Mastering
MongoDB 3.x

n expert's guide to building fault-tolerant

A
MongoDB applications

LI

Mastering MongoDB 3.x

An expert's guide to building fault-tolerant MongoDB
applications

Alex Giamas

BIRMINGHAM - MUMBAI

Mastering MongoDB 3.x

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 1151117

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78398-260-8

www.packtpub.com

http://www.packtpub.com

Full-Stack
Wweb n:relupmmx Hands-On gf&(;ﬁz:‘nge

with Vue.js and Node Data Science
and Python
Machine Learning

Go to www.packtpub.com
and use this code in the
checkout:

_ HBBIBOOFF

Packt>

Author
Alex Giamas

Reviewers
Juan Tomas Oliva Ramos
Nilap Shah

Commissioning Editor
Amey Varangaonkar

Acquisition Editor
Vinay Argekar

Content Development Editor
Mayur Pawanikar

Technical Editor
Prasad Ramesh

Credits

Copy Editors
Safis Editing

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Tania Dutta

Production Coordinator
Shantanu Zagade

About the Author

Alex Giamas is a Senior Software Engineer at the Department for International Trade, UK
Government. He has also worked as a consultant for various startups. He is an experienced
professional in systems engineering, NoSQL and big data technologies, with experience
spanning from co-founding a digital health startup to Fortune 15 companies.

He has been developing using MongoDB since 2009 and early 1.x versions, using it for
several projects around data storage and analytical processing. He has been developing in
Apache Hadoop since 2007 while working on its incubation.

He has worked with a wide array of NoSQL and big data technologies, building scalable
and highly available distributed software systems in C++, Java, Ruby and Python.

Alex holds an MSc from Carnegie Mellon University in Information Networking and has
attended professional courses in Stanford University. He is a graduate from National
Technical University of Athens, Greece in Electrical and Computer Engineering. He is a
MongoDB Certified developer, a Cloudera Certified Developer for Apache Hadoop and
Data Science essentials.

He publishes regularly for the past 4 years at InfoQ in NoSQL, big data and data science
topics.

I would like to thank my parents for their support and advice all these years.

I would like to thank my fiancé Mary for her patience and support throughout the time,
days and nights, weekdays and weekends I spent writing this book.

About the Reviewers

Juan Tomas Oliva Ramos is an environmental engineer from the University of Guanajuato,
Mexico, with a master's degree in administrative engineering and quality. He has more than
5 years of experience in the management and development of patents, technological
innovation projects, and the development of technological solutions through the statistical
control of processes.

He has been a teacher of statistics, entrepreneurship, and the technological development of
projects since 2011. He became an entrepreneur mentor and started a new department of
technology management and entrepreneurship at Instituto Tecnolégico Superior de
Purisima del Rincon Guanajuato, Mexico.

Juan is an Alfaomega reviewer and has worked on the book Wearable Designs for Smart
Watches, Smart TVs and Android Mobile Devices.

Juan has also developed prototypes through programming and automation technologies for
the improvement of operations, which have been registered for patents.

[want to thank God for giving me wisdom and humility to review this book.

I thank Packt for giving me the opportunity to review this amazing book and to collaborate
with a group of committed people

I want to thank my beautiful wife, Brenda, our two magic princesses (Maria Regina and
Maria Renata) and our next member (Angel Tadeo), all of you, give me the strength,
happiness, and joy to start a new day. Thanks for being my family.

Nilap Shah is a lead software consultant with experience across various fields and
technologies. He is an expert in .NET, Uipath (robotics), and MongoDB. He is a certified
MongoDB developer and DBA. He is a technical writer as well as a technical speaker. He
also provides MongoDB corporate training. Currently, Nilap is working as a lead MongoDB
consultant and provides solutions with MongoDB (DBA and developer projects). His
LinkedIn profile can be found at https:/ /www.linkedin.com/in/nilap-

shah-8b6780a/ and you can reach him on WhatsApp at +91-9537047334.

https://www.linkedin.com/in/nilap-shah-8b6780a/
https://www.linkedin.com/in/nilap-shah-8b6780a/

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1783982608.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608
https://www.amazon.com/dp/1783982608

Table of Contents

Preface 1
Chapter 1: MongoDB — A Database for the Modern Web 6
Web history 7
Web 1.0 7
Web 2.0 9
Web 3.0 11
SQL and NoSQL evolution 11
MongoDB evolution 13
Maijor feature set for versions 1.0 and 1.2 13

Version 2 13

Version 3 14

Version 3+ 14
MongoDB for SQL developers 16
MongoDB for NoSQL developers 17
MongoDB key characteristics and use cases 18
Key characteristics 18
What is the use case for MongoDB? 19
MongoDB criticism 21
MongoDB configuration and best practices 22
Operational best practices 23
Schema design best practices 25
Best practices for write durability 26
Best practices for replication 27
Best practices for sharding 27
Best practices for security 28
Best practices for AWS 28
Reference documentation 29
MongoDB documentation 29
Packt references 29
Further reading 30
Summary 30
Chapter 2: Schema Design and Data Modeling 31
Relational schema design 32

MongoDB schema design 32

Table of Contents

Read-write ratio 33
Data modeling 33
Data types 33
Comparing different data types 35
Date type 36

Objectld 37
Modeling data for atomic operations 38
Write isolation 39
Read isolation and consistency 40
Modeling relationships 41
One-to-one 41
One-to-many, many-to-many 42
Modeling data for keyword searches 43
Connecting to MongoDB 45
Connecting using Ruby 45
Mongoid ODM 46
Inheritance with Mongoid models 48
Connecting using Python 49
PyMODM ODM 50
Inheritance with PyMODM models 51
Connecting using PHP 52
Doctrine ODM 53
Inheritance with Doctrine 55
Summary 56
Chapter 3: MongoDB CRUD Operations 58
CRUD using the shell 58
Scripting for the mongo shell 60
Differences between scripting for the mongo shell and using it directly 61
Batch inserts using the shell 62
Batch operations using the mongo shell 64
Administration 66
fsync 67
compact 67
currentOp/killOp 68
collMod 69
touch 70
MapReduce in the mongo shell 70
MapReduce concurrency 72
Incremental MapReduce 72
Troubleshooting MapReduce 74
Aggregation framework 76
SQL to aggregation 76
Aggregation versus MapReduce 77
Securing the shell 78

[ii]

Table of Contents

Authentication and authorization 78
Authorization with MongoDB 78
Security tips for MongoDB 80
Encrypting communication using TLS/SSL 80
Encrypting data 81

Limiting network exposure 81
Firewalls and VPNs 82

Auditing 82

Use secure configuration options 82
Authentication with MongoDB 83
Enterprise Edition 83
Kerberos authentication 83

LDAP authentication 84
Summary 85
Chapter 4: Advanced Querying 86
MongoDB CRUD operations 86
CRUD using the Ruby driver 86
Creating documents 87
Read 87
Chaining operations in find() 89
Nested operations 20
Update 9
Delete 92
Batch operations 92
CRUD in Mongoid 93
Read 94
Scoping queries 94
Create, update, and delete 95
CRUD using the Python driver 95
Create and delete 96
Finding documents 97
Updating documents 100
CRUD using PyMODM 100
Creating documents 101
Updating documents 101
Deleting documents 102
Querying documents 102
CRUD using the PHP driver 102
Create and delete 103
Bulk write 106
Read 107
Update 108
CRUD using Doctrine 109
Create, update, and delete 109
Read 111

[iii]

Table of Contents

Best practices 113
Comparison operators 113
Update operators 114
Smart querying 114

Using regular expressions 114

Query results and cursors 116

Storage considerations on delete 118

Summary 119
Chapter 5: Aggregation 120
Why aggregation? 120
Aggregation operators 121
Aggregation stage operators 122
Expression operators 123

Expression Boolean operators 123

Expression comparison operators 123

Set expression and array operators 124

Expression date operators 125

Expression string operators 126

Expression arithmetic operators 127

Aggregation accumulators 127

Conditional expressions 128

Other operators 128

Text search 128

Variable 129

Literal 129

Parsing data type 129
Limitations 129
Aggregation use case 130
Summary 142
Chapter 6: Indexing 143
Index internals 144
Index types 145
Single field indexes 145
Indexing embedded fields 147

Indexing embedded documents 147

Background indexes 148

Compound indexes 148

Sorting using compound indexes 149

Reusing compound indexes 149

Multikey indexes 150

Special types of index 154

Text 154

Hashed 155

TTL 156

[iv]

Table of Contents

Partial 156

Sparse 157

Unique 158
Case-insensitive 159

Geospatial 161

Building and managing indexes 163
Forcing index usage 163

Hint and sparse indexes 165

Building indexes on replica sets 165

Managing indexes 166

Naming indexes 166

Special considerations 167

Using indexes efficiently 167
Measuring performance 167
Improving performance 168

Index intersection 169
References 170
Summary 171
Chapter 7: Monitoring, Backup, and Security 172
Monitoring 172
What should we monitor? 173
Page faults 173
Resident memory 173

Virtual and mapped memory 173
Working set 174
Monitoring memory usage in WiredTiger 174
Tracking page faults 175
Tracking B-tree misses 175

I/0 wait 176

Read and write queues 176

Lock percentage 176
Background flushes 176
Tracking free space 177
Monitoring replication 177

Oplog size 177
Working set calculations 178
Monitoring tools 179
Hosted tools 179

Open source tools 179
Backups 179
Backup options 180
Cloud-based solutions 180
Backups with file system snapshots 181

Taking a backup of a sharded cluster 181

[v]

Table of Contents

Backups using mongodump 182
Backups by copying raw files 183
Backups using queueing 184

EC2 backup and restore 184
Incremental backups 185
Security 186
Authentication 186
Authorization 187
User roles 190
Database administration roles 191

Cluster administration roles 191

Backup restore roles 192

Roles across all databases 192
Superuser 193

Network level security 193
Auditing security 193
Special cases 194
Overview 194
Summary 195
Chapter 8: Storage Engines 196
Pluggable storage engines 196
WiredTiger 196
Document-level locking 197
Snapshots and checkpoints 197
Journaling 198

Data compression 198

Memory usage 199
readConcern 200
WiredTiger collection-level options 201
WiredTiger performance strategies 202
WiredTiger B-tree versus LSM indexes 203
Encrypted 203
In-memory 205
MMAPV1 206
MMAPvV1 storage optimization 207

Mixed usage 208
Other storage engines 209
RocksDB 209
TokuMX 210
Locking in MongoDB 210
Lock reporting 213
Lock yield 213
Commonly used commands and locks 214

[vi]

Table of Contents

Commands requiring a database lock 214
References 216
Summary 217

Chapter 9: Harnessing Big Data with MongoDB 218
What is big data? 218
Big data landscape 219
Message queuing systems 220
Apache ActiveMQ 221
RabbitMQ 221

Apache Kafka 222

Data warehousing 223
Apache Hadoop 223

Apache Spark 224

Spark comparison with Hadoop MapReduce 225

MongoDB as a data warehouse 226
Big data use case 227

Kafka setup 228

Hadoop setup 232

Steps 232

Hadoop to MongoDB pipeline 235

Spark to MongoDB 235
References 236
Summary 237

Chapter 10: Replication 238
Replication 238

Logical or physical replication 239

Different high availability types 239
Architectural overview 240
How do elections work? 242
What is the use case for a replica set? 244
Setting up a replica set 245

Converting a standalone server to a replica set 246

Creating a replica set 246

Read preference 248

Write concern 250

Custom write concern 251
Priority settings for replica set members 252
Priority zero replica set members 253
Hidden replica set members 253
Delayed replica set members 254

[vii]

Table of Contents

Production considerations 255
Connecting to a replica set 255
Replica set administration 258

How to perform maintenance on replica sets 258

Resyncing a member of a replica set 259

Changing the oplog size 260

Reconfiguring a replica set when we have lost the majority of our

servers 261

Chained replication 262
Cloud options for a replica set 262

mLab 263

MongoDB Atlas 263
Replica set limitations 264
Summary 264

Chapter 11: Sharding 265
Advantages of sharding 265
Architectural overview 268

Development, continuous deployment, and staging environments 269

Planning ahead on sharding 269
Sharding setup 270

Choosing the shard key 270

Changing the shard key 270
Choosing the correct shard key 272
Range-based sharding 273
Hash-based sharding 273
Coming up with our own key 274
Location-based data 274
Sharding administration and monitoring 275
Balancing data — how to track and keep our data balanced 275
Chunk administration 280
Moving chunks 280
Changing the default chunk size 281
Jumbo chunks 281
Merging chunks 284
Adding and removing shards 285

Sharding limitations 287
Querying sharded data 289

The query router 289

Find 290
Sort/limit/skip 290
Update/remove 291

[viii]

Table of Contents

Querying using Ruby 292
Performance comparison with replica sets 292
Sharding recovery 293
Mongos 293
Mongod process 293
Config server 294

A shard goes down 294
The entire cluster goes down 294
References 295
Summary 295
Chapter 12: Fault Tolerance and High Availability 296
Application design 296
Schema-less doesn't mean schema design-less 297
Read performance optimization 297
Consolidating read querying 297
Defensive coding 299
Monitoring integrations 301
Operations 302
Security 303
Enabling security by default 303
Isolating our servers 304
Checklists 305
References 307
Summary 307
Index 308

[ix]

Preface

MongoDB has grown to become the de facto NoSQL database with millions of users, from
small start-ups to Fortune 500 companies. Addressing the limitations of SQL schema-based
databases, MongoDB pioneered a shift of focus for DevOps and offered sharding and
replication maintainable by DevOps teams. This book is based on MongoDB 3.x and covers
topics ranging from database querying using the shell, built-in drivers, and popular ODM
mappers, to more advanced topics such as sharding, high availability, and integration with
big data sources.

You will get an overview of MongoDB and how to play to its strengths, with relevant use
cases. After that, you will learn how to query MongoDB effectively and make use of indexes
as much as possible. The next part deals with the administration of MongoDB installations
on-premise or on the cloud. We deal with database internals in the next section, explaining
storage systems and how they can affect performance. The last section of this book deals
with replication and MongoDB scaling, along with integration with heterogeneous data
sources. By the end this book, you will be equipped with all the required industry skills and
knowledge to become a certified MongoDB developer and administrator.

What this book covers

Chapter 1, MongoDB — A Database for the Modern Web, takes us on a journey through web,
SQL, and NoSQL technologies from inception to current state.

Chapter 2, Schema Design and Data Modeling, teaches schema design for relational databases
and MongoDB, and how we can achieve the same goal starting from a different point.

Chapter 3, MongoDB CRUD Operations, gives a bird's-eye view of CRUD operations.

Chapter 4, Advanced Querying, covers advanced querying concepts using Ruby, Python,
and PHP, using both the official drivers and an ODM.

Chapter 5, Aggregation, dives deep into the aggregation framework. We also discuss why
and when we should use aggregation, as opposed to MapReduce and querying the
database.

Chapter 6, Indexing, explores one of the most important properties of every database, which
is indexing.

Preface

Chapter 7, Monitoring, Backup, and Security, discusses the operational aspects of MongoDB.
Monitoring, backup, and security should not be an afterthought but rather a necessary
process before deploying MongoDB in a production environment.

Chapter 8, Storage Engines, teaches about different storage engines in MongoDB. We
identify the pros and cons of each one and the use cases for choosing each storage engine.

Chapter 9, Harnessing Big Data with MongoDB, shows more about how MongoDB fits into
the wider big data landscape and ecosystem.

Chapter 10, Replication, discusses replica sets and how to administer them. Starting from an
architectural overview of replica sets and replica set internals around elections, we
dive deep into setting up and configuring a replica set.

Chapter 11, Sharding, explores sharding, one of the most interesting features of MongoDB.
We start from an architectural overview of sharding and move on to how we can design a
shard, and especially choose the right shard key.

Chapter 12, Fault Tolerance and High Availability, tries to fit in the information that we didn't
manage to discuss in the previous chapters, and places emphasis on some others.

What you need for this book

You will need the following software to be able to smoothly sail through the chapters:

e MongoDB version 3+
e Apache Kafka 1

¢ Apache Spark 2+

¢ Apache Hadoop 2+

Who this book is for

Mastering MongoDB 3.x is a book for database developers, architects, and administrators
who want to learn how to use MongoDB more effectively and productively.

If you have experience in, and are interested in working with, NoSQL databases to build
apps and websites, then this book is for you.

[2]

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "In a
sharded environment, each mongod applies its own locks, thus greatly improving
concurrency.”

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

> db.types.find () .sort ({a:-1})
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1

Any command-line input or output is written as follows:

> db.types.insert ({"a":4})
WriteResult ({ "nInserted" : 1 })

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[31]

http://www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-MongoDB-3x and https://github.com/agiamas/mastering-
mongodb. We also have other code bundles from our rich catalog of books and videos
available at nttps://github.com/PacktPublishing/. Check them out!

[4]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/PacktPublishing/Mastering-MongoDB-3x
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

MongoDB — A Database for the
Modern Web

In this chapter, we will lay the foundations for understanding MongoDB and how it is a
database designed for the modern web. We will cover the following topics:

e The web, SQL, and MongoDB's history and evolution.
e MongoDB from the perspective of SQL and other NoSQL technology users.
* MongoDB's common use cases and why they matter.

¢ Configuration best practices:
e Operational

Schema design
Write durability
Replication
Sharding
e Security
o AWS
¢ Learning to learn. Nowadays, learning how to learn is as important as learning in

the first place. We will go through references that have the most up to date
information about MongoDB for both new and experienced users.

MongoDB — A Database for the Modern Web Chapter 1

Web history

In March 1989, more than 28 years ago, Sir Tim Berners-Lee unveiled his vision for what
would later be named the World Wide Web (WWW) in a document called Information
Management: A Proposal (http://info.cern.ch/Proposal.html). Since then, the WWW has
grown to be a tool of information, communication, and entertainment for more than two of
every five people on our planet.

Web 1.0

The first version of the WWW relied exclusively on web pages and hyperlinks between
them, a concept kept until present times. It was mostly read-only, with limited support for
interaction between the user and the web page. Brick and mortar companies were using it
to put up their informational pages. Finding websites could only be done using hierarchical
directories like Yahoo! and DMOZ. The web was meant to be an information portal.

This, while not being Sir Tim Berners-Lee's vision, allowed media outlets such as the BBC
and CNN to create a digital presence and start pushing out information to the users. It
revolutionized information access as everyone in the world could get first-hand access to
quality information at the same time.

Web 1.0 was totally device and software independent, allowing for every device to access
all information. Resources were identified by address (the website's URL) and open
protocols (GET, POST, PUT, DELETE) could be used to access content resources.

Hyper Text Markup Language (HTML) was used to develop web sites that were serving
static content. There was no notion of Cascading Style Sheets (CSS) as positioning of
elements in a page could only be modified using tables and framesets were used extensively
to embed information in pages.

This proved to be severely limiting and so browser vendors back then started adding
custom HTML tags like <blink> and <marquee> which lead to the first browser wars, with
rivals Microsoft (Internet Explorer) and Netscape racing to extend the HTTP protocol's
functionality. Web 1.0 reached 45 million users by 1996.

[7]

http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html
http://info.cern.ch/Proposal.html

MongoDB — A Database for the Modern Web

Chapter 1

Here is the Lycos start page as it appeared in Web 1.0 http://www.lycos.com/:

Search The Web 4| for:

Best Buys On The Net?

Autos
Classifieds, Buy a Car, Parts

Careers
Job Search, Advice

Education
Financial Aid, Colleges, K-12

ch “"/ﬁ‘s Your Personal
_/ -, Internei Guide

Stocks
Free Email J§ Personalize
Build a Free Home

Go Get It!

Help Advanced Search Search Features

INDEX OF WEB GUIDES

Business
News, Industries, Small Business

Computers
Hardware, Software, Cyberlife

Electronics
Audio, TV/Video, Laptops

Entertainment
TV/Movies, Humor, Music

Games
PC Games, Popular Games

Health
Fitness, Diseases, Diets

Internet
Just For Fun, Web Design

Fashion
Supermodels, Designers, Clothes

Government
Politics, Services, Issues

Home/Garden
Gardening, Cooking, Fix-TIt

Kids
Games, Teens, Sports

Money
Investments, Resources

People
Women, Interests, Romance

Shopping
Books, Cards, Search

Sports
Basketball, Hockey, Baseball

News
U.S., World, Weather

Real Estate
Advice, Properties, Apt/Rentals

Space/Sci-Fi
Exploration, X-Files, Planets

Travel
Destinations, Lodging, Cities

Lycos Search for Missing Kids Download Safe Search Software

Get Lycos in: Germany, UK, France, Netherlands, Italy, Switzerland, Belgium, Sweden, Spain, Japan

About Lycos Add Your Site to Lycos Advertise with Lycos Business Development Free Software Jobs4You Link to Lycos

Copyright© 1998 Lycos,Inc. All Rights Reserved. Lycos® is a registered trademark of Carnegie Mellon University Terms and conditions Feedback

[81]

http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/
http://www.lycos.com/

MongoDB — A Database for the Modern Web

Chapter 1

Yahoo as appeared in Web 1.0 http://www.yahoo.com:

o Arts - - Humanities, Photography, Architecture, ...

* Business and Economy [Xtra!] - - Directory, Investments, Classifieds, ...

o Computers and Internet [Xtra!] - - Internet, WWW, Software, Multimedia, ...
o Education - - Universities, K-12, Courses, ...

« Entertainment [Xtra!] - - TV, Movies, Music, Magazines, ...

o Government - - Politics [Xtra!], Agencies, Law, Military, ...

o Health [Xtra!] - - Medicine, Drugs, Diseases, Fitness, ...

o News [Xtra!] - - World [Xtra!], Daily, Current Events, ...

o Regional - - Countries, Regions, U.S. States, ...

o Science - - CS, Biology, Astronomy, Engineering, ...
* Social Science - - Anthropology, Sociology, Economics, ...

¢ Society and Culture - - People, Environment, Religion, ...

80 5 YAHOO!& 9 @

HEAD YAHOO ADD
= NEW = COOL. INES wee INFO e UR L=

| cucx HeRe

TR RSl v
Yahoo! Deutschland] esrans LOS ANGELES Weekly Picks

Search | Options

Yellow Pages - People Search - City Maps -- News Headlines - Stock Quotes - Sports Scores

Yahoo! New York - Yahoo! Shop - Yahooligans!

Yahoo! Japan - Yahoo! Internet Life - Yahoo! San Francisco

Web 2.0

A term first defined and formulated by Tim O'Reilly, we use it to describe our current
WWW sites and services. Its main characteristic is that the web moved from being read-
only to the read-write state. Websites evolved into services and human collaboration plays

an ever important part in Web 2.0.

From simple information portals, we now have many more types of services such as:

e Audio
BlogPod
Blogging

Bookmarking

[91]

http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com
http://www.yahoo.com

MongoDB — A Database for the Modern Web Chapter 1

o Calendars
o Chat
e Collaboration
¢ Communication
e Community
¢ CRM
e E-commerce
¢ E-learning
o Email
e Filesharing
e Forums
o Games
e Images
e Knowledge
¢ Mapping
e Mashups
o Multimedia
e Portals
* RSS
o Wikis
Web 2.0 reached 1+ billion users in 2006 and 3.77 billion users at the time of writing this

book (late 2017). Building communities was the differentiating factor for Web 2.0, allowing
internet users to connect on common interests, communicate, and share information.

Personalization plays an important part of Web 2.0 with many websites offering tailored
content to its users. Recommendation algorithms and human curation decides the content
to show to each user.

Browsers can support more and more desktop applications by using Adobe Flash and
Asynchronous JavaScript and XML (AJAX) technologies. Most desktop applications have
web counterparts that either supplement or have completely replaced the desktop versions.
Most notable examples are office productivity (Google Docs, Microsoft Office 365), Digital
Design Sketch, and image editing and manipulation (Google Photos, Adobe Creative
Cloud).

[10]

MongoDB — A Database for the Modern Web Chapter 1

Moving from websites to web applications also unveiled the era of Service Oriented
Architecture (SOA). Applications can interconnect with each other, exposing data through
Application Programming Interfaces (API) allowing to build more complex applications
on top of application layers.

One of the applications that defined Web 2.0 are social apps. Facebook with 1.86 billion
monthly active users at the end of 2016 is the most well known example. We use social
networks and many web applications share social aspects that allow us to communicate
with peers and extend our social circle.

Web 3.0

It's not yet here, but Web 3.0 is expected to bring Semantic Web capabilities. Advanced as
Web 2.0 applications may seem, they all rely mostly on structured information. We use the
same concept of searching for keywords and matching these keywords with web content
without much understanding of context, content and intention of user's request. Also
called Web of Data, Web 3.0 will rely on inter-machine communication and algorithms to
provide rich interaction via diverse human computer interfaces.

SQL and NoSQL evolution

Structured Query Language existed even before the WWW. Dr. EF Codd originally
published the paper A Relational Model of Data for Large Shared Data Banks, in June 1970, in
the Association of Computer Machinery (ACM) journal, Communications of the ACM.
SQL was initially developed at IBM by Chamberlin and Boyce in 1974. Relational Software
(now Oracle Corporation) was the first to develop a commercially available implementation
of SQL, targeted at United States governmental agencies.

The first American National Standards Institute (ANSI) SQL standard came out in 1986
and since then there have been eight revisions with the most recent being published in 2016
(SQL:2016).

SQL was not particularly popular at the start of the WWW. Static content could just be hard
coded into the HTML page without much fuss. However, as functionality of websites grew,
webmasters wanted to generate web page content driven by offline data sources to generate
content that could change over time without redeploying code.

[11]

MongoDB — A Database for the Modern Web Chapter 1

Common Gateway Interface (CGI) scripts in Perl or Unix shell were driving early database
driven websites in Web 1.0. With Web 2.0, the web evolved from directly injecting SQL
results into the browser to using two- and three-tier architecture that separated views from
business and model logic, allowing for SQL queries to be modular and isolated from the
rest of a web application.

Not only SQL (NoSQL) on the other hand is much more modern and supervenes web
evolution, rising at the same time as Web 2.0 technologies. The term was first coined by
Carlo Strozzi in 1998 for his open source database that was not following the SQL standard
but was still relational.

This is not what we currently expect from a NoSQL database. Johan Oskarsson, a developer
at Last.fm at the time, reintroduced the term in early 2009 to group a set of distributed, non-
relational data stores that were being developed. Many of them were based on Google's
Bigtable and MapReduce papers or Amazon's Dynamo highly available key-value based
storage system.

NoSQL foundations grew upon relaxed ACID (atomicity, consistency, isolation,
durability) guarantees in favor of performance, scalability, flexibility and reduced
complexity. Most NoSQL databases have gone one way or another in providing as many of
the previously mentioned qualities as possible, even offering tunable guarantees to the
developer.

SQL Strozzi
ANSI
No SQL
developed oL Q
MongoDB v3
Vi
Codd V2
3.4
Power ‘ v
‘ 2000 2011 20‘162017
1970 1998
1974 1986 2015

Timeline of SQL and NoSQL evolution

[12]

MongoDB — A Database for the Modern Web Chapter 1

MongoDB evolution

10gen started developing a cloud computing stack in 2007 and soon realized that the most
important innovation was centered around the document oriented database that they built
to power it, MongoDB. MongoDB was initially released on August 27th, 2009.

Version 1 of MongoDB was pretty basic in terms of features, authorization, and ACID
guarantees and made up for these shortcomings with performance and flexibility.

In the following sections, we can see the major features along with the version number with
which they were introduced.

