» Progress’

Progress DataDirect for JDBC
for SQL Server

User's Guide

Release 6.0.0

» Progress’DataDirect’

Copyright

© 2020 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect
XML Converters, DataDirect XQuery, DataRPM, Defrag This, Deliver More Than Expected, Icenium, Ipswitch,
iMacros, Kendo Ul, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered by Progress,
Progress, Progress Software Developers Network, SequeLink, Sitefinity (and Design), Sitefinity, SpeedScript,
Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test Studio, WebSpeed, WhatsConfigured,
WhatsConnected, WhatsUp, and WS_FTP are registered trademarks of Progress Software Corporation or one
of its affiliates or subsidiaries in the U.S. and/or other countries. Analytics360, AppServer, BusinessEdge,
DataDirect Autonomous REST Connector, DataDirect Spy, SupportLink, DevCraft, Fiddler, iMail, JustAssembly,
JustDecompile, JustMock, NativeScript Sidekick, OpenAccess, ProDataSet, Progress Results, Progress
Software, ProVision, PSE Pro, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObijects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, and WebClient are trademarks or service marks of Progress Software Corporation and/or its
subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Updated: 2020/01/22

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Copyright

4 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Contents

Table of Contents

Welcome to the Progress DataDirect for JDBC for SQL Server: Version

8.0, 0t e aa 13
WhaL'S NEW 1N ThiS FRIEASE?.....eei ittt e e e bt e e s s bbee e e e e annaeas 14
Data SOUICE and rIVEE ClASSES.ueiiiiiiiee ittt ettt e e e e e e e e e e bbb e e e e e e e e e e e e e e e sannbebeeeeaeas 15
(070] o] o =Tt 1o B U1 = { PR PPP 15
YT o (W11 L=] 0 0 T=T o1 RSP PP TP SRR 16
Version String INFOFMALION.uuieiiiiiiie e e e e e e e e e s s e r e e e e eaeeeeesanannnrnrenneeees 16
(07e] ol g =Tox (o] oI o] 0] 01T 41 [T T PP U TP PP PP PPPPPPRTP 17
(D1 = T 1Y/ 02 T PP PPPPPPPTT 17

OEETYPEINTO ...ttt e e e e e e s e e s bbbt e e e e e e e e e e e e e e nnnbreneees 19
(fe] gl =T 1] lo T F=Tod o] (= YIS U1 o] o o] o o ORI 32
Getting Started.......ccooiiiiiiii e e 35
Data SOUICE and GrIVEE ClASSES.u ittt ettt e e e e e s e e bbb e e e e e e e e e e e e aanbbebeeeeeeas 35
Setting the CIASSPALNcooiiiiiiiii et e et e e e et e e e e e aanbeas 36
Connecting using the DIVEIMANAQETcoeie e e e e e e e e e e aaae e e et eeeeeeeaerereannraanaanas 36
Passing the CONNECHION URL.........ouuiiiiiiiiiie e et 36
TestiNg the CONNECTION..........oeieiii et e s e s e e e e e e e aeaaeaaaaeeneeanes 37
CoNNECtiNg USING TAA SOUMCES.uiieiiiiiiiee ittt ettt et e et e e e bt e e s e bt e e e e st e e e e e anbbee e e e e annreas 40
How data sources are implemented.............oooiiiiiiiiiiiiecrr e e 40
Creating GAtA SOUICES.ueiiieiiiiitee ettt ettt e ettt e e e st et e e st e et e e e s bb e et e e s aabbe e e e e aanbbeeeesannneeeens 41
Calling a data source in an apPliCALION...........uuuueiiiiiie e 42
Testing @ data SOUICE CONNECTION.ciiuutiiiei ittt e et e e e e e e 42
USING the AriVer. .o 47
Required permissions for Java SE with the standard Security Manager enabled.................ccccvvveeee. 48
Permissions for establisShing CONNECHIONS.............oiiiiiiiii e 49
Granting acCess t0 JAVA PrOPEITIES. . uuuuiiiieee e e e it e ittt e e e e e e e s s st r e e e e e e e e s s ss st e eereaeaeeaaas 49
Granting access to temMpPOrary filES.........ooii i 49
Permissions for bulk load from @ CSV fil€.........cuviiiiiiii e 50
Connecting from an apPlCATION..........ooiiiiiii e e e s 50
Data source and driVEr CIASSES.........ouiiiiiiiiie ittt e et e et e e e e snereas 50
Setting the ClasSPatheeiii e 50
Connecting using the DriVEIrMaNAQETcceiiiiiiiiieiieie et e e s e e e e e e e e e s s rereaeeeeaaen 51
CoNNECING USING JALA SOUICES.ceeiitiiiiieiitiieee ettt e e s sttt e et e e st e e s abae e e e e s anbbe e e e s annneeeeas 54

(W1 Lo JoTo] gl aT=Tox (o] T o] (0] o L=1 g 1= EEPPRR 59
(RL=To (0T g=To I o] (] o =T 1 =T F P PP PP PP PPPPRPTPP 59

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 5

Contents

AUTNENTICALION PrOPEITIES. ... it ettt e et e e e et e e e e e abbr e e e e e nnnreas 59
D= e W =T oY/ o1 o] T o] o] 0= o =T TSRS 60
FaIIOVET PrOPEITIES. ettt e et e e et e e e e et e e e s e nbn e e e e e anereas 61
202 [o =T I 0] (0] o 1T 1= SRR 63
Data type handling PrOPEItIES.uiiie ittt e et e s e e annneas 64
QLI =0TV A] o] o =T (1= 66
Statement POOIING PrOPEITIES.uueiie ittt e e st e e e anbr e e e s annneeaeas 67
Client iINfOrmation PrOPEITIES. e e e e e e e e e e e s s s e e e e e aaaeeeaean 68
AWAYS ENCrypted PrOPEITIES.eeiiieeiiitiet ettt e et e e e 69
P (o 11 0T g T I o] 0 1= [T 71
PerformanCe CONSIAEIATIONS.uuiiiiiiiieee ettt e e e e e et e e e e e e s e s s ae e e e e eeeaaeeesaaannebsbaeeeeeas 75
Connecting to NAME INSTANCES..........ccccuviiiieie e e e e e e s e s s s e e e e aaeeeeesaasnnraarrrrreeeaeenaan 77
Azure Synapse Analytics and Analytics Platform SYStem..........cooviiiiiiiiiiii e 77
F UL g LT o Tor= Vo] o P PR PRP 79
Configuring user ID/password authentiCatioN.coeiiiiirieeiiiiie e 79
Configuring Azure Active Directory authentiCation...........cccceevviviiiiiiiiiieeie e 80
Configuring the driver for Kerberos authentiCation...............ceouuviireriiiiiee e 81
Configuring NTLM @uth@ntiCatioN..........ceeiieeeeiiiiiiciiieee e e e e e e e e e e e e e aeeee e 86
(D=1 e B =T o o1 Y/ o (o] o OO TP PP P PP PPPPPPPPPPTN: 87
Using SSL with MiICrosoft SQL SEIVEN.........ccuuuiiiiiiiiiee e et e e e s s e e e e e e e e e e e s snnnnes 87
CoNfiIgUIiNG SSL @NCIYPLION.utiiiiei ittt e e s s e e e e s e e e e aanneeees 88
F A= YA = o] Y] (= SR 88
USING TAIOVET ..ottt e e sttt e e skt e e s s bbb et e e s nbne e e e s annneeee s 92
(7o) a1 iTo 0 T oo I =110 V7= SRR 93
(o] ol o =Tox 1 o] TN =1 [0 Y= S TP UPPRRPTR 96
Extended cONNECHION FAIIOVET...........uiiiiiiiie e 97
Select CONNECHION FAIIOVE ... et e e e e e e e e e e e e e e e as 98
Configuring failover with Microsoft CIUSIEr SEIVE.........ccviieiiiiiiicceeee e 99
Using client 10ad DaIANCINGooiiiiiiiieii et snrr e e e aae 99
L0 LS o T oTo] ol g YT o 1o o T (= 1Y/ SRS 100
Always On AVailability GIrOUPS........coiiiiiiiiieeii e e e 100
Returning and inserting/updating XML data...........c.cuuueiiiiieeiiiiiiiiiiieeie e e e e e e e e e e e e e e snnnnnes 100
RETUINING XML GATA......eeeiiiiiiieie ettt e et e e e s st e e e e s aabaeeeeeanes 101
Inserting/updating XML atal.........ccceeeeiiiieiiiiiiiecer e e s e e e e e e e e s e st reeeaeee e e s e e snnnnnes 102
DIML WILI FESUIES ...ttt ettt e e e e e e e e ettt e e e e e e e e e s e s s nnnbbtbeeeeeeaeeeeeesaaannrnne 103
L0 LS o Jod =T o) AT) (0] 4= L1 T PSSR 104
How databases store client iNfOrmation..............cour i 104
Returning client iNfOrMatioN...........oooee oo r e e e e e e e s e eannenes 105
Returning metadata about client information l0Cations..............cooviiiiiiiiiiee e 105
L0 LS o T = To [0 [T T PSSR 106
Parameter Metadatal SUPPOIT........cui ettt e et e e s s b e e e e st et e e s anbr e e e e s aannreeee s 107
Insert, Update, and Delete StatemMeENtS...........uuuiiiiieeeeiiiiiiiiieee e e e e e e e e e eannenes 107
SEIECT SEALEMENTS. ...ttt et e e e e e e e s e e bbb ettt e e e e e e e e s aaannbbenreeeeaaaaeeaanan 107
S (o =To I o (o ToT=To (U] =T PRSP 108
ResultSet Metadata SUPPOIT.........uii ettt ekt e e st e e s st b et e e s anbr e e e e s annnreeeeas 108

6 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Contents

[SOIALION TEVEIS......eeeeeeeeeeee ettt e e e e e e s e ettt ettt e e e e e e e e e s e s aanbbtbeeeeeeeaeeeeesaaannrnne 109
Using the Snapshot iSOIAtioN [EVEL...........ceiviiii i r e e e e e e e e earnnes 109
USING SCIOlIADIE CUISOIS.eiiiiiieei et e bt e e et e e e e erneas 110
Server-side UPAatable CUISOIS..........ooi ittt e e e e s e e e e e e e e e e e s s e nn e aereeeaaeeesaaan 110
JTA support: installing StOred PrOCEAUIES..........cuuiiiiiiiiiiie ettt e e e e e e e 111
Distributed tranSaCtioN CIEANUP.uuuiiiiiieeee i e e e s e e e e e e e e e s s e eereeeaeeeeesaasnnrnnes 112
TraNSACHON tIMEOUL........uiiiiiiiiiii et e ettt e e e e e e e s e s s nb et eeeeeeaaaeeeesaaannnbeneeeeeaeas 113
EXpIiCit tranSaCtioN CIEANUP.eeviiie et e e e e e e s e r e e e e e e e e s e e snnrenes 113
(8]] [ofe o (=R o] o Lo] & F T PP U PP PT PP PPPPPP 114
T o] g o= U To | L1 Vo PSSRSO 114
(=1 =i o] o] (=Tl QY (@ =) IR U o] o L] & VTP PP PP OPPPP 114
Batch INSerts and UPAAtes...........uuviiiiiiiiieee e e e e e s s e e e e e e e e e s s s st e e e e e eaeeeeesaannnrnnes 115
ROWSET SUPPOIT. ...ttt ettt e e e e e et e e e ettt e e e e e e sa s e bbb e e et e e teeeeeesaasnernnee 115
YT (o R o [T =Tz L= To I =) VAT U o] o0 o VRSSO 115
N LUV (VT PP PPPRRRPRN 116
LI =0T £ PRSP 117
CoNNECHION POOI MBNAGET.......ccoiiiiiieee ittt et e e et e e e e bbbt e e e e anbe e e e e anreeas 117
HOW coNNECtion POO0IING WOIKS........ccooiiiiiiiee e e e e e s s e e e e e e e e e s e s ennnenes 117
Implementing DataDirect conNection POOING..........coiiuiiiiiiiiiiiie e 119
Configuring the CONNECLION POOL.......uuuiiiiiiee e e e e e e s e e eeeeeseean 122
Connecting using a CONNECHION POOL........c.ciiuiiiiiiiiii e 123
Closing the CONNECION POOL...........uuiiiiiiiieiee e e e e r e e e e e e e e 125
USING FEAUTNENTICALION.eeiiiiiiiiiie ittt e e e s e e e s annneee s 125
Checking the POOI MaNagEr VEISION.........cccciiiiiiciiiiiiie e e e e e e e e s e st r e s e e e e s e s s s aaeeeeaaaeeesenan 126
Enabling POOI Manager traCing..........ccceiiuriiieiiiiiiee ettt ettt e e st e e e e s sbneeeeeanes 126
Connection Pool Manager iINtEIACES.cccoii i e e e e e e e e 126
StatemMeENt POOI IMONITOTuuiiiiiiie et e e e e e e ettt e e e ae e e s e s saannbbesaeeeaaaaeeeaanan 131
Using DataDirect-specific methods to access the Statement Pool Monitor............ccccceeeeeeennn. 132
Using JMX to access the Statement POOI MONITON...........oviiiiiiiiiiiiiiieee e 134
Importing statements into a StatemMeNt POO0L.........ccceiiiiiiiiiiiee e 136
Clearing all statements in @ StateMeNt POOL..........ocuuiiiiiiiiiii e 136
Freezing and unfreezing the statement POOL...........ccooiiiiiiiiiiiiii e 137
Generating a statement Pool eXPOrt fil€...........uiiiiiiiiii e 137
DataDirect Statement Pool Monitor interfaces and ClaSSes.........oocvveveiiiiiiiee i 137
DataDir€Ct BUIK LOAM.ciei ittt ettt e e e e e s e ettt e e e e e e e e e s s s e nanbbebaeeeeaaeaeeeesaaannrnnes 139
UsSIiNg @ DDBUIKLOAA ODJECT........uiiiiiiiiiiec et e e e e e e e e e s e s s re e e e e aeeeeeeean 140
LRV 11 = PRSP RRR 143
Bulk load configuration fil€............iiie i e e 144
Bulk load configuration file SChEMa............ooiiiiiii e 144
CharaCter SEL CONVEISIONS.ciiuuiiiiee ittt e sttt e e sttt e e s st e e s st e e e e snbb e e e s ennbbeeeeesnnreeas 144
EXternal OVEIIOW filES..... ... it e e e e e e e e ennneees 146
D[S Tor= T o B 11 =PRI 146
D= = 1 1] (Tt 1T P PPPRRRPR 147
DAtaDIreCt TESE tULOMTAL .. .eeeiieriiiie ittt e e st e e e st e e s sbbe e e e e s snbaeeeeeanes 147
Tracking JDBC calls With DataDirECt SPY.....ccciiiriiieeiiiiiiee ettt 180

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 7

Contents

ENabling Dat@Dir€CT SPY.......uureeieiiiiiieee ittt ettt ettt e et e e st e e e st e e e e s abreeeeeane 180
Connection property desSCriptioONS......c.couviiiiiiiiiiiii e e 185
o oo 11] 1T | o] {o PR 192
F =) VA O Tl 1 1= N PP PRSPPI 193
F Y o YA (o] (=T O 1= | 6] =T] O PPSERRRR 194
F N = NG] (o] (=1 Mo Tox= 11 o] P PP TP PP 195
F N)Y (o] (=] = T o1 o= 11 o PSR 196
AEKBYSIOTESECIEL ...ttt e oo e e e e e e et et et et eeeeeaete bbbt bbb a e e ae e e e e e e e aeaaaaaeaeeannees 197
FN LT g Eo (S]] A= = PRSP PPR 198
AlWaySREPOMTHIGEIRESUILS.ceiiiii e e e e e e e e e s reeeeaaaaeas 199
Y o] o] o= o] 0] 1 0] €= 1 PP 199
PN o] o ITof= T To] 0] \\F= 10 o= T TP PRSP P P PPPRPPTP 200
AUthentiCAtIONMELNOM. ..o et e e e st b e e e et e e e e ennees 201
BUIKLOAABAICNSIZE. ...ttt ettt e et e e e e e e e e e anbbabaeeeaaaaaaeaeas 202
201 I =T L@) 1 o o PR 203
1021 71 (o To [@] o 1Te] o < TP OO PPRPRPRPT 204
(O 11T o1 T 1] £ F= T o= PR PRRTPPR 205
L0 11T 01 LU LS T TP PP PPPRPRPRT 205
(70T L=T == Vo [T A =Ty o o - PSR 206
(07e] [F1 00T o1 = o Ted Y] 011 (o] o U TP PPPTTPTP 207
(7o) o1 =Tt 1] a1 =114 @ T o | PSSR 208
CONNECHIONREINYDEIAY ... teeeeeeiee e ettt e e e e e e s e e s bbbt e e et eaaaaeeasaaannnbesaeeeaaaaaeeeasanns 209
1070 01V =T {1 | PR PRPO 210
CrYPLOPTOIOCOIVEISION. ...ttt e e e e ettt e e e e e e e e e e s e nabbbbeeeeeeaaaeeeeaannnns 210
(DY r o F= 11T\ T o= TP OUPPPPRTTPPRP 211
DateTimeINPUIPArAMEIEI TYPE.... . ettt ettt e e e e e e e e e s e aab bbb b e e e e e e aeeeeeesannnnnbeeneees 212
Date TiMEOULPUIPAIrAMELEI TYPE. . eeeiiieeee e e e ettt ee e e e e e e e e s e e e e e e e e e e s s s s s et rareeraeaeeesseannnrnneneeeees 213
DESCIIDEINPULPAIAMETEIS.ttt e e e e ettt ettt e e e e e e e s e s s nbebb e bt e et aaaaeeeseaannnbnneneeeeas 214
DeSCrDEOULPULPAIAMELEIS. ... uuiiiiiiiiee e i et e e s e e e e e e e e e e s s a et r e e e e e eeeeeesaaannnsrnneneeeees 215
Do) 1 o1 V1 o ST PEURTTPT 216
g F o] =] 2101 (I Y- Vo PP 216
ENaDIECANCEITIMEOUL. ...ttt ettt e e e e e e ettt e e e e e e e e e e e s e nnnbbsaeeeaaaaaens 217
ol Y7 o140 011 =1 o To o SRS 218
= T [}V =T (€] = (U] = TP PP PP TP PR 219
= 11TV = T4 1Y o To = PP 220
=11 [0)Y T g e £ Toto T T U= od U PP TTP PR TTUPOR 221
oY (o] ol ISV I N] =] = Vo o PP 221
S (o] VLY Y= TS N 01 T TP RP P PR PO 222
LEIS S @ (=T =T o - | PSPPI 223
HOSINAMEINCEITITICALE. ... ettt e ettt e e e e e e e e e e s e b s beeeeaaaaens 224
T g 0T 6] = U LT 41T 14 o T PO 225
LTI 4= A (0] 157] o TR TP T TP 225
INSENSIIVERESUISELBUMEISIZE.ci it st e e e staee e 226

8 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Contents

JAVAD OUBIETOSIIINGttt e ettt e ekt e e e e st et e e e e bbbt e e e e et e e e e e e nbr e e e e ennnnes 227
|20 21T o oAV o PRSPPI 228
[oT=To]S Fo1 F= T g of] oo [T TP P PP OPPPPPPUPUPPPPTN 228
[o [T @S] a1 Te 1= T4 1= TSSO 229
(o o |10l T 0= | TP PP PP PP OPPPPPPPRUPPPTTN 230
LONGDAtACACNESIZE.ccc e e e e e e e e e e e e e e e e e —raaaaaeeaean s 231
Y F P oo [=To 5] 2= 1=T 1 0= 01 P EPP PP 232
MUILISUBDNEIFAIOVETeeiiie et e et e e e et e e e s e st e e e e s nbeeeeeenees 233
NN =] 7N [0 [=2 PP UP PSP 234
PACKELSIZE....cce ittt e et e e e e e e et e e e e b e e e e e nbbee e e e e nees 234
= LTS 1Yo o TR PPPPRRT 236
o\ 0T 0] o1 PSPPSR 236
PrOGramMID.....ccoiiiiiiiii ettt e e e e e e e e e e e s r et e e e e e e 237
L@ 10 1= Y I 41T 11 | S SEPRPR 238
RegisterStatementPOOIMONITOIrMBEAN..........ccoiiiiiiiii e 238
RESUISEtMEtaDAtAOPONS. tiiiiiiiieiee e e e e it e e e e e e e s s s e e e e aeee e s s ss e et aarreraeaeeessasnnnrnrenneeees 239
Y= [T ox 111,11 1 T To TP PPPRPPRR 240
ST V=T N F= T o PO PP PP PP PR PPPPP 241
SerVICEPIINCIPAINGMIE. ...ttt e s et e e e b e e e e anb e e e e e nneeas 242
SNAPSNOLSENAIZADIE.eeieeiiieee e r e e e e e e e s e raea e e e s aaaann 243
SPYATIIIDULES. ...ttt e e e et e sk et e e s bbb et e e s et et e e e e nbr e e e e e aanr e e e s 244
Yo L] 01U nZ=T = U g =] (=T 1Y/ o 1= SRR 245
StNGOULPUIPAIAMETEI TYPE. ...ttt e e e s st e e e et bt e e e annbe e e e e e nnnneas 246
SUPPreSSCONNECHONWWAININGS. ..o uieiiieieeeee e e e e s et e e e eee e et s s sse e raaeereeeeeesesasassnsrrareereeeaeessesannnnes 246
TrANSACHONMOUTE. ettt e ettt e et e e e e e e s et e bt e et e et e eaaeeeasaannbebteeeeeaaaaeeesaaannnns 247
TruNCAteFraCtioONAISECONUS.ci ittt e e e et e e e e e nbe e e e e e nnseeas 248
OS] 5] (o] TP TP PP UPTPRPR 248
LT S (o] =] 2= TS0 o PSSR 249
L0 L] S PP UTP TP 250
UseServerSideUpdatablECUISOIS.ttt e e e s s e e e e e e e s s e e eeeeeaeeeesaseansrnrnees 251
Validate SErVErCEITITICALE. ... uueeieiiiie et e et e e e e e e e e e e s e e s r e eeeeeaaaeeeas 251
DA L =Y 7= Tox 1o 1T 0 U1 o PSPPSR 252
DY I BT T T ol] o1 Y o L= PO P PP PPP PRI 253
TroublIESNOOTING ..cciieiiie e 255
Troubleshooting YOUr @PPlICALION..........cciiiiieieee e e e e e s e e e e e e e s e s e e nnnreeaneerees 255
Turning on and off DataDirect SPY 10ggING.......coeiiiiiiiiiiiieee e 256
DataDireCt SPY 100 EXAMPIE.....ueeiiiee e e it e s e e e e e e e e e e e s e e e e e e e e e e e annnrane 256
Troubleshooting coNNECHION POOING........ooi i e e e eeeeas 258
Enabling tracing with the setTracing method...............ooooc e, 258

Pool Manager trace file @Xample.... ..o 258
Troubleshooting statement POOING...........oi i e e e e e e e e e erees 262
Generating an export file with the exportStatement method.............ccccceeiiiiiiiiiiiiee 262
Statement pool eXport file EXaMPIE........iviee i ——————————— 263

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 9

Contents

16%e] g1 1Te U LqTaTo N (oo o] a o T O PP PP T OPPPPP PP 263
OIS T lo IR g T=I AV A1V (o Tl (o T T 11 o SRS 263
SQL escape sequences for JIDBC.........coov i, 265
Date, time, and timestamp ©SCAPE SEQUENCES.uuu titiaaaaae i iaiitttteeeeetaaaaaaaaaaasrabeeseeeaaaaaaaaaaaannrereees 266
o= 1 =T {1 o 1o T PR 266
OULET JOIN ESCAPE SEOUEBIICES. e i e e eeieiitittetteetaaaa e e e e e aaaababae e et eeaaaaaaesaaaansbebbeeeeaaaeaesasaaannbbssseeeeaaaaaasanan 267
LIKE escape character sequence for WildCards............uuiveeeiiiiicciiiiiiiiiece e 268
Procedure Call ESCAPE SEQUENCES.cuiiiii ettt e e e e e e e e e e e bbb ettt e e eaaaeeesaaannbbabeeeaaeaaaaaeasaaaannrnnes 268
JD B C SUP PO et e e een 271
= PPN 272
2 0] o TR 273
Callable S AtEIMENT. e et et e e e e e e e e e e e et e e et e e e e aaaaaeaaaaaaaeeeererara———_ 274
L0 (o] o J TR 286
[OF0] a1 aT=Tox {101 o PERETET R STSPSSPPPP 287
CONNECHONEVENTLISIENET e ettt s e s e e e e e e e aeaaaaaaeeeeseeeennennes 293
COoNNECIONPOOIDAIASOUICE.oeeiiiiiiiii i ceei et et et et e e e e e e e e et et et ettt ae e eeseseeeaaeaaeaaaeeeeeeesesseserarnres 293
DatabASEIMETADALA. it e e e e et e aaaaaaaaes 293
[F Y= 110U o] TSR 302
[1= RSP PPT 303
ParameterMeETADALA.ciee e e e e raa 303
[0 To] 1Yo [@3'0] ¥ 0 T=Tox 1 0] o 304
=T ooV K] t= 10T 0 1= o S PO PRRP 305
] U PUUUPRRIR 310
RS U S B ... ettt ettt et e e e e et ettt et et e e eeeeeeeaeeaeaaaaeaeereaaa e ———————————— 310
S LTS 01 =T t= |- - U 321
01T = P 322
STz 1YY o T | 322
L] = 1 (ST 0 11T 1 SRR 322
StAtEMENTEVENTLISIENET ... s e s e e e e e e e aeaaaaeaeeeeeeeaerernrane 327
L] X1 S SSP 327
DX @0 1T 10 o O 327
DAY T 1= 1 T 1 | o= 327
DN ST L0 11 of =T PP SSPPPN 328
N1 B =] O =) g (=T g K] [0] £ S PSPPSR 329
Using JDBC wrapper methods to access JDBC eXIENSIONS..........uviieiiiiiieeiiiiee et 330
DatabaseMetaData iNTEITACE..........uuuiiiiiiiee e e e e e e e e e s s s st ereeeaeeeeesaannnrnnes 331
DDBUIKLOAA INTEITACE.o i et e e e et et e et a e s e e e e e eeaeaeaaaaeeeennes 331
A (@] gl aT=Tox 1To] a1] (=] g 7= Vo7 T PSSRSO 338
ExtDatabaseMetaData iNtEITACE.oeviiiiiii e e e e e e e e e e e e e e e aaaens 343
0T [@da] 1 o] o =TT PSRRI 343

10 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Contents

Designing JDBC applications for performance optimization................ 345
Using database metadata MethOUS.coiiiii e e e 346
Minimizing the use of database metadata methods............ccccevevveeei s 346
AVOIdING SEAICH PAIEINS.ttt e e e e e et e e e e e e e e e e s e e ananeees 347
Using a dummy query to determine table characteristiCs..........cccovvvvvveeeeiiiiiccceeee e 347
RETUIMING ALA. ...ttt ettt et e e e e e e o e e e bbb bttt e e e e e e e e e e saaannnbbbbeeeeeaaaaaeeeaaaannrnne 348
(= (0T a1 o T o o F= L - U SRR 348
Reducing the size of returnNed data...........c..uuueiiiiiiiiiai e 349
Choosing the right data tyPe......cceeiiiiieiiieeee e r e e e e e e e e e aeee s e s 349
RENEVING FBSUIL SBES. ...ttt ettt e e e e e e e e e bbb be et e e e e e e e e e e e e e annnenes 349
Selecting JDBC 0bjects and MENOASueviiiiiiiiii e e e e e s rr e e e e e e e e e e 350
Using parameter markers as arguments t0 stored proCeAUIeS.........cccuueeeriiniiiiiiiiieeeieaaeeeeenns 350

Using the statement object instead of the PreparedStatement object..............ccccovvvevveeeennnnn. 350

Using batches instead of prepared StatemMENtS. ...t 351
ChooSiNg the FIgNE CUISON ... e e e e e e s e e e e e e aeee e e s 352

Using get methods effECHIVEIY........e e 352
Retrieving auto-generated KEYS.........coiii ittt e e s e e e e e e e e e 353
Managing coNNECHiIONS AN UPAALES.cceiiaiiiiiiiiittie et e ettt e et e e e e e e s s ab bbb eeeeeaaaeeeesaaannreees 353
1Y/F= T F= o o T oo | 1= Tox 1T o 1S SRR 354
Managing COmMmMILS iN trANSACHIONS.cocuueiiieieiii ettt e e e e e e e e e e e e e e e snnnenes 354
Choosing the right transaction MOAel...........ooo i 355

Using updateX XX MEthOOS.uuiiiiiiiiiie e e e e e e 355

Using getBeStROWIAENTITIE.........uiiiiiiiiieie e e e e e e e e e e e 355

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 11

Contents

12 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Welcome to the Progress DataDirect for
JDBC for SQL Server: Version 6.0.0

The Progress® DataDirect” for JDBC” for SQL Server” driver supports the JDBC API for SQL read-write access
to Microsoft SQL Server and Microsoft Azure, including Microsoft Azure Synapse Analytics and Microsoft
Analytics Platform System.

For details, see the following topics:

* What's new in this release?

* Data source and driver classes
* Connection URL

* Requirements

* \ersion string information

* Connection properties

e Datatypes

¢ Contacting Technical Support

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

13

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

What's new in this release?

Support and certification

Visit the following web pages for the latest support and certification information.

* Release Notes

* Supported Configurations

¢ DataDirect Support Matrices

Changes since the 6.0.0 release

* Driver enhancements

The driver has been enhanced to support encrypted parameters in stored procedures when using the
Always Encrypted feature.

The driver has been enhanced to support the Always Encrypted feature. Beginning with SQL Server
2016, Azure SQL and SQL Server databases support Always Encrypted, which allows sensitive data to
be stored on the server in an encrypted state such that the data can only be decrypted by an authorized
application. The following are highlights of this enhancement:

* The driver detects all supported native data types stored in encrypted columns and transparently
encrypts values bound to SQL parameters or decrypts values returned in results.

* The driver supports configurable caching of column encryption keys for improved performance.
* The driver supports using Java KeyStore and Azure Key Vault as keystore providers.

You can enable support for Always Encrypted using the following new options: ColumnEncryption,
AEKeyCacheTTL, AEKeystoreClientSecret, AEKeystoreLocation, AEKeystorePrincipalld, and
AEKeystoreSecret. See Always Encrypted on page 88 for details.

Important: Always Encrypted support requires the driver to run on a Java Virtual Machine (JVM) that
is Java SE 8 or higher.

Changes for the 6.0.0 release

¢ Driver enhancements

The driver has been enhanced to transparently connect to Microsoft Azure Synapse Analytics and
Microsoft Analytics Platform System data sources. See Azure Synapse Analytics and Analytics Platform
System on page 77 for more information about supported features and functionality.

The driver has been enhanced to support Always On Availability Groups. Introduced in SQL Server
2012, Always On Availability Groups is a replica-database environment that provides a high-level of data
availability, protection, and recovery. See Always On Availability Groups on page 100 for details on using
the driver with this feature.

The driver has been enhanced to support Azure Active Directory authentication (Azure AD authentication).
Azure AD authentication is an alternative to SQL Server Authentication that allows administrators to
centrally manage user permissions to Azure SQL Database data stores. See Configuring Azure Active
Directory authentication on page 80 for details.

14

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

https://www.progress.com/jdbc/release-history/microsoft-sql-server-jdbc
https://www.progress.com/supported-configurations/datadirect?ds=microsoft-sql-server
https://www.progress.com/matrices/datadirect

Data source and driver classes

* The driver has been enhanced to support Kerberos constrained delegation. Constrained delegation is
a Kerberos mechanism that allows a client application to delegate authentication to a second service.
See Configuring the driver for Kerberos authentication on page 81 and Constrained delegation on page
85 for details.

¢ Changed behavior
* For Kerberos authentication environments, the following changes have been implemented.

* The driver no longer sets the java.security.auth.login.config system property to force the use of the
installed JDBCDr i ver Logi n. conf file as the JAAS login configuration file. By default, the driver
now uses the default JAAS login configuration file for Java, unless you specify a different location
and file using the java.security.auth.login.config system property.

* The driver no longer sets the java.security.krb5.conf system property to force the use of the kr b5. conf
file installed with the driver jar files in the / | i b directory of the product installation directory.

See Configuring the driver for Kerberos authentication on page 81 for details.

Data source and driver classes

The driver provides the following driver class.
com ddt ek. j dbc. sql server. SQ.Ser ver Dri ver

The driver provides the following data source class that supports the functionality for all JDBC specifications
and Java SE 6 or higher.

com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce

See also
Connecting using data sources on page 40

Connection URL

The connection URL format for the driver is:
j dbc: dat adi rect : sql server://host nanme: port[; property=val ue[;...]]
where:

host nanme

is the IP address or host name of the server to which you are connecting. See Using IP addresses
on page 106 for details on using IP addresses.

port

is the number of the TCP/IP port.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 15

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

property = val ue

specifies connection properties. For a list of connection properties and their valid values, see
Connection property descriptions on page 185.

Notes

¢ Untrusted applets cannot open a socket to a machine other than the originating host.
Example
jdbc: dat adi rect: sql server://MServer: 1433; User =t est ; Passwor d=secr et ; Dat abaseNane=M/DB

See Connecting to named instances on page 77 for instructions on connecting to named instances.

See also
Using connection properties on page 59

Requirements

The driver is compatible with JDBC 2.0, 3.0, 4.0, 4.1, and 4.2.

The driver requires a Java Virtual Machine (JVM) that is Java SE 6 or higher, including Oracle JDK, OpenJDK,
and IBM SDK (Java) distributions.

Note: To use the driver on a Java Platform with standard Security Manager enabled, certain permissions must
be set in the security policy file of the Java Platform. See Required permissions for Java SE with the standard
Security Manager enabled on page 48 for details.

Version string information

The Dat abaseMet aDat a. get Dri ver Ver si on() method returns a driver version string in the format:

M m s. bbbbbb(FYYYYYY. UZZZ777)

where:

Mis the major version humber.

mis the minor version number.

s is the service pack number.

bbbbbb is the driver build number.
YYYYYY is the framework build number.
777777 is the utl build number.

For example:

6. 0. 0. 000002(FO00001. U000002)
I || |1 I

Driver Frane Ul

16 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection properties

Connection properties

The driver includes over 60 connection properties. You can use these connection properties to customize the
driver for your environment. Connection properties can be used to accomplish different tasks, such as
implementing driver functionality and optimizing performance. You can specify connection properties in a

connection URL or within a JDBC data source object.

See also
Using connection properties on page 59
Connection property descriptions on page 185

Data types

The following table lists supported data types supported and how they are mapped to JDBC data types.

Table 1: Microsoft SQL Server Data Types

Microsoft SQL Server Data Type

JDBC DataType

bigint BIGINT
bigint identity BIGINT
binary BINARY

bit BIT

char CHAR

date DATE
datetime TIMESTAMP
datetime2 TIMESTAMP

datetimeoffset*

VARCHAR or TIMESTAMP

decimal DECIMAL
decimal() identity® DECIMAL

float FLOAT

image? LONGVARBINARY

1

When FetchTSWTZasTimestamp=false (default), this data type is mapped to the JDBC VARCHAR data type; when
FetchTSWTZasTimestamp=true, it is mapped to the JDBC TIMESTAMP data type.

2 Not supported for Microsoft Azure Synapse Analytics and Microsoft Analytics Platform System.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

17

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

Microsoft SQL Server Data Type

JDBC DataType

int INTEGER

int identity INTEGER

money DECIMAL

nchar NCHAR

ntext? LONGNVARCHAR
numeric NUMERIC
numeric() identity? NUMERIC
nvarchar NVARCHAR
nvarchar(max) LONGNVARCHAR
real REAL
smalldatetime TIMESTAMP
smallint SMALLINT
smallint identity? SMALLINT
smallmoney DECIMAL
sqI_variant2 VARCHAR
sysname VARCHAR

text? LONGVARCHAR
time> TIME or TIMESTAMP
timestamp BINARY

tinyint TINYINT

tinyint identity? TINYINT
uniqueidentifier CHAR

varbinary VARBINARY

varbinary(max)

LONGVARBINARY

When FetchTWFSasTime=true, this data type is mapped to the JDBC TIME data type. When FetchTWFSasTime=false (the

default), this data type is mapped to the JDBC TIMESTAMP data type.

18

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

Microsoft SQL Server Data Type

JDBC DataType

varchar VARCHAR
varchar(max) LONGVARCHAR
xml** SQLXML

getTypelnfo

The following table provides get Typel nf o() results for supported data types.

TYPE_NAME = bigint
AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -5 (BIGINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = bigint
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 19
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint identity
AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -5 (BIGINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL

MAXIMUM_SCALE =0

LOCAL_TYPE_NAME = bigint identity

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX = 10
PRECISION =19
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

4

The XMLDescribeType property overrides the mappings for XML data.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

19

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = binary
MINIMUM_SCALE = NULL

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE = -2 (BINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = Ox
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = binary
MAXIMUM_SCALE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL MINIMUM_SCALE =0

CASE_SENSITIVE = false NULLABLE =1
CREATE_PARAMS = NULL NUM_PREC_RADIX = NULL
PRECISION = 1

DATA_TYPE = -7 (BIT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = bit
MAXIMUM_SCALE =0

SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char
MINIMUM_SCALE = NULL

NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE =1 (CHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = char
MAXIMUM_SCALE = NULL

20 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = date

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 91 (DATE)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = date
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION =10

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = datetime
MAXIMUM_SCALE =3

MINIMUM_SCALE = 3
NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 23

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime2

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = datetime2
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 27

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

21

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = datetimeoffset

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 12 (VARCHAR) or

93 (TIMESTAMP)®
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = datetimeoffset
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 34

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = decimal

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = precision,scale
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = decimal
MAXIMUM_SCALE = 38

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 38
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal() identity®

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = precision
DATA_TYPE =3 (DECIMAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = decimal() identity
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX = 10
PRECISION = 38
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

5

When FetchTSWTZasTimestamp=false, the data type that is returned by DATA_TYPE is VARCHAR; when

FetchTSWTZasTimestamp=true, the data type that is returned is TIMESTAMP.
® Not supported for Microsoft Azure Synapse Analytics and Microsoft Analytics Platform System.

22

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = float

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 6 (FLOAT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = float
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE = 1
NUM_PREC_RADIX = 2
PRECISION = 53
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

TYPE_NAME = image®

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -4 (LONGVARBINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = Ox
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = image
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =0
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = int

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 4 (INTEGER)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = int
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 10
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

23

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = int identity
MINIMUM_SCALE =0

NULLABLE =0
NUM_PREC_RADIX = 10
PRECISION = 10
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 4 (INTEGER)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = int identity
MAXIMUM_SCALE =0

TYPE_NAME = money
MINIMUM_SCALE = 4

NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 19
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = true
LITERAL_PREFIX = $
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = money
MAXIMUM_SCALE = 4

TYPE_NAME = nchar
MINIMUM_SCALE = NULL

NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 4000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE = -15 (NCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = nchar
MAXIMUM_SCALE = NULL

24 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = ntext®

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -16 (LONGNVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = ntext
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 1073741823
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = numeric

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = precision,scale
DATA _TYPE = 2 (NUMERIC)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = numeric
MAXIMUM_SCALE = 38’

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 38
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric() identity®

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = precision
DATA_TYPE = 2 (NUMERIC)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = numeric() identity
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX = 10
PRECISION = 38
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

7

This value can be configured with a server option in SQL Server and Azure.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

25

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = nvarchar
MINIMUM_SCALE = NULL

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 4000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = -9 (NVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = nvarchar
MAXIMUM_SCALE = NULL

TYPE_NAME = nvarchar(max)
MINIMUM_SCALE = NULL

NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 1073741823
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE =-16 (LONGNVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = nvarchar(max)
MAXIMUM_SCALE = NULL

TYPE_NAME = real
MINIMUM_SCALE = NULL

NULLABLE = 1
NUM_PREC_RADIX = 2
PRECISION = 24
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE =7 (REAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = real
MAXIMUM_SCALE = NULL

26 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = smalldatetime

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = smalldatetime
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 16

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = smallint

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 5 (SMALLINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallint
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 5

SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint identity®

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 5 (SMALLINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallint identity
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX = 10
PRECISION = 5

SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

27

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = smallmoney
MINIMUM_SCALE =4

NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 10
SEARCHABLE = 2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = true
LITERAL_PREFIX =$
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallmoney
MAXIMUM_SCALE =4

TYPE_NAME = sql_variant®
MINIMUM_SCALE =0
NULLABLE = 1
NUM_PREC_RADIX = 10
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = sqgl_variant
MAXIMUM_SCALE =0

TYPE_NAME = sysname
MINIMUM_SCALE = NULL

NULLABLE =0
NUM_PREC_RADIX = NULL
PRECISION = 128
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = sysname
MAXIMUM_SCALE = NULL

28 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = text®
MINIMUM_SCALE = NULL

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -1 (LONGVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = text
MAXIMUM_SCALE = NULL

TYPE_NAME =time
MINIMUM_SCALE =0

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION =16

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = time
MAXIMUM_SCALE =0

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL MINIMUM_SCALE = NULL

CASE_SENSITIVE = false NULLABLE =0
CREATE_PARAMS = NULL NUM_PREC_RADIX = NULL
PRECISION =8

DATA_TYPE = -2 (BINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = 0x
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = timestamp
MAXIMUM_SCALE = NULL

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 29

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = tinyint

AUTO_INCREMENT = false MINIMUM_SCALE =0

CASE_SENSITIVE = false NULLABLE =1
CREATE_PARAMS = NULL NUM_PREC_RADIX =10
PRECISION = 3

DATA_TYPE = -6 (TINYINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = tinyint
MAXIMUM_SCALE =0

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = true

TYPE_NAME = tinyint identity®

AUTO_INCREMENT = true MINIMUM_SCALE =0

CASE_SENSITIVE = false NULLABLE =0
CREATE_PARAMS = NULL NUM_PREC_RADIX = 10
PRECISION = 3

DATA_TYPE = -6 (TINYINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = tinyint identity
MAXIMUM_SCALE =0

SEARCHABLE = 2
SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = true

TYPE_NAME = uniqueidentifier
MINIMUM_SCALE = NULL

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 36

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 1(CHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = uniqueidentifier
MAXIMUM_SCALE = NULL

30 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data types

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = -3 (VARBINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = 0x
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = varbinary
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary(max)

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -4 (LONGVARBINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = 0x
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = varbinary(max)
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =0
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = varchar
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

31

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

TYPE_NAME = varchar(max)
MINIMUM_SCALE = NULL

NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -1 (LONGVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = varchar(max)
MAXIMUM_SCALE = NULL

TYPE_NAME = xml®
MINIMUM_SCALE = NULL

NULLABLE = 1
NUM_PREC_RADIX = NULL
PRECISION = 1073741823
SEARCHABLE =0
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

AUTO_INCREMENT = NULL
CASE_SENSITIVE = true
CREATE_PARAMS = NULL
DATA_TYPE = 2009 (SQLXML)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N'
LITERAL_SUFFIX ="
LOCAL_TYPE_NAME = xml
MAXIMUM_SCALE = NULL

Contacting Technical Support

Progress DataDirect offers a variety of options to meet your support needs. Please visit our Web site for more
details and for contact information:

https://lwww.progress.com/support

The Progress DataDirect Web site provides the latest support information through our global service network.
The SupportLink program provides access to support contact details, tools, patches, and valuable information,
including a list of FAQs for each product. In addition, you can search our Knowledgebase for technical bulletins
and other information.

When you contact us for assistance, please provide the following information:

* Your number or the serial number that corresponds to the product for which you are seeking support, or a
case number if you have been provided one for your issue. If you do not have a SupportLink contract, the
SupportLink representative assisting you will connect you with our Sales team.

* Your name, phone number, email address, and organization. For a first-time call, you may be asked for full
information, including location.

32

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

https://www.progress.com/support

Contacting Technical Support

* The Progress DataDirect product and the version that you are using.
* The type and version of the operating system where you have installed your product.

* Any database, database version, third-party software, or other environment information required to understand
the problem.

* A brief description of the problem, including, but not limited to, any error messages you have received, what
steps you followed prior to the initial occurrence of the problem, any trace logs capturing the issue, and so
on. Depending on the complexity of the problem, you may be asked to submit an example or reproducible
application so that the issue can be re-created.

¢ A description of what you have attempted to resolve the issue. If you have researched your issue on Web
search engines, our Knowledgebase, or have tested additional configurations, applications, or other vendor
products, you will want to carefully note everything you have already attempted.

* A simple assessment of how the severity of the issue is impacting your organization.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 33

Chapter 1: Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0

34 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Getting started

After the driver has been installed and defined on your class path, you can connect from your application to
your database in either of the following ways.

* Using the JDBC Dri ver Manager , by specifying the connection URL in the
Dri ver Manager . get Connecti on() method.

* Creating a JDBC Dat aSour ce that can be accessed through the Java Naming Directory Interface (JNDI).

For details, see the following topics:

¢ Data source and driver classes
* Setting the Classpath
* Connecting using the DriverManager

¢ Connecting using data sources

Data source and driver classes

The driver provides the following driver class.
com ddt ek. j dbc. sqgl server. SQ_Ser ver Dri ver

The driver provides the following data source class that supports the functionality for all JDBC specifications
and Java SE 6 or higher.

com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Chapter 2: Getting started

See also
Connecting using data sources on page 40

Setting the Classpath

The driver must be defined on your CLASSPATH before you can connect. The CLASSPATH is the search
string your Java Virtual Machine (JVM) uses to locate JDBC drivers on your computer. If the driver is not defined
on your CLASSPATH, you will receive a cl ass not found exception when trying to load the driver. Set your
system CLASSPATH to include the sqgl server. j ar file as shown, where i nstal | _di r is the path to your
product installation directory.

install _dir/lib/sqlserver.jar

Windows Example

CLASSPATH=. ; C:\ Program Fi | es\ Progress\ Dat aDi rect\ JDBC 60\l i b\ sql server.jar

UNIX Example

CLASSPATH=. : / opt / Progress/ Dat aDi rect/JDBC 60/ 1i b/ sql server.jar

Connecting using the DriverManager

One way to connect to a SQL Server database or Azure instance is through the JDBC Dr i ver Manager using
the Dri ver Manager . get Connecti on() method. As the following example shows, this method specifies a
string containing a connection URL.

Connecti on conn = Driver Manager . get Connecti on
("jdbc: dat adi rect: sql server://server1: 1433; User =t est ; Passwor d=secr et ; Dat abaseNane=M/DB") ;

Passing the connection URL

After setting the CLASSPATH, the required connection information needs to be passed in the form of a
connection URL.

j dbc: dat adi rect : sql server://host name: port[; property=val ue[;...]]
where:
host nane

is the IP address or host name of the server to which you are connecting. See Using IP addresses
on page 106 for details on using IP addresses.

port

is the number of the TCP/IP port.

36 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting using the DriverManager

property=val ue

specifies connection properties. For a list of connection properties and their valid values, see
Connection property descriptions on page 185.

Notes

¢ Untrusted applets cannot open a socket to a machine other than the originating host.

Example
Connecti on conn = Driver Manager . get Connecti on

("jdbc: datadirect:sqgl server://M/Server: 1433;
User =t est ; Passwor d=secr et ; Dat abaseNane=MyDB") ;

See Connecting to hamed instances on page 77 for instructions on connecting to named instances.

See also
Using connection properties on page 59

Testing the connection

You can also use DataDirect Test™ to establish and test a Dri ver Manager connection. The screen shots in
this section were taken on a Windows system.

Take the following steps to establish a connection.
1. Navigate to the installation directory. The default location is:

¢ Windows systems: Pr ogr am Fi | es\ Progress\ Dat aDi rect\ JDBC 60\t estforjdbc
¢ UNIX and Linux systems:/ opt / Progr ess/ Dat abDi rect/ JDBC 60/t estforj dbc

Note: For UNIX/Linux, if you do not have access to / opt , your home directory will be used in its place.

2. Fromthe t est f orj dbc folder, run the platform-specific tool:

* testforjdbc. bat (on Windows systems)
* testforjdbc. sh (on UNIX and Linux systems)

The Test for JDBC Tool window appears:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 37

Chapter 2: Getting started

_
Test for JDBC Tool =S

File Driver Connection Window Help

Progress. | DataDirect. PROGRESS

SOFTWARE

DATADIRECT TEST

Copyrght & 1353 - 2010 Progreas Softwars Corporation. All Aghts resarved. Java
and JOBC ara trademarks of of Sun Microsystams, inc.

i Press Here To Continue

3. Click Press Here to Continue.

The main dialog appears:

First | Prev | Next | Last | Reset

38 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting using the DriverManager

4. From the menu bar, select Connection > Connect to DB.

The Select A Database dialog appears:

F 5

| £ Select A Database = -

Defined Databases

jdbc:datadirect:sglserver://servername:1433; DatabaseName= -

m

4 UL 2

Database: |:| dbc:datadirect:sglserver://servername:1433; DatabaseName=

User Name: |

Password: |

Cunnec1| Cancel ‘

e

5. Select the appropriate database template from the Defined Databases field.

6. Inthe Database field, specify the ServerName, PortNumber, and DatabaseName for your SQL Server data
source.

For example:

j dbc: dat adi rect: sql server:// MServer: 1433; Dat abaseName=MyDB

7. If you are using user ID/password authentication, enter your user ID and password in the corresponding
fields.

8. Click Connect.

If the connection information is entered correctly, the JDBC/Database Output window reports that a connection
has been established. (If a connection is not established, the window reports an error.)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 39

Chapter 2: Getting started

- B
| £| Connection 1: jdbc:datadirect:sglsenver... E‘Elg

File Connection Statement Results MetaData Window

bnnnecr.i:rn Established -

For more information, see "DataDirect Test.

See also
DataDirect Test on page 147

Connecting using data sources

A JDBC data source is a Java object, specifically a Dat aSour ce object, that defines connection information

required for a JDBC driver to connect to the database. Each JDBC driver vendor provides their own data source
implementation for this purpose. A Progress DataDirect data source is Progress DataDirect’s implementation
of a Dat aSour ce object that provides the connection information needed for the driver to connect to a database.

Because data sources work with the Java Naming Directory Interface (JNDI) naming service, data sources
can be created and managed separately from the applications that use them. Because the connection information
is defined outside of the application, the effort to reconfigure your infrastructure when a change is made is
minimized. For example, if the database is moved to another database server, the administrator need only
change the relevant properties of the Dat aSour ce object. The applications using the database do not need
to change because they only refer to the name of the data source.

How data sources are implemented

Data sources are implemented through a data source class. A data source class implements the following
interfaces.

40 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting using data sources

* javax.sql.DataSource

* javax. sqgl . Connecti onPool Dat aSour ce (allows applications to use connection pooling)

See also
Data source and driver classes on page 15
Connection Pool Manager on page 117

Creating data sources

The following example files provide details on creating and using Progress DataDirect data sources with the
Java Naming Directory Interface (JNDI), where i nstal | _di r is the product installation directory.

e install _dir/Exanpl es/ JNDI/JNDI _LDAP_Exanpl e. j ava can be used to create a JDBC data source
and save it in your LDAP directory using the JNDI Provider for LDAP.

e install _dir/Exanpl es/JNDI/JNDI _FI LESYSTEM Exanpl e. j ava can be used to create a JDBC
data source and save it in your local file system using the File System JNDI Provider.

See "Example data source" for an example data source definition for the example files.

To connect using a JNDI data source, the driver needs to access a JNDI data store to persist the data source
information. For a JNDI file system implementation, you must download the File System Service Provider from
the Oracle Technology Network Java SE Support downloads page, unzip the files to an appropriate location,
and add the f scont ext . j ar and provi derutil.|ar files to your CLASSPATH. These steps are not
required for LDAP implementations because the LDAP Service Provider has been included with Java SE since
Java 2 SDK, v1.3.

Example data source

To configure a data source using the example files, you will need to create a data source definition. The content
required to create a data source definition is divided into three sections.

First, you will need to import the data source class. For example:
i nport com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce;

Next, you will need to set the values and define the data source. For example, the following definition contains
the minimum properties required for a connection:

SQLSer ver Dat aSour ce nds = new SQ.Ser ver Dat aSour ce();
nds. set Description("My SQ. Server Datasource");

nds. set Server Nane(" MyServer");

nds. set Port Nunber (1433) ;

nds. set User (" User 123");

nds. set Password("secret");

Finally, you will need to configure the example application to print out the data source attributes. Note that this
code is specific to the driver and should only be used in the example application. For example, you would add
the following section for a connection using only the minimum properties:

if (ds instanceof SQLServer DataSource)

{

SQLSer ver Dat aSour ce jmds = (SQLServer Dat aSource) ds;
Systemout. println("description=" + jnds. getDescription());
Systemout. println("serverName=" + jnds. get Server Nane());
System out. printl n("portNunber=" + jmds. get PortNunber());
Systemout. println("user=" + jnds.getUser());

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 41

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

Chapter 2: Getting started

System out . printl n("password=" + jnds. get Password());
Systemout.println();
}

Calling a data source in an application

Applications can call a Progress DataDirect data source using a logical name to retrieve the
j avax. sql . Dat aSour ce object. This object loads the specified driver and can be used to establish a
connection to the database.

Once the data source has been registered with JNDI, it can be used by your JDBC application as shown in the
following code example.

Context ctx = new Initial Context();
Dat aSour ce ds = (DataSource)ctx. | ookup("Enpl oyeeDB");
Connection con = ds. get Connection("dom no", "spark");

In this example, the JNDI environment is first initialized. Next, the initial naming context is used to find the
logical name of the data source (Enpl oyeeDB). The Cont ext . | ookup() method returns a reference to a
Java object, which is narrowed to a j avax. sql . Dat aSour ce object. Then, the

Dat aSour ce. get Connecti on() method is called to establish a connection.

Testing a data source connection

You can use DataDirect Test” to establish and test a data source connection. The screen shots in this section
were taken on a Windows system.

Take the following steps to establish a connection.
1. Navigate to the installation directory. The default location is:

* Windows systems: Progr am Fi | es\ Progr ess\ Dat aDi rect\ JDBC_60\t est f orj dbc
¢ UNIX and Linux systems:/ opt / Progr ess/ Dat aDi rect / JDBC 60/t estforj dbc

Note: For UNIX/Linux, if you do not have access to / opt , your home directory will be used in its place.

2. Fromthe t est f orj dbc folder, run the platform-specific tool:

e testforjdbc. bat (on Windows systems)
* testforjdbc.sh (on UNIX and Linux systems)

The Test for JDBC Tool window appears:

42 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting using data sources

.
Test for JDBC Tool [PSEEES)

File Driver Connection Window Help

Progress.‘ DataDirect.

SOFTWARE

DATADIRECT TEST

Copyright & 1959 - 2010 Prograss Softwara Corporation. All Aghts resarved. Java
and JOBE ara trademarks of of Sun Microsystems, inc.

HmToCmtume

3. Click Press Here to Continue.

The main dialog appears:

First | Prev | Next | Last | Reset

4. From the menu bar, select Connection > Connect to DB via Data Source.

The Select A Database dialog appears:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 43

Chapter 2: Getting started

mel
DataSourcelame2

com. sun.jndi.

file:c:/temp

DataSourcelNamel

facontext.RefFSContextFactory

5. Select a datasource template from the Defined Datasources field.

6. Provide the following information:

a) Inthe Initial Context Factory, specify the location of the initial context provider for your application.

b) In the Context Provider URL, specify the location of the context provider for your application.

c¢) Inthe Datasource field, specify the name of your datasource.

7. If you are using user ID/password authentication, enter your user ID and password in the corresponding

fields.
8. Click Connect.

If the connection information is entered correctly, the JDBC/Database Output window reports that a connection
has been established. If a connection is not established, the window reports an error.

(Connection Established

First | Prev | Next

Last

Reset

First | Prev | Next

Last

Reset

44

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting using data sources

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 45

Chapter 2: Getting started

46 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using the driver

This section provides information on how to connect to your data store using either the JDBC Driver Manager
or DataDirect JDBC data sources, as well as information on how to implement and use functionality supported
by the driver.

For details, see the following topics:

* Required permissions for Java SE with the standard Security Manager enabled
* Connecting from an application

* Using connection properties

* Performance considerations

* Connecting to named instances

* Azure Synapse Analytics and Analytics Platform System
* Authentication

* Data encryption

* Using failover

* Returning and inserting/updating XML data

¢ DML with results

* Using client information

* Using IP addresses

* Parameter metadata support

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Chapter 3: Using the driver

* ResultSet metadata support

* Isolation levels

* Using the Snapshot isolation level
* Using scrollable cursors

* Server-side updatable cursors

e JTA support: installing stored procedures
¢ Distributed transaction cleanup

* Unicode support

* Error handling

* Large object (LOB) support

* Batch Inserts and Updates

* Rowset support

* Auto-generated keys support

* Null values

* Timeouts

* Connection Pool Manager

¢ Statement Pool Monitor

¢ DataDirect Bulk Load

* CSViles

¢ DataDirect Test

* Tracking JDBC calls with DataDirect Spy

Required permissions for Java SE with the standard
Security Manager enabled

Using the driver on a Java platform with the standard Security Manager enabled requires certain permissions
to be set in the Java SE security policy file j ava. pol i cy. The default location of this file is
java_install _dir/jre/lib/security.

Note: Security manager may be enabled by default in certain scenarios, such as running on an application
server or in a Web browser applet.

To run an application on a Java platform with the standard Security Manager, use the following command:

"java -Djava.security.manager application_cl ass_nane"

where appl i cati on_cl ass_nane is the class hame of the application.

48

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Required permissions for Java SE with the standard Security Manager enabled

Refer to your Java documentation for more information about setting permissions in the security policy file.

Permissions for establishing connections

To establish a connection to the database server, the driver must be granted the permissions as shown in the
following example:

grant codeBase "file:/install _dir/lib/-" {

perni ssion java. net. Socket Perm ssion "*", "connect";
where:
install _dir

is the product installation directory.

Granting access to Java properties

To allow the driver to read the value of various Java properties to perform certain operations, permissions must
be granted as shown in the following example:

grant codeBase "file:/install _dir/lib/-" {

permi ssion java.util.PropertyPerm ssion "*", "read, wite";
where:
install _dir

is the product installation directory.

