preconditioned, 76

fill-in, 34

fixed-cp scheduling, 95
floating point, 24
flush directive, 23
forward substitution, 28
fox, 25

global variable, 22

HPCx, 25
HSL MA64, 122
HSL MA77, 125
hsl ma77, 45
HSL MA79, 125
hsl ma79, 80
hsl ma87, 101
hsl mp54, 93
hybrid scaling, 58, 60

IEEE floating point, see floating point
Interior point method, 47
interior point method, 121
IPM, see interior point method
ipopt, 121
iterative method, 27
iterative refinement, 43

mixed precision, 75

jhogg, 25

Karush-Kahn-Tucker conditions, see KKT con-
ditions

KKT conditions, 47

Lagrangian, 47
left-looking factorization, 29
linear optimization, 47
linear programming problem, 47
lock, 23
LP, see linear programming problem

MA57, 125
ma57, 45
machine epsilon, 24
machines, 24
max child scheduling, 95
max descendants scheduling, 95
mc30, 42, 57
mc64, 42, 57
mc77, 42, 57

161

Mehrotra predictor-corrector algorithm, 50
memory

bandwidth, 19
latency, 19

message passing interface, see MPI
minimum degree, 35
mixed precision, 44

FGMRES, 77
iterative refinement, 75
solver, 71

MPI, 23

NaN, 24
nested dissection, 35
Newton direction, 48
NLP, see nonlinear programming
nodal matrix, 102
node amalgamation, 112
node-level parallelism, 40
nonlinear optimization, 52
nonlinear programming, 52
normal equations, 51
not a number, see NaN
numerical zero, 32

OpenMP, 22
optimization

linear, 47
nonlinear, 52

ordering
minimum degree, 35
nested dissection, 35

out of core, 43
overflow, 24

PARDISO, 115, 125
PaStiX, 108, 116
performance profile, 59
pipelining parallelism, 40
pivoting

full, 31
rook, 31
threshold, 41

POSIX threads, see pthreads
precision, 24, 72
predictor-corrector algorithm, 50
preorder phase, 34
primal, 47
prioritisation, 89
processor affinity, 111
pthreads, 23

radix, 59
reduced test set 2, 76
requested accuracy, 73
residual, 44, 73
right-looking factorization, 28

row hybrid structure, 103

scaled residual, 44, 73
scaling, 41, 57

hybrid, 58, 60
mc30, 42, 57
mc64, 42, 57
mc77, 42, 57
radix, 59

scheduling, 89
dynamic, 30
fixed-cp, 95
max child, 95
max descendants, 95
simple, 95
static, 30
weighted-cp, 95

seras, 25
SIMD, 22
simple scheduling, 95
single instruction multiple data, see SIMD
single precision, 24, 72
solve

phase, 34, 40
task, 30, 87, 103
using double, 75
using single, 75

solve phase, 102
solver

hsl ma77, 45
ma57, 45

sparse matrix
definition, 32
graph of, 32

static pivot, 41
static scheduling, 30
structural zero, 32
subnormal number, see denormal number
supernode, 37
symmetric indefinite factorization, 31

sparse, 41
symmetric-indefinite solver, 121

task
factorize, 87
parrallelism, 23
solve, 87
update, 87
update between, 103
update internal, 103

task dispatch, 87, 105
TAUCS, 116
test set 1, 58
test set 2, 72

reduced, 76
test set 3, 72
thread private variable, 22

162

threshold pivoting, 41
tree-level parallelism, 40

underflow, 24
update task, 30, 87
update between task, 103
update internal task, 103

weighted-cp scheduling, 95

163