Major feature set for versions 1.0 and 1.2

¢ Document-based model

¢ Global lock (process level)

¢ Indexes on collections

e CRUD operations on documents

¢ No authentication (authentication was handled at the server level)
e Master/slave replication

e MapReduce (introduced in v1.2)

e Stored JavaScript functions (introduced in v1.2)

Version 2

¢ Background index creation (since v.1.4)

Sharding (since v.1.6)
e More query operators (since v.1.6)

Journaling (since v.1.8)

Sparse and covered indexes (since v.1.8)

Compact command to reduce disk usage
¢ Memory usage more efficient
e Concurrency improvements

[13]

MongoDB — A Database for the Modern Web Chapter 1

Index performance enhancements

Replica sets are now more configurable and data center aware

MapReduce improvements

Authentication (since 2.0 for sharding and most database commands)

Geospatial features introduced

Version 3

* Aggregation framework (since v.2.2) and enhancements (since v.2.6)

e TTL collections (since v.2.2)

¢ Concurrency improvements among which DB level locking (since v.2.2)
e Text search (since v.2.4) and integration (since v.2.6)

¢ Hashed index (since v.2.4)

e Security enhancements, role based access (since v.2.4)

e V8 JavaScript engine instead of SpiderMonkey (since v.2.4)

¢ Query engine improvements (since v.2.6)

¢ Pluggable storage engine API

e WiredTiger storage engine introduced, with document level locking while
previous storage engine (now called MMAPv1) supports collection level locking

Version 3+

e Replication and sharding enhancements (since v.3.2)
¢ Document validation (since v.3.2)
e Aggregation framework enhanced operations (since v.3.2)

[14]

MongoDB — A Database for the Modern Web Chapter 1

e Multiple storage engines (since v.3.2, only in Enterprise Edition)

Sharding
Geospatial)
Journaling optimizations Query engine
Map Reduce improvements
Stored JS o i "
Linearizable
Index TTL collections read concern
— Aggregation framework Views collation
Versionl Background DB locking
Indexes EE— pluggable

text search storage
hashed index
security Document
V8 engine validation

2009 3/2015

V.3.0 12/2015
12/2009 4/2014 V.3.2 16/2016
3/2010 3/2013 V.2.6 v.3.4
V.14 V.2.4
8/2012
8/2010 3/2011 (,2 2
V.1.6 V.1.8 -
9/2011
V.2.0

MongoDB evolution diagram

As one can observe, version 1 was pretty basic, whereas version 2 introduced most of the
features present in the current version such as sharding, usable and special indexes,
geospatial features, and memory and concurrency improvements.

On the way from version 2 to version 3, the aggregation framework was introduced, mainly
as a supplement to the ageing (and never up to par with dedicated frameworks like
Hadoop) MapReduce framework. Then, adding text search and slowly but surely
improving performance, stability, and security to adapt to the increasing enterprise load of
customers using MongoDB.

With WiredTiger's introduction in version 3, locking became much less of an issue for
MongoDB as it was brought down from process (global lock) to document level, almost the
most granular level possible.

At its current state, MongoDB is a database that can handle loads ranging from startup
MVPs and POCs to enterprise applications with hundreds of servers.

[15]

MongoDB — A Database for the Modern Web

Chapter 1

MongoDB for SQL developers

MongoDB was developed in the Web 2.0 era. By then, most developers had been using SQL
or Object-relational mapping (ORM) tools from their language of choice to access RDBMS
data. As such, these developers needed an easy way to get acquainted with MongoDB from

their relational background.

Thankfully, there have been several attempts at SQL to MongoDB cheat sheets that explain

MongoDB terminology in SQL terms.

On a higher level there are:

¢ Databases, indexes just like in SQL databases

Fields (SQL columns)

Collections (SQL tables)
e Documents (SQL rows)

Embedded and linked documents (SQL Joins)

Some more examples of common operations:

SQL MongoDB

Database Database

Table Collection

Index Index

Row Document

Column Field

Joins Embed in document or link via DBRef

CREATE TABLE employee
(name VARCHAR(100))

db.createCollection ("employee")

INSERT INTO employees
VALUES (Alex, 36)

db.employees.insert ({name: "Alex",
361)

age:

SELECT * FROM employees

db.employees.find ()

SELECT * FROM employees
LIMIT 1

db.employees.findOne ()

SELECT DISTINCT name FROM
employees

db.employees.distinct ("name")

[16]

MongoDB — A Database for the Modern Web

Chapter 1

UPDATE employees SET age
= 37 WHERE name = 'Alex'

db.employees.update ({name: "Alex"},
{age: 37}}, {multi: true})

{Sset:

DELETE FROM employees
WHERE name = 'Alex'

db.employees.remove ({name: "Alex"})

CREATE INDEX ON employees
(name ASC)

db.employees.ensurelndex ({name: 1})

http://s3.amazonaws.com/info-mongodb-com/sgl_to_mongo.pdf

MongoDB for NoSQL developers

As MongoDB has grown from being a niche database solution to the Swiss Army knife of
NoSQL technologies, more developers are coming to it from a NoSQL background as well.

Setting the SQL to NoSQL differences aside, users from columnar type databases face the
most challenges. Cassandra and HBase being the most popular column oriented database
management systems, we will examine the differences and how a developer can migrate a

system to MongoDB.

e Flexibility: MongoDB's notion of documents that can contain sub-documents
nested in complex hierarchies is really expressive and flexible. This is similar to
the comparison between MongoDB and SQL, with the added benefit that
MongoDB can map easier to plain old objects from any programming language,
allowing for easy deployment and maintenance.

¢ Flexible query model: A user can selectively index some parts of each document,
query based on attribute values, regular expressions or ranges, and have as many
properties per object as needed by the application layer. Primary, secondary
indexes as well as special types of indexes like sparse ones can help greatly with
query efficiency. Using a JavaScript shell with MapReduce makes it really easy
for most developers and many data analysts to quickly take a look into data and

get valuable insights.

¢ Native aggregation: The aggregation framework provides an ETL pipeline for
users to extract and transform data from MongoDB and either load them in a new
format or export it from MongoDB to other data sources. This can also help data
analysts and scientists get the slice of data they need performing data wrangling

along the way.

[17]

http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf

MongoDB — A Database for the Modern Web Chapter 1

¢ Schemaless model: This is a result of MongoDB's design philosophy to give

applications the power and responsibility to interpret different properties found
in a collection's documents. In contrast to Cassandra's or HBase's schema based
approach, in MongoDB a developer can store and process dynamically generated
attributes.

MongoDB key characteristics and use cases

In this section, we will analyze MongoDB's characteristics as a database. Understanding the
features that MongoDB provides can help developers and architects evaluate the
requirement at hand and how MongoDB can help fulfill it. Also, we will go through some
common use cases from MongoDB Inc's experience that have delivered the best results for

its users.

Key characteristics

MongoDB has grown to a general purpose NoSQL database, offering the best of both
RDBMS and NoSQL worlds. Some of the key characteristics are:

It's a general purpose database. In contrast with other NoSQL databases that are
built for purpose (for example, graph databases), MongoDB can serve
heterogeneous loads and multiple purposes within an application.

Flexible schema design. Document oriented approaches with non-defined
attributes that can be modified on the fly is a key contrast between MongoDB and
relational databases.

It's built with high availability from the ground up. In our era of five nines in
availability, this has to be a given. Coupled with automatic failover on detection
of a server failure, this can help achieve high uptime.

Feature rich. Offering the full range of SQL equivalent operators along with
features such as MapReduce, aggregation framework, TTL/capped collections,
and secondary indexing, MongoDB can fit many use cases, no matter how
diverse the requirements are.

Scalability and load balancing. It's built to scale, both vertically but most
importantly horizontally. Using sharding, an architect can share load between
different instances and achieve both read and write scalability. Data balancing
happens automatically and transparently to the user by the shard balancer.

[18]

MongoDB — A Database for the Modern Web Chapter 1

e Aggregation framework. Having an extract transform load framework built in

the database means that a developer can perform most of the ETL logic before the
data leaves the database, eliminating in many cases the need for complex data
pipelines.

Native replication. Data will get replicated across a replica set without
complicated setup.

Security features. Both authentication and authorization are taken into account so
that an architect can secure her MongoDB instances.

JSON (BSON, Binary JSON) objects for storing and transmitting documents.
JSON is widely used across the web for frontend and API communication and as
such it's easier when the database is using the same protocol.

MapReduce. Even though the MapReduce engine isn't as advanced as it is in
dedicated frameworks, it is nonetheless a great tool for building data pipelines.
Querying and geospatial information in 2D and 3D. This may not be critical for
many applications, but if it is for your use case then it's really convenient to be
able to use the same database for geospatial calculations along with data storage.

What is the use case for MongoDB?

MongoDB being a hugely popular NoSQL database means that there are several use cases
where it has succeeded in supporting quality applications with a great time to market
delivery time.

Many of its most successful use cases center around the following areas:

Integration of siloed data providing a single view of them
Internet of Things

Mobile applications

Real-time analytics

Personalization

Catalog management

Content management

All these success stories share some common characteristics. We will try and break these
down in order of relative importance.

[19]

MongoDB — A Database for the Modern Web Chapter 1

Schema flexibility is most probably the most important one. Being able to store documents
inside a collection that can have different properties can help both during development
phase but also in ingesting data from heterogeneous sources that may or may not have the
same properties. In contrast with an RDBMS where columns need to be predefined and
having sparse data can be penalized, in MongoDB this is the norm and it's a feature that
most use cases share. Having the ability to deep nest attributes into documents, add arrays
of values into attributes and all the while being able to search and index these fields helps
application developers exploit the schema-less nature of MongoDB.

Scaling and sharding are the most common patterns for MongoDB use cases. Easily scaling
using built-in sharding and using replica sets for data replication and offloading primary
servers from read load can help developers store data effectively.

Many use cases also use MongoDB as a way of archiving data. Used as a pure data store
and not having the need to define schemas, it's fairly easy to dump data into MongoDB,
only to be analyzed at a later date by business analysts either using the shell or some of the
numerous BI tools that can integrate easily with MongoDB. Breaking data down further
based on time caps or document count can help serve these datasets from RAM, the use
case where MongoDB is most effective.

On this point, keeping datasets in RAM is more often another common pattern. MongoDB
uses MMAP storage (called MMAPv1) in most versions up to the most recent, which
delegates data mapping to the underlying operating system. This means that most
GNU/Linux based systems working with collections that can be stored in RAM will
dramatically increase performance. This is less of an issue with the introduction of
pluggable storage engines like WiredTiger, more on that in chapter 8, Storage Engines.

Capped collections are also a feature used in many use cases. Capped collections can restrict
documents in a collection by count or by overall size of the collection. In the latter case, we
need to have an estimate of size per document to calculate how many documents will fit in
our target size. Capped collections are a quick and dirty solution to answer requests like
"Give me the last hour’s overview of the logs." without any need for maintenance and running
async background jobs to clean our collection. Oftentimes, these may be used to quickly
build and operate a queuing system. Instead of deploying and maintaining a dedicated
queuing system like ActiveMQ, a developer can use a collection to store messages and then
use native tailable cursors provided by MongoDB to iterate through results as they pile up
and feed an external system.

[20]

MongoDB — A Database for the Modern Web Chapter 1

Low operational overhead is also a common pattern in use cases. Developers working in
agile teams can operate and maintain clusters of MongoDB servers without the need for a
dedicated DBA. MongoDB Management Service can greatly help in reducing administrative
overhead, whereas MongoDB Atlas, the hosted solution by MongoDB Inc., means that
developers don't need to deal with operational headaches.

In terms of business sectors using MongoDB, there is a huge variety coming from almost all
industries. Where there seems to be a greater penetration though, is in cases that have to
deal with lots of data with a relatively low business value in each single data point. Fields
like IoT can benefit the most by exploiting availability over consistency design, storing lots
of data from sensors in a cost efficient way. Financial services on the other hand, many
times have absolutely stringent consistency requirements aligned with proper ACID
characteristics that make MongoDB more of a challenge to adapt. Transactions carrying
financial data can be a few bytes but have an impact of millions of dollars, hence all the
safety nets around transmitting this type of information correctly.

Location-based data is also a field where MongoDB has thrived. Foursquare being one of
the most prominent early clients, MongoDB offers quite a rich set of features around 2D and
3D geolocation data, offering features like searching by distance, geofencing, and
intersection between geographical areas.

Overall, the rich feature set is the common pattern across different use cases. By providing
features that can be used in many different industries and applications, MongoDB can be a
unified solution for all business needs, offering users the ability to minimize operational
overhead and at the same time iterate quickly in product development.

MongoDB criticism

MongoDB has had its fair share of criticism throughout the years. The web-

scale proposition has been met with skepticism by many developers. The counter argument
is that scale is not needed most of the time and we should focus on other design
considerations. While this may be true on several occasions, it's a false dichotomy and in an
ideal world we would have both. MongoDB is as close as it can get to combining scalability
with features and ease of use/time to market.

[21]

MongoDB — A Database for the Modern Web Chapter 1

MongoDB's schema-less nature is also a big point of debate and argument. Schema-less can
be really beneficial in many use cases as it allows for heterogeneous data to be dumped into
the database without complex cleansing or ending up with lots of empty columns or blocks
of text stuffed into a single column. On the other hand, this is a double-edged sword as a
developer may end up with many documents in a collection that have loose semantics in
their fields and it becomes really hard to extract these semantics at the code level. What we
can have in the end if schema design is not optimal, is a plain datastore rather than a
database.

Lack of proper ACID guarantees is a recurring complaint from the relational world. Indeed,
if a developer needs access to more than one document at a time it's not easy to guarantee
RDBMS properties as there are no transactions. Having no transactions in the RDBMS sense
also means that complex writes will need to have application level logic to rollback. If you
need to update three documents in two collections to mark an application level transaction
complete and the third document doesn't get updated for whatever reason, the application
will need to undo the previous two writes, something that may not be exactly trivial.

Defaults that favored setting up MongoDB but not operating it in a production environment
are also frowned upon. For years, the default write behavior was write and forget, sending
a write wouldn't wait for an acknowledgement before attempting the next write, resulting
in insane write speeds with poor behavior in case of failure. Authentication is also an
afterthought, leaving thousands of MongoDB databases in the public internet prey to
whoever wants to read the stored data. Even though these were conscious design decisions,
they are decisions that have affected developers' perception of MongoDB.

There are of course good points to be made from criticism. There are use cases where a non
relational, unsupporting transactions database will not be a good choice. Any application
that depends on transactions and places ACID properties higher than anything else is
probably a great use case for a traditional RDBMS but not for a NoSQL database.

MongoDB configuration and best practices

Without diving too deep into why, in this section we present some best practices around
operations, schema design, durability, replication, sharding, and security. More information
as to why and how to implement these best practices will be presented in the respective
chapters and as always with best practices, these have to be taken with a pinch of salt.

[22]

MongoDB — A Database for the Modern Web Chapter 1

Operational best practices

MongoDB as a database is built with developers in mind and developed during the web era
so does not require as much operational overhead as traditional RDBMSs. That being said,
there are some best practices that need to be followed to be proactive and achieve high
availability goals.

In order of importance (somewhat), here they are:

1.

Turn journaling on by default: Journaling uses a write ahead log to be able to
recover in case a mongo server gets shut down abruptly. With MMAPv1 storage
engine, journaling should be always on. With WiredTiger storage engine,
journaling and checkpointing are used together to ensure data durability. In any
case, it's a good practice to use journaling and fine tune the size of journals and
frequency of checkpoints to avoid risk of data loss. In MMAPv1, the journal is
flushed to disk every 100 ms by default. If MongoDB is waiting for the journal
before acknowledging the write operation, the journal is flushed to disk every 30
ms.

Your working set should fit in memory: Again, especially when using MMAPv1
the working set is best being less than the RAM of the underlying machine or
VM. MMAPvV1 uses memory mapped files from the underlying operating system
which can benefit greatly if there isn't much swap happening between RAM and
disk. WiredTiger on the other hand is much more efficient at using memory but
still benefits greatly from the same principles. The working set is at maximum the
datasize plus index size as reported by db.stats ().

Mind the location of your data files: Data files can be mounted anywhere using
the ——dbpath command line option. It is really important to make sure data files
are stored in partitions with sufficient disk space, preferably XFS or at least Ext4.

Keep yourself updated with versions: Odd major numbered versions are the
stable ones. So, 3.2 is stable whereas 3.3 is not. In this example 3.3 is the
development version that will eventually materialize into stable version 3.4 . It's a
good practice to always update to the latest security updated version (3.4.3 at the
time of writing) and consider updating as soon as the next stable version comes
out (3.6 at this example).

. Use Mongo MMS to graphically monitor your service: MongoDB Inc's free

monitoring service is a great tool to get an overview of a MongoDB cluster,
notifications, and alerts and be proactive about potential issues.

[23]

MongoDB — A Database for the Modern Web Chapter 1

6.

10.

11.

12.

Scale up if your metrics show heavy use: Actually not really heavy usage. Key
metrics of >65% in CPU, RAM, or if you are starting to notice disk swapping
should be an alert to start thinking about scaling, either vertically by using bigger
machines or horizontally by sharding.

Be careful when sharding: Sharding is like a strong commitment to your shard
key. If you make the wrong decision it may be really difficult operationally to go
back. When designing for sharding, architects need to take a long and deep
consideration of current workloads both in reads and also writes plus what the
expected data access patterns are.

Use an application driver maintained by the MongoDB team: These drivers are
supported and in general get updated faster than their equivalents. If MongoDB
does not support the language you are using yet, please open a ticket in
MongoDB's JIRA tracking system.

Schedule regular backups: No matter if you are using standalone servers, replica
sets, or sharding, a regular backup policy should also be used as a second level
guard against data loss. XFS is a great choice as a filesystem as it can perform
snapshot backups.

Manual backups should be avoided: Regular automated backups should be
used when possible. If we need to resort to a manual backup then we can use a
hidden member in a replica set to take the backup from. We have to make sure
that we are using db. fsyncwithlock at this member to get the maximum
consistency at this node, along with journaling turned on. If this volume is on
AWS, we can get away with taking an EBS snapshot straight away.

Enable database access control: Never, ever put a database in a production
system without access control. Access control should both be implemented at a
node level by a proper firewall that only allows access to specific application
servers to the database and also in DB level by using the built-in roles, or defining
custom defined ones. This has to be initialized at startup time by using the —-
auth command-line parameter and configured using the admin collection.

Test your deployment using real data: MongoDB being a schema-less document
oriented database means that you may have documents with varying fields. This
means that it's even more important than with an RDBMS to test using data that
resembles production data as closely as possible. A document with an extra field
of an unexpected value can make the difference between an application working
smoothly or crashing at runtime. Try to deploy a staging server using production
level data or at least fake your production data in staging using an appropriate
library like Faker for Ruby.

[24]

MongoDB — A Database for the Modern Web Chapter 1

Schema design best practices

MongoDB is schema-less and you have to design your collections and indexes to
accommodate for this fact:

¢ Index early and often: Identify common query patterns using MMS, Compass
GUI, or logs and index for these early and using as many indexes as possible at
the beginning of a project.

¢ Eliminate unnecessary indexes: A bit counter-intuitive to the preceding
suggestion, monitor your database for changing query patterns and drop the
indexes that aren't being used. An index will consume RAM and I/O as it needs
to be stored and updated alongside with documents in the database. Using an
aggregation pipeline and $indexStats a developer can identify indexes that are
seldom being used and eliminate them.

¢ Use a compound index rather than index intersection: Querying with multiple
predicates (A and B, C or D and E and so on) will most of the time work better
with a single compound index than with multiple simple indexes. Also, a
compound index will have its data ordered by field and we can use this to our
advantage when querying. An index on fields A,B,C will be used in queries for A,
(A,B), (A,B,C) but not in querying for (B,C) or (C) .

e Low selectivity indexes: Indexing a field on gender for example will statistically
still return half of our documents back, whereas an index on last name will only
return a handful of documents with the same last name.

¢ Use of regular expressions: Again, since indexes are ordered by value, searching
using a regular expression with leading wildcards (that is, /. *BASE/) won't be
able to use the index. Searching with trailing wildcards (that is, /DATA. * /) can be
efficient as long as there are enough case sensitive characters in the expression.

¢ Avoid negation in queries: Indexes are indexing values, not the absence of them.
Using NOT in queries can result in full table scans instead of using the index.

¢ Use partial indexes: If we need to index a subset of the documents in a collection,
partial indexes can help us minimize the index set and improve performance. A
partial index will include a condition on the filter that we use in the desired
query.

¢ Use document validation: Use document validation to monitor for new attributes
being inserted to your documents and decide what to do with them. With
document validation set to warn, we can keep a log of documents that were
inserted with arbitrary attributes that we didn't expect during the design phase
and decide if this is a bug or a feature of our design.

[25]

MongoDB — A Database for the Modern Web Chapter 1

¢ Use MongoDB Compass: MongoDB's free visualization tool is great to get a
quick overview of our data and how it grows across time.

¢ Respect the maximum document size of 16 MB: The maximum document size
for MongoDB is 16 MB. This is a fairly generous limit but it is one that should not
be violated under any circumstance. Allowing documents to grow unbounded
should not be an option and as efficient as it may be to embed documents, we
should always keep in mind that this should be under control.

¢ Use the appropriate storage engine: MongoDB has introduced several new
storage engines since version 3.2. The in-memory storage engine should be used
for real-time workloads, whereas the encrypted storage engine should be the
engine of choice when there are strict requirements around data security.

Best practices for write durability

Writing durability can be fine tuned in MongoDB and according to our application design it
should be as strict as possible without affecting our performance goals.

Fine tune data flush to disk interval: In the WiredTiger storage engine, the default is to
flush data to disk every 60 seconds after the last checkpoint, or after 2 GB of data has been
written. This can be changed using the ——wiredTigerCheckpointDelaySecs command-
line option.

In MMAPvV1, data files are flushed to disk every 60 seconds. This can be changed using the
—--syncDelay command-line option:

e With WiredTiger, use the XFS filesystem for multi-disk consistent snapshots
e Turn off atime and diratime in data volumes

e Make sure you have enough swap space, usually double your memory size
e Use a NOOP scheduler if running in virtualized environments

e Raise file descriptor limits to the tens of thousands

¢ Disable transparent huge pages, enable standard 4K VM pages instead

e Write safety should be at least journaled

e SSD read ahead default should be set to 16 blocks, HDD should be 32 blocks
e Turn NUMA off in BIOS

e Use RAID 10

[26]

MongoDB — A Database for the Modern Web Chapter 1

e Synchronize time between hosts using NTP especially in sharded environments

¢ Only use 64-bit builds for production; 32-bit builds are outdated and can only
support up to 2 GB of memory

Best practices for replication

Replica sets are MongoDB's mechanism to provide redundancy, high availability, and
higher read throughput under the right conditions. Replication in MongoDB is easy to
configure and light in operational terms:

¢ Always use replica sets: Even if your dataset is at the moment small and you
don't expect it to grow exponentially, you never know when that might happen.
Also, having a replica set of at least three servers helps design for redundancy,
separating work loads between real time and analytics (using the secondaries)
and having data redundancy built from day one.

¢ Use a replica set to your advantage: A replica set is not just for data replication.
We can and should in most cases use the primary server for writes and
preference reads from one of the secondaries to offload the primary server. This
can be done by setting read preference for reads, together with the correct write
concern to ensure writes propagate as needed.

¢ Use an odd number of replicas in a MongoDB replica set: If a server does down
or loses connectivity with the rest of them (network partitioning), the rest have to
vote as to which one will be elected as the primary server. If we have an odd
number of replica set members, we can guarantee that each subset of servers
knows if they belong to the majority or the minority of the replica set members. If
we can't have an odd number of replicas, we need to have one extra host set as an
arbiter with the sole purpose of voting in the election process. Even a micro
instance in EC2 could serve this purpose.

Best practices for sharding

Sharding is MongoDB's solution for horizontal scaling. In chapter 8, Storage Engines, we
will cover how to use it in more detail, here are some best practices based on the underlying
data architecture:

[27]

MongoDB — A Database for the Modern Web Chapter 1

e Think about query routing: Based on different shard keys and techniques, the
mongos query router may direct the query to some or all of the members of a
shard. It's important to take our queries into account when designing sharding so
that we don't end up with our queries hitting all of our shards.

¢ Use tag aware sharding: Tags can provide more fine-grained distribution of data
across our shards. Using the right set of tags for each shard, we can ensure that
subsets of data get stored in a specific set of shards. This can be useful for data
proximity between application servers, MongoDB shards, and the users.

Best practices for security

Security is always a multi-layered approach and these few recommendations do not form
an exhaustive list, rather just the bare basics that need to be done in any MongoDB
database:

e HTTP status interface should be disabled.

e REST API should be disabled.

¢ JSON API should be disabled.

e Connect to MongoDB using SSL.

e Audit system activity.

e Use a dedicated system user to access MongoDB with appropriate system level
access

¢ Disable server-side scripting if not needed. This will affect MapReduce, built-in
db.group () commands, and $where operations. If these are not used in your
codebase, it is better to disable server-side scripting at startup using the —-
noscripting parameter.

Best practices for AWS

When using MongoDB, we can use our own servers in a datacenter, a MongoDB hosted
solution like MongoDB Atlas, or get instances from Amazon using EC2. EC2 instances are
virtualized and share resources in a transparent way with collocated VMs in the same
physical host. So there are some more considerations to take into account if going down that
route:

¢ Use EBS optimized EC2 instances.

¢ Get EBS volumes with provisioned IOPS (I/O operations per second) for
consistent performance.

[28]

MongoDB — A Database for the Modern Web Chapter 1

¢ Use EBS snapshotting for backup and restore.

¢ Use different Availability Zones for High Availability and different regions for
Disaster Recovery.
Different availability zones within each region that Amazon provides guarantee
that our data will be highly available. Different regions should only be used for
Disaster Recovery in case a catastrophic event ever takes out an entire region. A
region can be EU-West-2 for London, whereas an availability zone is a
subdivision within a region; currently two availability zones are available for
London.

¢ Deploy global, access local.

e For truly global applications with users from different time zones, we should
have application servers in different regions access data that is closest to them
using the right read preference configuration in each server.

Reference documentation

Reading a book is great, reading this book is even greater, but continuous learning is the
only way to keep up to date with MongoDB. These are the places you should go for updates
and development/operational reference.

MongoDB documentation

Online documentation available at: https://docs.mongodb.com/manual/ is the starting
point for every developer, new or seasoned.

The JIRA tracker is a great place to take a look at fixed bugs and features coming up next:
https://jira.mongodb.org/browse/SERVER/.

Packt references

Some other great books on MongoDB are:

e MongoDB for Java developers, by Francesco Marchioni
e MongoDB Data Modeling, by Wilson da Rocha Franca
¢ Any book by Kristina Chodorow

[29]

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/

MongoDB — A Database for the Modern Web Chapter 1

Further reading

The MongoDB user group (https ://groups.google.com/forum/#! forum/mongodbfuser)
has a great archive of user questions about features, and long-standing bugs. It's a place to
go when something doesn't work as expected.

Online forums (Stack Overflow, reddit, among others) are always a source of knowledge
with the trap that something may have been posted a few years ago and may not apply
anymore. Always check before trying.

And finally, MongoDB university is a great place to keep your skills up to date and learn
about the latest features and additions: https://university.mongodb.com/.

Summary

In this chapter, we went on a journey through web, SQL, and NoSQL technologies from
their inception to their current state. We identified how MongoDB has been shaping the
world of NoSQL databases for the past years and how it is positioned against other SQL
and NoSQL solutions.

We explored MongoDB's key characteristics and how MongoDB has been used in
production deployments. We identified best practices for designing, deploying, and
operating MongoDB.

Finally, we learned how to learn by going through documentation and online resources to
stay up to date with latest features and developments.

In the next chapter, we will go deeper into schema design and data modeling and how to
connect to MongoDB both using the official drivers and also using an Object Document
Mapper (ODM), a variation of object-relational mappers for NoSQL databases.

[30]

https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/

Schema Design and Data
Modeling

The second chapter of our book will focus on schema design for schema-less databases such
as MongoDB. This may sound counterintuitive; in fact there are considerations that we
should take into account when developing for MongoDB.