Granting access to temporary files

Access to the temporary directory specified by the JVM configuration must be granted in the Java SE security
policy file to use insensitive scrollable cursors or to perform client-side sorting of DatabaseMetaData result
sets. The following example shows permissions that have been granted for the C. \ TEMP directory:

grant codeBase "file:/install _dir/lib/-" {
/1 Perm ssion to create and delete tenporary files.
/1 Adjust the tenporary directory for your environnent.

permi ssion java.io.FilePermssion "C\A\\TEMA\\-", "read,wite,delete";
b
where:
install _dir

is the product installation directory.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 49

Chapter 3: Using the driver

Permissions for bulk load from a CSV file

To bulk load data from a comma-separated value (CSV) file with the drivers, the application and driver code
bases must be granted security permissions in the security policy file of the Java Platform as shown in the
following examples.

grant codeBase "file:/install _dir/lib/-" {

permni ssion java.util.PropertyPermn ssion "true", "read";
pernission java.util.PropertyPerm ssion "file.encoding", "read";
perm ssion java.util.PropertyPermi ssion "user.dir", "read";

perni ssion java.l ang. Runti mePerm ssion "readFil eDescriptor";

Connecting from an application

Once the driver is installed and configured, you can connect from your application to your database in either
of the following ways:

* Using the JDBC Driver Manager, by specifying the connection URL in the
Dri ver Manager . get Connecti on() method.

* Creating a JDBC data source that can be accessed through the Java Naming Directory Interface (JNDI).

Data source and driver classes

The driver provides the following driver class.
com ddt ek. j dbc. sqgl server. SQ_Server Dri ver

The driver provides the following data source class that supports the functionality for all JDBC specifications
and Java SE 6 or higher.

com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce

See also
Connecting using data sources on page 40

Setting the Classpath

The driver must be defined on your CLASSPATH before you can connect. The CLASSPATH is the search
string your Java Virtual Machine (JVM) uses to locate JDBC drivers on your computer. If the driver is not defined
on your CLASSPATH, you will receive a cl ass not found exception when trying to load the driver. Set your
system CLASSPATH to include the sql server. j ar file as shown, where i nstal | _di r is the path to your
product installation directory.

install _dir/lib/sqlserver.jar

Windows Example

CLASSPATH=. ; C:\ Program Fi | es\ Progress\ Dat abi rect\ JDBC 60\l i b\ sql server.jar

50 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting from an application

UNIX Example
CLASSPATH=. : / opt / Progress/ Dat aDi rect/JDBC 60/1i b/ sql server.jar

Connecting using the DriverManager

One way to connect to a SQL Server database or Azure instance is through the JDBC Dr i ver Manager using
the Dri ver Manager . get Connecti on() method. As the following example shows, this method specifies a
string containing a connection URL.

Connection conn = DriverManager. get Connecti on
("jdbc: dat adi rect: sql server://server1l: 1433; User =t est ; Passwor d=secr et ; Dat abaseName=M/DB") ;

Passing the connection URL

After setting the CLASSPATH, the required connection information needs to be passed in the form of a
connection URL.

j dbc: dat adi rect : sql server://host nanme: port[; property=val ue[;...]]
where:
host nane

is the IP address or host name of the server to which you are connecting. See Using IP addresses
on page 106 for details on using IP addresses.

port
is the number of the TCP/IP port.
property=val ue

specifies connection properties. For a list of connection properties and their valid values, see
Connection property descriptions on page 185.

Notes

¢ Untrusted applets cannot open a socket to a machine other than the originating host.

Example
Connecti on conn = Driver Manager . get Connecti on

("jdbc: datadirect:sql server://MServer: 1433;
User =t est ; Passwor d=secr et ; Dat abaseNane=M/DB") ;

See Connecting to named instances on page 77 for instructions on connecting to named instances.

See also
Using connection properties on page 59

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 51

Chapter 3: Using the driver

Testing the connection

You can also use DataDirect Test™ to establish and test a Dri ver Manager connection. The screen shots in
this section were taken on a Windows system.

Take the following steps to establish a connection.
1. Navigate to the installation directory. The default location is:

¢ Windows systems: Pr ogr am Fi | es\ Progress\ Dat aDi rect\ JDBC 60\t estforjdbc
* UNIX and Linux systems:/ opt / Pr ogr ess/ Dat aDi r ect / JDBC_60/t est f orj dbc

Note: For UNIX/Linux, if you do not have access to / opt , your home directory will be used in its place.

2. From the t est f orj dbc folder, run the platform-specific tool:

* testforjdbc. bat (on Windows systems)
* testforjdbc. sh (on UNIX and Linux systems)

The Test for JDBC Tool window appears:

f ot
) Test for JDBC Tool =S

File Driver Connection Window Help

Progress. | DataDirect.

SOFTWARE

DATADIRECT TEST

Copyright & 1353 - 2010 Progress Software Corporation. All ights resarved. Java
and JDBL ara tradamarks of of Sun Microsystams, inc.

i Press Here To Continue

3. Click Press Here to Continue.

The main dialog appears:

52 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting from an application

File Driver Connection Window Help

First | Prev | Next | Last | Reset

First | Prev | Next | Last | Reset

4. From the menu bar, select Connection > Connect to DB.

The Select A Database dialog appears:

Select A Database ‘ E=E—)

jdbc:datadirect:sglserver://servername:1433; DatabaseName=

5. Select the appropriate database template from the Defined Databases field.

6. Inthe Database field, specify the ServerName, PortNumber, and DatabaseName for your SQL Server data
source.

For example:
j dbc: dat adi rect: sql server:// MServer: 1433; Dat abaseNane=MyDB

7. If you are using user ID/password authentication, enter your user ID and password in the corresponding
fields.

8. Click Connect.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 53

Chapter 3: Using the driver

If the connection information is entered correctly, the JDBC/Database Output window reports that a connection
has been established. (If a connection is not established, the window reports an error.)

o B
|£| Connection 1: jdbc:datadirect:sglsenver. E‘Elg

File Connection Statement Results MetaData Window

bnnnecr.iu:-n Established -

First m Next Reset | [v|

First m Next Reset (v]

For more information, see "DataDirect Test."

See also
DataDirect Test on page 147

Connecting using data sources

A JDBC data source is a Java object, specifically a Dat aSour ce object, that defines connection information

required for a JDBC driver to connect to the database. Each JDBC driver vendor provides their own data source
implementation for this purpose. A Progress DataDirect data source is Progress DataDirect’s implementation
of a Dat aSour ce object that provides the connection information needed for the driver to connect to a database.

Because data sources work with the Java Naming Directory Interface (JNDI) naming service, data sources
can be created and managed separately from the applications that use them. Because the connection information
is defined outside of the application, the effort to reconfigure your infrastructure when a change is made is
minimized. For example, if the database is moved to another database server, the administrator need only
change the relevant properties of the Dat aSour ce object. The applications using the database do not need
to change because they only refer to the name of the data source.

54 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting from an application

How data sources are implemented

Data sources are implemented through a data source class. A data source class implements the following
interfaces.

* javax.sql.DataSource

¢ javax.sql . Connecti onPool Dat aSour ce (allows applications to use connection pooling)

See also
Data source and driver classes on page 15
Connection Pool Manager on page 117

Creating data sources

The following example files provide details on creating and using Progress DataDirect data sources with the
Java Naming Directory Interface (JNDI), where i nstal | _di r is the product installation directory.

e install _dir/Exanpl es/ JNDI/JNDI _LDAP_Exanpl e. j ava can be used to create a JDBC data source
and save it in your LDAP directory using the JNDI Provider for LDAP.

e install _dir/Exanpl es/JNDI/JNDl _FI LESYSTEM Exanpl e. j ava can be used to create a JDBC
data source and save it in your local file system using the File System JNDI Provider.

See "Example data source" for an example data source definition for the example files.

To connect using a JNDI data source, the driver needs to access a JNDI data store to persist the data source
information. For a JNDI file system implementation, you must download the File System Service Provider from
the Oracle Technology Network Java SE Support downloads page, unzip the files to an appropriate location,
and add the f scont ext . j ar and provi derutil.|ar files to your CLASSPATH. These steps are not
required for LDAP implementations because the LDAP Service Provider has been included with Java SE since
Java 2 SDK, v1.3.

Example data source

To configure a data source using the example files, you will need to create a data source definition. The content
required to create a data source definition is divided into three sections.

First, you will need to import the data source class. For example:
i mport com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce;

Next, you will need to set the values and define the data source. For example, the following definition contains
the minimum properties required for a connection:

SQ.Ser ver Dat aSour ce nds = new SQLSer ver Dat aSour ce() ;
nds. set Description("My SQ. Server Datasource");

nds. set Server Name(" MyServer");

nds. set Port Nunber (1433) ;

nds. set User (" User 123");

nds. set Password("secret");

Finally, you will need to configure the example application to print out the data source attributes. Note that this
code is specific to the driver and should only be used in the example application. For example, you would add
the following section for a connection using only the minimum properties:

if (ds instanceof SQLServer DataSource)

{

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 55

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

Chapter 3: Using the driver

SQLSer ver Dat aSour ce jnmds = (SQLServer Dat aSource) ds;
Systemout. println("description=" + jnds.getDescription());
Systemout. println("serverName=" + jnds. get Server Nanme());
System out . println("portNunmber=" + jnds. get Port Nunber());
Systemout. println("user=" + jnds.getUser());

System out. printl n("password=" + jnds. get Password());
Systemout.printin();

}

Calling a data source in an application

Applications can call a Progress DataDirect data source using a logical name to retrieve the
j avax. sql . Dat aSour ce object. This object loads the specified driver and can be used to establish a
connection to the database.

Once the data source has been registered with INDI, it can be used by your JDBC application as shown in the
following code example.

Context ctx = new Initial Context();
Dat aSour ce ds = (DataSource)ctx. | ookup("Enmpl oyeeDB");
Connecti on con = ds. get Connecti on("dom no", "spark");

In this example, the JNDI environment is first initialized. Next, the initial naming context is used to find the
logical name of the data source (Enpl oyeeDB). The Cont ext . | ookup() method returns a reference to a
Java object, which is narrowed to a j avax. sql . Dat aSour ce object. Then, the

Dat aSour ce. get Connecti on() method is called to establish a connection.

Testing a data source connection

You can use DataDirect Test" to establish and test a data source connection. The screen shots in this section
were taken on a Windows system.

Take the following steps to establish a connection.
1. Navigate to the installation directory. The default location is:

¢ Windows systems: Pr ogr am Fi | es\ Progress\ Dat aDi rect\ JDBC 60\t estforjdbc
¢ UNIX and Linux systems:/ opt / Progr ess/ Dat aDi rect / JDBC 60/t est f orj dbc

Note: For UNIX/Linux, if you do not have access to / opt , your home directory will be used in its place.

2. Fromthe t est f orj dbc folder, run the platform-specific tool:

* testforjdbc. bat (on Windows systems)
* testforjdbc. sh (on UNIX and Linux systems)

The Test for JDBC Tool window appears:

56 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting from an application

.
Test for JDBC Tool [PSEEES)

File Driver Connection Window Help

Progress.‘ DataDirect.

SOFTWARE

DATADIRECT TEST

Copyright & 1959 - 2010 Prograss Softwara Corporation. All Aghts resarved. Java
and JOBE ara trademarks of of Sun Microsystems, inc.

HmToCmtume

3. Click Press Here to Continue.

The main dialog appears:

First | Prev | Next | Last | Reset

4. From the menu bar, select Connection > Connect to DB via Data Source.

The Select A Database dialog appears:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 57

Chapter 3: Using the driver

6. Provide the following information:

8.

mel
DataSourcelame2

file:c:/temp

DataSourcelNamel

com. sun.jndi.fscontext.RefFSContextFactory

Select a datasource template from the Defined Datasources field.

a) Inthe Initial Context Factory, specify the location of the initial context provider for your application.

b) In the Context Provider URL, specify the location of the context provider for your application.

c¢) Inthe Datasource field, specify the name of your datasource.

fields.

Click Connect.

If you are using user ID/password authentication, enter your user ID and password in the corresponding

If the connection information is entered correctly, the JDBC/Database Output window reports that a connection
has been established. If a connection is not established, the window reports an error.

(Connection Established

First | Prev | Next | Last | Reset

First | Prev | Next | Last | Reset

58

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Using connection properties

You can use connection properties to customize the driver for your environment. This section organizes
connection properties according to functionality. You can use connection properties with either the JDBC

Dri ver Manager or a JDBC data source. For a Dri ver Manager connection, a property is expressed as a
key value pair and takes the form pr opert y=val ue. For a data source connection, a property is expressed
as a JDBC method and takes the form set pr operty(val ue).

Note: Connection property hames are case-insensitive. For example, Passwor d is the same as passwor d.

Note: In a JDBC data source, string values must be enclosed in double quotation marks, for example,
set User (" User123").

See "Connection property descriptions" for an alphabetical list of connection properties and their descriptions.

See also

Connecting using the DriverManager on page 36
Connecting using data sources on page 40
Connection property descriptions on page 185

Required properties
The following table summarizes connection properties required to connect to a database.

Table 2: Required properties

Property Characteristic

PortNumber on page 236 | Specifies the TCP port of the primary database server that is listening for
connections to the database.

The default is 1433.

ServerName on page 241 | Specifies the name or IP address of the server to which you want to connect.

See also
Connection property descriptions on page 185

Authentication properties

The following table describes the connection properties used to configure authentication.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 59

Chapter 3: Using the driver

Table 3: Authentication properties

Property Characteristic

AuthenticationMethod on | Determines which authentication method the driver uses when establishing a
page 201 connection.

The default is aut o.

Domain on page 216 Specifies the name of the domain server that administers the database. Set this
property only if you are using NTLM authentication. If the Domain property is
unspecified, the driver tries to determine the domain server name from the User

property.

GSSCredential on page |Specifies the GSS credential object used to instantiate Kerberos constrained
223 delegation. Constrained delegation is a Kerberos mechanism that allows a client
application to delegate authentication to a second service.

Important: Because the value of this property is a Java object, it cannot be
specified in a connection URL. It can only be passed as a Properti es or
Dat aSour ce object.

LoginConfigName on Specifies the name of the entry in the JAAS login configuration file that contains
page 229 the authentication technology used by the driver to establish a Kerberos connection.

The default is JDBC_DRI VER_01.

Password on page 236 |Specifies a password that is used to connect to the database or instance.

ServicePrincipalName on | Specifies the service principal name to be used for Kerberos authentication.

page 242

User on page 250 Specifies the user ID for user ID/password authentication or the domain user name
for NTLM authentication.

See also

Authentication on page 79
Connection property descriptions on page 185

Data encryption properties

The following table summarizes connection properties which can be used to enable SSL.

60 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Table 4: Data encryption properties

Property Characteristic
CryptoProtocolVersion on Specifies a cryptographic protocol or comma-separated list of cryptographic
page 210 protocols that can be used when SSL is enabled (Encr ypt i onMet hod=SSL).

EncryptionMethod on page 218 | Determines whether data is encrypted and decrypted when transmitted over
the network between the driver and database server.

The default is noEncrypti on.

HostNamelnCertificate on Specifies a host name for certificate validation when SSL encryption is enabled
page 224 (Encrypt i onMet hod=SSL) and validation is enabled

(Val i dat eServerCertificat e=true).This property is optional and
provides additional security against man-in-the-middle (MITM) attacks by
ensuring that the server the driver is connecting to is the server that was
requested.

TrustStore on page 248 Specifies the directory of the truststore file to be used when SSL is enabled
(Encrypt i onMet hod=SSL) and server authentication is used. The truststore
file contains a list of the Certificate Authorities (CAs) that the client trusts.

TrustStorePassword on page | Specifies the password that is used to access the truststore file when SSL is

249 enabled (Encr ypt i onMet hod=SSL) and server authentication is used. The
truststore file contains a list of the Certificate Authorities (CAs) that the client
trusts.

ValidateServerCertificate on |Determines whether the driver validates the certificate that is sent by the
page 251 database server when SSL encryption is enabled (Encr ypt i onMet hod=SSL).
When using SSL server authentication, any certificate that is sent by the server
must be issued by a trusted Certificate Authority (CA).

The defaultis t r ue.

See also
Data encryption on page 87
Connection property descriptions on page 185

Failover properties

The following table summarizes the connection properties used for configuring failover.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 61

Chapter 3: Using the driver

Table 5: Failover properties

Property

Characteristic

AlternateServers on page 198

One or multiple alternate database servers. An IP address or server name
identifying each server is required. Port number and the connection property
DatabaseName are optional. If the port number is unspecified, the port
number specified for the primary server is used.

If a port number is unspecified for the primary server, the default port
number of 1433 is used.

ConnectionRetryCount on page
208

Number of times the driver retries the primary database server, and if
specified, alternate servers until a successful connection is established.

The default is 5.

ConnectionRetryDelay on page
209

Wait interval, in seconds, between connection retry attempts when the
ConnectionRetryCount property is set to a positive integer.

The defaultis 1.

FailoverGranularity on page 219

Determines whether the driver fails the entire failover process or continues
with the process if exceptions occur while trying to reestablish a lost
connection.

The default is nonAt omi ¢ (the driver continues with the failover process
and posts any exceptions on the statement on which they occur).

FailoverMode on page 220

The failover method you want the driver to use.

The default is connect (connection failover is used).

FailoverPreconnect on page 221

Specifies whether the driver tries to connect to the primary and an alternate
server at the same time.

The defaultis f al se (the driver tries to connect to an alternate server only
when failover is caused by an unsuccessful connection attempt or a lost
connection).

62

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Property

Characteristic

LoadBalancing on page 228

Sets whether the driver will use client load balancing in its attempts to
connect to the database servers (primary and alternate). If client load
balancing is enabled, the driver uses a random pattern instead of a
sequential pattern in its attempts to connect.

The default is f al se (client load balancing is disabled).

MultiSubnetFailover on page 233

Determines whether the driver attempts parallel connections to the failover
IP addresses of an Availability Group during initial connection or a
multi-subnet failover. When MultiSubnetFailover is enabled, the driver
simultaneously attempts to connect to all IP addresses associated with
the Availability Group listener when establishing an initial connection or
reconnecting after a connection is broken or the listener IP address
becomes unavailable. The first IP address to successfully respond to the
request is used for the connection. Using parallel-connection attempts
offers improved response time over traditional failover, which attempts to
connect to alternate servers one at a time.

The default is f al se (disabled).

See also
Using failover on page 92
Configuring failover on page 93

Using client load balancing on page 99
Always On Availability Groups on page 100
Connection property descriptions on page 185

Bulk load properties

The following table summarizes the connection properties used to configure how bulk operations are executed

by the driver.

Note: The driver also supports DataDirect Bulk Load. If you are developing a new application that needs to
perform bulk load operations, you can use DataDirect Bulk Load to send large numbers of rows of data to a
database. See DataDirect Bulk Load on page 139 for details.

Table 6: Bulk load properties

Property

Description

BulkLoadBatchSize on page 202

Provides a suggestion to the driver for the number of rows to load to the
database at a time when bulk loading data. Performance can be
improved by increasing the number of rows the driver loads at a time
because fewer network round trips are required. Be aware that increasing
the number of rows that are loaded also causes the driver to consume
more memory on the client.

The default is 1000.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

63

Chapter 3: Using the driver

Property

Description

BulkLoadOptions on page 203

Enables bulk load protocol options for batch inserts that the driver can
take advantage of when EnableBulkLoad is set to a value of t r ue.

By default, the TableLock option assigns a table lock for the duration of
the bulk copy operation. Other applications cannot update the table until
the operation completes. If unspecified, the default bulk locking
mechanism specified by the database server is used.

EnableBulkLoad on page 216

Specifies whether the driver uses the native bulk load protocols in the
database. Bulk load bypasses the data parsing that is usually done by
the database, providing an additional performance gain over batch
operations. This property allows existing applications with batch inserts
to take advantage of bulk load without requiring changes to the
application code.

By default, the driver uses standard parameter arrays to perform batch
inserts instead of the native bulk load protocols in the database.

See also

DataDirect Bulk Load on page 139

Connection property descriptions on page 185

Data type handling properties

The following table summarizes connection properties which can be used to handle data types.

Table 7: Data type handling properties

Property

Characteristic

ConvertNull on page 210

Controls how data conversions are handled for null values.

By default, the driver checks the data type this is requested against the
data type of the table column that stores the data. If a conversion between
the requested type and column type is not defined, the driver generates
an "unsupported data conversion" exception regardless of the data type
of the column value.

64

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Property

Characteristic

DateTimelnputParameterType on
page 212

Specifies how the driver describes the data type for Date/Time/Timestamp
input parameters.

By default, the driver uses the following rules to describe the data type of
Date/Time/Timestamp input parameters:

* If an input parameter is set using setDate(), the driver describes it as
date.

* If an input parameter is set using setTime(), the driver describes it as
time.

¢ |f aninput parameter is set using setTimestamp(), the driver describes
it as datetimeoffset.

DateTimeOutputParameterType
on page 213

Specifies how the driver describes the data type for Date/Time/Timestamp
output parameters.

By default, the driver uses the following rules to describe the data type of
Date/Time/Timestamp output parameters:

¢ |f an output parameter is set using setDate(), the driver describes it as
date.

* If an output parameter is set using setTime(), the driver describes it
as time.

¢ |fan output parameter is set using setTimestamp(), the driver describes
it as datetimeoffset.

DescribelnputParameters on page
214

Determines whether the driver attempts to determine, at execute time,
which data type to use to send input parameters to the database server.
Sending parameters as the data type the database expects improves
performance and prevents locking issues caused by data type mismatches.

By default, the driver does not attempt to describe input parameters and
sends String and Date/Time/Timestamp input parameters to the server
as specified by the StringlnputParameterType and
DateTimelnputParameterType properties.

DescribeOutputParameters on
page 215

Determines whether the driver attempts to determine, at execute time,
which data type to use to send output parameters to the database server.
Sending parameters as the data type the database expects improves
performance and prevents locking issues caused by data type mismatches.

By default, the driver does not attempt to describe output parameters and
sends String and Date/Time/Timestamp output parameters to the server
as specified by the StringOutputParameterType and
DateTimeOutputParameterType properties.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

65

Chapter 3: Using the driver

Property

Characteristic

page 221

FetchTSWTZAsTimestamp on

Determines whether column values with the datetimeoffset data type are
returned as a JDBC VARCHAR or TIMESTAMP data type.

If settot r ue, column values with the datetimeoffset data type are returned
as a JDBC TIMESTAMP data type.

If set to f al se, column values with the datetimeoffset data type are
returned as a JDBC VARCHAR data type.

The default is f al se.

FetchTWFSasTime on page 222

Determines whether the driver returns column values for the native TIME
data type as the JDBC TIME or TIMESTAMP data type.

If setto t r ue, the driver returns column values for the native TIME data
type as the JDBC TIME data type. The fractional seconds portion of the
value is truncated when the value is returned in the java.sql.Time object.

If setto f al se, the driver returns column values for the native TIME data
type as the JDBC TIMESTAMP data type. The Java Epoch (Jan 1,1970)
is returned in the date portion.

The default is f al se.

JavaDoubleToString on page 227

Determines which algorithm the driver uses when converting a double or
float value to a string value.

By default, the driver uses its own internal conversion algorithm, which
improves performance.

JDBCBehavior on page 228

Determines how the driver describes database data types that map to the
following JDBC 4.0 data types: NCHAR, NVARCHAR, NLONGVARCHAR,
NCLOB, and SQLXML.

By default, the driver describes the data types using JDBC 3.0-equivalent
data types. This allows your application to continue using JDBC 3.0 types
in a Java SE 6 or higher environment. Additionally, the
PROCEDURE_NAME column contains procedure name qualifiers. For
example, for the fully qualified procedure named 1.sp_productadd, the
driver would return sp_productadd;1.

XMLDescribeType on page 253

Determines whether the driver maps XML data to the LONGVARCHAR
or LONGVARBINARY data type.

See also

Connection property descriptions on page 185

Timeout properties

The following table summarizes timeout connection properties.

66

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Table 8: Timeout properties

Property Characteristic

EnableCancelTimeout on page | Determines whether a cancel request that is sent by the driver as the result
217 of a query timing out is subject to the same query timeout value as the
statement it cancels.

If settot r ue, the cancel request times out using the same timeout value, in
seconds, that is set for the statement it cancels. For example, if your
application calls St at ement . set Quer yTi neout (5) on a statement and
that statement is cancelled because its timeout value was exceeded, the
driver sends a cancel request that also will time out if its execution exceeds
5 seconds. If the cancel request times out, because the server is down, for
example, the driver throws an exception indicating that the cancel request
was timed out and the connection is no longer valid.

If set to f al se, the cancel request does not time out.

The defaultis f al se.

LoginTimeout on page 230 Specifies the amount of time, in seconds, that the driver waits for a connection
to be established before timing out the connection request.

If set to O, the driver does not time out a connection request.

If set to x, the driver waits for the specified number of seconds before returning
control to the application and throwing a timeout exception.

The default is 0.

QueryTimeout on page 238 | Sets the default query timeout (in seconds) for all statements created by a
connection.

If set to - 1, the query timeout functionality is disabled.
If set to 0, the default query timeout is infinite (query does not time out).

If set to x, the driver uses the value as the default timeout for any statement
that is created by the connection.

The default is 0.

See also
Timeouts on page 117
Connection property descriptions on page 185

Statement pooling properties

The following table summarizes statement pooling connection properties.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 67

Chapter 3: Using the driver

Table 9: Statement pooling properties

Property

Characteristic

ImportStatementPool on page 225 Specifies the path and file name of the file to be used to load the

contents of the statement pool. When this property is specified,
statements are imported into the statement pool from the specified
file.

MaxPooledStatements on page 232 | Specifies the maximum number of prepared statements to be pooled

for each connection and enables the driver’s internal prepared
statement pooling when set to an integer greater than zero (0). The
driver’s internal prepared statement pooling provides performance
benefits when the driver is not running from within an application
server or another application that provides its own statement pooling.

RegisterStatementPoolMonitorMBean | Registers the Statement Pool Monitor as a JMX MBean when

on page 238 statement pooling has been enabled with MaxPooledStatements.
This allows you to manage statement pooling with standard JMX API
calls and to use JMX-compliant tools, such as JConsole.

See also

Statement Pool Monitor on page 131
Performance considerations on page 75
Connection property descriptions on page 185

Client information properties

The following table summarizes connection properties which can be used to return client information.

Table 10: Client information properties

Property

Characteristic

Accountinglnfo on page
192

Defines accounting information. This value is stored locally and is used for database
administration/monitoring purposes.

ApplicationName on page
200

The name of the application to be stored in the database. This property sets the
program_name column in the sysprocesses table in the database.

ClientHostName on page
205

The host name, or workstation ID, of the client machine to be stored in the database.
This property sets the hostname column of the sysprocesses table in the database.

ClientUser on page 205

Specifies the user ID. This value is stored locally and is used for database
administration/monitoring purposes.

68

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Property

Characteristic

NetAddress on page 234 [The Media Access Control (MAC) address of the network interface card of the
application connecting to Microsoft SQL Server. This value is stored in the
net_address column of the sys.sysprocesses table.

ProgramID on page 237 |The driver name and version information on the client to be stored in the database.
This property sets the hostprocess column in the sysprocesses table.

See also

Using client information on page 104
Connection property descriptions on page 185

Always Encrypted properties

The following table summarizes connection properties related to Always Encrypted functionality.

Table 11: Always Encrypted properties

Property

Characteristic

AEKeyCacheTTL on page 193

Specifies the length of time, in seconds, column encryption keys live in
the cache before the driver deletes them. This property is used when
Always Encrypted is enabled (Col utmEncr ypt i on=Enabl ed |
Resul t set Onl y).

If set to - 1, the driver caches column encryption keys for the life of the
connection. The keys are deleted when the connection is closed or sent
to the connection pool.

If set to O, the driver does not cache column encryption keys.

If set to x, the driver caches column encryption keys for the specified
number of seconds before deleting them. The timer starts for a key when
it is first accessed and added to the cache. The timer does not reset if
you access it after it has been added to the cache. The keys are deleted
when the timer expires, or the connection is closed or sent to the
connection pool.

Note: While caching can improve performance, column encryption keys
are designed to be deleted from the cache as a security measure and
should not be stored for long periods of time.

The default is 7200.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

69

Chapter 3: Using the driver

Property

Characteristic

ColumnEncryption on page 207

Specifies whether the driver is enabled for Always Encrypted functionality
when accessing data from encrypted columns.

If set to Di sabl ed, the driver does not use Always Encrypted
functionality. The driver does not attempt to decrypt data from encrypted
columns, but will return data as binary formatted cipher text. However,
statements containing parameters that reference encrypted columns are
not supported and will return an error.

If set to Resul t set Onl y, the driver transparently decrypts result sets
and returns them to the application. Queries containing parameters that
affect encrypted columns will return an error.

If setto Enabl ed, the driver fully supports Always Encrypted functionality.
The driver transparently decrypts result sets and returns them to the
application. In addition, the driver transparently encrypts parameter values
that are associated with encrypted columns.

The default is Di sabl ed.

Azure Key Vault properties

AEKeystoreClientSecret on page

194

Specifies the Client Secret used to authenticate against the Azure Key
Vault. This property is used only when Always Encrypted is enabled
(Col uMmEncr ypti on=Enabl ed | Resul t set Onl y) and Azure Key
Vault is the keystore provider. The Azure Key Vault stores the column
master key used for Always Encrypted functionality. To access the column
master key from the Azure Key Vault, the Client Secret and principal ID
must be provided.

AEKeystorePrincipalld on page 196

Specifies the principal ID used to authenticate against the Azure Key
Vault. This property is used only when Always Encrypted is enabled
(Col uMmEnNcr ypti on=Enabl ed | Resul t set Onl y) and Azure Key
Vault is the keystore provider. The Azure Key Vault stores the column
master key used for Always Encrypted functionality. To access the column
master key from the Azure Key Vault, the principal ID and Client Secret
must be provided.

Note: The driver currently supports only Azure App Registration as the
principal ID.

Java KeyStore properties

70

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Property

Characteristic

AEKeystoreLocation on page 195

Specifies absolute path to the Java KeyStore file. This property is used
only when Always Encrypted is enabled (Col utmEncr ypt i on=Enabl ed
| Resul t set Onl y) and Java KeyStore is the keystore provider. The
Java KeyStore contains the column master key used for Always Encrypted
functionality. To specify the password for the Java KeyStore file, use the
AEKeyStoreSecret property.

AEKeystoreSecret on page 197

Specifies the password used to access the Java KeyStore file. This
property is used only when Always Encrypted is enabled

(Col umEncr ypt i on=Enabl ed | Resul t set Onl y) and Java KeyStore
is the keystore provider. The Java KeyStore contains the column master
key used for Always Encrypted functionality. If no value is specified, an
empty sting is passed to the KeyStore file.

See also

Connection property descriptions on page 185

Always Encrypted on page 88

Additional properties

The following table summarizes additional connection properties.

Table 12: Additional properties

Property

Characteristic

AlwaysReportTriggerResults on
page 199

Determines how the driver reports results that are generated by database
triggers (procedures that are stored in the database and executed, or
fired, when a table is modified).

The driver does not report trigger results if the statement is a single Insert,
Update, Delete, Create, Alter, Drop, Grant, Revoke, or Deny statement.

In addition, the only result that is returned is the update count that is
generated by the statement that was executed (if errors do not occur).
Although trigger results are ignored, any errors that are generated by the
trigger are reported. Any warnings that are generated by the trigger are
enqueued. If errors are reported, the update count is not reported.

Applicationintent on page 199

Specifies whether the driver connects to read-write databases or requests
read-only routing to connect to read-only database replicas. Read-only
routing only applies to connections in Microsoft SQL Server 2012 where
AlwaysOn Availability Groups have been deployed.

By default, the driver connects to a read-write node in the AlwaysOn
environment.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

71

Chapter 3: Using the driver

Property

Characteristic

CatalogOptions on page 204

Determines which type of metadata information is included in result sets
when an application calls DatabaseMetaData methods.

By default, result sets do not contain synonyms.

CodePageOverride on page 206

The code page to be used by the driver to convert Character data. The
specified code page overrides the default database code page or column
collation. All Character data returned from or written to the database is
converted using the specified code page.

By default, the driver automatically determines which code page to use
to convert Character data. Use this property only if you need to change
the driver’s default behavior.

DatabaseName on page 211

Specifies the name of the database or instance to which you want to
connect.

InitializationString on page 225

Specifies one or multiple SQL commands to be executed by the driver
after it has established the connection to the database and has performed
all initialization for the connection. If the execution of a SQL command
fails, the connection attempt also fails and the driver throws an exception
indicating which SQL command or commands failed.

InsensitiveResultSetBufferSize on

page 226

Determines the amount of memory used by the driver to cache insensitive
result set data.

The default is 2048.

LongDataCacheSize on page 231

Determines whether the driver caches long data (images, pictures, long
text, binary data, or XML data) in result sets. To improve performance,
you can disable long data caching if your application retrieves columns
in the order in which they are defined in the result set.

By default, the driver caches long data in result sets in memory with a
memory buffer of 2048 KB for caching result set data. If the size of the
result set data exceeds available memory, the driver pages the result set
data to disk.

72

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using connection properties

Property

Characteristic

PacketSize on page 234

Determines the number of bytes for each database protocol packet that
is transferred from the database server to the client machine (Microsoft
SQL Server refers to this packet as a network packet).

Adjusting the packet size can improve performance. The optimal value
depends on the typical size of data that is inserted, updated, or returned
by the application and the environment in which it is running. Typically,
larger packet sizes work better for large amounts of data. For example,
if an application regularly returns character values that are 10,000
characters in length, using a value of 32 (16 KB) typically results in
improved performance.

By default, the driver uses the maximum packet size that the database
server accepts.

ResultSetMetaDataOptions on page
239

Determines whether the driver returns table name information in the
ResultSet metadata for Select statements.

By default, the driver does not perform additional processing to determine
the correct table name for each column in the result set when the
ResultSetMetaData.getTableName() method is called. The
getTableName() method may return an empty string for each column in
the result set.

SelectMethod on page 240

A hint to the driver that determines whether the driver requests a database
cursor for Select statements. Performance and behavior of the driver are
affected by this property, which is defined as a hint because the driver
may not always be able to satisfy the requested method.

By default, the database server sends the complete result set in a single
response to the driver when responding to a query. A server-side
database cursor is not created if the requested result set type is a
forward-only result set. Typically, responses are not cached by the driver.
Using this method, the driver must process the entire response to a query
before another query is submitted. If another query is submitted (using
a different statement on the same connection, for example), the driver
caches the response to the first query before submitting the second query.
Typically, the direct method performs better than the cursor method.

SnapshotSerializable on page 243

Allows your application to use Snapshot Isolation for connections.

This property is useful for applications that have the Serializable isolation
level set. Using the SnapshotSerializable property allows you to use
Snapshot Isolation with no or minimum code changes. If you are
developing a new application, you may find that using the constant
TRANSACTION_SNAPSHOT is a better choice.

By default, the application uses the Serializable isolation level when your
application has the transaction isolation level set to Serializable.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

73

Chapter 3: Using the driver

Property

Characteristic

SpyAttributes on page 244

Enables DataDirect Spy to log detailed information about calls issued by
the driver on behalf of the application. DataDirect Spy is not enabled by
default.

SuppressConnectionWarnings on
page 246

Determines whether the driver suppresses "changed database" and
"changed language" warnings when connecting to the database server.

By default, warnings are not suppressed.

TransactionMode on page 247

Controls how the driver delimits the start of a local transaction.

By default, the driver uses implicit transaction mode. This means that the
database, not the driver, automatically starts a transaction when a
transactionable statement is executed. Typically, implicit transaction mode
is more efficient than explicit transaction mode because the driver does
not have to send commands to start a transaction and a transaction is
not started until it is needed. When TRUNCATE TABLE statements are
used with implicit transaction mode, the database may roll back the
transaction if an error occurs. If this occurs, use the explicit value for this

property.

TruncateFractionalSeconds on
page 248

Determines whether the driver truncates timestamp values to three
fractional seconds. For example, a value of the datetime2 data type can
have a maximum of seven fractional seconds.

By default, the driver truncates all timestamp values to three fractional
seconds.

UseServerSideUpdatableCursors
on page 251

Determines whether the driver uses server-side cursors when an
updatable result set is requested.

By default, the client-side updatable cursors are created when an
updatable result set is requested.

XATransactionGroup on page 252

The transaction group ID that identifies any distributed transactions that
are initiated by the connection. This ID can be used for distributed
transaction cleanup purposes.

You can use the XAResource.recover method to roll back any transactions
left in an unprepared state. When you call XAResource.recover, any
unprepared transactions that match the ID on the connection used to call
XAResource.recover are rolled back.

See also

Connection property descriptions on page 185

74

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Performance considerations

Performance considerations

You can optimize your application’s performance if you set the SQL Server driver connection properties as
described in this section:

Always Encrypted: The following options related to the Always Encrypted feature affect performance:

¢ ColumnEncryption: Due to the overhead associated with encrypting and decrypting data, Always Encrypted
functionality can adversely affect performance when enabled. If your application does not require access
to encrypted columns, you can disable this property (Col utmEncr ypti on=Di sabl ed) for improved
performance. Alternatively, if your application only needs to retrieve and decrypt columns, not update them,
you can improve performance over the behavior of the Enabl ed setting by specifying a value of
Resul t set Onl y for this property. Note that when using this setting, queries containing parameters that
affect encrypted columns will return an error.

¢ AEKeyCacheTTL: When Always Encrypted functionality is enabled (Col urmEncr ypt i on=Enabl ed |
Resul t set Onl y), you can determine how long, in seconds, column encryption keys are cached using the
AEKeyCacheTTL property. Caching column encryption keys can provide performance gains by reducing
the overhead associated with fetching and decrypting keys for the same data multiple times during a
connection. Specifying larger values for this option increases the length of time that a column encryption
key persists in the cache; therefore, improving performance in some scenarios. Alternatively, by specifying
a value of - 1, you can configure the driver to persist keys for the life of the connection. Note that column
encryption keys are designed to be deleted from the cache as a security measure and should not be stored
for long periods of time.

ApplicationIntent: You can shift load away from the read-write nodes of your database cluster to read-only
nodes by setting this connection property to r eadOnl y and querying read-only database replicas when possible.

EnableBulkLoad: For batch inserts, the driver can use native bulk load protocols instead of the batch
mechanism. Bulk load bypasses the data parsing usually done by the database, providing an additional
performance gain over batch operations. Set this property to t r ue to allow existing applications with batch
inserts to take advantage of bulk load without requiring changes to the code.

EncryptionMethod: Data encryption may adversely affect performance because of the additional overhead
(mainly CPU usage) required to encrypt and decrypt data.

InsensitiveResultSetBufferSize: To improve performance, result set data can be cached instead of written
to disk. If the size of the result set data is greater than the size allocated for the cache, the driver writes the
result set to disk. The maximum cache size setting is 2 GB.

LongDataCacheSize: To improve performance when your application retrieves images, pictures, long text,
binary data, or XML data, you can disable caching for long data on the client if your application retrieves long
data column values in the order they are defined in the result set. If your application retrieves long data column
values out or order, long data values must be cached.

MaxPooledStatements: To improve performance, the driver's own internal prepared statement pooling should
be enabled when the driver does not run from within an application server or from within another application
that does not provide its own prepared statement pooling. When the driver's internal prepared statement pooling
is enabled, the driver caches a certain number of prepared statements created by an application. For example,
if the MaxPooledStatements property is set to 20, the driver caches the last 20 prepared statements created
by the application. If the value set for this property is greater than the number of prepared statements used by
the application, all prepared statements are cached.

See Designing JDBC applications for performance optimization on page 345 for more information about using
prepared statement pooling to optimize performance.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 75

Chapter 3: Using the driver

PacketSize: Typically, it is optimal for the client to use the maximum packet size that the server allows. This
reduces the total number of round trips required to return data to the client, thus improving performance.
Therefore, performance can be improved if this property is set to the maximum packet size of the database
server.

ResultSetMetaDataOptions: The driver's performance may be adversely affected if you set this option to 1.
If set to 1 and the ResultSetMetaData.getTableName method is called, the driver performs emulations which
take additional processing.

SelectMethod: In most cases, using server-side database cursors impacts performance negatively. However,
if the following four variables are true in your application, the best setting for this property is cursor, which
means use server-side database cursors:

* Your application contains queries that retrieve large amounts of data.

* Your application executes a SQL statement before processing or closing a previous large result set and
does this multiple times.

* Large result sets use forward-only cursors.

SnapshotSerializable: Snapshot Isolation provides transaction-level read consistency and an optimistic
approach to data modifications by not acquiring locks on data until data is to be modified. This Microsoft SQL
Server feature can be useful if you want to consistently return the same result set even if another transaction
has changed the data and 1) your application executes many read operations or 2) your application has long
running transactions that could potentially block users from reading data. This feature has the potential to
eliminate data contention between read operations and update operations. When this connection property is
settot r ue (thereby, you are using Snapshot Isolation), performance is improved due to increased concurrency.

UseServerSideUpdatableCursors: In most cases, using server-side updatable cursors improves performance.
However, this type of cursor cannot be used with insensitive result sets or with sensitive results sets that are
not generated from a database table that contains a primary key.

See Server-side updatable cursors on page 110 for more information about using server-side updatable cursors.

See also

Applicationintent on page 199
ColumnEncryption on page 207
EnableBulkLoad on page 216
EncryptionMethod on page 218
InsensitiveResultSetBufferSize on page 226
LongDataCacheSize on page 231
MaxPooledStatements on page 232

Designing JDBC applications for performance optimization on page 345
PacketSize on page 234
ResultSetMetaDataOptions on page 239
SelectMethod on page 240
SnapshotSerializable on page 243
UseServerSideUpdatableCursors on page 251
Server-side updatable cursors on page 110

76 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connecting to named instances

Connecting to named instances

Microsoft SQL Server supports multiple instances of a database running concurrently on the same server. An
instance is identified by an instance name. To connect to a named instance using a connection URL, use the
following URL format.

j dbc: dat adi rect:sqgl server://server _nane\\i nstance_nane

Note: The first backslash character (\) in\\ i nst ance_nane is an escape character.

where:
server _nane
is the IP address or hostname of the server.
i nstance_nane
is the name of the instance to which you want to connect on the server.

For example, the following connection URL connects to an instance named instancel on serverl.

j dbc: dat adi rect: sql server://server1\\instancel; User =t est ; Passwor d=secr et

To connect to a named instance using a data source, you specify the ServerName property. For example:

SQLSer ver Dat aSour ce nds = new SQ.Ser ver Dat aSour ce();
nds. set Descri pti on("My SQ.Server Dat aSource");

nds. set Server Name(" server 1\\i nst ancel");

nds. set Dat abaseNanme(" TEST") ;

nds. set User ("test");

nds. set Password("secret");

Azure Synapse Analytics and Analytics Platform
System

The driver transparently connects to Microsoft Azure Synapse Analytics and Microsoft Analytics Platform
System; however, the following limitations to features and functionality apply.

* No support for unquoted identifiers. The driver always enforces ANSI rules regarding quotation marks for
Azure Synapse Analytics and Analytics Platform System connections.

* No support for connection pooling reauthentication.
* No support for Data Definition Language (DDL) queries within transactions.
* No support for closing holdable cursors when a transaction is committed.

* No support for server-side cursors; therefore:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 77

Chapter 3: Using the driver

¢ Scroll-sensitive result sets are not supported.

* The UseServerSideUpdatableCursors property is set to false, and server-side cursors are not used.

* No support for XA connections.

¢ Support for isolation levels is limited to only the read uncommitted level. See "Isolation Levels" for more
information.

* No support for the following SQL Server data types in either the Azure Synapse Analytics or Analytics

Platform System.

decimal() identity

timestamp

image tinyint identity
numeric() identity ntext
smallint identity xml

text

* Support for scalar string functions is limited to the following functions.

ASCII LEFT RTRIM
CHAR LTRIM SOUNDEX
CONCAT REPLACE SPACE
DIFFERENCE RIGHT SUBSTRING

¢ Support for scalar numeric functions is limited to the following functions.

ABS EXP ROUND
ACOS FLOOR SIGN

ASIN LOG SIN

ATAN LOG10 SQRT
CEILING PI TAN

COoSs POWER TRUNCATE
CoT RADIANS

DEGREES RAND (Azure Warehouse only)

Support for scalar date and time functions is limited to the following functions.

CURDATE DAYOFWEEK QUARTER
CURRENT_DATE DAYOFYEAR SECOND
CURRENT_TIME HOUR WEEK
CURTIME MINUTE YEAR
DAYNAME MONTH

DAYOFMONTH MONTHNAME

78

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Authentication

See also
Data types on page 17
Scalar functions on page 266

Authentication

Depending on the authentication mechanism used in your environment, additional steps may be required to
configure authentication. The proceeding topics provide detailed instructions on configuring user/ID password,
Azure Active Directory, Kerberos, and NTLM authentication.

See also

AuthenticationMethod on page 201

Configuring user ID/password authentication on page 79
Configuring Azure Active Directory authentication on page 80
Configuring the driver for Kerberos authentication on page 81
Configuring NTLM authentication on page 86

Configuring user ID/password authentication

Take the following steps to configure user ID/Password authentication.

1. Set the AuthenticationMethod property to user | dPasswor d or aut o.

2. Set the User property to provide the user ID.

3. Set the Password property to provide the password.

4. Specify values for minimum required properties for establishing a connection.

a) Setthe ServerName property to specify either the IP address in IPv4 or IPv6 format, or the server name
for your Azure server.

b) Set the PortNumber property to specify the TCP port of the primary database server that is listening for
connections to the database.

For example, the following is a connection string with only the required properties for making a connection
using user ID/password authentication.

Connection conn = DriverManager. get Connecti on
("jdbc: datadirect:sqgl server://server1: 1433;
Aut henti cati onMet hod=user | dPasswor d; User =t est ;
Passwor d=secret);

See also

AuthenticationMethod on page 201
User on page 250

Password on page 236

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 79

Chapter 3: Using the driver

Configuring Azure Active Directory authentication

The driver supports Azure Active Directory authentication (Azure AD). Azure AD authentication is an alternative
to SQL Server authentication that allows administrators to centrally manage user permissions to Azure.

Note: Azure Active Directory authentication requires Java SE 7 or higher.

Note: When using Azure AD authentication, the driver requires root CA certificates to establish an SSL
connection to a database. The driver determines the location of the truststore containing the required certificates
by using the default JRE cacert s file unless a different file has been specified by the

j avax. net. ssl . trust St or e Java system property. The truststore location cannot be specified using the
driver's Truststore property.

Take the following steps to configure the driver to use Azure AD authentication.

1. Set the AuthenticationMethod property to specify a value of Acti veDi r ect or yPasswor d.

2. Set the User property to specify your Active Directory username using the user i d@onmai n. comformat.
3. Set the Password property to specify your Active Directory password.

4. Specify values for minimum required properties for establishing a connection.

a) Setthe ServerName property to specify either the IP address in IPv4 or IPv6 format, or the server name
for your Azure server. For example, nyser ver . dat abase. wi ndows. net.

b) Set the PortNumber property to specify the TCP port of the primary database server that is listening for
connections to the database.

For example, the following is a connection string with only the required options for making a connection using
Azure AD authentication.

Note: If the HostNamelnCertificate is not specified, the driver automatically uses the value of the ServerName
from the URL as the value for validating the certificate.

Connecti on conn = Driver Manager . get Connecti on

("j dbc: datadirect: sqgl server://your_server. dat abase. wi ndows: 1433;
Aut henti cati onMet hod=Act i veDi r ect or yPasswor d;

User =t est @ydonai n. cony Passwor d=secret");

See also

AuthenticationMethod on page 201
HostNamelnCertificate on page 224
User on page 250

Password on page 236
ServerName on page 241
PortNumber on page 236

80 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Authentication

Configuring the driver for Kerberos authentication

Your Kerberos environment should be fully configured before you configure the driver for Kerberos authentication.
You should refer to your SQL Server documentation and Java documentation for instructions on configuring
Kerberos. For a Windows Active Directory implementation, you should also consult your Windows documentation.
For a non-Active Directory implementation (on a Windows or non-Windows operating system), you should
consult MIT Kerberos documentation.

Important: A properly configured Kerberos environment must include a means of obtaining a Kerberos Ticket
Granting Ticket (TGT). For a Windows Active Directory implementation, Active Directory automatically obtains
the TGT. However, for a non-Active Directory implementation, the means of obtaining the TGT must be
automated or handled manually.

Once your Kerberos environment has been configured, take the following steps to configure the driver.

1. Use one of the following methods to integrate the JAAS configuration file into your Kerberos environment.
(See "The JAAS login configuration file" for details.)

Note: Theinstal | _dir/1ib/JDBCDriverLogin. conf fileisthe JAAS login configuration file installed
with the driver. You can use this file or another file as your JAAS login configuration file.

Note: Regardless of operating system, forward slashes must be used when designating the path of the
JAAS login configuration file.

Option 1. Specify a login configuration file directly in your application with the
java.security. auth. | ogi n. confi g system property. For example:

Syst em set Property("java. security.auth. | ogin.config","install _dir/lib/JDBCDxiverLogin.conf");

Option 2. Set up a default configuration. Modify the Java security properties file to indicate the URL of the
login configuration file with the | ogi n. confi g. url . n property where n is an integer connoting separate,
consecutive login configuration files. When more than one login configuration file is specified, then the files
are read and concatenated into a single configuration.

a) Open the Java security properties file. The security properties file is the j ava. securi ty file in the
/jrellibl/security directory of your Java installation.

b) Findthe line# Default |ogin configuration fil e inthe security properties file.

c) Belowthe# Default | ogin configuration fil eline,addthe URL of the login configuration file
as the value for al ogi n. confi g. url . n property. For example:

Default login configuration file
I ogin.config.url.1=file:${user.hone}/.java.login.config
login.config.url.2=file:install _dir/lib/JDBCDriverLogin.conf

2. Ensure your JAAS login configuration file includes an entry with authentication technology that the driver
can use to establish a Kerberos connection. (See "The JAAS login configuration file" for details.)

Note: The JAAS login configuration file installed with the driver
(install _dir/1lib/JDBCDriverLogin. conf)includes a default entry with the name JDBC_DRI VER_01.
This entry specifies the Kerberos authentication technology used with an Oracle JVM.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 81

Chapter 3: Using the driver

The following examples show that the authentication technology used in a Kerberos environment depends
on your JVM.

Oracle JVM

JDBC_DRI VER 01 {
com sun. security. aut h. rodul e. Krb5Logi nModul e required useTi cket Cache=tr ue;

}s
IBM JVM
JDBC_DRI VER 01 {

comibm security. aut h. rodul e. Kr b5Logi nMbdul e requi red useDef aul t Ccache=t r ue;

};

3. Set the driver's AuthenticationMethod connection property to aut o or ker ber os. (See
"AuthenticationMethod" for details.)

Note: If your are configuring your environment for Kerberos Constrained Delegation (also known as
impersonation), AuthenticationMethod must be set to ker ber os.

4. Optionally, set the ServicePrincipalName connection property if the default value built by the driver does
not match the service principal name registered with the KDC.

By default, the driver builds the ServicePrincipalName by concatenating the service name MSSQLSvc, the
fully qualified domain name (FQDN) as specified with the ServerName property, the port number as specified
with the PortNumber property, and the default realm name as specified in the Kerberos configuration file
(kr b5. conf). If this value does not match the service principal name registered with the KDC, then the
value of the service principal name registered with the KDC should be specified for the ServicePrincipalName

property.
The ServicePrincipalName takes the following form.

Service_Name/Fully_Qualified Dormai n_Name: Port _Nunber @GREALM NANMVE
See "ServicePrincipalName" for details on the composition of the service principal name.

5. Optionally, set the LoginConfigName connection property if the name of the JAAS login configuration file
entry is different from the driver default JDBC DRI VER 01. (See "The JAAS login configuration file" and
"LoginConfigName" for details.)

JDBC DRI VER 01 is the default entry name for the JAAS login configuration file (JDBCDx i ver Logi n. conf)
installed with the driver. When configuring your Kerberos environment, your network or system administrator
may have used a different entry name. Check with your administrator to verify the correct entry name.

6. Optionally, set the GSSCredential connection property for Kerberos constrained delegation (sometimes
referred to as impersonation).

Constrained delegation is a Kerberos mechanism that allows a client application to delegate authentication
to a second service. See "Constrained delegation” for additional steps to configure your environment.

AuthenticationMethod must be set to ker ber os to use constrained delegation.

See also

Kerberos authentication requirements on page 83
The JAAS login configuration file on page 83
Constrained delegation on page 85

82 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Authentication

AuthenticationMethod on page 201
ServicePrincipalName on page 242
LoginConfigName on page 229
GSSCredential on page 223

Kerberos authentication requirements

Verify that your environment meets the requirements listed in the following table before you configure the driver
for Kerberos authentication.

Note: For Windows Active Directory, the domain controller must administer both the database server and the
client.

Table 13: Kerberos configuration requirements

Component Requirements
Database server No restrictions
Kerberos server The Kerberos server is the machine where the user IDs for authentication

are administered. The Kerberos server is also the location of the Kerberos
key distribution center (KDC). Network authentication must be provided
by one of the following methods.

* Windows Active Directory on SQL Server 2005 or higher
* MIT Kerberos 1.5 or higher

Client Java SE 6 or higher must be installed.

See also
Configuring the driver for Kerberos authentication on page 81

The JAAS login configuration file

The Java Authentication and Authorization Service (JAAS) login configuration file contains one or more entries
that specify authentication technologies to be used by applications. To establish Kerberos connections with
the driver, the JAAS login configuration file must include an entry specifically for the driver. In addition, the
login configuration file must be referenced either by setting the j ava. security. aut h.l ogi n. config
system property or by setting up a default configuration using the Java security properties file.

Setting up a default configuration

To set up a default configuration, you must modify the Java security properties file to indicate the URL of the
login configuration file with the | ogi n. confi g. ur| . n property where n is an integer connoting separate,
consecutive login configuration files. When more than one login configuration file is specified, then the files are
read and concatenated into a single configuration. The following steps summarize how to modify the security
properties file.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 83

Chapter 3: Using the driver

1. Open the Java security properties file. The security properties file is the j ava. securi ty file in the
/jrellibl/security directory of your Java installation.

2. Findthe line# Default | ogin configuration fil e inthe security properties file.

3. Belowthe# Default |ogin configuration fil e line, add the URL of the login configuration file as
the value for a |l ogi n. confi g. url . n property. For example:

Default login configuration file

I ogin.config.url.1=file:${user.hone}/.java.login.config
login.config.url.2=file:install _dir/lib/JDBCDriverLogin.conf

JAAS login configuration file entry for the driver

You can create your own JAAS login configuration file, or you can use the JDBCDr i ver Logi n. conf file
installed in the / | i b directory of the product installation directory. In either case, the login configuration file
must include an entry that specifies the Kerberos authentication technology to be used by the driver.

JAAS login configuration file entries begin with an entry name followed by one or more LoginModule items.
Each LoginModule item contains information that is passed to the LoginModule. A login configuration file entry
takes the following form.

entry_nane {

| ogi n_nodul e fl ag_val ue nodul e_opti ons
b
where:

entry_nane

is the name of the login configuration file entry. The driver's LoginConfigName connection property
can be used to specify the name of this entry. JDBC_DRI VER 01 is the default entry name for the
JDBCDx i ver Logi n. conf file installed with the driver.

| ogi n_nodul e

is the fully qualified class name of the authentication technology used with the driver.
fl ag_val ue

specifies whether the success of the module isr equi r ed, r equi si t e,suf fi ci ent,oropti onal .
nmodul e_opti ons

specifies available options for the LoginModule. These options vary depending on the LoginModule
being used.
The following examples show that the LoginModule used for a Kerberos implementation depends on your JVM.
Oracle JVM

JDBC DRI VER 01 {
com sun. security. aut h. rodul e. Kr b5Logi nMbdul e requi red useTi cket Cache=tr ue;

b
IBM JVM
JDBC DRI VER 01 {

comibm security. aut h. nodul e. Kr b5Logi nMbdul e requi red useDef aul t Ccache=tr ue;

b

84 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Authentication

Refer to Java Authentication and Authorization Service documentation for information about the JAAS login
configuration file and implementing authentication technologies.

See also
Configuring the driver for Kerberos authentication on page 81
LoginConfigName on page 229

Constrained delegation

Constrained delegation is a Kerberos mechanism that allows a client application to delegate authentication to
a second service. The client application informs the KDC that the second service is authorized to act on behalf
of a specified Kerberos security principal, such as a user that has an Active Directory account. The second
service can then delegate authentication to a database service principal name. (Refer to the Microsoft TechNet
page About Kerberos constrained delegation for further details.)

To enable constrained delegation:

Important: Before you start, inthe [| i bdef aul t s] section of the kr b5. conf file, set the f or war dabl e
flagto true.

1. Authenticate the service principal and get a subject from the login context. The service principal needs a
Kerberos granting ticket to be authenticated. You can use either a ticket cache or keytab file for the
authentication step. The section you define in your JAAS login configuration file determines which method
is used for authentication.

2. Call the impersonate method to generate the service ticket for the database user on behalf of the service
principal identity.

3. Using the driver's GSSCredential property, specify the GSSCredential generated in the previous steps.

4. Call the driver's connect() method using the Properties object. The Properties object must contain the
GSSCredential property and any additional properties needed to establish a connection to the database.

The following example code shows how a GSS credential object can be integrated into a client
application to support constrained delegation.

Subj ect servi ceSubj ect;
GSSCredenti al creds;

/1 Aut henticate the service principal and get a subject fromthe |ogin context.
Logi nContext |c = new Logi nContext("entry_fromyour_jaas_config");
lc.login();
servi ceSubj ect = |c.getSubject();

//Call the inpersonate nethod to generate the service ticket for database user
//on behalf of the service principal identity.
try {
creds = Subj ect. doAs(servi ceSubject, new
Privil egedExcepti onActi on<GSSCr edenti al >() {
public GSSCredential run() throws Exception {
GSSManager manager = GSSManager. getl nstance();
if (serviceCredentials == null) {
serviceCredentials =
manager . creat eCredenti al (GSSCredenti al . | NI TI ATE_ONLY) ;

GSSNane ot her = manager . cr eat eNane(" user Tol nper sonat e",
GSSNane. NT_USER_NAME) ;
return

((Ext endedGSSCr edent i al) servi ceCredenti al s). i npersonat e(ot her);

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 85

https://technet.microsoft.com/en-us/library/cc995228.aspx

Chapter 3: Using the driver

}

3
} catch (Privil egedActi onException pae) {
t hr ow pae. get Exception();
}

final Properties sql serverProperties;

sql serverProperties = new Properties();

/'l Set the driver's GSSCredential property and the rest of the database
/1 connection properties

sql server Properties. put ("GSSCredential", creds);

sql server Properties. put (" Server Nane", "your Server");

sql serverProperties. put("portNunber", "1433");

sql server Properties. put ("aut henti cati onMet hod", "Kerberos");

sql server Properti es. put ("dat abaseName", "yourDat abase");

Connection con = DriverMnager. get Connecti on("j dbc: dat adi rect: sql server:",
sql serverProperties);
Dat abaseMet aData dbnmd = con. get Met aDat a() ;

Systemout.println("\nConnected with " + dbnd. getDriverNane() + "\n"
+ " to " + dbnd. get Dat abasePr oduct Nanme() + "\n"

+ " " + dbnd. get Dat abasePr oduct Version() + "\n"
+ " " + dbnd.getDriverVersion() + "\n");

Configuring NTLM authentication

If your environment meets the appropriate requirements, you can configure NTLM authentication by specifying
user credentials on either a Windows or UNIX/Linux operating system.