The main points of this chapter are:

¢ Schema considerations for NoSQL

e Data types supported by MongoDB

e Comparison between different data types

¢ How to model our data for atomic operations

Modeling relationships between collections:
e One to one

¢ One to many
e Many to many

How to prepare data for text searches in MongoDB

e Ruby:
e How to connect using the Ruby mongo driver
e How to connect using Ruby's most widely used ODM, Mongoid
e Mongoid model inheritance management

e Python:

How to connect using the Python mongo driver
How to connect using Python's ODM, PyMODM
PyMODM model inheritance management

Schema Design and Data Modeling Chapter 2

e PHP:

Sample code using annotations-driven code

How to connect using the MongoDB PHP driver

How to connect using PHP's ODM, Doctrine

Model inheritance management using Doctrine

Relational schema design

In relational databases, we design with the goal of avoiding anomalies and redundancy.
Anomalies can happen when we have the same information stored in multiple columns; we
update one of them but not the rest and we end up with conflicting information for the
same column of information. An anomaly can also happen when we cannot delete a row
without losing information that we need, possibly in other rows referenced by it. Data
redundancy can happen when our data is not in a normal form, but has duplicate data
across different tables, which can lead to data inconsistency and is difficult to maintain.

In relational databases, we use normal forms to normalize our data. Starting from the basic
INF (first normal form), onto the 2NF, 3NF, and BCNF, we model our data taking
functional dependencies into account and, if we follow the rules, we can end up with many
more tables than domain model objects.

In practice, relational database modeling is often driven by the structure of the data that we
have. In web applications following some sort of MVC model pattern, we will model our
database according to our models, which are modeled after the UML diagram conventions.
Abstractions such the ORM for Django or the Active Record for Rails help application
developers abstract database structure to object models. Ultimately, many times we end up
designing our database based on the structure of the available data. Thus, we are designing
around the answers that we can have.

MongoDB schema design

In contrast to relational databases, in MongoDB we have to base our modeling on our
application-specific data access patterns. Finding out the questions that our users will have
is paramount to designing our entities. In contrast to an RDBMS, data duplication and
denormalization are used far more frequently and with solid reason.

[32]

Schema Design and Data Modeling Chapter 2

The document model that MongoDB uses means that every document can hold
substantially more or less information than the next one, even within the same collection.
Coupled with rich and detailed queries being possible in MongoDB in the embedded
document level, this means that we are free to design our documents in any way that we
want. When we know our data access patterns we can estimate which fields need to be
embedded and which can be split out to different collections.

Read-write ratio

The read to write ratio is often an important design consideration for MongoDB modeling.
When reading data, we want to avoid scatter and gather situations, where we have to hit
several shards with random I/O requests to get the data our application needs.

When writing data, on the other hand, we want to spread out writes to as many servers as
possible, to avoid overloading any single one of them. These goals appear to be conflicting
on the surface but they can be combined once we know our access patterns, coupled with
application design considerations, like using a replica set to read from secondary nodes.

Data modeling

In this section, we will discuss the data types MongoDB uses, how they map to data types
that programming languages use, and how we can model data relationships in MongoDB
using Ruby, Python, and PHP.

Data types

MongoDB uses BSON, a binary-encoded serialization for JSON documents. BSON extends
on JSON data types offering for example, native date and binary data types.

BSON, compared to protocol buffers, allows for more flexible schemas that come at the cost
of space efficiency. In general, BSON is space efficient, easy to traverse, and time-efficient in
encoding/decoding operations.

Type Number | Alias Notes
Double 1 double
String 2 string
Object 3 object

[33]

Schema Design and Data Modeling

Chapter 2

Array 4 array

Binary data 5 binData

Objectld 7 objectId

Boolean 8 bool

Date 9 date

Null 10 null

Regular expression 11 regex

JavaScript 13 javascript

JavaScript (with scope) | 15 javascriptWithScope

32-bit integer 16 int

Timestamp 17 timestamp

64-bit integer 18 long

Decimal128 19 decimal New in version 3.4
Min key -1 minKey

Max key 127 maxKey

Undefined 6 undefined Deprecated
DBPointer 12 dbPointer Deprecated
Symbol 14 symbol Deprecated

MongoDB Documentation https://docs.mongodb.com/manual/reference/bson-types/

In MongoDB, we can have documents with different value types for a given field and
distinguish among them in querying using the $type operator.

For example, if we have a balance field in GBP with 32-bit integers and double data types, if
the balance has pennies in it or not, we can easily query for all accounts that have a rounded
balance with any of the following queries:

db.account.find(
db.account.find(

{ "balance"
{ "balance"

{ stype : 16 } }

{ Stype :

)
"integer" } });

[34]

Schema Design and Data Modeling Chapter 2

Comparing different data types

Due to the nature of MongoDB, it's perfectly acceptable to have different data type objects
in the same field. This may happen by accident or on purpose (that is, null and actual
values in a field)

The sorting order of different types of data is as follows from highest to lowest:

MaxKey (internal type).
Regular expression.
Timestamp.

Date.

Boolean.

ObjectId.

BinData.

Array.

Object.

Symbol, string.

O 0 N U=

U
_— O

. Numbers (ints, longs, doubles).
Null.
. MinKey (internal type).

[—
TN

Non-existent fields get sorted as if they have null in the respective field. Comparing arrays
is a bit more complex. An ascending order of comparison (or <) will compare the smallest
element of each array. A descending order of comparison (or >) will compare the largest
element of each array.

For example, see the following scenario:

> db.types.find()

{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3 1 }

{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5 1 }
In ascending order, this is as follows:

> db.types.find () .sort ({a:1})

{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3 1 }

{ "_id" : ObjectId("5908d59d55454e2de6519c4a™), "a" : [2, 5] }

[35]

Schema Design and Data Modeling Chapter 2

Whereas in descending order it is as follows:

> db.types.find () .sort ({a:-1})
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3 1 }

The same applies when comparing an array with a single number value, as illustrated in the
following example.

Inserting a new document with an integer value of 4:

> db.types.insert ({"a":4})
WriteResult ({ "nInserted" : 1 })

Descending sort:

db.types.find () .sort ({a:-1})

"_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" :
"_id" : ObjectId("5908d73c55454e2de6519c4c"), "a" : 4 }
"_id" : ObjectId("5908d58455454e2de6519¢c49"), "a" : [1, 2, 3 1 }

PN Y
N
(6]
-

Ascending sort:

> db.types.find () .sort ({a:1})

{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3 1 }
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [b, 51 }

{ "_id" : ObjectId("5908d73c55454e2de6519c4c"), "a" 4 }

In each case, we highlighted the values being compared in bold.

Date type

Dates are stored as milliseconds with effect from January 1st, 1970 (epoch time). They are
64-bit signed integers, allowing for a range of 135 million years before and after 1970. A
negative date value denotes a date before January 1st, 1970. The BSON specification refers
to the Date type as UTC datetime.

Dates in MongoDB are stored in UTC. There isn't a timestamp with timezone datatype like in
some relational databases. Applications that need to access and modify timestamps based
on local time should store the timezone offset together with the date and offset dates on an
application level.

In the MongoDB shell, this could be done this way using JavaScript:

var now = new Date();
db.page_views.save ({date: now,
offset: now.getTimezoneOffset () });

[36]

Schema Design and Data Modeling Chapter 2

And then applying the saved offset to reconstruct the original local time:

var record = db.page_views.findOne () ;
var localNow = new Date(record.date.getTime() - (record.offset * 60000)
)i

Objectld

ObjectId is a special data type for MongoDB. Every document has an _id field from
cradle to grave. It is the primary key for each document in a collection and has to be unique.
If we omit this field in a create statement, it will be assigned automatically with an
ObjectId.

Messing with the ObjectId is not advisable but we can use it (with caution!) for our
purposes.

ObjectIdis:

e 12-bytes
e Ordered; sorting by _id will sort by creation time for each document
e Storing the creation time that can be accessed by .getTimeStamp () in the shell

The structure of an ObjectId:

a 4-byte value representing the seconds since the Unix epoch

a 3-byte machine identifier

a 2-byte process id

a 3-byte counter, starting with a random value

112|134 |5|6|7|8]9(10]11(12

identifier id

[37]

Schema Design and Data Modeling Chapter 2

By their structure, Object Ids will be unique for all purposes; however since these are
generated on the client side, one should check the underlying library's source code to verify
that implementation is according to specification.

Modeling data for atomic operations

MongoDB is relaxing many of the typical ACID (Atomicity, Consistency, Isolation,
Durability) constraints found in RDBMSes. In the absence of transactions, it can be
sometimes a pain to keep state consistent across operations, especially in event of failures.

Luckily, some operations are atomic at the document level:

e ypdate ()
e findandmodify ()

® remove ()

These are all atomic (all or nothing) for a single document.

This means that if we embed information in the same document, we can make sure that
they are always in sync.

An example would be an inventory application, with a document per item in our inventory,
where we would need to total available items left, how many have been placed in a
shopping cart in sync, and summing up to the total available items.

With total_available = 5,available_now = 3, shopping_cart_count = 2, this
could look like:

{available_now : 3, Shopping_cart_by: ["userA", "userB"] }

When someone places the item in his/her shopping cart, we can issue an atomic update,
adding his/her userld in the shopping_cart_by field and decreasing the available_now
field by 1 at the same time.

This operation will be guaranteed atomic at the document level. If we need to update
multiple documents within the same collection, the update may update some of the
documents but not all of them and still go through.

[38]

Schema Design and Data Modeling Chapter 2

This pattern can help in some cases but unfortunately not with every case. In many cases,
we need multiple updates being applied all or nothing across documents or even
collections.

A typical example would be a bank transfer between two accounts. We want to subtract x
GBP from user A, then add x to user B. If we fail to do either of the two steps, we should
return to the original state for both balances.

The details of this pattern are outside the scope of this book, but roughly, the idea is to
implement a hand-coded two phase commit protocol. This protocol should create a new
transaction entry for each transfer with every possible state in this transaction such as
initial, pending, applied, done, canceling, and canceled and, based on the state that each
transaction is left at, apply the appropriate rollback function to it.

If you find yourself absolutely needing to implement transactions in a database that was
built to avoid them, take a step back and rethink why you need to do that...

Write isolation

Sparingly, we could use $isolated to isolate writes to multiple documents from other
writers or readers to these documents. In the previous example, we could use $isolated to
update multiple documents and make sure that we update both balances before anyone else
gets the chance to double-spend to drain the source account from its funds.

What this won't give us though, is atomicity, the all-or-nothing approach. So if the update
only partially modifies both accounts, we still need to detect and unroll any modifications
made in the pending state.

$isolated uses an exclusive lock in the entire collection no matter the storage engine used.
This means a severe speed penalty when using it, especially for WiredTiger document level
locking semantics.

$isolated does not work with sharded clusters, which may be an issue when we decide to
go from replica sets to sharded deployment.

[39]

Schema Design and Data Modeling Chapter 2

Read isolation and consistency

MongoDB read operations would be characterized as read uncommitted in a traditional
RDBMS definition. What this means is that by default reads may get values that may not
finally persist to the disk in the event, for example, of data loss or a replica set rollback
operation.

In particular, when updating multiple documents with the default write behavior, lack of
isolation may result in the following results:

¢ Reads may miss documents that were updated during the update operations
¢ Non-serializable operations
¢ Read operations are not point-in-time

These can be resolved by using the $isolated operator with a heavy performance penalty.

Queries with cursors that don't use . snapshot () may also in some cases get inconsistent
results. This can happen if the query's result cursor fetches a document, this document
receives an update while the query is still fetching results and because of insufficient
padding, ends up in a different physical location on disk, ahead of the query's result cursor
position. . snapshot () is a solution for this edge case, with the following limitations:

e It doesn't work with sharding
e It doesn't work with sort () or hint () to force an index to be used
e It still will not provide point-in-time read behavior

If our collection has mostly static data, we can use a unique index in the query field to
simulate snapshot () and still be able to apply sort () toit.

All in all, we need to apply safeguards at the application level to make sure that we won't
end up with unexpected results.

Starting from version 3.4, MongoDB offers a linearizable read concern. With linearizable
read concern from a primary member of a replica set and a majority write concern, we can
ensure that multiple threads can read and write a single document as if a single thread was
performing these operations one after the other. This is considered a linearizable schedule
in RDBMS and MongoDB calls it the real time order.

[40]

Schema Design and Data Modeling Chapter 2

Modeling relationships

In the following sections, we will explain how we can translate relationships in Relational
Database Management Systems theory into MongoDB's document-collection hierarchy. We
will also examine how we can model our data for text search in MongoDB.

One-to-one

Coming from the relational DB world, we identify objects by their relationships. A one-to-
one relationship could be a person with an address. Modeling it in a relational database
would most probably require two tables: a person and an address table with a foreign key
person_id in the address table.

Person Address

A

person _id

The perfect analogy in MongoDB would be two collections, person and address, looking
like this:

> db.Person.findOne ()

{

"_id" : ObjectId("590a530e3e37d79%acac26a4l"), "name" : "alex"
}

> db.Address.findOne ()

{

"_id" : ObjectId("590a537f3e37d79%acac26a42"),

"person_id" : ObjectId("590a530e3e37d79%acac26a41l"),

"address" : "N29DD"

}

Now we can use the same pattern as we do in a relational database to find a person from an
address:

> db.Person.find ({"_id":

db.Address.findOne ({"address":"N29DD"}) .person_id})

{

"_id" : ObjectId("590a530e3e37d79%acac26a4l"), "name" : "alex"

}

[41]

Schema Design and Data Modeling Chapter 2

This pattern is well known and works in the relational world.

In MongoDB, we don't have to follow this pattern and there are more suitable ways to
model these kinds of relationship.

A way in which we would typically model a one-one or one-few relationship in MongoDB
would be through embedding. The same example would then become if the person has two
addresses:

{ "_id" : ObjectId("590a55863e37d79%9acac26a43"), "name" : "alex", "address"
["N29DD", "SWI1ESND"] }

Using an embedded array we can have access to every address this user has. Embedding
querying is rich and flexible so that we can store more information in each document:

{ "_id" : ObjectId("590a56743e37d7%acac26a44"),

"name" : "alex",
"address" : [{ "description" : "home", "postcode" : "N29DD" },
{ "description" : "work", "postcode" : "SWLIESND" }] }

Advantages of this approach:

¢ No need for two queries across different collections

e Can exploit atomic updates to make sure that updates in the document will be
all-or-nothing from the perspective of other readers of this document

¢ Can embed attributes in multiple nest levels creating complex structures

The most notable disadvantage is that the document maximum size is 16 MB so this
approach cannot be used for an arbitrary, ever growing number of attributes. Storing
hundreds of elements in embedded arrays will also degrade performance.

One-to-many, many-to-many

When the number of elements in the many side of the relationship can grow unbounded,
it's better to use references.

References can come in two forms:

From the one-side of the relationship, store an array of many-sided-elements:

> db.Person.findOne ()

{ "_id" : ObjectId("590a530e3e37d7%acac26a41"), "name" : "alex", addresses:
[ObjectID('590a56743e37d7%acac26a44"'),
ObjectID('590a56743e37d7%acac26a46"'),

ObjectID('590a56743e37d7%acac26a54"')] }

[42]

Schema Design and Data Modeling Chapter 2

This way we can get the array of addresses from the one-side and then query with in to get
all the documents from the many-side:

> person = db.Person.findOne ({"name":"mary"})
> addresses = db.Addresses.find({_id: {$in: person.addresses} })

Turning this one-many to many-many is as easy as storing this array in both ends of the
relationship (person and address collections).

From the many-side of the relationship, store a reference to the one-side:

> db.Address.find()

{ "_id" : ObjectId("590a55863e37d7%acac26a44"), "person":
ObjectId("590a530e3e37d7%acac26a41"), "address" : ["N29DD"] }

{ "_id" : ObjectId("590a55863e37d7%acac26a46"), "person":
ObjectId("590a530e3e37d7%acac26a41"), "address" : ["SW1ELND"] }
{ "_id" : ObjectId("590a55863e37d7%acac26a54"), "person":
ObjectId("590a530e3e37d7%acac26a41"), "address" : ["N225Q0G"] }
> person = db.Person.findOne ({"name":"alex"})

> addresses = db.Addresses.find ({"person": person._id})

As we can see, with both designs we need to make two queries to the database to fetch the
information. The second approach has the advantage that it won't let any document grow
unbounded so it can be used in cases where one-many is one-millions.

Modeling data for keyword searches

Searching for keywords in a document is a common operation for many applications. If this
is a core operation, it makes sense to use a specialized store for search, such as Elasticsearch;
however MongoDB can be used efficiently until scale dictates moving to a different
solution.

The basic need for keyword search is to be able to search the entire document for keywords.
For example, with a document in the products collection:

{ name : "Macbook Pro late 2016 15in" ,
manufacturer : "Apple"
price: 2000 ,
keywords : ["Macbook Pro late 2016 15in", "2000", "Apple", "macbook",

"laptop", "computer"]

}

[43]

Schema Design and Data Modeling Chapter 2

We can create a multi-key index in the keywords field:

> db.products.createIndex({ keywords: 1 })

Now we can search in the keywords field for any name, manufacturer, price fields, and also
any of the custom keywords we set up. This is not an efficient or flexible approach as we
need to keep keywords lists in sync, can't use stemming, and can't rank results (it's more
like filtering than searching) with the only upside being implementation time.

Since version 2.4, MongoDB has had a special text index type. This can be declared in one
or multiple fields and supports stemming, tokenization, exact phrase (" "), negation (-), and
weighting results.

Index declaration on three fields with custom weights:

db.products.createIndex ({
name: "text",
manufacturer: "text",
price: "text"
}I
{
weights: { name: 10,
manufacturer: 5,
price: 1 },
name: "ProductIndex"

})

In this example, name is 10 times more important that price but only two from a
manufacturer.

A text index can also be declared with a wildcard, matching all fields that match the
pattern:

db.collection.createIndex ({ "$**": "text" })

This can be useful when we have unstructured data and we may not know all the fields that
they will come with. We can drop the index by name just like with any other index.

The greatest advantage though, other than all the features, is that all record keeping is done
by the database.

[44]

Schema Design and Data Modeling Chapter 2

Connecting to MongoDB

There are two ways to connect to MongoDB. The first is using the driver for your
programming language. The second is by using an ODM layer to map your model objects to
MongoDB in a transparent way. In this section, we will cover both ways using three of the
most popular languages for web application development: Ruby, Python, and PHP.

Connecting using Ruby

Ruby was one of the first languages to have support from MongoDB with an official driver.
The official mongo-ruby-driver on GitHub is the recommended way to connect to a
MongoDB instance.

Installation is as simple as adding it to the Gemfile:
gem 'mongo', '~> 3.4'

You need to install Ruby, then install RVM from https://rvm.io/rvm/
install and finally run gem install bundler for this.

And then in our class we can connect to a database:

require 'mongo'
client = Mongo::Client.new (['127.0.0.1:27017'], database: 'test')

This is the simplest example possible, connecting to a single database instance called test in
our localhost. In most use cases we would at least have a replica set to connect to, as in
the following snippet:

client_host = ['serverl_hostname:serverl_ip, server2_hostname:server2_ip']
client_options = {
database: 'YOUR_DATABASE_NAME',
replica_set: 'REPLICA_SET_NAME',
user: 'YOUR_USERNAME',
password: 'YOUR_PASSWORD'
3

client = Mongo::Client.new(client_host, client_options)

The client_host servers are seeding the client driver with servers to attempt to connect
to. Once connected, the driver will determine the server that it has to connect to according
to the primary/secondary read or write configuration.

The replica_set attribute needs to match the replica set name to be able to connect.

[45]

https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install

Schema Design and Data Modeling Chapter 2

user and password are optional but highly recommended in any MongoDB instance. It's a
good practice to enable authentication by default in the mongod. conf file and we will go
over this in chapter 7. Monitoring, Backup, and Security.

Connecting to a sharded cluster is similar to a replica set with the only difference being that,
instead of supplying the server host/port, we need to connect to the mongo router, the
mongos process.

Mongoid ODM

Using a low-level driver to connect to the MongoDB database is often not the most efficient
route. All the flexibility that a low-level driver provides is offset against longer
development times and code to glue our models with the database.

An ODM (Object Document Mapper) can be the answer to these problems. Just like ORMs,
ODMs bridge the gap between our models and the database. In Rails, the most widely used
MVC framework for Ruby, Mongoid, can be used to model our data in a similar way to
Active Record.

Installing the gem is similar to the Mongo Ruby driver, by adding a single file in the
Gemfile:

gem 'mongoid', '~> 6.1.0'

Depending on the version of Rails, we may need to add the following to application.rb
as well:

config.generators do |g|
g.orm :mongoid
end

Connecting to the database is done through a config file, mongoid. yml. Configuration
options are passed as key-value pairs with semantic indentation. Its structure is similar to
the database.yml used for relational databases.

Some of the options that we can pass through the mongoid. yml file are:

Option Value Description

Database The database name.

Hosts Our database hosts.

Write/w The write concern (default is 1).

[46]

Schema Design and Data Modeling

Chapter 2

Auth_mech

Authentication mechanism. Valid
options are: : scram, :mongodb_cr,
:mongodb_x509, and :plain. The
default option on 3.0 is : scram,
whereas the default on 2.4 and 2.6 is
:plain.

Auth_source

The authentication source for our
authentication mechanism.

Min_pool_size/max_pool_size

Minimum and maximum pool size for
connections.

SSL/ssl_cert/ssl_key/
ssl_key_pass_phrase/ssl_verify

A set of options regarding SSL
connections to the database.

Include_root_in_json

Include the root model name in JSON
serialization.

Include_type_for_serialization

Include the _type field when
serializing MongoDB objects.

Use_activesupport_time_zone

Use activesupport's time zone when
converting timestamps between server
and client.

The next step is to modify our models to be stored in MongoDB. This is as simple as
including one line of code in the model declaration:

class Person
include Mongoid::Document
End

We can also use the following;:

include Mongoid::Timestamps

We use it to generate created_at and updated_at fields in a similar way to Active
Record. Data fields do not need to be declared by type in our models but it's a good practice

to do so. The supported data types are:

® Array
e BigDecimal
® Boolean

® Date

[47]

Schema Design and Data Modeling

Chapter 2

® DateTime

e Float

® Hash

® Integer

® BSON: :0ObjectId
e BSON: :Binary
® Range

® Regexp

e String

e Symbol

e Time

e TimeWithZone

If the types of fields are not defined, fields will be cast to the object and stored in the
database. This is slightly faster but doesn't support all types. If we try to use Bigbecimal,

Date, DateTime, or Range we will get back an error.

Inheritance with Mongoid models

Here you can see an example of inheritance using Mongoid models:

class Canvas

include Mongoid::Document
field :name, type: String

embeds_many :shapes
end

class Shape

include Mongoid::Document

field :x, type: Integer
field :y, type: Integer
embedded_in :canvas

end

class Circle < Shape

field :radius, type: Float

end

class Rectangle < Shape

field :width, type: Float

[48]

Schema Design and Data Modeling Chapter 2

field :height, type: Float
end

Now we have a Canvas class with many Shape objects embedded in it. Mongoid will
automatically create a field, _type to distinguish between parent and child node fields. In
scenarios where documents are inherited from their fields, relationships, validations, and
scopes get copied down into their child documents, but not vice-versa.

embeds_many and embedded_in pair will create embedded subdocuments to store the
relationships. If we want to store these via referencing to ObjectId we can do so by
substituting these with has_many and belongs_to.

More examples on CRUD operations will follow in the next chapter.

Connecting using Python

A strong contender to Ruby and Rails is Python with Django. Similar to Mongoid there is
MongoEngine and an official MongoDB low level driver, PyMongo.

Installing PyMongo can be done using pip or easy_install:

python —m pip install pymongo
python —-m easy_install pymongo

Then in our class we can connect to a database:

>>> from pymongo import MongoClient
>>> client = MongoClient ()

Connecting to a replica set needs a set of seed servers for the client to find out what the
primary, secondary, or arbiter nodes in the set are:

client =
pymongo .MongoClient ('mongodb://user:passwd@nodel:pl, node2:p2/?replicaSet=rs
name"')

Using the connection string URL we can pass a username/password and replicaSet name
all in a single string. Some of the most interesting options for the connection string URL are
presented in the next section.

Connecting to a shard requires the server host and IP for the mongo router, which is the
mongos process.

[49]

Schema Design and Data Modeling Chapter 2

PyMODM ODM

Similar to Ruby's Mongoid, PyYMODM is an ODM for Python that follows closely on
Django's built-in ORM. Installing it can be done via pip:

pip install pymodm

Then we need to edit settings.py and replace the database engine with a dummy
database:

DATABASES = {
'default': |
'ENGINE': 'django.db.backends.dummy'

}

And add our connection string anywhere in settings.py:

from pymodm import connect
connect ("mongodb://localhost:27017/myDatabase", alias="MyApplication")

Here we have to use a connection string that has the following structure:

mongodb:// [username:password@]hostl[:portl] [,host2[:port2],...[,hostN[:port
N]1]1[/[database] [2options]]

Options have to be pairs of name=value with an samp; between each pair. Some interesting
pairs are:

Name Description

minPoolSize/maxPoolSize [Minimum and maximum pool size for connections.

w Write concern option.

wtimeoutMs Timeout for write concern operations.

Journal Journal options.

readPreference Read preference to be used for replica sets. Available

options are: primary, primaryPreferred, secondary,
secondaryPreferred, nearest.

maxStalenessSeconds Specifies, in seconds, how stale (data lagging behind master) a
secondary can be before the client stops using it for read
operations.

SSL Using SSL to connect to the database.

[50]

Schema Design and Data Modeling Chapter 2

authSource Used in conjunction with username, specifies the database
associated with the user's credentials. When we use external
authentication mechanisms this should be $external for
LDAP or Kerberos.

authMechanism * Authentication mechanism can be used for connections.
Available options for MongoDB are:
© SCRAM-SHA-1
© MONGODB-CR
© MONGODB-X509
* MongoDB enterprise (paid version) offers two more options:
© GSSAPI (Kerberos)
© PLAIN (LDAP SASL)

Model classes need to inherit from MongoModel. A sample class will look like this:

from pymodm import MongoModel, fields

class User (MongoModel) :
email = fields.EmailField(primary_key=True)
first_name = fields.CharField()
last_name = fields.CharField()

This has a User class with first_name, last_name, and email fields where email is the
primary field.

Inheritance with PyMODM models

Handling one-one and one-many relationships in MongoDB can be done using references
or embedding. This example shows both ways: references for the model user and
embedding for the comment model:

from pymodm import EmbeddedMongoModel, MongoModel, fields

class Comment (EmbeddedMongoModel) :
author = fields.ReferenceField (User)
content = fields.CharField()

class Post (MongoModel) :
title = fields.CharField()

author = fields.ReferenceField (User)

revised_on = fields.DateTimeField()

content = fields.CharField()

comments = fields.EmbeddedDocumentListField (Comment)

[51]

Schema Design and Data Modeling Chapter 2

Similar to Mongoid for Ruby, we can define relationships as being embedded or referenced,
depending on our design decision.

Connecting using PHP

The MongoDB PHP driver was rewritten from scratch two years ago to support the PHP 5,
PHP 7, and HHVM architectures. The current architecture is shown in the following
diagram:

C driver BSON librar
(libmongoc) (libbson)

[Admin Tools J [ODMs J [Oplog API J [GridFS J
©
=1
2
o PHP Librery
= (Composer: mongodb/mongodb)
S
2 PHP 5.x Driver PHP 7.x Driver HHVM Driver
% (Extension: mongodb) (Extension: mongodb) (Extension: mongodb)

Currently we have official drivers for all three architectures with full support for the
underlying functionality.

Installation is a two-step process. First we need to install the MongoDB extension. This
extension is dependent on the version of PHP (or HHVM) that we have installed and can be
done using brew in Mac. For example with PHP 7.0:

brew install php70-mongodb

[52]

Schema Design and Data Modeling Chapter 2

Then, using composer (a widely used dependency manager for PHP):

composer require mongodb/mongodb

Connecting to the database can then be done by using the connection string URI or by
passing an array of options.

Using the connection string URI we have:

Sclient = new MongoDB\Client ($Suri = 'mongodb://127.0.0.1/', array
SuriOptions = [], array S$driverOptions = [])

For example, to connect to a replica set using SSL authentication:

Sclient = new
MongoDB\Client ('mongodb://myUsername:myPassword@rsl.example.com, rs2.example
.com/?ssl=true& replicaSet=myReplicaSet& authSource=admin') ;

Or we can use the $uriOptions parameter to pass in parameters without using the
connection string URL, like this:

Sclient = new MongoDB\Client (
'mongodb://rsl.example.com, rs2.example.com/"
[
'username' => 'myUsername',
'password' => 'myPassword',
'ssl' => true,
'replicaSet' => 'myReplicaSet',
'authSource' => 'admin',
I
)i

The set of surioptions and the connection string URL options available are analogous to
the ones used for Ruby and Python.

Doctrine ODM

Laravel is one of the most widely used MVC frameworks for PHP, similar in architecture to
Django and Rails from the Python and Ruby worlds respectively. We will follow through
configuring our models using a stack of Laravel, Doctrine, and MongoDB. This section
assumes that Doctrine is installed and working with Laravel 5.x.

[53]

Schema Design and Data Modeling Chapter 2

Doctrine entities are POPO (Plain Old PHP Objects) that, unlike Eloquent, Laravel's
default ORM doesn't need to inherit from the Model class. Doctrine uses the Data Mapper
pattern, whereas Eloquent uses Active Record. Skipping the get () set () methods, a
simple class would look like:

use Doctrine\ORM\Mapping AS ORM;
use Doctrine\Common\Collections\ArrayCollection;
Jx*
* QORM\Entity
* QORM\Table (name="scientist")
*/
class Scientist
{
/*x*
* QORM\Id
* @QORM\GeneratedValue
* QORM\Column (type="integer")
*/
protected $id;
/**
* QORM\Column (type="string")
*/
protected $firstname;
/*x*
* QORM\Column (type="string")
*/
protected $lastname;
/**
* QORM\OneToMany (targetEntity="Theory", mappedBy="scientist",
cascade={"persist"})
* @var ArrayCollection|Theoryl[]
*/
protected $theories;
/**
* @param $firstname
* @param $lastname

*/
public function __construct ($firstname, $lastname)
{

Sthis->firstname = S$firstname;

Sthis->lastname = $lastname;

Sthis->theories = new ArrayCollection;

public function addTheory (Theory $theory)
{

if (!$this->theories—->contains ($theory)) {

[54]

Schema Design and Data Modeling Chapter 2

$theory->setScientist ($this);
$this->theories->add ($theory) ;

}

This POPO-based model used annotations to define field types that need to be persisted in
MongoDB. For example, @QORM\Column (type="string") defines a field in MongoDB with
the string type firstname and lastname as the attribute names, in the respective lines.

There is a whole set of annotations available here nttp://doctrine-orm.readthedocs.io/
en/latest/reference/annotations-reference.html . If we want to separate the POPO
structure from annotations, we can also define them using YAML or XML instead of
inlining them with annotations in our POPO model classes.

Inheritance with Doctrine

Modeling one-one and one-many relationships can be done via annotations, YAML, or
XML. Using annotations, we can define multiple embedded subdocuments within our
document:

/** @Document */
class User

{

//

/** @EmbedMany (targetDocument="Phonenumber") */
private $phonenumbers = array();

//

}
/** @EmbeddedDocument */
class Phonenumber
{
//
}

Here a User document embeds many PhoneNumbers. @EmbedOne () will embed one
subdocument to be used for modeling one-one relationships.

Referencing is similar to embedding:

/** @Document */
class User
{
// .
/**

* @ReferenceMany (targetDocument="Account")

[55]

http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html
http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html

Schema Design and Data Modeling Chapter 2

*/
private $accounts = array();
//
}
/** @Document */
class Account
{
//
}

@ReferenceMany () and @ReferenceOne () are used to model one-many and one-one
relationships via referencing into a separate collection.

Summary

In this chapter, we learned about schema design for relational databases and MongoDB and
how we can achieve the same goal starting from a different starting point.

In MongoDB, we have to think about read/write ratios, the questions that our users will
have in the most common cases, as well as cardinality among relationships.

We learned about atomic operations and how we can construct our queries so that we can
have ACID properties without the overhead of transactions.

We also learned about MongoDB data types, how they can be compared, and some special
data types such as the Object Id that can be used both by the database and for our
advantage.

Starting from modeling simple one-one relationships, we went through one-many and also
many-many relationship modeling, without the need for an intermediate table, like we
would do in a relational database, either using references or embedded documents.

We learned how to model data for keyword searches, one of the features that most
applications need to support in a web context.

[56]

Schema Design and Data Modeling Chapter 2

Finally, we explored different use cases for using MongoDB with three of the most popular
web programming languages. We saw examples using Ruby with the official driver and
Mongoid ODM. Then we explored how to connect using Python with the official driver and
PyMODM ODM, and lastly we worked through an example using PHP with the official
driver and Doctrine ODM.

With all these languages (and many others), there are both official drivers offering support
and full access functionality to the underlying database operations and also object data
modeling frameworks for ease of modeling our data and rapid development.

In the next chapter, we will dive deeper into the MongoDB shell and the operations we can
achieve using it. We will also master using the drivers for CRUD operations on our
documents.

[57]

MongoDB CRUD Operations

In this chapter, we will learn how to use the mongo shell for database administration
operations. Starting with simple CRUD (create, read, update, delete) operations, we will
master scripting from the shell. We will also learn how to write MapReduce scripts from the
shell and contrast them to the aggregation framework, which we will dive deeper into in
Chapter 5, Aggregation. Finally, we will explore authentication and authorization using the
MongoDB community and its paid counterpart, the Enterprise Edition.

CRUD using the shell

The mongo shell is equivalent to the administration console used by relational databases.
Connecting to the mongo shell is as easy as typing the following:

$ mongo

Type it on the command line for standalone servers or replica sets. Inside the shell, we can
view available databases simply by typing the following:

$ db

And connect to a database by typing the following;:

> use <database_name>

MongoDB CRUD Operations Chapter 3

The mongo shell can be used for querying and updating data in our databases. Finding
documents from a collection named books is as easy as the following;:

> db.books.find()
{ "_id" : ObjectId("592033£6141daf984112d07c"), "title" : "mastering
mongoDB", "isbn" : "101" }

And inserting this document in the books collection can be done via the following:

> db.books.insert ({title: 'mastering mongoDB', isbn: '101'})
WriteResult ({ "nInserted" : 1 })

The result we get back from MongoDB informs us that the write succeeded and inserted
one new document in the database.

Deleting this document has similar syntax and results:

> db.books.remove ({isbn: '101'})
WriteResult ({ "nRemoved" : 1 })

Try to update this same document:

> db.books.update ({isbn:'101"'}, {price: 30})

WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
> db.books.find()
{ "_id" : ObjectId("592034c7141daf984112d07d"), "price" : 30 }

Here, we notice a couple of things:

e First, the JSON-like formatted field in the update command is our query to
search for documents to update.

e The WriteResult object notifies us that the query matched one document and
notified one document.

e Most importantly, the contents of this document were entirely replaced by the

contents of the second JSON-like formatted field. We lost information on the title
and ISBN!

By default, the update command in MongoDB will replace the contents of our document
with the document we specify in the second argument. If we want to update the document
and add new fields to it we need to use the $set operator like this:

> db.books.update ({isbn:'101"'}, {S$set: {price: 30}})
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

[59]

MongoDB CRUD Operations Chapter 3

Now our document matches what we would expect:

> db.books.find ()
{ "_id" : ObjectId("592035f6141daf984112d07£f"), "title" : "mastering
mongoDB", "isbn" : "101", "price" : 30 }

However, deleting a document can be done in several ways, the most simple of which is by
its unique ObjectId:

> db.books.remove ("592035f6141daf984112d07f")
WriteResult ({ "nRemoved" : 1 })

> db.books.find()

>

We can see here that when there are no results, the mongo shell will not return anything
other than the shell prompt itself >.

Scripting for the mongo shell

Administering the database using built-in commands is helpful but is not the main reason
for using the shell. The true power of the mongo shell comes from the fact that it is a
JavaScript shell.

We can declare and assign variables in the shell:

> var title = 'MongoDB in a nutshell'

> title

MongoDB in a nutshell

> db.books.insert ({title: title, isbn: 102})

WriteResult ({ "nInserted" : 1 })

> db.books.find()

{ "_id" : ObjectId("59203874141daf984112d080"), "title" : "MongoDB in a
nutshell", "isbn" : 102 }

In the previous example, we declared a new title variable as MongoDB in a nutshell and
used the variable to insert a new document into our books collection, as shown.

As it's a JavaScript shell, we can use it for functions and scripts that generate complex
results from our database.

> queryBooksByIsbn = function(isbn) { return db.books.find({isbn: isbn})}

[60]

MongoDB CRUD Operations Chapter 3

With this one-liner we are creating a new function named queryBooksByIsbn that takes a
single argument, the isbn value. With the data that we have in our collection we can use
our new function and get back books by ISBN:

> queryBooksByIsbn ("101")
{ "_id" : ObjectId("592035f6141daf984112d07f"), "title" : "mastering
mongoDB", "isbn" : "101", "price" : 30 }

Using the shell, we can write and test these scripts. Once we are satisfied we can store them
in . js files and invoke them directly from the command line:

$ mongo <script_name>.js
Some useful notes about the default behavior of these scripts:

¢ Write operations will use a default write concern of 1, which is global for
MongoDB as of the current version. Write concern 1 will request an ack that the
write operation has propagated to the standalone mongod or the primary in a
replica set.

¢ To get results from operations from a script back to standard output, we must use
either JavaScript's built-in print () function or the mongo-specific print json ()
function, which prints out results formatted in JSON.

Differences between scripting for the mongo shell and
using it directly

When writing scripts for the mongo shell we cannot use the shell helpers. MongoDB's
commands like use <database_name>, show collections, and other helpers are built
into the shell and so are not available from the JavaScript context where our scripts will get

executed. Fortunately, there are equivalents to them that are available from the JavaScript
execution context, as shown in the following table:

Shell helpers JavaScript equivalents

show dbs, show databases|db.adminCommand('listDatabases')

use <database_name> db = db.getSiblingDB ('<database_name>")
show collections db.getCollectionNames ()

show users db.getUsers ()

show roles db.getRoles ({showBuiltinRoles: true})

[61]

MongoDB CRUD Operations Chapter 3

show log <logname> db.adminCommand ({ 'getLog' : '<logname>' })
show logs db.adminCommand ({ 'getLog' : '*' })
it cursor = db.collection.find()
if (cursor.hasNext ()){
cursor.next () ;
}

In the previous table, it is the iteration cursor that the mongo shell returns when we query
and get back too many results to show in one batch.

Using the mongo shell, we can script almost anything that we would from a client, meaning
that we have a really powerful tool for prototyping and getting quick insights into our data.

Batch inserts using the shell

When using the shell, many times we want to insert a large number of documents
programmatically. The most straightforward implementation, since we have a JavaScript
shell, is to iterate through a loop, generating each document along the way and performing
a write operation in every iteration in the loop like this:

> authorMongoFactory = function() {for (loop=0;1loop<1000; loop++)
{db.books.insert ({name: "MongoDB factory book" + loop})}}

function () {for (loop=0;1loop<1000;loop++) {db.books.insert ({name: "MongoDB
factory book"™ + loop}) }+}

In this simple example, we create an authorMongoFactory () method for an author who
writes 1,000 books on MongoDB with a slightly different name for each one:

> authorMongoFactory ()

This will result in 1,000 writes being issued to the database. This, while convenient, is
significantly harder for the database to handle.

[62]

MongoDB CRUD Operations Chapter 3

Instead, using a bulk write, we can issue a single database insert command with the 1,000
documents that we have prepared beforehand:

> fastAuthorMongoFactory = function() {
var bulk = db.books.initializeUnorderedBulkOp () ;
for (loop=0; 1loop<1000; loop++) {bulk.insert ({name: "MongoDB factory book" +

loop}) }
bulk.execute();

}

The end result is the same as before, with 1,000 documents following this structure in our
books collection:

> db.books.find()

{ "_id" : ObjectId("59204251141daf984112d851"), "name" : "MongoDB factory
book0" }

{ "_id" : ObjectId("59204251141daf984112d852"), "name" : "MongoDB factory
bookl" }

{ "_id" : ObjectId("59204251141daf984112d853"), "name" : "MongoDB factory
book2" }

{ "_id" : ObjectId("59204251141daf984112d853"), "name" : "MongoDB factory
book999" }

The difference from the user's perspective lies in speed of execution and reduced strain on
the database.

In the preceding example, we used initializeUnorderedBulkOp () for the bulk
operation builder setup. The reason we did that is because we don't care about the order of
insertions being the same as the order in which we add them to our bulk variable with the
bulk.insert () command.

This makes sense when we can make sure that all operations are unrelated to each other or
idempotent.

If we care about having the same order of insertions we can use
initializeOrderedBulkOp (), changing the second line of our function to this:

var bulk = db.books.initializeOrderedBulkOp () ;

[63]

MongoDB CRUD Operations Chapter 3

Batch operations using the mongo shell

In the case of inserts, we can generally expect that the order of operations doesn't matter.

Bulk, however, can be used with many more operations than just inserts. In the following
example, we have a single book with isbn : 101 and the name Mastering MongoDBin a
bookOrders collection with the number of available copies to purchase in the available
field, with 99 books available for purchase:

> db.bookOrders.find ()
{ "_id" : ObjectId("59204793141daf984112dc3c"), "isbn" : 101, "name"

"Mastering MongoDB", "available" : 99 }

With the following series of operations in a single bulk operation we are adding 1 book to
the inventory and then ordering 100 books, for a final total of 0 copies available:

Number of
available books
100—7
99
| |
0 | |
add order(subtract)
one
x axis is "inventory orders from/to our warehouse"

> var bulk = db.bookOrders.initializeOrderedBulkOp () ;

> bulk.find({isbn: 101}) .updateOne ({$inc: {available : 1}});

> bulk.find({isbn: 101}) .updateOne ({$inc: {available : -100}});
> bulk.execute () ;

Because we are using initializeOrderedBulkOp () we can make sure that we are adding
one book before ordering 100 so that we are never out of stock. On the contrary, if we were
using initializeUnorderedBulkOp () then we wouldn't have such a guarantee and we
might end up with the 100-book order coming in before the addition of the new book,
resulting in an application error as we don't have that many books to fulfill the order.

[64]

MongoDB CRUD Operations Chapter 3

When executing through an ordered list of operations, MongoDB will split the operations
into batches of 1,000 and group these by operation. For example, if we have 1,002 inserts,
then 998 updates, then 1,004 deletes, and finally 5 inserts we will end up with the following:

1000 inserts]
2 inserts]
998 updates]
1000 deletes]
4 deletes]

5 inserts]

[
[
[
[
[
[

1) 1000 inserts

1) 1004 inserts ———» ’
2) 4 inserts

2) 998 updates ——» 3) 998 updates

3) 1004 deletes —» 4) 1000 deletes

5) 4 deletes

4) 5 inserts e
) 6) 5 inserts

Diagram with the series of inserts

This doesn't affect the series of operations, but implicitly means that our operations will
leave the database in batches of 1,000. This behavior is not guaranteed to stay in future
versions (!).

If we want to inspect the execution of a bulk.execute () command we can issue
bulk.getOperations () right after we execute ().

Since version 3.2 MongoDB has offered an alternative command for bulk
writes, BulkWrite ().

BulkWrite arguments are the series of operations we want to execute, WriteConcern
(default is again 1), and if these should go in order (they will be ordered by default):

> db.collection.bulkWrite (
[<operation 1>, <operation 2>, ...],
{

writeConcern : <document>,

[65]

MongoDB CRUD Operations Chapter 3

ordered : <boolean>

)
Operations are the same ones supported by Bulk:

® insertOne
® updateOne
e updateMany
® deleteOne
® deleteMany

® replaceOne

updateOne, deleteOne, and replaceOne have matching filters; if they match more than
one document, they will only operate on the first one. It's important to design these queries
so that they don't match more than one documents or else behavior will be undefined.

Administration

Using MongoDB should most of the time feel and be transparent to the developer. Since
there are no schemas, there is no need for migrations and generally developers find
themselves spending less time on administrative tasks in the database world.

That being said, there are several tasks that an experienced MongoDB developer or architect
can perform to keep MongoDB up to speed and performing as well as it can.

At the process level, there is the shutDown command to shut down the MongoDB server.
At the database level we have the following;:

e dropDatabase
e listCollections
e copyDB or clone to clone a remote database locally

e repairDatabase when our database is not in a consistent state due to an
unclean shutdown

[66]

MongoDB CRUD Operations Chapter 3

Whereas at the collection level there are the following:

® drop to drop a collection

e create to create a collection

e renameCollection to rename a collection

e cloneCollection to clone a remote collection to our local DB

e cloneCollectionAsCapped to clone a collection into a new capped collection
e convertToCapped to convert a collection to a capped one

At the index level we can use the following:

® createlndexes
e listIndexes
e dropIndexes

® relndex

We will also go through a few other commands that are more important from an
administration standpoint.

fsync

MongoDB normally writes all operations to the disk every 60 seconds. £sync will force data
to persist to disk immediately and synchronously.

If we want to take a backup of our databases we need to apply a lock as well. Locking will
block all writes and some reads while f£sync is operating.

In almost all cases, it's better to use journaling and refer to our techniques for backup and
restore in Chapter 7, Monitoring, Backup, and Security, for maximum availability and
performance.

compact

MongoDB documents take up a specified amount of space on disk. If we perform an update
that increases the size of a document this may end up being moved out of sequence to the
end of the storage block, creating a hole in storage, resulting in increased execution times
for this update, and possibly missing it from running queries. The compact operation will
defragment space resulting in less space being used.

[67]

MongoDB CRUD Operations Chapter 3

Doc|Doc| .. Doc SSD/HDD
D12 N

— —

100 100 100

Bytes Bytes Bytes

2) DOC 2 size=90 Bytes of data,10B padding

3) Update Doc 2. New size 110 Bytes

4) Dj(?c >< Dﬁc D(2)C
—
empty 120 Bytes
space

compact can also take a paddingFactor argument as follows:

> db.runCommand ({ compact: '<collection>', paddingFactor: 2.0 })

paddingFactor is preallocated space in each document that ranges from 1.0 (no padding,
the default value) to 4.0 for calculated padding of 300 bytes for each 100 bytes of document
space needed when we initially insert it.

Adding padding can help alleviate the problem of updates moving documents around, at
the expense of more disk space being needed for each document when created.

currentOp/killOp

db.currentOp () will show us the current running operation in the database and will
attempt to kill it. We need to run the use admin command before running ki110p ().
Needless to say, using kil1lOp () against internal MongoDB operations is not
recommended or advised as the database may end up in an undefined state:

> db.runCommand({ "killOp": 1, "op": <operationId> })

[68]

MongoDB CRUD Operations Chapter 3

collMod

collMod is used to pass flags to a collection modifying the underlying database's behavior.

Since version 3.2, the most interesting set of flags that we can pass to a collection is
document validation.

Document validation can specify a set of rules to be applied to new updates and inserts into
a collection. This means that current documents will get checked if they get modified.

We can only apply validations to documents that are already valid if we set
validationLevel to moderate. By specifying validationAction we can log documents
that are invalid by setting it to warn or prevent updates from happening altogether by
setting it to error.

For example, with the previous example of BookOrders we can set a validator on the isbn
and name fields being present for every insert or update like this:

> db.runCommand({ collMod: "bookOrders",

"validator" : {
"Sand" : [
{
"isbn" : {
"Sexists" : true
;
}I
{
"name" : {
"Sexists" : true

}

H)

Here, we get back:
{ "ok" . 1 }

Then if we try to insert a new document with only the isbn field being present, we get an
error:

> db.bookOrders.insert ({isbn: 102})
WriteResult ({

"nInserted" : O,

"writeError" : {

"code" : 121,

[69]

MongoDB CRUD Operations Chapter 3

"errmsg" : "Document failed validation"
}
})

>

We get an error because our validation failed. Managing validation from the shell is really
useful as we can write scripts to manage them and also make sure that everything is in
place.

touch

The touch command will load data and/or index data from storage to memory. This is
typically useful if our script will subsequently use this data, speeding up execution:

> db.runCommand ({ touch: "bookOrders", data: true/false, index: true/false

H)

This command should be used with caution in production systems, as loading data and
indexes into memory will displace existing data from it.

MapReduce in the mongo shell

One of the most interesting features, which has been underappreciated and not widely
supported throughout MongoDB history, is the ability to write MapReduce natively using
the shell.

MapReduce is a data processing method for getting aggregation results from large sets of
data. The main advantage is that it is inherently parallelizable as evidenced by frameworks
such as Hadoop.

MapReduce is really useful when used to implement a data pipeline. Multiple MapReduce
commands can be chained to produce different results. An example would be aggregating
data by different reporting periods (hour, day, week, month, year) where we use the output
of each more granular reporting period to produce a less granular report.

A simple example of MapReduce in our examples would be as follows, given that our input
books collection is as follows:

> db.books.find()

{ "_id" : ObjectId("592149c4aabac953a3ale3le"), "isbn" : "101", "name"
"Mastering MongoDB", "price" : 30 }
{ "_id" : ObjectId("59214bclaabac954263b24e0"), "isbn" : "102", "name"
"MongoDB in 7 years", "price" : 50 }

[70]

MongoDB CRUD Operations Chapter 3

{ "_id" : ObjectId("59214bclaabac954263b24el"), "isbn" : "103", "name"
"MongoDB for experts", "price" : 40 }

And our map and reduce functions are defined as follows:

> var mapper = function() {
emit (this.id, 1);
}i

In this mapper, we simply output a key of the id of each document with a value of 1:

> var reducer = function(id, count) {
return Array.sum(count);

i
In the reducer, we sum across all values (where each one has a value of 1):

> db.books.mapReduce (mapper, reducer, { out:"books_count" });
{

"result" : "books_count",
"timeMillis" : 16613,
"counts" : {

"input" : 3,

"emit" : 3,

"reduce" : 1,

"output" : 1

}I

"ok" : 1

}

> db.books_count.find()

{ "_id" : null, "value" : 3 }
>

Our final output is a document with no ID, since we didn't output any value for id, and a
value of 6, since there are six documents in the input dataset.

Using MapReduce, MongoDB will apply map to each input document, emitting key-value
pairs at the end of the map phase. Then each reducer will get key-value pairs with the same
key as input, processing all multiple values. The reducer's output will be a single key-value
pair for each key.

Optionally, we can use a finalize function to further process the results of the mapper
and reducer. MapReduce functions use JavaScript and run within the mongod process.
MapReduce can output inline as a single document, subject to the 16 MB document size

limit, or as multiple documents in an output collection. Input and output collections can be
sharded.

[71]

MongoDB CRUD Operations Chapter 3

MapReduce concurrency

MapReduce operations will place several short-lived locks that should not affect operations.
However, at the end of the reduce phase, if we are outputting data to an existing collection,
then output actions such as merge, reduce, and replace will take an exclusive global
write lock for the whole server, blocking all other writes in the db instance. If we want to
avoid that we should invoke MapReduce in the following way:

> db.collection.mapReduce (
mapper,
reducer,

{

out: { merge/reduce: bookOrders, nonAtomic: true

H)

We can apply nonAtomic only to merge or reduce actions. replace will just replace the
contents of documents in bookOrders, which would not take much time anyway.

With the merge action, the new result is merged with the existing result if the output
collection already exists. If an existing document has the same key as the new result, then it
will overwrite that existing document.

With the reduce action, the new result is processed together with the existing result if the
output collection already exists. If an existing document has the same key as the new result,
it will apply the reduce function to both the new and the existing documents and overwrite
the existing document with the result.

Although MapReduce has been present since the early versions of MongoDB, it hasn't
evolved as much as the rest of the database, resulting in its usage being less than that of
specialized MapReduce frameworks such as Hadoop, which we will learn more about in
Chapter 9, Harnessing Big Data with MongoDB.

Incremental MapReduce

Incremental MapReduce is a pattern where we use MapReduce to aggregate to previously
calculated values. An example would be counting non-distinct users in a collection for
different reporting periods (that is, hour, day, month) without the need to recalculate the
result every hour.

[72]

MongoDB CRUD Operations Chapter 3

To set up our data for incremental MapReduce we need to do the following;:

¢ Output our reduce data to a different collection

¢ At the end of every hour, query only for the data that got into the collection in the
last hour

e With the output of our reduce data, merge our results with the calculated results
from the previous hour

Following up on the previous example, let's assume that we have a published field in each
of the documents, with our input dataset being:

> db.books.find()

{ "_id" : ObjectId("592149c4aabac953a3ale3le"), "isbn" : "101", "name"
"Mastering MongoDB", "price" : 30, "published"

ISODate ("2017-06-25T00:00:00Z") }

{ "_id" : ObjectId("59214bclaabac954263b24e0"), "isbn" : "102", "name"
"MongoDB in 7 years", "price" : 50, "published"

ISODate ("2017-06-26T00:00:00Z") }

Using our previous example of counting books we would get the following;:

var mapper = function() {
emit (this.id, 1);
bi
var reducer = function(id, count) {
return Array.sum(count);

bi

> db.books.mapReduce (mapper, reducer, { out: "books_count" })
{

"result" : "books_count",
"timeMillis" : 16700,
"counts" : {

"input" : 2,

"emit" : 2,

"reduce" : 1,

"output" : 1

}I

"ok" : 1

}
> db.books_count.find()
{ "_id" : null, "value" : 2 }

[73]

MongoDB CRUD Operations Chapter 3

Now we get a third book in our mongo_books collection with a document:

{ "_id" : ObjectId("59214bclaabac954263b24el"), "isbn" : "103", "name"
"MongoDB for experts", "price" : 40, "published"

ISODate ("2017-07-01T00:00:002") }

> db.books.mapReduce (mapper, reducer, { query: { published: { $gte:
ISODate ('2017-07-01 00:00:00") } }, out: { reduce: "books_count" } })
> db.books_count.find()

{ "_id" : null, "value" : 3 }

What happened here, is that by querying for documents in July 2017 we only got the new
document out of the query and then used its value to reduce the value with the already
calculated value of 2 in our books_count document, adding 1 to the final sum of three
documents.

This example, as contrived as it is, shows a powerful attribute of MapReduce: the ability to
re-reduce results to incrementally calculate aggregations over time.

Troubleshooting MapReduce

Throughout the years, one of the major shortcomings of MapReduce frameworks has been
the inherent difficulty in troubleshooting as opposed to simpler non-distributed patterns.
Most of the time, the most effective tool is debugging using log statements to verify that
output values match our expected values. In the mongo shell, this being a JavaScript shell,
this is as simple as outputting using the console.log () function.

Diving deeper into MapReduce in MongoDB we can debug both in the map and the reduce
phase by overloading the output values.

Debugging the mapper phase, we can overload the emit () function to test what the output
key values are:

> var emit = function (key, value) {
print ("debugging mapper's emit");
print ("key: " + key + " wvalue: " + tojson(value));

}

We can then call it manually on a single document to verify that we get back the key-value
pair that we would expect:

> var myDoc = db.orders.findOne({ _id:
ObjectId("50a8240b927d5d8b5891743c") });
> mapper.apply (myDoc) ;

[74]

MongoDB CRUD Operations Chapter 3

The reducer function is somewhat more complicated. A MapReduce reducer function must
meet the following criteria:

e It must be idempotent
¢ The order of values coming from the mapper function should not matter for the
reducer's result

e The reduce function must return the same type of result as the mapper function

We will dissect these following requirements to understand what they really mean:

¢ It must be idempotent: MapReduce by design may call the reducer multiple
times for the same key with multiple values from the mapper phase. It also
doesn't need to reduce single instances of a key as it's just added to the set. The
final value should be the same no matter the order of execution. This can be
verified by writing our own "verifier" function forcing the reducer to re-reduce or
by executing the reducer many, many times:

reduce (key, [reduce(key, wvaluesArray)]) == reduce(key,
valuesArray)

¢ It must be commutative: Again, because multiple invocations of the reducer may
happen for the same key, if it has multiple values, the following should hold:

reduce (key, [C, reduce(key, [A, B])]) == reduce(key, [C,
A, B 1)

¢ The order of values coming from the mapper function should not matter for
the reducer's result: We can test that the order of values from the mapper doesn't
change the output for the reducer by passing in documents to the mapper in a
different order and verifying that we get the same results out:

reduce(key, [A, B]) == reduce(key, [B, A])

¢ The reduce function must return the same type of result as the mapper
function: Hand-in-hand with the first requirement, the type of object that the
reduce function returns should be the same as the output of the mapper function.