NTLM authentication requirements

Verify that your environment meets the requirements listed in the following table before you configure your
environment for NTLM authentication.

Note: The domain controller must administer both the database server and the client.

Table 14: NTLM authentication requirements

Component Requirements
Database server The server must be running Microsoft SQL Server 2005 or higher.
Domain controller Network authentication must be provided by NTLM on Microsoft SQL Server

2005 or higher.

Client Java SE 6 or higher must be installed.

Configuring NTLM authentication by specifying user credentials
You can configure the driver for NTLM authentication with the specification of user credentials.

To configure the driver:

86 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data encryption

1. Set the AuthenticationMethod property to either of the following values.

* ntlnjavato use NTLMv1 or NTLMv2 depending on the size of the password. NTLMv1 is used if the
password is 14 bytes or less; NTLMv2 is used if the password is more than 14 bytes.

* ntl nRj ava to use NTLMv2 protocols to connect to a server that is restricted to using NTLMv2
authentication.

Note: See AuthenticationMethod on page 201 for more information on setting the AuthenticationMethod
property.

2. Set the Domain property to provide the name of the domain server that administers the database.

Note: Alternatively, you can set the domain server name using the User property.

3. Set the User property to provide the user ID.
4. Set the Password property to provide the password.

5. If using NTLM authentication with a Security Manager on a Java Platform, security permissions must be
granted to allow the driver to establish connections. See Permissions for establishing connections on page
49 for an example.

Data encryption

The driver supports SSL encryption. Depending on your Microsoft SQL Server configuration, you can choose
to encrypt all data, including the login request, or encrypt the login request only. Encrypting login requests, but
not data, is useful for the following scenarios:

* When your application needs security, but cannot afford to pay the performance penalty for encrypting data
transferred between the driver and server.

* When the server is not configured for SSL, but your application still requires a minimum degree of security.

Note: When SSL is enabled, the driver communicates with database protocol packets set by the server’s
default packet size. Any value set by the PacketSize property is ignored.

Using SSL with Microsoft SQL Server

If your Microsoft SQL Server database server has been configured with an SSL certificate signed by a trusted
CA, the server can be configured so that SSL encryption is either optional or required. When required,
connections from clients that do support SSL encryption fail.

Although a signed trusted SSL certificate is recommended for the best degree of security, Microsoft SQL Server
can provide limited security protection even if an SSL certificate has not been configured on the server. If a
trusted certificate is not installed, the server will use a self-signed certificate to encrypt the login request, but
not the data.

The following table shows how the different EncryptionMethod property values behave with different Microsoft
SQL Server configurations.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 87

Chapter 3: Using the driver

Table 15: EncryptionMethod property values and Microsoft SQL Server configurations

Value

No SSL Certificate

SSL Certificate

SSL Optional

SSL Required

noEncryption

Login request and data are not

Login request and data

Connection attempt fails.

data is not encrypted

encrypted, but data is not
encrypted.

encrypted. are not encrypted.
SSL Connection attempt fails. Login request and data | Login request and data
are encrypted. are encrypted.
requestSSL Login request and data are not | Login request and data | Login request and data
encrypted. are encrypted. are encrypted.
loginSSL Login request is encrypted, but | Login request is Login request and data

are encrypted.

Configuring SSL encryption

Take the following steps to configure SSL encryption.

1. Choose the type of encryption for your application:

¢ |f you want the driver to encrypt all data, including the login request, set the EncryptionMethod property
to SSL or requestSSL.

* If you want the driver to encrypt only the login request, set the EncryptionMethod property to loginSSL.

2. Use the CryptoProtocolVersion property to specify acceptable cryptographic protocol versions (for example,
TLSv1.2) supported by your server. (Only applies when the EncryptionMethod property is set to SSL.)

3. Specify the location and password of the truststore file used for SSL server authentication. Either set the
TrustStore and TrustStore properties or their corresponding Java system properties (javax.net.ssl.trustStore

and javax.net.ssl.trustStorePassword, respectively).

4. To validate certificates sent by the database server, set the ValidateServerCertificate property to t r ue.

5. Optionally, set the HostNamelnCertificate property to a host name to be used to validate the certificate. The
HostNamelnCertificate property provides additional security against man-in-the-middle (MITM) attacks by
ensuring that the server the driver is connecting to is the server that was requested.

Always Encrypted

Note: Always Encrypted support requires the driver to run on a Java Virtual Machine (JVM) that is Java SE

8 or higher.

88

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data encryption

Microsoft supports the Always Encrypted feature for Azure SQL Databases and SQL Server databases beginning
with SQL Server 2016. Always Encrypted functionality provides improved security by storing sensitive data on
the server in an encrypted state. When sensitive data is queried by the application, the driver transparently
decrypts data from encrypted columns and returns them to the application. Conversely, when encrypted data
needs to be passed to the server, the driver transparently encrypts parameter values before sending them for
storage. As a result, sensitive data is visible only to authorized users of the application, not by those who
maintain the data. This reduces exposure to a number of potential vulnerabilities, including server-side security
breaches and access by database administrators who would not otherwise be authorized to view the data.

Always Encrypted functionality employs a column master key and column encryption key to process encrypted
data. The column encryption key is used to encrypt sensitive data in an encrypted column, while the column
master key is used to encrypt column encryption keys. To prevent server-side access to encrypted data, the
column master key is stored in a keystore that is separate from the server that contains the data. When Always
Encrypted is enabled, the driver uses the steps described in this section to retrieve keys and negotiate the
decryption of encrypted data.

By design, data stored in encrypted columns cannot be accessed without first being retrieved and decrypted
by the driver. Although this restriction improves security, it also prevents literal values within these columns to
be referenced when issuing a statement. As a result, statements can only reference encrypted columns using
parameter markers.

When the application executes a parameterized statement with Always Encrypted enabled:

1. The driver executes a stored procedure to determine from the server whether there are any encrypted
columns referenced by the statement.

2. If any columns are encrypted, the driver retrieves the encrypted column metadata, encrypted column
encryption key, and the location of the column master key for each parameter to be encrypted.

3. The driver retrieves the column master key from the keystore; then, uses it to decrypt the column encryption
key. After decryption, the column encryption key is cached in a decrypted state for subsequent operations
or discarded. See the "Using Keystore Providers" section for more information.

Note: You can dictate the length of time column encryption keys are persisted in the cache using the
AEKeyCacheTTL property. See "Caching column encryption keys" for more information.

4. The driver encrypts the parameters using the decrypted column encryption key.
5. The driver sends the statement with encrypted values to the server for processing.

6. If applicable, the server returns the result set, along with the encryption algorithm information, encrypted
column encryption key, and location of the column master keys.

7. If the column encryption key is not cached, the driver retrieves column master key from the keystore; then
uses it to decrypt the column encryption key.

8. The driver decrypts the result set using the column encryption key and returns it to the application.

See "Enabling Always Encrypted" for information on configuring Always Encrypted with the driver.

See also

Using keystore providers on page 90
Caching column encryption keys on page 91
Enabling Always Encrypted on page 90

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 89

Chapter 3: Using the driver

Enabling Always Encrypted

You can configure Always Encrypted behavior for the driver by specifying the following values for the
ColumnEncryption connection property:

* |Ifsetto Enabl ed, the driver fully supports Always Encrypted functionality. The driver transparently decrypts
result sets and returns them to the application. In addition, the driver transparently encrypts parameter
values that are associated with encrypted columns.

* If setto Resul t set Onl y, only decryption is enabled. The driver transparently decrypts result sets and
returns them to the application. Queries containing parameters that affect encrypted columns will return an
error.

* Ifsetto Di sabl ed (the default), Always Encrypted functionality is disabled. The driver does not attempt to
decrypt data from encrypted columns and returns the data as binary-formatted cipher text. However,
statements containing parameters that reference encrypted columns are not supported and will return an
error.

By default, Always Encrypted is disabled (Col umEncr ypt i on=Di sabl ed). For more information on configuring
the ColumnEncryption property, see "ColumnEncryption.”

When Always Encrypted is enabled (Col utmEncr ypt i on=Enabl ed | Resul t set Onl y), the driver must be
configured to use a keystore provider; otherwise, an error will be returned. See "Using keystore providers" for
details.

See also
Using keystore providers on page 90
ColumnEncryption on page 207

Using keystore providers

Keystore providers securely store the column master keys used for decrypting the column encryption keys
employed by Always Encrypted functionality. The driver requires that a keystore provider be used when always
encrypted is enabled (Col umEncr ypt i on=Enabl ed | Resul t set Onl y). The following section describes
how to configure the driver to use the supported keystore providers.

Azure Key Vault

The Azure Key Vault is a certificate repository hosted on Azure platforms. Using Azure Key Vault offers several
advantages, including the ability for applications on any platform to access keys. In addition, since the keys
are centrally stored, they do not need to be copied to and cached on a local machine. However, unless your
application is running on Azure, calls to the key vault must be made over a WAN, which can negatively impact
performance. To use Azure Key Vault, values for the following properties must be provided:

* AEKeystorePrincipalld: Specifies the principal ID for the Azure Key Vault. The principal ID is the Application
ID created during Azure App Registration. See "KeyStorePrincipalld” for a detailed description.

* AEKeystoreClientSecret: Specifies the Client Secret used to access the Azure Key Vault. See
"AEKeystoreClientSecret" for a detailed description.

Java KeyStore

Java Keystore is a repository of certificates for Java platforms. Similar to Azure Key Vault, the column master
key is stored centrally, which means keys do not need to be cached on local machines. However, unlike Azure
Key Vault, access to the Java Keystore is limited to applications running on Java platforms. To use Java
Keystore, values for the following properties must be provided:

* AEKeystorelLocation: Specifies the absolute path to the Java KeyStore file. See "AEKeystoreLocation" for
details.

90 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Data encryption

* AEKeystoreSecret: Specifies the password used to access the Java KeyStore file. See "AEKeystoreSecret”
for details.

See also

ColumnEncryption on page 207
AEKeystorePrincipalld on page 196
AEKeystoreClientSecret on page 194
AEKeystoreLocation on page 195
AEKeystoreSecret on page 197

Caching column encryption keys

Caching column encryption keys improves performance by reducing the overhead associated with fetching
and decrypting the keys for the same data multiple times. For security purposes, the driver empties keys from
the cache when a connection closes; however, for applications that remain connected for long periods of time,
you may want to delete the keys before the connection ends. You can determine the length of time the driver
caches keys by specifying the following values for the AEKeyCacheTTL property:

* Ifsetto -1, the driver caches column encryption keys for the life of the connection. The keys are deleted
when the connection is closed or added to the connection pool.

¢ |fsetto 0, the driver does not cache column encryption keys.

¢ |f set to x, the driver caches column encryption keys for the specified number of seconds before deleting
them. The timer starts for a key when it is first accessed and added to the cache. The timer does not reset
if you access it after it has been added to the cache. The keys are deleted when the timer expires, or the
connection is closed or added to the connection pool.

By default, the driver caches keys for 7200 seconds. See "AEKeyCacheTTL" for details.

See also
AEKeyCacheTTL on page 193

Enabling parameter metadata discovery

The driver initiates the processing of encrypted parameters by passing the T-SQL for a prepared statement to
the sp_describe_parameter_encryption system stored procedure, which is then used to return metadata for
the encrypted parameters in statement. To maintain data type integrity, the server requires that the T-SQL data
type, length, precision and scale values specified by the driver match those of the underlying native data type
referenced by the parameters in the T-SQL statement. However, since some of the native data types do not
have a one-to-one mapping to a JDBC types, the driver may not be able to communicate the T-SQL type to
the server when calling this procedure. When this occurs, the procedure will fail to execute with an OQper and
type cl ash error.

To correct this issue, functionality was added to allow the driver to automatically discover the underlying type
and adjust the T-SQL passed to the the sp_describe_parameter_encryption procedure. This behavior is disabled
by default when Always Encrypted functionality is enabled (Col urmEncr ypt i on=Enabl ed | Resul t set Onl y).
To enable data type discovery, configure the following connection properties with the values provided:

Descri bel nput Par anet er s=DESCRI BEALL
Descri beQut put Par anet er s=DESCRI BEALL

8 For example., because there is no SQL_MONEY type for IDBC, the native Money and Decimal types both map to SQL_DECIMAL

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 91

Chapter 3: Using the driver

When these values are specified, the driver makes an extra call to the server to retrieve accurate metadata to
pass to the sp_describe_column_encryption procedure, which results in the gathering of encryption metadata
and allows for encryption and decryption to succeed.

See also
DescribelnputParameters on page 214
DescribeOutputParameters on page 215

Connection string example

The following connection strings configure the driver to use Always Encrypted with the minimum required
properties.

For connections using Azure Key Vault;

"j dbc: dat adi rect: sqgl server://M/Server: 1433;
AEKeyst or ePri nci pal | d=789f 8b4c- 7ad4a- 445d- 60e9- 7bec14625645;
AEKey St or ed i ent Secr et =ABcdEFg/ hi JkLmNOPqRO1st UvWkyz Yx2wv UTsr QoO=;
Col utmEncr ypt i on=Enabl ed; "

For connections Java KeyStore:

"j dbc: dat adi rect: sqgl server://M/Server: 1433;
AEKeyst orelLocation=/usr/javaljre/lib/security/cacerts; AEKeyst oreSecret =secret;
Col umEncr ypt i on=Enabl ed; "

See also

AEKeystorePrincipalld on page 196
AEKeystoreClientSecret on page 194
ColumnEncryption on page 207
AEKeystoreLocation on page 195
AEKeystoreSecret on page 197

Always Encrypted properties on page 69

Using failover

The following levels of failover protection are supported to ensure continuous, uninterrupted access to data.

* Connection failover on page 96 provides failover protection for new connections only. The driver fails over
new connections to an alternate, or backup, database server if the primary database server is unavailable,
for example, because of a hardware failure or traffic overload. If a connection to the database is lost, or
dropped, the driver does not fail over the connection. This failover method is the default.

* Extended connection failover on page 97 provides failover protection for new connections and lost database
connections. If a connection to the database is lost, the driver fails over the connection to an alternate
server, preserving the state of the connection at the time it was lost, but not any work in progress.

¢ Select connection failover on page 98 provides failover protection for new connections and lost database
connections. In addition, it provides protection for Select statements that have work in progress. If a
connection to the database is lost, the driver fails over the connection to an alternate server, preserving the
state of the connection at the time it was lost and preserving the state of any work being performed by Select
statements.

The method you choose depends on how failure-tolerant your application is. For example, if a communication
failure occurs while processing, can your application handle the recovery of transactions and restart them?

92 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using failover

When using either extended connection failover mode or select connection failover mode, your application
needs the ability to recover and restart transactions. The advantage of select mode is that it preserves the
state of any work that was being performed by the Select statement at the time of connection loss. If your
application had been iterating through results at the time of the failure, when the connection is reestablished,
the driver can reposition on the same row where it stopped so that the application does not have to undo all
of its previous result processing. For example, if your application was paging through a list of items on a Web
page when a failover occurred, the next page operation would be seamless instead of starting from the beginning.
Performance, however, is a factor in selecting a failover mode. Select mode incurs additional overhead when
tracking which rows the application has already processed.

You can specify which failover method you want to use by setting the FailoverMode connection property.
Regardless of the failover method you choose, you must configure one or multiple alternate servers using the
AlternateServers connection property.

See also

Failover properties on page 61

Always On Availability Groups on page 100

Configuring failover on page 93

Connection failover on page 96

Extended connection failover on page 97

Select connection failover on page 98

Configuring failover with Microsoft Cluster Server on page 99
Using client load balancing on page 99

Using connection retry on page 100

Configuring failover

Take the following steps to configure failover.
1. Specify the primary and alternate servers:

* Specify your primary server using a connection URL or data source.
¢ Specify one or multiple alternate servers by setting the AlternateServers property.

See Specifying primary and alternate servers on page 94.

Note: To turn off failover, do not specify a value for the AlternateServers property.

Note: If using failover with Microsoft Cluster Server (MSCS), which determines the alternate server for
failover instead of the driver, any alternate server specified must be the same as the primary server. For
example:

jdbc: dat adi rect: sql server://serverl: 1433;
Dat abaseNanme=TEST; User =t est ; Passwor d=secr et ;
Al t ernat eServer s=(server 1: 1433; Dat abaseNane=TEST)

2. Choose a failover method by setting the FailoverMode connection property. The default method is connection
failover (FailoverMode=connect).

3. If FailoverMode=ext ended or FailoverMode=sel ect , set the FailoverGranularity property to specify how
you want the driver to behave if exceptions occur while trying to reestablish a lost connection. The default
behavior of the driver is to continue with the failover process and post any exceptions on the statement on
which they occur (FailoverGranularity=nonAt omi c).

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 93

Chapter 3: Using the driver

4. Optionally, configure the connection retry feature. See Specifying connection retry on page 96.

5. Optionally, set the FailoverPreconnect property if you want the driver to establish a connection with the
primary and an alternate server at the same time. The default behavior is to connect to an alternate server
only when failover is caused by an unsuccessful connection attempt or a lost connection
(FailoverPreconnect=f al se).

Specifying primary and alternate servers

Connection information for primary and alternate servers can be specified using either one of the following
methods:

¢ Connection URL through the JDBC Driver Manager
¢ JDBC data source

For example, the following connection URL for the SQL Server driver specifies connection information for the
primary and alternate servers using a connection URL:

j dbc: dat adi rect: sql server://server1l: 1433; Dat abaseName=TEST; User =t est ;
Passwor d=secret; Al t er nat eSer ver s=(server 2: 1433; Dat abaseNane=TEST2,
server 3: 1433; Dat abaseName=TEST3)

In this example:

...server 1: 1433; Dat abaseNane=TEST. . .

is the part of the connection URL that specifies connection information for the primary server. Alternate servers
are specified using the AlternateServers property. For example:

...; Al ternateServers=(server2: 1433; Dat abaseNanme=TEST2, ser ver 3: 1433;
Dat abaseNane=TEST3)

Similarly, the same connection information for the primary and alternate servers specified using a JDBC data
source would look like this:

SQLSer ver Dat aSour ce nds = new SQ.Ser ver Dat aSour ce();

nds. set Descri pti on("My SQ.Server Dat aSource");

nds. set Server Name("server1");

nds. set Port Nunber (1433) ;

nds. set Dat abaseNane(" TEST") ;

nds. set User ("test");

nds. set Password("secret");

nds. set Al t er nat eSer ver s("server 2: 1433; Dat abaseNane=TEST2, server 3: 1433;
Dat abaseNane=TEST3")

In this example, connection information for the primary server is specified using the ServerName, PortNumber,
and DatabaseName properties. Connection information for alternate servers is specified using the
AlternateServers property.

The SQL Server driver also allows you to specify connections to named instances, multiple instances of a
Microsoft SQL Server database running concurrently on the same server. If specifying named instances for
the primary and alternate servers, the connection URL would look like this:

j dbc: dat adi rect: sql server://server1\\instancel; User =t est ; Passwor d=secr et ;
Al ternat eServers=(server2\\i nst ance2: 1433; Dat abaseName=TEST2,
server 3\ \i nst ance3: 1433; Dat abaseNane=TEST3)

94 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using failover

Similarly, the same connection information to named instances for the primary and alternate servers specified
using a JDBC data source would look like this:

SQLSer ver Dat aSour ce nds = new SQ.Server Dat aSour ce();

nds. set Descri ption("My SQ.Server Dat aSource");

nds. set Server Nanme("server 1\\i nst ancel");

nds. set Port Nunber (1433) ;

nds. set Dat abaseNane(" TEST") ;

nds. set User ("test");

nds. set Password("secret");

nds. set Al t er nat eServers("server2\\instance2: 1433; Dat abaseNane=
TEST2, server 3\\i nst ance3: 1433; Dat abaseNane=TEST3")

To connect to a named instance using a data source, you specify the named instance on the primary server
using the ServerName property.

See Connecting to named instances on page 77 for more information about connecting to named instances
on Microsoft SQL Server.

The value of the AlternateServers property is a string that has the format:

(servernanel[:port1][;property=val ue][, servernanme2[:port 2]
[;property=value]]...)

or, if connecting to named instances:

(servernanel\\i nstancel[; property=val ue][, servernanme2\\i nstance2
[; property=val ue]]

where:
server nanel

is the IP address or server name of the first alternate database server, ser ver nane2 is the IP
address or server name of the second alternate database server, and so on. The IP address or
server name is required for each alternate server entry.

i nst ancel

is the named instance on the first alternate database server, ser ver nane?2 is the named instance
on the second alternate database server, and so on. If connecting to named instances, the named
instance is required for each alternate server entry.

portl

is the port number on which the first alternate database server is listening, por t 2 is the port number
on which the second alternate database server is listening, and so on. The port number is optional
for each alternate server entry. If unspecified, the port number specified for the primary server is

used. If a port number is unspecified for the primary server, a default port number of 1433 is used.

property=val ue

is the DatabaseName connection property. This property is optional for each alternate server entry.
For example:

j dbc: dat adirect: sql server://server1l: 1433; Dat abaseNane=TEST; User =t est ;
Passwor d=secr et ; Al t er nat eServer s=(server 2: 1433; Dat abaseNane=TEST2,
server 3: 1433; Dat abaseNane=TEST3)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 95

Chapter 3: Using the driver

or, if connecting to named instances:

j dbc: dat adi rect: sql server://server1\\instancel: 1433; Dat abaseName=TEST;
User =t est ; Passwor d=secret ; Al t er nat eSer ver s=(server 2\\i nst ance2: 1433;
Dat abaseNane=TEST2, server 3\\i nst ance3: 1433; Dat abaseNane=TEST3)

If you do not specify the DatabaseName connection property in an alternate server entry, the connection to
that alternate server uses the property specified in the URL for the primary server. For example, if you specify
Dat abaseNane=TEST for the primary server, but do not specify a database name in the alternate server entry
as shown in the following URL, the driver tries to connect to the TEST database on the alternate server:

j dbc: dat adi rect: sql server://server1l: 1433; Dat abaseName=TEST; User =t est ;
Passwor d=secret; Al t er nat eServer s=(server 2: 1433, server 3: 1433)

Specifying connection retry

Connection retry allows the SQL Server driver to retry connections to the primary database server, and if
specified, alternate servers until a successful connection is established. You use the ConnectionRetryCount
and ConnectionRetryDelay properties to enable and control how connection retry works. For example:

j dbc: dat adi rect: sql server://server1l: 1433; Dat abaseNanme=TEST; User =t est ;
Passwor d=secret; Al t er nat eSer ver s=(server 2: 1433; Dat abaseNane=TEST2,
server 3: 1433; Dat abaseName=TEST3) ; Connect i onRet r yCount =2;

Connect i onRet r yDel ay=5

In this example, if a successful connection is not established on the SQL Server driver’s first pass through the
list of database servers (primary and alternate), the driver retries the list of servers in the same sequence twice
(Connect i onRet r yCount =2). Because the connection retry delay has been set to five seconds

(Connect i onRet r yDel ay=5), the driver waits five seconds between retry passes.

Connection failover

Connection failover allows an application to connect to an alternate, or backup, database server if the primary
database server is unavailable, for example, because of a hardware failure or traffic overload. Connection
failover provides failover protection for new connections only and does not provide protection for lost connections
to the database, nor does it preserve states for transactions or queries.

You can customize the drivers for connection failover by configuring a list of alternate database servers that
are tried if the primary server is not accepting connections. Connection attempts continue until a connection
is successfully established or until all the alternate database servers have been tried the specified nhumber of
times.

For example, suppose you have the environment with multiple database servers as shown in the following
figure. Database Server A is designated as the primary database server, Database Server B is the first alternate
server, and Database Server C is the second alternate server.

96 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using failover

Database Server A

1 = {Primary)

JDBC Application | | !

Using Driver
L | = Databasze Server B
=] - | (First Alternate)

wo Databasze Server C
3 J (Second Alternate)

First, the application attempts to connect to the primary database server, Database Server A (1). If connection
failover is enabled and Database Server A fails to accept the connection, the application attempts to connect
to Database Server B (2). If that connection attempt also fails, the application attempts to connect to Database
Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no connection attempt
succeeds, the driver can retry each alternate database server (primary and alternate) for a specified number
of attempts. You can specify the number of attempts that are made through the connection retry feature. You
can also specify the number of seconds of delay, if any, between attempts through the connection delay feature.
See Using connection retry on page 100 for more information about connection retry.

A driver fails over to the next alternate database server only if a successful connection cannot be established
with the current alternate server. If the driver successfully establishes communication with a database server
and the connection request is rejected by the database server because, for example, the login information is
invalid, then the driver generates an exception.

Extended connection failover

Extended connection failover provides failover protection for the following types of connections:
* New connections (in the same way as described in Connection failover on page 96)
* Lost connections

When a connection to the database is lost, the driver fails over the connection to an alternate server, restoring
the same state of the connection at the time it was lost. For example, when reestablishing a lost connection
on the alternate database server, the driver performs the following actions:

* Restores the connection using the same connection properties specified by the lost connection

* Reallocates statement handles and attributes

* Logs in the user to the database with the same user credentials

* Restores any prepared statements associated with the connection

* Restores manual commit mode if the connection was in manual commit mode at the time of the failover

The driver does not preserve work in progress. For example, if the database server experienced a hardware
failure while processing a query, partial rows processed by the database and returned to the client would be
lost.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 97

Chapter 3: Using the driver

You can choose how you want the driver to behave if exceptions occur during failover by setting the
FailoverGranularity connection property. If an exception occurs while the driver is reestablishing a lost connection,
the driver can react in either of the following ways:

* |t can fail the entire failover process. The driver stops trying to connect to an alternative server and returns
an exception indicating that the connection was lost.

* |t can proceed with the failover process as far as it is able. For example, suppose an exception occurred
while reestablishing the connection because the driver was unable to log the user into the database. In this
case, you may want the driver to notify your application of the exception and proceed with the failover
process.

During the failover process, your application may experience a short pause while the driver establishes a new
connection or reestablishes a lost connection on an alternate server. If your application is time-sensitive (a
real-time customer order application, for example) and cannot absorb this wait, you can set the
FailoverPreconnect property to t r ue. Setting the FailoverPreconnect property to t r ue instructs the driver to
establish connections to the primary server and an alternate server at the same time. Your application uses
the first connection that is successfully established. As a bonus, if this connection to the database is lost at a
later time, the driver saves time in reestablishing the connection on the server it fails over to because it can
use the spare connection in its failover process.

Select connection failover

Select connection failover provides failover protection for the following types of connections:
* New connections (in the same way as described in Connection failover on page 96)
* Lost connections (in the same way as described in Extended connection failover on page 97)

In addition, the driver can recover work in progress because it keeps track of the last Select statement the
application executed on each Statement handle, including how many rows were fetched to the client. For
example, if the database had only processed 500 of 1,000 rows requested by a Select statement when the
connection was lost, the driver would reestablish the connection to an alternate server, re-execute the Select
statement, and position the cursor on the next row so that the driver can continue fetching the balance of rows
as if nothing had happened.

Performance, however, is a factor when considering whether to use Select mode. Select mode incurs additional
overhead when tracking what rows the application has already processed.

Note: The driver only recovers work requested by Select statements. You must explicitly restart the following
types of statements after a failover occurs:

* Insert, Update, or Delete statements

* Statements that modify the connection state, for example, SET or ALTER SESSION statements
* Objects stored in a temporary tablespace or global temporary table

* Partially executed stored procedures and batch statements

When in manual transaction mode, no statements are rerun if any of the operations in the transaction were
Insert, Update, or Delete. This is true even if the statement in process at the time of failover was a Select
statement.

By default, the driver verifies that the rows that are restored match the rows that were originally fetched and,
if they do not match, generates an exception warning your application that the Select statement must be
reissued. By setting the FailoverGranularity connection property, you can configure the driver to fail the entire
failover process if the rows do not match.

98 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using failover

Configuring failover with Microsoft Cluster Server

Microsoft SQL Server provides Microsoft Cluster Server (MSCS), an advanced database replication technology.
The failover functionality provided by the driver does not require this technology, but can work with MSCS to
provide comprehensive failover protection. If using failover with MSCS, which determines the alternate server
for failover instead of the driver, any alternate server specified must be the same as the primary server. For
example:

j dbc: dat adi rect: sql server://server1: 1433; Dat abaseNane=TEST,;

User =t est ; Passwor d=secret; Al t er nat eServer s=(server 1: 1433;
Dat abaseNane=TEST)

In addition, alternate servers must mirror data on the primary server or be part of a configuration where multiple
database nodes share the same physical data.

Using client load balancing

Client load balancing helps distribute new connections in your environment so that no one server is overwhelmed
with connection requests. When client load balancing is enabled, the order in which primary and alternate
database servers are tried is random. For example, suppose that client load balancing is enabled as shown in
the following figure.

Database Server A

3 L (Primary)
|
JODBC Application

Using Driver || =

T— | == Databaze Server B
—_— ' | {First Alternate)

w Database Server C
2 | [Second Alternate)

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a connection
attempt to Database Server A (3). In contrast, if client load balancing were not enabled in this scenario, each
database server would be tried in sequential order, primary server first, then each alternate server based on
its entry order in the alternate servers list.

Client load balancing is controlled by the LoadBalancing connection property. For details on configuring client
load balancing, see the individual driver chapter in this book.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 99

Chapter 3: Using the driver

Using connection retry

Connection retry defines the number of times the driver attempts to connect to the primary server and, if
configured, alternate database servers after the initial unsuccessful connection attempt. It can be used with
connection failover, extended connection failover, and select failover. Connection retry can be an important
strategy for system recovery. For example, suppose you have a power failure in which both the client and the
server fails. When the power is restored and all computers are restarted, the client may be ready to attempt a
connection before the server has completed its startup routines. If connection retry is enabled, the client
application can continue to retry the connection until a connection is successfully accepted by the server.

Connection retry can be used in environments that have only one server or can be used as a complementary
feature with failover in environments with multiple servers.

Using the ConnectionRetryCount and ConnectionRetryDelay properties, you can specify the number of times
the driver attempts to connect and the time in seconds between connection attempts. For details on configuring
connection retry, see the individual driver chapter in this book.

Always On Availability Groups

The driver supports Always On Availability Groups. Introduced in SQL Server 2012, Always On Availability
Groups is a replica-database environment that provides a high-level of data availability, protection, and recovery.
Follow the proceeding guidelines to use the driver with Always On Availability Groups.

* You must specify the virtual network name (VNN) of the availability group listener with the ServerName
property to connect to an Always On Availability group.

* Set the Applicationintent property to ReadOnl y. By setting applicationintent to ReadOnl y and querying
read-only database replicas when possible, you can improve efficiency by reducing the workload on read-write
nodes.

* Set the MultiSubnetFailover property to t r ue. This allows the driver to attempt parallel connections to all
the IP addresses associated with an Availability Group. This offers improved response time over traditional
failover, which attempts connections to alternate servers one at a time.

See also

ServerName on page 241
Applicationintent on page 199
MultiSubnetFailover on page 233
Using failover on page 92

Returning and inserting/updating XML data

The driver supports the xml data type. Which JDBC data type the xml data type is mapped to depends on
whether the JDBCBehavior and XMLDescribeType properties are set.

* If XMLDescribeType=I ongvar char or XMLDescribeType=I ongvar bi nary, the driver maps the XML
data type to the JDBC LONGVARCHAR or LONGVARBINARY data type, respectively, regardless of the
setting of the JDBCBehavior property.

¢ If IDBCBehavior=1 (default) and the XMLDescribeType property is not set, the driver maps XML data to
the JDBC LONGVARCHAR data type.

100 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Returning and inserting/updating XML data

¢ |f JDBCBehavior=0 and the XMLDescribeType property is not set, XML data is mapped to SQLXML or
LONGVARCHAR, depending on which JVM your application is using. The driver maps the XML data type
to the JDBC SQLXML data type if your application is using Java SE 6 or higher. If your application is using
an earlier JVM, the driver maps the XML data type to the JDBC LONGVARCHAR data type.

Returning XML data

You can specify whether XML data is returned as character or binary data by setting the XMLDescribeType
property. For example, consider a database table defined as:

CREATE TABLE xm Table (id int, xm Col xm NOT NULL)

and the following code:

String sqgl =" SELECT xm Col FROM xm Tabl e";
Resul t Set rs=stnt. executeQuery(sql);

If your application uses the following connection URL, which specifies that the XML data type be mapped to
the LONGVARBINARY data type, the driver would return XML data as binary data:

j dbc: dat adi rect: sql server://server1l: 1433; Dat abaseNane=j dbc; User =t est ;
Passwor d=secr et ; XM_Descr i beType=I ongvar bi nary

Returning XML data as character data

When XMLDescribeType=I ongvar char , the driver returns XML data as character data. The result set column
is described with a column type of LONGVARCHAR and the column type name is xml.

When XMLDescribeType=I ongvar char , your application can use the following methods to return data stored
in XML columns as character data.

* ResultSet.getString()

* ResultSet.getCharacterStream()
* ResultSet.getClob()

¢ CallableStatement.getString()

¢ CallableStatement.getClob()

The driver converts the XML data returned from the database server from the UTF-8 encoding used by the
database server to the UTF-16 Java String encoding.

Your application can use the following method to return data stored in XML columns as ASCII data.
* ResultSet.getAsciiStream()

The driver converts the XML data returned from the database server from the UTF-8 encoding to the ISO-8859-1
(latin1) encoding.

Note: This conversion caused by using the getAsciiStream() method may create XML that is not well-formed
because the content encoding is not the default encoding and does not contain an XML declaration specifying
the content encoding. Do not use the getAsciiStream() method if your application requires well-formed XML.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 101

Chapter 3: Using the driver

If XMLDescribeType=l ongvar bi nary, your application should not use any of the methods for returning
character data described in this section. In this case, the driver applies the standard JDBC character-to-binary
conversion to the data, which returns the hexadecimal representation of the character data.

Returning XML data as binary data

When XMLDescribeType=I| ongvar bi nary, the driver returns XML data as binary data. The result set column
is described with a column type of LONGVARBINARY and the column type name is xml.

Your application can use the following methods to return XML data as binary data.
* ResultSet.getBytes()

* ResultSet.getBinaryStream()

* ResultSet.getBlob()

* ResultSet.getObject()

* CallableStatement.getBytes()

* CallableStatement.getBlob()

¢ CallableStatement.getObject()

The driver does not apply any data conversions to the XML data returned from the database server. These
methods return a byte array or binary stream that contains the XML data encoded as UTF-8.

If XMLDescribeType=l ongvar char , your application should not use any of the methods for returning binary
data described in this section. In this case, the driver applies the standard JDBC binary-to-character conversion
to the data, which returns the hexadecimal representation of the binary data.

Inserting/updating XML data

The driver can insert or update XML data as character or binary data.

Inserting/updating XML as character data

Your application can use the following methods to insert or update XML data as character data:
* PreparedStatement.setString()

* PreparedStatement.setCharacterStream()

* PreparedStatement.setClob()

* PreparedStatement.setObject()

* ResultSet.updateString()

¢ ResultSet.updateCharacterStream()

* ResultSet.updateClob()

* ReultSet.updateObject()

The driver converts the character representation of the data to the XML character set used by the database
server and sends the converted XML data to the server. The driver does not parse or remove any XML
processing instructions.

Your application can update XML data as ASCII data using the following methods:

102

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DML with results

* PreparedStatement.setAsciiStream()
* ResultSet.updateAsciiStream()

The driver interprets the data returned by these methods using the ISO-8859-1 (latin 1) encoding. The driver
converts the data from 1SO-8859-1 to the XML character set used by the database server and sends the
converted XML data to the server.

Inserting/updating XML as binary data

Your application can use the following methods to insert or update XML data as binary data:
* PreparedStatement.setBytes()

* PreparedStatement.setBinaryStream()

* PreparedStatement.setBlob()

* PreparedStatement.setObject()

* ResultSet.updateBytes()

* ResultSet.updateBinaryStream()

* ResultSet.updateBlob()

* ResultSet.updateObiject()

The driver does not apply any data conversions when sending XML data to the database server.

DML with results

The driver supports the Microsoft SQL Server Output clause for Insert, Update, and Delete statements. For
example, suppose you created a table with the following statement:

CREATE TABLE tabl el(id int, name varchar(30))

The following Update statement updates the values in the id column of tablel and returns a result set that
includes the old ID (replaced by the new ID), the new ID, and the name associated with these IDs:

UPDATE t abl el SET id=i d*10 OQUTPUT deleted.id as oldld, inserted.id as
newl d, inserted. nane

The driver returns the results of Insert, Update, or Delete statements and the update count in separate result
sets. The output result set is returned first, followed by the update count for the Insert, Update, or Delete
statement. To execute DML with Results statements in an application, use the Statement.execute() or
PreparedStatement.execute() method. Then, use Statement.getMoreResults () to obtain the output result set
and the update count. For example:

String sql = "UPDATE tabl el SET id=id*10 OQUTPUT deleted.id as oldld, " +
"inserted.id as newld, inserted.nane";
bool ean i sResultSet = stnt.execute(sql);
i nt updat eCount = O;
while (true) {
if (isResultSet) {
resultSet = stnt.getResultSet();
while (resultSet.next()) {

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 103

Chapter 3: Using the driver

System out. println("ol dld:
"new d:
"name:

resul t Set.cl ose();

+ resultSet.getint(1) +
+ resultSet.getInt(2) +
+ resultSet.getString(3));

el se {
updat eCount = stnt. get Updat eCount () ;
if (updateCount == - {
br eak;
}
Systemout. println("Update Count: " + updateCount);

}
i sResultSet = stnt.get MreResults();

Using client information

Many databases allow applications to store client information associated with a connection, which can be useful
for database administration and monitoring purposes. The driver allows applications to store and return the

following types of client information.

* Name of the application currently using the connection.

* User ID for whom the application using the connection is performing work. The user ID may be different
than the user ID that was used to establish the connection.

* Host name of the client on which the application using the connection is running.

* Product name and version of the driver on the client.

¢ Additional information that may be used for accounting or troubleshooting purposes, such as an accounting

ID.

How databases store client information

Typically, databases that support storing client information do so by providing a register, a variable, or a column
in a system table in which the information is stored. If an application attempts to store information and the
database does not provide a mechanism for storing that information, the driver caches the information locally.
Similarly, if an application returns client information and the database does not provide a mechanism for storing
that information, the driver returns the locally cached value.

For example, let's assume that the following code returns a pooled connection to a database and sets a client
application name for that connection. In this example, the application sets the application name SALES157
using the driver property ApplicationName.

/] Get Database Connection

Connecti on con = Driver Manager. get Connecti on(

"jdbc: datadirect:sql server://MServer: 1433; Dat abaseNanme=M/DB;
Appl i cati onNane=SALES157", " TEST", "secret");

The application name SALES157 is stored locally by the database. When the connection to the database is
closed, the client information on the connection is reset to an empty string.

104

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using client information

Storing client information
Your application can store client information associated with a connection using any of the following methods:
¢ Using the driver connection properties listed in "Client information properties.”
¢ Using the following JDBC methods:
¢ Connection.setClientInfo(pr operti es)

¢ Connection.setClientinfo(pr operty_nane, val ue)

¢ Using the JDBC extension methods provided in the com.ddtek.jdbc.extensions package.

See also

Client information properties on page 68
JDBC support on page 271

JDBC extensions on page 329

Returning client information

Your application can return client information in the following ways:
* Using the following JDBC methods:

* Connection.getClientinfo()

* Connection.getClientinfo(pr oper t y_nane)

* DatabaseMetaData.getClientinfoProperties()

* Using the JDBC extension methods provided in the com.ddtek.jdbc.extensions package.

See also
JDBC support on page 271
JDBC extensions on page 329

Returning metadata about client information locations

You may want to return metadata about the register, variable, or column in which the database stores client
information. For example, you may want to determine the maximum length allowed for a client information
value before you store that information. If your application attempts to set a client information value that exceeds
the maximum length allowed by the database, that value is truncated and the driver generates a warning.
Determining the maximum length of the value beforehand can avoid this situation.

To return metadata about client information, call the DatabaseMetaData.getClientinfoProperties() method.

/1 Get Database Connection
Connecti on con = Driver Manager. get Connecti on(
"jdbc: datadi rect:sql server://MServer: 1433; Dat abaseNane=j dbc", "test", "secret");
Dat abaseMet aDat a nmet aData = con. get Met abDat a() ;
Resul tSet rs = metaData. getC ientlnfoProperties();

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 105

Chapter 3: Using the driver

The driver returns a result set that provides the following information for each client information property
supported by the database.

* Property name
¢ Maximum length of the property value
¢ Default property value

* Property description

Using IP addresses

The driver supports Internet Protocol (IP) addresses in IPv4 and IPv6 formats.

The server name specified in a connection URL, or data source, can resolve to an IPv4 or IPv6 address. In
the following example, the server name MyServer can resolve to either type of address:

j dbc: dat adi rect: sql server://MServer: 1433;
Dat abaseNane=Test ; User =adni n; Passwor d=secr et

Alternately, you can specify addresses using IPv4 or IPv6 format in the server portion of the connection URL.
For example, the following connection URL specifies the server using an IPv4 address:

j dbc: dat adi rect: sql server://123. 456. 78. 90: 1433;
Dat abaseNane=MyDB; User =adm n; Passwor d=secr et

You also can specify addresses in either format using the ServerName data source property. The following
example shows a data source definition that specifies the server name using an IPv6 address:

SQLSer ver Dat aSour ce nds = new SQ.Ser ver Dat aSour ce();
nds. set Descri pti on("My SQLServer DataSource");
nds. set Server Nanme(" 2001: DB8: 0: 0: 8: 800: 200C: 417A") ;

Note: When specifying IPv6 addresses in a connection URL or data source property, the address must be
enclosed by brackets.

In addition to the normal IPv6 format, the drivers support IPv6 alternative formats for compressed and IPv4/IPv6
combination addresses. For example, the following connection URL specifies the server using IPv6 format,
but uses the compressed syntax for strings of zero bits:

j dbc: dat adi rect: sql server://[2001: DB8: 0: 0: 8: 800: 200C: 417A] : 1433;
Dat abaseNane=MyDB; User =admi n; Passwor d=secr et

Similarly, the following connection URL specifies the server using a combination of IPv4 and IPv6:

j dbc: dat adi rect: sql server://[0000: 0000: 0000: 0000: 0000: FFFF: 123. 456. 78. 90] : 1433;
Dat abaseNane=MyDB; User =adm n; Passwor d=secr et

For complete information about IPv6, go to the following URL:

http://tools.ietf.org/html/rfc4291#section-2.2

106 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

http://tools.ietf.org/html/rfc4291#section-2.2

Parameter metadata support

Parameter metadata support

The SQL Server driver supports returning parameter metadata as described in this section.

Insert, Update, and Delete statements
The SQL Server driver supports returning parameter metadata for the following forms of Insert, Update, and
Delete statements:
* |INSERT INTO foo VALUES (?, ?, ?)
* | NSERT INTO foo (coll1, col2, col3) VALUES (?, ?, ?)

* UPDATE foo SET col 1=?, col 2=?, col 3=? WHERE col 1 operator ? [{AND| OR} col 2
operator 7?]

* DELETE FROM foo WHERE col 1 operator ?

where oper at or is any of the following SQL operators: =, <, >, <=, >=, and <>.

Select statements

The SQL Server driver supports returning parameter metadata for Select statements that contain parameters
in ANSI SQL 92 entry-level predicates, for example, such as COMPARISON, BETWEEN, IN, LIKE, and EXISTS
predicate constructs. Refer to the ANSI SQL reference for detailed syntax.

Parameter metadata can be returned for a Select statement if one of the following conditions is true:

* The statement contains a predicate value expression that can be targeted against the source tables in the
associated FROM clause. For example:

SELECT * FROM foo WHERE bar > ?

In this case, the value expression "bar" can be targeted against the table "foo" to determine the appropriate
metadata for the parameter.

* The statement contains a predicate value expression part that is a nested query. The nested query's metadata
must describe a single column. For example:

SELECT * FROM foo WHERE (SELECT x FROMy WHERE z = 1) < ?

The following Select statements show further examples for which parameter metadata can be returned:

SELECT col 1, col2 FROM foo WHERE coll = ? and col2 > ?

SELECT . WHERE col nane = (SELECT col 2 FROMt2 WHERE col 3 = ?)
SELECT ... WHERE col nane LIKE ?

SELECT ... WHERE col nane BETWEEN ? and ?

SELECT ... WHERE colnanme IN (?, ?, ?)

SELECT ... WHERE EXI STS(SELECT ... FROM T2 WHERE col 1 < ?)

ANSI SQL 92 entry-level predicates in a WHERE clause containing GROUP BY, HAVING, or ORDER BY
statements are supported. For example:

SELECT * FROM t1l WHERE col = ? ORDER BY 1

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 107

Chapter 3: Using the driver

Joins are supported. For example:

SELECT * FROMt1,t2 WHERE t1l.col1l = ?

Fully qualified names and aliases are supported. For example:

SELECT a, b, ¢, d FROMT1 AS AL T2 AS B WHERE A.a = ? and B.b = ?"

Stored procedures

The SQL Server driver does not support returning parameter metadata for stored procedure arguments.

ResultSet metadata support

If your application requires table name information, the SQL Server driver can return table name information
in ResultSet metadata for Select statements. By setting the ResultSetMetaDataOptions property to 1, the SQL
Server driver performs additional processing to determine the correct table name for each column in the result
set when the ResultSetMetaData.getTableName() method is called. Otherwise, the getTableName() method
may return an empty string for each column in the result set.

When the ResultSetMetaDataOptions property is set to 1 and the ResultSetMetaData.getTableName() method
is called, the table name information that is returned by the SQL Server driver depends on whether the column
in a result set maps to a column in a table in the database. For each column in a result set that maps to a
column in a table in the database, the SQL Server driver returns the table name associated with that column.
For columns in a result set that do not map to a column in a table (for example, aggregates and literals), the
SQL Server driver returns an empty string.

The Select statements for which ResultSet metadata is returned may contain aliases, joins, and fully qualified
names. The following queries are examples of Select statements for which the
ResultSetMetaData.getTableName() method returns the correct table name for columns in the Select list:

SELECT id, nane FROM Enpl oyee

SELECT E.id, E. name FROM Enpl oyee E

SELECT E.id, E. name AS Enpl oyeeNane FROM Enpl oyee E

SELECT E.id, E name, |.location, |.phone FROM Enpl oyee E, Enployeelnfo |
WHERE E.id = 1I.id

SELECT id, nane, |ocation, phone FROM Enpl oyee, Enpl oyeelnfo WHERE id = enpld

SELECT Enpl oyee. id, Enpl oyee. nane, Enpl oyeel nfo.location, Enployeel nfo.phone
FROM Enpl oyee, Enpl oyeel nfo WHERE Enpl oyee.id = Enpl oyeelnfo.id

The table name returned by the driver for generated columns is an empty string. The following query is an
example of a Select statement that returns a result set that contains a generated column (the column named

"upper").

SELECT E.id, E. name as Enpl oyeeNane, {fn UCASE(E.nane)} AS upper FROM Enpl oyee E

108 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Isolation levels

The SQL Server driver also can return schema name and catalog name information when the
ResultSetMetaData.getSchemaName() and ResultSetMetaData.getCatalogName() methods are called if the
driver can determine that information. For example, for the following statement, the SQL Server driver returns
"test" for the catalog name, "test1" for the schema name, and "foo" for the table name:

SELECT * FROM test.testl.foo
The additional processing required to return table name, schema name, and catalog name information is only

performed if the ResultSetMetaData.getTableName(), ResultSetMetaData.getSchemaName(), or
ResultSetMetaData.getCatalogName() methods are called.

Isolation levels

The SQL Server driver supports the following isolation levels for Microsoft SQL Server.

Note: For Microsoft Azure Synapse Analytics and Microsoft Analytics Platform System, Read Uncommitted
is the only supported isolation level.

* Read Committed with Locks or Read Committed
¢ Read Committed with Snapshots

* Read Uncommitted

* Repeatable Read

* Serializable

* Snapshot

For Microsoft SQL Server, the default is Read Committed with Locks or Read Committed.

Using the Snapshot isolation level

The driver supports snapshot isolation level.

Note: Snapshot isolation level is not supported for Microsoft Azure Synapse Analytics or Microsoft Analytics
Platform System.

You can use shapshot isolation level in either of the following ways:

¢ Setting the SnapshotSerializable property changes the behavior of the Serializable isolation level to use
the Snapshot isolation level. This allows an application to use the Snapshot isolation level with no or minimum
code changes. See SnapshotSerializable on page 243 for more information.

* Importing the ExtConstants class allows you to specify the TRANSACTION_SNAPSHOT or
TRANSACTION_SERIALIZABLE isolation levels for an individual statement in the same application. The
ExtConstants class in the com.ddtek.jdbc.extensions package defines the TRANSACTION_SNAPSHOT

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 109

Chapter 3: Using the driver

constant. For example, the following code imports the ExtConstants class and sets the
TRANSACTION_SNAPSHOT isolation level.

i mport com ddt ek. j dbc. ext ensi ons. Ext Const ant s;
Connecti on. set Transacti onl sol ati on(
Ext Const ant s. TRANSACTI ON_SNAPSHOT)

Using scrollable cursors

The SQL Server driver supports scroll-sensitive result sets, scroll-insensitive result sets, and updatable
result sets.

Note: When the SQL Server driver cannot support the requested result set type or concurrency, it automatically
downgrades the cursor and generates one or more SQLWarnings with detailed information.

Server-side updatable cursors

The driver can use client-side cursors or server-side cursors to support updatable result sets.

Note: Server-side updatable cursors are not supported for Microsoft Azure Synapse Analytics or Microsoft
Analytics Platform System.

By default, the driver uses client-side cursors because this type of cursor can work with any result set type.
Using server-side cursors typically can improve performance, but server-side cursors cannot be used with
scroll-insensitive result sets or with scroll-sensitive result sets that are not generated from a database table
that contains a primary key. To use server-side cursors, set the UseServerSideUpdatableCursors property to
true.

When the UseServerSideUpdatableCursors property is set to t r ue and a scroll-insensitive updatable result
set is requested, the driver downgrades the request to a scroll-insensitive read-only result set. Similarly, when
a scroll-sensitive updatable result set is requested and the table from which the result set was generated does
not contain a primary key, the driver downgrades the request to a scroll-sensitive read-only result set. In both
cases, a warning is generated.

When server-side updatable cursors are used with sensitive result sets that are generated from a database
table that contains a primary key, the following changes you make to the result set are visible:

* Own Inserts are visible. Others Inserts are not visible.

¢ Own and Others Updates are visible.

* Own and Others Deletes are visible.

Using the default behavior of the driver (UseServerSideUpdatableCursors=f al se), those changes are not

visible.

See also
UseServerSideUpdatableCursors on page 251

110 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

JTA support: installing stored procedures

JTA support: installing stored procedures

The driver supports distributed transactions through JTA.

Note: Distributed transactions through JTA are not supported for Microsoft Azure, Microsoft Azure Synapse
Analytics, or Microsoft Analytics Platform System.

To use JDBC distributed transactions through JTA, use the following procedure to install Microsoft SQL Server
JDBC XA procedures. Repeat this procedure for any Microsoft SQL Server installation that uses distributed
transactions.

If you have multiple instances of Microsoft SQL Server on the same machine, you can edit the .sql script file
with a text editor to specify a fully qualified path to the sqljdbc.dll file for a particular instance. You will run one
of two available script files depending on the version of SQL Server you are using.

* For SQL Server 2008 or higher, the instjdbc.sql script should be used.
* For SQL Server 2005, the instjdbc_2005.sql script should be used.

For example, if you want to install XA Procedures for an instance named "MSSQL.2," modify the .sql script file
as shown and run it as described in the following procedure.

/*

** add references for the stored procedures
*/

print 'creating JDBC XA procedures'

go

sp_addext endedproc ' xp_j dbc_open’,

"C.\Program Fil es\ M crosoft SQ Server\MSQ. 2\ MSSQ.\ Bi nn\ sqgl j dbc.dl |’
go
sp_addext endedproc ' xp_j dbc_open2',

"C:\Program Fil es\ M crosoft SQ Server\MSSQ. 2\ MSSQ.\ Bi nn\ sql j dbc. dl I’
go
sp_addext endedproc ' xp_j dbc_cl ose',

"C:\Program Fil es\ M crosoft SQL Server\ MSSQ.. 2\ MSSQ.\ Bi nn\ sql j dbc. dl I
go
sp_addext endedproc ' xp_j dbc_cl ose2',

"C:\Program Fil es\M crosoft SQ. Server\ MSSQ.. 2\ MSSQ.\ Bi nn\ sql j dbc. dl I’
go
sp_addext endedproc ' xp_jdbc_start"',

"C:\Program Fil es\M crosoft SQ. Server\MSSQ.. 2\ MSSQ.\ Bi nn\ sql j dbc. dl I

Note: You can use the Microsoft SQL Server Configuration Manager tool to view Microsoft SQL Server services
and determine the fully qualified path to the \Binn subdirectory of each Microsoft SQL Server instance on a
machine. Using the Configuration Manager, right-click on a service and select Properties. Select the Service
tab. The path is shown as a value of the Binary Path attribute. Refer to your Microsoft SQL Server documentation
for details.

To install stored procedures for JTA:

1. Stop the Microsoft SQL Server instance.

2. Copy the appropriate 32-bit or 64-bit sqljdbc.dll file to the SQL_Ser ver _Root / bi n directory of the Microsoft
SQL Server database server:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 111

Chapter 3: Using the driver

sqljdbc.dll Version File Location
32-bit install _dir/SQ.Server JTA/ 32-bit
64-bit Itanium install _dir/SQ.Server JTA/ 64-bit
64-bit AMD64 and Intel EM64T install _dir/SQ.Server JTA/ x64-bit

where:
i nstall _dir is your product installation directory.

SQL_Ser ver _Root is your Microsoft SQL Server installation directory.

3. Start the Microsoft SQL Server instance.

4. From the database server, use the ISQL utility to run the .sql script. As a precaution, have your system
administrator back up the master database before running the script.

At a command prompt, run the script. For example:

| SQL -Usa -Psa_password -Sserver_name -ilocation\instjdbc. sql

where:

sa_passwor d is the password of the system administrator.

server _namne is the name of the server on which the Microsoft SQL Server database resides.

| ocat i on is the full path to instjdbc.sql. This script is located inthe i nstal | _di r/ SQ.Server JTA
directory, where i nstal | _di r is your product installation directory.

5. The script generates many messages. In general, these messages can be ignored; however, the system
administrator should scan the output for any messages that may indicate an execution error. The last
message should indicate that the script ran successfully. The script fails when there is insufficient space
available in the master database to store the JDBC XA procedures or to log changes to existing procedures.

See also
Distributed transaction cleanup on page 112

Distributed transaction cleanup

Connections associated with distributed transactions can become orphaned if the connection to the server is
lost before the transaction has completed. When connections associated with distributed transactions are
orphaned, any locks held by the database for that transaction are maintained, which can cause data to become
unavailable. By cleaning up distributed transactions, connections associated with those transactions are freed
and any locks held by the database are released.

You can use the XAResource.recover() method to clean up distributed transactions that have been prepared,
but not committed or rolled back. Calling this method returns a list of active distributed transactions that have
been prepared, but not committed or rolled back. An application can use the list returned by the
XAResource.recover method to clean up those transactions by explicitly committing them or rolling them back.
The list of transactions returned by the XAResource.recover method does not include transactions that are
active and have not been prepared.

In addition, the SQL Server driver supports the following methods of distributed transaction cleanup.

112 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Distributed transaction cleanup

* Transaction timeout sets a timeout value that is used to audit active transactions. Any active transactions
that have a life span greater than the specified timeout value are rolled back. Setting a transaction timeout
allows distributed transactions to be cleaned up automatically based on the timeout value.

* Explicit transaction cleanup allows you to explicitly roll back any transactions left in an unprepared state
based on a transaction group identifier. Explicit transaction cleanup provides more control than transaction
timeout over when distributed transactions are cleaned up.

See also
JTA support: installing stored procedures on page 111

Transaction timeout

To set a timeout value for transaction cleanup, you use the XAResource.setTransactionTimeout method. Setting
this value causes sqljdbc.dll on the server side to maintain a list of active transactions. Distributed transactions
are placed in the list of active transactions when they are started and removed from this list when they are
prepared, rolled back, committed, or forgotten using the appropriate XAResource methods.

When a timeout value is set for transaction cleanup using the XAResource.setTransactionTimeout method,
sqgljdbc.dll periodically audits the list of active transactions for expired transactions. Any active transactions
that have a life span greater than the timeout value are rolled back. If an exception is generated when rolling
back a transaction, the exception is written to the sqljdbc.log file, which is located in the same directory as the
sqljdbc.dll file.

Setting the transaction timeout value too low means running the risk of rolling back a transaction that otherwise
would have completed successfully. As a general guideline, set the timeout value to allow sufficient time for a
transaction to complete under heavy traffic load.

Setting a value of 0 (default) disables transaction timeout cleanup.

Explicit transaction cleanup

The SQL Server driver allows you to associate an identifier with a group of transactions using the
XATransactionGroup connection property. When you specify a transaction group ID, all distributed transactions
initiated by the connection are identified by this ID.

Setting this value causes sqljdbc.dll on the server side to maintain a list of active transactions. Distributed
transactions are placed in the list of active transactions when they are started and removed from this list when
they are prepared, rolled back, committed, or forgotten using the appropriate XAResource methods.

You can use the XAResource.recover method to roll back any transactions left in an unprepared state that
match the transaction group ID on the connection used to call XAResource.recover. For example, if you specified
XATransactionGroup=ACCT200 and called the XAResource.recover method on the same connection, any
transactions left in an unprepared state with a transaction group ID of ACCT200 would be rolled back.

If an exception is generated when rolling back a transaction, the exception is written to the sqljdbc.log file,
which is located in the same directory as the sqljdbc.dll file.

When using explicit transaction cleanup, distributed transactions associated with orphaned connections, and
the locks held by those connections, will persist until the application explicitly invokes them. As a general rule,
applications should clean up orphaned connections at startup and when the application is notified that a
connection to the server was lost.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 113

Chapter 3: Using the driver

Unicode support

Multilingual JDBC applications can be developed on any operating system using the driver to access both
Unicode and non-Unicode enabled databases. Internally, Java applications use UTF-16 Unicode encoding for
string data. When fetching data, the driver automatically performs the conversion from the character encoding
used by the database to UTF-16. Similarly, when inserting or updating data in the database, the driver
automatically converts UTF-16 encoding to the character encoding used by the database.