[75]

MongoDB CRUD Operations Chapter 3

Aggregation framework

Since version 2.2, MongoDB has provided a better way to work with aggregation, one that
has been supported, adopted, and enhanced regularly ever since. The aggregation
framework is modeled after data processing pipelines.

In data processing pipelines there are two main operations: filters that operate like queries,
filtering documents, and document transformations that transform documents to get them
ready for the next stage.

SQL to aggregation

An aggregation pipeline can replace and augment querying operations in the shell. A
common pattern for development is:

¢ Verify that we have the correct data structures and get quick results using a series
of queries in the shell
e Prototype pipeline results using the aggregation framework

¢ Refine and refactor if/when needed either by ETL processes to get data into a
dedicated data warehouse or by more extensive usage of the application layer to
get the insights that we need

In the following table, we can see how SQL commands map to the aggregation framework
operators:

SQL Aggregation framework
WHERE / HAVING |$match

GROUP BY Sgroup

SELECT Sproject

ORDER BY Ssort

LIMIT $limit

sum () / count () | $sum

join $lookup

[76]

MongoDB CRUD Operations Chapter 3

Aggregation versus MapReduce

In MongoDB, we can essentially get data out of our database using three methods:
querying, the aggregation framework, and MapReduce. All three of them can be chained to
each other and many times it is useful to do so; however it's important to understand when
we should use aggregation and when MapReduce may be a better alternative.

We can use both aggregation and MapReduce with sharded databases.

Aggregation is based on the concept of a pipeline. As such, it's important to be able to
model our data from input to final output, in a series of transformations and processing that
can get us there. It's also mostly useful when our intermediate results can be used on their
own, or feed parallel pipelines. Our operations are limited by the operators that we have
available from MongoDB so it's important to make sure that we can calculate all the results
we need using available commands.

MapReduce on the other hand, can be used to construct pipelines by chaining the output of
one MapReduce job to the input of the next one via an intermediate collection but this is not
its primary purpose.

MapReduce's most common use case is to periodically calculate aggregations for large
datasets. Having MongoDB's querying in place we can incrementally calculate these
aggregations without the need to scan through the whole input table every time. In
addition, its power comes from its flexibility as we can define mappers and reducers in
JavaScript with the full flexibility of the language when calculating intermediate results.
Not having the operators that the aggregation framework provides us, we have to
implement them on our own.

In many cases, the answer is not either/or. We can (and should) use the aggregation
framework to construct our ETL pipeline and resort to MapReduce for the parts that are not
yet supported sufficiently by it.

A complete use case with aggregation and MapReduce is provided in Chapter 5,
Aggregation.

[77]

MongoDB CRUD Operations Chapter 3

Securing the shell

MongoDB is a database developed with ease of development in mind. As such, security at
the database level was not baked in from the beginning and it was up to the developers and
administrators to secure the MongoDB host from access outside the application server.

Unfortunately, this means that, as far as back as 2015, 39,890 databases were found open to
the internet, with no security access configured. Many of them were production databases,
one belonging to a French telecom operator and containing more than 8 million records
from its customers.

Nowadays, there is no excuse for leaving any MongoDB server with the default
authentication off settings, at all stages of development from local server deployment to
production.

Authentication and authorization

Authentication and authorization are closely connected and sometimes confused.
Authentication is about verifying the identity of a user to the database. An example of
authentication is SSL, where the web server is verifying its identity, that it is who it claims
to be, to the user.

Authorization is about determining what actions a user can take on a resource. In the next
paragraphs, we will discuss authentication and authorization with these definitions in
mind.

Authorization with MongoDB

MongoDB's most basic authorization relies on the username/password method. By default,
MongoDB will not start with authorization enabled. To enable it, we need to start our server
with the ——auth parameter:

$ mongod —--auth

[78]

MongoDB CRUD Operations Chapter 3

To set up authorization, we need to start our server without authorization to set up a user.
Setting up an admin user is as simple as follows:

> use admin
> db.createUser (
{
user: <adminUser>,
pwd: <password>,
roles: [{ role: <adminRole>, db: "admin" }]
}
)

Here, <adminUser> is the name of the user we want to create, <password> is the
password, and <adminRole> can be any of the following values ordered from more
powerful to least:

® root

e dbAdminAnyDatabase

e userAdminAnyDatabase
e recadWriteAnyDatabase
e readAnyDatabase

e dbOwner

e dbAdmin

® userAdmin

e readWrite

® read

Of these roles, root is the superuser allowed access to everything. This is not recommended
to be used, except for special circumstances.

All the AnyDatabase roles provide access to all databases, of which dbAdminAnyDatabase
combines the userAdminAnyDatabase and readWriteAnyDatabase scopes, being an
admin again, in all databases.

[79]

MongoDB CRUD Operations Chapter 3

The rest of the roles are defined in the database that we want them to apply, by changing
the roles subdocument of the preceding db.createUser (). For example, to create a
dbAdmin for our mongo_book database , we would use the following:

> db.createUser (
{
user: <adminUser>,
pwd: <password>,
roles: [{ role: "dbAdmin", db: "mongo_book" }]
}
)

Cluster administration has even more roles, which we will cover in more depth in chapter
10, Replication.

Finally, when we restart our database with the —-auth flag set, we can use either the
command line or the connection string (from any driver) to connect as admin and create
new users with predefined or custom defined roles:

mongodb:// [username:password@]hostl[:portl] [,host2[:port2],...[,hostN[:port
N]11[/[database] [?options]]

Security tips for MongoDB

Common software system security precautions apply with MongoDB. We will outline some
of them here and how to enable them.

Encrypting communication using TLS/SSL

Communication between the mongod or mongos server and the client mongo shell or
applications should be encrypted. This is supported in most MongoDB distributions from
3.0 and onwards but we need to take care that we download the proper version with SSL
support.

After that, we need to get a signed certificate from a trusted certificate authority or sign our
own. Using self-signed certificates is fine for pre-production systems but in production it
will mean that mongo servers won't be able to verify our identity, leaving us susceptible to
man-in-the-middle attacks; thus using a proper certificate is highly recommended.

To start our MongoDB server with SSL we need the following;:

$ mongod --sslMode requireSSL --sslPEMKeyFile <pem> --sslCAFile <ca>

[80]

MongoDB CRUD Operations Chapter 3

Where <pem> is our . pem signed certificate file and <ca> is the . pem root certificate from
the certificate authority that contains the root certificate chain.

These options can also be defined in our configuration file mongod. conf or mongos.conf
in a YAML file format:

net:
ssl:
mode: requireSSL
PEMKeyFile: /etc/ssl/mongodb.pem
CAFile: /etc/ssl/ca.pem
disabledProtocols: TLS1_0,TLS1_1,TLS1_2

Here, we specified a PEMKeyFile, a CAFile, and also that we won't allow the server to
start with certificates that follow the TLS1_0, TLS1_1 or TLS1_2 versions. These are the
available versions for disabledProtocols at this time.

Encrypting data

Using WiredTiger is highly recommended for encrypting data at rest as it supports it
natively from version 3.2.

For users of the community version, this can be achieved in the storage selection of their
choice, for example in AWS using EBS-encrypted storage volumes.

This feature is available only for MongoDB Enterprise Edition.

Limiting network exposure

The oldest security method to secure any server is to disallow it from accepting connections
from unknown sources. In MongoDB, this is done in a configuration file with a simple line:

net:
bindIp: <string>

Her, <string> is a comma-separated list of IPs that the MongoDB server will accept
connections from.

[81]

MongoDB CRUD Operations Chapter 3

Firewalls and VPNs

Together with limiting network exposure on the server side, we can use firewalls to prevent
access to our network from the outside internet. VPNs can also provide tunneled traffic
between our servers but shouldn't be used as our sole security mechanism regardless.

Auditing

No matter how secure any system is, we need to keep a close eye on it from an auditing
perspective to make sure that we detect possible breaches and stop them as soon as
possible.

This feature is available only for MongoDB Enterprise Edition.

For users of the community version, we have to set up auditing manually by logging
changes to documents and collections in the application layer, possibly in a different
database altogether. This will be addressed in the next chapter, which covers advanced
querying using client drivers.

Use secure configuration options

It goes without saying that sane configuration options should be used. We must use one of
the following:

1. MapReduce.
2. mongo shell group operation or a group operation from our client driver.
3. $where JavaScript server evaluation.

If we don't, we should disable server-side scripting by using the —~—noscripting option on
the command line when we start our server.

Number 2 in the previous list can be a tricky one as many drivers may use MongoDB's
group () command when we issue group commands in the driver; however, given the
limitations that group () has in terms of performance and output documents, we should
rethink our design to use the aggregation framework or application side aggregations.

[82]

MongoDB CRUD Operations Chapter 3

The web interface also has to be disabled, by not using any of the following commands:

e net.http.enabled
e net.http.JSONPEnabled
e net.http.RESTInterfaceEnabled

On the contrary, wireObjectCheck needs to remain enabled, as it is by default, as this
ensures that all documents stored by the mongod instance are valid BSON.

Authentication with MongoDB

By default, MongoDB uses SCRAM-SHA-1 as the default challenge and response
authentication mechanism. This is an SHA-1 username/password-based mechanism for
authentication. All drivers and the mongo shell itself have built-in methods to support it.

This has changed since version 3.0 . In older versions the less secure
0 MONGODB-CR was used.

Enterprise Edition

MongoDB's Enterprise Edition is a paid subscription product offering more features around
security and administration.

Kerberos authentication

MongoDB Enterprise Edition also offers Kerberos authentication. Kerberos, named after the
character Kerberos (or Cerberus) from Greek mythology, the ferocious three-headed guard
dog of the underworld, Hades, focuses on mutual authentication between client-server
protecting against eavesdropping and replay attacks.

[83]

MongoDB CRUD Operations Chapter 3

Kerberos is widely used in Windows systems, through integration with Microsoft's Active
Directory. To install Kerberos, we need to start mongod without Kerberos set up and then
connect to the $external database (not the admin that we normally use for admin
authorization) and create a user with a Kerberos role and permissions:

use S$external
db.createUser (

{
user: "mongo_book_user@packt.net",
roles: [{ role: "read", db: "mongo_book" }]

)

In the preceding example, we are authorizing the mongo_book_user@packt . net user to
read our mongo_book database, just like we would do with a user using our admin
system.

After that, we need to start our server with Kerberos support by passing in the
authenticationMechanisms parameter:

—-—-setParameter authenticationMechanisms=GSSAPI

And now we can connect from our server or command line:

$ mongo.exe --host <mongoserver> --authenticationMechanism=GSSAPI --
authenticationDatabase="'$external' —--username mongo_book_user@packt.net
LDAP authentication

Similar to Kerberos authentication, we can also use LDAP in MongoDB Enterprise Edition
only.

Setting up a user has to be done in the $external database and must match the name of
the authentication LDAP name. The name may need to pass through a transformation and
this may cause a mismatch between the LDAP name and the user entry in the $Sexternal
database. Setting up LDAP authentication is beyond the scope of this book but the
important thing to consider is that any changes in the LDAP server may need changes in
the MongoDB server; they won't happen automatically.

[84]

MongoDB CRUD Operations Chapter 3

Summary

In this chapter, we scratched the tip of the iceberg with CRUD operations. Starting from the
mongo shell, we learned how to insert, delete, read, and modify documents. We also
discussed the differences between one-off inserts and inserting in batches for performance.

Following that, we discussed administration tasks and how to perform them in the mongo
shell. MapReduce and its successor, aggregation framework, were also discussed in this
chapter: how they compare, how to use them, and how we can translate SQL queries to
aggregation framework pipeline commands.

Finally, we discussed security and authentication with MongoDB. Securing our database is
of paramount importance; we will learn more about this in chapter 7, Monitoring, Backup,
and Security.

In the next chapter, we will dive deeper into CRUD using three of the most popular
languages for web development: Ruby, Python, and PHP.

[85]

Advanced Querying

In the previous chapter, we showed how to use the shell for scripting, administration, and
developing in a secure way. In this chapter, we will dive deeper into using MongoDB with
drivers and popular frameworks from Ruby, Python, and PHP.

We will also show best practices for using these languages and the variety of comparison
and update operators that MongoDB supports on a database level and which are accessible
through Ruby, Python, and PHP.

The frameworks that we will use for each language are:

¢ Ruby: mongo-ruby-driver and Mongoid
¢ Python: mongo-python-driver and PyMODM
e PHP: mongo-php-driver and Doctrine

MongoDB CRUD operations

In this section we will cover CRUD operations using Ruby, Python, and PHP with the
official MongoDB driver and some popular frameworks for each language respectively.

CRUD using the Ruby driver

In the previous chapter, we covered how to connect to MongoDB from Ruby, Python, and
PHP using the drivers and ODM. In this chapter, we will explore create, read, update,
and delete operations using the official drivers and the most commonly used Object
Document Mapper (ODM) frameworks.

Advanced Querying Chapter 4

Creating documents

Using the process described in chapter 2, Schema Design and Data Modeling, we assume that
we have an @collection instance variable pointing to our books collection in a
mongo_book database in the 127.0.0.1:27017 default database:

@collection = Mongo::Client.new(['127.0.0.1:27017'], :database =>
'mongo_book"') .database [:books]

Inserting a single document with our definition:

document = { isbn: '101', name: 'Mastering MongoDB', price: 30}
Can be done with a single line of code as follows:

result = (@collection.insert_one (document)

The resulting object is a Mongo: : Operation: :Result class with content similar to what
we had in the shell:

{"n"=>1, "ok"=>1.0}

Here, n is the number of affected documents; 1 means we inserted one object and ok means
1 (true).

Creating multiple documents in one step is similar to this. For two documents with isbn
102 and 103 and using insert_many instead of insert_one, we have:

documents = [{ isbn: '102', name: 'MongoDB in 7 years', price: 50 },
{ isbn: '103', name: 'MongoDB for experts', price: 40 }]
result = (@collection.insert_many (documents)

The resulting object is now a Mongo: : BulkWrite: :Result class, meaning that the
BulkWrite interface was used for improved performance.

The main difference is that now we have an attribute, inserted_ids, which will return
ObjectId of the inserted objects from the BSON: : ObjectId class.

Read

Finding documents is done in the same way as creating them, at the collection level:

Qcollection.find({ isbn: '101"' })

[87]

Advanced Querying

Chapter 4

Multiple search criteria can be chained and are equivalent to an AND operator in SQL:

@collection.find({ isbn: '101', name: 'Mastering MongoDB' })

The mongo-ruby-driver provides several query options to enhance queries, the most widely
used of which are listed in this table:

Option

Description

allow_partial_results

This is for use with sharded clusters. If a shard is down, it
allows the query to return results from the shards that are
up, potentially only getting a portion of the results.

batch_size (Integer)

Can change the batch size that the cursor will fetch from
MongoDB. This is done on each GETMORE operation (for
example, typing it on the mongo shell)

comment (String)

With this command we can add a comment in our query for
documentation reasons.

hint (Hash)

We can force usage of an index using hint ().

limit (Integer)

We can limit the result set to the number of documents
specified by Integer.

max_scan (Integer)

We can limit the number of documents that will be scanned.
This will return incomplete results and is useful if we are
performing operations that we want to guarantee that they
won't take a long time, such as, for example, if we connect to
our production database.

no_cursor_timeout

If we don't specify this parameter, MongoDB will close any
inactive cursor after 600 seconds. With this parameter our
cursor will never be closed.

projection (Hash)

We can use this parameter to fetch or exclude specific
attributes from our results. Will reduce data transfer over

the wire. An example would be:
client[:books].find.projection(:price => 1)

read (Hash)

We can specify a read preference to be applied only for this
query:

client[:books].find.read(:mode =>
:secondary_preferred)

[88]

Advanced Querying Chapter 4

show_disk_loc (Boolean) | We should use this option if for some reason we want to
find the actual location of our results on disk

skip (Integer) To skip the specified number of documents. Useful for
pagination of results.

snapshot To execute our query in snapshot mode. This is useful when
we want more stringent consistency.

sort (Hash) We can use this to sort our results. For example:
client[:books].find.sort (:name => -1)

On top of the query options, mongo-ruby-driver provides some helper functions that can be
chained at the method call level:

¢ .count: Total count for the preceding query

e .distinct (:field_name): Distinguish the results of the preceding query by
:field_name

Find () returns a cursor containing the result set, which we can iterate using .each in Ruby
like every other object:

result = @collection.find({ isbn: '101"' })
result.each do |doc]|

puts doc.inspect
end

The output is as follows for our books collection:

{"_id"=>BSON: :ObjectId('592149c4aabac953a3ale3le'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}

Chaining operations in find()

find (), by default, uses an AND operator to match multiple fields. If we want to use an OR
operator, our query needs to be like this:

result = @collection.find('Sor' => [{ isbn: '101' }, { isbn: '102' }]).to_a
puts result

{"_id"=>BSON: :0ObjectId('592149c4aabac953a3ale3le'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}{"_1id"=>BSON::0bjectId('59214bclaabac954263b24e0"),
"isbn"=>"102", "name"=>"MongoDB in 7 years", "price"=>50.0,
"published"=>2017-06-26 00:00:00 UTC}

[89]

Advanced Querying Chapter 4

We can also use $and instead of $or in the previous example:

result = @collection.find('$Sand' => [{ isbn: '101' }, { isbn: '102'
}]) .to_a
puts result

This, of course, will return no results since no document can have both isbn 101 and 102.

An interesting and hard bug to find is if we define the same key multiple times, like this:

result = Qcollection.find({ isbn: '101', isbn: '102' })
puts result

{"_id"=>BSON: :ObjectId('59214bclaabac954263b24e0"'), "isbn"=>"102",
"name"=>"MongoDB in 7 years", "price"=>50.0, "published"=>2017-06-26
00:00:00 UTC}

Whereas the opposite order will cause the document with isbn 101 to be returned:

result = @collection.find({ isbn: '102', isbn: '101' })

puts result

{"_1id"=>BSON: :0bjectId('592149c4aabac953a3ale3le'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}

This is because, in Ruby hashes, by default all duplicated keys except for
the last one are silently ignored. This may not happen in the simplistic
form shown in the preceding example, but is prone to happen if we create
keys programmatically.

Nested operations

Accessing embedded documents in mongo-ruby-driver is as simple as using the dot
notation:

result = (@collection.find({'meta.authors': 'alex giamas'}).to_a
puts result

"_id"=>BSON: :0bjectId('593c24443c8cab5b969c4c54"'), "isbn"=>"201",
"name"=>"Mastering MongoDB, 2nd Edition", "meta"=>{"authors"=>"alex
giamas"}}

We need to enclose the key name in quotes (' ') to access the embedded
object, just as we need it for operations starting with $, such as '$set'.

[90]

Advanced Querying Chapter 4

Update

Updating documents using the mongo-ruby-driver is chained to finding them. Using our
example collection books, we can do:

@collection.update_one({ 'isbn': 101}, { 'S$set' => { name: 'Mastering
MongoDB, 2nd Edition' } })

This finds the document with isbn 101 and changes its name to Mastering MongoDB,
2nd Edition.

Similar to update_one, we can use update_many to update multiple documents retrieved
via the first parameter of the method.

If we don't use the $set operator, the contents of the document will be
replaced by the new document.

Assuming Ruby version >=2.2 , keys can be unquoted or quoted, but keys that start with $
need to be quoted like this:

@collection.update({ isbn: '101'}, { "S$set": { name: "Mastering MongoDB,
2nd edition" } })

The resulting object of an update will contain information about the operation, including
these methods:

ok?: A Boolean value that shows whether the operation was successful or not
e matched_count: The number of documents matching the query
e modified_count: The number of documents affected (updated)

¢ upserted_count: The number of documents upserted if the operation includes
$set

e upserted_id: The unique ObjectId of the upserted document if there is one

Updates that modify fields of a constant data size will be in place, meaning that they won't
move the document from its physical location on disk. This includes, for example,
operations such as $inc and $set on the Integer and Date fields.

Updates that can increase the size of a document may result in the document being moved
from its physical location on disk to a new location at the end of the file. In this case, queries
may miss or return the document multiple times. To avoid this, we can use $snapshot:
true while querying.

[91]

Advanced Querying Chapter 4

Delete

Deleting documents works similarly to finding documents. We need to find documents and
then apply the delete operation.

For example, with our books collection used before, we can issue:
@collection.find({ isbn: '"101' }).delete_one

This will delete a single document. In our case, since isbn is unique for every document,
this is expected. If our £ind () clause had matched multiple documents, then delete_one
would have deleted just the first one that £ind () returns, which may or may not be what
we want.

If we use delete_one with a query matching multiple documents, the
results may be unexpected.

If we want to delete all documents matching our £ind () query, we have to use
delete_many, like this:

@collection.find({ price: { S$gte: 30 }).delete_many

In the preceding example, we are deleting all books that have a price greater than or equal
to 30.

Batch operations

We can use the BulkWrite API for batch operations. In our previous insert many
documents example, this would be:

@collection.bulk_write ([{ insertMany: documents

o
ordered: true)

The BulkWrite API can take the following parameters:

® insertOne
e updateOne
® updateMany

[92]

Advanced Querying Chapter 4

® replaceOne
® deleteOne

® deleteMany

One version of these commands will insert/update/replace/delete a single document
even if the filter that we specify matches more than one document. In this case, it's
important to have a filter that matches a single document to avoid unexpected behaviors.

It's also possible, and a perfectly valid use case, to include several operations in the first
argument of the bulk_write command. This allows us to issue commands in a sequence
when we have operations that depend on each other and we want to batch them in a logical
order according to our business logic. Any error will stop ordered: true batch writes and
we will need to manually roll back our operations. A notable exception is writeConcern
errors, for example requesting a majority of our replica set members to acknowledge our
write. In this case, batch writes will go through and we can observe the errors in the
writeConcernErrors result field.

0old_book = @collection.findOne (name: 'MongoDB for experts')

new_pook = { isbn: 201, name: 'MongoDB for experts, 2nd Edition', price: 55
}

@collection.bulk_write ([{deleteOne: old_book}, { insertOne: new_book

o
ordered: true)

In the previous example, we made sure that we deleted the original book before adding the
new (and more expensive) edition of our MongoDB for experts book.

BulkWrite can batch up to 1,000 operations. If we have more than 1,000 underlying
operations in our commands, these will be split into chunks of thousands. It is a good
practice to try to keep our write operations to a single batch if we can, to avoid unexpected
behavior.

CRUD in Mongoid

In this section, we will use Mongoid to perform create, read, update, and delete
operations. All of the code is also available on GitHub at:

https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4

[93]

https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4

Advanced Querying Chapter 4

Read

Back in chapter 2, Schema Design and Data Modeling, we described how to install, connect,
and set up models, including inheritance to Mongoid. Here we will go through the most
common use cases of CRUD.

Finding documents is done using a DSL similar to Active Record:
Book.find ('592149c4aabac953a3alel3le’')

This will find by ObjectId and return the document with isbn 101, as will the query by
name attribute:

Book.where (name: 'Mastering MongoDB')

In a similar fashion to dynamically generated active record queries by attribute, we can use
the helper:

Book.find_by (name: 'Mastering MongoDB')
This queries by attribute name, equivalent to the previous query.

We should enable QueryCache to avoid hitting the database for the same query multiple
times, like this:

Mongoid: :QueryCache.enabled = true

This can be added in any code block we want to enable or in the initializer for Mongoid.

Scoping queries
We can scope queries in Mongoid using class methods:

Class Book

def self.premium
where (price: {'S$Sgt': 20'})
end
End

Then use this:

Book.premium

[94]

Advanced Querying Chapter 4

It will query for books with price greater than 20.

Create, update, and delete

The Ruby interface for creating documents is similar to Active Record:
Book.where (isbn: 202, name: 'Mastering MongoDB, 3rd Edition') .create

This will return an error if the creation fails.

We can use the bang version to force an exception to be raised if saving the document fails:
Book.where (isbn: 202, name: 'Mastering MongoDB, 3rd Edition') .create!

The bulk write API is not supported as of Mongoid version 6.x . The workaround is to use
mongo-ruby-driver API, which will not use the mongoid.yml configuration or custom
validations; or you can use insert_many ([array_of_documents]), which will insert the
documents one by one.

To update documents, we can use update or update_all. update will update only the
first document retrieved by the query part, whereas update_all will update all of them:

Book.where (isbn: 202) .update (name: 'Mastering MongoDB, THIRD Edition')
Book.where (price: { 'S$gt': 20 }).update_all (price_range: 'premium')

Deleting a document is similar to creating it, providing delete to skip callbacks and
destroy if we want to execute any available callbacks in the affected document.

delete_all and destroy_all are convenience methods for multiple documents.

destroy_all should be avoided if possible as it will load all documents
into the memory to execute callbacks and thus can be memory-intensive.

CRUD using the Python driver

PyMongo is the officially supported driver for Python by MongoDB. In this section, we will
use PyMongo to create, read, update, and delete documents in MongoDB.

[95]

Advanced Querying Chapter 4

Create and delete

The Python driver provides methods for CRUD just like Ruby and PHP. Following on from
Chapter 2, Schema Design and Data Modeling, and the books variable that points to our
books collection, we can have:

from pymongo import MongoClient
from pprint import pprint

>>> book = {
'isbn': '301"',
'name': 'Python and MongoDB',
'price': 60

}
>>> insert_result = books.insert_one (book)
>>> pprint (insert_result)

<pymongo.results.InsertOneResult object at 0x104b£f3370>

>>> result = list (books.find())
>>> pprint (result)

[{u'_id': ObjectId('592149c4aabac953a3ale3le"),
u'isbn': u'101',

u'name': u'Mastering MongoDB',

u'price': 30.0,

u'published': datetime.datetime (2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bclaabac954263b24e0"'),
u'isbn': u'102',

u'name': u'MongoDB in 7 years',

u'price': 50.0,

u'published': datetime.datetime (2017, 6, 26, 0, 0)},
{u'_id': ObjectId('593c24443c8ca55b969c4ch4"'),
u'isbn': u'201"',

u'meta': {u'authors': u'alex giamas'},

u'name': u'Mastering MongoDB, 2nd Edition'},
{u'_id': ObjectId('594061a9%aabac94b7¢c858d3d'),
u'isbn': u'301',

u'name': u'Python and MongoDB',

u'price': 60}]

In the previous example, we used insert_one () to insert a single document, which we
can define using the Python dictionary notation; we can then query it for all documents in
the collection.

[96]

Advanced Querying Chapter 4

The resulting object for insert_one and insert_many has two fields of interest:

e Acknowledged: A Boolean that is t rue if the insert has succeeded and false if it
hasn't or if write concern is 0 (fire and forget write)

e inserted_idfor insert_one: The ObjectId of the written document and
inserted_ids for insert_many: The array of ObjectIds of the written
documents

We used the pprint library to pretty-print the £ind () results. The built-in way to iterate
through the result set is by using this:

for document in results:
print (document)

Deleting documents is similar to creating them. We can use delete_one to delete the first
instance or delete_many to delete all instances of the matched query.

>>> result = books.delete_many({ "isbn": "101" })
>>> print (result.deleted_count)
1

The deleted_count tells us how many documents were deleted; in our case, it is 1 even
though we used the delete_many method.

To delete all documents from a collection, we can pass in the empty document { }.

To drop a collection, we can use drop () :

>>> books.delete_many ({})
>>> books.drop ()

Finding documents

To find documents based on top-level attributes, we can simply use a dictionary:

>>> books.find({"name": "Mastering MongoDB"})

[{u'_id': ObjectId('592149c4aabac953a3ale3le"),
u'isbn': u'lio01"',

u'name': u'Mastering MongoDB',

u'price': 30.0,

u'published': datetime.datetime (2017, 6, 25, 0, 0)}]

[971]

Advanced Querying Chapter 4

To find documents in an embedded document, we can use the dot notation. In the following
example, we use meta.authors to access the authors embedded document inside the
meta document:

>>> result = list (books.find({"meta.authors": {"$regex": "alLEx",
"Soptions": "i"}1}))
>>> pprint (result)

[{u'_id': ObjectId('593c24443c8cab5b969c4c54"'),
u'isbn': u'201"',

u'meta': {u'authors': u'alex giamas'},
u'name': u'Mastering MongoDB, 2nd Edition'}]

In this example, we used a regular expression to match aLEx, case-insensitive, in every
document in which the string is mentioned in the meta.authors embedded document.
PyMongo uses this notation for regular expression queries, called the $regex notation in
MongoDB documentation. The second parameter is the options parameter for $regex,
which we'll explain in great detail in the Using reqular expressions section later in this
chapter.

Comparison operators are also supported, a full list of which is given in the Comparison
operators section later in this chapter:

>>> result = list (books.find({ "price": { "Sgt":40 } }))
>>> pprint (result)

[{u'_id': ObjectId('594061a%aabac94b7c858d3d"),
u'isbn': u'301',

u'name': u'Python and MongoDB',

u'price': 60}]

Adding multiple dictionaries in our query results in a logical AND query:

>>> result = list (books.find({"name": "Mastering MongoDB", "isbn": "101"}))
>>> pprint (result)

[{u'_id': ObjectId('592149c4aabac953a3ale3le"'),
u'isbn': u'101',

u'name': u'Mastering MongoDB',

u'price': 30.0,

u'published': datetime.datetime (2017, 6, 25, 0, 0)}]

[98]

Advanced Querying Chapter 4

For books having both isbn=101 and name=Mastering MongoDB, to use logical operators
such as sor and $and we have to use this syntax:

>>> result = list (books.find({"S$or": [{"isbn": "101"}, {"isbn": "102"}]}))
>>> pprint (result)

[{u'_id': ObjectId('592149c4aabac953a3ale3le"),
u'isbn': u'101"',

u'name': u'Mastering MongoDB',

u'price': 30.0,

u'published': datetime.datetime (2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bclaabac954263b24e0"'),
u'isbn': u'102',

u'name': u'MongoDB in 7 years',

u'price': 50.0,

u'published': datetime.datetime (2017, 6, 26, 0, 0)}]

For books having an isbn of 101 or 102, if we want to combine AND and OR operators we
have to use the $and operator like this:

>>> result = list (books.find({"S$or": [{"$and": [{"name": "Mastering
MongoDB", "isbn": "101"}]}, {"$and": [{"name": "MongoDB in 7 years",
"isbn": "102"}]1}1}))

>>> pprint (result)

[{u'_id': ObjectId('592149c4aabac953a3ale3le"),
u'isbn': u'101',

u'name': u'Mastering MongoDB',

u'price': 30.0,

u'published': datetime.datetime (2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bclaabac954263b24e0"'),
u'isbn': u'102',

u'name': u'MongoDB in 7 years',

u'price': 50.0,

u'published': datetime.datetime (2017, 6, 26, 0, 0)}]

For a result of OR between 2 queries.

e The first query is asking for documents that have isbn=101 AND
name=Mastering MongoDB

¢ The second query is asking for documents that have isbn=102 AND
name=MongoDB in 7 years

e The result is the union of these two datasets

[99]

Advanced Querying Chapter 4

Updating documents

>>> result = books.update_one ({"isbn": "101"}, {"S$set": {"price": 100}})
>>> print (result.matched_count)

1

>>> print (result.modified_count)

1

Similar to inserting documents, when updating we can use update_one or update_many:

e The first argument here is the filter document for matching the documents that
will be updated

e The second argument is the operation to be applied to the matched documents

e The third (optional) argument is upsert=false (default) or t rue, used to create
a new document if it's not found

Another interesting argument is the optional bypass_document_validation=false
(default) or t rue. This will ignore validations (if there are any) for the documents in the
collection.

The resulting object will have mat ched_count for the number of documents that matched
the filter query and modified_count for the number of documents that were affected by
the update part of the query.

In our example, we are setting price=100 for the first book with isbn=101 through the
$set update operator. A list of all update operators is shown in the Update operators section
later in this chapter.

If we don't use an update operator as the second argument, the contents of
the matched document will be entirely replaced by the new document.

CRUD using PyMODM

PyMODM is a core ODM that provides simple and extensible functionality. It is developed
and maintained by MongoDB's engineers, who get fast updates and support for the latest
stable version of MongoDB available.

[100]

Advanced Querying Chapter 4

In chapter 2, Schema Design and Data Modeling, we explored how to define different models
and connect to MongoDB. CRUD when using PyMODM, as with every ODM, is simpler
than when using the low-level drivers.

Creating documents

A new user object as defined in chapter 2, Schema Design and Data Modeling, can be created
with a single line:

>>> user = User ('alexgiamas@packt.com', 'Alex', 'Giamas') .save ()

In this example, we used positional arguments in the same order they were defined in the
user model to assign values to the user model attributes.

We can also use keyword arguments or a mix of both, like this:

>>> user = User (email='alexgiamas@packt.com', 'Alex',
last_name='Giamas') .save ()

Bulk saving can be done by passing in an array of users to bulk_create ():

>>> users = [userl, user2,...,userN]
>>> User.bulk_create (users)

Updating documents

We can modify a document by directly accessing the attributes and calling save () again:

>>> user.first_name = 'Alexandros'
>>> user.save ()

If we want to update one or more documents, we have to use raw () to filter out the
documents that will be affected and chain update () to set the new values:

>>> User.objects.raw ({'first_name': {'S$Sexists': True}})
.update ({'$set': {'updated_at': datetime.datetime.now() }})

In the preceding example, we search for all User documents that have a first name and set a
new field, updated_at, to the current timestamp. The result of the raw () method is
QuerySet, a class used in PyMODM to handle queries and work with documents in bulk.

[101]

Advanced Querying Chapter 4

Deleting documents

Deleting an API is similar to updating—using QuerysSet to find the affected documents and
then chaining on a .delete () method to delete them:

>>> User.objects.raw({'first_name': {'Sexists': True}}).delete()

BulkWrite APIis still not supported at the time of writing this book (June 2017) and the
relevant ticket, PYMODM-43, is open. Methods such as bulk_create () will, under the
hood, issue multiple commands to the database.

Querying documents

Querying is done using QuerySet as described before in update and delete operations.
Some convenience methods available are:

e all()

e count ()

e first ()

e exclude (*fields) to exclude some fields from the result

e only (*fields) toinclude only some fields in the result (this can be chained for
a union of fields)

e limit (1limit)

e order_bpy (ordering)

e reverse () if we want to reverse the order_by () order

e skip (number)

e values () to return Python dict instances instead of model instances

By using raw (), we can use the same queries that we described in the PyMongo section
before for querying and still exploit the flexibility and convenience methods provided by
the ODM layer.

CRUD using the PHP driver

In PHP, there is a new driver called mongo-php-1ibrary that should be used instead of
the deprecated MongoClient. The overall architecture was explained in Chapter 2, Schema
Design and Data Modeling. Here, we will cover more details of the API and how we can
perform CRUD operations using it.

[102]

Advanced Querying Chapter 4

Create and delete

Sdocument = array("isbn" => "401", "name" => "MongoDB and PHP");
Sresult = $collection->insertOne ($document) ;
var_dump (Sresult) ;

This is the output:

MongoDB\InsertOneResult Object
(
[writeResult:MongoDB\InsertOneResult:private] =>
MongoDB\Driver\WriteResult Object
(
nInserted] => 1
nMatched] => 0
nModified] => 0
nRemoved] => 0
nUpserted] => 0
upsertedIds] => Array
(
)

[writeErrors] => Array
(
)

[writeConcernError] =>

[writeConcern] => MongoDB\Driver\WriteConcern Object
(
)

[insertedId:MongoDB\InsertOneResult:private] => MongoDB\BSON\ObjectID
Object

[oid] => 5941ac50aabac9dlefedalsd?

[isAcknowledged:MongoDB\InsertOneResult:private] => 1
)

The rather lengthy output contains all the information that we may need. We can get the
ObjectId of the document inserted; the number of inserted, matched, modified, removed,
and upserted documents by fields prefixed with n; and information about writeError or
writeConcernError.

[103]

Advanced Querying Chapter 4

There are also convenience methods in the $result object if we want to get the
information:

e Sresult->getInsertedCount (): To get the number of inserted objects
e Sresult->getInsertedId(): To getthe ObjectId of the inserted document

We can also use the —>insertMany () method to insert many documents at once, like this:

SdocumentAlpha = array("isbn" => "402", "name" => "MongoDB and PHP, 2nd
Edition");

SdocumentBeta = array("isbn" => "403", "name" => "MongoDB and PHP,
revisited");

Sresult = $collection->insertMany ([$documentAlpha, $documentBetal);

print_r ($result);

The result is:

(
[writeResult:MongoDB\InsertManyResult:private] =>
MongoDB\Driver\WriteResult Object
(
nInserted] => 2
nMatched] => 0
nModified] => 0
nRemoved] => 0
nUpserted] => 0
upsertedIds] => Array
(
)

[
[
[
[
[
[

[writeErrors] => Array
(
)
[writeConcernError] =>
[writeConcern] => MongoDB\Driver\WriteConcern Object

(
)

[insertedIds:MongoDB\InsertManyResult:private] => Array
(
[0] => MongoDB\BSON\ObjectID Object

(
[oid] => 5941ae85aabac9dldl6c63a?

[104]

Advanced Querying Chapter 4

[1] => MongoDB\BSON\ObjectID Object

(
[oid] => 5941ae85aabac9dldl6c63a3

[isAcknowledged:MongoDB\InsertManyResult:private] => 1
)

Again, Sresult->getInsertedCount () will return 2, whereas
$result->getInsertedIds () will return an array with the two newly created

ObjectIds:

array (2) A

[0]=>
object (MongoDB\BSON\ObjectID) #13 (1) {
["oid"]=>

string(24) "594lae85aabac9dldl6c63a2”
;

[1]=>
object (MongoDB\BSON\ObjectID) #14 (1) A
["oid"]=>

string(24) "594lae85aabac9dldl6c63a3”

}
}

Deleting documents is similar to inserting but with the delete0One () and deleteMany ()
methods; an example of deleteMany () is shown here:

SdeleteQuery = array("isbn" => "401");
SdeleteResult = S$collection->deleteMany (SdeleteQuery);

print_r (Sresult);
print ($deleteResult->getDeletedCount ());

Here is the output:

MongoDB\DeleteResult Object

(
[writeResult :MongoDB\DeleteResult:private] => MongoDB\Driver\WriteResult

Object

[nInserted] => 0
[nMatched] => 0
[nModified] => 0
[nRemoved] => 2

[105]

Advanced Querying Chapter 4

[nUpserted] => 0
[upsertedIds] => Array
(
)

[writeErrors] => Array
(
)
[writeConcernError] =>
[writeConcern] => MongoDB\Driver\WriteConcern Object

(
)

[isAcknowledged:MongoDB\DeleteResult:private] => 1

)
2

In this example, we used —>getDeletedCount () to get the number of affected documents,
which is printed out in the last line of the output.

Bulk write

The new PHP driver supports the bulk write interface to minimize network calls to
MongoDB:

Smanager = new MongoDB\Driver\Manager ('mongodb://localhost:27017");
Sbulk = new MongoDB\Driver\BulkWrite (array ("ordered" => true));

Sbulk->insert (array ("isbn" => "401", "name" => "MongoDB and PHP"));
$bulk->insert (array ("isbn" => "402", "name" => "MongoDB and PHP, 2nd
Edition™));

Sbulk—->update (array ("isbn" => "402"), array('S$set' => array("price" =>
15)));

$Sbulk->insert (array ("isbn" => "403", "name" => "MongoDB and PHP,
revisited"));

Sresult = S$manager—->executeBulkWrite ('mongo_book.books', S$bulk);

print_r (Sresult);

The result is:

MongoDB\Driver\WriteResult Object

(
[nInserted] => 3

[106]

Advanced Querying Chapter 4

[nMatched] => 1
[nModified] => 1
[nRemoved] => 0
[nUpserted] => 0
[upsertedIds] => Array
(
)

[writeErrors] => Array
(
)
[writeConcernError] =>
[writeConcern] => MongoDB\Driver\WriteConcern Object

(
)

)

In the preceding example, we executed two inserts, one update, and a third insert in an
ordered fashion. The WriteResult object contains a total of three inserted documents and
one modified document.

The main difference compared to simple create/delete queries is that executeBulkWrite ()
is a method of the MongoDB\Driver\Manager class, which we instantiate on the first line.

Read

Querying an interface is similar to inserting and deleting, with the findone () and £ind ()
methods used to retrieve the first result or all results of a query:

Sdocument = S$collection->findOne(array ("isbn" => "101"));
Scursor = S$collection->find(array("name" => new
MongoDB\BSON\Regex ("mongo", "i")));

In the second example, we are using a regular expression to search for a key name with the
value mongo (case-insensitive).

Embedded documents can be queried using the . notation, as with the other languages that
we examined earlier in this chapter:

Scursor = S$collection->find(array('meta.price' => 50));

We do this to query for an embedded document price inside the meta key field.

[107]

Advanced Querying Chapter 4

Similarly to Ruby and Python, in PHP we can query using comparison operators, like this:

Scursor = $collection->find(array('price' => array('$Sgte'=> 60)));

A complete list of comparison operators supported in the PHP driver is available at the end
of this chapter.

Querying with multiple key-value pairs is an implicit AND, whereas queries using $or, $in,
$nin, or AND ($and) combined with $or can be achieved with nested queries:

Scursor = $collection->find(array('$Sor' => array (

array ("price" => array('S$Sgte'
=> 60)),

array ("price" => array('S$lte’
=> 20))

)))

This finds documents that have price>=60 OR price<=20.

Update

Updating documents has a similar interface with the —>updateOne () OR
->updateMany () method.

The first parameter is the query used to find documents and the second one will update our
documents.

We can use any of the update operators explained at the end of this chapter to update in
place or specify a new document to completely replace the document in the query:

Sresult = $collection->updateOne (

array("isbn" :> "401"),

array('$set' => array("price" => 39))
)

We can use single quotes or double quotes for key names, but if we have
special operators starting with $, we need to use single quotes. We can use
array ("key" => "value") or ["key" => "value"].We prefer the
more explicit array () notation in this book.

The —>getMatchedCount () and —>getModifiedCount () methods will return the
number of documents matched in the query part or the ones modified from the query. If the
new value is the same as the existing value of a document, it will not be counted as
modified.

[108]

Advanced Querying Chapter 4

CRUD using Doctrine

Following on from our Doctrine example in chapter 2, Schema Design and Data Modeling,
we will work on these models for CRUD operations.

Create, update, and delete

Creating documents is a two-step process. First, we create our document and set the
attribute values:

Sbook = new Book () ;
Sbook—->setName ('MongoDB with Doctrine');
Sbook—>setPrice (45);

And then we ask Doctrine to save $book in the next f1ush () call:
Sdm->persist ($book) ;

We can force saving by manually calling f1ush ():

Sdm->flush () ;

In this example, $dm is a DocumentManager object that we use to connect to our MongoDB
instance like this:

$dm = DocumentManager::create (new Connection (), S$config);
Updating a document is as easy as assigning values to the attributes:

Sbook->price = 39;
Sbook->persist ($book) ;

This will save our book MongoDB with Doctrine with the new price of 39.
Updating documents in place uses the QueryBuilder interface.
Doctrine provides several helper methods around atomic updates, as listed here:

e set ($Sname, S$value, Satomic = true)
e setNewObj ($newObj)

e inc($Sname, Svalue)

® unsetField($field)

e push ($field, $value)

e pushAll ($field, array S$valueArray)

[109]

Advanced Querying Chapter 4

e addToSet ($field, Svalue)

e addManyToSet ($field, array S$values)
® popFirst ($field)

e poplast ($field)

e pull ($field, $value)

e pullAll ($field, array S$SvalueArray)

update will, by default, update the first document found by the query. If we want to
change multiple documents, we need to use —>updateMany () :

Sdm->createQueryBuilder ('Book")

—>updateMany ()

->field('price')->set (69)
—>field('name')->equals ('MongoDB with Doctrine')
—->getQuery ()

->execute () ;

In the preceding example we are setting the price of the book with name="MongoDB with
Doctrine' tobe 69. The list of comparison operators in Doctrine is available in the next
section on read operations.

We can chain multiple comparison operators, resulting in an AND query and also multiple
helper methods, resulting in updates to several fields.

Deleting a document is similar to creating it:

Sdm—->remove ($book) ;

Removing multiple documents is best done using the QueryBuilder, which we will
explore further in the following section:

Sgb = $dm->createQueryBuilder ('Book');
Sgb->remove ()
->field('price')->equals (50)
->getQuery ()
->execute () ;

[110]

Advanced Querying Chapter 4

Read

Doctrine provides a QueryBuilder interface to build queries for MongoDB. Given that we
have defined our models as described in chapter 2, Schema Design and Data Modeling, we
can do this to obtain an instance of a QueryBuilder named $db, get a default find-all
query, and execute it:

Sgb = $dm->createQueryBuilder ('Book');
Squery = S$gb->getQuery();
Sbooks = $query->execute () ;

The sbooks variable now contains an iterable lazy data-loading cursor over our result set.

Using $gb->eagerCursor (true); over the QueryBuilder object will return an eager
cursor, fetching all data from MongoDB as soon as we start iterating our results.

Some helper methods for querying are listed here:

e —>getSingleResult (): Equivalent to findOne ().

e —>select ('name'): Returns only the values for the 'key' attribute from our
books collection. ObjectId will always be returned.

e —>hint ('book_name_idx"): Forces the query to use this index. We'll see more
about indexes in Chapter 6, Indexing.

e —>distinct ('name"'):Returns distinct results by name.

e —>1imit (10): Returns the first 10 results.

e —>sort ('name', 'desc'):Sorts by name (desc or asc).

Doctrine uses the concept of hydration when fetching documents from MongoDB. Using an
identity map, it will cache MongoDB results in memory and consult this map before hitting
the database. Disabling hydration can be done per query by using ->hydration (false)
or globally using the configuration as explained in chapter 2, Schema Design and Data
Modeling.

We can also force Doctrine to refresh data in the identity map for a query from MongoDB
using —>refresh () on $qgb.

[111]

Advanced Querying Chapter 4

The comparison operators that we can use with Doctrine are:

e where ($javascript)
e in(Svalues)

e notIn($values)

e equals ($value)

e notEqual ($value)

e gt (Svalue)

e gte ($Svalue)

e 1t (Svalue)

e lte(Svalue)

® range (Sstart, $end)
e size($size)

® exists ($bool)

* type (Stype)

e a1l (Svalues)

e mod (Smod)

® addOr (Sexpr)

e addAnd ($expr)

e references ($document)

e includesReferenceTo ($Sdocument)

For example, consider this query:

$gb = $dm->createQueryBuilder ('Book")
->field('price')->1t (30);

It will return all books whose price is less than 30.

addAnd () may seem redundant since chaining multiple query expressions in Doctrine is
implicitly an AND, but it is useful if we wantto doAND ((A OR B), (C OR D)) where
A, B, C, and D are standalone expressions.

[112]

Advanced Querying Chapter 4

To nest multiple OR operators with an external AND and in other equally complex cases, the
nested ORs need to be evaluated as expressions using —>expr () :

Sexpression = $gb->expr()->field('name')->equals ('MongoDB with Doctrine')

$expression is a standalone expression that can be used with
$gb->addOr ($expression) and similarly with addand ().

Best practices

Some best practices for using Doctrine with MongoDB are as follows:

Don't use unnecessary cascading. It impacts performance.
Don't use unnecessary life cycle events. It impacts performance.

Don't use special characters such as non-ASCII ones in class, field, table, or
column names as Doctrine is not Unicode-safe yet.

Initialize collection references in the model's constructor.

Constrain relationships between objects as much as possible. Avoid bidirectional
associations between models and eliminate the ones that are not needed. This
helps with performance, loose coupling, and produces simpler and easily
maintainable code.

Comparison operators

The following is a list of all comparison operators that MongoDB supports:

Name | Description

Seq |Matches values that are equal to a specified value

$gt [Matches values that are greater than a specified value

Sgte |Matches values that are greater than or equal to the specified value
$1lt | Matches values that are less than the specified value

Slte | Matches values that are less than or equal to the specified value
$ne | Matches all values that are not equal to the specified value

$in | Matches any of the values specified in an array

$nin | Matches none of the values specified in an array

[113]

Advanced Querying Chapter 4

Update operators

Name Description

$inc Increments the value of the field by the specified amount.

$mul Multiplies the value of the field by the specified amount.

$rename Renames a field.

$setOnInsert |Sets the value of a field if an update results in an insert of a document. It
has no effect on update operations and modify existing documents.

$set Sets the value of a field in a document.

Sunset Removes the specified field from a document.

$min Only updates the field if the specified value is less than the existing field
value.

$max Only updates the field if the specified value is greater than the existing
field value.

ScurrentDate | Sets the value of a field to the current date, either as a date or as a

timestamp.

Smart querying
There are several considerations in MongoDB querying that we have to take into account.

Here are some best practices for using regular expressions, query results, and cursors, and
also what we should take into account when deleting documents.

Using regular expressions

MongoDB offers a rich interface for querying using regular expressions. In its simplest
form, we can use regular expressions in queries by modifying the query string:

> db.books.find ({"name": /mongo/})

[114]

Advanced Querying Chapter 4

This is done to search for books in our books collection that contain the name mongo. It is
the equivalent of a SQL LIKE query.

MongoDB has used PCRE (Perl Compatible Regular Expression) version
8.39 with UTF-8 support.

We can also use some options when querying:

Option | Description

i Case insensitivity.

m For patterns that include anchors (that is, ~ for the start and $ for the end), match
at the beginning or end of each line for strings with multiline values. Without this
option, these anchors match at the beginning or end of the string.

If the pattern contains no anchors or if the string value has no newline characters

(for example, \n), the m option has no effect.

In our previous example, if we wanted to search for mongo, Mongo, MONGO, and any other
case-insensitive variation, we would need to use the i option, as follows:

> db.books.find ({"name": /mongo/i})
Alternatively, we can use $regex operator, which provides more flexibility.
The same queries using $regex would be written as:

> db.books.find ({'name': { 'Sregex': /mongo/ } })
> db.books.find ({'name': { 'Sregex': /mongo/i } })

[115]

Advanced Querying Chapter 4

By using the $regex operator, we can use the following two options too:

Option | Description

X Extended capability to ignore all whitespace characters in the $regex pattern
unless escaped or included in a character class.

Additionally, it ignores characters in between (and including) an un-escaped
hash/pound (#) character and the next new line so that you may include
comments in complicated patterns. This only applies to data characters;
whitespace characters may never appear within special character sequences in a
pattern.

The x option does not affect the handling of the VT character (that is, code 11).

s Allows the dot character (that is, .) to match all characters, including newline
characters.

Expanding matching documents using regex makes our queries slower to execute.

Indexes using regular expressions can only be used if our regular expression queries for the
beginning of a string that is indexed, that is, regular expressions starting with ~ or \a . If we
want to query only using a starts with regular expression, we should avoid writing
lengthier regular expressions even if they would match the same strings.

For example:

> db.books.find({'name': { 'S$Sregex': /mongo/ } })
> db.books.find ({'name': { 'Sregex': /"“mongo.*/ } })

Both queries will match name values starting with mongo (case-sensitive), but the first one
will be faster as it will stop matching as soon as it hits the sixth character in every name
value.

Query results and cursors

MongoDB's lack of support for transactions means that several semantics that we take for
granted in RDBMS work differently.

As explained before, updates can modify the size of a document. Modifying the size can
result in MongoDB moving the document on disk to a new slot towards the end of the
storage file.

[116]

Advanced Querying

When we have multiple threads querying and updating a single collection, we can end up
with a document appearing multiple times in the result set.

This will happen in the following scenario:

e Thread & starts querying the collection and matches document A1

¢ Thread B updates document A1, increasing its size and forcing MongoDB to move

it to a different physical location towards the end of the storage file

e Thread A is still querying the collection. It reaches the end of the collection and

finds document A1 again with its new value

Doc
AL A2

AN

Query
cursor Query pointer
pointer i

c A2
A

AN

A6

X w

AN

A6

f

Query
pointer

AN

This is rare but can happen in production. If we can't safeguard from such a case in the

application layer, we can use snapshot () to prevent it.

[117]

Advanced Querying Chapter 4

snapshot () is supported by official drivers and the shell by appending it into an operation
that returns a cursor:

> db.books.find () .snapshot ()

$snapshot cannot be used with sharded collections. $snapshot has to be applied before
the query returns the first document. Snapshot cannot be used together with hint () or
sort () operators.

We can simulate the snapshot () behavior by querying using hint ({id :1}), thus
forcing the query engine to use the id index just like the $snapshot operator.

If our query runs on a unique index of a field whose values won't get modified during the
duration of the query, we should use this to query to get the same query behavior. Even
then, snapshot () cannot protect us from insertions or deletions happening in the middle
of a query. The $snapshot operator will traverse the built-in index that every collection has
on the id field, making it inherently slow. It should only be used as a last resort.

If we want to update, insert, or delete multiple documents without other threads seeing
the results of our operation while it's happening, we can use the $isolated operator:

> db.books.remove ({ price: { S$gt: 30 }, S$isolated: 1 })

In this example, threads querying the books collection will see either all books with price
greater than 30 or no books at all. The isolated operator will acquire an exclusive write lock
in the collection for the whole duration of the query, no matter what the storage engine can
support, contributing to contention in this collection.

Isolated operations are still not transactions. They don't provide atomicity ("all-or-
nothing"). So, if they fail midway, we need to manually roll back the operation to get our
database into a consistent state.

Again, this should be a last resort and only used in cases where it's mission-critical to avoid
multiple threads seeing inconsistent information at any time.

Storage considerations on delete

Deleting documents in MongoDB does not reclaim the disk space used by it. If we have 10
GB of disk space used by MongoDB and we delete all documents, we will still be using 10
GB. What happens under the hood is that MongoDB will mark these documents as deleted
and may use the space to store new documents.

[118]

Advanced Querying Chapter 4

This results in our disk having space that is not used, yet not freed up for the operating
system. If we want to claim it back, we can use compact () to reclaim unused space:

> db.books.compact ()
Or alternatively, we can start the mongod server with the option —-repair.

A better option is to enable compression, available from version 3.0 and only with the
WiredTiger storage engine. We can use the snappy or zlib algorithm to compress our
document size. This will, again, not prevent storage holes, but if we are tight on disk space,
it is preferable to the heavy operational route of repair and compact.

Storage compression uses less disk space at the expense of CPU usage, but this trade-off is
mostly worth it.

Always take a backup before running operations that can result in
catastrophic loss of data. Repair or compact will run in single thread,
blocking the entire database from other operations. In production systems,
always perform these on the slave first; then switch the master-slave roles
and compact the ex-master, now-slave instance.

Summary

In this chapter we went through advanced querying concepts using Ruby, Python, and PHP
both using the official drivers and an ODM.

Using Ruby and the Mongoid ODM, Python and the PyMODM ODM, and PHP and the
Doctrine ODM, we went through code samples exploring how to create, read, update,
and delete documents.

We also discussed batching operations for performance and best practices. We presented an
exhaustive list of comparison and update operators that MongoDB uses.

Finally, we discussed smart querying, how cursors in querying work, what our storage
performance considerations should be on delete, and how to use regular expressions.

In the next chapter we will learn about the aggregation framework, using a complete use
case that involves processing transaction data from the Ethereum blockchain.

[119]

Aggregation

In chapter 4, Advanced Querying, we went through querying using a variety of drivers and
frameworks for Ruby, Python, and PHP. In this chapter, we will dive deeper into
aggregation framework, where it can be useful, and the operators supported by MongoDB.

For this purpose, we will go through a complete example of aggregations to process
transaction data from the Ethereum blockchain. The complete source code is available at:

https://github.com/agiamas/mastering-mongodb.

Why aggregation?

Aggregation framework was introduced by MongoDB in version 2.2 (2.1 in development
branch). It serves as an alternative to both the MapReduce framework and also querying the
database directly.

Using the aggregation framework, we can perform group by operations in the server. Thus
we can project only the fields that are needed in the result set. Using the $Smatch and
$project operators, we can reduce the amount of data passed through the pipeline,
resulting in faster data processing.