The JDBC API provides mechanisms for retrieving and storing character data encoded as Unicode (UTF-16)
or ASCII. Additionally, the Java String object contains methods for converting UTF-16 encoding of string data
to or from many popular character encodings.

Error handling

SQLEXxceptions

The driver reports errors to the application by throwing SQLExceptions. Each SQLEXxception contains the
following information:

¢ Description of the probable cause of the error, prefixed by the component that generated the error
* Native error code (if applicable)

¢ String containing the XOPEN SQLstate

Driver Errors

An error generated by the driver has the format shown in the following example:

[DatabDirect] [SQ. Server JDBC Driver] Ti meout expired.

You may need to check the last JDBC call your application made and refer to the JDBC specification for the
recommended action.

Database Errors

An error generated by the database has the format shown in the following example:

[DataDirect] [SQ. Server JDBC Driver][SQ. Server]lnvalid Object Nane.

If you need additional information, use the native error code to look up details in your database documentation.

Large object (LOB) support

Although Microsoft SQL Server does not define a Blob or Clob data type, the SQL Server driver allows you to
return and update long data, specifically LONGVARBINARY and LONGVARCHAR data, using JDBC methods
designed for Blobs and Clobs. When using these methods to update long data as Blobs or Clobs, the updates
are made to the local copy of the data contained in the Blob or Clob object.

Retrieving and updating long data using JDBC methods designed for Blobs and Clobs provides some of the
same advantages as retrieving and updating Blobs and Clobs. For example, using Blobs and Clobs:

114 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Batch Inserts and Updates

* Provides random access to data

¢ Allows searching for patterns in the data, such as returning long data that begins with a specific character
string

To provide these advantages of Blobs and Clobs, data must be cached. Because data is cached, you will incur
a performance penalty, particularly if the data is read once sequentially. This performance penalty can be
severe if the size of the long data is larger than available memory.

Batch Inserts and Updates

The SQL Server driver implementation for batch Inserts and Updates is JDBC 3.0 compliant. When the SQL
Server driver detects an error in a statement or parameter set in a batch Insert or Update, it generates a
BatchUpdateException and continues to execute the remaining statements or parameter sets in the batch. The
array of update counts contained in the BatchUpdateException contain one entry for each statement or parameter
set. Any entries for statements or parameter sets that failed contain the value Statement.EXECUTE_FAILED.

Rowset support

The SQL Server driver supports any JSR 114 implementation of the RowSet interface, including:
¢ CachedRowSets

* FilteredRowSets

* WebRowSets

* JoinRowSets

* JDBCRowSets

See https://lwww.jcp.org/en/jsr/detail?id=114 for more information about JSR 114,

Auto-generated keys support

The driver supports retrieving the values of auto-generated keys. An auto-generated key returned by the driver
is the value of an identity column.

Note: Auto-generated keys are not supported for Microsoft Azure Synapse Analytics or Microsoft Analytics
Platform System.

An application can return values of auto-generated keys when it executes an Insert statement. How you return
these values depends on whether you are using an Insert statement with a Statement object or with a
PreparedStatement object, as outlined in the following scenarios:

* When using an Insert statement with a Statement object, the driver supports the following form of the
Statement.execute and Statement.executeUpdate methods to instruct the driver to return values of
auto-generated keys:

e Statenent.execute(String sql, int autoGeneratedKeys)

e Statenent.execute(String sqgl, int[] col uml ndexes)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 115

https://www.jcp.org/en/jsr/detail?id=114

Chapter 3: Using the driver

e Statenent.execute(String sqgl, String[] col umNanes)
e Statenent.executeUpdate(String sql, int autoGeneratedKeys)
e Statenent.executeUpdate(String sql, int[] col ummlndexes)
e Statenent.executeUpdate(String sql, String[] columNanes)
* When using an Insert statement with a PreparedStatement object, the driver supports the following form of
the Connection.prepareStatement method to instruct the driver to return values of auto-generated keys:
* Connection. prepareStatenment (String sql, int autoGeneratedKeys)
* Connection. prepareStatenment (String sql, int[] col uml ndexes)
* Connection. prepareStatenment (String sql, String[] col umNanes)
An application can retrieve values of auto-generated keys using the Statement.getGeneratedKeys() method.
This method returns a ResultSet object with a column for each auto-generated key.

See Designing JDBC applications for performance optimization on page 345 for information about how
auto-generated keys can improve performance.

Null values

When the driver establishes a connection, the driver sets the Microsoft SQL Server database option ANSI_NULLS
to on. This action ensures that the driver is compliant with the ANSI SQL standard, which makes developing
cross-database applications easier.

By default, Microsoft SQL Server does not evaluate null values in SQL equality (=) or inequality (<>) comparisons
or aggregate functions in an ANSI SQL-compliant manner. For example, the ANSI SQL specification defines
that col 1=nul | as shown in the following Select statement always evaluates to f al se:

SELECT * FROM tabl e WHERE col 1 = NULL

Using the default database setting (ANSI_NULLS=0ff, the same comparison evaluates to true instead of f al se.

Setting ANSI_NULLS to on changes how the database handles null values and forces the use of | S NULL
instead of =NULL. For example, if the value of coll in the following Select statement is null, the comparison
evaluates to true:

SELECT * FROM table WHERE col 1 IS NULL

In your application, you can restore the default Microsoft SQL Server behavior for a connection in the following
ways:

Note: Setting ANSI_NULLS to off is not supported for Microsoft Azure Synapse Analytics or Microsoft Analytics
Platform System.

¢ Use the InitializationString property to specify the SQL command set ANSI _NULLS of f . For example,
the following URL ensures that the handling of null values is restored to the Microsoft SQL Server default
for the current connection:

jdbc: dat adi rect: sql server://serverl:1433;InitializationString=
set ANSI _NULLS of f; Dat abaseNane=t est

116 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Timeouts

* Explicitly execute the following statement after the connection is established:

SET ANSI _NULLS CFF

Timeouts

The driver allows you to impose limits on the duration of active sessions through the use of the
EnableCancelTimeout and QueryTimeout connection properties. With the LoginTimeout connection property,
you can specify how long the driver waits for a connection to be established before timing out the connection
request.

See also
Timeout properties on page 66
Using connection properties on page 59

Connection Pool Manager

The DataDirect Connection Pool Manager allows you to pool connections when accessing databases. When
your applications use connection pooling, connections are reused rather than created each time a connection
is requested. Because establishing a connection is among the most costly operations an application may
perform, using Connection Pool Manager to implement connection pooling can significantly improve performance.

How connection pooling works

Typically, creating a connection is the most expensive operation an application performs. Connection pooling
allows you to reuse connections rather than create a new one every time an application needs to connect to
the database. Connection pooling manages connection sharing across different user requests to maintain
performance and reduce the number of new connections that must be created. For example, compare the
following transaction sequences.

Example A: Without connection pooling
1. The application creates a connection.

The application sends a query to the database.
The application obtains the result set of the query.

The application displays the result to the end user.

a M w DN

The application ends the connection.

Example B: With connection pooling

1. The application requests a connection from the connection pool.

2. If an unused connection exists, it is returned by the pool; otherwise, the pool creates a new connection.
3. The application sends a query to the database.
4

. The application obtains the result set of the query.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 117

Chapter 3: Using the driver

5. The application displays the result to the end user.

6. The application closes the connection, which returns the connection to the pool.

Note: The application calls the close() method, but the connection remains open and the pool is notified of
the close request.

The connection pool environment

There is a one-to-one relationship between a JDBC connection pool and a data source, so the number of
connection pools used by an application depends on the number of data sources configured to use connection
pooling. If multiple applications are configured to use the same data source, those applications share the same
connection pool as shown in the following figure.

Application 1

Connection Pool

Requesting connection /
to Data Source 1 Connections for

Application 1

» «+ - - -+

» Application 2

Requesting connection \
to Data Source 1

Application 2

An application may use only one data source, but allow multiple users, each with their own set of login
credentials. The connection pool contains connections for all unique users using the same data source as
shown in the following figure.

Application 1/ User A

Connection Pool

Requesting connection /
to Data Source 1

Connections for
User A

A4

Connections for

P < “ User B

Requesting connection \
to Data Source 1

Application 1/ User B

Connections are one of the following types:
* Active connection is a connection that is in use by the application.

* |dle connection is a connection in the connection pool that is available for use.

118 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

The DataDirect Connection Pool Manager

Connection pooling is performed in the background and does not affect how an application is coded. To use
connection pooling, an application must use a Dat aSour ce object (an object implementing the Dat aSour ce
interface) to obtain a connection instead of using the Dri ver Manager class. A Dat aSour ce object registers
with a JNDI naming service. Once a Dat aSour ce object is registered, the application retrieves it from the
JNDI naming service in the standard way.

Connection pool implementations, such as the DataDirect Connection Pool Manager, use objects that implement
thej avax. sqgl . Connecti onPool Dat aSour ce interface to create the connections managed in a connection
pool. All Progress DataDirect data source objects implement the Connect i onPool Dat aSour ce interface.

The DataDirect Connection Pool Manager creates database connections, referred to as Pool edConnect i ons,
by using the get Pool edConnect i on() method of the Connect i onPool Dat aSour ce interface. Then, the
Pool Manager registers itself as a listener to the Pool edConnect i on. When a client application requests a
connection, the Pool Manager assigns an available connection. If a connection is unavailable, the Pool Manager
establishes a new connection and assigns it to that application.

When the application closes the connection, the driver uses the Connect i onEvent Li st ener interface to
notify the Pool Manager that the connection is free and available for reuse. The driver also uses the
Connecti onEvent Li st ener interface to notify the Pool Manager when a connection is corrupted so that
the Pool Manager can remove that connection from the pool.

Using a connection pool DataSource object

Once a Pool edConnect i onDat aSour ce object has been created and registered with JNDI, it can be used
by your JDBC application as shown in the following example:

Context ctx = new Initial Context();

Connect i onPool Dat aSour ce ds =

(Connect i onPool Dat aSour ce) ct x. | ookup(" Enpl oyeeDB") ;
Connecti on conn = ds. get Connecti on("doni no", "spark");

The example begins with the intialization of the JNDI environment. Then, the initial naming context is used to
find the logical name of the JDBC Dat aSour ce (Enpl oyeeDB). The Cont ext . | ookup method returns a
reference to a Java object, which is narrowed to aj avax. sgl . Connect i onPool Dat aSour ce object. Next,
the Connect i onPool Dat aSour ce. get Pool edConnecti on() method is called to establish a connection
with the underlying database. Then, the application obtains a connection from the

Connect i onPool Dat aSour ce.

Implementing DataDirect connection pooling

To use connection pooling, an application must use a Dat aSour ce object (an object implementing the

Dat aSour ce interface) to obtain a connection instead of using the Dri ver Manager class. A Dat aSour ce
object registers with a INDI naming service. Once a Dat aSour ce object is registered, the application retrieves
it from the JNDI naming service in the standard way.

To implement DataDirect connection pooling, perform the following steps.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 119

Chapter 3: Using the driver

1. Create and register with JNDI a Progress DataDirect data source object. Once created, the Dat aSour ce
object can be used by a connection pool (Pool edConnect i onDat aSour ce object created in "Creating a
driver DataSource object") to create connections for one or multiple connection pools.

2. To create a connection pool, you must create and register with JNDI a Pool edConnect i onDat aSour ce
object. A Pool edConnect i onDat aSour ce creates and manages one or multiple connection pools. The
Pool edConnect i onDat aSour ce uses the driver Dat aSour ce object created in "Creating the connection
pool” to create the connections for the connection pool.

Creating a driver DataSource object

The following Java code example creates a Progress DataDirect Dat aSour ce object and registers it with a
JNDI naming service.

Note: The Dat aSour ce class implements the Connect i onPool Dat aSour ce interface for pooling in addition
to the Dat aSour ce interface for non-pooling.

SQLSer ver Dat aSour ce nds = new SQ.Ser ver Dat aSour ce();
nds. set Description("My SQ. Server Datasource");

nds. set Ser ver Name(" MyServer");

nds. set Por t Nunber (1433) ;

nds. set User (" User 123");

nds. set Password("secret");

nds. set Dat abaseNane(" nyDB") ;

/'k*'k***'k*****'k***'k*'k*'k*'k*'k*'k*'k***'k*'k*'k*'k*'k*'k*'k*'k*************************

/ This code creates a Progress DatabDirect for JDBC data source and
/ registers it to a JNDI nanming service. This JDBC data source uses the
/ Dat aSource inplenentation provided by DataDirect Connect Series

for JDBC Drivers.

/
/
/ This data source registers its name as <jdbc/ Connect SQLServer >.

/11 NOTE: To connect using a data source, the driver needs to access a JNDI data
| store to persist the data source information. To downl oad the JNDI File

/| System Service Provider, go to:

/

/

/

/

http://wwmv. oracl e. com t echnet wor k/ j ava/ j avasebusi ness/ downl oads/

j ava- ar chi ve- downl oads-j ava- pl at - 419418. ht nl #7110-j ndi - 1. 2. 1- ot h- JPR
I
/1 Make sure that the fscontext.jar and providerutil.jar files fromthe
/1 downl oad are on your classpath.
//**
/'l From Dat abi rect Connect Series for JDBC

i mport java.util.Hashtabl e;

/
/
/
/
/
/
/
/
/
/
/
/
/
/

i mport javax. nam ng. Cont ext ;
i mport javax. nam ng. |l nitial Context;

i mport com ddt ek. j dbcx. sql server. SQLSer ver Dat aSour ce;
public class SQ.Server Dat aSour ceRegi ster JNDI {
public static void main(String argv[]) {

try {

/] Set up data source reference data for nam ng context:
e e
/] Create a class instance that inplenents the interface
/1 Connecti onPool Dat aSour ce
SQ Ser ver Dat aSour ce ds = new SQ Ser ver Dat aSour ce() ;
ds. set Description("SQ. Server DataSource");

ds. set Server Name(" MyServer");

ds. set Port Number (1433) ;

ds. set User (" User 123");

ds. set Password("secret");

ds. set Dat abaseNane(" MWDB") ;

120 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

/1 Set up environnent for creating initial context

Hasht abl e env = new Hashtabl e();

env. put (Cont ext. | Nl TI AL_CONTEXT_FACTCORY, "com sun.jndi.fscontext. Ref FSCont ext Factory");
env. put (Cont ext. PROVIDER URL, "file:C\\JNDI _Test_Dir");

Context ctx = new Initial Context(env);
/] Register the data source to JNDI nam ng service
ctx. bi nd("j dbc/ Connect SQLServer", ds);
} catch (Exception e) {
Systemout. println(e.getStackTrace());
e.printStackTrace();
return;

} _
}// Main

}
/1 class SQLServer Dat aSour ceRegi st er JNDI

Creating the connection pool

To create a connection pool, you must create and register with INDI a Pool edConnect i onDat aSour ce
object. The following Java code creates a Pool edConnect i onDat aSour ce object and registers it with a
JNDI naming service.

To specify the driver Dat aSour ce object to be used by the connection pool to create pooled connections, set
the parameter of the Dat aSour ceNane method to the JNDI name of a registered driver Dat aSour ce object.
For example, the following code sets the parameter of the Dat aSour ceNane method to the JNDI name of the
driver Dat aSour ce object created in "Creating a driver DataSource object."”

The Pool edConnect i onDat aSour ce class is provided by the Dat aDi r ect com ddt ek. pool package.
See "PooledConnectionDataSource" for a description of the methods supported by the
Pool edConnect i onDat aSour ce class.
/**
/ This code creates a data source and registers it to a JNDI naning service.

/ This data source uses the Pool edConnecti onDat aSource
/ inplementation provided by the Databirect com ddtek. pool package.

This data source refers to a registered
Dat aDi rect Connect Series for JDBC driver DataSource object.

This data source registers its nane as <jdbc/ Connect SQLServer >.

store to persist the data source information. To downl oad the JNDI File
System Servi ce Provider, go to:

http://ww. oracl e. com technet work/j ava/ j avasebusi ness/ downl oads/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/'l java-archive-downl oads-j ava-pl at-419418. ht M #7110-j ndi - 1. 2. 1- ot h- JPR
/

/
/
/
/
/
/
/ NOTE: To connect using a data source, the driver needs to access a JNDI data
/
/
/
/
/
/

/1 Make sure that the fscontext.jar and providerutil.jar files fromthe

/1 downl oad are on your classpath.
//**
/1 Fromthe DataDirect connection pooling package:

i nport com ddt ek. pool . Pool edConnect i onDat aSour ce;

i mport javax.sql.*;

i mport java.sql.?*;

i nport javax. nam ng. *;

i mport javax.nam ng.directory.*;
i nport java.util.Hashtabl e;

public class Pool Myr Dat aSour ceRegi st er INDI

public static void nain(String argv[])

{
try {
/] Set up data source reference data for naning context:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 121

Chapter 3: Using the driver

[m e e e

/'l Create a pooling manager's class instance that inplenents

/1 the interface DataSource

Pool edConnect i onDat aSour ce ds = new Pool edConnecti onDat aSour ce() ;

ds. set Description("SQ Server DataSource");

/1 Specify a registered driver DataSource object to be used

/1 by this data source to create pool ed connections
ds. set Dat aSour ceNane("j dbc/ Connect SQ.Ser ver");

/'l The pool manager will be initiated with 5 physical connections

ds.setlnitial Pool Si ze(5);

/1 The pool maintenance thread will nake sure that there are 5

/1 physical connections avail able
ds. set M nPool Si ze(5);

/1 The pool maintenance thread will check that there are no nore

/1 than 10 physical connections avail able
ds. set MaxPool Si ze(10);

/1 The pool mai ntenance thread will wake up and check the pool

/1 every 20 seconds
ds. set PropertyCycl e(20);

/1 The pool maintenance thread will renove physical connections

/1 that are inactive for nore than 300 seconds
ds. set Maxl dl eTi me(300);

/1 Set tracing off because we choose not to see an out put
/1 of activities on a connection
ds. set Traci ng(fal se);

/1 Set up environment for creating initial context
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | Nl TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . f scont ext . Ref FSCont ext Fact ory");
env. put (Cont ext. PROVI DER_URL, "file: c:\\JDBCDat aSource");
Context ctx = new Initial Context(env);

/'l Register this data source to the JNDI nami ng service
ctx. bind("j dbc/ SparkyOracl e", ds);

catch (Exception e) {
Systemout.println(e);
return;

See also
Creating a driver DataSource object on page 120
PooledConnectionDataSource on page 127

Configuring the connection pool

You can configure attributes of a connection pool for optimal performance and scalability using the methods

provided by the DataDirect Connection Pool Manager classes.

Some commonly set connection pool attributes include:

¢ Minimum pool size, which is the minimum number of connections that will be kept in the pool for each user

* Maximum pool size, which is the maximum number of connections in the pool for each user

listing

122

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

* Initial pool size, which is the number of connections created for each user when the connection pool is
initialized

¢ Maximum idle time, which is the amount of time a pooled connection remains idle before it is removed from
the connection pool

See also
Connection Pool Manager interfaces on page 126

Configuring the maximum pool size

You set the maximum pool size using the Pool edConnect i onDat aSour ce. set MaxPool Si ze() method.
For example, the following code sets the maximum pool size to 10:

ds. set MaxPool Si ze(10);

You can control how the Pool Manager implements the maximum pool size by setting the
Pool edConnect i onDat aSour ce. set MaxPool Si zeBehavi or () method:

* If set MaxPool Si zeBehavi or (sof t Cap) , the number of active connections can exceed the maximum
pool size, but the number of idle connections for each user in the pool cannot exceed this limit. If a user
requests a connection and an idle connection is unavailable, the Pool Manager creates a new connection
for that user. When the connection is no longer needed, it is returned to the pool. If the number of idle
connections exceeds the maximum pool size, the Pool Manager closes idle connections to enforce the pool
size limit. This is the default behavior.

* Ifset MaxPool Si zeBehavi or (har dCap) , the total number of active and idle connections cannot exceed
the maximum pool size. Instead of creating a new connection for a connection request if an idle connection
is unavailable, the Pool Manager queues the connection request until a connection is available or the request
times out. This behavior is useful if your client or application server has memory limitations or if your database
server is licensed for only a certain number of connections.

See also
PooledConnectionDataSource on page 127

Connecting using a connection pool

Because an application uses connection pooling by referencing the JNDI name of a registered
PooledConnectionDataSource object, code changes are not required for an application to use connection
pooling.

The following example shows Java code that looks up and uses the JNDI-registered
PooledConnectionDataSource object created in "Creating the connection pool."

/**

Test programto | ook up and use a JNDI-registered data source.

/
I
11
/1 To run the program specify the JNDI |ookup nanme for the
/1 command-1ine argument, for exanple:

I

11

java Test Dat aSourceApp <j dbc/ Connect SQLSer ver >
//**
i mport javax.sql.*;
i mport java.sql.?*;
i mport javax.nam ng. *;
i nport java.util.Hashtabl e;
public class Test Dat aSour ceApp
{ public static void main(String argv[])

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 123

Chapter 3: Using the driver

String strJND LookupNanme = "";
/1l Get the JNDI | ookup nane for a data source
int nArgv = argv.|ength;
if (nArgv 1= 1)
/1 User does not specify a JNDI |ookup nanme for a data source,
System out. println(
"Pl ease specify a JNDI name for your data source");
System exit (0);
el se {
st r JNDI LookupNane = argv[O0];

}
Dat aSource ds = nul | ;
Connection con = null;
Context ctx = null;
Hasht abl e env = nul | ;
I ong nStartTine, nStopTine, nEl apsedTi ne;
/1 Set up environment for creating Initial Context object
env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi . f scont ext . Ref FSCont ext Factory");
env. put (Cont ext. PROVI DER_URL, "file:c:\\JDBCDat aSource");
try {
/1 Retrieve the DataSource object that is bound to the |ogical
/1 1 ookup JNDI name
ctx = new Initial Context(env);
ds = (DataSource) ctx.|ookup(strJND LookupNane);
catch (Nam ngException eNane) {
Systemout.printin("Error looking up " +
strJNDI LookupNarme + ": " +eNane);
System exit(0);

}
int nuntf Test = 4;

int [1 nCount {100, 100, 1000, 3000};
for (int i =0; i < nunOTest; i ++) {

/1 Log the start tine

nStartTime = SystemcurrentTimeM I 1is();

for (int j =1; j <= nCount[i]; j++) {
/| Get Database Connection
try {

con ds. get Connection("scott", "tiger");
I
I
I

Do sonmething with the connection

Cl ose Dat abase Connection
if (con !=null) con.close();
} catch (SQLException eCon) {
Systemout.printIn("Error getting a connection: " + eCon);
System exit(0);
} // try getConnection
Y} /1 for j loop
/1 Log the end tine
nStopTime = SystemcurrentTimeM I 1is();
/1 Compute el apsed tinme
nEl apsedTime = nStopTine - nStartTine;

Systemout.println("Test nunber " + i + ": looping " +
nCount[i] + " times");
Systemout.println("El apsed Time: " + nEl apsedTinme + "\n");
} /1 for i loop
/1 Al done
System exit(0);
/1 Main

} /1 Test Dat aSour ceApp

Note: To use non-pooled connections, specify the JNDI name of a registered driver DataSource object as the
command-line argument when you run the preceding application. For example, the following command specifies
the driver DataSource object created in "Creating a driver DataSource object": j ava Test Dat aSour ceApp

j dbc/ Connect SQ.Ser ver .

124

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

See also
Creating a driver DataSource object on page 120
Creating the connection pool on page 121

Closing the connection pool
The Pool edConnect i onDat aSour ce. cl ose() method can be used to explicitly close the connection pool
while the application is running. For example, if changes are made to the pool configuration using a pool

management tool, the Pool edConnect i onDat aSour ce. ¢l ose() method can be used to force the connection
pool to close and re-create the pool using the new configuration values.

Using reauthentication

The driver supports reauthentication for Microsoft SQL Server.

Note: Reauthentication is not supported for SQL Server Azure, Azure Synapse Analytics, or Analytics Platform
System (Parallel Data Warehouse).

You can configure a connection pool to provide scalability for connections. In addition, to help minimize the
number of connections required in a connection pool, you can switch the user associated with a connection to
another user, a process known as reauthentication.

For example, suppose you are using Kerberos authentication to authenticate users using their operating system
user name and password. To reduce the number of connections that must be created and managed, you can
use reauthentication to switch the user associated with a connection to multiple users. For example, suppose
your connection pool contains a connection, Conn, which was established by the user ALLUSERS. That
connection can service multiple users (User A, B, and C) by switching the user associated with the connection
Conn to User A, B, and C.

The user performing the switch must have been granted the SQL Server database permission IMPERSONATE.
In addition, before performing reauthentication, applications must ensure that any statements or result sets
created as one user are closed before switching the connection to another user.

Your application can use the setCurrentUser() method in the ExtConnection interface located in the
com.ddtek.jdbc.extensions package to switch a user on a connection. The setCurrentUser() method accepts
driver-specific reauthentication options. The reauthentication options supported for the SQL Server driver are:

* CURRENT_DATABASE specifies the name of the current database. The value must be a valid Microsoft
SQL Server database name.

If the setCurrentUser() method is called and this option is specified as an empty string or is not specified,
only the user is switched; the database is not switched.

* REVERT_USER determines whether the driver reverts the current user to the initial user before setting the
user to a new user for connections that have already reauthenticated.

¢ |fsettot rue and the setCurrentUser() method is called, the driver reverts the current user to the initial
user before setting the connection to the new user. For example, consider a connection that was initially
created by User A and was later switched to User B. Before the connection could be further switched to
User C, the driver reverts the connection back to User A and then sets it to User C.

¢ |Ifsettof al se and the setCurrentUser() method is called, the driver does not revert the current user to
the initial user before performing the switch. For example, if the connection was initially created by User

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 125

Chapter 3: Using the driver

A, switched to User B, and then switched to User C, the driver does not revert the user to User A before
switching to User C.

Checking the Pool Manager version

To check the version of your DataDirect Connection Pool Manager, navigate to the directory containing the
DataDirect Connection Pool Manager (i nst al | _di r/ pool manager wherei nstal | _di r is your product
installation directory). At a command prompt, enter the command:

On Windows:
java -cl asspath pool ngr_dir\pool.jar com ddtek. pool . Pool Manager | nf o

On UNIX:
java -cl asspath pool ngr_dir/pool.jar com ddtek. pool . Pool Manager | nf o

where:
pool ngr _dir
is the directory containing the DataDirect Connection Pool Manager.

Alternatively, you can obtain the name and version of the DataDirect Connection Pool Manager programmatically
by invoking the following static methods:

* com ddt ek. pool . Pool Manager | nf 0. get Pool Manager Namne()

* com ddt ek. pool . Pool Manager | nf 0. get Pool Manager Ver si on()

Enabling Pool Manager tracing

You can enable Pool Manager tracing by calling set Tr aci ng(t r ue) onthe Pool edConnect i onDat aSour ce
connection. To disable logging, call set Tr aci ng(f al se).

By default, the DataDirect Connection Pool Manager logs its pool activities to the standard output Syst em out .
You can change where the Pool Manager trace information is written by calling the set LogW i t er () method
on the Pool edConnect i onDat aSour ce connection.

See "Troubleshooting connection pooling" for information about using a Pool Manager trace file for
troubleshooting.

See also
Troubleshooting connection pooling on page 258

Connection Pool Manager interfaces

This section describes the methods used by the DataDirect Connection Pool Manager interfaces:
Pool edConnect i onDat aSour ceFact ory, Pool edConnect i onDat aSour ce, and
Connect i onPool Moni t or.

126 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

PooledConnectionDataSourceFactory

The Pool edConnect i onDat aSour ceFact ory interface is used to create a Pool edConnect i onDat aSour ce

object from a Reference object that is stored in a naming or directory service. These methods are typically
invoked by a JNDI service provider; they are not usually invoked by a user application.

Pool edConnect i onDat aSour ceFact ory Methods Description

Hasht abl e env)

static Object getOhjectlnstance(bject Creates a Pool edConnect i onDat aSour ce object from
ref bj, Name nane, Context nameC X,

a Reference object that is stored in a naming or directory
service. This is an implementation of the method of the
same name defined in the

j avax. nam ng. spi . Obj ect Fact ory interface. Refer
to the Javadoc for this interface for a description.

PooledConnectionDataSource

The Pool edConnect i onDat aSour ce interface is used to create a Pool edConnect i onDat aSour ce object

for use with the DataDirect Connection Pool Manager.

Pool edConnect i onDat aSour ce Methods

Description

void cl ose()

Closes the connection pool. All physical connections in the pool are
closed. Any subsequent connection request re-initializes the connection
pool.

Connecti on get Connecti on()

Obtains a physical connection from the connection pool.

Connecti on get Connection(String
user, String password)

Obtains a physical connection from the connection pool, where user
is the user requesting the connection and passwor d is the password
for the connection.

String get Dat aSour ceNane()

Returns the JNDI name that is used to look up the Dat aSour ce object
referenced by this Pool edConnect i onDat aSour ce.

String getDescription()

Returns the description of this Pool edConnect i onDat aSour ce.

int getlnitial Pool Size()

Returns the value of the initial pool size, which is the number of physical
connections created when the connection pool is initialized.

i nt getLoginTi meout ()

Returns the value of the login timeout, which is the time allowed for the
database login to be validated.

PrintWiter getLogWiter()

Returns the writer to which the Pool Manager sends trace information
about its activities.

i nt get Maxl dl eTi me()

Returns the value of the maximum idle time, which is the time a physical
connection can remain idle in the connection pool before it is removed
from the connection pool.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

127

Chapter 3: Using the driver

Pool edConnect i onDat aSour ce Methods

Description

i nt get MaxPool Si ze()

Returns the value of the maximum pool size. See "Configuring the
maximum pool size" for more information about how the Pool Manager
implements the maximum pool size.

i nt get MaxPool Si zeBehavi or ()

Returns the value of the maximum pool size behavior. See "Configuring
the maximum pool size" for more information about how the Pool
Manager implements the maximum pool size.

i nt get M nPool Si ze()

Returns the value of the minimum pool size, which is the minimum
number of idle connections to be kept in the pool.

i nt getPropertyCycle()

Returns the value of the property cycle, which specifies how often the
pool maintenance thread wakes up and checks the connection pool.

Ref erence get Ref erence()

Obtains a j avax. nam ng. Reference object for this

Pool edConnect i onDat aSour ce. The Reference object contains all
the state information needed to recreate an instance of this data source
using the Pool edConnect i onDat aSour ceFact or y object. This
method is typically called by a JNDI service provider when this

Pool edConnect i onDat aSour ce is bound to a JNDI naming service.

public static
Connect i onPool Monitor[]
get Moni tor ()

Returns an array of Connection Pool Monitors, one for each connection
pool managed by the Pool Manager.

public static Connecti onPool Monitor
getMonitor (String name)

Returns the name of the Connection Pool Monitor for the connection
pool specified by nane. If a pool with the specified name cannot be
found, this method returns null. The connection pool name has the
form:

j ndi _nane-user _id
where:

j ndi _nane

is the name used for the JNDI lookup of the driver
Dat aSour ce object from which the pooled connection was
obtained and

user _id

is the user ID used to establish the connections contained in
the pool.

bool ean i sTraci ng()

Determines whether tracing is enabled. If enabled, tracing information
issenttothe Pri nt Wi ter thatis passed to the set LogWiter()

method or the standard output Syst em out if the set LogWiter ()
method is not called.

128

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection Pool Manager

Pool edConnect i onDat aSour ce Methods

Description

voi d set Dat aSour ceNanme(String
dat aSour ceNane)

Sets the JNDI name, which is used to look up the driver Dat aSour ce
object referenced by this Pool edConnect i onDat aSour ce.The driver
Dat aSour ce object bound to this Pool edConnect i onDat aSour ce,
specified by dat aSour ceNane, is not persisted. Any changes made

to the Pool edConnect i onDat aSour ce bound to the specified driver
Dat aSour ce object affect this Pool edConnect i onDat aSour ce.

voi d set Dat aSour ceNanme(Stri ng
dat aSour ceNarme,

Connect i onPool Dat aSour ce

dat aSour ce)

Sets the JNDI name associated with this

Pool edConnect i onDat aSour ce, specified by dat aSour ceNane,
and the driver Dat aSour ce object, specified by dat aSour ce,
referenced by this Pool edConnect i onDat aSour ce.

The driver Dat aSour ce object, specified by dat aSour ce, is persisted
with this Pool edConnect i onDat aSour ce. Changes made to the
specified driver Dat aSour ce object after this

Pool edConnect i onDat aSour ce is persisted do not affect this
Pool edConnect i onDat aSour ce.

voi d set Dat aSour ceName(Stri ng
dat aSour ceNanme, Context ctx)

Sets the JNDI name, specified by dat aSour ceNane, and context,
specified by ct x, to be used to look up the driver Dat aSour ce
referenced by this Pool edConnect i onDat aSour ce.

The JNDI name, specified by dat aSour ceNane, and context, specified
by ct x, are used to look up a driver Dat aSour ce object. The driver
Dat aSour ce object is persisted with this

Pool edConnect i onDat aSour ce. Changes made to the driver

Dat aSour ce after this Pool edConnect i onDat aSour ce is persisted
do not affect this Pool edConnect i onDat aSour ce.

voi d setDescription(String
description)

Sets the description of the Pool edConnect i onDat aSour ce, where
descri pti on is the description.

void setlnitial Pool Si ze(int
i nitial Pool Si ze)

Sets the value of the initial pool size, which is the number of connections
created when the connection pool is initialized.

voi d setLogi nTi meout (int i)

Sets the value of the login timeout, where i is the login timeout, which
is the time allowed for the database login to be validated.

voi d set LogTi nest anp(bool ean val ue)

If settotrue, the timestamp is logged when DataDirect Spy logging
is enabled. If set to f al se, the timestamp is not logged.

voi d set LogTname(bool ean val ue)

If settot r ue, the thread name is logged when DataDirect Spy logging
is enabled. If set to f al se, the thread name is not logged.

voi d setLogWiter(PrintWiter
printWiter)

Sets the writer, where pri nt Wi t er is the writer to which the stream
will be printed.

voi d set Maxl dl eTi ne(i nt
max| dl eTi ne)

Sets the value in seconds of the maximum idle time, which is the time
a connection can remain unused in the connection pool before it is
closed and removed from the pool. Zero (0) indicates no limit.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

129

Chapter 3: Using the driver

Pool edConnect i onDat aSour ce Methods Description
voi d set MaxPool Si ze(i nt Sets the value of the maximum pool size, which is the maximum number
maxPool Si ze) of connections for each user allowed in the pool. See "Configuring the

maximum pool size" for more information about how the Pool Manager
implements the maximum pool size.

voi d set MaxPool Si zeBehavi or (St ri ng | Sets the value of the maximum pool size behavior, which is either
val ue) sof t Cap or har dCap.

If set MaxPool Si zeBehavi or (sof t Cap) , the number of active
connections may exceed the maximum pool size, but the number of
idle connections in the connection pool for each user cannot exceed
this limit. If a user requests a connection and an idle connection is
unavailable, the Pool Manager creates a new connection for that user.
When the connection is no longer needed, it is returned to the pool. If
the number of idle connections exceeds the maximum pool size, the
Pool Manager closes idle connections to enforce the maximum pool
size limit. This is the default behavior.

If set MaxPool Si zeBehavi or (har dCap) , the total number of active
and idle connections cannot exceed the maximum pool size. Instead
of creating a new connection for a connection request if an idle
connection is unavailable, the Pool Manager queues the connection
request until a connection is available or the request times out. This
behavior is useful if your database server has memory limitations or is
licensed for only a specific number of connections.The timeout is set
using the LoginTimeout connection property. If the connection request
times out, the driver throws an exception.

See "Configuring the maximum pool size" for more information about
how the Pool Manager implements the maximum pool size.

voi d set M nPool Si ze(i nt Sets the value of the minimum pool size, which is the minimum number

m nPool Si ze) of idle connections to be kept in the connection pool.

voi d setPropertyCycl e(int Sets the value in seconds of the property cycle, which specifies how

propertyCycl e) often the pool maintenance thread wakes up and checks the connection
pool.

voi d set Traci ng(bool ean val ue) Enables or disables tracing. If setto t r ue, tracing is enabled; if f al se,

it is disabled. If enabled, tracing information is sentto the Pri nt Wi t er
thatis passed to the set LogW i t er () method or the standard output
Syst em out if the set LogW it er () method is not called.

See also
Configuring the maximum pool size on page 123

ConnectionPoolMonitor

The Connect i onPool Moni t or interface is used to return information that is useful for monitoring the status
of your connection pools.

130 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement Pool Monitor

ConnectionPoolMonitor Methods

Description

String get Nane()

Returns the name of the connection pool associated with the monitor.
The connection pool name has the form:

j ndi _nanme-user_id
where:

j ndi _nane

is the name used for the JNDI lookup of the
Pool edConnect i onDat aSour ce object from which the
pooled connection was obtained

user _id

is the user ID used to establish the connections contained in
the pool.

get NumActi ve()

Returns the number of connections that have been checked out of the
pool and are currently in use.

get NumAvai | abl e()

Returns the number of connections that are idle in the pool (available
connections).

getlnitial Pool Si ze()

Returns the initial size of the connection pool (the number of available
connections in the pool when the pool was first created).

get MaxPool Si ze()

Returns the maximum number of available connection in the connection
pool. If the number of available connections exceeds this value, the
Pool Manager removes one or multiple available connections from the
pool.

get M nPool Si ze()

Returns the minimum number of available connections in the connection
pool. When the number of available connections is lower than this
value, the Pool Manager creates additional connections and makes
them available.

get Pool Si ze()

Returns the current size of the connection pool, which is the total of
active connections and available connections.

Statement Pool Monitor

The driver supports the DataDirect Statement Pool Monitor. You can use the Statement Pool Monitor to load
statements into and remove statements from the statement pool as well as generate information to help you
troubleshoot statement pooling performance. The Statement Pool Monitor is an integrated component of the
driver, and you can manage statement pooling directly with DataDirect-specific methods. In addition, the
Statement Pool Monitor can be enabled as a Java Management Extensions (JMX) MBean. When enabled as
a JMX MBean, the Statement Pool Monitor can be used to manage statement pooling with standard JMX API
calls, and it can easily be used by JMX-compliant tools, such as JConsole.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

131

Chapter 3: Using the driver

Using DataDirect-specific methods to access the Statement Pool
Monitor
To access the Statement Pool Monitor using DataDirect-specific methods, you should first enable statement

pooling. You can enable statement pooling by setting the "MaxPooledStatements" connection property to a
value greater than zero (0).

The ExtConnection.getStatementPoolMonitor() method returns an ExtStatementPoolMonitor object for the
statement pool associated with the connection. This method is provided by the ExtConnection interface in the
com.ddtek.jdbc.extensions package. If the connection does not have a statement pool, the method returns
null.

Once you have an ExtStatementPoolMonitor object, you can use the poolEntries() method of the
ExtStatementPoolMonitorMBean interface implemented by the ExtStatementPoolMonitor to return a list of
statements in the statement pool as an array.

See also
MaxPooledStatements on page 232

Using the poolEntries method

Using the pool Ent ri es() method, your application can return all statements in the pool or filter the list based
on the following criteria:

e Statement type (prepared statement or callable statement)
* Result set type (forward only, scroll insensitive, or scroll sensitive)
¢ Concurrency type of the result set (read only and updateable)

The following table lists the parameters and the valid values supported by the poolEntries() method.

Table 16: pool Entri es() Parameters

Parameter Value Description

st at ement Type Ext St at enent Pool Moni t or . TYPE_PREPARED STATEMENT | Returns only prepared statements

Ext St at enent Pool Moni t or . TYPE_CALLABLE STATEMENT | Returns only callable statements

-1 Returns all statements regardless
of statement type

resul t Set Type Resul t Set . TYPE_FORWARD ONLY Returns only statements with
forward-only result sets

Resul t Set . TYPE_SCROLL_| NSENSI Tl VE Returns only statements with scroll
insensitive result sets

Resul t Set . TYPE_SCROLL_SENSI Tl VE Returns only statements with scroll
sensitive result sets

-1 Returns statements regardless of
result set type

132 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement Pool Monitor

Parameter Value Description

resul t Set Gncurrency |Resul t Set . CONCUR_READ ONLY Returns only statements with a
read-only result set concurrency

Resul t Set . CONCUR_UPDATABLE Returns only statements with an
updateable result set concurrency

-1 Returns statements regardless of
result set concurrency type

The result of the pool Ent ri es() method is an array that contains a String entry for each statement in the

statement pool using the format:

SQL_TEXT=[SQL_t ext]; STATEMENT_TYPE=TYPE_PREPARED STATENENT]|
TYPE_CALLABLE_STATEMENT; RESULTSET_TYPE=TYPE_FCORWARD_ONLY]|
TYPE_SCROLL_I NSENSI Tl VE| TYPE_SCROLL_SENSI Tl VE;
RESULTSET_CONCURRENCY=CONCUR_READ ONLY| CONCUR_UPDATABLE;
AUTOGENERATEDKEYSREQUESTED=t r ue| f al se;
REQUESTEDKEYCOLUMNS=conma- separ at ed_| i st

where SQL_t ext is the SQL text of the statement and conma- separ at ed_| i st is a list of column names

that will be returned as generated keys.

For example:

SQL_TEXT=[I NSERT | NTO enp(id, nane) VALUES(99, ?)];
STATEMENT_TYPE=Pr epar ed St at ement ; RESULTSET_TYPE=Forward Only;
RESULTSET_ CONCURRENCY=ReadOnl y; AUTOGENERATEDKEYSREQUESTED=f al se;
REQUESTEDKEYCOLUMNS=I d, nane

Generating a list of statements in the statement pool

The following code shows how to return an ExtStatementPoolMonitor object using a connection and how to

generate a list of statements in the statement pool associated with the connection.

private void run(String[] args) {
Connection con = null;
Prepar edSt at ement prepStm = nul | ;
String sql = null;
try {
/1 Create the connection and enabl e statenment pooling
Cl ass. for Nane("com ddt ek. j dbc. sql server. SQLServerDriver");
con = DriverManager. get Connecti on(
"jdbc: datadi rect:sql server://MServer: 1433;" +
" Regi st er St at enment Pool Moni t or MBean=t r ue",
" maxPool edSt at ement s=10",

"test", "test");
/1 Prepare a couple of statenents
sql = "I NSERT | NTO enpl oyees (id, name) VALUES(?, ?)";

prepStnt = con. prepareStatenent(sql);
prepStnt. cl ose();
sql = "SELECT nane FROM enpl oyees WHERE id = ?";
prepStnt = con. prepareStatenent (sql);
prepStnt. cl ose();
Ext St at ement Pool Moni tor nonitor =
((Ext Connection) con). get St at emrent Pool Monitor();

Systemout.println("Statement Pool - " + nonitor.getName());
Systemout. println("Mx Size: " + nonitor.get MaxSi ze());
Systemout.println("Current Size: " + nonitor.getCurrentSize());

Systemout.printin("Ht Count: " + nonitor.getHitCount());

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

133

Chapter 3: Using the driver

Systemout.println("Mss Count: " + nonitor.getM ssCount());
Systemout.println("Statenents:");
Arraylist statenents = nonitor.pool Entries(-1, -1, -1);
Iterator itr = statenments.iterator();
while (itr.hasNext()) {
String entry = (String)itr.next();
Systemout.println(entry);

}

catch (Throwabl e except) {
Systemout.println("ERROR " + except);

%inally{
if (con!=null) {

try {
con. cl ose();

}catch (SQLException except) {}
}

}
}

In the previous code example, the PoolEntries() method returns all statements in the statement pool regardless
of statement type, result set cursor type, and concurrency type by specifying the value - 1 for each parameter
as shown in the following code:

Arraylist statenents = nonitor.pool Entries(-1, -1, -1);

We could have easily filtered the list of statements to return only prepared statements that have a forward-only
result set with a concurrency type of updateable using the following code:

ArraylLi st statenents = nonitor. pool Entries(
Ext St at ement Pool Moni t or . TYPE_PREPARED STATEMENT,
Resul t Set . TYPE_FORWARD _ONLY, Result Set. CONCUR UPDATABLE) ;

Using JMX to access the Statement Pool Monitor

Your application cannot access the Statement Pool Monitor using JMX unless the driver registers the Statement
Pool Monitor as a JMX MBean. To enable the Statement Pool Monitor as an MBean, statement pooling must
be enabled with the MaxPooledStatements connection property, and the Statement Pool Monitor MBean must
be registered using the RegisterStatementPoolMonitorMBean connection property.

When the Statement Pool Monitor is enabled, the driver registers a single MBean for each statement pool. The
registered MBean name has the following form, where noni t or _nane is the string returned by the
ExtStatementPoolMonitor.getName() method:

com ddt ek. j dbc. t ype=St at enent Pool Moni t or, nane=noni t or _nane

Note: Registering the MBean exports a reference to the Statement Pool Monitor. The exported reference can
prevent garbage collection on connections if the connections are not properly closed. When garbage collection
does not take place on these connections, out of memory errors can occur.

To return information about the statement pool, retrieve the names of all MBeans that are registered with the
com.ddtek.jdbc domain and search through the list for the StatementPoolMonitor type attribute. The following
code shows how to use the standard JMX API calls to return the state of all active statement pools in the JVM:
private void run(String[] args) {
if (args.length < 2) {
System out. println("Not enough argunments supplied");
Systemout. println("Usage: " + "ShowStatenentPool I nfo hostnane port");

}

134 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement Pool Monitor

String hostnane = args[O0];
String port = args[1];

JMXSer vi ceURL url = null;
JMXConnect or connector = null;
MBeanSer ver Connecti on server = null;
try {
url = new JMXServiceURL("service:jm:rm:///jndi/rm://" +

hostnane +":" + port + "/jnmxrm");
connect or = JMXConnect or Fact ory. connect (url);
server = connector. get MBeanSer ver Connection();
Systemout. println("Connected to JMX MBean Server at " +
args[0] + ":" + args[1]);

/1l Get the MBeans that have been registered with the
/1 com ddt ek. j dbc domai n.
oj ect Name ddMBeans = new Cbj ect Nane("com ddt ek. j dbc: *");
Set <Cbj ect Nane> nbeans = server. quer yNanes(ddMBeans, null);
/'l For each statenent pool nonitor MBean, display statistics and
/1 contents of the statement pool nonitored by that MBean
for (ObjectNanme nane: nbeans) {

i f (nane. getDomain(). equal s("com ddt ek. jdbc") &&

nane. get KeyProperty(type")
. equal s(" St at enent Pool Monitor")) {

System out.println("Statenent Pool - " +
server.getAttribute(nanme, "Nanme"));
Systemout. println("Mx Size: "+
server.get Attri bute(name, "MxSize"));
Systemout.println("Current Size: " +
server.getAttribute(nane, "CurrentSize"));
Systemout.printin("Ht Count: "+

server.getAttribute(name, "Hit Count));
Systemout.println("Mss Oount "
server.getAttribute(name, "M ssOount));
Systemout.println("Statenments:");
hj ect[] parans = new hject[3];
parans[0] = new Integer(-1);

parans[1] = new Integer(-1);
paranms[2] = new Integer(-1);
String[] types =newString[3];
types[0] = "int"

types[1] = "int"

types[2] = "int ";

ArraylList<String>statements = (ArrayList<String>)
server. i nvoke(nane,
"pool Entries”,
par ans,
types);
for (String stnt : statenents) {
int index = stnt. |ndex0‘(");
Systemout. println(" "y stnt.substring(0, index));
}
}
}

catch (Throwabl e except) {
Systemout.println("ERROR " + except);
}

See also
MaxPooledStatements on page 232
RegisterStatementPoolMonitorMBean on page 238

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 135

Chapter 3: Using the driver

Importing statements into a statement pool

When importing statements into a statement pool, for each statement entry in the export file, a statement is
added to the statement pool provided a statement with the same SQL text and statement attributes does not
already exist in the statement pool. Existing statements in the pool that correspond to a statement entry are
kept in the pool unless the addition of new statements causes the number of statements to exceed the maximum
pool size. In this case, the driver closes and discards some statements until the pool size is shrunk to the
maximum pool size.

For example, if the maximum number of statements allowed for a statement pool is 10 and the number of
statements to be imported is 20, only the last 10 imported statements are placed in the statement pool. The
other statements are created, closed, and discarded. Importing more statements than the maximum number
of statements allowed in the statement pool can negatively affect performance because the driver unnecessarily
creates some statements that are never placed in the pool.

To import statements into a statement pool:

1. Create a statement pool export file. See "Statement pool export file example" for an example of a statement
pool export file.

Note: The easiest way to create a statement pool export file is to generate an export file from the statement
pool associated with the connection as described in "Generating a statement pool export file."

2. Edit the export file to contain statements to be added to the statement pool.

3. Import the contents of the export file to the statement pool using either of the following methods to specify
the path and file name of the export file:

* Use the ImportStatementPool property. For example:

j dbc: dat adi rect: sql server://MServer: 1433;
User =User 123; Passwor d=secr et ;
Dat abaseNane=MyDB;
| nport St at ement Pool =C: \\ st at ement _pool i ng\\ st nt _export.txt

* Use the importStatements() method of the ExtStatementPoolMonitorMBean interface. For example:

Ext St at ement Pool Moni tor nonitor =
((Ext Connecti on)

con) . get St at enent Pool Moni tor (). i nport St atement s
("C\\statenment _pooling\\stnt_export.txt");

See also
Statement pool export file example on page 263
Generating a statement pool export file on page 137

Clearing all statements in a statement pool

To close and discard all statements in a statement pool, use the enpt yPool () method of the
Ext St at enent Pool Moni t or MBean interface. For example:

Ext St at ement Pool Moni tor nonitor =
((Ext Connection) con). get St at erent Pool Moni tor (). enptyPool ();

136 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement Pool Monitor

Freezing and unfreezing the statement pool

Freezing the statement pool restricts the statements in the pool to those that were in the pool at the time the
pool was frozen. For example, perhaps you have a core set of statements that you do not want replaced by
new statements when your core statements are closed. You can freeze the pool using the set Frozen()
method:

Ext St at ement Pool Moni tor nonitor =
((Ext Connection) con). get St at emrent Pool Monitor (). setFrozen(true);

Similarly, you can use the same method to unfreeze the statement pool:

Ext St at ement Pool Moni tor nonitor =
((Ext Connection) con).get St at ement Pool Monitor (). set Frozen(fal se);

When the statement pool is frozen, your application can still clear the pool and import statements into the pool.
In addition, you can use the St at enent . set Pool abl e() method to add or remove single statements from
the pool regardless of the pool’s frozen state, assuming the pool is not full. If the pool is frozen and the number
of statements in the pool is the maximum, no statements can be added to the pool.

To determine if a pool is frozen, use the i sFrozen() method.

Generating a statement pool export file

You may want to generate an export file in the following circumstances:

¢ To import statements to the statement pool, you can create an export file, edit its contents, and import the
file into the statement pool to import statements to the pool.

* To examine the characteristics of the statements in the statement pool to help you troubleshoot statement
pool performance.

To generate a statement pool export file, use the export St at ement s() method of the
Ext St at enent Pool Moni t or MBean interface. For example, the following code exports the contents of the
statement pool associated with the connection to a file named st nt _export.txt:

Ext St at ement Pool Moni t or nonitor =
((Ext Connection) con).get St at ement Pool Moni tor (). export Statenents
("stnmt _export.txt");

See the "Statement pool export file example" topic for information on interpreting the contents of an export file.
See also

Statement pool export file example on page 263

DataDirect Statement Pool Monitor interfaces and classes

This section describes the methods used by the DataDirect Statement Pool Monitor interfaces and classes.

ExtStatementPoolMonitor class

This class is used to control and monitor a single statement pool. This class implements the
Ext St at enent Pool Moni t or MBean interface.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 137

Chapter 3: Using the driver

ExtStatementPoolMonitorMBean interface

Ext St at enent Pool Moni t or MBean Methods Description

String get Nane() Returns the name of a Statement Pool Monitor instance
associated with the connection. The name is comprised of
the name of the driver that established the connection, and
the name and port of the server to which the Statement
Pool Monitor is connected, and the MBean ID of the
connection.

int getCurrentSize() Returns the total number of statements cached in the
statement pool.

| ong get Hi t Count () Returns the hit count for the statement pool. The hit count
is the number of times a lookup is performed for a statement
that results in a cache hit. A cache hit occurs when the
Statement Pool Monitor successfully finds a statement in
the pool with the same SQL text, statement type, result set
type, result set concurrency, and requested generated key
information.

This method is useful to determine if your workload is using
the statement pool effectively. For example, if the hit count
is low, the statement pool is probably not being used to its
best advantage.

| ong get M ssCount () Returns the miss count for the statement pool. The miss
count is the number of times a lookup is performed for a
statement that fails to result in a cache hit. A cache hit
occurs when the Statement Pool Monitor successfully finds
a statement in the pool with the same SQL text, statement
type, result set type, result set concurrency, and requested
generated key information.

This method is useful to determine if your workload is using
the statement pool effectively. For example, if the miss
countis high, the statement pool is probably not being used
to its best advantage.

i nt get MaxSi ze() Returns the maximum number of statements that can be
stored in the statement pool.

int set MaxSi ze(int val ue) Changes the maximum number of statements that can be
stored in the statement pool to the specified value.

voi d empt yPool () Closes and discards all the statements in the statement
pool.

voi d reset Count s() Resets the hit and miss counts to zero (0). See long
get Hi t Count () and long get M ssCount () for more
information.

138 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Bulk Load

Ext St at ement Pool Moni t or MBean Methods Description

ArrayLi st pool Entries(int statenentType, Returns a list of statements in the pool. The list is an array
int resultSetType, int resultSetConcurrency) |that contains a String entry for each statement in the
statement pool.

void exportStatenents(File file_ object) Exports statements from the statement pool into the
specified file. The file format contains an entry for each
statement in the statement pool.

void exportStatenents(String file_nane) Exports statements from statement pool into the specified
file. The file format contains an entry for each statement in
the statement pool.

void inportStatenents(File fil e_object) Imports statements from the specified File object into the
statement pool.

void inportStatenents(String file_nane) Imports statements from the specified file into the statement
pool.
bool ean i sFrozen() Returns whether the state of the statement pool is frozen.

When the statement pool is frozen, the statements that can
be stored in the pool are restricted to those that were in
the pool at the time the pool was frozen. Freezing a pool
is useful if you have a core set of statements that you do
not want replaced by other statements when the core
statements are closed.

voi d set Frozen(bool ean) set Frozen(true) freezes the statement pool.

set Frozen(f al se) unfreezes the statement pool. When
the statement pool is frozen, the statements that can be
stored in the pool are restricted to those that were in the
pool at the time the pool was frozen. Freezing a pool is
useful if you have a core set of statements that you do not
want replaced by other statements when the core
statements are closed.

DataDirect Bulk Load

In addition to supporting the native bulk protocols in SQL Server databases, the driver supports DataDirect
Bulk Load. DataDirect Bulk Load allows you to perform bulk load operations by creating a DDBul kLoad object
and using the methods provided by the DDBul kLoad interface inthe com ddt ek. j dbc. ext ensi ons package
for bulk load. You may want to use this method if you are developing a new application that needs to perform
bulk load operations.

Important: Because a bulk load operation may bypass data integrity checks, your application must ensure
that the data it is transferring does not violate integrity constraints in the database. For example, suppose you
are bulk loading data into a database table and some of that data duplicates data stored as a primary key,
which must be unique. The driver will not throw an exception to alert you to the error; your application must
provide its own data integrity checks.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 139

Chapter 3: Using the driver

See also
Bulk load properties on page 63

Using a DDBulkLoad object

The first step in performing a bulk load operation using a DDBul kLoad object is to create a DDBul kLoad
object. A DDBul kLoad must be created with the get | nst ance method using the DDBul kLoadFact ory
class as shown in the following example.

i mport com ddt ek. j dbc. ext ensi ons. *
/1l Get SQ@.Server Connection
Connection con = DriverManager. get Connecti on(
"jdbc: datadi rect: sql server://M/Server: 1433; User =User 123;
Passwor d=secr et ; Dat abaseNanme=MyDB") ;

/1 Get a DDBul kLoad obj ect
DDBul kLoad bul kLoad = DDBul kLoadFact ory. get | nst ance(con);

Once the DDBul kLoad object has been created, DDBul kLoad methods can be used to instruct the driver to
obtain data from one location and load it to another location. The driver can obtain data either from a Resul t Set
object or from a CSV file.

Migrating data using a ResultSet object

The following steps would need to be taken to migrate data from Oracle to SQL Server using a Resul t Set
object.

Important: This scenario assumes that you are using the DataDirect Oracle driver to query the Oracle database
and the DataDirect SQL Server driver to insert data to the SQL Server database.

1. The application creates a DDBul kLoad object.

2. The application executes a standard query on the Oracle database, and the Oracle driver retrieves the
results as a Resul t Set object.

3. The application instructs the SQL Server driver to load the data from the Resul t Set objectinto SQL Server.
(See "Loading data from a ResultSet object".)

Migrating data using a CSV file
The following steps would need to be taken to migrate data from Oracle to SQL Server using a CSV file.
1. The application creates a DDBul kLoad object.

2. The application instructs the Oracle driver to export the data from the Oracle database into a CSV file. (See
"Exporting data to a CSV file.")

3. The application instructs the SQL Server driver to load data from the CSV file into SQL Server. (See "Loading
data from a CSV file.")

See also

CSV files on page 143

JDBC extensions on page 329

Permissions for bulk load from a CSV file on page 50

140 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Bulk Load

Exporting data to a CSV file

Using a Bul kLoad object, data can be exported either as a table or Resul t Set object.

Exporting Data as a Table

To export data as a table, the application must specify the table name with the set Tabl eNane method and
then export the data to a CSV file using the expor t method. For example, the following code snippet specifies
the GBMAXTABLE table and exports it to a CSV file called t np. csv.

bul kLoad. set Tabl eNanme(" GBMAXTABLE") ;
bul kLoad. export ("t np. csv");

Alternatively, you can create a file reference to the CSV file and use the export method to specify the file
reference. For example:

File csvFile = new File ("tnp.csv");
bul kLoad. export (csvFile);

Exporting Data as a ResultSet object

To export data as a Resul t Set object, the application must first create a file reference to a CSV file, and then,
using the export method, specify the Resul t Set object and the file reference. For example, the following
code snippet creates the t nmp. csv file reference and then specifies MyResul t s (the Resul t Set object be
exported).

File csvFile = new File ("tnp.csv");
bul kLoad. export (MyResults, csvFile);

If the CSV file does not already exist, the driver creates it when the export method is executed. The driver
also creates a bulk load configuration file, which describes the structure of the CSV file. For more information
about using CSV files, see "CSV Files." See "JDBC Extensions" for more information about bulk load methods.