Self-joins, that is, joining data within the same collection, can also be performed using the
aggregation framework as we will see in our use case.

https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb

Aggregation Chapter 5

When comparing the aggregation framework to the queries available via the shell or
various other drivers, there is a use case for both.

For selection and projection queries, it's almost always better to use simple queries as the
complexity of developing, testing, and deploying an aggregation framework operation
cannot easily outweigh the simplicity of using built-in commands. Finding documents with
(db.books.find ({price: 50}, {price: 1, name: 1})) or without (
db.books.find ({price: 50})) projecting only some of the fields is simple and fast
enough to not warrant usage of the aggregation framework.

On the other hand, if we want to perform group by and self-join operations using
MongoDB, there might be a case for the aggregation framework. The most important
limitation of the group () command in the MongoDB shell is that the result set has to fit in a
document, thus meaning that it can't be more than 16 MB in size. In addition, the result of
any group () command can't have more than 20,000 results. Finally, group () doesn't work
with sharded input collections, which means that when our data size grows we have to
rewrite our queries anyway.

In comparison to MapReduce, the aggregation framework is more limited in functionality
and flexibility. In aggregation framework, we are limited by the available operators at hand.
On the plus side, the API for aggregation framework is simpler to grasp and use than
MapReduce. In terms of performance, aggregation framework was way faster than
MapReduce in earlier versions of MongoDB but seems to be on a par with the most recent
versions after the improvement in performance by MapReduce.

Finally, there is always the case of using the database as data storage and performing
complex operations by the application. This can be quick to develop sometimes, but should
be avoided as it will most likely incur memory, networking, and ultimately performance
costs down the road.

In the next section, we will explain the available operators before using them in a real case.

Aggregation operators

In this section we will explain how to use aggregation operators. Aggregation operators are
divided into two parts. Within each stage, we use expression operators to compare and
process values. Between different stages, we use aggregation stage operators to define the
data that will get passed on from one stage to the next as its as the format.

[121]

Aggregation Chapter 5

Aggregation stage operators

An aggregation pipeline is composed of different stages. These stages are declared in an
array and executed sequentially, the output of every stage being the input of the next one.

The $out stage has to be the final stage in an aggregation pipeline, outputting data to an
output collection by replacing or adding to the existing documents.

$group: This is most commonly used to group by identifier expression and to
apply the accumulator expression. It outputs one document per distinct group.
$project: This is used for document transformation and outputs one document
per input document.

$match: This is used for filtering documents from input based on criteria.
$lookup: This is used for filtering documents from input. Input can be
documents from another collection in the same database selected by an outer left
join.

$out: This outputs the documents in this pipeline stage to an output collection by
replacing or adding to the documents that already exist in the collection.
$1imit: This limits the number of documents passed on to the next aggregation
phase based on criteria.

$count: This returns a count of the number of documents at this stage of the
pipeline.

$skip: This skips a number of documents from passing on to the next stage of
the pipeline.

$sort: This sorts the documents based on criteria.

$redact: As a combination of project and match, this will redact the selected
fields from each document passing them on to the next stage of the pipeline.
$unwind: This transforms an array of n elements to n documents each, with one
element of the array passing them on to the next stage of the pipeline.
$collStats: This returns statistics regarding the view or collection.
$indexStats: This returns statistics regarding the indexes of the collection.
$sample: This randomly selects a specified number of documents from input.
$facet: This combines multiple aggregation pipelines within a single stage.
$bucket: This splits documents into buckets based on selection criteria and
bucket boundaries.

[122]

Aggregation Chapter 5

e sbucketAuto: This splits documents into buckets based on selection criteria and
attempts to evenly distribute documents amongst buckets.

e s$sortByCount: This groups incoming documents based on value of an
expression and computes the count of documents in each bucket.

e Saddrields: This adds new fields to documents and outputs the same number
of documents as input, with the added fields.

e sreplaceRoot: This replaces all existing fields of the input document (including
the standard _id field) with the specified fields.

¢ sgeoNear: This returns an ordered list of documents based on the proximity to a
specified field. The output documents include a computed distance field.

e SgraphLookup: This recursively searches in a collection and adds an array field
with the results of the search in each output document.

Expression operators

Within every stage, we can define one or more expression operators to apply our
intermediate calculations to.

Expression Boolean operators

Boolean operators are used to pass to the next stage of our aggregation pipeline a t rue or
false value.

We can choose to pass along the originating (integer, st ring or whatever other type)
value as well.

We can use the $and, $or, and $not operators the same way we would in any
programming language.

Expression comparison operators

Comparison operators can be used in conjunction with Boolean operators to construct the
expressions that we need to evaluate as t rue/false for the output of our pipeline's stage.

[123]

Aggregation Chapter 5

The most commonly used operators are listed here:

e Seq (equal)
® Sne (not equal)

® 3gt (greater than)

Sgte (greater than or equal)
e S1t
Slte

All the aforementioned mentioned operators return a Boolean value of true or false.

The only operator not returning a Boolean value is $cmp, which returns 0 if the two
arguments are equivalent, 1 if the first value is greater than the second, and -1 if the second
value is greater than the first.

Set expression and array operators

Set expressions perform set operations on arrays, treating arrays as sets. Set expressions
ignores duplicate entries in each input array and the order of the elements.

If the set operation returns a set, the operation filters out duplicates in the result to output
an array that contains only unique entries. The order of the elements in the output array is
unspecified. If a set contains a nested array element, the set expression does not descend
into the nested array but evaluates the array at top-level.

The available set operators are:

e $setEquals: Thisis true if the two sets have the same distinct elements

e SsetIntersection: This returns the intersection (documents that appear in all)
of all input sets

e $setUnion: This returns the union (documents that appear in at least one) of all
input sets

e ssetDifference: This returns the documents that appear in the first input set
but not the second

e ssetIsSubset: Thisis true if all documents in the first set appear in the second
one, even if the two sets are identical

e sanyElementTrue: This is true if any of the elements in the set evaluate to true

e SallElementsTrue: Thisis true if all of the elements in the set evaluate to t rue

[124]

Aggregation Chapter 5

The available array operators are:

$arrayElemAt: This returns the element at the array index position
$concatArrays: This returns a concatenated array

$filter: This returns a subset of the array based on specified criteria
$indexOfArray: This returns the index of the array that fulfills the search
criteria; if not, -1

$isArray: This returns true if the input is an array; otherwise, false
$range: This outputs an array containing a sequence of integers according to
user-defined inputs

$reverseArray: This returns an array with the elements in the opposite order
$reduce: This reduces the elements of an array to a single value according to the
specified input

$size: This returns the number of items in the array

$slice: This returns a subset of the array

$zip: This returns a merged array

$in: This returns true if the specified value is in the array; otherwise false

Expression date operators

Date operators are used to extract date information from date fields, when we want to
calculate statistics based on day of week/month/year using the pipeline.

$dayOfYear is used to get the day of year with a range of 1 to 366 for a leap year
$dayOfMonth is used to get the day of month with a range of 1 to 31 inclusive
$dayOfWeek is used with 1 being Sunday and 7 being Saturday (US style days)
$isoDayOfWeek returns the weekday number in the ISODate 8601 format, with 1
being Monday and 7 being Sunday

$week is the week number with 0 being the partial week at the beginning of each
year to 53 for a year with a leap week

$isoWeek returns week number in the ISODate 8601 format, 1 being the first
week of the year that contains a Thursday and 53, a leap week if one exists
Syear / $month / $hour / $minute / $milliSecond return the relevant portion
of the date in zero based numbering, except for $month which returns 1 through
12 inclusive.

[125]

Aggregation Chapter 5

e SisoWeekYear returns the year in the ISO 8601 format according to the date the
last week in ISODate ends (that is, 2016/1/1 will still return 2015)

e $second returns 0 to 60 inclusive for leap seconds
e sdateToString converts a date input to a string

Expression string operators

Similar to date operators, string operators are used when we want to transform our data
from one stage of the pipeline to the next one. Potential use cases include pre-processing
text fields to extract relevant information to be used in later stages of our pipeline.

e sconcat: This is used to concatenate strings.

e ssplit: Thisis used to split strings based on delimiter. If the delimiter is not
found, the original string is returned.

e sstrcasecmp: This is used in case-insensitive string comparison; 0 if strings are
equal, 1 if the first string is great, otherwise -1.

e StoLower / $toUpper: This is used to convert string to all lowercase or all
uppercase respectively.

¢ sindexOfBytes: This is used to return the Byte occurrence of the first occurrence
of a substring in a string.

e sstrLenBytes: This is the number of bytes in the input string.

e SsubstrBytes: This returns the specified bytes of the substring.

The equivalent methods for code points (a value in unicode, regardless of the underlying
bytes in its representation) are:

e SindexOfCP
e SstrLenCP
® SsubstrCP

[126]

Aggregation Chapter 5

Expression arithmetic operators

During each stage of the pipeline, we can apply one or more arithmetic operators to
perform intermediate calculations.

$abs, the absolute value.

$add, can add numbers or a number to a date to get a new date.

$ceil [$floor, ceiling and floor functions.

$divide, to divide between two inputs.

$exp, raises the natural number e to the specified exponential power.

$pow, raises a number to the specified exponential power.

$1n/$log/ $logl0. To calculate the natural log, the log on a custom base or a
log base 10 respectively.

$mod, the modular value.

$multiply, to multiply between inputs.

$sqrt, the square root of the input.

$subtract, the result of subtracting the second value from the first. If both
arguments are dates, returns the difference between them. If one argument is a

date (has to be the first argument) and the other is a number, returns the resulting
date.

$trunc, to truncate the result.

Aggregation accumulators

Accumulators are probably the most widely used operators, allowing us to sum, average,
get standard deviation statistics, and perform other operations in each member of our

group.

$sum is the sum of numerical values, ignores non-numerical values

$avg is the average of numerical values, ignores non-numerical values

$first / $last is the first and last value that passes through the pipeline stage,
available in the group stage only

$max / $Smin gets the maximum and minimum value that passes through the
pipeline stage

$push, will add a new element at the end of an input array, available in the
group stage only

[127]

Aggregation Chapter 5

¢ SaddToSet, will add an element (only if it does not exist) to an array treating it
effectively as a set, available in the group stage only

® $stdDevPop / $stdDevSamp to get the population / sample standard deviation in
the $project or $match stages

The aforementioned mentioned accumulators are available in the group or project pipeline
phases except otherwise noted.

Conditional expressions

Expressions can be used to output different data to the next stage in our pipeline, based on
Boolean truth tests.

Scond

This is a ternary operator that evaluates one expression, and depending on the result,
returns the value of one of the other two expressions. It accepts either three expressions in
an ordered list or three named parameters.

$ifNull

This returns either the non-null result of the first expression or the result of the second
expression if the first expression results in a null result. Null result encompasses instances
of undefined values or missing fields. It accepts two expressions as arguments. The result of
the second expression can be null.

Sswitch

This evaluates a series of case expressions. When it finds an expression that evaluates to
true, $switch executes a specified expression and breaks out of the control flow.

Other operators

There are some operators that are not as commonly used but can be useful in corner, use
case-specific cases. The most important of them are listed in the following sections.

Text search

S$meta This is used to access text search metadata.

[128]

Aggregation Chapter 5

Variable

$map This applies a subexpression to each element of an array and returns the array of
resulting values in an order. It accepts named parameters.

$1et This defines variables for use within the scope of a subexpression and returns the
result of the subexpression. It accepts named parameters.

Literal

$literal This returns a value without parsing. It is used for values that the aggregation
pipeline may interpret as an expression. For example, apply a $1iteral expression to a
string that starts with $ to avoid parsing as a field path.

Parsing data type
Stype, this returns the BSON data type of the field.

Limitations

The aggregation pipeline can output results in three distinct ways:

¢ Inline as a document containing the result set
e In a collection
e Returning a cursor to the result set

Inline results are subject to the BSON maximum document size of 16 MB, meaning that we
should use this only if our final result is of fixed size. An example of this would be
outputting the ObjectIds of the top five most ordered items from an e-commerce site.

A contrary example to that would be outputting the top 1,000 ordered items, along with the
product information, including the description and other fields of variable size.

Outputting results into a collection is the preferred solution if we want to perform further
processing of data. We can either output into a new collection or replace the contents of an
existing collection. The aggregation output results will only be visible once the aggregation
command succeeds, or else not visible at all.

[129]

Aggregation Chapter 5

The output collection cannot be sharded or a capped collection (as of v3.4).
If the aggregation output violates indexes (including the built-in index on
the unique ObjectId per document) or document validation rules,
aggregation will fail.

With all three options, every document output must not exceed the BSON maximum
document size of 16 MB.

Each pipeline stage can have documents exceeding the 16 MB limit as these are handled by
MongoDB internally. Each pipeline stage, however, can only use up to 100 MB of memory.
If we expect more data in our stages, we should set allowDiskUse: to true to allow
exceeding data to overflow to disk at the expense of performance.

$graphLookup does not support datasets over 100 MB and will ignore any setting on
allowDiskUse.

Aggregation use case

In this rather lengthy section, we will use the aggregation framework to process data from
the Ethereum blockchain.

Using our Python code from https://github.com/agiamas/mastering-mongodb/tree/
master/chapter_5, we have extracted data from Ethereum and loaded it into our MongoDB
database.

MongoDB

Ethereum
Public blockchain

v

Our data resides in two collections, blocks and transactions.

[130]

https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5

Aggregation

Chapter 5

A sample block document has the following fields:

e Number of transactions

Number of contract internal transactions
Block hash

Parent block hash

Mining difficulty

Gas used

Block height

> db.blocks.findOne ()
{

" _id" : ObjectId("595368fbcedea89d3f4fblca"),
"number_transactions" : 28,

"timestamp" : NumberLong ("1498324744877"),
"gas_used" : 4694483,
"number_internal_transactions" : 4,
"block_hash"

"0x89d235c4e2e4e4978440£3ccl966£f1£ffb343b%5cfec9eS5cebec331£fb810bded3

"
’

"difficulty" : NumberLong("882071747513072"),
"block_height" : 3923788
}

A sample transaction document has the following fields:

Transaction hash

Block height it belongs to
From hash address

To hash address

Transaction value

[131]

Aggregation Chapter 5

e Transaction fee

> db.transactions.findOne ()

{

" _id" : ObjectId("59535748cedea89997e8385a"),

"from" : "0x3c540be890df69eca5f0099%bedd5d6670d693£3",
"txfee" : 28594,

"timestamp" : ISODate ("2017-06-06T11:23:102"),

"value" : 0,

"to" : "0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81",
"txhash"

"0x£205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39e77

"
4

"block" : 3923794
}

Sample data for our database is available on GitHub: https://github.com/agiamas/

mastering-mongodb.
The code used to import this data into MongoDB is available here:
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5.

As curious developers in this novel blockchain technology, we want to analyze Ethereum
transactions. We are especially keen to:

e Find the top 10 addresses that transactions originate from

e Find the top 10 addresses that transactions end in

¢ Find the average value per transaction, with statistics around deviation

e Find the average fee required per transaction, with statistics around deviation

e Find the time of day that the network is more active, by number of transactions or
value of transactions

e Find the day of week that the network is more active, by number of transactions
or value of transactions

We find the top 10 addresses that transactions originate from. To calculate this metric, we
first count the number of occurrences with a 1 count for each one, group them by the value
of the from field and output them into a new field called count.

Following that, we sort by the value of the count field in descending (-1) order and finally
we limit the output to the first 10 documents that pass through the pipeline. These
documents are the top 10 addresses that we are looking for.

[132]

https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_5

Aggregation

Chapter 5

Sample Python code is shown here:

def top_ten_addresses_from(self):
pipeline = [
{"S$group":
{"Ssort":
{"$1limit":

]

result

{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':

38,
31,
30,
27,
25,
16,
8,

{"_id": "S$from", "count": {"Ssum": 1}}},
SON ([("count", -1)1)},
10},

= self.collection.aggregate (pipeline)
for res in result:
print (res)

u'_id':

u'_id':

u'_id':

u'_id':

u'_id':

u'_id':
]

_id':
'_id':
'_id':

u
u
u
u'_id':

u'miningpoolhub_1"'}

u'Ethermine'}
u'0x3c540be890df69eca5f0099%pbedd5d667bd693£3 "}
u'0xb42b20ddbeabdc2a288be7f£847f£94fb48d2579"'}
u'ethfans.org'}

u'Bittrex'}
u'0x009735¢c1f7d06faaf9db5223¢c795e2d35080e826"'}
u'Oraclize'}
u'0x1151314c6d46cedelefd76dlafd760ae66a9fel30f'}
u'0x4d3ef0e8b49999de8fadd531f07186¢cc3abel3dbe }

Now we find the top 10 addresses that transactions end in. Similar to from, the calculation
for the t o addresses is exactly the same, only grouping by the to field instead of from:

def top_ten_addresses_to(self):
pipeline = [
{"Sgroup":
{"Ssort":
{"$1limit":

]

result

{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':
{u'count':

33,
30,
25,
23,
22,
18,
13,
12,
9/

9/

{"_id": "$tO", "count": {"$sum": 1}}},
SON([("count", -1)1)},
10},

= self.collection.aggregate (pipeline)
for res in result:
print (res)

- g ccccc o

u'_id':
u'_id':

'_id':
'_id':
'_id':
'_id':
'_id':
'_id':
'_id':
'_id':

u'0x6090a6e478496290b7245dfalca21d94cd15878ef "'}
u'0x4b9%9e0d224dabcc96191cace2d367a8d8b75¢c9¢c81'}
u'0x69ea6b31ef305d6b99%bb2d4c9d99456fa108b02a"}
u'0xe94b04a0fedl112f3664e45adb2b8915693dd5ff3"'}
u'0x8d12a197¢cb00d4747a1fe03395095¢ce2a5¢cc6819'}
u'0x91337a300e0361bddb2e377dd4e88ccb7796663d"'}
u'0x1c3f580dacaac2f540c998c8ae3e4b18440£f7c45"'}
u'Oxeef274b28bd40b717f5fea90806d1203daad0807 "}
u'0x96fc4553a00c117c5b0bed950dd625d1cl16dc894"'}
u'0xd43d09%eclbc5e57¢8f3d0c64020d403b04c7£783"}

[133]

Aggregation Chapter 5

Let's find the average value per transaction, with statistics around deviation. In this
example, we are using the savg and $stdbDevPop operators of the values of the value field
to calculate statistics for this field. Using a simple $group operation, we output a single
document with the id of our choice (here value) and the averagevalues.

def average_value_per_transaction(self):

pipeline = [
{"Sgroup": {"_id": "value", "averageValues": {"Savg": "Svalue"},
"stdDevValues": {"$stdDevPop": "S$value"}}},
]
result = self.collection.aggregate (pipeline)

for res in result:
print (res)

{u'averageValues': 5.227238976440972, u'_id': u'value', u'stdDevValues':
38.90322689649576}

Let's find the average fee required per transaction, with statistics around deviation. Average
fees are similar to average values, replacing $value with $txfee:

def average_fee_per_transaction(self):

pipeline = [
{"Sgroup": {"_id": "value", "averageFees": {"Savg": "S$txfee"},
"stdDevValues": {"$stdDevPop": "S$txfee"}}},
]
result = self.collection.aggregate (pipeline)

for res in result:
print (res)

{u'_id': u'value', u'averageFees': 320842.0729166667, u'stdDevValues':
1798081.7305142984}

We find the time of day that the network is more active, by number of transactions or value
of transactions.

To find out the most active hour for transactions, we use the $hour operator to extract the
hour field from the Isopate () field in which we stored our datetime values and called
timestamp.

def active_hour_of_day_transactions (self):

pipeline = [
{"Sgroup": {"_id": {"Shour": "Stimestamp"}, "transactions":
{"$sum": 1}}1},
{"$sort": SON([("transactions", -1)1)},

{"$limit": 1},
]

result = self.collection.aggregate (pipeline)

[134]

Aggregation Chapter 5

for res in result:
print (res)

{u'_id': 11, u'transactions': 34}

def active_hour_of_day_values (self):

pipeline = [
{"S$group": {"_id": {"Shour": "Stimestamp"},
"transaction_values": {"S$sum": "Svalue"}}},
{"$sort": SON([("transactions", -1)1)},

{"$limit": 1},
]

result = self.collection.aggregate (pipeline)
for res in result:
print (res)

{u'transaction_values': 33.17773841, u'_id': 20}

Let's find the day of week that the network is more active, by number of transactions or
value of transactions. Similar to the hour of day, we use the $dayOfWeek operator to extract
the day of week from I1SODate () objects. Days are numbered 1 for Sunday to 7 for
Saturday, following the US convention.

def active_day_of_week_transactions (self):

pipeline = [
{"Sgroup": {"_id": {"S$dayOfWeek": "Stimestamp"}, "transactions":
{"Ssum": 1}}},
{"$sort": SON([("transactions", -1)1)},

{"$1limit": 1},
]
result = self.collection.aggregate (pipeline)
for res in result:

print (res)

{u'_id': 3, u'transactions': 92}

def active_day_of_week_values (self):

pipeline = [
{"Sgroup": {"_id": {"S$dayOfWeek": "Stimestamp"},
"transaction_values": {"$sum": "Svalue"}}},
{"$sort": SON([("transactions", -1)1)},

{"$1limit": 1},

[135]

Aggregation Chapter 5

result = self.collection.aggregate (pipeline)
for res in result:
print (res)

{u'transaction_values': 547.62439312, u'_id': 2}

The aggregations that we calculated can be described in the figure here:

MongoDB

group ——sort —— limit —» top 10 addresses transactions originate from

group— sort—— limit— top 10 addresses transactions originate to

group(avg) —— average value per transaction

group(avg,stdDevPop) — average value per transaction plus standard deviation

group(sum) — sort—— limit —» top active hour of day
hour
group(sum, day) —— sort —Ilimit —» top active day of week

In terms of blocks, we would like to know:

e Average number of transactions per block, for both total overall transactions and
also total contract internal transactions

e Average gas used per block
¢ Average difficulty per block and how it deviates

Average number of transactions per block, both in total and also in contract internal
transactions. Averaging over the number_transactions field we can get the number of
transactions per block as illustrated here:

def average_number_transactions_total_block (self):
pipeline = [
{"Sgroup": {"_id": "average_transactions_per_block", "count":
{"$Savg": "Snumber_transactions"}}},
]
result = self.collection.aggregate (pipeline)
for res in result:
print (res)

{u'count': 39.458333333333336, u'_id': u'average_transactions_per_block'}

[136]

Aggregation Chapter 5

def average_number_transactions_internal_block (self):
pipeline = [
{"$group": {"_id": "average_transactions_internal_per_block",
"count": {"$avg": "Snumber_internal_transactions"}}},
]
result = self.collection.aggregate (pipeline)
for res in result:
print (res)

{u'count': 8.0, u'_id': u'average_transactions_internal_per_block'}

Average gas used per block:

def average_gas_block (self):

pipeline = [
{"Sgroup": {"_id": "average_gas_used_per_block",
"count": {"Savg": "Sgas_used"}}},
]
result = self.collection.aggregate (pipeline)

for res in result:
print (res)

{u'count': 2563647.9166666665, u'_id': u'average_gas_used_per_block'}

Average difficulty per block and how it deviates:

def average_difficulty_block (self):

pipeline = [
{"Sgroup": {"_id": "average_difficulty_per_block",
"count": {"Savg": "S$difficulty"}, "stddev":
{"$stdDevPop": "Sdifficulty"}}},
]
result = self.collection.aggregate (pipeline)

for res in result:
print (res)

{u'count': 881676386932100.0, u'_id': u'average_difficulty_per_block',
u'stddev': 446694674991.6385}

[137]

Aggregation Chapter 5

Our aggregations are described in the following schema:

MongoDB

(oo

Now that we have basic statistics calculated, we want to up our game and identify more
information about our transactions. Through our sophisticated machine learning
algorithms, we have identified some of the transactions as either scam or initial coin
offering (ICO) or maybe both.

group(avg) — » average number of transactions per block

group(avg) — p average number of gas used per block

group(avg) —p average difficulty per block plus
stdDevPop standard deviation

In these documents, we have marked these attributes in an array called tags like this;

{

" _id" : ObjectId("59554977cedea8f696a4l6dd"),

"to" : "Ox4b9%9e0d224dabcc9619lcace2d367a8d8b75¢c9c81",
"txhash"
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca3%9e77",
"from" : "0x3c540be890df69eca5f0099%bedd5d667bd693£3",
"block" : 3923794,

"txfee" : 28594,

"timestamp" : ISODate ("2017-06-10T09:59:35z2"),

"tags" : [

"scam",

"ico"

J 14

"value" 0

[138]

Aggregation Chapter 5

Now we want to get the transactions from June 2017, remove the _id field, and produce
different documents according to the tags that we have identified. So, in the example of the
aforementioned mentioned document, we would output two documents in our new
collection scam_ico_documents for separate processing.

The way to do this via the aggregation framework is shown here:

def scam_or_ico_aggregation(self):
pipeline = [
{"Smatch": {"timestamp": {"$gte": datetime.datetime (2017,06,01),
"Slte": datetime.datetime (2017,07,01) }}},

{"Sproject": {
"to": 1,
"txhash": 1,
"from": 1,

"block": 1,
"txfee": 1,
"tags": 1,
"value": 1,
"report_period": "June 2017",
moidgr. O,
}
b
{"Sunwind": "Stags"},
{"Sout": "scam_ico_documents"}
1
result = self.collection.aggregate (pipeline)

for res in result:
print (res)

Here we have four distinct steps in our aggregation framework pipeline:

1. Using $match, we only extract documents that have a field timestamp value of
June 1st 2017.

2. Using project, we add anew report_period field with a value of June 2017
and remove the _id field by setting its value to 0. We keep the rest of the fields
intact by using the value 1, as shown.

3. Using $unwind, we output one new document per tag in our $tags array.

4. Finally, using $out, we output all of our documents to a new
scam_ico_documents collection.

[139]

Aggregation Chapter 5

Since we used the $out operator we will get no results in the command line. If we comment
out {"Sout": "scam_ico_documents"}, we get result documents that look like this:

{u'from': u'miningpoolhub_1"', u'tags': u'scam', u'report_period': u'June
2017', u'value': 0.52415349, u'to':
u'Oxdafll2bcbd38d231blbedae92a72a4laa2bb231d', u'txhash':
u'Oxellealldf4190bf06cbdafl%9ae88a707766b0070b3d9£35270cde37ceccba%abce’,
u'txfee': 21.0, u'block': 3923785}

The final result in our database will look like this:

{
"_id" : ObjectId("5955533be%ec57bdb074074e"),

"to" : "0x4b9%e0d224dabcc96191lcace2d367a8d8b75¢c9c81",

"txhash"
"0x£205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39%e77",
"from" : "0x3c540be890df69eca5f0099bbedd5d667bd693£3",

"block" : 3923794,

"txfee" : 28594,

"tags" : "scam",

"value" : 0,

"report_period" : "June 2017"

}

Now that we have documents clearly separated in the scam_ico_documents collection, we
can perform further analysis pretty easily. An example of this analysis would be to append
more information on some of these scammers. Luckily, our data scientists have come up
with some additional information, which we have extracted into a new collection
scam_details, looking like this:

{

"_id" : ObjectId("5955510e14ae9238fe76d7£f0"),

"scam_address" : "0x3c540be890df69eca5f0099%bedd5d6670d693£3",
Email_address": example@scammer.com"

}

We can now create a new aggregation pipeline job to join our scam_ico_documents with
the scam_details collection and output these extended results in a new collection,
scam_ico_documents_extended, like this:

def scam_add_information(self):
client = MongoClient ()
db = client.mongo_book
scam_collection = db.scam_ico_documents

pipeline = [
{"S$lookup": {"from": "scam_details", "localField": "from",
"foreignField": "scam_address", "as": "scam_details_data"}},

[140]

Aggregation Chapter 5

{"Smatch": {"scam_details_data": { "$ne": [] }}},
{"Sout": "scam_ico_documents_extended"}
]

scam_collection.aggregate (pipeline)
Here we are using a three-step aggregation pipeline:

1. Use the $1ookup command to join data from the scam_details collection and
scam_address field with data from our local collection (scam_ico_documents)
based on the value from the local collection attribute from being equal to the
value in the scam_details collection scam_address field.

If these are equal, the pipeline adds a new field to the document named
scam_details_data

2. Next, we only match the documents that have a scam_details_data field, the
ones that matched with the lookup aggregation framework step.

3. Finally, we output these documents in a new collection called
scam_ico_documents_extended

These documents now look like this:

> db.scam_ico_documents_extended.findOne ()

{

" id" : ObjectId("5955533be9%ec57bdb074074e"),

"to" : "Ox4b9%9e0d224dabcc96191lcace2d367a8d8b75¢c9c81",

"txhash"
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca3%9e77",
"from" : "0x3c540be890df69eca5f0099%bedd5d667bd693£3",

"block" : 3923794,

"txfee" : 28594,

"tags" : "scam",

"value" : 0,

"report_period" : "June 2017",

"scam_details_data" : [

{

"_id" : ObjectId("5955510e14ae9238fe76d7£f0"),

"scam_address" : "0x3c540be890df69eca5f0099%bedd5d667d693£3",
email_address": example@scammer.com"

P

Using the aggregation framework, we have identified our data and can process it rapidly
and efficiently.

[141]

Aggregation Chapter 5

The previous examples can be summed up in the following diagram:

transactions | ——» match ——» project ——» unwind ——» out ——» scam_ICO_documents

|

scam_details | <«———Iookup

|

match

|

out

|

scam_ICO_documents_
extended

Summary

In this chapter, we dived deep into aggregation framework. We discussed why and when
we should use aggregation as opposed to MapReduce and querying the database. We went
through the vast array of options and functionality for aggregation.

We discussed aggregation stages and various operators such as Boolean operators,
comparison operators, set operators, array operators, date operators, string operators,
expression arithmetic operators, aggregation accumulators, conditional expressions and
variables, and the literal and parsing data type operators

Using the Ethereum use case, we went through aggregation with working code and how to
approach an engineering problem to solve it.

Finally, you learned about the limitation that the aggregation framework currently has and
when to avoid it.

In the next chapter, we will switch gears to the topic of indexing and how to design and
implement performant indexes for our read and write workloads.

[142]

Indexing

In this chapter, we will explore one of the most important properties of every database,
indexing. Similar to book indexes, database indexes allow for quicker data retrieval. In the
RDBMS world, indexes are widely used (and abused) to speed up data access.

In MongoDB, indexes play an integral part in schema and query design. MongoDB
supports a wide array of indexes that we will learn about in this chapter:

e Single field
e Compound
e Multikey

¢ Geospatial
o Text

e Hashed

e Time to live
e Unique

e Partial

e Sparse

o Case-insensitive

In addition to learning about different types of index, we will show how to build and
manage indexes for single-server deployments as well as complex sharded environments.

Finally, we will dive deeper into how MongoDB creates and organizes indexes with the
goal of learning how to write more efficient indexes and evaluating the performance of our
existing indexes.

Indexing Chapter 6

Index internals

Indexes, in most cases, are essentially variations of the B-tree data structure. Invented by

Rudolf Bayer and Ed McCreight in 1971 while working at Boeing research labs, the B-tree
data structure allows for search, sequential access, inserts, and deletes to be performed in
logarithmic time. The logarithmic time property stands for both the average case and the

worst possible performance, which is a great property when applications cannot tolerate

unexpected variations in performance behavior.

To further understand how important the logarithmic time part is, we have included a
diagram as follows:

Operafions

Elements

Source: http://bigocheatsheet.com/

In this diagram, we see logarithmic time performance as a flat line parallel to the x axis of
the diagram. As the number of elements increases, constant time O(n) algorithms perform
worse, whereas quadratic time algorithms O(n”2) go off the chart. For an algorithm that we
rely on to get our data back to us as fast as possible, time performance is of the utmost

importance.

[144]

Indexing Chapter 6

Another interesting property of a B-tree is that it is self-balancing, meaning that it will self-
adjust to always maintain these properties. Its precursor and closest relative is the binary
search tree, a data structure that allows only two children for each parent node.

Schematically, a B-tree looks like this:

Source: By CyHawk—his own work based on [1]., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11701365

In the preceding diagram, we have a parent node with values 7,16 pointing to three child
nodes.

If we want to search for the value 9, knowing that it's greater than 7 and smaller than 16,
we'll be directed to the middle child node that contains the value straightaway.

Thanks to this structure, we are approximately halving our search space with every step,
thus ending in a log n time complexity. Compared to sequentially scanning through every
element, halving the number of elements with each and every step increases our gains
exponentially as the number of elements we have to search through increases.

Index types

MongoDB offers a vast array of index types for different needs. In the following sections,
we will identify the different types and the needs that each one of them fulfills.

Single field indexes

The most common and simple types of index are single-field indexes. An example of a
single field/key index is the index on ObjectId (_id), which is generated by default in
every MongoDB collection. The ObjectId index is also unique, preventing a second
document from having the same ObjectIdin a collection.

[145]

Indexing Chapter 6

An index on a single field based on the mongo_book database that we used throughout the
previous chapters is defined like this:

> db.books.createIndex({ price: 1 })

Here we create an index on the field name, in ascending order of index creation. For
descending order, the same index would be created like this:

> db.books.createIndex({ price: -1 })

Ordering for index creation can be important if we expect our queries to be favoring values
on the first documents stored in our index. However, due to the extremely efficient time
complexity that indexes have, this will not be a consideration for most common use cases.

An index can be used for exact match queries or range queries on the field value. In the
former case, the search can stop as soon as our pointer reaches the value after O(logn) time.

In range queries, due to the fact that we are storing values in order in our B-tree index, once
we find the border value of our range query in a node of our B-tree, we know that all values
in its children will be part of our result set, allowing us to conclude our search.

An example of this can be shown as follows:

10,50

8,30 7,60

33,20 78,35 | | 1,55 13,75

[146]

Indexing Chapter 6

Indexing embedded fields

MongoDB as a document database supports embedding fields and whole documents in
nested complex hierarchies inside the same document. Naturally, it also allows us to index
these fields.

In our books collection example, we can have documents such as the following:

{

"_id" : ObjectId("5969ccb614ae9238fe76d7£1"),
"name" : "MongoDB Indexing Cookbook",

"isbn" : "1001",

"available" : 999,

"meta_data" : {

"page_count" : 256,

"average_customer_review" : 4.8

}

}

Here, the meta_data field is a document itself, with page_count and
average_customer_review fields.

Again, we can create an index on page_count as follows:

db.books.createIndex({ "meta_data.page_count": 1 })

This can answer queries on equality and range comparison around the
meta_data.page_count field.

> db.books.find({"meta_data.page_count": { S$gte: 200 } })
> db.books.find({"meta_data.page_count": 256 })

To access embedded fields we use dot notation and need to include quotes
("") around the field's name

Indexing embedded documents

We can also index the embedded document as a whole in a similar way to indexing
embedded fields:

> db.books.createIndex({ "meta_data": 1 })

[147]

Indexing Chapter 6

Here, we are indexing the whole document, expecting queries against its entirety like the
following one:

> db.books.find ({"meta_data": {"page_count":256,
"average_customer_review":4.8}})

The key difference is that when we index embedded fields we can perform range queries on
them using the index, whereas when we index embedded documents we can only perform
comparison queries using the index.

db.books.find ({"meta_data.average_customer_review": {
$gte: 4.8}, "meta_data.page_count": { Sgte: 200 } }) will
not use our meta_data index, whereas db.books.find ({"meta_data":
{"page_count":256, "average_customer_review":4.8}}) will use
it.

Background indexes

Indexes can be created in the foreground, blocking all operations in the collection until they
are built, or the background, allowing for concurrent operations. Building an index in the
background is done by passing in the background: true parameter:

> db.books.createIndex({ price: 1 }, { background: true })

Background indexes have some limitations that we will revisit in the last section of this
chapter, Building and managing indexes.

Compound indexes

Compound indexes are a generalization of single-key indexes, allowing for multiple fields
to be included in the same index. They are useful when we expect our queries to span
multiple fields in our documents and also for consolidating our indexes when we start
having too many of them in our collection.

Compound indexes can have as many as 31 fields. They cannot have a
hashed index type.

[148]

Indexing Chapter 6

A compound index is declared in a similar way to single indexes, by defining the fields we
want to index and the order of indexing;:

> db.books.createIndex ({"name": 1, "isbn": 1})

Sorting using compound indexes

Order of indexing is useful for sorting results. In single field indexes, MongoDB can
traverse the index both ways so it doesn't matter which order we define.

In multi-field indexes, though, ordering can determine whether we can use this index to
sort or not. In our preceding example, a query matching the sorting direction of our index
creation will use our index:

> db.books.find () .sort ({ "name": 1, "isbn": 1 })

It will also use a sort query with all of the sort fields reversed:

> db.books.find () .sort ({ "name": -1, "isbn": -1 })

In this query, since we negated both of the fields, MongoDB can use the same index,
traversing it from the end to the start.

The other two sorting orders are as follows:

> db.books.find () .sort ({ "name": -1, "isbn": 1 })
> db.books.find () .sort ({ "name": 1, "isbn": -1 })

They cannot be traversed using the index as the sort order that we want is not present in
our index's B-tree data structure.

Reusing compound indexes

An important attribute of compound indexes is that they can be used for multiple queries
on prefixes of the fields indexed. This is useful when we want to consolidate indexes that
over time pile up in our collections.

See the compound (multi-field) index we created previously:

> db.books.createIndex ({"name": 1, "isbn": 1})

[149]

Indexing Chapter 6

This can be used for queries on name or {name, isbn}:

> db.books.find ({"name":"MongoDB Indexing"})
> db.books.find({"isbn": "1001", "name":"MongoDB Indexing"})

The order of fields in our query doesn't matter, MongoDB will rearrange fields to match our
query.

However, the order of fields in our index does matter. A query just for the isbn field cannot
use our index:

> db.books.find ({"isbn": "1001"})

The underlying reason is that our field's values are stored in the index as secondary,
tertiary, and so on indexes; each one is embedded inside the previous ones, just like a
matryoshka, the Russian nesting doll. This means that, when we query on the first field of
our multi-field index, we can use the outermost doll to find our pattern, whereas searching
for the first two fields, we can match the pattern on the outermost doll and then dive into
the inner one.

This concept is called prefix indexing and together with index intersection is the most
powerful tool for index consolidation as we will see later in this chapter.

Multikey indexes

Indexing scalar (single) values is explained in the preceding sections. However, one of the
advantages we get from using MongoDB is the ability to easily store vector values in the
form of arrays.

In the relational world, storing arrays is generally frowned upon as it violates the normal
forms. In a document-oriented database such as MongoDB, it is frequently part of our
design as we can store and query easily on complex structs of data.

Indexing arrays of documents is achieved by using the multikey index. A multikey index
can store both arrays of scalar values as well as arrays of nested documents.

Creating a multikey index is the same as creating a regular index:

> db.books.createIndex ({"tags":1})

[150]

Indexing Chapter 6

Our new index will be a multikey index, allowing us to find documents by any of the tags
stored in our array:

> db.books.find({tags:"new"})
{
" _id" : ObjectId("5969f4bcl4ae9238fe76d7£f2"),

"name" : "MongoDB Multikeys Cheatsheet",
"isbn" : "1002",

"available" : 1,

"meta_data" : {

"page_count" : 128,
"average_customer_review" : 3.9
}!

"tags" : [

"mongodb",

"index",

"cheatsheet",

"new"

]
}

We can also create compound indexes with a multikey index but we can have, at the most,
one array in each and every index document. Given that in MongoDB we don't specify the
type of each field, this means that creating an index with two or more fields having an array
value will fail at creation time and trying to insert a document with two or more fields as
arrays will fail at insertion time.

For example, a compound index on tags, analytics_data will fail to be created if we
have the following document in our database:

{

" _id" : ObjectId("5969f71314ae9238fe76d7£3"),
"name": "Mastering parallel arrays indexing",
"tags" : [

IIAII ,

llBll

1,

"analytics_data" : [

"1001",

"1002"

1

}

> db.books.createIndex ({tags:1, analytics_data:1})

{

"ok" : O,

"errmsg" : "cannot index parallel arrays [analytics_data] [tags]",

[151]

Indexing Chapter 6

"code" : 171,
"codeName" : "CannotIndexParallelArrays"

}

Consequently, if we create the index first on an empty collection and try to insert this
document, the insert will fail with the following error:

> db.books.find ({isbn:
"1001"}) .hint ("international standard_book_ number_index")

.explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "mongo_book.books",
"indexFilterSet" : false,
"parsedQuery" : {
"isbn" : {
"Seg" : "1001"
}
}I
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"isbn" : 1
}I
"indexName"

"international standard_book_numbe
r_index",

"isMultiKey" : false,
"multiKeyPaths" : {
"isbn" : []
}I
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {
"isbn" : [

"[\"1001\", \"1001\"]"

by

"rejectedPlans" : []

by

[152]

Indexing Chapter 6

"serverInfo" : {

"host" : "PPMUMCPUO142",

"port" : 27017,

"version" : "3.4.7",

"gitVersion" : "cf38clb8ala8dcad4all’37581lbeafefdfel20bcd"
}I
"ok" : 1

Hashed indexes cannot be multikey indexes.

Another limitation we will likely run into when trying to fine-tune our database is that
multikey indexes cannot entirely cover a query. Covering a query with the index means that
we can get our result data entirely from the index without accessing the data in our
database at all. This can result in dramatically increased performance as indexes are most
likely to be stored in RAM.

Querying for multiple values in multikey indexes will result in a two-step process from the
index's perspective.

In the first step, index will be used to retrieve the first value of the array and then a
sequential scan will run through the rest of the elements in the array. For example:

> db.books.find({tags: ["mongodb", "index", "cheatsheet", "new"] })

This will first search for all entries in multikey index tags that have a mongodb value and
then sequentially scan through them to find the ones that also have the index,
cheatsheet, and new tags.

A multikey index cannot be used as a shard key. However, if the shard
key is a prefix index of a multikey index, it can be used. More on this in
Chapter 11, Sharding.

[153]

Indexing Chapter 6

Special types of index

Apart from the generic indexes, MongoDB supports indexes for special use cases. In this
section, we will identify and explore how to use them.

Text

Text indexes are special indexes on string value fields to support text searches. This book is
based on version 3 of the text index functionality, available since version 3.2.

A text index can be specified similarly to a regular index, replacing the index sort order (-1,
1) with the word text shown as follows:

> db.books.createlIndex ({"name": "text"})

Any collection can have at most one text index. This text index can support
multiple fields, text or not. It cannot support other special types such as
multikey or geospatial. Text indexes cannot be used for sorting results,
even if they are only part of a compound index.

Since we only have one text index per collection, we need to choose the fields wisely.
Reconstructing this text index can take quite some time and having only one of them per
collection makes maintenance quite tricky, as we will see towards the end of this chapter.

Luckily, this index can also be a compound index:

> db.books.createIndex({ "available": 1, "meta_data.page_count": 1,
lls**": "textll })

A compound index with text fields follows the same rules regarding sorting and prefix
indexing as we explained earlier in this chapter. We can use this index to query on
available or available, meta_data.page_count or sort if the sort order allows for
traversing our index in any direction.

We can also blindly index as text each and every field in a document that contains strings:

> db.books.createIndex ({ "$**": "text" })

This can result in unbounded index size and should be avoided but it can be useful if we
have unstructured data, coming for example straight from application logs where we don't
know which fields may be useful or not and we want to be able to query as many of them as
possible.

[154]

Indexing Chapter 6

Text indexes will apply stemming (removing common suffixes such as plural s / es for
English language words) and remove stop words (a, an, the, and so on) from the index.

Text indexing supports more than 20 languages, including Spanish,
Chinese, Urdu, Persian, and Arabic. Text indexes require special
configuration to index correctly in languages other than English.

¢ Case insensitivity and diacritic insensitivity: A text index is case- and diacritic-
insensitive. Version 3 of the text index (the one that comes with version 3.4)
supports common C, simple S, and the special T case foldings as described in
Unicode Character Database 8.0 case folding. In addition to case insensitivity,
version 3 of the text index supports diacritic insensitivity. This expands
insensitivity to characters with accents both in small- and capital-letter form. For
example g, &, ¢, €, € and their capital letter counterparts can all be the same in
comparison when using a text index. In previous versions of the text index these
were treated as different strings.

¢ Tokenization delimiters: Version 3 of the text index supports the tokenization
delimiters defined as Dash, Hyphen, Pattern_Syntax, Quotation_Mark,
Terminal_Punctuation, and White_Space as described in Unicode Character
Database 8.0 case folding.

Hashed

A hash index contains hashed values of the indexed field:

> db.books.createIndex({ name: "hashed" })
This will create a hashed index on the name of each book of our books collection.

A hashed index is ideal for equality matches but cannot work with range queries. If we
want to perform range queries on fields, we can create a regular index (or a compound
index containing the field) and also a hash index for equality matches. Hashed indexes are
used internally by MongoDB for hashed-based sharding as we will discuss in Chapter 11,
Sharding. Hashed indexes truncate floating point fields to integers. Floating points should
be avoided for hashed fields wherever possible.

[155]

Indexing Chapter 6

TTL

Time to live indexes are used to automatically delete documents after an expiration time.
Their syntax is as follows:

> db.books.createIndex({ "created_at_date": 1 }, { expireAfterSeconds:
86400 })

The created_at_date field values have to be either a date or an array of dates (the earliest
one will be used). In this example, documents will get deleted one day (86,400 seconds)
after the created_at_date.

If the field does not exist or the value is not a date, the document will not expire. In other
words, a TTL index silently fails, not returning any error when it does.

Data gets removed by a background job running every 60 seconds. As a result, there is no
explicit accuracy guarantee as to how much longer documents will persist past their
expiration date.

A TTL index is a regular single field index. It can be used for queries like a
regular index. A TTL index cannot be a compound index, operate on a
capped collection, or use the _id field.

The _id field implicitly contains a timestamp of the created time for the
document but is not a Date field.

If we want each document to expire at a different, custom date point we
have to set {expireAfterSeconds: 0} and set the TTL index date field
manually to the date on which we want the document to expire.

Partial
A partial index on a collection is an index that applies only to the documents that satisfy the

partialFilterExpression query.

We'll use our familiar books collection:

> db.books.createlIndex (
{ price: 1, name: 1 },
{ partialFilterExpression: { price: { S$gt: 30 } } }

[156]

Indexing

Chapter 6

Using this, we can have an index just for the books that have a price greater than 30. The
advantage of partial indexes is that they are more lightweight in creation and maintenance
and use less storage.

The partialFilterExpression filter, supports the following operators:

¢ Equality expressions (thatis, field: value or using the $eq operator)

Partial indexes will only be used if the query can be satisfied as a whole by the partial index.

The sexists: true expression

The sgt, $gte, $1t, and $1te expressions
$type expressions

The $and operator at the top-level only

If our query matches, or is more restrictive than, the partialFilterExpression filter
then the partial index will be used. If the results may not be contained in the partial index
then the index will be totally ignored.

Sparse

The partialFilterExpression does not need to be part of the sparse
index fields. The following index is a valid sparse index:

> db.books.createIndex ({ name: 1 }, {
partialFilterExpression: { price: { S$Sgt: 30 } } })

To use this partial index, however, we need to query for both name and
price greater than 30 or more.

Prefer partial to sparse indexes. Sparse indexes offer a subset of the
functionality offered by partial indexes. Partial indexes were introduced in
MongoDB 3.2 so if you have sparse indexes from earlier versions it may be
a good idea to upgrade them. The _id field cannot be part of a partial
index. A shard key index cannot be a partial index.
partialFilterExpression cannot be combined with the sparse option.

A sparse index is similar to the partial index, preceding it by several years (it has been
available since version 1.8).

[157]

Indexing Chapter 6

A sparse index only indexes values that contain the following field:

> db.books.createIndex({ "price": 1 }, { sparse: true })
It will create an index with only the documents that contain a price field.
Some indexes are always sparse due to their nature:

e 2d, 2dsphere (version 2)
® geoHaystack

® text

A sparse and unique index will allow multiple documents missing the index key. It will not
allow documents with the same index field value. A sparse and compound index with
geospatial indexes (2d, 2dsphere, geoHaystack) will index the document as long as it has
the geospatial field.

A sparse and compound index with the text field will index the document as long as it has
the text field. A sparse and compound index without any of the two preceding cases will
index the document as long as it has at least one of the fields.

Avoid creating new sparse indexes in the latest versions of MongoDB; use partial indexes
instead.

Unique

A unique index is similar to an RDBMS unique index, forbidding duplicate values for the
indexed field. MongoDB creates a unique index by default on the _id field for every
inserted document:

> db.books.createIndex({ "name": 1 }, { unique: true })
This will create a unique index on a book's name.
A unique index can also be a compound embedded field or embedded document index.

In a compound index, the uniqueness is enforced across the combination of values in all
fields of the index; for example, the following will not violate the unique index:

> db.books.createIndex({ "name": 1, "isbn": 1 }, { unique: true })
> db.books.insert ({"name": "Mastering MongoDB", "isbn": "101"})
> db.books.insert ({"name": "Mastering MongoDB", "isbn": "102"})

[158]

Indexing Chapter 6

This is because, even though the name is the same, our index is looking for the unique
combination of {name, isbn} and the two entries differ on isbn.

Unique does not work with hashed indexes. Unique indexes cannot be created if the
collection already contains duplicate values of the indexed field. A unique index will not
prevent the same document from having multiple values.

If a document is missing the indexed field it will be inserted. If a second document is
missing the indexed field, it will not be inserted. This is because MongoDB will store the
missing field value as null, thus only allowing one document to be missing the field.

Indexes that are a combination of unique and partial will only apply unique after partial has
been applied. This means that there may be several documents with duplicate values if they
are not part of partial filtering.

Case-insensitive

Case sensitivity is a common use case for indexes. Up until version 3.4, this was dealt with
at the application level by creating duplicate fields with all lowercase characters and
indexing this field to simulate a case-insensitive index.

Using the collation parameter, we can create case-insensitive indexes and even
collections that behave as case-insensitive.

Collation in general allows users to specify language-specific rules for string comparison. A
possible (but not the only) usage is for case-insensitive indexes and queries.

Using our familiar books collection, we can create a case-insensitive index on a name like
this:

> db.books.createIndex({ "name" : 1 },
{ collation: {
locale : 'en',
strength : 1
}
o)

[159]

Indexing Chapter 6

strength is one of the collation parameters, the defining parameter for case sensitivity
comparisons. Strength levels follow the International Components for Unicode (ICU)
comparison levels. The values it accepts are as follows:

Strength Description

value

la Primary level of comparison. Comparison based on string value, ignoring
any other differences such as case and diacritics.

2 Secondary level of comparison. Comparison based on primary level and if
this is equal then compare diacritics (that is, accents).

3 (default) Tertiary level of comparison. Same as level 2, adding case and variants.

4 Quaternary level. Limited for specific use cases to consider punctuation

when levels 1-3 ignore punctuation or for processing Japanese text.

5 Identical level. Limited for specific use case: a tie breaker.

Creating the index with collation is not enough to get back case-insensitive results. We need
to specify collation in our query as well:

> db.books.find({ name: "Mastering MongoDB" }).collation({ locale: 'en',
strength: 1 })

If we specify the same level of collation in our query as our index, then the index will be
used.

We could specify a different level of collation as follows:

> db.books.find({ name: "Mastering MongoDB" }).collation({ locale: 'en',
strength: 2 })

Here, we cannot use the index as our index has collation level 1 and our query looks for
collation level 2.

If we don't use any collation in our queries, we will get results defaulting to level 3, that is,
case-sensitive.

Indexes in collections that were created using a different collation from the default will
automatically inherit this collation level.

[160]

Indexing Chapter 6

If we create a collection with collation level 1 as follows:

> db.createCollection ("case_sensitive_books", { collation: { locale:
'en_US', strength: 1 } })

Then, the following index will also have collation strength: 1:
> db.case_sensitive_books.createIndex({ name: 1 })

And default queries to this collection will be collation strength: 1, case-sensitive. If we
want to override this in our queries we need to specify a different level of collation in our
queries or ignore the strength part altogether. The following two queries will return case-
insensitive, default collation level results in our case_sensitive_books collection:

> db.case_sensitive_books.find({ name: "Mastering MongoDB" }).collation(
{ locale: 'en', strength: 3 }) // default collation strength value

> db.case_sensitive_books.find({ name: "Mastering MongoDB" }).collation/(
{ locale: 'en' }) // no value for collation, will reset to global default

(3) instead of default for case_sensitive_books collection (1)

Collation is a pretty strong and relatively new concept in MongoDB and so we will keep
exploring it throughout different chapters.

Geospatial

Geospatial indexes were introduced early on in MongoDB and the fact that FourSquare is
one of the earliest customers and success stories for MongoDB (then 10gen Inc) is probably
no coincidence.

There are three distinct types of geospatial index that we will explore in this chapter.

2d

A 2d geospatial index stores geospatial data as points on a two-dimensional plane. It is
mostly kept for legacy reasons for coordinate pairs created before MongoDB 2.2 and in most
cases should not be used with the latest versions.

2dSphere

A 2dSphere geospatial index supports queries calculating geometries in an earth-like
plane. It is more accurate than the simplistic 2d index and can support both GeoJSON
objects and coordinate pairs as input.

[161]

Indexing Chapter 6

Its current version since MongoDB 3.2 is version 3. It is a sparse index by default, only
indexing documents that have a 2dsphere field value.

Assuming that we have a location field in our books collection, tracking the home address
of the main author of each book, we could create an index on this field like this:

> db.books.createIndex({ "location" : "2dsphere" })

The location field needs to be a GeoJSON object, for example like this one:
location : { type: "Point", coordinates: [51.5876, 0.1643] }

A 2dsphere index can also be part of a compound index, as the first field or not.
> db.books.createIndex({ name: 1, location : "2dsphere" })

geoHaystack

geoHaystack indexes are useful when we need to search geographical-based results in a
small area. Like searching for a needle in a haystack, with a geoHaystack index we can
define buckets of geolocation points and get back all the results that belong in this area.

Creating a geoHaystack index:
> db.books.createIndex({ "location" : "geoHaystack" ,

"name": 1 } ,
{ bucketSize: 2 })

This will create buckets of documents within 2 units of latitude or longitude from each
document.

Here, with the preceding example location:
location : { type: "Point", coordinates: [51.5876, 0.1643] }

Based on the bucketSize: 2, every document with location [49.5876..53.5876,
-2.1643..2.1643] will belong in the same bucket as our location.

A document can appear in multiple buckets. If we want to use spherical
geometry, 2dSphere is a better solution. geoHaystack indexes are sparse by default.

If we need to calculate the nearest document to our location and this is outside our
bucketSize (thatis, greater than 2 units of latitude/longitude in our example), queries will
be inefficient and possible inaccurate. Use a 2dSphere index for such queries.

[162]

Indexing Chapter 6

Building and managing indexes

Indexes can be built using the MongoDB shell or any of the available drivers. By default,
indexes are built in the foreground, blocking all other operations in the database. This is
faster but often undesirable, especially in production instances.

We can also build indexes in the background by adding the {background: true}
parameter in our index commands in the shell. Background indexes will only block the
current connection/thread. We can open a new connection (that is, using mongo in the
command line) to connect to the same database:

> db.books.createIndex({ name: 1 }, { background: true })

Background index building can take significantly more time than foreground, especially if
the indexes can't fit in available RAM.

Index early, revisit indexes regularly for consolidation. Queries won't see partial index
results. Queries will start getting results from an index only after it is completely created.

Do not use main application code to create indexes as it can impose unpredicted delays.
Instead, get a list of indexes from the application and mark these for creation during
maintenance windows.

Forcing index usage
We can force MongoDB to use an index by applying the hint () parameter:

> db.books.createIndex({ isbn: 1 }, { background: true })
{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 8,

"numIndexesAfter" : 9,

"ok" : 1

}
The output from createIndex notifies us that the index was created ("ok" : 1), no
collection was created automatically as part of index creation
("createdCollectionAutomatically" : false), the number of indexes before this

index creation was 8, and now there are 9 indexes in total for this coll<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>