See also

CSV files on page 143

JDBC extensions on page 329

Permissions for bulk load from a CSV file on page 50

Loading data from a ResultSet object

The set Tabl eNane method should be used to specify the table into which you want to load the data. Then,
the | oad method is used to specify the Resul t Set object that contains the data you are loading. For example,
the following code snippet loads data from a Resul t Set object named MyResul t s into a table named
GBMAXTABLE

bul kLoad. set Tabl eNanme(" GBMAXTABLE") ;
bul kLoad. | oad(MyResul t s) ;

This example loads the first column in the result set to the Col Nanel column, the second column in the result
set to the Col Nane2 column, and so on.

You can use the BulkLoadBatchSize property to specify the number of rows the driver loads at a time when
bulk loading data. Performance can be improved by increasing the number of rows the driver loads at a time
because fewer network round trips are required. Be aware that increasing the number of rows that are loaded
also causes the driver to consume more memory on the client.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 141

Chapter 3: Using the driver

See also
BulkLoadBatchSize on page 202
JDBC extensions on page 329

Loading data from a CSV file

The set Tabl eNane method should be used to specify the table into which you want to load the data. Then,
the | oad method is used to specify the CSV file that contains the data you are loading. For example:

bul kLoad. set Tabl eName(" GBMAXTABLE") ;
bul kLoad. | oad("tnp. csv");

Alternatively, you can create a file reference to the CSV file, and use the load() method to specify the file
reference:

File csvFile = new File("tnp.csv");
bul kLoad. | oad(csvFil e);

For the Salesforce driver, you also can specify the columns to which you want to load the data. This example
loads the first column in the CSV file to the Col Nanme1 column, the second column in the CSV file to the
Col Nane2 column, and the third column in the CSV file to the Col Nanme3 column:

bul kLoad. set Tabl eNane(" GCBMAXTABLE(Col Nanel, Col Nane2, Col Nane3)");
bul kLoad. | oad("tnmp. csv");

Use the BulkLoadBatchSize property to specify the number of rows the driver loads at a time when bulk loading
data. Performance can be improved by increasing the number of rows the driver loads at a time because fewer
network round trips are required. Be aware that increasing the number of rows that are loaded also causes the
driver to consume more memory on the client. See "JDBC Extensions" for more information about bulk load
methods.

See also

CSV files on page 143
BulkLoadBatchSize on page 202
JDBC extensions on page 329

Specifying the bulk load operation

You can specify which type of bulk load operation will be performed when a load method is called by setting
the operation property using the set Pr oper t i es method of the DDBul kLoad interface. The operation property
accepts the following values: i nsert, updat e, del et e and upsert . The default value isi nsert .

The following example changes the type of bulk load operation to update.

DDBul kLoad bul kLoad =

com ddt ek. j dbc. ext ensi ons. DDBul kLoadFact ory. get | nst ance(connecti on);
Properties props = new Properties();

props. put ("operation", "update");

bul kLoad. set Properti es(props);

See also
JDBC extensions on page 329

142 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CSV files

Logging

If logging is enabled for bulk load, a log file records information for each bulk load operation. Logging is enabled
by specifying a file name and location for the log file using the set LogFi | e method.

The log file records the following types of information about each bulk load operation.
¢ Total number of rows that were read

* Total number of rows that successfully loaded

Note: The total number of rows that successfully loaded is not provided for Microsoft Azure Synapse
Analytics or Microsoft Analytics Platform System.

¢ Total number of rows that failed to load

For example, the following log file shows that the 11 rows read were all successfully loaded.
[*eee- Load Started: <Feb 25, 2009 11:20:09 AMEST>---------cmmmmoomnnn */
Total nunber of rows read 11

Total nunber of rows successfully | oaded 11
Total nunber of rows that failed to | oad O

Enabling Logging on Windows

To enable logging using a log file named bul k_1 oad. | og located in the C: \ t enp directory, you would specify:

bul kLoad. set LogFi | e(C: \\tenp\\ bul k_| oad. | og)

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: C: \\ t enp\ \ bul k_| oad. | og.

Enabling Logging on UNIX/Linux

To enable logging using a log file named bul k_I oad. | og located in the / t np directory, you would specify:

bul kLoad. set LogFi | e(/ t np/ bul k_| oad. | og)

CSV files

As described in "Exporting data to a CSV file," the driver can create a CSV file by exporting data from a table
or Resul t Set object. For example, suppose you want to export data from a 4-column table named GBVAXTABLE
into a CSV file. The contents of the CSV file, named GBMAXTABLE. csv, might look like the following example:

1, 0x6263, "bc", "bc"

2, 0x636465, "cde", "cde"

3, 0x64656667, "def g", "def g"

4, 0x6566676869, "ef ghi ", "ef ghi "

5, 0x666768696a6hb, "f ghi j k", "fghij k"

6, 0x6768696a6h6c6d, "ghi j kil ni', "ghi j kI nf

7, 0x68696a6b6c6d6€6f, " hi j kl mo", "hij kl mo"

8, 0x696a6b6c6d6e6f 7071, "ij kI mopq", "ij kl mopq"

9, Ox6a6b6c6d6e6f 70717273, "j kl mopqgrs”, "j kl mopqgr s"
10, Ox6b, "k", "k"

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 143

Chapter 3: Using the driver

See also
Exporting data to a CSV file on page 141

Bulk load configuration file

Each time data is exported to a CSV file, a bulk load configuration file is created. This file has the same name
as the CSV file, but with an . xm extension (for example, GBMAXTABLE. xm).

In its metadata, the bulk load configuration file defines the names and data types of the columns in the CSV
file based on those in the table or Resul t Set object. It also defines other data properties, such as the source
code page for character data types, precision and scale for numeric data types, and nullability for all data types.
The format of GBMAXTABLE. xml might look like the following example.

Note: If the driver cannot read a bulk load configuration file (for example, because it was inadvertently deleted),
the driver reads all data as character data. The character set used by the driver is UTF-8.

<?xm version="1.0" encodi ng="utf-8"?>
<t abl e codepage="UTF-8" xsi:noNanespaceSchenalLocati on=
"https://docunentation. progress. conm out put/ Databirect/coll ateral/Bul kDat a. xsd"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance" >
<r ow>
<col um dat at ype="DECI MAL" preci si on="38" scal e="0" null abl e="fal se">
| NTEGERCOL</ col um>
<col unmm dat at ype="VARBI NARY" | engt h="10"
nul | abl e="true" >VARBI NCOL</ col utm>
<col um dat at ype="VARCHAR' | engt h="10" sour cecodepage="W ndows- 1252"
external fil ecodepage="W ndows- 1252"
nul | abl e="t rue" >VCHARCOL</ col umm>
<col um dat at ype="VARCHAR" | engt h="10" sour cecodepage="W ndows- 1252"
external fil ecodepage="W ndows- 1252"
nul | abl e="true" >UNl VCHARCOL</ col urm>
</row>
</tabl e>

Bulk load configuration file schema

The bulk load configuration file must conform to the bulk load configuration XML schema defined at the following
Web site.
https://documentation.progress.com/output/DataDirect/collateral/BulkData.xsd

The driver throws an exception if either of the following circumstances occur.
¢ |f the driver performs a data export and the CSV file cannot be created

¢ |f the driver performs a bulk load operation and the driver detects that the CSV file does not comply with
the XML schema described in the bulk load configuration file

Character set conversions

When you export data from a database to a CSV file, the CSV file uses the same code page as the table from
which the data was exported. If the CSV file and the target table use different code pages, performance for
bulk load operations can suffer because the driver must perform a character set conversion.

144 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

https://documentation.progress.com/output/DataDirect/collateral/BulkData.xsd

CSV files

To avoid character set conversions, your application can specify which code page to use for the CSV file when
exporting data. For example, if the source database table uses a SHIFT-JIS code page and the target table
uses a EUC-JP code page, specify set CodePage(" EUC_JP") to ensure that the CSV file will use the same
code page as the target table.

You can specify any of the following code pages.

Note: If the code page you need to use is not listed, contact Customer Support to request support for that

code page.
US_ASCII IBM273 IBM01140
ISO_8859 1 IBM277 IBM01141
ISO_8859 2 IBM278 IBM01142
ISO_8859 3 IBM280 IBM01143
ISO_8859 4 IBM284 IBM01144
ISO_8859 5 IBM285 IBM01145
ISO_8859 6 IBM290 IBM01146
ISO_8859 7 IBM297 IBM01147
ISO_8859 8 IBM420 IBM01148
ISO_8859 9 IBM424 IBM01149
JIS_Encoding IBM500 WINDOWS-1250
Shift_JIS IBM851 WINDOWS-1251
EUC_JP IBM855 WINDOWS-1252
KS_C 5601 IBM857 WINDOWS-1253
ISO_2022 KR IBM860 WINDOWS-1254
EUC_KR IBM861 WINDOWS-1255
ISO_2022_JP IBM863 WINDOWS-1256
GB2312 IBM864 WINDOWS-1257
ISO_8859 13 IBM865 WINDOWS-1258
ISO_8859 15 IBM869 WINDOWS-854
GBK IBM870 IBM-939
IBM850 IBM871 IBM-943_P14A-2000
IBM852 IBM1026 IBM-4396
IBM437 KOI8_R IBM-5026
IBM862 HZ_GB_2312 IBM-5035
Big5 IBM866 UTF-8
MACINTOSH IBM775 UTF-16LE
IBMO37 IBM00858 UTF-16BE

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 145

Chapter 3: Using the driver

External overflow files

When you export data into a CSV file, you can choose to create one large file or multiple smaller files. For
example, if you are exporting BLOB data that is a total of several GB, you may want to break the data that into
multiple smaller files of 100 MB each.

If the values set by the set Char act er Thr eshol d or set Bi nar yThr eshol d methods are exceeded,
separate files are generated to store character or binary data, respectively. Overflow files are located in the
same directory as the CSV file.

The format for overflow file names is:

CSV_fil e_nanme. xxxxxx. | ob

where:

CSV_fil e_nane is the name of the CSV file.

XXXXXX is a 6-digit number that increments an overflow file.

For example, if multiple overflow files are created for a CSV file named CSV1, the file names would look like
this:

CSV1. 000001. | ob
CSV1. 000002. | ob
CSV1. 000003. | ob

If the overflow file contains character data, the code page used by the file is the code page specified in the
bulk load configuration file for the CSV file.

Discard file

If the driver was unable to load rows into the database for a bulk load operation from a CSV file, it can record
all the rows that were not loaded in a discard file. The contents of the discard file is in the same format as that
of the CSV file. After fixing reported issues in the discard file, the bulk load can be reissued, using the discard
file as the CSV file.

A discard file is created by specifying a file name and location for the discard file using the set Di scardFi | e
method.

Creating a discard file on Windows

To create a discard file named di scar d. csv located in the C: \ t enp directory, you would specify:

bul kLoad. set Di scardFil e(C: \\tenp\\di scard. csv)

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: C: \\ t enp\ \ di scar d. csv.

Creating a discard file on UNIX/Linux

To create a discard file named di scar d. csv located in the / t np directory, you would specify:

bul kLoad. set Di scardFi | e(/t np/ di scard. csv)

146

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

DataDirect Test

Use DataDirect Test to test your JDBC applications and learn the JDBC API. DataDirect Test contains menu
selections that correspond to specific JDBC functions, for example, connecting to a database or passing a
SQL statement. DataDirect Test allows you to perform the following tasks:

¢ Execute a single JDBC method or execute multiple JDBC methods simultaneously, so that you can easily
perform some common tasks, such as returning result sets

¢ Display the results of all JIDBC function calls in one window, while displaying fully commented, JDBC code
in an alternate window

DataDirect Test works only with JDBC drivers from Progress DataDirect.

DataDirect Test tutorial

This DataDirect Test tutorial explains how to use the most important features of DataDirect Test (and the JDBC
API) and assumes that you can connect to a database with the standard available demo table or fine-tune the
sample SQL statements shown in this example as appropriate for your environment.

Note: The tutorial describes functionality across a spectrum of data stores. In some cases, the functionality
described may not apply to the driver or data store you are using. Additionally, examples are drawn from a
variety of drivers and data stores.

Note: The step-by-step examples used in this tutorial do not show typical clean-up routines (for example,
closing result sets and connections). These steps have been omitted to simplify the examples. Do not forget
to add these steps when you use equivalent code in your applications.

Configuring DataDirect Test

The default DataDirect Test configuration file is:
install _dir/testforjdbc/Config.txt

where:
install _dir
is your product installation directory.

The DataDirect Test configuration file can be edited as appropriate for your environment using any text editor.
All parameters are configurable, but the most commonly configured parameters are:

Drivers A list of colon-separated JDBC driver classes.
DefaultDriver The default JDBC driver that appears in the Get Driver URL window.
Databases A list of comma-separated JDBC URLSs. The first item in the list appears as

the default in the Database Selection window. You can use one of these URLS
as a template when you make a JDBC connection. The default Config.txt file
contains example URLSs for most databases.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 147

Chapter 3: Using the driver

InitialContextFactory

ContextProviderURL

Datasources

Settocom sun. j ndi . f scont ext . Ref FSCont ext Fact or y if you are using
file system data sources, or com sun. j ndi . | dap. LdapCt xFact orvy if you
are using LDAP.

The location of the .bindings file if you are using file system data sources, or
your LDAP Provider URL if you are using LDAP.

A list of comma-separated JDBC data sources. The firstitem in the list appears
as the default in the Data Source Selection window.

To connect using a data source, DataDirect Test needs to access a JNDI data store to persist the data source
information. By default, DataDirect Test is configured to use the JNDI File System Service Provider to persist
the data source. You can download the JNDI File System Service Provider from the Oracle Java Platform

Technology Downloads page.

Make sure that the f scont ext . j ar and provi derutil.j ar files from the download are on your classpath.

Starting DataDirect Test

How you start DataDirect Test depends on your platform:

* As aJava application on Windows. Run the t est f or j dbc. bat file located in the t est f orj dbc
subdirectory of your product installation directory.

* AsalJavaapplication on Linux/UNIX.Runthet est f orj dbc. sh shell scriptlocated inthe t est f or j dbc
subdirectory in the installation directory.

After you start DataDirect Test, the Test for JDBC Tool window appears.

|= | Test for JDBC Tool E\@
File Driver Connection Window Help
Connection List
JDBC/Database Output
| | | | v Concatenate
Java Code

| v Concatenate

The main Test for JIDBC Tool window shows the following information:

* Inthe Connection List box, a list of available connections.

* Inthe JDBC/Database Output scroll box, a report indicating whether the last action succeeded or failed.

* Inthe Java Code scroll box, the actual Java code used to implement the last action.

148

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

DataDirect Test

Tip: DataDirect Test windows contain two Concatenate check boxes. Select a Concatenate check box to
see a cumulative record of previous actions; otherwise, only the last action is shown. Selecting Concatenate
can degrade performance, particularly when displaying large result sets.

Connecting using DataDirect Test
You can use either of the following methods to connect using DataDirect Test:

* Using a data source

* Using a driver/database selection

Connecting using a data source

To connect using a data source, DataDirect Test needs to access a JNDI data store to persist the data source
information. By default, DataDirect Test is configured to use the JNDI File System Service Provider to persist
the data source. You can download the JNDI File System Service Provider from the Oracle Java Platform
Technology Downloads page.

Make sure thatthe f scont ext . j ar and provi derutil.jar files from the download are on your classpath.

To connect using a data source:

1. From the main Test for JDBC Tool window menu, select Connection / Connect to DB via Data Source.
The Select A Datasource window appears.

2. Select a data source from the Defined Datasources pane. In the User Name and Password fields, type
values for the User and Password connection properties; then, click Connect. For information about JDBC
connection properties, refer to your driver's connection property descriptions.

3. If the connection was successful, the Connection window appears and shows the Connecti on
Est abl i shed message in the JDBC/Database Output scroll box.

Important: For the Autonomous REST Connector: REST API data sources do not connect in the same
manner as database servers; therefore; the Connect i on Est abl i shed notification does not guarantee
that the driver is properly configured. To confirm that the driver is correctly configured, you will need to
retrieve data from an endpoint using the methods described in "Executing a simple database selection."

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 149

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

Chapter 3: Using the driver

' —_—
| £| Connection 1: jdbcdatadirect:sqlservery//nc-... E‘&u

File Connection Statement Results MetaData Window

bnnnecr.i:rn Established -

]

First | Prev | Next | Last | Reset [liv]

See also
Executing a simple Select statement on page 152

Connecting using database selection

To connect using database selection:

1. From the Test for JDBC Tool window menu, select Driver / Register Driver. DataDirect Test prompts for
a JDBC driver name.

2. In the Please Supply a Driver URL field, specify a driver (for example
com ddt ek. j dbc. sql server. SQLSer ver Dri ver); then, click OK.

If the driver was registered successfully, the Test for JDBC Tool window appears with a confirmation in
the JDBC/Database Output scroll box.

150 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

F =

| £ Test for JDBC Tool = | B |

File Driver Connection Window Help
Connection List

JDBC/Database Output

registerDriver({) Succeeded.

| ‘ | ‘ Reset | v Concatenate

Java Code

} catch (Exception e) | -
System.cut.println{e);

1

m

| ‘ | ‘ Reset | v Concatenate

e

3. From the Test for JDBC Tool window, select Connection / Connect to DB. The Select A Database
window appears with a list of default connection URLSs.

4. Select one of the default driver connection URLS. In the Database field, modify the default values of the
connection URL appropriately for your environment.

Note: There are two entries for DB2: one with locationName and another with databaseName. If you are
connecting to DB2 for Linux/UNIX/Windows, select the entry containing dat abaseNarre. If you are connecting
to DB2 for z/OS or DB2 for i, select the entry containing | ocat i onNane.

5. In the User Name and Password fields, type the values for the User and Password connection properties;
then, click Connect. For information about JDBC connection properties, refer to your driver's connection
property descriptions.

6. If the connection was successful, the Connection window appears and shows the Connecti on
Est abl i shed message in the JDBC/Database Output scroll box.

Important: For the Autonomous REST Connector: REST API data sources do not connect in the same
manner as database servers; therefore; the Connect i on Est abl i shed notification does not guarantee
that the driver is properly configured. To confirm that the driver is correctly configured, you will need to
retrieve data from an endpoint using the methods described in "Executing a simple database selection."

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 151

Chapter 3: Using the driver

-
Connection 1: jdbcdatadirectsglserven//nc-.. E‘éﬁ

File Connection Statement Results MetaData Window

bnnnecr.i:rn Established -

v [[[

—

v e [Lo

See also
Executing a simple Select statement on page 152

Executing a simple Select statement
This example explains how to execute a simple Select statement and return the results.

To Execute a Simple Select Statement:

1. From the Connection window menu, select Connection / Create Statement. The Connection window
indicates that the creation of the statement was successful.

2. Select Statement / Execute Stmt Query. DataDirect Test displays a dialog box that prompts for a SQL
statement.

(|2 Execute SQL Query ESTEERT)

(i e [x| ot

152

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

3. Type a Select statement and click Submit. Then, click Close.

4. Select Results / Show All Results. The data from your result set displays in the JDBC/Database Output
scroll box.

P E
onnection 1 s e b] irect:sqlserver://nc-... I_=_

File Connection Statement Results MetaData Window

DEFTNO DNAME LOC -
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGOD
40 QFEFATIONS BOSTON
-
1 3

x

buf.append(results.getString(i)); -
}
buf.append{"\n");
rowcount++;
}
regsults.close():
} catch (Exception e) |
System.cut.println{e); @
return;

<

LI
v

5. Scroll through the code in the Java Code scroll box to see which JDBC calls have been implemented by
DataDirect Test.

Executing a prepared statement
This example explains how to execute a parameterized statement multiple times.

To execute a prepared statement:

1. From the Connection window menu, select Connection / Create Prepared Statement. DataDirect Test
prompts you for a SQL statement.

2. Type an Insert statement and click Submit. Then, click Close.

-
Get Prepared Statement SQL H&M

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 153

Chapter 3: Using the driver

3. Select Statement / Set Prepared Parameters. To set the value and type for each parameter:
a) Type the parameter number.
b) Select the parameter type.
c) Type the parameter value.
d) Click Set to pass this information to the JDBC driver.

-
Set Prepared Statement Parameters Eléu

short 50
String LEVELOFMENT
String SAN FRRWSISCO

| ATTECNN F o/ GMT+12 -

4. When you are finished, click Close.

5. Select Statement / Execute Stmt Update. The JDBC/Database Output scroll box indicates that one row
has been inserted.

154 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

- —_—
|£:| Connection 1: jdbcdatadirect:sglserver//nc-... El&u

File Connection Statement Results MetaData Window

executellpdate () Besults: 1 Records Updated. -

.

System.cut.println(e);
}
// EXECUTE FREFARED UFDATE
int results;
try {
results = prepstmt.executelpdate ()
} catch (Exception e){
System.out.printlnie); E|

<

I |
v

6. If you want to insert multiple records, repeat Step 3 on page 154 and Step 5 on page 154 for each record.

7. If you repeat the steps described in "Executing a simple Select statement,” you will see that the previously
inserted records are also returned.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 155

Chapter 3: Using the driver

r —_—
| £ Connection 1: jdbcdatadirect:sqlserver://nc-... @&u

File Connection Statement Results MetaData Window

DEFTNO DNAME LoC -
10 ACCOUNTING NEW YORK
20 RESEARCH DALLRS
30 SALES CHICAGO
40 OFERATIONS BOSTON
50 DEVELOFMENT SAN FRANSISCO
4 b

e v [[[

buf.append{results.getString(i));
}
buf.append("\n"):
rOWCOUNL++;
}
results.close();
} catch (Excepticn e) {
System.out.printlnie);
return; D

<

1
=

See also
Executing a simple Select statement on page 152

Retrieving database metadata

1. From the Connection window menu, select Connection / Get DB Meta Data.

2. Select MetaData / Show Meta Data. Information about the JDBC driver and the database to which you are
connected is returned.

156 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

- —_—
|£:| Connection 1: jdbcdatadirect:sglserver//nc-... El&u

File Connection Statement Results MetaData Window

System Functions: database,ifrnull , use +
Time Date Functions: curdate, curtime,day
URL: jdbc:datadirect:sql
User Name: testll

Catalog At Start: true D
Read Only: false

S/ JDBC 3.0

Locators Update Copy: true

Null + Neon Null Is Null: true

Mulls Are Sorted At End: false .
< 3

4

bkval = dmd.supportsUnicnill{): -
bval = dmd.useslocalFilePerTable();
bkval = dmd.usesLocalFiles():
ff JDBC 2.0
bval = dmd.supportsBatchUpdates():
} catch (Exception e){
System.cut.println({"Get Database Meta Data Fai

4 I | 3

4

3. Scroll through the Java code in the Java Code scroll box to find out which JDBC calls have been implemented
by DataDirect Test.

Metadata also allows you to query the database catalog (enumerate the tables in the database, for example).
In this example, we will query all tables with the schema pattern t est 01.

4. Select MetaData / Tables.

5. In the Schema Pattern field, type t est 01.

i P
| 4| Get Tables b= B e

6. Click Ok. The Connection window indicates that getTables() succeeded.

7. Select Results / Show All Results. All tables with at est 01 schema pattern are returned.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 157

Chapter 3: Using the driver

E Connection 1: jdbc:datadirect:s Iserver:,l‘p’nc—...l. = B 8 |
J q

File Connection Statement Results MetaData Window

TAELE CAT TABLE SCHEM TABLE NAME TABLE_TYI »

test testll amy TARLE D

test testll kanklcan TABLE

test testll EINTAELE TABLE

test testll BITABLE TLELE

test testll ETABLE TABLE

test testll BULKTEST TABLE

test testll clobtestl TABLE
testll CTAELE TABLE .

P.

.

buf.append("\n"): o
rOWCOUNL++;
}
results.close();
} catch (Excepticn e) {
System.out.printlnie);
return;

|
4

Scrolling through aresult set

1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement. DataDirect Test
prompts for a result set type and concurrency.

2. Complete the following fields:
a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.
b) In the resultSetConcurrency field, select CONCUR_READ_ONLY.
¢) Click Submit; then, click Close.

i o
| %] Get JDEC 2.0 Statement Properties ESREER

CONCUR_READ ONLY -

3. Select Statement / Execute Stmt Query.

4. Type a Select statement and click Submit. Then, click Close.

158 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

Execute SQL Query

i | P | e | 1o |]

5. Select Results / Scroll Results. The Scroll Result Set window indicates that the cursor is positioned

before the first row.
(=3 ® |

.
Scroll Result Set

Cacirs | it | 5o | et |t | ane |

A

(.

6. Clickthe Absolute, Relative, Before, First, Prev, Next, Last, and After buttons as appropriate to navigate
through the result set. After each action, the Scroll Result Set window displays the data at the current

position of the cursor.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 159

Chapter 3: Using the driver

-
Scroll Result Set = Ehu

1 *** Ppsitioned before first row ***

10 ACCOUNTING

20 RESERRCH DATIAS

10 ACCOUNTING HEW YORK

50 LDEVELOFMENT SAN FRRNSISCO
afterlast: *** Positioned after last row ***
previcus:S 50 LDEVELOFMENT SAN FRRNSISCO
previous:4 40 QPERATIONS BOSTON
previcus:3 30 3SRLES CHICAGO
rel(l):4 40 OFERRTIONS BOSTON

7. Click Close.

Batch execution on a prepared statement

Batch execution on a prepared statement allows you to update or insert multiple records simultaneously. In
some cases, this can significantly improve system performance because fewer round trips to the database are
required.

To execute a batch on a prepared statement:

1. From the Connection window menu, select Connection / Create Prepared Statement.

Type an Insert statement and click Submit. Then, click Close.

,
Get Prepared Statement SQL E=REE™

2. Select Statement / Add Stmt Batch.
3. For each parameter:

a) Type the parameter number.

b) Select the parameter type.

c) Type the parameter value.

d) Click Set.

160 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

r Set Batch Parameters | = | B 2 _|1I

short
String
String

| WTTECN E o/ GMT+12 -

s | cleran] s | cloe |

LN A

4. Click Add to add the specified set of parameters to the batch. To add multiple parameter sets to the batch,
repeat Step 2 on page 160 through Step 4 on page 161 as many times as necessary. When you are finished
adding parameter sets to the batch, click Close.

5. Select Statement / Execute Stmt Batch. DataDirect Test displays the rowcount for each of the elements
in the batch.

-
Connection 1: jdbcdatadirect:sglserver//nc-... EI&E

File Connection Statement Results MetaData Window

UFDATE COUNIS -

.

[/ EXECUTE QUERY -
int[] updateCounts;
try |

updatefounts = stmt.executeBatchi()
} catch (Exception e){
System.out.printlnie);

}

4 T | 3
2

6. If you re-execute the Select statement from "Executing a simple Select statement," you see that the previously
inserted records are returned.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 161

Chapter 3: Using the driver

_
Connection 1: jdbcdatadirect:sqlservery/nc-.. (| (2 e

File Connection Statement Results MetaData Window

DEFTNO DNAME LoC -
10 ACCOUNTING NEW YORK
20 RESEARCH DALLRS
30 SALES CHICAGO
40 OFERATIONS BOSTON
50 DEVELOFMENT SAN FRANSISCO
a0 MRRKETING NEW YORK
I8

.

buf.append("\n"): o
rOWCOUNL++;
}
results.close();
} catch (Excepticn e) {
System.out.printlnie);

return;
: @
4 10 | 3
v
See also

Executing a simple Select statement on page 152

Returning parameter metadata

1. From the Connection window menu, select Connection / Create Prepared Statement.

Type the prepared statement and click Submit. Then, click Close.

h
Get Prepared Statement SQL E=REE™

2. Select Statement / Get ParameterMetaData. The Connection window displays parameter metadata.

162 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

-
Connection 1: jdbcdatadirect:sqlserver//nc-... El&g

File Connection Statement Results MetaData Window

Nurber Mode Type Type Name Precision Sc =
1 Unknown INTEGER int 10 1]
2 Unknown VARCHAZR vwvarchar 20 a
3 Unknown VARCHAZR vwvarchar 20 a

/f GET CLASS WAME PFRARRMETER METR DATA -
try {

String className = pmd.getParameterClassName (i
} catch (Exception e){

System.cut.println{e);

1

< | | 3

1
.

Establishing savepoints

1. From the Connection window menu, select Connection / Connection Properties.

2. Select TRANSACTION_COMMITTED from the Transaction Isolation drop-down list. Do not select the Auto
Commit check box.

-
4| Connection Properties E‘M
P

TRANSACTION COMMITTIED

3. Click Set; then, click Close.

4. From the Connection window menu, select Connection / Load and Go. The Get Load And Go SQL
window appears.

5. Type a statement and click Submit.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 163

Chapter 3: Using the driver

6. Select Connection / Set Savepoint.
7.

-
Get Load And Go 5QL

In the Set Savepoints window, type a savepoint name.

4| Set Savepoints l_l_gnﬂ
= po
svptl

8. Click Apply;then, click Close. The Connection window indicates whether or not the savepoint succeeded.

-
Connection 1: jdbc:datadirect:sglserver//nc-... Elég

File Connection Statement Results MetaData Window

con. 3etSavepoint () Succeeded.

x

/¢ SET NAMED SAVEPOINT
Savepoint sp;
String name;
try {
sp = con.setSavepoint (name) ;
} catch (Excepticn e) {
System.out.printlnie);

}

x

FY

—

9. Return to the Get Load And Go SQL window and specify another statement. Click Submit.

164

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

_
| 5| Get Load And Go SQL [] E [

10. Select Connection / Rollback Savepoint. In the Rollback Savepoints window, specify the savepoint
name.

_
Rollback Savepoints =] B]

11. Click Apply; then, click Close. The Connection window indicates whether or not the savepoint rollback
succeeded.

-
Connection 1: jdbc:datadirect:sglserver//nc-... Elég

File Connection Statement Results MetaData Window

con.rollback() Succeeded. -

x

f{ ROLLBACK SREVEPOINT -
Savepoint sp;
try {
con.rollback(sg):
} catch (Exception e) |
System.cut.println{e);

1

x

12. Return to the Get Load And Go SQL window and specify another statement.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 165

Chapter 3: Using the driver

)
(4] Get Load And Go SQL =] 5

Click Submit; then, click Close. The Connection window displays the data inserted before the first savepoint.
The second insert was rolled back.

.
Connection 1: jdbcdatadirect:sqlservery/nc-.. (e () e

File Connection Statement Results MetaData Window

DEFTNO DNAME LOC ID -
10 ACCOUNTING RALEIGH 1
30 SALES CHICAGD 3
40 OFERATIONS BOSTON 4
50 DEVELOFMENT SAN FRANSISCO 5
a0 MRRKETING NEW YORK [
20 RESEARCH DALLAS 7
70 FUBLIC RELATIONS ATLANTA g
-
4 3

x

// GET ALL RESULTS -~
StringBuffer buf = new StringBuffer():
try {
ResultSetMetalata rsmd = results.getMetaDatal()
int numCols = resmd.getColumnCount () ;
int i, rowcount = 0;

// get column header info
for (i=1; i <= numCols; i++)]
if (i > 1) buf.append("."): a
< | m | 3

x

Updatable result sets

The following examples explain the concept of updatable result sets by deleting, inserting, and updating a row.

Deleting a row

1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.
2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

166 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

i . | EI zg |'\
Get JDBC 2.0 Staterment Properties =)

CONCUER_UPDATABLE -

3. Click Submit; then, click Close.
4. Select Statement / Execute Stmt Query.

5. Specify the Select statement and click Submit. Then, click Close.

Execute SQL Query [E=RTER)

(i e [x| ot

6. Select Results / Inspect Results. The Inspect Result Set window appears.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 167

Chapter 3: Using the driver

Inspect Result Set ‘

DEFTNO
varchar
varchar
int identity

Mo

7. Click Next. Current Row changes to 1.

8. Click Delete Row.

9. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

10. Specify the statement that you want to execute and click Submit. Then, click Close.

168 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

)
] Get Load And Go SQL [E=NTERC)

i | P | e | 1o |]

11. The Connection window shows that the row has been deleted.

i
Connection 1: jdbcdatadirect:sqlserver/nc-... | IS

File Connection Statement Results MetaData Window

DEFTNO DNAME LoC ID -
10 ACCOUNTING NEW YORK 1
30 SALES CHICRGD 3
40 QFERATIONS BOSTON 4
50 DEVELOFMENT SAN FRRNSISCOD 5
a0 MARKETING NEW YORK [

.

ff GET ALL RESULTS -
StringBuffer buf = new StringBuffer();
try {
ResultSetMetalData rsmd = results.getMetaData()
int numCols = ramd.getColumnCount ()
int i, rowcount = 0;

/7 get column header info
for (i=1; 1 <= numCols; i++){
if (i > 1) buf.append(","): .
< I | 3

.

Inserting a row

1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.
2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 169

Chapter 3: Using the driver

Get JDBC 2.0 Statement Properties ESESE)

TYPE_SCROLI._SENSITIVE -

CONCUER_UPDATABLE -

3. Click Submit; then, click Close.
4. Select Statement / Execute Stmt Query.

5. Specify the Select statement that you want to execute and click Submit. Then, click Close.

Execute SQL Query = [

(i e [x| ot

6. Select Results / Inspect Results. The Inspect Result Set window appears.

170 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

Inspect Result Set

varchar
varchar

WATIES Eto/GMT+12 -

Cacirs | it | 5o | et |t | ane |

7. Click Move to insert row; Current Row is now Insert row.
8. Change Data Type to int. In Set Cell Value, enter 20. Click Set Cell.

9. Select the second row in the top pane. Change the Data Type to String. In Set Cell Value, enter RESEARCH.
Click Set Cell.

10. Select the third row in the top pane. In Set Cell Value, enter DALLAS. Click Set Cell.
11. Click Insert Row.

12. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

13. Specify the statement that you want to execute and click Submit. Then, click Close.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 171

Chapter 3: Using the driver

)
) Get Load And Go SQL SRR

14. The Connection window shows the newly inserted row.

-
Connection 1: jdbcdatadirect:sglserver//nc-... EI&E

File Connection Statement Results MetaData Window

DEFTNO DNAME LoC ID -
10 ACCOUNTING NEW YORK 1
30 SALES CHICRGD 3
40 QFERATIONS BOSTON 4
50 DEVELOFMENT SAN FRRNSISCOD 5
a0 MARKETING NEW YORK [
20 EESELRCH DALIRS 7
I8

ff GET ALL RESULTS -
StringBuffer buf = new StringBuffer();
try {
ResultSetMetalData rsmd = results.getMetaData()
int numCols = ramd.getColumnCount ()
int i, rowcount = 0;

/7 get column header info
for (i=1; 1 <= numCols; i++){
if (i > 1) buf.append(","): .
< I | 3

.

Caution: The ID will be 3 for the row you just inserted because it is an auto increment column.

Updating a row

1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.
2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

172 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

,
Get JDBC 2.0 Statement Properties ESESE)

TYPE_SCROLI._SENSITIVE -

CONCUER_UPDATABLE -

3. Click Submit; then, click Close.
4. Select Statement / Execute Stmt Query.

5. Specify the Select statement that you want to execute.

(|2 Execute SQL Query ESTEERT)

(i e [x| ot

6. Click Submit; then, click Close.

7. Select Results / Inspect Results. The Inspect Result Set window appears.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 173

Chapter 3: Using the driver

Inspect Result Set

varchar

8. Click Next. Current Row changes to 1.
9. In Set Cell Value, type RALEI GH. Then, click Set Cell.
10. Click Update Row.

11. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

12. Specify the statement that you want to execute.

174 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

)
(4] Get Load And Go SQL =] 5

13. Click Submit; then, click Close.
14. The Connection window shows LOC for accounting changed from NEW YORK to RALEIGH.

-
Connection 1: jdbcdatadirect:sglserver//nc-... EI@E

File Connection Statement Results MetaData Window

DEFTNO DNAME LoC ID -
10 ACCOUNTING RALEIGH 1
30 SALES CHICRGD 3
40 QFERATIONS BOSTON 4
50 DEVELOFMENT SAN FRRNSISCOD 5
a0 MARKETING NEW YORK [
20 EESELRCH DALIRS 7
I8

ff GET ALL RESULTS -
StringBuffer buf = new StringBuffer();
try {
ResultSetMetalData rsmd = results.getMetaData()
int numCols = ramd.getColumnCount ()
int i, rowcount = 0;

/7 get column header info
for (i=1; 1 <= numCols; i++){
if {i > 1) buf.append(","); =
< I | 3

.

Retrieving large object (LOB) data

The following example uses Clob data; however, this procedure also applies to Blob data. This example
illustrates only one of multiple ways in which LOB data can be processed.

1. From the Connection window menu, select Connection / Create Statement.
2. Select Statement / Execute Stmt Query.

3. Specify the Select statement that you want to execute.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 175

Chapter 3: Using the driver

Execute SQL Query

T CeEw

~

4. Click Submit; then, click Close.
5. Select Results / Inspect Results. The Inspect Result Set window appears.

6. Click Next. Current Row changes to 1.

Inspect Result Set . [E‘ﬂﬁ

7. Deselect Auto Traverse. This disables automatic traversal to the next row.

176 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

8. Click Get Cell. Values are returned in the Get Cell Value field.

-
Inspect Result Set

Lorem ipsum dolor sit amet,

« [

= @ =&/]

consectetur adipisicing « -

-

9. Change the data type to Clob.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

177

Chapter 3: Using the driver

Inspect Result Set

10. Click Get Cell. The Clob data window appears.

178 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DataDirect Test

Clob data

Character Stream =~

11. Click Get Cell. Values are returned in the Cell Value field.

Clob data =] 1

Character Stream =~

Lorem ipsum dolor sit amet, consectetur adipisicin =

tmpor o e

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 179

Chapter 3: Using the driver

Tracking JDBC calls with DataDirect Spy

DataDirect Spy is functionality that is built into the drivers. It is used to log detailed information about calls your
driver makes and provide information you can use for troubleshooting. DataDirect Spy provides the following
advantages:

* Logging is JDBC 4.0-compliant.
¢ All parameters and function results for JDBC calls can be logged.
* Logging can be enabled without changing the application.

When you enable DataDirect Spy for a connection, you can customize logging by setting one or multiple options
for DataDirect Spy. For example, you may want to direct logging to a local file on your machine.

Once logging is enabled for a connection, you can turn it on and off at runtime using the set Enabl eLoggi ng
method in the com ddt ek. j dbc. ext ensi ons. Ext LogCont r ol interface. See "Troubleshooting your
application" for information about using a DataDirect Spy log for troubleshooting.

See also
Troubleshooting your application on page 255

Enabling DataDirect Spy

You can enable and customize DataDirect Spy logging in either of the following ways.
* Specifying the SpyAttributes connection property for connections using the JDBC Dr i ver Manager .

* Specifying DataDirect Spy attributes using a JDBC data source.

Using the JDBC DriverManager

The SpyAttributes connection property allows you to specify a semi-colon separated list of DataDirect Spy
attributes. The format for the value of the SpyAttributes property is:

(
spy_attribute

sby_attribute
1...)

where spy_attri but e is any valid DataDirect Spy attribute. See "DataDirect Spy attributes" for a list of
supported attributes.

Windows example

Cl ass. for Name(" com ddt ek. j dbc. sql server. SQLServerDriver");

Connecti on conn = Driver Manager . get Connecti on
("jdbc: datadirect:sql server:// M/Server: 1433; Dat abaseNane=MyDB;
User =User 123; Passwor d=secr et ;
SpyAttributes=(log=(filePrefix)C\\tenmp\\spy_;linelimnmt=80;|ogTNanme=yes;
ti mest anp=yes)");

180 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Tracking JDBC calls with DataDirect Spy

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: | og=(fil ePrefi x) C:\\tenp\\spy_.

Using this example, DataDirect Spy loads the driver and logs all JDBC activity to the spy_x. | og file located
inthe C: \ t erp directory (I og=(fil ePrefix) C:\\tenp\\spy_), where x is an integer that increments by
1 for each connection on which the prefix is specified. The spy_x. | og file logs a maximum of 80 characters
oneachline (I i nel i m t =80) and includes the name of the current thread (| ogTNane=yes) and a timestamp
on each line in the log (t i mest anp=yes).

UNIX example

O ass. for Name("com ddt ek. j dbc. sqgl server. SQLServerDriver");

Connecti on conn = Driver Manager . get Connecti on
("jdbc: datadirect:sql server:// M/Server: 1433; Dat abaseNane=MyDB;
User =User 123; Passwor d=secr et ;
SpyAttributes=(log=(filePrefix)/tnmp/spy_;logTNanme=yes;tinestanp=yes)");

Using this example, DataDirect Spy loads the driver and logs all JDBC activity to the spy_x. | og file located
inthe/tnp directory (log=(filePrefix)/tnp/spy_), where x is an integer that increments by 1 for
each connection on which the prefix is specified. The spy_x. | og file includes the name of the current thread
(I ogTNane=yes) and a timestamp on each line in the log (t i mest anp=yes).

See also
DataDirect Spy attributes on page 182

Using JDBC data sources

You can use DataDirect Spy to track JDBC calls made by a running application with either of these features:
¢ JNDI for Naming Databases

¢ Connection Pooling

The com ddt ek. j dbcx. SQLSer ver . SQLSer ver Dat aSour ce class supports setting a semi-colon separated
list of DataDirect Spy attributes.

Windows example

SQLSer ver Dat aSour ce sds = new SQ.Server Dat aSour ce();

sds. set Description("My SQ.Server Datasource");

sds. set Server Nane(" MyServer");

sds. set Port Nunber (1433) ;

sds. set User (" User 123");

sds. set Passwor d(" secr et)

sds. set Dat abaseNane("

sds. set SpyAttri butes(” I og (f| le)C\\tenp\\spy.|og; | ogl S=yes; | ogTName=yes");
Connecti on conn=sds. get Connecti on;

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example:
log=(file)C\\temp\\spy. | og; | ogl S=yes; | ogTNane=yes.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 181

Chapter 3: Using the driver

DataDirect Spy loads the driver and logs all JIDBC activity to the spy. | og file located in the C: \ t enp directory
(l og=(file)C\\tenp\\spy. | og).Inaddition to regular JDBC activity, the spy. | og file also logs activity
on | nput St r eamand Reader objects (I ogl S=yes). It also includes the name of the current thread

(I ogTNane=yes).

UNIX example

SQ.Ser ver Dat aSour ce nds = new SQLSer ver Dat aSour ce() ;

nds. set Descri pti on("My SQ.Server Datasource");

nds. set Server Nanme(" MyServer");

nds. set Port Nunber (1433) ;

nds. set User (" User 123");

nds. set Password("secret");

nds. set Dat abaseNane(" MyDB") ;

nds. set SpyAttri butes("l og=(file)/tnp/spy.log;!|ogl S=yes; | ogTNane=yes");
Connecti on conn=nds. get Connecti on;

DataDirect Spy loads the driver and logs all JDBC activity to the spy. | og file located in the / t np directory
(Il og=(file)/tnmp/spy.!l og).Inaddition to regular JDBC activity, the spy. | og file also logs activity on

I nput St r eamand Reader objects (I ogl S=yes). It also includes the name of the current thread

(I ogTNane=yes).

See also
DataDirect Spy attributes on page 182

DataDirect Spy attributes

DataDirect Spy supports the attributes described in the following table.

Table 17: DataDirect Spy Attributes

Attribute Description

i nelimt=nunberofchars [Setsthe maximum number of characters that DataDirect Spy logs on a single line.

The default is 0 (no maximum limit).

| oad=cl assname Loads the driver specified by cl assnane.

| og=(file)fil ename Directs logging to the file specified by f i | enane.

For Windows, if coding a path to the log file in a Java string, the backslash character
(\) must be preceded by the Java escape character, a backslash. For example:
log=(file)C\\temp\\spy.| og; | ogl S=yes; | ogTNane=yes.

182 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Tracking JDBC calls with DataDirect Spy

Attribute Description

log=(filePrefix)file_prefix|Directs logging to a file prefixed by fi | e_pr ef i x. The log file is named
file_prefixX |og

where:
X

is an integer that increments by 1 for each connection on which the prefix
is specified.

For example, if the attribute | og=(fil ePrefix) C: \\tenp\\spy_is specified
on multiple connections, the following logs are created:

C\temp\spy_1.1o0g
C\temp\spy_2.1o0g
C\temp\spy_3.1o0g

If coding a path to the log file in a Java string, the backslash character (\) must be
preceded by the Java escape character, a backslash. For example:
log=(filePrefix)C\\temp\\spy_ ;| ogl S=yes; | ogTNane=yes.

| og=Syst em out Directs logging to the Java output standard, Syst em out .
| ogl S={yes | no | Specifies whether DataDirect Spy logs activity on | nput St r eamand Reader
nosi ngl er ead} objects.

When | ogl S=nosi ngl er ead, logging on | nput St r eamand Reader objects is
active; however, logging of the single-byte read | nput St ream r ead or
single-character Reader . r ead is suppressed to prevent generating large log files
that contain single-byte or single character read messages.

The default is no.

| ogLobs={yes | no} Specifies whether DataDirect Spy logs activity on BLOB and CLOB objects.

| ogTNanme={yes | no} Specifies whether DataDirect Spy logs the name of the current thread.

The default is no.

ti mestanp={yes | no} Specifies whether a timestamp is included on each line of the DataDirect Spy log.
The default is no.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 183

Chapter 3: Using the driver

184 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection property descriptions

You can use connection properties to customize the driver for your environment. This section lists the connection
properties supported by the driver and describes each property. You can use these connection properties with
either the JDBC Dr i ver Manager or a JDBC data source. For a Dr i ver Manager connection, a property is
expressed as a key value pair and takes the form pr oper t y=val ue. For a data source connection, a property
is expressed as a JDBC method and takes the form set pr opert y(val ue) . Connection property names are
case-insensitive. For example, Passwor d is the same as passwor d.

Note: In a JDBC Dat aSour ce, string values must be enclosed in double quotation marks, for example,
set User (" User 123").

Note: The data type listed for each connection property is the Java data type used for the property value in a
JDBC data source.

The following table provides a summary of the connection properties supported by the driver, their corresponding
data source methods, and their default values.

Table 18: Connection properties

194

Property Data source method Default
Accountinglnfo on page 192 set Accounti ngl nfo Empty string
AEKeyCacheTTL on page 193 set AEKeyCacheTTL 7200
AEKeystoreClientSecret on page [set AEKeyst ored i ent Secr et None

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

185

Chapter 4: Connection property descriptions

Property Data source method Default
AEKeystoreLocation on page 195 |[set AEKeyst orelLocati on None
AEKeystorePrincipalld on page 196 | set AEKeyst or ePri nci pal 1d None
AEKeystoreSecret on page 197 set AEKeyst or eSecr et Empty string
AlternateServers on page 198 set Al ternat eServers None
AlwaysReportTriggerResults on set Al waysReport Tri gger Resul t s |f al se
page 199
Applicationintent on page 199 set Appl i cati onl nt ent ReadWite
ApplicationName on page 200 set Appl i cati onNane Enpty string
AuthenticationMethod on page 201 |set Aut hent i cat i onMet hod aut o

BulkLoadBatchSize on page 202

set Bul kLoadBat chSi ze

1000 (rows)

BulkLoadOptions on page 203 set Bul kLoadOpti ons 2
CatalogOptions on page 204 set Cat al ogOpt i ons 0
ClientHostName on page 205 set d i ent Host Nane Empty string
ClientUser on page 205 setd i ent User Empty string
ColumnEncryption on page 207 |[set Col unmEncrypti on Di sabl ed
CodePageOverride on page 206 |[set CodePageOverri de None
ConnectionRetryCount on page 208 | set Connect i onRet r yCount 5
ConnectionRetryDelay on page 209 [set Connect i onRet r yDel ay 1 (second)

ConvertNull on page 210

set Convert Nul |

1 (data type check is performed
if column value is null)

CryptoProtocolVersion on page 210

set Crypt oPr ot ocol Ver si on

None

186

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Property Data source method Default
DatabaseName on page 211 set Dat abaseNane None
DateTimelnputParameterType on [set Dat eTi nel nput Par anet er Type [aut o
page 212
DateTimeOutputParameterType on | set Dat eTi meQut put Par anet er Type [aut o

page 213

DescribelnputParameters on page
214

set Descri bel nput Par aneters

noDescri be

DescribeOutputParameters on page
215

set Descri beCut put Par anet er s

noDescri be

Domain on page 216 set Domai n None
EnableBulkLoad on page 216 set Enabl eBul kLoad fal se
EnableCancelTimeout on page 217 [set Enabl eCancel Ti neout fal se

EncryptionMethod on page 218

set Encrypti onMet hod

noEncryption

FailoverGranularity on page 219 |set Fail overGranul arity nonAt omi ¢
FailoverMode on page 220 set Fai | over Mbde connect
FailoverPreconnect on page 221 |set Fai | over Preconnect fal se
FetchTSWTZAsTimestamp on page | set Fet chTSWIZAsTi nest anp fal se

221

FetchTWFSasTime on page 222 |[set Fet chTWFSasTi e fal se
GSSCredential on page 223 set GSSCr edent i al Null
HostNamelnCertificate on page 224 [set Host Nanel nCertifi cate Enmpty string
ImportStatementPool on page 225 |set | nport St at enrent Pool Enpty string

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

187

Chapter 4: Connection property descriptions

Property

Data source method

Default

InitializationString on page 225

setlnitializationString

None

InsensitiveResultSetBufferSize on
page 226

setl nsensiti veResul t Set Buf fer S ze

2048 (KB)

JavaDoubleToString on page 227 |set JavaDoubl eToSt ri ng fal se
JDBCBehavior on page 228 set JDBCBehavi or 1
LoadBalancing on page 228 set LoadBal anci ng fal se

LoginConfigName on page 229

set Logi nConfi gNane

JDBC DRI VER 01

LoginTimeout on page 230

set Logi nTi meout

0 (no timeout)

LongDataCacheSize on page 231

set LongDat aCacheSi ze

2048 (KB)

MaxPooledStatements on page 232

set MaxPool edSt at enent s

0 (driver's internal prepared
statement pooling is not
enabled)

MultiSubnetFailover on page 233

set Mul ti Subnet Fai | over

fal se

NetAddress on page 234

set Net Addr ess

000000000000

PacketSize on page 234

set PackeSi ze

- 1 (maximum packet size
accepted by the database
server)

Password on page 236 set Passwor d None
PortNumber on page 236 set Por t Nunber 1433
ProgramID on page 237 set Program D Empty string

QueryTimeout on page 238

set Quer yTi neout

0 (query does not time out)

RegisterStatementPoolMonitorMBean
on page 238

set Regi st er S at enent Fool Moni t or MBean

fal se

188

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Property

Data source method

Default

ResultSetMetaDataOptions on page
239

set Resul t Set Met aDat aOpt i ons

0 (no additional processing to
determine the correct table
name for each column in the
result set)

SelectMethod on page 240

set Sel ect Met hod

di rect

ServerName on page 241

set Ser ver Name

None

ServicePrincipalName on page 242

set Servi cePri nci pal Nare

Driver builds value based on
environment

SnapshotSerializable on page 243 |set Snapshot Seri al i zabl e fal se
SpyAttributes on page 244 set SpyAttri butes None
StringlnputParameterType on page |set St ri ngl nput Par anet er nvar char
245

StringOutputParameterType on set St ri ngQut put Par anet er nvar char
page 246

SuppressConnectionWarnings on |set Suppr essConnect i onWar ni ngs |f al se
page 246

TransactionMode on page 247 set Transacti onMbde inmplicit
TruncateFractionalSeconds on page |set Tr uncat eFr act i onal Seconds |true

248

TrustStore on page 248 setTrust Store None
TrustStorePassword on page 249 |set Trust St or ePasswor d None
User on page 250 set User None
UseServerSideUpdatableCursors set UseSer ver S delUpdat abl eQur sors |f al se

on page 251

ValidateServerCertificate on page [set Val i dat eServerCertificate|true

251

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

189

Chapter 4: Connection property descriptions

Property Data source method Default
XATransactionGroup on page 252 |set XATr ansacti onG oup None
XMLDescribeType on page 253 set XMLDescr i beType None

For details, see the following topics:

* Accountinglnfo

* AEKeyCacheTTL

* AEKeystoreClientSecret

* AEKeystorelLocation

* AEKeystorePrincipalld

* AEKeystoreSecret

* AlternateServers

* AlwaysReportTriggerResults
* Applicationintent

* ApplicationName

* AuthenticationMethod

* BulkLoadBatchSize

* BulkLoadOptions

* CatalogOptions

* ClientHostName

* ClientUser

* CodePageOverride

* ColumnEncryption

* ConnectionRetryCount

* ConnectionRetryDelay

* ConvertNull

* CryptoProtocolVersion

¢ DatabaseName

* DateTimelnputParameterType
* DateTimeOutputParameterType

* DescribelnputParameters

190 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

* DescribeOutputParameters
* Domain

* EnableBulkLoad

* EnableCancelTimeout

* EncryptionMethod

* FailoverGranularity

* FailoverMode

* FailoverPreconnect

* FetchTSWTZAsTimestamp
* FetchTWFSasTime

* GSSCredential

* HostNamelnCertificate

* ImportStatementPool

* InitializationString

* InsensitiveResultSetBufferSize
e JavaDoubleToString

¢ JDBCBehavior

* |LoadBalancing

* LoginConfigName

* LoginTimeout

* LongDataCacheSize

* MaxPooledStatements

* MultiSubnetFailover

* NetAddress

* PacketSize

* Password

* PortNumber

* ProgramlID

* QueryTimeout

* RegisterStatementPoolMonitorMBean
* ResultSetMetaDataOptions
* SelectMethod

* ServerName

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 191

Chapter 4: Connection property descriptions

* ServicePrincipalName

* SnapshotSerializable

* SpyAttributes

* StringlnputParameterType

* StringOutputParameterType

* SuppressConnectionWarnings
* TransactionMode

* TruncateFractionalSeconds

* TrustStore

* TrustStorePassword

* User

* UseServerSideUpdatableCursors

* ValidateServerCertificate
* XATransactionGroup

¢ XMLDescribeType

Accountinginfo

Purpose

Defines accounting information. This value is stored locally and is used for database administration/monitoring

purposes.

Valid values

string

where:
string
is the accounting information.

Data source method

set Accounti ngl nfo

Default
Empty string

Data type
String

192

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

AEKeyCacheTTL

See also
* Using client information on page 104

¢ Client information properties on page 68

AEKeyCacheTTL

Purpose

Specifies the length of time, in seconds, column encryption keys live in the cache before the driver deletes
them. This option is used when Always Encrypted is enabled (Col umEncr ypt i on=Enabl ed |
Resul t set Onl y).

Valid Values
0|x

where:
X

is the number of seconds the driver stores a column encryption key in the cache.

Behavior

If set to - 1, the driver caches column encryption keys for the life of the connection. The keys are deleted when
the connection is closed or added to the connection pool.

If set to O, the driver does not cache column encryption keys.

If set to x, the driver caches column encryption keys for the specified number of seconds before deleting them.
The timer starts for a key when it is first accessed and added to the cache. The timer does not reset if you
access it after it has been added to the cache. The keys are deleted when the timer expires, or the connection
is closed or added to the connection pool.

Notes

* Column encryption keys do not persist beyond the life of the connection. When a connection is closed, the
driver purges the cache, leaving no column encryption key data in memory.

* Caching column encryption keys can provide performance gains by reducing the overhead associated with
fetching and decrypting the keys for the same data multiple times during a connection. Specifying larger
values for this property increases the length of time that a column encryption key persists in the cache;
therefore, improving performance in some scenarios. Note that column encryption keys are designed to be
deleted from the cache as a security measure and should not be configured to live for long periods of time.

Data source method
set AEKeyCacheTTL

Default
7200

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 193

Chapter 4: Connection property descriptions

Data Type
Long

See Also

¢ ColumnEncryption on page 207

* Always Encrypted on page 88

* Always Encrypted properties on page 69

* Performance considerations on page 75

AEKeystoreClientSecret

Purpose

Specifies the Client Secret used to authenticate against the Azure Key Vault. This property is used only when
Always Encrypted is enabled (Col ummEncr ypti on=Enabl ed | Resul t set Onl y) and Azure Key Vault is

the keystore provider. The Azure Key Vault stores the column master key used for Always Encrypted functionality.
To access the column master key from the Azure Key Vault, the Client Secret and principal ID must be provided.

Valid Values
client_secret

where:
client_secret

is the Client Secret used to authenticate against the Azure Key Vault.

Notes

* To specify the principal ID, use the AEKeystorePrincipalld connection property.

Data source method
set AEKeyst ored i ent Secr et

Default

None

Data Type
String

See Also

* ColumnEncryption on page 207

* AEKeystorePrincipalld on page 196

¢ Always Encrypted on page 88

¢ Always Encrypted properties on page 69

194 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

AEKeystoreLocation

AEKeystorelLocation

Purpose

Specifies the absolute path to the Java KeyStore file. This property is used only when Always Encrypted is
enabled (Col umEncr ypt i on=Enabl ed | Resul t set Onl y) and the Java KeyStore is the keystore provider.
The Java KeyStore file contains the column master key used for Always Encrypted functionality.

Valid Values
j ava_keystore_path

where:
java_keystore _path

is the absolute path to the Java KeyStore file.

Notes
* To specify the password for the Java KeyStore file, use the AEKeystoreSecret connection property.

* This property is required when encryption keys are stored in a Java KeyStore and Always Encrypted is
enabled (Col utmEncr ypt i on=Enabl ed | Resul t set Onl y).

* The value for this property is ignored when Always Encrypted is disabled (Col urmEncr ypt i on=Di sabl ed).
* The driver supports the JKS and PKCS12 file formats.

Data source method

set AEKeyst oreLocati on

Default

None

Data Type
String

See Also

* ColumnEncryption on page 207

* AEKeystoreSecret on page 197

¢ Always Encrypted on page 88

¢ Always Encrypted properties on page 69

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 195

Chapter 4: Connection property descriptions

AEKeystorePrincipalld

Purpose

Specifies the principal ID used to authenticate against the Azure Key Vault. This property is used only when
Always Encrypted is enabled (Col utmEncr ypti on=Enabl ed | Resul t set Onl y) and Azure Key Vault is
the keystore provider. The Azure Key Vault stores the column master key used for Always Encrypted functionality.
To access the column master key from the Azure Key Vault, the principal ID and Client Secret must be provided.

Valid Values
principal _id
where:

principal _id

is the Application ID created during Azure App Registration and used to authenticate against the
Azure Key Vault.

Notes
* To specify the Client Secret, use the AEKeystoreClientSecret connection property.
* The driver currently supports only Azure App Registration as the principal ID.

* This property is used only when the Azure Key Vault is specified as the keystore provider by column metadata
or in statement parameters.

Data source method
set AEKeystorePrincipalld

Default

None

Data Type
String

See Also

¢ ColumnEncryption on page 207

¢ AEKeystoreClientSecret on page 194

* Always Encrypted on page 88

* Always Encrypted properties on page 69

196 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

AEKeystoreSecret

AEKeystoreSecret

Purpose

Specifies the password used to access the Java KeyStore file. This property is used only when Always Encrypted
is enabled (Col umEncr ypt i on=Enabl ed | Resul t set Onl y) and the Java KeyStore is the keystore provider.
The Java KeyStore contains the column master key used for Always Encrypted functionality.

Valid Values
keyst ore_password

where:
keyst ore_password

is the password used to access the key(s) in the Java keystore.

Notes

* This property is used to access the key(s) in the Java KeyStore file specified by the AEKeystoreLocation
connection property.

¢ If no value is specified for this property, an empty string is passed to the Java KeyStore file.

¢ The value for this property is ignored when Always Encrypted is disabled (Col urmEncr ypt i on=Di sabl ed).

Data source method

set AEKeyst or eSecr et

Default
Empty string

Data Type
String

See Also

* ColumnEncryption on page 207

¢ AEKeystoreLocation on page 195

¢ Always Encrypted on page 88

* Always Encrypted properties on page 69

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 197

Chapter 4: Connection property descriptions

AlternateServers

Purpose

A list of alternate database servers that is used to failover new or lost connections, depending on the failover
method selected. See FailoverMode on page 220 for information about choosing a failover method.

Valid values

(servernanmel[: port 1] [;pr oper ty=val ue[;...]][,servernane2[: port 2]
[; property=value[;...]]].

Behavior

The server name (ser ver nanel, server nane2, and so on) is required for each alternate server entry. Port
number (port 1, port 2, and so on) and connection properties (pr opert y=val ue) are optional for each
alternate server entry. If the port is unspecified, the port number of the primary server is used. If a port number
for the primary server is unspecified, a default port number of 1433 is used.

The driver allows only one optional connection property, DatabaseName.

Notes

If using failover with Microsoft Cluster Server (MSCS), which determines the alternate server for failover instead
of the driver, any alternate server specified must be the same as the primary server. For example:

j dbc: dat adirect: sql server://server1l: 1433; Dat abaseNane=TEST; User =t est ;
Passwor d=secret; Al t er nat eServer s=(server 1: 1433; Dat abaseNane=TEST)

Example

The following URL contains alternate server entries for server2 and server3. The alternate server entries contain
the optional DatabaseName property.

j dbc: dat adirect: sql server://server1l: 1433; Dat abaseNane=TEST; User =t est ;

Passwor d=secret; Al t ernat eServer s=(server 2: 1433; Dat abaseNane=TEST2,
server 2: 1433; Dat abaseNanme=TEST3)

Data source method

set Al t er nat eServers

Default

None

Data type
String

See also
* FailoverMode on page 220

* Using failover on page 92

198 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

AlwaysReportTriggerResults

AlwaysReportTriggerResults

Purpose

Determines how the driver reports results that are generated by database triggers (procedures that are stored
in the database and executed, or fired, when a table is modified).

Valid values

true|fal se

Behavior

If set to t r ue, the driver returns all results, including results that are generated by triggers. Multiple trigger
results are returned sequentially. Use the Statement.getMoreResults() method to return individual trigger
results. Warnings and errors are reported in the results as they are encountered.

If setto f al se, the driver does not report trigger results if the statement is a single Insert, Update, Delete,
Create, Alter, Drop, Grant, Revoke, or Deny statement. The only result that is returned is the update count that
is generated by the statement that was executed (if errors do not occur). Although trigger results are ignored,
any errors that are generated by the trigger are reported. Any warnings that are generated by the trigger are
enqueued. If errors are reported, the update count is not reported.

Data source method
set Al waysReport Tri gger Resul ts

Default

fal se

Data type

Boolean

Applicationintent

Purpose

Specifies whether the driver connects to read-write databases or requests read-only routing to connect to
read-only database replicas. Read-only routing only applies to connections in Microsoft SQL Server 2012 where
AlwaysOn Availability Groups have been deployed.

Valid values
ReadWite | ReadOnly

Behavior
If set to ReadW i t e, the driver connects to a read-write node in the AlwaysOn environment.

If set to ReadOnl y, the driver requests read-only routing and connects to the read-only database replicas
specified by the server.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 199

Chapter 4: Connection property descriptions

Notes

By setting applicationintent to ReadOnl y and querying read-only database replicas when possible, you shift
load away from the read-write nodes of your database cluster to read-only nodes.

Data source method

set Appl i cati onl nt ent

Default
ReadWite

Data type
String

See also
Always On Availability Groups on page 100

ApplicationName

Purpose

The name of the application to be stored in the database. This property sets the program_name column in the
sysprocesses table in the database.

Valid values
string

where:
string

is the name of the application.
Notes

* ProgramName can be used as an alias for ApplicationName.

* Your database may impose character length restrictions on the value. If the value exceeds a restriction, the
driver truncates it.

Data source method
set Appl i cati onNane

Default
Empty string

Data type
String

200 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

AuthenticationMethod

See also
* Using client information on page 104

¢ Client information properties on page 68

AuthenticationMethod

Purpose

Determines which authentication method the driver uses when establishing a connection.

Valid values
ActiveDi rectoryPassword | aut o | kerberos |ntlnjava|ntl nRjava|userl|dPassword

Behavior

If setto Act i veDi r ect or yPasswor d, the driver uses Azure Active Directory (Azure AD) authentication when
establishing a connection to Azure. In addition to specifying a user ID and password, a value must be specified
for the HostNamelnCertificate property. All communications to the service are encrypted using SSL.

If set to aut o, the driver uses SQL Server authentication or Kerberos authentication based on the following
criteria.

¢ |If auser ID and password is specified, the driver uses SQL Server authentication when establishing a
connection. The User property provides the user ID. The Password property provides the password.

¢ |If auser ID and password is hot specified, the driver uses Kerberos authentication when establishing a
connection.

If setto ker ber os, the driver uses Kerberos authentication when establishing a connection. The driver ignores
any values specified by the User and Password properties. The driver uses the authentication technology
based on the value specified for the LoginConfigName property to establish a Kerberos connection.

If settont | nj ava, the driver uses NTLMv1 or NTLMv2 depending on the size of the NTLM password. NTLMv1
is used if the password is 14 bytes or less; NTLMv2 is used if the password is more than 14 bytes. A user ID
and password must also be specified. If the user ID and password are unspecified, the driver throws an
exception. In addition, the driver requires the name of the domain server that administers the database server.
You can specify it using the Domain property. If the Domain property is unspecified, the driver attempts to
determine the domain server name from the User property. If no domain is specified, the driver throws an
exception.

If set to nt | nR2j ava, the driver uses NTLMv2 authentication. A user ID and password must also be specified.
If the user ID and password are unspecified, the driver throws an exception. In addition, the driver requires the
name of the domain server that administers the database server. You can specify it using the Domain property.
If the Domain property is unspecified, the driver attempts to determine the domain server name from the User
property. If no domain is specified, the driver throws an exception.

If set to user | dPasswor d, the driver uses SQL Server authentication when establishing a connection. The
User property provides the user ID. The Password property provides the password. If a user ID is not specified,
the driver throws an exception.

Notes

¢ |f your are configuring your environment for Kerberos constrained delegation, AuthenticationMethod must
be set to ker ber os.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 201

Chapter 4: Connection property descriptions

* The User property provides the user ID. The Password property provides the password.

* Azure AD authentication (Aut hent i cat i onMet hod=Act i veDi r ect or yPasswor d) requires Java SE 7
or higher.

* When using Azure AD authentication (Aut hent i cat i onMet hod=Act i veDi r ect or yPasswor d), the
driver requires root CA certificates to establish an SSL connection to a database. The driver determines
the location of the truststore containing the required certificates by using the default JRE cacert s file,
unless a different file has been specified by the j avax. net . ssl . t rust St or e Java system property.
The truststore location cannot be specified using the driver's Truststore property.

¢ |f you specify Aut henti cat i onMet hod=nt | nj ava when the LMCompatabilityLevel has been restricted
to NTLMv2, an error will be returned. When the LMCompatabilityLevel has been restricted to NTLMv2,
AuthenticationMethod must be set to nt | n2j ava.

Data source method
set Aut henti cati onMet hod

Default

aut o

Data type
String

See also
¢ Authentication on page 79

¢ Authentication properties on page 59

BulkLoadBatchSize

Purpose

Provides a suggestion to the driver for the number of rows to load to the database at a time when bulk loading
data. Performance can be improved by increasing the number of rows the driver loads at a time because fewer
network round trips are required. Be aware that increasing the number of rows that are loaded also causes the
driver to consume more memory on the client.

Valid values
X

where:
X
is a positive integer that represents a number of rows.

Notes

* This property suggests the number of rows regardless whether using a DDBulkLoad object or using native
bulk protocols in the database for batch inserts.

202 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

BulkLoadOptions

* The DDBulkObject.setBatchSize() method overrides the value set by this property. See DataDirect Bulk
Load on page 139 and JDBC extensions on page 329 for details.

Data source method
set Bul kLoadBat chSi ze

Default
1000 (rows)

Data type
Long

See also

¢ DataDirect Bulk Load on page 139
* Bulk load properties on page 63

¢ JDBC extensions on page 329

BulkLoadOptions

Purpose

Enables bulk load protocol options for batch inserts that the driver can take advantage of when EnableBulkLoad
is set to a value of t r ue.

Valid values

This value is the cumulative value of all enabled options. The following list describes the value and the
corresponding option that is enabled:

Value Option Enabled

1 The Keepldentity option preserves identity values. If unspecified, identity values are ignored in
the source and are assigned by the destination.

2 The TableLock option assigns a table lock for the duration of the bulk copy operation. Other
applications cannot update the table until the operation completes. If unspecified, the default
bulk locking mechanism specified by the database server is used.

16 The CheckConstraints option checks integrity constraints while data is being copied. If unspecified,
constraints are not checked.

32 The FireTriggers option causes the database server to fire insert triggers for the rows being
inserted into the database. If unspecified, triggers are not fired.

64 The KeepNulls option preserves null values in the destination table regardless of the settings
for default values. If unspecified, null values are replaced by column default values where
applicable.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 203

Chapter 4: Connection property descriptions

Behavior

If set to O, all the options are disabled.

Example

A value of 67 means the Keepldentity, TableLock, and KeepNulls options are enabled (1 + 2 + 64).

Data source method
set Bul kLoadOpti ons

Default
2

Data type
Long

See also
¢ DataDirect Bulk Load on page 139
* Bulk load properties on page 63

CatalogOptions

Purpose

Determines which type of metadata information is included in result sets when an application calls
DatabaseMetaData methods.

Valid values
0]2

Behavior
If set to O, result sets do not contain synonyms.

If set to 2, result sets contain synonyms that are returned from the following DatabaseMetaData methods:
getFunctions(), getTables(), getColumns(), getProcedures(), getProcedureColumns(), and getFunctionColumns()

Data source method
set Cat al ogOpti ons

Default
0

Data type

Int

204 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ClientHostName

ClientHostName

Purpose

The host name, or workstation ID, of the client machine to be stored in the database. This property sets the
hostname column of the sysprocesses table in the database.

Valid values
string

where:
string

is the host name of the client machine.

Notes

* WSID can be used as an alias for ClientHostName.

* Your database may impose character length restrictions on the value. If the value exceeds a restriction, the
driver truncates it.

Data source method
set Cl i ent Host Nane

Default
Empty string

Data type
String

See also
¢ Using client information on page 104

¢ Client information properties on page 68

ClientUser

Purpose
Specifies the user ID. This value is stored locally and is used for database administration/monitoring purposes.

Valid values
string

where:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 205

Chapter 4: Connection property descriptions

string

is a valid user ID.

Data source method
setC i ent User

Default
Empty string

Data type
String

See also
* Using client information on page 104

¢ Client information properties on page 68

CodePageOverride

Purpose

The code page to be used by the driver to convert Character data. The specified code page overrides the
default database code page or column collation. All Character data returned from or written to the database is
converted using the specified code page.

Valid values
string

where:
string

is the name of a valid code page that is supported by your JVM.

Behavior

By default, the driver automatically determines which code page to use to convert Character data. Use this
property only if you need to change the driver’s default behavior.

If a value is set for this property and the StringlnputParameterType property, the driver ignores the
StringlnputParameterType property and generates a warning. The driver always sends parameters using the
code page that is specified by CodePageOverride, if specified.

Example
CP950

Data source method
set CodePageCQverri de

206

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ColumnEncryption

Default

None

Data type
String

ColumnEncryption

Purpose

Specifies whether the driver is enabled for Always Encrypted functionality when accessing data from encrypted
columns.

Valid Values
Di sabl ed | Resul t set Onl y | Enabl ed

Behavior

If set to Di sabl ed, the driver does not use Always Encrypted functionality. The driver does not attempt to
decrypt data from encrypted columns, but will return data as binary formatted cipher text. However, statements
containing parameters that reference encrypted columns are not supported and will return an error.

If set to Resul t set Onl y, the driver transparently decrypts result sets and returns them to the application.
Queries containing parameters that affect encrypted columns will return an error.

If set to Enabl ed, the driver fully supports Always Encrypted functionality. The driver transparently decrypts
result sets and returns them to the application. In addition, the driver transparently encrypts parameter values
that are associated with encrypted columns.

Notes

¢ When Always Encrypted functionality is enabled, values must be provided for the following properties
according to your keystore provider:

* For Azure Key Vault, you must specify values for the AEKeystorePrincipalld and AEKeystoreClientSecret
properties.

* For Java KeyStore, you must specify values for the AEKeystoreLocation and AEKeystoreSecret properties.
* When Always Encrypted functionality is enabled, the driver transparently supports both randomized encryption
and deterministic encryption.

¢ Parameter markers must be used when specifying values that are associated with encrypted columns. If
literal values are specified in a statement targeting encrypted columns, the driver will return an error.

Data source method

set Col umEncryption

Default
D sabl ed

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 207

Chapter 4: Connection property descriptions

Data Type
String

See Also

* AEKeystorePrincipalld on page 196

* AEKeystoreClientSecret on page 194

* AEKeystoreLocation on page 195

* AEKeystoreSecret on page 197

¢ Always Encrypted on page 88

¢ Always Encrypted properties on page 69

¢ Performance considerations on page 75

ConnectionRetryCount

Purpose

The number of times the driver retries connection attempts to the primary database server, and if specified,
alternate servers until a successful connection is established.

Valid values
0]x

where:
X

is a positive integer that represents the number of retries.

Behavior
If set to O, the driver does not try to reconnect after the initial unsuccessful attempt.

If set to x, the driver retries connection attempts the specified number of times. If a connection is not established
during the retry attempts, the driver returns an exception that is generated by the last database server to which
it tried to connect.

Notes

¢ |f an application sets a login timeout value (for example, using DataSource.loginTimeout or
DriverManager.loginTimeout), and the login timeout expires, the driver ceases connection attempts.

* The ConnectionRetryDelay property specifies the wait interval, in seconds, to occur between retry attempts.

¢ [f MultiSubnetFailover is enabled and the connection attempt fails, the driver will attempt to connect two
more times, regardless of the ConnectionRetryCount setting.

Example

If this property is set to 2 and alternate servers are specified using the AlternateServers property, the driver
retries the list of servers (primary and alternate) twice after the initial retry attempt.

208 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ConnectionRetryDelay

Data source method
set Connect i onRet r yCount

Default
5

Data type
Int

See also

Using failover on page 92

ConnectionRetryDelay

Purpose

The number of seconds the driver waits between connection retry attempts when ConnectionRetryCount is
set to a positive integer.

Valid values

0]|x

where:

X

is a number of seconds.

Behavior
If set to O, the driver does not delay between retries.

If set to x, the driver waits between connection retry attempts the specified number of seconds.

Example

If ConnectionRetryCount is set to 2, this property is set to 3, and alternate servers are specified using the
AlternateServers property, the driver retries the list of servers (primary and alternate) twice after the initial retry
attempt. The driver waits 3 seconds between retry attempts.

Notes

When MultiSubnetFailover is enabled, the ConnectionRetryDelay connection property is ignored.

Data source method
set Connecti onRet ryDel ay

Default

1 (second)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 209

Chapter 4: Connection property descriptions

Data type

Int

See also

Using failover on page 92

ConvertNull

Purpose

Controls how data conversions are handled for null values.

Valid values
0]1

Behavior

If set to O, the driver does not perform the data type check if the value of the column is null. This allows null
values to be returned even though a conversion between the requested type and the column type is undefined.

If setto 1, the driver checks the data type this is requested against the data type of the table column that stores
the data. If a conversion between the requested type and column type is not defined, the driver generates an
"unsupported data conversion" exception regardless of the data type of the column value.

Data source method
set Convert Nul |

Default
1

Data type
Int

See also
Data type handling properties on page 64

CryptoProtocolVersion

Purpose

Specifies a cryptographic protocol or comma-separated list of cryptographic protocols that can be used when
SSL is enabled (Encrypt i onMet hod=SSL).

210 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseName

Valid Values
cryptographi c_protocol [[, cryptographic_protocol]...]

where:
crypt ographi c_pr ot ocol

is one of the following cryptographic protocols:

TLSv1.2 | TLSv1.1 | TLSv1 | SSLv3 | SSLv2

Caution: To avoid vulnerabilities associated with SSLv3 and SSLv2, good security practices recommend
using TLSv1 or higher.

Example

If your server supports TLSv1.1 and TLSv1.2, you can specify acceptable cryptographic protocols with the
following key-value pair:

Crypt oPr ot ocol Ver si on=TLSv1. 1, TLSv1. 2

Notes

* When multiple protocols are specified, the driver uses the highest version supported by the server. If none
of the specified protocols are supported by the server, the connection fails and the driver returns an error.

* When no value has been specified for CryptoProtocolVersion, the cryptographic protocol used depends on
the highest protocol version supported by the server and the highest protocol version supported by the JDK.
The driver uses the lower version of these two protocols to establish the SSL connection. Refer to the
database management system documentation for information on which cryptographic protocols are supported.

Data source method

set Crypt oPr ot ocol Ver si on

Default

None

Data type
String

See also
* EncryptionMethod on page 218

¢ Data encryption on page 87

DatabaseName

Purpose

Specifies the name of the database to which you want to connect.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 211

Chapter 4: Connection property descriptions

Valid Values
string

where:
string

is the name of a SQL Server or Azure database.

Notes

Database can be used as an alias for DatabaseName.

Data source method
set Dat abaseNane

Default

None

Data type
String

DateTimelnputParameterType

Purpose
Specifies how the driver describes the data type for Date/Time/Timestamp input parameters.

This property only applies to connections to Azure and SQL Server 2008 and higher. For prior versions of
Microsoft SQL Server, the driver always describes Date/Time/Timestamp input parameters as datetime.

Valid values

aut o | dat eTi ne | dat eTi neCxf f set

Behavior

If set to aut o, the driver uses the following rules to describe the data type of Date/Time/Timestamp input
parameters:

¢ |f an input parameter is set using setDate(), the driver describes it as date.
¢ |f an input parameter is set using setTime(), the driver describes it as time.
¢ |f an input parameter is set using setTimestamp(), the driver describes it as datetimeoffset.
If set to dat eTi ne, the driver describes Date/Time/Timestamp input parameters as datetime.

If set to dat eTi neF f set , the driver describes Date/Time/Timestamp input parameters as datetimeoffset.

Data source method

set Dat eTi nel nput Par anet er Type

212 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DateTimeOutputParameterType

Default

aut o

Data type
String

See also
Data type handling properties on page 64

DateTimeOutputParameterType

Purpose
Specifies how the driver describes the data type for Date/Time/Timestamp output parameters.

This property only applies to connections to Microsoft SQL Server 2008 and higher and Microsoft Windows
Azure SQL Database. For connections to prior versions of Microsoft SQL Server, the driver always describes
Date/Time/Timestamp output parameters as datetime.

Valid values

aut o | dat eTi ne | dat eTi neCf f set

Behavior

If set to aut o, the driver uses the following rules to describe the data type of Date/Time/Timestamp output
parameters:

¢ [f an output parameter is set using setDate(), the driver describes it as date.
* If an output parameter is set using setTime(), the driver describes it as time.
¢ If an output parameter is set using setTimestamp(), the driver describes it as datetimeoffset.
If set to dat eTi ne, the driver describes Date/Time/Timestamp output parameters as datetime.

If set to dat eTi meCf f set , the driver describes Date/Time/Timestamp output parameters as datetimeoffset.

Data source method
set Dat eTi neCQut put Par anet er Type

Default

aut o

Data type
String

See also
Data type handling properties on page 64

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 213

Chapter 4: Connection property descriptions

DescribelnputParameters

Purpose

Determines whether the driver attempts to determine, at execute time, which data type to use to send input
parameters to the database server. Sending parameters as the data type the database expects improves
performance and prevents locking issues caused by data type mismatches.

Valid values
noDescri be |describel fString|describel fDateTinme|describeAll

Behavior

If set to noDescr i be, the driver does not attempt to describe input parameters and sends String and
Date/Time/Timestamp input parameters to the server as specified by the StringlnputParameterType and
DateTimelnputParameterType properties.

If settodescri bel f St ri ng, the driver submits a request to the database to describe String input parameters.
The driver uses the data types that are returned by the driver to determine whether to describe the String input
parameters as nvarchar or varchar. If this operation fails, the driver sends String input parameters to the server
as specified by the StringlnputParameterType property.

If settodescri bel f Dat eTi ne, the driver submits a request to the database to describe Date/Time/Timestamp
input parameters. The driver uses the data types that are returned by the driver to determine how to describe
the Date/Time/Timestamp input parameters. If this operation fails, the driver sends Date/Time/Timestamp input
parameters to the server as specified by the DateTimelnputParameterType property.

If setto descri beAl | , the driver submits a request to the database to describe both String and
Date/Time/Timestamp input parameters and uses the data types that are returned by the driver to determine
which data type to use to describe the input parameters. If this operation fails, the driver sends String input
parameters to the server as specified by the StringlnputParameterType property and sends Date/Time/Timestamp
input parameters to the server as specified by the DateTimelnputParameterType property.

Data source method

set Descri bel nput Par anet er s

Default

noDescri be

Data type
String

See also
Data type handling properties on page 64

214 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DescribeOutputParameters

DescribeOutputParameters

Purpose

Determines whether the driver attempts to determine, at execute time, which data type to use to send output
parameters to the database server. Sending parameters as the data type the database expects improves
performance and prevents locking issues caused by data type mismatches.

Valid values
noDescri be |describel fString|describel fDateTinme|describeAll

Behavior

If set to noDescr i be, the driver does not attempt to describe output parameters and sends String and
Date/Time/Timestamp output parameters to the server as specified by the StringOutputParameterType and
DateTimeOutputParameterType properties.

If settodescri bel f Stri ng, the driver submits a request to the database to describe String output parameters.
The driver uses the data types that are returned by the driver to determine whether to describe the String output
parameters as NVARCHAR or VARCHAR. If this operation fails, the driver sends String output parameters to
the server as specified by the StringOutputParameterType property.

If settodescri bel f Dat eTi ne, the driver submits a request to the database to describe Date/Time/Timestamp
output parameters. The driver uses the data types that are returned by the driver to determine how to describe
the Date/Time/Timestamp output parameters. If this operation fails, the driver sends Date/Time/Timestamp
output parameters to the server as specified by the DateTimeOutputParameterType property.

If setto descri beAl | , the driver submits a request to the database to describe both String and
Date/Time/Timestamp output parameters and uses the data types that are returned by the driver to determine
which data type to use to describe the output parameters. If this operation fails, the driver sends String output
parameters to the server as specified by the StringOutputParameterType property and sends
Date/Time/Timestamp output parameters to the server as specified by the DateTimeOutputParameterType

property.

Data source method

set Descri beCQut put Par anet er s

Default

noDescri be

Data type
String

See also
Data type handling properties on page 64

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 215

Chapter 4: Connection property descriptions

Domain

Purpose

Specifies the name of the domain server that administers the database. Set this property only if you are using
NTLM authentication. If the Domain property is unspecified, the driver tries to determine the domain server

name from the User property.

Valid values
string

where:
string

is the name of the domain server.

Data source method

set Donmai n

Default

None

Data type
String

See also

¢ Configuring NTLM authentication on page 86

¢ AuthenticationMethod on page 201

EnableBulkLoad

Purpose

Specifies whether the driver uses the native bulk load protocols in the database. Bulk load bypasses the data
parsing that is usually done by the database, providing an additional performance gain over batch operations.
This property allows existing applications with batch inserts to take advantage of bulk load without requiring

changes to the application code.

Valid Values

true|fal se

Behavior

If set to t r ue, the driver uses the database bulk load protocol when an application executes an INSERT with
multiple rows of parameter data. If the protocol cannot be used, the driver returns a warning.

216

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

EnableCancelTimeout

If setto f al se, the driver uses standard parameter arrays.

Data source method
set Enabl eBul kLoad

Default

fal se

Data type

Boolean

See also
¢ DataDirect Bulk Load on page 139
* Bulk load properties on page 63

* Performance considerations on page 75

EnableCancelTimeout

Purpose

Determines whether a cancel request that is sent by the driver as the result of a query timing out is subject to
the same query timeout value as the statement it cancels.

Valid values

true|fal se

Behavior

If setto t r ue, the cancel request times out using the same timeout value, in seconds, that is set for the
statement it cancels. For example, if your application calls St at enent . set Quer yTi meout (5) on a statement
and that statement is cancelled because its timeout value was exceeded, the driver sends a cancel request
that also will time out if its execution exceeds 5 seconds. If the cancel request times out, because the server
is down, for example, the driver throws an exception indicating that the cancel request was timed out and the
connection is no longer valid.

If setto f al se, the cancel request does not time out.

Data source method

set Enabl eCancel Ti meout

Default

fal se

Data type

Boolean

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 217

Chapter 4: Connection property descriptions

See also
* Timeouts on page 117

¢ Timeout properties on page 66

EncryptionMethod

Purpose

Determines whether data is encrypted and decrypted when transmitted over the network between the driver
and database server.

Valid values
noEncryption|SSL | request SSL || ogi nSSL

Behavior
If set to noEncr ypti on, data is not encrypted or decrypted.

If set to SSL, data is encrypted using SSL. If the database server does not support SSL, the connection fails
and the driver throws an exception.

If set to r equest SSL, the login request and data is encrypted using SSL. If the database server does not
support SSL, the driver establishes an unencrypted connection.

If set to | ogi nSSL, the login request is encrypted using SSL. Data is encrypted using SSL If the database
server is configured to require SSL. If the database server does not require SSL, data is not encrypted and
only the login request is encrypted.

Notes

* Connection hangs can occur when the driver is configured for SSL and the database server does not support
SSL.You may want to set a login timeout using the LoginTimeout property to avoid problems when connecting
to a server that does not support SSL.

¢ |f SSL is enabled, the driver communicates with database protocol packets that are set by the server’s
default packet size. Any value set by the PacketSize property is ignored.

¢ |f SSL is enabled, the following properties also apply:
CryptoProtocolVersion
HostNamelnCertificate
TrustStore
TrustStorePassword

ValidateServerCertificate

Data source method
set Encrypti onMet hod

Default

noEncrypti on

218 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

FailoverGranularity

Data type
String

See also
¢ Data encryption on page 87

* Data encryption properties on page 60

FailoverGranularity

Purpose

Determines how the driver behaves if exceptions occur while trying to reestablish a lost connection. This
property is ignored if FailoverMode=connect .

Valid values

nonAt omi ¢ | at oni ¢ | at oni cW t hReposi ti oni ng

Behavior

If set to nonAt oni c, the driver continues with the failover process and posts any exceptions on the statement
on which they occur.

If setto at oni c, the driver fails the entire failover process if an exception is generated as the result of restoring
the state of the connection. The driver stops trying to connect to an alternative server and returns an exception
indicating that the connection was lost. If an exception is generated as a result of restoring the state of work
in progress by re-executing the Select statement, the driver continues with the failover process, but generates
an exception warning that the Select statement must be reissued.

If setto at omi cW t hReposi ti oni ng, the driver fails the entire failover process if any exception is generated
as the result of restoring the state of the connection or the state of work in progress. The driver stops trying to
connect to an alternative server and returns an exception indicating that the connection was lost.

Data source method

setFail overGranul arity

Default

nonAt om ¢

Data type
String

See also
* FailoverMode on page 220

* Using failover on page 92

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 219

Chapter 4: Connection property descriptions

FailoverMode

Purpose

Specifies the type of failover method the driver uses.

Valid values

connect | ext ended | sel ect

Behavior
If set to connect , the driver provides failover protection for new connections only.

If set to ext ended, the driver provides failover protection for new and lost connections, but not any work in
progress.

If set to sel ect, the driver provides failover protection for new and lost connections. In addition, it preserves
the state of work performed by the last Select statement executed on the Statement object.

Notes

* The AlternateServers property specifies one or multiple alternate servers for failover and is required for all
failover methods. To turn off failover, do not specify a value for the AlternateServers property.

* The FailoverGranularity property determines which action the driver takes if exceptions occur during the
failover process.

* The FailoverPreconnect property specifies whether the driver tries to connect to multiple database servers
(primary and alternate) at the same time.

* When MultiSubnetFailover is enabled, the driver does not support FailoverMode=sel ect . If
MultiSubnetFailover=t r ue and FailoverMode=sel ect , the driver downgrades the FailoverMode to ext ended
and provides the following warning.

fail over Mode=sel ect is not supported for AlwaysOn Availability G oup,
downgr aded to fail over Mode=ext ended

Data source method

set Fai | over Mbde

Default

connect

Data type
String

See also
* Using failover on page 92

* Failover properties on page 61

220 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

FailoverPreconnect

FailoverPreconnect

Purpose

Specifies whether the driver tries to connect to the primary and an alternate server at the same time. This
property is ignored if FailoverMode=connect .

Valid values

true|fal se

Behavior

If setto t r ue, the driver tries to connect to the primary and an alternate server at the same time. This can be
useful if your application is time-sensitive and cannot absorb the wait for the failover connection to succeed.

If settof al se, the driver tries to connect to an alternate server only when failover is caused by an unsuccessful
connection attempt or a lost connection. This value provides the best performance, but your application typically
experiences a short wait while the failover connection is attempted.

Notes

The AlternateServers property specifies one or multiple alternate servers for failover.

Data source method

set Fai | over Preconnect

Default

fal se

Data type

Boolean

See also
* FailoverMode on page 220

* Using failover on page 92

FetchTSWTZAsTimestamp

Purpose

Determines whether column values with the datetimeoffset data type are returned as a JDBC VARCHAR or
TIMESTAMP data type.

This property only applies to connections to Azure and SQL Server 2008 and higher.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 221

Chapter 4: Connection property descriptions

Valid values

true|fal se

Behavior
If settot r ue, column values with the datetimeoffset data type are returned as a JDBC TIMESTAMP data type.

If setto f al se, column values with the datetimeoffset data type are returned as a JDBC VARCHAR data type.

Data source method
set Fet chTSWIZAsTi nest anp

Default

fal se

Data type

Boolean

See also
Data type handling properties on page 64

FetchTWFSasTime

Purpose

Determines whether the driver returns column values for the native TIME data type as the JDBC TIME or
TIMESTAMP data type.

Valid Values

true|fal se

Behavior

If set to t r ue, the driver returns column values for the native TIME data type as the JDBC TIME data type.
The fractional seconds portion of the value is truncated when the value is returned in the java.sql.Time object.

If setto f al se, the driver returns column values for the native TIME data type as the JDBC TIMESTAMP data
type. The Java Epoch (Jan 1,1970) is returned in the date portion.

Data source method
set Fet chTWFSasTi ne

Default

fal se

Data Type

boolean

222

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

GSSCredential

See also
Data type handling properties on page 64

GSSCredential

Purpose

Specifies the GSS credential object used to instantiate Kerberos constrained delegation. Constrained delegation
is a Kerberos mechanism that allows a client application to delegate authentication to a second service.

Important: Because the value of this property is a Java object, it cannot be specified in a connection URL. It
can only be passed as a Pr operti es or Dat aSour ce object.

Valid Values
string

where:
string

is the name of the GSS credential object.

Notes
¢ AuthenticationMethod must be set to ker ber os to use constrained delegation.

¢ Java SE 8 or higher must be used to generate the GSS credential object for Kerberos constrained delegation.

Data Source Method
set GSSCr edent i al

Default
Null

Data type
String

See also
¢ Authentication on page 79
¢ Configuring the driver for Kerberos authentication on page 81

¢ Constrained delegation on page 85

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 223

Chapter 4: Connection property descriptions

HostNamelnCertificate

Purpose

Specifies a host name for certificate validation when SSL encryption is enabled (Encr ypt i onMet hod=SSL)
and validation is enabled (Val i dat eServer Certi fi cat e=true). This property is optional and provides
additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is connecting
to is the server that was requested.

Valid values
host _nane

where:
host _nane

is a valid host name.

Behavior

If host _nane is specified, the driver compares the specified host name to the DNSName value of the
SubjectAlternativeName in the certificate. If a DNSName value does not exist in the SubjectAlternativeName
or if the certificate does not have a SubjectAlternativeName, the driver compares the host name with the
Common Name (CN) part of the certificate’s Subject name. If the values do not match, the connection fails
and the driver throws an exception.

Notes

¢ |f the HostNamelnCertificate is not specified, the driver automatically uses the value of the ServerName
from the URL as the value for validating the certificate.

¢ |f SSL encryption or certificate validation is not enabled, this property is ignored.

¢ |f SSL encryption and validation is enabled and this property is unspecified, the driver uses the server name
that is specified in the connection URL or data source of the connection to validate the certificate.

Data source method
set Host Nanel nCertificate

Default
Empty string

Data type
String

See also
¢ EncryptionMethod on page 218

* ValidateServerCertificate on page 251

224 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ImportStatementPool

ImportStatementPool

Purpose

Specifies the path and file name of the file to be used to load the contents of the statement pool. When this
property is specified, statements are imported into the statement pool from the specified file.

If the driver cannot locate the specified file when establishing the connection, the connection fails and the driver
throws an exception.

Valid values
string

where:
string

is the path and file name of the file to be used to load the contents of the statement pool.

Data source method

set | nport St at enent Pool

Default
Empty string

Data type
String

See also
¢ Statement Pool Monitor on page 131

¢ Performance considerations on page 75

InitializationString

Purpose

Specifies one or multiple SQL commands to be executed by the driver after it has established the connection
to the database and has performed all initialization for the connection. If the execution of a SQL command fails,
the connection attempt also fails and the driver throws an exception indicating which SQL command or
commands failed.

Valid values
string

where:

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 225

Chapter 4: Connection property descriptions

string
is one or multiple SQL commands.

Multiple commands must be separated by semicolons. In addition, if this property is specified in a connection
URL, the entire value must be enclosed in parentheses when multiple commands are specified.

Example

The following connection URL sets the handling of null values to the Microsoft SQL Server default and allows
delimited identifiers:

jdbc: dat adi rect: sql server://serverl:1433;InitializationString=
(set ANSI _NULLS of f; set QUOTED_ I DENTI FI ER on) ; Dat abaseNanme=t est

Data source method

setlnitializationString

Default

None

Data type
String

InsensitiveResultSetBufferSize

Purpose

Determines the amount of memory used by the driver to cache insensitive result set data.

Valid values
-1]0]|x

where:
X

is a positive integer that represents the size of the memory buffer.

Behavior

If setto - 1, the driver caches insensitive result set data in memory. If the size of the result set exceeds available
memory, an OutOfMemoryException is generated. With no need to write result set data to disk, the driver
processes the data efficiently.

If set to O, the driver caches insensitive result set data in memory, up to a maximum of 2 GB. If the size of the
result set data exceeds available memory, the driver pages the result set data to disk. Because result set data
may be written to disk, the driver may have to reformat the data to write it correctly to disk.

226

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

JavaDoubleToString

If set to x, the driver caches insensitive result set data in memory and uses this value to set the size (in KB)
of the memory buffer for caching insensitive result set data. If the size of the result set data exceeds available
memory, the driver pages the result set data to disk. Because the result set data may be written to disk, the
driver may have to reformat the data to write it correctly to disk. Specifying a buffer size that is a power of 2
results in efficient memory use.

Data source method

setl nsensiti veResul t Set Buf fer Si ze

Default
2048 (KB)

Data type

Int

See also

Performance considerations on page 75

JavaDoubleToString

Purpose

Determines which algorithm the driver uses when converting a double or float value to a string value. By default,
the driver uses its own internal conversion algorithm, which improves performance.

Valid values

true|fal se

Behavior

If setto t r ue, the driver uses the JVM algorithm when converting a double or float value to a string value. If
your application cannot accept rounding differences and you are willing to sacrifice performance, set this value
tot r ue to use the JVM conversion algorithm.

If setto f al se, the driver uses its own internal algorithm when converting a double or float value to a string
value. This value improves performance, but slight rounding differences within the allowable error of the double
and float data types can occur when compared to the same conversion using the JVM algorithm.

Data source method
set JavaDoubl eToStri ng

Default

fal se

Data type

Boolean

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 227

Chapter 4: Connection property descriptions

See also
Data type handling properties on page 64

JDBCBehavior

Purpose

Determines how the driver describes database data types that map to the following JDBC 4.0 data types:
NCHAR, NVARCHAR, NLONGVARCHAR, NCLOB, and SQLXML.

Valid values
0|1

Behavior
If set to O, the driver describes the data types as JDBC 4.0 data types.

If setto 1, the driver describes the data types using JDBC 3.0-equivalent data types. This allows your application
to continue using JDBC 3.0 types in a Java SE 6 or higher environment. Additionally, the PROCEDURE_NAME
column contains procedure name qualifiers. For example, for the fully qualified procedure named
1.sp_productadd, the driver would return sp_productadd;1.

Data source method
set JDBCBehavi or

Default
1

Data type

Int

See also
Data type handling properties on page 64

LoadBalancing

Purpose

Determines whether the driver uses client load balancing in its attempts to connect to the database servers
(primary and alternate). You can specify one or multiple alternate servers by setting the AlternateServers

property.

Valid values

true|fal se

228 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

LoginConfigName

Behavior

If setto t r ue, the driver uses client load balancing and attempts to connect to the database servers (primary
and alternate) in random order. The driver randomly selects from the list of primary and alternate servers which
server to connect to first. If that connection fails, the driver again randomly selects from this list of servers until
all servers in the list have been tried or a connection is successfully established.

If set to f al se, the driver does not use client load balancing and connects to each server based on their
sequential order (primary server first, then, alternate servers in the order they are specified).

Data source method

set LoadBal anci ng

Default

fal se

Data type

Boolean

See also
¢ AlternateServers on page 198

¢ Using failover on page 92

LoginConfigName

Purpose

Specifies the name of the entry in the JAAS login configuration file that contains the authentication technology
used by the driver to establish a Kerberos connection. The LoginModule-specific items found in the entry are
passed on to the LoginModule.

Valid values
entry_nane

where:
entry_nane

is the name of the entry that contains the authentication technology used with the driver.

Example

In the following example, JDBC_DRI VER 01 is the entry name while the authentication technology and related
settings are found in the brackets.

JDBC_DRI VER 01 {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red useTi cket Cache=tr ue;

b

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 229

Chapter 4: Connection property descriptions

Data Source Method
set Logi nConf i gNane

Default
JDBC DRI VER 01

Data type
String

See also
¢ Authentication on page 79
* Configuring the driver for Kerberos authentication on page 81

* The JAAS login configuration file on page 83

LoginTimeout

Purpose

The amount of time, in seconds, that the driver waits for a connection to be established before timing out the
connection request.

Valid values
0]x

where:
X

is a number of seconds.

Behavior
If set to O, the driver does not time out a connection request.

If set to x, the driver waits for the specified number of seconds before returning control to the application and
throwing a timeout exception.

Notes

When MultiSubnetFailover is enabled, the value of the LoginTimeout property is 15 seconds by default. When
LoginTimeout is set to O (zero), the driver will still timeout requests after 15 seconds. However, when the value
of LoginTimeout is an integer greater than 0 (zero), the driver will timeout requests for the specified duration.

Data source method

set Logi nTi meout

Default
0

230 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

LongDataCacheSize

Data type

Int

See also
¢ Timeouts on page 117

* Timeout properties on page 66

LongDataCacheSize

Purpose

Determines whether the driver caches long data (images, pictures, long text, binary data, or XML data) in result
sets. To improve performance, you can disable long data caching if your application retrieves columns in the
order in which they are defined in the result set.

Valid values
-1]0]|x

where:
X

is a positive integer in KB that represents the size of the memory buffer.

Behavior

If set to - 1, the driver does not cache long data in result sets. It is cached on the server. Use this value only if
your application retrieves columns in the order in which they are defined in the result set.

If setto O, the driver caches long data in result sets in memory. If the size of the result set data exceeds available
memory, the driver pages the result set data to disk.

If set to x, the driver caches long data in result sets in memory and uses this value to set the size in KB of the
memory buffer for caching result set data. If the size of the result set data exceeds available memory, the driver
pages the result set data to disk.

Data source method
set LongDat aCacheSi ze

Default
2048 (KB)

Data type
Int

See also

Performance considerations on page 75

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 231

Chapter 4: Connection property descriptions

MaxPooledStatements

Purpose

Specifies the maximum number of prepared statements to be pooled for each connection and enables the
driver’s internal prepared statement pooling when set to an integer greater than zero (0). The driver’s internal
prepared statement pooling provides performance benefits when the driver is not running from within an
application server or another application that provides its own statement pooling.

Valid values
0|x

where:
X

is a positive integer that represents a number of prepared statements to be cached.

Behavior
If set to O, the driver’s internal prepared statement pooling is not enabled.

If set to x, the driver’s internal prepared statement pooling is enabled and the driver uses the specified value
to cache up to that many prepared statements created by an application. If the value set for this property is
greater than the number of prepared statements that are used by the application, all prepared statements that
are created by the application are cached. Because CallableStatement is a sub-class of PreparedStatement,
CallableStatements also are cached.

Notes
* MaxStatements can be used as an alias for MaxPooledStatements.

* When you enable statement pooling, your applications can access the Statement Pool Monitor directly with
DataDirect-specific methods. However, you can also enable the Statement Pool Monitor as a JMX MBean.
To enable the Statement Pool Monitor as an MBean, statement pooling must be enabled with
MaxPooledStatements and the Statement Pool Monitor MBean must be registered using the
RegisterStatementPoolMonitorMBean connection property.

Example

If the value of this property is set to 20, the driver caches the last 20 prepared statements that are created by
the application.

Data source method

set MaxPool edSt at enent s

Default
0

Data type
Int

232 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

MultiSubnetFailover

See also
* Statement Pool Monitor on page 131
* Performance considerations on page 75

* RegisterStatementPoolMonitorMBean on page 238

MultiSubnetFailover

Purpose

Determines whether the driver attempts parallel connections to the failover IP addresses of an Availability
Group during initial connection or a multi-subnet failover. When MultiSubnetFailover is enabled, the driver
simultaneously attempts to connect to all IP addresses associated with the Availability Group listener when
establishing an initial connection or reconnecting after a connection is broken or the listener IP address becomes
unavailable. The first IP address to successfully respond to the request is used for the connection. Using
parallel-connection attempts offers improved response time over traditional failover, which attempts to connect
to alternate servers one at a time.

Valid values

true|fal se

Behavior

If settot r ue, the driver attempts parallel connections to all failover IP addresses in an Availability Group when
establishing an initial connection or reconnecting after a connection is broken or the listener IP address becomes
unavailable. The first IP address to successfully respond to the request is used for the connection. This setting
is only supported when your environment is configured for Always On Availability Groups.

If settof al se, the driver connects to an alternate server or servers as specified by the AlternateServer property
when the primary server is unavailable. Use this setting if your environment is not configured for Always On
Availability Groups.

Notes

* When MultiSubnetFalover is enabled, the virtual network name (VNN) of the availability group listener must
be specified with the ServerName connection property.

* When MultiSubnetFailover is enabled, the driver does not support FailoverMode=sel ect . If
MultiSubnetFailover=t r ue and FailoverMode=sel ect , the driver downgrades the FailoverMode to ext ended
and provides the following warning.

fail over Mbde=sel ect is not supported for Al waysOn Availability G oup,
downgr aded to fail over Mode=ext ended

* When MultiSubnetFailover is enabled, the ConnectionRetryDelay connection property is ignored.

¢ |f MultiSubnetFailover is enabled and the connection attempt fails, the driver will attempt to connect two
more times, regardless of the ConnectionRetryCount setting.

¢ When MultiSubnetFailover is enabled, the value of the LoginTimeout property is 15 seconds by default.
When LoginTimeout is set to 0 (zero), the driver will still timeout requests after 15 seconds. However, when
the value of LoginTimeout is an integer greater than 0 (zero), the driver will timeout requests for the specified
duration.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 233

Chapter 4: Connection property descriptions

Data source method

set Mul ti Subnet Fai | over

Default

fal se

Data type

Boolean

See also
¢ Always On Availability Groups on page 100

* Using failover on page 92

NetAddress

Purpose

The Media Access Control (MAC) address of the network interface card of the application connecting to Microsoft
SQL Server. This value is stored in the net_address column of the sys.sysprocesses table.

Valid values
string

where:
string

is @ maximum of 12 alphanumeric characters.

Data source method
set Net Addr ess

Default
000000000000

Data type
String

PacketSize

Purpose

Determines the number of bytes for each database protocol packet that is transferred from the database server
to the client machine (Microsoft SQL Server refers to this packet as a network packet).

234 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

PacketSize

Adjusting the packet size can improve performance. The optimal value depends on the typical size of data that
is inserted, updated, or returned by the application and the environment in which it is running. Typically, larger
packet sizes work better for large amounts of data. For example, if an application regularly returns character

values that are 10,000 characters in length, using a value of 32 (16 KB) typically results in improved performance.

Valid values
-1]10]|x

where:
X

is an integer from 1 to 128 that represents a number of bytes.

Behavior
If set to - 1, the driver uses the maximum packet size that the database server accepts.
If set to O, the driver uses the default packet size configured on the database server.

If set to x, the driver uses a packet size that is calculated using the specified value multiplied by 512.

Notes

¢ |f SSL encryption is enabled using the EncryptionMethod property, any value set for the PacketSize property
is ignored.

¢ |f your application sends queries that only retrieve small result sets, you may want to use a packet size that
is smaller than the maximum packet size that is configured on the database server. If a result set that
contains only one or two rows of data does not completely fill a larger packet, performance will not improve
by setting the value to the maximum packet size.

Example
If PacketSize=8, the packet size is set to 8 * 512 bytes (4096 bytes).

Data source method

set Packet Si ze

Default
-1

Data type
Int

See also

Performance considerations on page 75

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 235

Chapter 4: Connection property descriptions

Password

Purpose

Specifies a password that is used to connect to the database or instance.

Valid values
string

where
string
is a valid password. The password is case-insensitive.

Data source method

set Passwor d

Default

None

Data type
String

See also
¢ Authentication on page 79

* User on page 250

PortNumber

Purpose
Specifies the TCP port of the primary database server that is listening for connections to the database.

Valid values
port

where:
port

is the port number.

Data source method
set Port Nunber

236 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ProgramID

Default
1433

Data type
Int

ProgramlID

Purpose

The driver name and version information on the client to be stored in the database. This property sets the
hostprocess column in the sysprocesses table.

Valid values
string
where:

string

is a value that identifies the product and version of the driver on the client.

Example
DDJ04200

Notes

HostProcess can be used as an alias for ProgramiD.

Data source method
set Program D

Default
Empty string

Data type
String

See also
* Using client information on page 104

¢ Client information properties on page 68

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 237

Chapter 4: Connection property descriptions

QueryTimeout

Purpose

Sets the default query timeout (in seconds) for all statements that are created by a connection.

Valid values
-1]10]x
where:

X

is a number of seconds.

Behavior

If set to - 1, the query timeout functionality is disabled. The driver silently ignores calls to the
Statement.setQueryTimeout() method.

If set to O, the default query timeout is infinite (the query does not time out).

If set to x, the driver uses the value as the default timeout for any statement that is created by the connection.
To override the default timeout value set by this connection option, call the Statement.setQueryTimeout()
method to set a timeout value for a particular statement.

Data source method
set Quer yTi meout

Default
0

Data type

Int

See also
¢ Timeouts on page 117

¢ Timeout properties on page 66

RegisterStatementPoolMonitorMBean

Purpose

Registers the Statement Pool Monitor as a JIMX MBean when statement pooling has been enabled with
MaxPooledStatements. This allows you to manage statement pooling with standard JMX API calls and to use
JMX-compliant tools, such as JConsole.

238 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSetMetaDataOptions

Valid values

true|fal se

Behavior

If setto t r ue, the driver registers an MBean for the statement pool monitor for each statement pool. This gives
applications access to the Statement Pool Monitor through JMX when statement pooling is enabled.

If setto f al se, the driver does not register an MBean for the statement pool monitor for any statement pool.

Notes

Registering the MBean exports a reference to the Statement Pool Monitor. The exported reference can prevent
garbage collection on connections if the connections are not properly closed. When garbage collection does
not take place on these connections, out of memory errors can occur.

Data source method

set Regi st er St at enent Pool Moni t or MBean

Default

fal se

Data type

Boolean

See also
* Statement Pool Monitor on page 131

* MaxPooledStatements on page 232

ResultSetMetaDataOptions

Purpose

Determines whether the driver returns table name information in the ResultSet metadata for Select statements.

Valid values
0]1

Behavior

If set to 0 and the ResultSetMetaData.getTableName() method is called, the driver does not perform additional
processing to determine the correct table name for each column in the result set. The getTableName() method
may return an empty string for each column in the result set.

If setto 1 and the ResultSetMetaData.getTableName() method is called, the driver performs additional processing
to determine the correct table name for each column in the result set. The driver returns schema name and
catalog name information when the ResultSetMetaData.getSchemaName() and
ResultSetMetaData.getCatalogName() methods are called if the driver can determine that information.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 239

Chapter 4: Connection property descriptions

Data source method
set Resul t Set Met aDat aOpt i ons

Default
0

Data type
Int

See also

Performance considerations on page 75

SelectMethod

Purpose

A hint to the driver that determines whether the driver requests a database cursor for Select statements.
Performance and behavior of the driver are affected by this property, which is defined as a hint because the
driver may not always be able to satisfy the requested method.

Valid values

direct |cursor

Behavior

If setto di r ect, the database server sends the complete result set in a single response to the driver when
responding to a query. A server-side database cursor is not created if the requested result set type is a
forward-only result set. Typically, responses are not cached by the driver. Using this method, the driver must
process the entire response to a query before another query is submitted. If another query is submitted (using
a different statement on the same connection, for example), the driver caches the response to the first query
before submitting the second query. Typically, the direct method performs better than the cursor method.

If set to cur sor, a server-side cursor is requested. When returning forward-only result sets, the rows are
returned from the server in blocks. The setFetchSize() method can be used to control the number of rows that
are returned for each request when forward-only result sets are returned. Performance tests show that, when
returning forward-only result sets, the value of Statement.setFetchSize() significantly impacts performance.
There is no simple rule for determining the setFetchSize() value that you should use. We recommend that you
experiment with different setFetchSize() values to determine which value gives the best performance for your
application. The cursor method is useful for queries that produce a large amount of data, particularly if multiple
open result sets are used.

Notes

SelectMethod=cur sor is not supported for Microsoft Azure Synapse Analytics or Microsoft Analytics Platform
System. For these environments, the database server sends the complete result set in a single response to
the driver when responding to a query, and a server-side cursor is not created.

Data source method
set Sel ect Met hod

240

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ServerName

Default

direct

Data type
String

See also

Performance considerations on page 75

ServerName

Purpose

Specifies the name or IP address of the server to which you want to connect.

Valid values
| P_address | naned_server | naned_i nstance |vi rtual _network_nane

where:
| P_address

is the IP address of the server to which you want to connect. For example, you can enter
199. 226. 224. 34.The IP address can be specified in either IPv4 or IPv6 format, or a combination
of the two. See Using IP addresses on page 106 for details about these formats.

naned_server

is the named server address of the server to which you want to connect. For example, you can enter
My Ser ver .

naned_i nst ance
is a named instance of Microsoft SQL Server. The named instance should be specified as
server _nane\\i nst ance_nane, where server _nane is the IP address and i nst ance_nane
is the name of the instance to which you want to connect on the specified server. For example,
server 1\ \i nstancel.

vi rtual _net wor k_nane

is the virtual network name (VNN) of the availability group listener when using an Always On
Availability Group.

Data source method

set Ser ver Nanme

Default

None

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 241

Chapter 4: Connection property descriptions

Data type
String

See also

Connecting to named instances on page 77

ServicePrincipalName

Purpose

Specifies the service principal name to be used for Kerberos authentication.

Valid Values
Servi cePri nci pal Name

where:
Servi cePri nci pal Name
is the four-part service principal name registered with the key distribution center (KDC).

Specify the service principal name using the following format.
Servi ce_Nane/ Ful | y_Qual i fi ed_Donmai n_Nane: Port _Nunber GREALM COM

where:
Servi ce_Name

is the name of the service hosting the instance. The Ser vi ce_Nane for Microsoft SQL Server is
MBSQLSvec.

Ful 'y _Qualified Domai n_Name

is the fully qualified domain name (FQDN) of the host machine. This value must match the FQDN
registered with the KDC. The FQDN consists of a host name and a domain name. For the example
nmyserver. exanpl e. com nyser ver is the host name and exanpl e. comis the domain name.

Port Nunber
is the port number as specified by the PortNumber property.
REALM COM

is the domain name of the host machine. This value is optional. If no value is specified, the default
domain is used. The domain must specified in upper-case characters. For example, EXAMPLE. COM
For Windows Active Directory, the Kerberos realm name is the Windows domain name.

Example

The following is an example of a valid service principal name:

MSSQLSvc/ nmyserver . exanpl e. com 1433@EXAMPLE. COM

242 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

SnapshotSerializable

Notes
* The driver builds a service principal name in the following manner.
e NMBSQLSvc is used as the service name.
* The value of the ServerName property is used as the FQDN.
* The PortNumber property specifies the port number that is used.
* The default realm in the kr b5. conf file is used as the realm name.
¢ If the default does not match the service principal name registered with the KDC, then you can specify the
value of the service principal name registered with the KDC.

* In a Kerberos configuration, an IP address cannot be used as a FQDN.

Data Source Method

set Servi cePri nci pal Nane

Default

Driver builds value based on environment

Data type
String

See also
* Authentication on page 79
* AuthenticationMethod on page 201

* Configuring the driver for Kerberos authentication on page 81

SnapshotSerializable

Purpose
Allows your application to use Snapshot Isolation for connections.

This property is useful for applications that have the Serializable isolation level set. Using the
SnapshotSerializable property allows you to use Snapshot Isolation with no or minimum code changes. If you
are developing a new application, you may find that using the constant TRANSACTION_SNAPSHOT is a better
choice.

Valid values

true|fal se

Behavior

If set to t r ue and your application has the transaction isolation level set to Serializable, the application uses
Snapshot Isolation for connections.

If setto f al se and your application has the transaction isolation level set to Serializable, the application uses
the Serializable isolation level.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 243

Chapter 4: Connection property descriptions

Notes

To use Snapshot Isolation, your database also must be configured for Snapshot Isolation.

Data source method

set Snapshot Seri al i zabl e

Default

fal se

Data type

Boolean

See also
* |[solation levels on page 109
* Using the Snapshot isolation level on page 109

* Performance considerations on page 75

SpyAttributes

Purpose

Enables DataDirect Spy to log detailed information about calls issued by the driver on behalf of the application.
DataDirect Spy is not enabled by default.

Valid values
(spy_attribute[; spy_attribute]...)

where:
spy_attribute

is any valid DataDirect Spy attribute. See to DataDirect Spy attributes on page 182 for a list of supported
attributes.
Notes

* |If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: | og=(fil e) C:\\tenp\\ spy. | og.

Example

The following value instructs the driver to log all IDBC activity to a file using a maximum of 80 characters for
each line.

(log=(file)/tnp/spy.log;linelimt=80)

Data source method
set SpyAttri butes

244 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

StringlnputParameterType

Default

None

Data type
String

See also
* Tracking JDBC calls with DataDirect Spy on page 180
* DataDirect Spy attributes on page 182

StringlnputParameterType

Purpose

Determines whether the driver sends String input parameters to the database in Unicode or in the default
character encoding of the database.

Valid values

nvar char | varchar

Behavior
If set to nvar char , the driver sends String input parameters to the database in Unicode.

If set to var char , the driver sends String input parameters to the database in the default character encoding
of the database. This value can improve performance because the server does not need to convert Unicode
characters to the default encoding.

Notes

If a value is specified for the CodePageOverride property and this property is set to nvar char, this property
is ignored and a warning is generated.

Data source method

set St ri ngl nput Par anet er Type

Default

nvar char

Data type
String

See also

Performance considerations on page 75

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 245

Chapter 4: Connection property descriptions

StringOutputParameterType

Purpose

Determines whether the driver sends String output parameters to the database server in Unicode or in the
default character encoding of the database.

Valid values

nvar char | varchar

Behavior

If set to nvar char, the driver sends String output parameters to the database as nvarchar(4000). Use this
value when all output parameters that are returned in the connection are nchar or nvarchar. If the output
parameters are char or varchar, the driver returns the output parameter value, but the returned value is limited
to 4000 characters.

If setto var char , the driver sends String output parameters to the database as varchar(8000). Use this value
if all output parameters that are returned in the connection are char or varchar. If an output parameter is nchar
or nvarchar, the value may not be returned correctly (for example, if the returned value uses a code page other
than the default encoding).

Data source method
set St ri ngQut put Par anet er Type

Default

nvar char

Data type
String

See also

Performance considerations on page 75

SuppressConnectionWarnings

Purpose

Determines whether the driver suppresses "changed database” and "changed language™ warnings when
connecting to the database server.

Valid values

true|fal se

Behavior

If setto t r ue, warnings are suppressed.

246 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

TransactionMode

If setto f al se, warnings are not suppressed.

Data source method

set Suppr essConnect i on\War ni ngs

Default

fal se

Data type

Boolean

TransactionMode

Purpose

Controls how the driver delimits the start of a local transaction.

Valid values
inmplicit |explicit

Behavior

If settoi npl i cit, the driver uses implicit transaction mode. This means that the database, not the driver,
automatically starts a transaction when a transactionable statement is executed. Typically, implicit transaction
mode is more efficient than explicit transaction mode because the driver does not have to send commands to
start a transaction and a transaction is not started until it is needed. When TRUNCATE TABLE statements are
used with implicit transaction mode, the database may roll back the transaction if an error occurs. If this occurs,
use the explicit value for this property.

If setto expli ci t, the driver uses explicit transaction mode. This means that the driver, not the database
starts a new transaction if the previous transaction was committed or rolled back.

Data source method

set Tr ansact i onMbde

Default
inmplicit

Data type
String

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 247

Chapter 4: Connection property descriptions

TruncateFractionalSeconds

Purpose

Determines whether the driver truncates timestamp values to three fractional seconds. For example, a value
of the datetime2 data type can have a maximum of seven fractional seconds.

Valid values

true|fal se

Behavior
If setto t r ue, the driver truncates all timestamp values to three fractional seconds.

If setto f al se, the driver does not truncate fractional seconds.

Data source method

set Truncat eFracti onal Seconds

Default

true

Data type

Boolean

TrustStore

Purpose

Specifies the directory of the truststore file to be used when SSL is enabled (Encr ypt i onMet hod=SSL) and
server authentication is used. The truststore file contains a list of the Certificate Authorities (CAs) that the client
trusts.

This value overrides the directory of the truststore file that is specified by the javax.net.ssl.trustStore Java
system property. If this property is not specified, the truststore directory is specified by the javax.net.ssl.trustStore
Java system property.

This property is ignored if ValidateServerCertificate=f al se.

Valid values
string

where:
string

is the directory of the truststore file.

248 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

TrustStorePassword

Data source method

set Trust St ore

Default

None

Data type
String

See also
* EncryptionMethod on page 218

¢ ValidateServerCertificate on page 251

TrustStorePassword

Purpose

Specifies the password that is used to access the truststore file when SSL is enabled (Encr ypt i onMet hod=SSL)
and server authentication is used. The truststore file contains a list of the Certificate Authorities (CAs) that the
client trusts.

This value overrides the password of the truststore file that is specified by the javax.net.ssl.trustStorePassword
Java system property. If this property is not specified, the truststore password is specified by the
javax.net.ssl.trustStorePassword Java system property.

This property is ignored if ValidateServerCertificate=f al se.

Valid values
string

where:
string

is a valid password for the truststore file.

Data source method

set Tr ust St or ePasswor d

Default

None

Data type
String

See also
* EncryptionMethod on page 218

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 249

Chapter 4: Connection property descriptions

* ValidateServerCertificate on page 251

User

Purpose

Specifies the user ID for user ID/password authentication or the domain user name for NTLM authentication.

Valid values
[domai n_nane \] user _nane

where:
domai n_nane

is the name of a valid domain server. The name is case-insensitive and optional. If specified, you
must separate the domain name from the user name by a backward slash (\).

user _nane
is a valid user name. It is case-insensitive.

Notes

Only set the domain server name if AuthenticationMethod=nt | nj ava or nt | n2j ava.

Example
Smi t h or DOVAI N1\ Sni t h

Data source method

set User

Default

None

Data type
String

See also
¢ Authentication on page 79

* Password on page 236

250 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

UseServerSideUpdatableCursors

UseServerSideUpdatableCursors

Purpose
Determines whether the driver uses server-side cursors when an updatable result set is requested.

Valid values

true|fal se

Behavior
If setto t r ue, server-side updatable cursors are created when an updatable result set is requested.

If setto f al se, the client-side updatable cursors are created when an updatable result set is requested.

Notes

Server-side updatable cursors are not supported for Microsoft Azure Synapse Analytics or Microsoft Analytics
Platform System.

Data source method
set UseSer ver Si deUpdat abl eCur sors

Default

fal se

Data type

Boolean

See also
* Server-side updatable cursors on page 110

¢ Performance considerations on page 75

ValidateServerCertificate

Purpose

Determines whether the driver validates the certificate that is sent by the database server when SSL encryption
is enabled (Encr ypt i onMet hod=SSL). When using SSL server authentication, any certificate that is sent by
the server must be issued by a trusted Certificate Authority (CA).

Allowing the driver to trust any certificate that is returned from the server even if the issuer is not a trusted CA
is useful in test environments because it eliminates the need to specify truststore information on each client in
the test environment.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 251

Chapter 4: Connection property descriptions

Valid values

true|fal se

Behavior

If setto t r ue, the driver validates the certificate that is sent by the database server. Any certificate from the
server must be issued by a trusted CA in the truststore file. If the HostNamelnCertificate property is specified,
the driver also validates the certificate using a host name. The HostNamelnCertificate property is optional and
provides additional security against man-in-the-middle (MITM) attacks by ensuring that the server the driver is
connecting to is the server that was requested.

If settof al se, the driver does not validate the certificate that is sent by the database server. The driver ignores
any truststore information that is specified by the TrustStore and TrustStorePassword properties or Java system
properties.

Notes

Truststore information is specified using the TrustStore and TrustStorePassword properties or by using Java
system properties.

Data source method

set Val i dat eServerCertificate

Default

true

Data type

Boolean

See also
* EncryptionMethod on page 218

* HostNamelnCertificate on page 224

XATransactionGroup

Purpose

The transaction group ID that identifies any distributed transactions that are initiated by the connection. This
ID can be used for distributed transaction cleanup purposes.

You can use the XAResource.recover method to roll back any transactions left in an unprepared state. When
you call XAResource.recover, any unprepared transactions that match the ID on the connection used to call
XAResource.recover are rolled back.

Valid values
string

where:

252 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

XMLDescribeType

string

is a valid transaction group ID.

Example

If you specify XATr ansact i onG oup=ACCT200 and call XAResource.recover on the same connection, any
transactions that are left in an unprepared state identified by the transaction group ID of ACCT200 are rolled
back.

Data source method

set XATr ansacti onGr oup

Default

None

Data type
String

See also

Distributed transaction cleanup on page 112

XMLDescribeType

Purpose
Determines whether the driver maps XML data to the LONGVARCHAR or LONGVARBINARY data type.

Valid values

| ongvar char || ongvar bi nary

Behavior
If setto | ongvar char, the driver maps XML data to the LONGVARCHAR data type.
If setto | ongvar bi nary, the driver maps XML data to the LONGVARBINARY data type.

Data source method
set XM_Descri beType

Default

None

Data type
String

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 253

Chapter 4: Connection property descriptions

See also
* Returning and inserting/updating XML data on page 100
¢ Data type handling properties on page 64

254 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Troubleshooting

This section provides information that can help you troubleshoot problems when they occur.

For details, see the following topics:

Troubleshooting your application
Troubleshooting connection pooling
Troubleshooting statement pooling

Configuring logging

Troubleshooting your application

To help you troubleshoot any problems that occur with your application, you can use DataDirect Spy to log
detailed information about calls issued by the drivers on behalf of your application. When you enable DataDirect
Spy for a connection, you can customize DataDirect Spy logging by setting one or multiple options. See "Tracking
JDBC calls with DataDirect Spy" for information about using DataDirect Spy and instructions on enabling and
customizing logging.

See also
Tracking JDBC calls with DataDirect Spy on page 180

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 255

Chapter 5: Troubleshooting

Turning on and off DataDirect Spy logging

Once DataDirect Spy logging is enabled for a connection, you can turn on and off the logging at runtime using
the setEnableLogging() method in the com.ddtek.jdbc.extensions.ExtLogControl interface. When DataDirect
Spy logging is enabled, all Connection objects returned to an application provide an implementation of the
ExtLogControl interface.

The following code example shows how to turn off logging using setEnableLogging(false).
i mport com ddt ek. j dbc. ext ensi ons. *

/| Cet Database Connection
Connecti on con = Driver Manager. get Connecti on
("jdbc: datadirect:sql server://MServer: 1433; User =TEST; Passwor d=secr et ;
SpyAttributes=(log=(file)/tnp/spy.log");

((Ext LogControl) con). set Enabl eLoggi ng(fal se);

The setEnableLogging() method only turns on and off logging if DataDirect Spy logging has already been
enabled for a connection; it does not set or change DataDirect Spy attributes. See "Enabling DataDirect Spy"
for information about enabling and customizing DataDirect Spy logging.

See also
Enabling DataDirect Spy on page 180

DataDirect Spy log example

This section provides information to help you understand the content of your own DataDirect Spy logs.

For example, suppose your application executes the following code and performs some operations:

Cl ass. for Name(" com ddt ek. j dbc. sql server. SQLServerDriver");

Dri ver Manager . get Connecti on("j dbc: dat adi rect: sql server://nc-nyserver\

\'sql server 2005; useSer ver Si deUpdat abl eCur sor s=true; r esul t set Met aDat aOpt i ons=1;
sendSt ri ngPar anet er sAsUni code=t r ue; al waysReport Tri gger Resul t s=f al se;
spyAttributes=(log=(file)c:\\tenp\\spy.log)","test04", "test04");

The log file generated by DataDirect Spy would look similar to the following example. Notes provide explanations
for the referenced text.

spy>> Connecti on[1] . get Met aDat a()
spy>> OK (Dat abaseMet aDat a[1])

spy>> Dat abaseMet aDat a[1] . get URL()

spy>> K

(j dbc: dat adi rect: sqgl server://nc-nyserver\sql server2005: 1433; CONNECTI ONRETRYCOUNT=5;

RECE] VESTR NGPARAMETERTYPE=nvar char ; ALTERNATESERVERS=, DATABASENAME=; PACKETSI ZE=16; | N Tl ALI ZATI ONSTR NG=;
ENABLECANCELTI MEOUT=f al se; BATCHPERFORVANCEWORKAROUND=f al se; AUTHENT| CATI ONMETHOD=aut o;
SENDSTR NGPARAMETERSASUNI CCDE=t r ue; LOG NTI MEQUT=0; WAl D=; SPYATTR BUTES=(| og=(fil e)c:\tenp\spy.|og);
RESULTSETMETADATAOPTI ONS=1; ALWAYSREPORTTRI GGERRESULTS=f al se; TRANSACTI ONMODE=i npl i ci t;
USESERVERSI DEUPDATABLECURSORS=t r ue; SNAPSHOTSERI ALI ZABLE=f al se; JAVADOUBLETOSTRI NG=f al se;
SELECTMETHCD=di r ect ; LOADLI BRARYPATH=; CONNECTI ONRETRYDELAY=1; | NSENS| TI VERESULTSETBUFFERSI ZE=2048;
MAXPOOLEDSTATEMENTS=0; DESCRI BEPARAMETERS=noDescr i be; CODEPAGEOVERRI DE=; NETADDRESS=000000000000;
PROGRAMNANE=; L OADBALANCI NG=f al se; HOSTPROCESS=0) °

spy>> Dat abaseMet aDat a[1] . get Dri ver Name()

spy>> OK (SQ.Server)

spy>> Dat abaseMet aDat a[1] . get Dri ver Ver si on()
spy>> OK (3.60.0 (000000.000000. 000000))

® The combination of the URL specified by the application and the default values of all connection properties not specified.

256

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Troubleshooting your application

spy>> Dat abaseMet aDat a[1] . get Dat abasePr oduct Name()
spy>> OK (Mcrosoft SQ Server)

spy>> Dat abaseMet aDat a[1] . get Dat abasePr oduct Ver si on()
spy>> OK (M crosoft SQ Server Yukon - 9.00.1399)

spy>> Connection Options :1°

spy>> CONNECT| ONRETRYCOUNT=5

spy>> RECEI VESTRI NGPARAMETERTYPE=nvar char
spy>> ALTERNATESERVERS=

spy>> DATABASENAME=

spy>> PACKETSI ZE=16

spy>> I NI TI ALI ZATI ONSTRI NG=

spy>> ENABLECANCELTI MEQUT=f al se

spy>> BATCHPERFORMANCEWORKAROUND=f al se
spy>> AUTHENTI CATI ONMETHOD=aut o

spy>> SENDSTRI NGPARAMETERSASUNI CODE=t r ue
spy>> LOG NTI MEQUT=0

spy>> WSl D=

spy>> SPYATTRI BUTES=(1 og=(file)c:\tenp\spy. | o0g)
Spy>> RESULTSETMETADATAOPTI ONS=1

spy>> ALWAYSREPORTTRI GGERRESULTS=f al se
spy>> TRANSACTI ONMODE=i npl i ci t

spy>> USESERVERS| DEUPDATABLECURSORS=t r ue
spy>> SNAPSHOTSERI ALI ZABLE=f al se

spy>> JAVADOUBLETOSTRI NG=f al se

spy>> SELECTMETHOD=di r ect

spy>> LOADLI BRARYPATH=

spy>> CONNECT! ONRETRYDELAY=1

spy>> | NSENSI TI VERESULTSETBUFFERSI ZE=2048
spy>> MAXPOOLEDSTATEMENTS=0

spy>> DESCRI BEPARAMETERS=noDescr i be

spy>> CODEPAGEOVERRI DE=

spy>> NETADDRESS=000000000000

spy>> PROGRAMNANME=

spy>> LOADBALANCI NG=f al se

spy>> HOSTPROCESS=0

spy>> Driver Nanme = SQLServer !

spy>> Driver Version = 3.60.0 (000000.000000. 000000) *2
spy>> Dat abase Nane = Mcrosoft SQL Server?!®
spy>> Database Version = Mcrosoft SQL Server Yukon - 9.00.1399'4
spy>> Connecti on[1] . get War ni ngs()

spy>> OK®spy>> Connection[1].createStat enent
spy>> K (Statenent[1])

spy>> Statenment[1].executeQuery(String sql)

spy>> sql = sel ect enpno,enane,job fromenp where enpno=7369
spy>> OK (Resul tSet[1])?

spy>> Resul t Set[1] . get Met aDat a(g

spy>> OK (Resul t Set Met aDat a[1]) %’

spy>> Resul t Set Met aDat a[1] . get Col unmCount ()

spy>> K (3) 18

spy>> Resul t Set Met aDat a[1] . get Col utmLabel (i nt col um)

spy>> colum =1

spy>> OK (EMPNO) ®spy>> Resul t Set Met aDat a[1] . get Col utmLabel (i nt col urm)
spy>> colum = 2

spy>> OK (ENAME) 20

spy>> Resul t Set Met aDat a[1] . get Col unmLabel (i nt col um)

10
11
12
13
14
15
16
17
18
19
20

The combination of the connection properties specified by the application and the default values of all connection properties not specified.
The name of the driver.

The version of the driver.

The name of the database server to which the driver connects.

The version of the database to which the driver connects.

The application checks to see if there are any warnings. In this example, no warnings are present.
The statement SELECT empno,ename,job FROM emp WHERE empno=7369 is created.

Some metadata is requested.

Some metadata is requested.

Some metadata is requested.

Some metadata is requested.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 257

Chapter 5: Troubleshooting

spy>> colum =_3

spy>> OK (JOB) Zspy>> Resul t Set[1] . next ()
spy>> OK (true)??

spy>> ResultSet[1].getString(int columml ndex)
spy>> columlndex = 1

spy>> OK (7369) 23

spy>> ResultSet[1].getString(int columlndex)
spy>> col uml ndex = 2

spy>> OK (SM TH) 2*

spy>> ResultSet[1].getString(int columl ndex)
spy>> col uml ndex = 3

spy>> OK (CLERK) 25

spy>> Resul t Set [14 . next ()

spy>> OK ;fal se) 2°spy>> Resul t Set [1] . cl ose()
spy>> OK?

spy>> Connection[1]. cl ose()

spy>> Ok?®

Troubleshooting connection pooling

Connection pooling allows connections to be reused rather than created each time a connection is requested.
If your application is using connection pooling through the DataDirect Connection Pool Manager, you can
generate a trace file that shows all the actions taken by the Pool Manager. See "Connection Pool Manager"
for information about using the Pool Manager.

See also
Connection Pool Manager on page 117

Enabling tracing with the setTracing method

You can enable Pool Manager logging by calling set Tr aci ng(t r ue) onthe Pool edConnect i onDat aSour ce
connection. To disable tracing, call set Tr aci ng(f al se) on the connection.

By default, the DataDirect Connection Pool Manager logs its pool activities to the standard output Syst em out .
You can change where the Pool Manager trace information is written by calling the set LogW i t er () method
on the Pool edConnect i onDat aSour ce connection.

Pool Manager trace file example

The following example shows a DataDirect Connection Pool Manager trace file. Notes provide explanations
for the referenced text to help you understand the content of your own Pool Manager trace files.

j dbc/ SQLSer ver NCvar kBPool : *** Connecti onPool Created
(j dbc/ SQ.Ser ver NCvar kBPool ,
com ddt ek. j dbcx. sql server. SQ.Ser ver Dat aSour ce@835282, 5, 5, 10, scott) 29

21
22
23
24
25
26
27
28
29

Some metadata is requested.

The first row is retrieved and the application retrieves the result values.

The first row is retrieved and the application retrieves the result values.

The first row is retrieved and the application retrieves the result values.

The first row is retrieved and the application retrieves the result values.

The application attempts to retrieve the next row, but only one row was returned for this query.

After the application has completed retrieving result values, the result set is closed.

The application finishes and disconnects.

The Pool Manager creates a connection pool. In this example, the characteristics of the connection pool are shown using the following format:

258

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Troubleshooting connection pooling

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 0.
j dbc/ SQLSer ver NCMVar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Enf orced ni ni mum 3°

Nr Fr eeConnecti ons was: O

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 5.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 5.

j dbc/ SQLSer ver NCMar kBPool : Reused free connection. 3!

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 5.

j dbc/ SQLSer ver NCvar kBPool : Number free connections = 4.

j dbc/ SQLSer ver NCvar kBPool : Reused free connecti on.

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 5.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 3.

j dbc/ SQLSer ver NCvar kBPool : Reused free connecti on.

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 5.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 2.

j dbc/ SQLSer ver NCvar kBPool : Reused free connecti on.

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 5.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 1.

j dbc/ SQLSer ver NCvar kBPool : Reused free connecti on.

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 5.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 0.

j dbc/ SQLSer ver NCMar kBPool : Creat ed new connecti on. %2

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 6.
j dbc/ SQLSer ver NCMVar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Creat ed new connecti on.

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 7.
j dbc/ SQLSer ver NCVar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Creat ed new connecti on.

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 8.
j dbc/ SQLSer ver NCVar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Creat ed new connecti on.

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 9.
j dbc/ SQLSer ver NCMVar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Creat ed new connecti on.

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 10.

j dbc/ SQLSer ver NCMVar kBPool : Nunber free connections = 0.

(JNDI _nane,Dat aSour ce_cl ass,initial _pool _sizenm n_pool _sizenmax_pool _si ze,
user)

where:
JNDI _nane is the JNDI name used to look up the connection pool (for example, jdbc/SQLServerNCMarkBPool).

Dat aSour ce_cl ass is the DataSource class associated with the connection pool (for example
com.ddtek.jdbcx.sqlserver.SQLServerDataSource).

i nitial_pool _si ze isthe number of physical connections created when the connection pool is initialized (for example, 5).
m n_pool _Si Z e is the minimum number of physical connections be kept open in the connection pool (for example, 5).

max_pool _si ze is the maximum number of physical connections allowed within a single pool at any one time. When this number is
reached, additional connections that would normally be placed in a connection pool are closed (for example, 10).

user isthe name of the user establishing the connection (for example, scott).

The Pool Manager checks the pool size. Because the minimum pool size is five connections, the Pool Manager creates new connections to
satisfy the minimum pool size.
Y The driver requests a connection from the connection pool. The driver retrieves an available connection.

32 The driver requests a connection from the connection pool. Because a connection is unavailable, the Pool Manager creates a new connection
for the request.

30

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 259

Chapter 5: Troubleshooting

j dbc/ SQLSer ver NCVvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
Nr Fr eeConnecti ons was: 11
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
Nr Fr eeConnecti ons was: 11
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCvar kBPool :

j dbc/ SQLSer ver NCvar kBPool :
Nr Fr eeConnecti ons was: 10
j dbc/ SQLSer ver NCvar kBPool :
j dbc/ SQLSer ver NCMvar kBPool :

33
34

35

Creat ed new connecti on.
Nurber pool ed connecti ons
Nunber free connections =

Connecti on was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =

Connection was cl osed and
Nunmber pool ed connecti ons
Nunmber free connections =
Enforced ni ni mum 34

Nunber
Nunber

pool ed connecti ons
free connections =

Enforced maxi mum 3°

Nunber
Nunber

pool ed connecti ons
free connections =

Enforced m ni nunl

Nunber
Nunber

pool ed connections
free connections =

A connection is closed by the application and returned to the connection pool.

The Pool Manager checks the pool size. Because the number of connections in the connection pool is greater than the minimum pool size,

five connections, no action is taken by the Pool Manager.

The Pool Manager checks the pool size. Because the number of connections in the connection pool is greater than the maximum pool size,

10 connections, a connection Is closed and discarded from the pool.

= 11.
0.

to

to

to

to

to

to

to

to

to

to

to

t he

t he

t he

t he

t he

t he

t he

t he

t he

t he

t he

cache. 33

cache.

cache.

cache.

cache.

cache.

cache.

cache.

cache.

cache.

cache.

260

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Troubleshooting connection pooling

j dbc/ SQLSer ver NCMar kBPool : Enf orced maxi mum

Nr FreeConnecti ons was: 10

j dbc/ SQLSer ver NCMVar kBPool : Nunber pool ed connections = 10.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 10.

j dbc/ SQLSer ver NCvar kBPool : Enforced m ni num

Nr Fr eeConnecti ons was: 10

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 10.
j dbc/ SQLSer ver NCMar kBPool : Nunber free connections = 10.

j dbc/ SQLSer ver NCvar kBPool : Enf orced maxi nuni

Nr Fr eeConnecti ons was: 10

j dbc/ SQLSer ver NCMar kBPool : Nunber pool ed connections = 10.
j dbc/ SQLSer ver NCvar kBPool : Nunber free connections = 10.

j dbc/ SQLSer ver NCMar kBPool : Dunped free connecti on. %6
j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 9.
j dbc/ SQLSer ver NCvar kBPool : Nunber free connections = 9.

j dbc/ SQLSer ver NCMvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 8.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 8.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 7.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 7.

j dbc/ SQLSer ver NCMvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 6.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 6.

j dbc/ SQLSer ver NCMvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 5.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 5.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 4.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 4.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 3.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 3.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 2.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 2.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 1.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 1.

j dbc/ SQLSer ver NCvar kBPool : Dunped free connecti on.

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 0.
j dbc/ SQ.Ser ver NCvar kBPool : Nunber free connections = 0.

j dbc/ SQLSer ver NCMar kBPool : Enf or ced ni ni mum 37

Nr Fr eeConnecti ons was: O

j dbc/ SQLSer ver NCvar kBPool : Number pool ed connections = 5.

j dbc/ SQLSer ver NCvar kBPool : Nunber free connections = 5.

j dbc/ SQLSer ver NCvar kBPool : Enf orced maxi muni
Nr FreeConnecti ons was: 5
j dbc/ SQLSer ver NCvar kBPool : Nunber pool ed connections = 5.

% The Pool Manager detects that a connection was idle in the connection pool longer than the maximum idle timeout. The idle connection is

closed and discarded from the pool.
The Pool Manager detects that the number of connections dropped below the limit set by the minimum pool size, five connections. The Pool
Manager creates new connections to satisfy the minimum pool size.

37

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 261

Chapter 5: Troubleshooting

j dbc/ SQLSer ver NCvar kBPool : Number free connections = 5.

j dbc/ SQLSer ver NCvar kBPool : C osing a pool of the group
j dbc/ SQLSer ver NCMar kBPool 38

j dbc/ SQLSer ver NCMar kBPool : Nunber pool ed connections = 5.
j dbc/ SQLSer ver NCvar kBPool : Number free connections = 5.

j dbc/ SQLSer ver NCVar kBPool : Pool ¢l osed®®

j dbc/ SQLSer ver NCVar kBPool : Nunber pool ed connections = 0.

j dbc/ SQLSer ver NCvar kBPool : Nunber free connections = 0.

Troubleshooting statement pooling

Similar to connection pooling, statement pooling provides performance gains for applications that execute the
same SQL statements multiple times in the life of the application. The DataDirect Statement Pool Monitor
provides the following functionality to help you troubleshoot problems that may occur with statement pooling:

* You can generate a statement pool export file that shows you all statements in the statement pool. Each
statement pool entry in the file includes information about statement characteristics such as the SQL text
used to generate the statement, statement type, result set type, and result set concurrency type.

* You can use the following methods of the Ext St at enent Pool Moni t or MBean interface to return useful
information to determine if your workload is using the statement pool effectively:

* The get H t Count method returns the hit count for the statement pool. The hit count should be high
for good performance.

* The get M ssCount method returns the miss count for the statement pool. The miss count should be
low for good performance.

See also
Statement Pool Monitor on page 131

Generating an export file with the exportStatement method

You can generate an export file by calling the export St at enent s method of the
Ext St at enent Pool Moni t or MBean interface. For example, the following code exports the contents of the
statement pool associated with the connection to a file named st nt _export.

Ext St at ement Pool Moni tor nonitor =
((Ext Connection) con). get St at ement Pool Moni tor();
export Statement s(stm _export.txt)

% The Pool Manager closes one of the connection pools in the pool group. A pool group is a collection of pools created from the same

PooledConnectionDataSource call. Different pools are created when different user IDs are used to retrieve connections from the pool. A pool
group is created for each user ID that requests a connection. In our example, because only one user ID was used, only one pool group is
closed.

% The Pool Manager closed all the pools in the pool group. The connection pool is closed.

262 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Configuring logging

Statement pool export file example

The following example shows a sample export file. The footnotes provide explanations for the referenced text
to help you understand the content of your own statement pool export files.

[DDTEK_STMI_POOL] 4°
VERSI ON=14*

[STMI_ENTRY] 42
SQL_TEXT|
| NSERT I NTO enp(id, name) VALUES(?,?)

]

STATEMENT_TYPE=Pr epar ed St at ement
RESULTSET_TYPE=Forward Only
RESULTSET_CONCURRENCY=Read Only
AUTOGENERATEDKEYSREQUESTED=f al se
REQUESTEDKEYCOLUMNS=

[STMI_ENTRY] 43

SQL_TEXT=|

I NSERT | NTO enp(id, nane) VALUES(99, ?)
]

STATEMENT_TYPE=Pr epar ed St at ement
RESULTSET_TYPE=Forward Only

RESULTSET _CONCURRENCY=Read Only

AUTOGENERATEDKEYSREQUESTED=f al se
REQUESTEDKEYCOLUMNS=I d, nane

Configuring logging

You can configure logging using a standard Java properties file that is shipped with your JVM. See "Using the
JVM for logging" for details.

See also
Using the JVM for logging on page 263

Using the JVM for logging

If you want to configure logging using the properties file that is shipped with your JVM, use a text editor to
modify the properties file in your JVM. Typically, this file is named logging.properties and is located in the
JRE/ |'i b subdirectory of your JVM. The JRE looks for this file when it is loading.

You can also specify which properties file to use by setting the java.util.logging.config.file system property. At
a command prompt, enter:

java -Djava.util.logging.config.file=properties_file

where:

A string that identifies the file as a statement pool export file.
The version of the export file.

The first statement pool entry. Each statement pool entry lists the SQL text, statement type, result set type, result set concurrency type, and
generated keys information.

The next statement pool entry.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 263

Chapter 5: Troubleshooting

properties_file

is the name of the properties file you want to load.

264 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

SQL escape sequences for JDBC

Language features, such as outer joins and scalar function calls, are commonly implemented by database
systems. The syntax for these features is often database-specific, even when a standard syntax has been
defined. JDBC defines escape sequences that contain the standard syntax for the following language features:

* Date, time, and timestamp literals
* Scalar functions such as numeric, string, and data type conversion functions
¢ OQuter joins

* Escape characters for wildcards used in LIKE clauses

Note: The Progress DataDirect MongoDB for JDBC driver also supports the custom function escape
CAST_TO_NATIVE.

The escape sequence used by JDBC is:
{ext ensi on}

The escape sequence is recognized and parsed by the drivers, which replaces the escape sequences with
data store-specific grammar.

For details, see the following topics:

* Date, time, and timestamp escape sequences
* Scalar functions
¢ Quter join escape sequences

* LIKE escape character sequence for wildcards

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 265

Chapter 6: SQL escape sequences for JDBC

* Procedure call escape sequences

Date, time, and timestamp escape sequences

The escape sequence for date, time, and timestamp literals is:
{literal -type 'value'}

where:
literal -type

is one of the following:

literal-type Description Value Format
d Date yyyy- nm dd
t Time hh: mm ss []
ts Timestamp yyyy-mmdd hh:mmss[.f...]
Example:

UPDATE Orders SET OpenDate={d '1995-01-15'} WHERE Order| D=1023

Scalar functions

You can use scalar functions in SQL statements with the following syntax:
{fn scal ar-function}

where:
scal ar-function

is a scalar function supported by the driver as indicated in the following table.

Example:
SELECT id, nanme FROM enp WHERE nane LIKE {fn UCASE('Smith')}

Note: See Azure Synapse Analytics and Analytics Platform System on page 77 for information on the scalar
functions supported in Azure Synapse Analytics and Analytics Platform System environments.

Table 19: Supported scalar functions

String functions Numeric Timedate functions System functions
functions
ASCII ABS DAYNAME DATABASE

266

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Outer join escape sequences

String functions Numeric Timedate functions System functions
functions
CHAR ACOS DAYOFMONTH IFNULL
CONCAT ASIN DAYOFWEEK USER
DIFFERENCE ATAN DAYOFYEAR
INSERT ATAN2 EXTRACT
LCASE CEILING HOUR
LEFT COos MINUTE
LENGTH CoT MONTH
LOCATE DEGREES MONTHNAME
LTRIM EXP NOW
REPEAT FLOOR QUARTER
REPLACE LOG SECOND
RIGHT LOG10 TIMESTAMPADD
RTRIM MOD TIMESTAMPDIFF
SOUNDEX PI WEEK
SPACE POWER YEAR
SUBSTRING RADIANS
UCASE RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

Outer join escape sequences

JDBC supports the SQL-92 left, right, and full outer join syntax. The escape sequence for outer joins is:

{oj outer-join}

where:

outer-join

istabl e-reference {LEFT | RIGHT | FULL} OUTER JO N {tabl e-reference |
outer-join} ON search-condition

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 267

Chapter 6: SQL escape sequences for JDBC

tabl e-ref erence
is a database table name.
search-condi tion
is the join condition you want to use for the tables.

Example:

SELECT Custoners. Custl D, Custoners.Nane, Oders.OderlD, Oders. Status
FROM {0j Custoners LEFT OQUTER JO N
Orders ON Custoners. Cust| D=Orders. Cust | D}
WHERE O ders. St at us=" OPEN

The driver supports the following outer join escape sequences:
¢ Left outer joins

* Right outer joins

¢ Full outer joins

* Nested outer joins

LIKE escape character sequence for wildcards

You can specify the character to be used to escape wildcard characters (% and _, for example) in LIKE clauses.

Note: Escape characters are not supported for Azure Synapse Analytics and Analytics Platform System.

The escape sequence for escape characters is:
{escape 'escape-character'}

where:
escape-character
is the character used to escape the wildcard character.

For example, the following SQL statement specifies that an asterisk (*) be used as the escape character in the
LIKE clause for the wildcard character %:

SELECT col1 FROM tabl el WHERE col 1 LIKE ' *%% {escape '*'}

Procedure call escape sequences

A procedure is an executable object stored in the data store. Generally, it is one or more SQL statements that
have been precompiled. The escape sequence for calling a procedure is:

{[?=] call procedure-nane[(paraneter[, paranmeter]...)]}

where:

268 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Procedure call escape sequences

procedur e- nane
specifies the name of a stored procedure.
par anet er

specifies a stored procedure parameter.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 269

Chapter 6: SQL escape sequences for JDBC

270 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

JDBC support

Progress DataDirect for JDBC drivers are compatible with JDBC 2.0, 3.0, 4.0, 4.1, and 4.2. The following topics
describe support for JDBC interfaces and methods across the JDBC driver product line. Support for JDBC
interfaces and methods depends, in part, on which driver you are using.

For details, see the following topics:

Array

Blob

CallableStatement

Clob

Connection
ConnectionEventListener
ConnectionPoolDataSource
DatabaseMetaData
DataSource

Driver
ParameterMetaData
PooledConnection
PreparedStatement

Ref

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

271

Chapter 7: JIDBC support

* ResultSet

* ResultSetMetaData

* RowSet

* SavePoint

e Statement

* StatementEventListener
e Struct

* XAConnection

¢ XADataSource

* XAResource

Array

Array Methods Version Supported Comments
Introduced
void free() 4.0 Yes
Object getArray() 2.0 Core Yes
Object getArray(map) 2.0 Core Yes The drivers ignore the map argument.
Object getArray(long, int) 2.0 Core Yes
Object getArray(long, int, map) 2.0 Core Yes The drivers ignore the map argument.
int getBaseType() 2.0 Core Yes
String getBaseTypeName() 2.0 Core Yes
ResultSet getResultSet() 2.0 Core Yes
ResultSet getResultSet(map) 2.0 Core Yes The drivers ignore the map argument.
ResultSet getResultSet(long, int) 2.0 Core Yes
ResultSet getResultSet(long, int, map) 2.0 Core Yes The drivers ignore the map argument.

272 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Blob

Blob

Blob Methods

Version
Introduced

Supported

Comments

void free()

4.0

Yes

InputStream getBinaryStream()

2.0 Core

Yes

The drivers support using data types that
map to the IDBC LONGVARBINARY data

type.

byte[] getBytes(long, int)

2.0 Core

Yes

The drivers support using data types that
map to the IDBC LONGVARBINARY data

type.

long length()

2.0 Core

Yes

The drivers support using data types that
map to the IDBC LONGVARBINARY data

type.

long position(Blob, long)

2.0 Core

Yes

The Informix driver requires that the pattern
parameter (which specifies the Blob object
designating the BLOB value for which to
search) be less than or equal to a maximum
value of 4096 bytes.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

long position(byte[], long)

2.0 Core

Yes

The Informix driver requires that the pattern
parameter (which specifies the byte array
for which to search) be less than or equal
to a maximum value of 4096 bytes. All other
drivers support using data types that map
to the JDBC LONGVARBINARY data type.

OutputStream setBinaryStream(long)

3.0

Yes

The drivers support using data types that
map to the IDBC LONGVARBINARY data

type.

int setBytes(long, bytel[])

3.0

Yes

The drivers support using data types that
map to the JIDBC LONGVARBINARY data

type.

int setBytes(long, byte[], int, int)

3.0

Yes

The drivers support using data types that
map to the JIDBC LONGVARBINARY data

type.

void truncate(long)

3.0

Yes

The drivers support using data types that
map to the IDBC LONGVARBINARY data

type.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

273

Chapter 7: JIDBC support

CallableStatement

CallableStatement Methods

Version
Introduced

Supported

Comments

Array getArray(int)

2.0 Core

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

The Progress OpenEdge driver throws an
"unsupported method" exception.

Array getArray(String)

3.0

Yes

Supported for the SQL Server driver only.

All other drivers throw an "unsupported
method" exception.

Reader getCharacterStream(int)

4.0

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Reader getCharacterStream(String)

4.0

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

BigDecimal getBigDecimal(int)

2.0 Core

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

BigDecimal getBigDecimal(int, int)

1.0

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

BigDecimal getBigDecimal(String)

3.0

Yes

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

274

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods Version Supported Comments
Introduced
Blob getBlob(int) 2.0 Core Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

Blob getBlob(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

boolean getBoolean(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

boolean getBoolean(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

byte getByte(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

byte getByte(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

byte [] getBytes(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

byte [] getBytes(String) 3.0 Yes Supported for the SQL Server driver only.
All other drivers throw "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 275

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
Clob getClob(int) 2.0 Core Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

Clob getClob(String) 3.0 Yes Supported for the SQL Server driver only
using with data types that map to the JDBC
LONGVARCHAR data type.

All other drivers throw "unsupported
method" exception.

Date getDate(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Date getDate(int, Calendar) 2.0 Core Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Date getDate(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Date getDate(String, Calendar) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

double getDouble(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

double getDouble(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

276 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods Version Supported Comments
Introduced
float getFloat(int) 1.0 Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

float getFloat(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

int getint(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

int getint(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

long getLong(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

long getLong(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Reader getNCharacterStream(int) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

Reader getNCharacterStream(String) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 277

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
NClob getNClob(int) 4.0 Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

NClob getNClob(String) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method
exception.

String getNString(int) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw "unsupported method"
exception.

String getNString(String) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method
exception.

Object getObject(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Object getObject(int, Map) 2.0 Core Yes The drivers ignore the Map argument.

Object getObject(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Object getObject(String, Map) 3.0 Yes Supported for the SQL Server driver only.
The SQL Server driver ignores the Map
argument.

All other drivers throw "unsupported
method" exception.

278 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods Version Supported Comments
Introduced
Ref getRef(int) 2.0 Core No The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

Ref getRef(String) 3.0 No The drivers throw "unsupported method"
exception.
short getShort(int) 1.0 Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

short getShort(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

SQLXML getSQLXML(int) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

SQLXML getSQLXML(String) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

String getString(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

String getString(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 279

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
Time getTime(int) 1.0 Yes The Autonomous REST Connector and the

drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Time getTime(int, Calendar) 2.0 Core Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Time getTime(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Time getTime(String, Calendar) 3.0 Yes Supported for SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Timestamp getTimestamp(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Timestamp getTimestamp(int, Calendar) |[2.0 Core Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Timestamp getTimestamp(String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Timestamp getTimestamp(String, Calendar) | 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

URL getURL(int) 3.0 No The drivers throw "unsupported method"
exception.

280 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods

Version
Introduced

Supported

Comments

URL getURL(String)

3.0

No

The drivers throw "unsupported method"
exception.

boolean isWrapperFor(Class<?> iface)

4.0

Yes

void registerOutParameter(int, int)

1.0

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

void registerOutParameter(int, int, int)

1.0

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

void registerOutParameter(int, int, String)

2.0 Core

Yes

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

The Oracle driver supports the String
argument.

For all other drivers, the String argument is
ignored.

void registerOutParameter(String, int)

3.0

Yes

Supported for the SQL Server driver only.

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

281

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
void registerOutParameter(String, int, int) |3.0 Yes Supported for the SQL Server driver only.

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

void registerOutParameter(String, int, String) | 3.0 Yes Supported for the SQL Server driver only.

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception. String/typename
ignored.

void setArray(int, Array) 2.0 Core Yes Supported for the Oracle driver only.

All other drivers throw "unsupported
method" exception.

void setAsciiStream(String, InputStream) |4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setAsciiStream(String, InputStream, |3.0 Yes Supported for the SQL Server driver only.

int) All other drivers throw "unsupported

method" exception.

void setAsciiStream(String, InputStream, |4.0 Yes Supported for the SQL Server driver only.

long) All other drivers throw "unsupported

method" exception.

void setBigDecimal(String, BigDecimal) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setBinaryStream(String, InputStream) | 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

282 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods Version Supported Comments
Introduced

void setBinaryStream(String, InputStream, | 3.0 Yes Supported for the SQL Server driver only.

int) All other drivers throw "unsupported

method" exception.

void setBinaryStream(String, InputStream, | 4.0 Yes Supported for the SQL Server driver only.

long) All other drivers throw "unsupported

method" exception.

void setBlob(String, Blob) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setBlob(String, InputStream) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setBlob(String, InputStream, long) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setBoolean(String, boolean) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setByte(String, byte) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setBytes(String, byte []) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setCharacterStream(String, Reader, |3.0 Yes Supported for the SQL Server driver only.

int) All other drivers throw "unsupported

method" exception.

void setCharacterStream(String, 4.0 Yes Supported for the SQL Server driver only.

InputStream, long) All other drivers throw "unsupported

method" exception.

void setClob(String, Clob) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 283

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
void setClob(String, Reader) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setClob(String, Reader, long) 4.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setDate(String, Date) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setDate(String, Date, Calendar) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setDouble(String, double) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setFloat(String, float) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setint(String, int) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setLong(String, long) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setNCharacterStream(String, Reader, |4.0 Yes
long)

void setNClob(String, NClob) 4.0 Yes
void setNClob(String, Reader) 4.0 Yes
void setNClob(String, Reader, long) 4.0 Yes
void setNString(String, String) 4.0 Yes
void setNull(int, int, String) 2.0 Core Yes

284 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

CallableStatement

CallableStatement Methods Version Supported Comments
Introduced
void setNull(String, int) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setNull(String, int, String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setObject(String, Object) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setObject(String, Object, int) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setObject(String, Object, int, int) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setShort(String, short) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setSQLXML(String, SQLXML) 4.0 Yes The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce throw an "unsupported method"
exception.

void setString(String, String) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setTime(String, Time) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

void setTime(String, Time, Calendar) 3.0 Yes Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 285

Chapter 7: JIDBC support

CallableStatement Methods Version Supported Comments
Introduced
void setTimestamp(String, Timestamp) 3.0 Yes Supported for the SQL Server driver only.
All other drivers throw "unsupported
method" exception.

void setTimestamp(String, Timestamp, 3.0 Yes Supported for the SQL Server driver only.

Calendar) All other drivers throw "unsupported

method" exception.

<T> T unwrap(Class<T> iface) 4.0 Yes

void setURL(String, URL) 3.0 No The drivers throw "unsupported method"

exception.

boolean wasNull() 1.0 Yes

Clob
Clob Methods Version Supported Comments
Introduced

void free() 4.0 Yes

InputStream getAsciiStream() 2.0 Core Yes All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Reader getCharacterStream() 2.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

Reader getCharacterStream(long, long) 4.0 Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

String getSubString(long, int) 2.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

long length() 2.0 Core Yes All drivers support using with data types that

map to the IDBC LONGVARCHAR data
type.

286

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection

Clob Methods Version Supported Comments
Introduced

long position(Clob, long) 2.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

The Informix driver requires that the
searchStr parameter be less than or equal
to a maximum value of 4096 bytes.

long position(String, long) 2.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

The Informix driver requires that the
searchStr parameter be less than or equal
to a maximum value of 4096 bytes.

OutputStream setAsciiStream(long) 3.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

Writer setCharacterStream(long) 3.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

int setString(long, String) 3.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

int setString(long, String, int, int) 3.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

void truncate(long) 3.0 Core Yes All drivers support using with data types that
map to the IDBC LONGVARCHAR data
type.

Connection
Connection Methods Version Supported Comments
Introduced

void clearWarnings() 1.0 Yes

void close() 1.0 Yes When a connection is closed while a
transaction is still active, that transaction is
rolled back.

void commit() 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

287

Chapter 7: JIDBC support

Connection Methods Version Supported Comments
Introduced

Blob createBlob() 4.0 Yes

Clob createClob() 4.0 Yes

NClob createNClob() 4.0 Yes

createArrayOf(String, Object][]) 4.0 Yes

createStruct(String, Object[]) 4.0 Yes Only the Oracle driver supports this method.
SQLXML createSQLXML() 4.0 Yes

Statement createStatement() 1.0 Yes

Statement createStatement(int, int) 2.0 Core Yes For the DB2 driver,

ResultSet. TYPE_SCROLL_SENSITIVE is
downgraded to
TYPE_SCROLL_INSENSITIVE.

For the Autonomous REST Connector and
the drivers for Jira, Oracle Eloqua, Oracle
Sales Cloud, Oracle Service Cloud, and
Salesforce, be aware that scroll-sensitive
result sets are expensive from both a Web
service call and a performance perspective.
The drivers expend a network round trip for
each row that is fetched.

Statement createStatement(int, int, int) 3.0 No With the exception of the DB2 driver, the
specified holdability must match the
database default holdability. Otherwise, an
"unsupported method" exception is thrown.

For the DB2 driver, the method can be
called regardless of whether the specified
holdability matches the database default
holdability.

Struct createStruct(String, Object[]) 1.0 Yes Supported for the Oracle driver only.

All other drivers throw "unsupported method"
exception.

boolean getAutoCommit() 1.0 Yes

288 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection

Connection Methods Version Supported Comments
Introduced
String getCatalog() 1.0 Yes The Autonomous REST Connector and the

drivers for the listed database systems
return an empty string because they do not
have the concept of a catalog: Amazon
Redshift, Apache Cassandra, Apache Hive,
Apache Spark SQL, Greenplum, Jira,
Impala, MongoDB, Oracle, Oracle Eloqua,
Oracle Sales Cloud, Oracle Service Cloud,
PostgreSQL, and Salesforce.

String getClientinfo() 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
do not support storing or retrieving client
information.

String getClientinfo(String) 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
do not support storing or retrieving client

information.

int getHoldability() 3.0 Yes

DatabaseMetaData getMetaData() 1.0 Yes

int getTransactionlsolation() 1.0 Yes

Map getTypeMap() 2.0 Core Yes Always returns empty java.util. HashMap.

SQLWarning getWarnings() 1.0 Yes

boolean isClosed() 1.0 Yes

boolean isReadOnly() 1.0 Yes

boolean isValid() 4.0 Yes

boolean isWrapperFor(Class<?> iface) 4.0 Yes

String nativeSQL(String) 1.0 Yes Always returns the same String that was
passed in from the application.

CallableStatement prepareCall(String) 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 289

Chapter 7: JIDBC support

Connection Methods Version Supported Comments
Introduced

CallableStatement prepareCall(String, int, |2.0 Core Yes For the Autonomous REST Connector and
int) the drivers for Apache Cassandra, DB2, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
ResultSet. TYPE_SCROLL_ SENSITIVE is
downgraded to
TYPE_SCROLL_INSENSITIVE.

CallableStatement prepareCall(String, int, |3.0 Yes

o The DB2 driver allows this method whether
int, int)

or not the specified holdability is the same
as the default holdability.

The other drivers throw the exception
"Changing the default holdability is not
supported" when the specified holdability
does not match the default holdability.

PreparedStatement prepareStatement 1.0 Yes
(String)

PreparedStatement prepareStatement 3.0 Yes
(String, int)

PreparedStatement prepareStatement 2.0 Core Yes For the DB2 driver,

(String, int, int) ResultSet. TYPE_SCROLL__ SENSITIVE is
downgraded to
TYPE_SCROLL_INSENSITIVE.

For the Autonomous REST Connector and
the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, be aware that scroll-sensitive
result sets are expensive from both a Web
service call and a performance perspective.
The drivers expend a network round trip for
each row that is fetched.

PreparedStatement prepareStatement 3.0 No All drivers throw "unsupported method"
(String, int, int, int) exception.

PreparedStatement prepareStatement 3.0 Yes Supported for the Oracle and SQL Server
(String, int[]) drivers.

All other drivers throw "unsupported method"
exception.

PreparedStatement prepareStatement 3.0 Yes Supported for the SQL Server driver only.

(String, String []) All other drivers throw "unsupported method"

exception.

290 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Connection

Connection Methods Version Supported Comments
Introduced

void releaseSavepoint(Savepoint) 3.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
throw an "unsupported method" exception.

void rollback() 1.0 Yes

void rollback(Savepoint) 3.0 Yes The DB2 driver only supports with DB2 VV8.x
for i.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
throw an "unsupported method" exception.

void setAutoCommit(boolean) 1.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Apache Hive,
Apache Spark SQL, Impala, Jira, MongoDB,
Oracle Eloqua, Oracle Sales Cloud, Oracle
Service Cloud, and Salesforce throw
"transactions not supported" exception if set
tofal se.

void setCatalog(String) 1.0 Yes The Autonomous REST Connector and the
drivers for the listed database systems
ignore any value set by the String
argument.The corresponding drivers return
an empty string because they do not have
the concept of a catalog: Amazon Redshift,
Apache Cassandra, Apache Hive, Apache
Spark SQL, Greenplum, Impala, Jira,
MongoDB, Oracle, Oracle Eloqua, Oracle
Sales Cloud, Oracle Service Cloud,
PostgreSQL, and Salesforce.

String setClientInfo(Properties) 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
do not support storing or retrieving client
information.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 291

Chapter 7: JIDBC support

Connection Methods Version Supported Comments
Introduced

String setClientinfo(String, String) 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
do not support storing or retrieving client
information.

void setHoldability(int) 3.0 Yes The DB2 driver supports the Holdability
parameter value.

For other drivers, the Holdability parameter
value is ignored.

void setReadOnly(boolean) 1.0 Yes

Savepoint setSavepoint() 3.0 Yes The DB2 driver only supports with DB2 VV8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i. In
addition, the DB2 driver only supports
multiple nested savepoints for DB2 V8.2 and
higher for Linux/UNIX/Windows.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
throw an "unsupported method" exception.

Savepoint setSavepoint(String) 3.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i. In
addition, the DB2 driver only supports
multiple nested savepoints for DB2 V8.2 and
higher for Linux/UNIX/Windows.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
throw an "unsupported method" exception.

void setTransactionlsolation(int) 1.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Apache Hive,
Apache Spark SQL, Impala, Jira, MongoDB,
Oracle Eloqua, Oracle Sales Cloud, Oracle
Service Cloud, and Salesforce ignore any
specified transaction isolation level.

void setTypeMap(Map) 2.0 Core Yes The drivers ignore this connection method.

<T> T unwrap(Class<T> iface) 4.0 Yes

292 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ConnectionEventListener

ConnectionEventListener

ConnectionEventListener Methods Version Supported Comments
Introduced
void connectionClosed(event) 3.0 Yes
void connectionErrorOccurred(event) 3.0 Yes
ConnectionPoolDataSource
ConnectionPoolDataSource Methods Version Supported Comments
Introduced
int getLoginTimeout() 2.0 Optional |Yes
PrintWriter getLogWriter() 2.0 Optional |Yes
PooledConnection getPooledConnection() |2.0 Optional |Yes
PooledConnection getPooledConnection |2.0 Optional |Yes
(String, String)
void setLoginTimeout(int) 2.0 Optional |Yes
void setLogWriter(PrintWriter) 2.0 Optional |Yes
DatabaseMetaData
DatabaseMetaData Methods Version Supported Comments
Introduced
boolean 4.0 Yes
autoCommitFailureClosesAllResultSets()
boolean allProceduresAreCallable() 1.0 Yes
boolean allTablesAreSelectable() 1.0 Yes
boolean 1.0 Yes
dataDefinitionCausesTransactionCommit()
boolean 1.0 Yes

dataDefinitionlgnoredinTransactions()

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

293

Chapter 7: JIDBC support

DatabaseMetaData Methods Version Supported Comments
Introduced
boolean deletesAreDetected(int) 2.0 Core Yes
boolean doesMaxRowSizelncludeBlobs() [1.0 Yes Not supported by the SQL Server and

Sybase drivers.

getAttributes(String, String, String, String) |3.0 Yes The Oracle driver may return results.

All other drivers return an empty result set.

ResultSet getBestRowldentifier(String, 1.0 Yes

String, String, int, boolean)

ResultSet getCatalogs() 1.0 Yes

String getCatalogSeparator() 1.0 Yes

String getCatalogTerm() 1.0 Yes

String getClientinfoProperties() 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce do not support storing or
retrieving client information.

ResultSet getColumnPrivileges(String, 1.0 Yes Not supported by the drivers for Apache

String, String, String) Hive, Apache Spark SQL, Impala, Oracle
Eloqua, and Oracle Sales Cloud.

ResultSet getColumns(String, String, String, [1.0 Yes

String)

Connection getConnection() 2.0 Core Yes

ResultSet getCrossReference(String, String, [1.0 Yes

String, String, String, String)

ResultSet getFunctions() 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce return an empty result set.

Not supported by the drivers for Apache
Hive, Apache Spark SQL, or Impala.

294 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseMetaData

DatabaseMetaData Methods Version Supported Comments
Introduced

ResultSet getFunctionColumns() 4.0 Yes The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Elogua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce return an empty result set.
Not supported by the drivers for Apache
Hive, Apache Spark SQL, or Impala.

int getDatabaseMajorVersion() 3.0 Yes

int getDatabaseMinorVersion() 3.0 Yes

String getDatabaseProductName() 1.0 Yes

String getDatabaseProductVersion() 1.0 Yes

int getDefaultTransactionlsolation() 1.0 Yes

int getDriverMajorVersion() 1.0 Yes

int getDriverMinorVersion() 1.0 Yes

String getDriverName() 1.0 Yes

String getDriverVersion() 1.0 Yes

ResultSet getExportedKeys(String, String, (1.0 Yes

String)

String getExtraNameCharacters() 1.0 Yes

String getldentifierQuoteString() 1.0 Yes

ResultSet getimportedKeys(String, String, 1.0 Yes

String)

ResultSet getindexinfo(String, String, String, [1.0 Yes

boolean, boolean)

int getJDBCMajorVersion() 3.0 Yes

int getJDBCMinorVersion() 3.0 Yes

int getMaxBinaryLiteralLength() 1.0 Yes

int getMaxCatalogNameLength() 1.0 Yes

int getMaxCharLiteralLength() 1.0 Yes

int getMaxColumnNameLength() 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

295

Chapter 7: JIDBC support

DatabaseMetaData Methods Version Supported Comments
Introduced

int getMaxColumnsinGroupBy() 1.0 Yes

int getMaxColumnsinindex() 1.0 Yes

int getMaxColumnsInOrderBy() 1.0 Yes

int getMaxColumnsinSelect() 1.0 Yes

int getMaxColumnsinTable() 1.0 Yes

int getMaxConnections() 1.0 Yes

int getMaxCursorNameLength() 1.0 Yes

int getMaxIndexLength() 1.0 Yes

int getMaxProcedureNameLength() 1.0 Yes

int getMaxRowsSize() 1.0 Yes

int getMaxSchemaNameLength() 1.0 Yes

int getMaxStatementLength() 1.0 Yes

int getMaxStatements() 1.0 Yes

int getMaxTableNameLength() 1.0 Yes

int getMaxTablesInSelect() 1.0 Yes

int getMaxUserNameLength() 1.0 Yes

String getNumericFunctions() 1.0 Yes

ResultSet getPrimaryKeys(String, String, |[1.0 Yes

String)

ResultSet getProcedureColumns(String, [1.0 Yes For the Autonomous REST Connector and

String, String, String) the drivers for Jira, Oracle Service Cloud,
and Salesforce, SchemaName and
ProcedureName must be explicit values;
they cannot be patterns.
The drivers for Apache Cassandra and
MongoDB return an empty result set.
Not supported for the drivers for Apache
Hive, Apache Spark SQL, or Impala.

296 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseMetaData

DatabaseMetaData Methods Version Supported Comments
Introduced

ResultSet getProcedures(String, String, 1.0 Yes The drivers for Apache Cassandra,

String) MongoDB, Oracle Elogua, and Oracle Sales
Cloud return an empty result set.
Not supported for the drivers for Apache
Hive, Apache Spark SQL, or Impala.

String getProcedureTerm() 1.0 Yes

int getResultSetHoldability() 3.0 Yes

ResultSet getSchemas() 1.0 Yes

ResultSet getSchemas(catalog, pattern) [4.0 Yes

String getSchemaTerm() 1.0 Yes

String getSearchStringEscape() 1.0 Yes

String getSQLKeywords() 1.0 Yes

int getSQL State Type() 3.0 Yes

String getStringFunctions() 1.0 Yes

ResultSet getSuperTables(String, String, |[3.0 Yes Returns an empty result set.

String)

ResultSet getSuperTypes(String, String, 3.0 Yes Returns an empty result set.

String)

String getSystemFunctions() 1.0 Yes

ResultSet getTablePrivileges(String, String, [1.0 Yes Not supported for the drivers for Apache

String) Hive, Apache Spark SQL, Impala, Oracle
Eloqua, and Oracle Sales Cloud.

ResultSet getTables(String, String, String, 1.0 Yes

String [])

ResultSet getTableTypes() 1.0 Yes

String getTimeDateFunctions() 1.0 Yes

ResultSet getTypelnfo() 1.0 Yes

ResultSet getUDTs(String, String, String, |[2.0 Core Yes Supported for Oracle only.

int [])

String getURL() 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 297

Chapter 7: JIDBC support

DatabaseMetaData Methods Version Supported Comments
Introduced

String getUserName() 1.0 Yes
ResultSet getVersionColumns(String, String, [1.0 Yes
String)

boolean insertsAreDetected(int) 2.0 Core Yes
boolean isCatalogAtStart() 1.0 Yes
boolean isReadOnly() 1.0 Yes
boolean isWrapperFor(Class<?> iface) 4.0 Yes
boolean locatorsUpdateCopy() 3.0 Yes
boolean nullPlusNonNulllsNull() 1.0 Yes
boolean nullsAreSortedAtEnd() 1.0 Yes
boolean nullsAreSortedAtStart() 1.0 Yes
boolean nullsAreSortedHigh() 1.0 Yes
boolean nullsAreSortedLow() 1.0 Yes
boolean othersDeletesAreVisible(int) 2.0 Core Yes
boolean othersinsertsAreVisible(int) 2.0 Core Yes
boolean othersUpdatesAreVisible(int) 2.0 Core Yes
boolean ownDeletesAreVisible(int) 2.0 Core Yes
boolean ownlinsertsAreVisible(int) 2.0 Core Yes
boolean ownUpdatesAreVisible(int) 2.0 Core Yes
boolean storesLowerCaseldentifiers() 1.0 Yes
boolean 1.0 Yes
storesLowerCaseQuotedldentifiers()

boolean storesMixedCaseldentifiers() 1.0 Yes
boolean 1.0 Yes
storesMixedCaseQuotedldentifiers()

boolean storesUpperCaseldentifiers() 1.0 Yes

298 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseMetaData

DatabaseMetaData Methods Version Supported Comments
Introduced
boolean 1.0 Yes

storesUpperCaseQuotedldentifiers()

boolean 1.0 Yes
supportsAlterTableWithAddColumn()

boolean 1.0 Yes
supportsAlterTableWithDropColumn()

boolean supportsANSI92EntryLevelSQL() 1.0 Yes
boolean supportsANSI92FullSQL() 1.0 Yes
boolean supportsANSI92IntermediateSQL() [1.0 Yes
boolean supportsBatchUpdates() 2.0 Core Yes
boolean 1.0 Yes

supportsCatalogsinDataManipulation()

boolean 1.0 Yes
supportsCatalogsInindexDefinitions()

boolean 1.0 Yes
supportsCatalogsInPrivilegeDefinitions()

boolean 1.0 Yes
supportsCatalogsinProcedureCalls()

boolean 1.0 Yes
supportsCatalogsinTableDefinitions()

boolean supportsColumnAliasing() 1.0 Yes
boolean supportsConvert() 1.0 Yes
boolean supportsConvert(int, int) 1.0 Yes
boolean supportsCoreSQLGrammar() 1.0 Yes
boolean supportsCorrelatedSubqueries() [1.0 Yes
boolean supportsDataDefinitionAndData [1.0 Yes

ManipulationTransactions()

boolean 1.0 Yes
supportsDataManipulationTransactionsOnly()

boolean 1.0 Yes
supportsDifferentTableCorrelationNames()

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 299

Chapter 7: JIDBC support

DatabaseMetaData Methods Version Supported Comments
Introduced
boolean supportsExpressionsinOrderBy() [1.0 Yes
boolean supportsExtendedSQLGrammar() [1.0 Yes
boolean supportsFullOuterJoins() 1.0 Yes
boolean supportsGetGeneratedKeys() 3.0 Yes
boolean supportsGroupBy() 1.0 Yes
boolean supportsGroupByBeyondSelect() 1.0 Yes
boolean supportsGroupByUnrelated() 1.0 Yes
boolean 1.0 Yes

supportsintegrityEnhancementFacility()

boolean supportsLikeEscapeClause() 1.0 Yes
boolean supportsLimitedOuterJoins() 1.0 Yes
boolean supportsMinimumSQLGrammar() (1.0 Yes
boolean supportsMixedCaseldentifiers() 1.0 Yes
boolean 1.0 Yes

supportsMixedCaseQuotedldentifiers()

boolean supportsMultipleOpenResults() 3.0 Yes
boolean supportsMultipleResultSets() 1.0 Yes
boolean supportsMultipleTransactions() 1.0 Yes
boolean supportsNamedParameters() 3.0 Yes
boolean supportsNonNullableColumns() [1.0 Yes
boolean 1.0 Yes

supportsOpenCursorsAcrossCommit()

boolean 1.0 Yes
supportsOpenCursorsAcrossRollback()

boolean 1.0 Yes
supportsOpenStatementsAcrossCommit()

boolean 1.0 Yes
supportsOpenStatementsAcrossRollback()

300 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseMetaData

DatabaseMetaData Methods Version Supported Comments
Introduced

boolean supportsOrderByUnrelated() 1.0 Yes
boolean supportsOuterJoins() 1.0 Yes
boolean supportsPositionedDelete() 1.0 Yes
boolean supportsPositionedUpdate() 1.0 Yes
boolean supportsResultSetConcurrency(int, | 2.0 Core Yes
int)

boolean supportsResultSetHoldability(int) |3.0 Yes
boolean supportsResultSetType(int) 2.0 Core Yes
boolean supportsSavePoints() 3.0 Yes
boolean 1.0 Yes

supportsSchemasinDataManipulation()

boolean 1.0 Yes
supportsSchemaslinindexDefinitions()

boolean 1.0 Yes
supportsSchemasinPrivilegeDefinitions()

boolean 1.0 Yes
supportsSchemasinProcedureCalls()

boolean 1.0 Yes
supportsSchemaslinTableDefinitions()

boolean supportsSelectForUpdate() 1.0 Yes

boolean 4.0 Yes
supportsStoredFunctionsUsingCallSyntax()

boolean supportsStoredProcedures() 1.0 Yes

boolean 1.0 Yes
supportsSubqueriesinComparisons()

boolean supportsSubqueriesinExists() 1.0 Yes
boolean supportsSubqueriesinins() 1.0 Yes
boolean supportsSubqueriesinQuantifieds() [1.0 Yes
boolean supportsTableCorrelationNames() [1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 301

Chapter 7: JIDBC support

DatabaseMetaData Methods Version Supported Comments
Introduced

boolean 1.0 Yes
supportsTransactionlsolationLevel(int)

boolean supportsTransactions() 1.0 Yes
boolean supportsUnion() 1.0 Yes
boolean supportsUnionAll() 1.0 Yes
<T> T unwrap(Class<T> iface) 4.0 Yes
boolean updatesAreDetected(int) 2.0 Core Yes
boolean useslLocalFilePerTable() 1.0 Yes
boolean useslLocalFiles() 1.0 Yes

DataSource
The DataSource interface implements the javax.naming.Referenceable and java.io.Serializable interfaces.
DataSource Methods Version Supported Comments
Introduced
Connection getConnection() 2.0 Optional |Yes
Connection getConnection(String, String) |2.0 Optional |Yes
int getLoginTimeout() 2.0 Optional |Yes
PrintWriter getLogWriter() 2.0 Optional |Yes
boolean isWrapperFor(Class<?> iface) 4.0 Yes
void setLoginTimeout(int) 2.0 Optional |Yes
void setLogWriter(PrintWriter) 2.0 Optional |Yes Enables DataDirect Spy, which traces JDBC
information into the specified PrintWriter.
<T> T unwrap(Class<T> iface) 4.0 Yes

302

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Driver

Driver
Driver Methods Version Supported Comments
Introduced

boolean acceptsURL(String) 1.0 Yes

Connection connect(String, Properties) 1.0 Yes

int getMajorVersion() 1.0 Yes

int getMinorVersion() 1.0 Yes

DriverPropertyInfo [] getPropertyinfo(String, [1.0 Yes

Properties)

ParameterMetaData
ParameterMetaData Methods Version Supported Comments
Introduced

String getParameterClassName(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

int getParameterCount() 3.0 Yes

int getParameterMode(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

int getParameterType(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

String getParameterTypeName(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

303

Chapter 7: JIDBC support

ParameterMetaData Methods Version Supported Comments
Introduced
int getPrecision(int) 3.0 Yes The DB2 driver supports parameter

metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

int getScale(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

int isNullable(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

boolean isSigned(int) 3.0 Yes The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

boolean isWrapperFor(Class<?> iface) 4.0 Yes
boolean jdbcCompliant() 1.0 Yes
<T>T unwrap(Class<T> iface) 4.0 Yes

PooledConnection

PooledConnection Methods Version Supported Comments
Introduced

void addConnectionEventListener(listener) | 2.0 Optional |Yes

void addStatementEventListener(listener) |4.0 Yes

void close() 2.0 Optional |Yes

304 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

PreparedStatement

PooledConnection Methods Version Supported Comments
Introduced

Connection getConnection() 2.0 Optional |Yes A pooled connection object can have only
one Connection object open (the one most
recently created). The purpose of allowing
the server (PoolManager implementation)
to invoke this a second time is to give an
application server a way to take a
connection away from an application and
give it to another user (a rare occurrence).
The drivers do not support the "reclaiming”
of connections and will throw an exception.

void 2.0 Optional |Yes

removeConnectionEventListener(listener)

void 4.0 Yes

removeStatementEventListener(listener)

PreparedStatement
PreparedStatement Methods Version Supported Comments
Introduced

void addBatch() 2.0 Core Yes

void clearParameters() 1.0 Yes

boolean execute() 1.0 Yes

ResultSet executeQuery() 1.0 Yes

int executeUpdate() 1.0 Yes

ResultSetMetaData getMetaData() 2.0 Core Yes

ParameterMetaData 3.0 Yes

getParameterMetaData()

boolean isWrapperFor(Class<?> iface) 4.0 Yes

void setArray(int, Array) 2.0 Core Yes Supported for the Oracle driver only.
All other drivers throw an "unsupported
method" exception.

void setAsciiStream(int, InputStream) 4.0 Yes

void setAsciiStream(int, InputStream, int) [1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

305

Chapter 7: JIDBC support

PreparedStatement Methods Version Supported Comments
Introduced
void setAsciiStream(int, InputStream, long) (4.0 Yes
void setBigDecimal(int, BigDecimal) 1.0 Yes
void setBinaryStream(int, InputStream) 4.0 Yes When used with Blobs, the DB2 driver only

supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

void setBinaryStream(int, InputStream, int) [1.0 Yes When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

void setBinaryStream(int, InputStream, long) 4.0 Yes When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

void setBlob(int, Blob) 2.0 Core Yes The DB2 driver only supports with DB2 VV8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void setBlob(int, InputStream) 4.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void setBlob(int, InputStream, long) 4.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void setBoolean(int, boolean) 1.0 Yes
void setByte(int, byte) 1.0 Yes
void setBytes(int, byte []) 1.0 Yes When used with Blobs, the DB2 driver only

supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

306 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

PreparedStatement

PreparedStatement Methods Version Supported Comments
Introduced

void setCharacterStream(int, Reader) 4.0 Yes

void setCharacterStream(int, Reader, int) |[2.0 Core Yes

void setCharacterStream(int, Reader, long) [4.0 Yes

void setClob(int, Clob) 2.0 Core Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

void setClob(int, Reader) 4.0 Yes Drivers support using with data types that
map to the JIDBC LONGVARBINARY data
type.

void setClob(int, Reader, long) 4.0 Yes Drivers support using with data types that
map to the JIDBC LONGVARBINARY data
type.

void setDate(int, Date) 1.0 Yes

void setDate(int, Date, Calendar) 2.0 Core Yes

void setDouble(int, double) 1.0 Yes

void setFloat(int, float) 1.0 Yes

void setint(int, int) 1.0 Yes

void setLong(int, long) 1.0 Yes

void setNCharacterStream(int, Reader) 4.0 Yes For the Autonomous REST Connector and
the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, N methods are identical to their
non-N counterparts.

void setNCharacterStream(int, Reader, long) | 4.0 Yes For the Autonomous REST Connector and
the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, N methods are identical to their
non-N counterparts.

void setNClob(int, NClob) 4.0 Yes For the Autonomous REST Connector and
the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, N methods are identical to their
non-N counterparts.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 307

Chapter 7: JIDBC support

PreparedStatement Methods Version Supported Comments
Introduced
void setNClob(int, Reader) 4.0 Yes For the Autonomous REST Connector and

the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, N methods are identical to their
non-N counterparts.

void setNClob(int, Reader, long) 4.0 Yes For the Autonomous REST Connector and
the drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and
Salesforce, N methods are identical to their
non-N counterparts.

void setNull(int, int) 1.0 Yes
void setNull(int, int, String) 2.0 Core Yes
void setNString(int, String) 4.0 Yes
void setObiject(int, Object) 1.0 Yes
void setObiject(int, Object, int) 1.0 Yes
void setObject(int, Object, int, int) 1.0 Yes

308 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

PreparedStatement

PreparedStatement Methods Version Supported Comments
Introduced
void setQueryTimeout(int) 1.0 Yes The DB2 driver supports setting a timeout

value, in seconds, for a statement with
DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The Informix driver throws an "unsupported
method" exception.

The Autonomous REST Connector and the
drivers for Jira, MongoDB, Oracle Eloqua,
Oracle Sales Cloud, Oracle Service Cloud,
and Salesforce ignore any value set using
this method. Use the WSTimeout connection
property to set a timeout value.

The drivers for Apache Cassandra and
MongoDB ignore any value set using this
method.

All other drivers support setting a timeout
value, in seconds, for a statement. If the
execution of the statement exceeds the
timeout value, the statement is timed out by
the database server, and the driver throws
an exception indicating that the statement
was timed out.

void setRef(int, Ref) 2.0 Core No All drivers throw "unsupported method"
exception.

void setShort(int, short) 1.0 Yes

void setSQLXML(int, SQLXML) 4.0 Yes

void setString(int, String) 1.0 Yes

void setTime(int, Time) 1.0 Yes

void setTime(int, Time, Calendar) 2.0 Core Yes

void setTimestamp(int, Timestamp) 1.0 Yes

void setTimestamp(int, Timestamp, 2.0 Core Yes

Calendar)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 309

Chapter 7: JIDBC support

PreparedStatement Methods Version Supported Comments
Introduced
void setUnicodeStream(int, InputStream, (1.0 No This method was deprecated in JDBC 2.0.
int) All drivers throw "unsupported method"
exception.
<T> T unwrap(Class<T> iface) 4.0 Yes
void setURL(int, URL) 3.0 No All drivers throw "unsupported method"
exception.
Ref
Ref MethodsRef interface Version Supported Comments
Introduced
(all) 2.0 Core No
ResultSet
ResultSet Methods Version Supported Comments
Introduced
boolean absolute(int) 2.0 Core Yes
void afterLast() 2.0 Core Yes
void beforeFirst() 2.0 Core Yes
void cancelRowUpdates() 2.0 Core Yes
void clearWarnings() 1.0 Yes
void close() 1.0 Yes
void deleteRow() 2.0 Core Yes
int findColumn(String) 1.0 Yes
boolean first() 2.0 Core Yes
Array getArray(int) 2.0 Core Yes
Array getArray(String) 2.0 Core Yes
310 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSet

ResultSet Methods Version Supported Comments
Introduced

InputStream getAsciiStream(int) 1.0 Yes

InputStream getAsciiStream(String) 1.0 Yes

BigDecimal getBigDecimal(int) 2.0 Core Yes

BigDecimal getBigDecimal(int, int) 1.0 Yes

BigDecimal getBigDecimal(String) 2.0 Core Yes

BigDecimal getBigDecimal(String, int) 1.0 Yes

InputStream getBinaryStream(int) 1.0 Yes The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

InputStream getBinaryStream(String) 1.0 Yes The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Blob getBlob(int) 2.0 Core Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.
All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Blob getBlob(String) 2.0 Core Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.
All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

boolean getBoolean(int) 1.0 Yes

boolean getBoolean(String) 1.0 Yes

byte getByte(int) 1.0 Yes

byte getByte(String) 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

311

Chapter 7: JIDBC support

ResultSet Methods Version Supported Comments
Introduced

byte [] getBytes(int) 1.0 Yes The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

byte [] getBytes(String) 1.0 Yes The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Reader getCharacterStream(int) 2.0 Core Yes

Reader getCharacterStream(String) 2.0 Core Yes

Clob getClob(int) 2.0 Core Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

Clob getClob(String) 2.0 Core Yes Drivers support using with data types that
map to the JIDBC LONGVARBINARY data
type.

int getConcurrency() 2.0 Core Yes

String getCursorName() 1.0 No All drivers throw "unsupported method"
exception.

Date getDate(int) 1.0 Yes

Date getDate(int, Calendar) 2.0 Core Yes

Date getDate(String) 1.0 Yes

Date getDate(String, Calendar) 2.0 Core Yes

double getDouble(int) 1.0 Yes

double getDouble(String) 1.0 Yes

int getFetchDirection() 2.0 Core Yes

int getFetchSize() 2.0 Core Yes

float getFloat(int) 1.0 Yes

312 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSet

ResultSet Methods Version Supported Comments
Introduced

float getFloat(String) 1.0 Yes

int getHoldability() 4.0 Yes

int getint(int) 1.0 Yes

int getint(String) 1.0 Yes

long getLong(int) 1.0 Yes

long getLong(String) 1.0 Yes

ResultSetMetaData getMetaData() 1.0 Yes

Reader getNCharacterStream(int) 4.0 Yes

Reader getNCharacterStream(String) 4.0 Yes

NClob getNClob(int) 4.0 Yes

NClob getNClob(String) 4.0 Yes

String getNString(int) 4.0 Yes

String getNString(String) 4.0 Yes

Object getObject(int) 1.0 Yes The DB2 driver returns a Long object when
called on Bigint columns.

Object getObject(int, Map) 2.0 Core Yes The Oracle and Sybase drivers support the
Map argument. For all other drivers, the Map
argument is ignored.

Object getObject(String) 1.0 Yes

Object getObject(String, Map) 2.0 Core Yes The Oracle and Sybase drivers support the
Map argument. For all other drivers, the Map
argument is ignored.

Ref getRef(int) 2.0 Core No All drivers throw "unsupported method"
exception.

Ref getRef(String) 2.0 Core No All drivers throw "unsupported method"
exception.

int getRow() 2.0 Core Yes

short getShort(int) 1.0 Yes

short getShort(String) 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

313

Chapter 7: JIDBC support

ResultSet Methods Version Supported Comments
Introduced

SQLXML getSQLXML(int) 4.0 Yes

SQLXML getSQLXML(String) 4.0 Yes

Statement getStatement() 2.0 Core Yes

String getString(int) 1.0 Yes

String getString(String) 1.0 Yes

Time getTime(int) 1.0 Yes

Time getTime(int, Calendar) 2.0 Core Yes

Time getTime(String) 1.0 Yes

Time getTime(String, Calendar) 2.0 Core Yes

Timestamp getTimestamp(int) 1.0 Yes

Timestamp getTimestamp(int, Calendar) |2.0 Core Yes

Timestamp getTimestamp(String) 1.0 Yes

Timestamp getTimestamp(String, Calendar) | 2.0 Core Yes

int getType() 2.0 Core Yes

InputStream getUnicodeStream(int) 1.0 No This method was deprecated in JDBC 2.0.
All drivers throw "unsupported method"
exception.

InputStream getUnicodeStream(String) 1.0 No This method was deprecated in JDBC 2.0.
All drivers throw "unsupported method"
exception.

URL getURL(int) 3.0 No All drivers throw "unsupported method"
exception.

URL getURL(String) 3.0 No All drivers throw "unsupported method"
exception.

SQLWarning getWarnings() 1.0 Yes

void insertRow() 2.0 Core Yes

boolean isAfterLast() 2.0 Core Yes

boolean isBeforeFirst() 2.0 Core Yes

314

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSet

int)

ResultSet Methods Version Supported Comments
Introduced
boolean isClosed() 4.0 Yes
boolean isFirst() 2.0 Core Yes
boolean isLast() 2.0 Core Yes
boolean isWrapperFor(Class<?> iface) 4.0 Yes
boolean last() 2.0 Core Yes
void moveToCurrentRow() 2.0 Core Yes
void moveTolnsertRow() 2.0 Core Yes
boolean next() 1.0 Yes
boolean previous() 2.0 Core Yes
void refreshRow() 2.0 Core Yes
boolean relative(int) 2.0 Core Yes
boolean rowDeleted() 2.0 Core Yes
boolean rowlnserted() 2.0 Core Yes
boolean rowUpdated() 2.0 Core Yes
void setFetchDirection(int) 2.0 Core Yes
void setFetchSize(int) 2.0 Core Yes
<T>T unwrap(Class<T> iface) 4.0 Yes
void updateArray(int, Array) 3.0 No All drivers throw "unsupported method"
exception.
void updateArray(String, Array) 3.0 No All drivers throw "unsupported method"
exception.
void updateAsciiStream(int, InputStream, |[2.0 Core Yes
int)
void updateAsciiStream(int, InputStream, (4.0 Yes
long)
void updateAsciiStream(String, InputStream) | 4.0 Yes
void updateAsciiStream(String, InputStream, [2.0 Core Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

315

Chapter 7: JIDBC support

ResultSet Methods Version Supported Comments
Introduced

void updateAsciiStream(String, InputStream, 4.0 Yes

long)

void updateBigDecimal(int, BigDecimal) 2.0 Core Yes

void updateBigDecimal(String, BigDecimal) [2.0 Core Yes

void updateBinaryStream(int, InputStream) | 4.0 Yes

void updateBinaryStream(int, InputStream, [2.0 Core Yes

int)

void updateBinaryStream(int, InputStream, (4.0 Yes

long)

void updateBinaryStream(String, 4.0 Yes

InputStream)

void updateBinaryStream(String, 2.0 Core Yes

InputStream, int)

void updateBinaryStream(String, 4.0 Yes

InputStream, long)

void updateBlob(int, Blob) 3.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.
All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void updateBlob(int, InputStream) 4.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.
All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void updateBlob(int, InputStream, long) 4.0 Yes The DB2 driver only supports with DB2 VV8.x

and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

316

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSet

ResultSet Methods Version Supported Comments
Introduced
void updateBlob(String, Blob) 3.0 Yes The DB2 driver only supports with DB2 V8.x

and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void updateBlob(String, InputStream) 4.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void updateBlob(String, InputStream, long) 4.0 Yes The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

void updateBoolean(int, boolean) 2.0 Core Yes
void updateBoolean(String, boolean) 2.0 Core Yes
void updateByte(int, byte) 2.0 Core Yes
void updateByte(String, byte) 2.0 Core Yes
void updateBytes(int, byte []) 2.0 Core Yes
void updateBytes(String, byte []) 2.0 Core Yes
void updateCharacterStream(int, Reader) (4.0 Yes
void updateCharacterStream(int, Reader, |[2.0 Core Yes
int)

void updateCharacterStream(int, Reader, |[4.0 Yes
long)

void updateCharacterStream(String, 4.0 Yes
Reader)

void updateCharacterStream(String, 2.0 Core Yes
Reader, int)

void updateCharacterStream(String, 4.0 Yes

Reader, long)

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 317

Chapter 7: JIDBC support

ResultSet Methods Version Supported Comments
Introduced

void updateClob(int, Clob) 3.0 Yes Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

void updateClob(int, Reader) 4.0 Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

void updateClob(int, Reader, long) 4.0 Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

void updateClob(String, Clob) 3.0 Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

void updateClob(String, Reader) 4.0 Yes Drivers support using with data types that
map to the IDBC LONGVARBINARY data
type.

void updateClob(String, Reader, long) 4.0 Yes Drivers support using with data types that
map to the JIDBC LONGVARBINARY data
type.

void updateDate(int, Date) 2.0 Core Yes

void updateDate(String, Date) 2.0 Core Yes

void updateDouble(int, double) 2.0 Core Yes

void updateDouble(String, double) 2.0 Core Yes

void updateFloat(int, float) 2.0 Core Yes

void updateFloat(String, float) 2.0 Core Yes

void updatelnt(int, int) 2.0 Core Yes

void updatelnt(String, int) 2.0 Core Yes

void updateLong(int, long) 2.0 Core Yes

void updateLong(String, long) 2.0 Core Yes

void updateNCharacterStream(int, Reader) [4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

318 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSet

ResultSet Methods Version Supported Comments
Introduced
void updateNCharacterStream(int, Reader, [4.0 Yes For the Autonomous REST Connector and
long) the drivers for Jira, MongoDB, Oracle

Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNCharacterStream(String, 4.0 Yes For the Autonomous REST Connector and
Reader) the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNCharacterStream(String, 4.0 Yes For the Autonomous REST Connector and
Reader, long) the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNClob(int, NClob) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNClob(int, Reader) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNClob(int, Reader, long) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNClob(String, NClob) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNClob(String, Reader) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 319

Chapter 7: JIDBC support

ResultSet Methods Version Supported Comments
Introduced

void updateNClob(String, Reader, long) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNString(int, String) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNString(String, String) 4.0 Yes For the Autonomous REST Connector and
the drivers for Jira, MongoDB, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce, N methods are
identical to their non-N counterparts.

void updateNull(int) 2.0 Core Yes

void updateNull(String) 2.0 Core Yes

void updateObiject(int, Object) 2.0 Core Yes

void updateObiject(int, Object, int) 2.0 Core Yes

void updateObject(String, Object) 2.0 Core Yes

void updateObject(String, Object, int) 2.0 Core Yes

void updateRef(int, Ref) 3.0 No All drivers throw "unsupported method"
exception.

void updateRef(String, Ref) 3.0 No All drivers throw "unsupported method"
exception.

void updateRow() 2.0 Core Yes

void updateShort(int, short) 2.0 Core Yes

void updateShort(String, short) 2.0 Core Yes

void updateSQLXML(int, SQLXML) 4.0 Yes

void updateSQLXML(String, SQLXML) 4.0 Yes

void updateString(int, String) 2.0 Core Yes

void updateString(String, String) 2.0 Core Yes

void updateTime(int, Time) 2.0 Core Yes

320

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ResultSetMetaData

ResultSet Methods Version Supported Comments
Introduced
void updateTime(String, Time) 2.0 Core Yes
void updateTimestamp(int, Timestamp) 2.0 Core Yes
void updateTimestamp(String, Timestamp) [2.0 Core Yes
boolean wasNull() 1.0 Yes

ResultSetMetaData

ResultSetMetaData Methods Version Supported Comments
Introduced
String getCatalogName(int) 1.0 Yes
String getColumnClassName(int) 2.0 Core Yes
int getColumnCount() 1.0 Yes
int getColumnDisplaySize(int) 1.0 Yes
String getColumnLabel(int) 1.0 Yes
String getColumnName(int) 1.0 Yes
int getColumnType(int) 1.0 Yes
String getColumnTypeName(int) 1.0 Yes
int getPrecision(int) 1.0 Yes
int getScale(int) 1.0 Yes
String getSchemaName(int) 1.0 Yes
String getTableName(int) 1.0 Yes
boolean isAutolncrement(int) 1.0 Yes
boolean isCaseSensitive(int) 1.0 Yes
boolean isCurrency(int) 1.0 Yes
boolean isDefinitelyWritable(int) 1.0 Yes
int isNullable(int) 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 321

Chapter 7: JIDBC support

ResultSetMetaData Methods Version Supported Comments
Introduced
boolean isReadOnly(int) 1.0 Yes
boolean isSearchable(int) 1.0 Yes
boolean isSigned(int) 1.0 Yes
boolean isWrapperFor(Class<?> iface) 4.0 Yes
boolean isWritable(int) 1.0 Yes
<T>T unwrap(Class<T> iface) 4.0 Yes
RowSet
RowSet Methods Version Supported Comments
Introduced
(all) 2.0 Optional [No
SavePoint
SavePoint Methods Version Supported Comments
Introduced
(all) 3.0 Yes The DB2 driver only supports with DB2 VV8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS ((all versions), and DB2 for i.
Statement
Statement Methods Version Supported Comments
Introduced
void addBatch(String) 2.0 Core Yes All drivers throw "invalid method call”
exception for PreparedStatement and
CallableStatement.
void cancel() 1.0 Yes The DB2 driver cancels the execution of the
statement with DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and

322

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement

Statement Methods Version Supported Comments
Introduced

higher for z/OS. If the statement is canceled
by the database server, the driver throws
an exception indicating that it was canceled.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Impala,
Informix, Jira, MongoDB, Progess
OpenEdge, Oracle Service Cloud, Oracle
Eloqua, Oracle Sales Cloud, and Salesforce
throw an "unsupported method" exception.

The Apache Hive, Apache Spark SQL44,
Greenplum, Oracle, PostgreSQL, SQL
Server, Sybase, and Amazon Redshift
drivers cancel the execution of the
statement. If the statement is canceled by
the database server, the driver throws an
exception indicating that it was canceled.

void clearBatch() 2.0 Core Yes

void clearWarnings() 1.0 Yes

void close() 1.0 Yes

boolean execute(String) 1.0 Yes All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

boolean execute(String, int) 3.0 Yes

boolean execute(String, int []) 3.0 Yes Supported for the Oracle and SQL Server
drivers.
All other drivers throw "unsupported method"
exception.

boolean execute(String, String []) 3.0 Yes Supported for the Oracle and SQL Server
drivers.
All other drivers throw "unsupported method"
exception.

int [] executeBatch() 2.0 Core Yes

ResultSet executeQuery(String) 1.0 Yes All drivers throw "invalid method call"

exception for PreparedStatement and
CallableStatement.

4 Supported only for Apache Spark SQL 2.0 and higher. For earlier versions of Apache Spark SQL, the driver throws an "unsupported
method" exception.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 323

Chapter 7: JIDBC support

Statement Methods

Version
Introduced

Supported

Comments

int executeUpdate(String)

1.0

Yes

All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

int executeUpdate(String, int)

3.0

Yes

int executeUpdate(String, int [])

3.0

Yes

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

int executeUpdate(String, String [])

3.0

Yes

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Connection getConnection()

2.0 Core

Yes

int getFetchDirection()

2.0 Core

Yes

int getFetchSize()

2.0 Core

Yes

ResultSet getGeneratedKeys()

3.0

Yes

The DB2, SQL Server, and Sybase drivers
return the last value inserted into an identity
column. If an identity column does not exist
in the table, the drivers return an empty
result set.

The Informix driver returns the last value
inserted into a Serial or Serial8 column. If a
Serial or Serial8 column does not exist in
the table, the driver returns an empty result
set.

The Oracle driver returns the ROWID of the
last row that was inserted.

The Autonomous REST Connector and the
drivers for Apache Cassandra, Jira,
MongoDB, Oracle Eloqua, Oracle Service
Cloud, and Salesforce return the ID of the
last row that was inserted.

Auto-generated keys are not supported in
any of the other drivers.

int getMaxFieldSize()

1.0

Yes

int getMaxRows()

1.0

Yes

boolean getMoreResults()

1.0

Yes

324

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Statement

Statement Methods Version Supported Comments
Introduced
boolean getMoreResults(int) 3.0 Yes
int getQueryTimeout() 1.0 Yes The DB2 driver returns the timeout value,

in seconds, set for the statement with
DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. The DB2 driver returns 0
with other DB2 versions.

The Apache Hive, Apache Spark SQL,
Impala, Informix and Progress OpenEdge
drivers return 0.

The drivers for Apache Cassandra,
Greenplum, Oracle, PostgreSQL,

SQL Server, Sybase, and Amazon Redshift
return the timeout value, in seconds, set for
the statement.

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
return an "unsupported method" exception.

ResultSet getResultSet() 1.0 Yes

int getResultSetConcurrency() 2.0 Core Yes

int getResultSetHoldability() 3.0 Yes

int getResultSetType() 2.0 Core Yes

int getUpdateCount() 1.0 Yes

SQLWarning getWarnings() 1.0 Yes

boolean isClosed() 4.0 Yes

boolean isPoolable() 4.0 Yes

boolean isWrapperFor(Class<?> iface) 4.0 Yes

void setCursorName(String) 1.0 No Throws "unsupported method" exception.
void setEscapeProcessing(boolean) 1.0 Yes Ignored.
void setFetchDirection(int) 2.0 Core Yes

void setFetchSize(int) 2.0 Core Yes

void setMaxFieldSize(int) 1.0 Yes

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 325

Chapter 7: JIDBC support

Statement Methods

Version
Introduced

Supported

Comments

void setMaxRows(int)

1.0

Yes

void setPoolable(boolean)

4.0

Yes

void setQueryTimeout(int)

1.0

Yes

The DB2 driver supports setting a timeout
value, in seconds, for a statement with
DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The drivers for Apache Hive, Apache Spark
SQL, Impala, and Informix throw an
"unsupported method" exception.

The drivers for Greenplum, Oracle,
PostgreSQL, Progress OpenEdge,

SQL Server, Sybase, and Amazon Redshift
support setting a timeout value, in seconds,
for a statement. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.

The Autonomous REST Connector and the
drivers for Jira, Oracle Eloqua, Oracle Sales
Cloud, Oracle Service Cloud, and Salesforce
ignore any value set using this method. Use
the WSTimeout connection property to set
a timeout.

The drivers for Apache Cassandra and
MongoDB driver ignore any value set using
this method.

<T>T unwrap(Class<T> iface)

4.0

Yes

326

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

StatementEventListener

StatementEventListener

StatementEventListener Methods Version Supported Comments
Introduced
void statementClosed(event) 4.0 Yes
void statementErrorOccurred(event) 4.0 Yes
Struct
Struct Methods Version Supported Comments
Introduced
(all) 2.0 Yes Supported for the Oracle driver only. All
other drivers throw "unsupported method"
exception.
XAConnection
XAConnection Methods Version Supported Comments
Introduced
(all) 2.0 Optional |Yes Supported for all drivers except Amazon
Redshift, Apache Hive, Apache Spark SQL,
Autonomous REST Connector, DB2 V8.1
for z/OS, Greenplum, Impala, Jira, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, PostgreSQL, and Salesforce.
XADataSource
XADataSource Methods Version Supported Comments
Introduced
(all) 2.0 Optional |Yes Supported for all drivers except Amazon

Redshift, Apache Hive, Apache Spark SQL,
Autonomous REST Connecter, DB2 V8.1
for z/OS, Greenplum, Impala, Oracle
Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, PostgreSQL, and Salesforce.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

327

Chapter 7: JIDBC support

XAResource
XAResource Methods Version Supported Comments
Introduced
(all) 2.0 Optional |Yes Supported for all drivers except Amazon

Redshift, Apache Hive, Apache Spark SQL,
DB2 V8.1 for z/OS, Greenplum, Impala,
Oracle Eloqua, Oracle Sales Cloud, and
PostgreSQL.

328 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

JDBC extensions

This section describes the JDBC extensions provided by the com.ddtek.jdbc.extensions package. Some
extensions apply to select drivers. In some cases, the functionality described may not apply to the driver or
data store you are using. The interfaces in the com.ddtek.jdbc.extensions are:

Interface/Class Description

DatabaseMetadata The methods in this interface are used with the Autonomous REST
Connector and the drivers for Oracle Eloqua, Oracle Sales Cloud, Oracle
Service Cloud, Salesforce, and Google BigQuery to extend the standard
JDBC metadata results returned by the DatabaseMetaData.getColumns()
method to include an additional column.

DDBulkLoad Methods that allow your application to perform bulk load operations.

ExtConnection Methods that allow you to perform the following actions:
e Store and return client information.

* Switch the user associated with a connection to another user to minimize
the number of connections that are required in a connection pool.

¢ Access the DataDirect Statement Pool Monitor from a connection.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 329

Chapter 8: JDBC extensions

Interface/Class Description
ExtDatabaseMetaData Methods that allow your application to return client information parameters.
ExtLogControl Methods that allow you to determine if DataDirect Spy logging is enabled
and turning on and off DataDirect Spy logging if enabled.

For details, see the following topics:

¢ Using JDBC wrapper methods to access JDBC extensions
¢ DatabaseMetaData interface

¢ DDBulkLoad interface

¢ ExtConnection interface

¢ ExtDatabaseMetaData interface

* ExtLogControl class

Using JDBC wrapper methods to access JDBC
extensions

The wrapper methods allow an application to access vendor-specific classes. The following example shows
how to access the DataDirect-specific ExtConnection class using the wrapper methods:

Ext St at enment Pool Monitor nonitor = null;
Cl ass<Ext Connection> cls = ExtConnecti on. cl ass;
if (con.isWapperFor(cls)) {

Ext Connecti on ext Con = con. unwr ap(cls);

ext Con. setCl i entUser("Joe Snith");

nmoni t or = ext Con. get St at ement Pool Moni tor () ;

}
iftrmnitor = null) {
long hits = nonitor.getHitCount();
|l ong m sses = nonitor.getM ssCount();

}

330 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DatabaseMetaData interface

DatabaseMetaData interface

The following drivers support the Dat abaseMet aDat a. get Col unms() method:
¢ Autonomous REST Connector

e Jira

¢ Oracle Eloqua

* Oracle Sales Cloud

* Oracle Service Cloud

¢ Salesforce

The Dat abaseMet aDat a. get Col ums() method extends the standard JDBC metadata results returned to
include the additional columns described in the following tables.

Table 20: DatabaseMetaData.getColumns() method

Column Data Type Description

IS EXTERNAL_ID VARCHAR (3), NOT [Provides an indication of whether the column can be used as an
NULL External ID. External ID columns can be used as the lookup column
for insert and upsert operations and foreign-key relationship values.
Valid values are:

* YES: The column can be used as an external ID.
¢ NO. The column cannot be used as an external ID.

The standard catalog table SYSTEM_COLUMNS is also extended to
include the IS_EXTERNAL_ID column.

LABEL VARCHAR (128) The text label for this column. If not present, this field is null.

The Autonomous REST Connector and the drivers for Jira, Oracle Eloqua, Oracle Sales Cloud, Oracle Service
Cloud, and Salesforce extend the standard JDBC metadata results returned by the
Dat abaseMet aDat a. get Tabl es() method to include the following additional column.

Table 21: DatabaseMetaData.getTables() Method

Column Data Type Description

LABEL VARCHAR (128) The text label for this table. If not present, this field is null.

DDBulkLoad interface

DDBulkLoad Methods Description

void clearWarnings() Clears all warnings that were generated by this DDBulkLoad object.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 331

Chapter 8: JDBC extensions

DDBulkLoad Methods

Description

void close()

Releases a DDBulkLoad object’s resources immediately instead of
waiting for the connection to close.

long export(File)

Exports all rows from the table into the specified CSV file specified by
a file reference. The table is specified using the setTableName()
method. If the CSV file does not already exist, the driver creates it when
the export() method is executed. In addition, the driver creates a bulk
load configuration file matching the CSV file. This method also returns
the number of rows that were successfully exported from the table.

long export(ResultSet, File)

Exports all rows from the specified ResultSet into the CSV file specified
by a file reference. If the CSV file does not already exist, the driver
creates it when the export() method is executed. In addition, the driver
creates a bulk load configuration file matching the CSV file. This method
also returns the number of rows that were successfully exported from
the ResultSet object.

long export(String)

Exports all rows from the table into the CSV file specified by name.
The table is specified using the setTableName() method. If the CSV
file does not already exist, the driver creates it when the export() method
is executed. In addition, the driver creates a bulk load configuration file
matching the CSV file. This method also returns the number of rows
that were successfully exported from the table.

long getBatchSize()

Returns the number of rows that the driver sends at a time when bulk
loading data.

long getBinaryThreshold()

Returns the maximum size (in bytes) of binary data that can be exported
to the CSV file. Once this size is reached, binary data is written to one
or multiple external overflow files.

long getCharacterThreshold()

Returns the maximum size (in bytes) of character data that can be
exported to the CSV file. Once this size is reached, character data is
written to one or multiple external overflow files.

String getCodePage()

Returns the code page that the driver uses for the CSV file.

String getConfigFile()

Returns the name of the bulk load configuration file.

String getDiscardFile()

Returns the name of the discard file. The discard file contains rows
that were unable to be loaded as the result of a bulk load operation.

long getErrorTolerance()

Returns the number of errors that can occur before this DDBulkLoad
object ends the bulk load operation.

String getLogFile()

Returns the name of the log file. The log file records information about
each bulk load operation.

long getNumRows()

Returns the maximum number of rows from the CSV file or ResultSet
object the driver will load when the load() method is executed.

332

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DDBulkLoad interface

DDBulkLoad Methods Description

Properties getProperties() Returns the properties specified for a DDBulkLoad object. Properties
are specified using the setProperties() method.

long getReadBufferSize() Returns the size (in KB) of the buffer that is used to read the CSV file.

long getStartPosition() Returns the position (number of the row) in a CSV file or ResultSet
object from which the driver starts loading. The position is specified
using the setStartPosition() method.

void getTableName() Returns the name of the table to which the data is loaded into or
exported from.

long getTimeout() Returns the number of seconds the bulk load operation requires to
complete before it times out. The timeout is specified using the
setTimeout() method.

SQLWarning getWarnings() Returns any warnings generated by this DDBulkLoad object.

long getWarningTolerance() Returns the maximum number of warnings that can occur. Once the
maximum number is reached, the bulk load operation ends.

long load(File) Loads data from the CSV file specified by a file reference into a table.

The table is specified using the setTableName() method. This method
also returns the number of rows that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file. If a discard file is
created using the setDiscardFile() method, rows that were unable to
be loaded are recorded in the discard file.

Before the bulk load operation is performed, your application can verify
that the data in the CSV file is compatible with the structure of the target
table using the validateTableFromFile() method.

long load(String) Loads data from the CSV file specified by file name into a table. The

table is specified using the setTableName() method. This method also
returns the number of rows that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file. If a discard file is
created using the setDiscardFile() method, rows that were unable to
be loaded are recorded in the discard file.

Before the bulk load operation is performed, your application can verify
that the data in the CSV file is compatible with the structure of the target
table using the validateTableFromFile() method.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 333

Chapter 8: JDBC extensions

DDBulkLoad Methods Description

long load(ResultSet) Loads data from a ResultSet object into the table specified using the

setTableName() method. This method also returns the number of rows
that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file.

The structure of the table that produced the ResultSet object must
match the structure of the target table. If not, the driver throws an
exception.

void setBatchSize(long) Specifies the number of rows that the driver sends at a time when bulk
loading data. Performance can be improved by increasing the number
of rows the driver loads at a time because fewer network round trips
are required. Be aware that increasing the number of rows that are
loaded also causes the driver to consume more memory on the client.

If unspecified, the driver uses a value of 2048.

void setBinaryThreshold(long) Specifies the maximum size (in bytes) of binary data to be exported to
the CSV file. Any column with data over this threshold is exported into
individual external overflow files and a marker of the format

{DD LOBFI LE "fil enane"} is placed in the CSV file to signify that
the data for this column is located in an external file. The format for
overflow file names is:

csv_fil ename_xxxxxx.lob

where:
csv_fil enane
is the name of the CSV file.
XXXXXX
is a 6-digit number that increments the overflow file.

For example, if multiple overflow files are created for a CSV file named
CSV1, the file names would look like this:

CSV1. 000001. | ob
CSV1. 000002. | ob
CSV1. 000003. 1 ob

If set to - 1, the driver does not overflow binary data to external files.
If unspecified, the driver uses a value of 4096.

334 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DDBulkLoad interface

DDBulkLoad Methods

Description

void setCharacterThreshold(long)

Specifies the maximum size (in bytes) of character data to be exported
to the CSV file. Any column with data over this threshold is exported
into individual external overflow files and a marker of the format

{DD LOBFI LE "fil enane"} is placed in the CSV file to signify that
the data for this column is located in an external file. The format for
overflow file names is:

csv_fil ename_xxxxxx.lob

where:
csv_fil enane
is the name of the CSV file.
XXXXXX
is a 6-digit number that increments the overflow file.

For example, if multiple overflow files are created for a CSV file named
CSV1, the file names would look like this:

CSV1. 000001. | ob
CSV1. 000002. | ob
CSV1. 000003. | ob

If set to - 1, the driver does not overflow character data to external
files.If unspecified, the driver uses a value of 4096.

void setCodePage(String)

Specifies the code page the driver uses for the CSV file.

void setConfigFile(String)

Specifies the fully qualified directory and file name of the bulk load
configuration file. If the Column Info section in the bulk load
configuration file is specified, the driver uses it to map the columns in
the CSV file to the columns in the target table when performing a bulk
load operation.

If unspecified, the name of the bulk load configuration file is assumed
tobe csv_fil enanme.xml, where csv_fi | enane is the file name of
the CSV file.

If set to an empty string, the driver does not try to use the bulk load
configuration file and reads all data from the CSV file as character data.

void setDiscardFile(String)

Specifies the fully qualified directory and file name of the discard file.
The discard file contains rows that were unable to be loaded from a
CSV file as the result of a bulk load operation. After fixing the reported
issues in the discard file, the bulk load can be reissued, using the
discard file as the CSV file. If unspecified, a discard file is not created.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

335

Chapter 8: JDBC extensions

DDBulkLoad Methods Description

void setErrorTolerance(long) Specifies the maximum number of errors that can occur. Once the
maximum number is reached, the bulk load operation ends. Errors are
written to the log file. If set to 0, no errors are tolerated; the bulk load
operation fails if any error is encountered. Any rows that were processed
before the error occurred are loaded. If unspecified or setto - 1, an
infinite number of errors are tolerated.

void setLogFile(String) Specifies the fully qualified directory and file name of the log file. The
log file records information about each bulk load operation.If unspecified,
a log file is not created.

void setNumRows() Specifies the maximum number of rows from the CSV file or ResultSet
object the driver will load.

void setProperties(Properties) Specifies one or more of the following properties for a DDBulkLoad

object:
t abl eNare nunmRows
codePage bi naryThreshol d
ti meout charact er Threshol d
| ogFile errorTol erance
discardFile war ni ngTol er ance
configFile readBuf fer Si ze
startPosition bat chSi ze
operation

Except for the operation property, these properties also can be set
using the corresponding setxxx() methods, which provide a description
of the values that can be set.

The operation property defines which type of bulk operation will be
performed when a load method is called. The operation property accepts
the following values:i nsert , updat e, del et e, or upsert . The default
value isi nsert.

void setReadBufferSize(long) Specifies the size (in KB) of the buffer that is used to read the CSV file.
If unspecified, the driver uses a value of 2048.

void setStartPosition() Specifies the position (number of the row) in a CSV file or ResultSet
object from which the bulk load operation starts. For example, if a value
of 10 is specified, the first 9 rows of the CSV file are skipped and the
first row loaded is row 10.

336 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

DDBulkLoad interface

DDBulkLoad Methods Description
void setTableName(t abl enane When loading data into a table, specifies the name of the table into
([desti nati onCol ummLi st])) which the data is loaded (t abl enane).

Optionally, for the Salesforce driver, you can specify the column names
that identify which columns to update in the table

(dest i nati onCol ummLi st). Specifying column names is useful
when loading data from a CSV file into a table. The column names
used in the column list must be the names reported by the driver for
the columns in the table. For example, if you are loading data into the
Salesforce system column NAME, the column list must identify the
column as SYS_NAME.

If desti nati onCol umLi st is not specified, a one-to-one mapping
is performed between the columns in the CSV file and the columns in
the table.

desti nati onCol ummLi st has the following format:
(dest Col umNane [, dest Col umNane] .. .)

where:
dest Col utmNane
is the name of the column in the table to be updated.

The number of specified columns must match the number of columns
in the CSV file. For example, the following call tells the driver to update
the Name, Address, City, State, PostalCode, Phone, and Website
columns:

bul kl oad. set Tabl eName("account (Name, Address,
City, State, Postal Code, Phone, Wbsite)")

When exporting data from a table, specifies the name of the table from
which the data is exported. If the specified table does not exist, the
driver throws an exception.

void setTimeout(long) Sets the maximum number of seconds that can elapse for this bulk
load operation to complete. Once this number is reached, the bulk load
operation times out.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 337

Chapter 8: JDBC extensions

DDBulkLoad Methods Description
void setWarningTolerance(long) Specifies the maximum number of warnings that can occur. Once the
maximum is reached, the bulk load operation ends. Warnings are written
to the log file.

If set to 0, no warnings are tolerated; the bulk load operation fails if any
warning is encountered.

If unspecified or set to - 1, an infinite number of warnings are tolerated.

Properties validateTableFromFile() Verifies the metadata in the bulk load configuration file against the

structure of the table to which the data is loaded. This method is used
to ensure that the data in a CSV file is compatible with the structure of
the target table before the actual bulk load operation is performed. The
driver performs checks to detect mismatches of the following types:

Data types
Column sizes
Code pages
Column info

This method returns a Properties object with an entry for each of these
checks:

* If no mismatches are found, the Properties object does not contain
any messages.

¢ If minor mismatches are found, the Properties object lists the
problems.

* If problems are detected that would prevent a successful bulk load
operation, for example, if the target table does not exist, the driver
throws an exception.

ExtConnection interface

The methods of this interface are supported for all drivers.

ExtConnection Methods Description

void abortConnection() Closes the current connection and marks the connection as closed.
This method does not attempt to obtain any locks when closing the
connection. If subsequent operations are performed on the connection,
the driver throws an exception.

Connection createArray(String, Object[]) Supported by the Oracle driver only for use with Oracle VARRAY and
TABLE data types. Creates an array object.

338 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ExtConnection interface

ExtConnection Methods

Description

String getClientAccountinglnfo()

Returns the accounting client information on the connection or an empty
string if the accounting client information value or the connection has
not been set.

If getting accounting client information is supported by the database
and this operation fails, the driver throws an exception.

String getClientApplicationName()

Returns the name of the client application on the connection or an
empty string if the client name value for the connection has not been
set.

If getting client name information is supported by the database and this
operation fails, the driver throws an exception.

String getClientHostname()

Returns the name of the host used by the client application on the
connection or an empty string if the client hostname value in the
database has not been set.

If getting host name information is supported by the database and this
operation fails, the driver throws an exception.

String getClientUser()

Returns the user ID of the client on the connection or an empty string
if the client user ID value for the connection has not been set. The
user ID may be different from the user ID establishing the connection.

If getting user 1D application information is supported by the database
and this operation fails, the driver throws an exception.

String getCurrentUser()

Returns the current user of the connection. If reauthentication was
performed on the connection, the current user may be different than
the user that created the connection. For the DB2 and Oracle drivers,
the current user is the same as the user reported by
DatabaseMetaData.getUserName(). For the SQL Server driver, the
current user is the login user name. DatabaseMetaData.getUserName()
reports the user name the login user name is mapped to in the
database.

int getNetworkTimeout()

Supported by the SQL Server driver to return the network timeout. The
network timeout is the maximum time (in milliseconds) that a connection,
or objects created by a connection, will wait for the database to reply

to an application request. A value of 0 means that no network timeout
exists.

See void setNetworkTimeout(int) for details about setting a network
timeout.

ExtStatementPoolMonitor
getStatementPoolMonitor()

Returns an ExtStatementPoolMonitor object for the statement pool
associated with the connection. If the connection does not have a
statement pool, this method returns null.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

339

Chapter 8: JDBC extensions

ExtConnection Methods Description

void resetUser(String) Specifies a non-null string that resets the current user on the connection
to the user that created the connection. It also restores the current
schema, current path, or current database to the original value used
when the connection was created. If reauthentication was performed
on the connection, this method is useful to reset the connection to the
original user.

For the SQL Server driver, the current user is the login user name.The
driver throws an exception in the following circumstances:

* The driver cannot change the current user to the initial user.

¢ A transaction is active on the connection.

void setClientAccountinglnfo(String) Specifies a non-null string that sets the accounting client information
on the connection. Some databases include this information in their
usage reports. The maximum length allowed for accounting information
for a particular database can be determined by calling the
ExtDatabaseMetaData.getClientAccountinginfoLength() method. If the
length of the information specified is longer than the maximum length
allowed, the information is truncated to the maximum length, and the
driver generates a warning.

If setting accounting client information is supported by the database
and this operation fails, the driver throws an exception.

void setClientApplicationName(String) Specifies a non-null string that sets the name of the client application
on the connection. The maximum client name length allowed for a
particular database can be determined by calling the
ExtDatabaseMetaData.getClientApplicationNameLength() method. If
the length of the client application name specified is longer than the
maximum name length allowed, the name is truncated to the maximum
length allowed, and the driver generates a warning.

If setting client name information is supported by the database and this
operation fails, the driver throws an exception.

void setClientHostname(String) Specifies a non-null string that sets the name of the host used by the
client application on the connection. The maximum hostname length
allowed for a particular database can be determined by calling the
ExtDatabaseMetaData.getClientHosthameLength() method. If the length
of the hostname specified is longer than the maximum hostname length
allowed, the hostname is truncated to the maximum hostname length,
and the driver generates a warning.

If setting hostname information is supported by the database and this
operation fails, the driver throws an exception.

340 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ExtConnection interface

ExtConnection Methods Description

void setClientUser(String) Specifies a non-null string that sets the user ID of the client on the
connection. This user ID may be different from the user ID establishing
the connection. The maximum user ID length allowed for a particular
database can be determined by calling the
ExtDatabaseMetaData.getClientUserLength() method. If the length of
the user ID specified is longer than the maximum length allowed, the
user ID is truncated to the maximum user ID length, and the driver
generates a warning.

If setting user ID information is supported by the database and this
operation fails, the driver throws an exception.

void setCurrentUser(String) Specifies a non-null string that sets the current user on the connection.
This method is used to perform reauthentication on a connection. For
the SQL Server driver, the current user is the login user name. The
driver throws an exception in the following circumstances:

* The driver is connected to a database server that does not support
reauthentication.

* The database server rejects the request to change the user on the
connection.

¢ A transaction is active on the connection.

void setCurrentUser(String, Properties) Specifies a non-null string that sets the current user on the connection.
This method is used to perform reauthentication on a connection. In
addition, this method sets options that control how the driver handles
reauthentication. The options that are supported depend on the driver.
See the DB2 driver, Oracle driver, and SQL Server driver chapters for
information on which options are supported by each driver. For the
SQL Server driver, the current user is the login user name. The driver
throws an exception in the following circumstances:

* The driver is connected to a database server that does not support
reauthentication.

* The database server rejects the request to change the user on the
connection.

¢ A transaction is active on the connection.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 341

Chapter 8: JDBC extensions

ExtConnection Methods

Description

void
setCurrentUser(javax.security.auth.Subject)

Specifies a non-null string that sets the current user on the connection
to the user specified by the javax.security.auth.Subject object. This
method is used to perform reauthentication on a connection. For the
SQL Server driver, the current user is the login user name. The driver
throws an exception in the following circumstances:

* The driver does not support reauthentication.

* The driver is connected to a database server that does not support
reauthentication.

* The database server rejects the request to change the user on the
connection.

¢ A transaction is active on the connection.

void
setCurrentUser(javax.security.auth.Subject,
Properties)

Specifies a non-null string that sets the current user on the connection
to the user specified by the javax.security.auth.Subject object. This
method is used to perform reauthentication on a connection. In addition,
this method sets options that control how the driver handles
reauthentication. The options that are supported depend on the driver.
See your user's guide for information on which options are supported
by each driver.

For the SQL Server driver, the current user is the login user name.
The driver throws an exception in the following circumstances:
* The driver does not support reauthentication.

* The driver is connected to a database server that does not support
reauthentication.

* The database server rejects the request to change the user on the
connection.

¢ A transaction is active on the connection.

void setNetworkTimeout(int)

Supported by the SQL Server driver to set the network timeout. The
network timeout is the maximum time (in milliseconds) that a connection,
or objects created by a connection, will wait for the database to reply
to an application request. If this limit is exceeded, the connection or
objects are closed and the driver returns an exception indicating that
a timeout occurred. A value of 0 means that no network timeout exists.

Note that if a query timeout occurs before a network timeout, the
execution of the statement is cancelled. Both the connection and the
statement can be used. If a network timeout occurs before a query
timeout or if the query timeout fails because of network problems, the
connection is closed and neither the connection or the statement can
be used.

boolean supportsReauthentication()

Indicates whether the connection supports reauthentication. If true is
returned, you can perform reauthentication on the connection. If false
is returned, any attempt to perform reauthentication on the connection
throws an exception.

342

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

ExtDatabaseMetaData interface

ExtDatabaseMetaData interface

ExtDatabaseMetaData Methods

Description

int getClientApplicationNameLength()

Returns the maximum length of the client application name. A value of
0 indicates that the client application name is stored locally in the driver,
not in the database. There is no maximum length if the application
name is stored locally.

int getClientUserLength()

Returns the maximum length of the client user ID. A value of 0 indicates
that the client user ID is stored locally in the driver, not in the database.
There is no maximum length if the client user ID is stored locally.

int getClientHostnameLength()

Returns the maximum length of the hostname. A value of O indicates
that the hostname is stored locally in the driver, not in the database.
There is no maximum length if the hostname is stored locally.

int getClientAccountinglnfoLength()

Returns the maximum length of the accounting information. A value of
0 indicates that the accounting information is stored locally in the driver,
not in the database. There is no maximum length if the hostname is
stored locally.

ExtLogControl class

ExtLogControl Methods

Description

void setEnableLogging(boolean enable|disable)

If DataDirect Spy was enabled when the connection was created, you
can turn on or off DataDirect Spy logging at runtime using this method.
If true, logging is turned on. If false, logging is turned off. If DataDirect
Spy logging was not enabled when the connection was created, calling
this method has no effect.

boolean getEnableLogging()

Indicates whether DataDirect Spy logging was enabled when the
connection was created and whether logging is turned on. If the returned
value is true, logging is turned on. If the returned value is false, logging
is turned off.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

343

Chapter 8: JDBC extensions

344 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Designing JDBC applications for

performance optimization

Developing performance-oriented JDBC applications is not easy. JDBC drivers do not throw exceptions to tell
you when your code is running too slow. This chapter presents some general guidelines for improving JDBC
application performance that have been compiled by examining the JDBC implementations of numerous
shipping JDBC applications. These guidelines include:

* Use DatabaseMetaData methods appropriately

* Return only required data

* Select functions that optimize performance

* Manage connections and updates

Following these general guidelines can help you solve some common JDBC system performance problems,
such as those listed in the following table.

Problem

Solution

See guidelines in...

Network communication is slow.

Reduce network traffic.

Using database metadata methods on
page 346

Evaluation of complex SQL queries on
the database server is slow and can
reduce concurrency.

Simplify queries.

Using database metadata methods on
page 346

Selecting JDBC objects and methods
on page 350

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

345

Chapter 9: Designing JDBC applications for performance optimization

Problem Solution See guidelines in...
Excessive calls from the application to | Optimize application-to-driver Returning data on page 348
the driver slow performance. interaction. Selecting JDBC objects and methods
on page 350
Disk 1/O is slow. Limit disk 1/0. Managing connections and updates on
page 353

In addition, most JDBC drivers provide options that improve performance, often with a trade-off in functionality.
If your application is not affected by functionality that is modified by setting a particular option, significant
performance improvements can be realized.

Note: The section describes functionality across a spectrum of data stores. In some cases, the functionality
described may not apply to the driver or data store you are using. In addition, examples are drawn from a
variety of drivers and data stores.

For details, see the following topics:

¢ Using database metadata methods
* Returning data
¢ Selecting JDBC objects and methods

* Managing connections and updates

Using database metadata methods

Because database metadata methods that generate ResultSet objects are slow compared to other JDBC
methods, their frequent use can impair system performance. The guidelines in this section will help you optimize
system performance when selecting and using database metadata.

Minimizing the use of database metadata methods

Compared to other JIDBC methods, database metadata methods that generate ResultSet objects are relatively
slow. Applications should cache information returned from result sets that generate database metadata methods
so that multiple executions are not needed.

Although almost no JDBC application can be written without database metadata methods, you can improve
system performance by minimizing their use. To return all result column information mandated by the JDBC
specification, a JDBC driver may have to perform complex queries or multiple queries to return the necessary
result set for a single call to a database metadata method. These particular elements of the SQL language are
performance-expensive.

Applications should cache information from database metadata methods. For example, call getTypelnfo() once
in the application and cache the elements of the result set that your application depends on. It is unlikely that
any application uses all elements of the result set generated by a database metadata method, so the cache
of information should not be difficult to maintain.

346 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Using database metadata methods

Avoiding search patterns

Using null arguments or search patterns in database metadata methods results in generating time-consuming
queries. In addition, network traffic potentially increases due to unwanted results. Always supply as many
non-null arguments as possible to result sets that generate database metadata methods.

Because database metadata methods are slow, invoke them in your applications as efficiently as possible.
Many applications pass the fewest non-null arguments necessary for the function to return success. For example:

Resul t Set W5rs = Wsdbnd. get Tabl es(null, null, "WsTable", null);

In this example, an application uses the getTables() method to determine if the WSTable table exists. A JDBC
driver interprets the request as: return all tables, views, system tables, synonyms, temporary tables, and aliases
named "WSTable" that exist in any database schema inside the database catalog.

In contrast, the following request provides non-null arguments as shown:

String[] tableTypes = {"TABLE"};
Wsdbnd. get Tabl es("cat1", "johng", "WSTable", "tabl eTypes");

Clearly, a JDBC driver can process the second request more efficiently than it can process the first request.

Sometimes, little information is known about the object for which you are requesting information. Any information
that the application can send the driver when calling database metadata methods can result in improved
performance and reliability.

Using a dummy query to determine table characteristics

Avoid using the getColumns() method to determine characteristics about a database table. Instead, use a
dummy query with getMetadata().

Consider an application that allows the user to choose the columns to be selected. Should the application use
getColumns() to return information about the columns to the user or instead prepare a dummy query and call
getMetadata()?

Case 1: GetColumns() Method

Resul t Set WBrc = W5c. get Col ums(... "UnknownTable" ...);
/1 This call to getColumms will generate a query to

/1l the systemcatalogs... possibly a join

/'l which nust be prepared, executed, and produce

/1 a result set

V\Src next ();

string Cnane = getString(4);

éer must return Nrows fromthe server
= # result colums of UnknownTabl e

)/'u
/1
/] result columm information has now been obt ai ned

Case 2: GetMetadata() Method

/1 prepare dumy query
Pr epar edSt at ement WBps = WBc. pr epar eSt at enent
(" SELECT * FROM UnknownTable WHERE 1 = 0");
/'l query is never executed on the server - only prepared
Resul t Set Met aDat a WSsnd=W5ps. get Met aDat a() ;
i nt nuntols = W8rsnd. get Col umCount () ;

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 347

Chapter 9: Designing JDBC applications for performance optimization

int ctype = Worsnd. get Col uimType(n)

/! result columm information has now been obt ai ned
/1 Note we al so know the colum ordering within the
// table! This information cannot be

/1 assuned fromthe get Col ums exanpl e.

In both cases, a query is sent to the server. However, in Case 1, the potentially complex query must be prepared
and executed, result description information must be formulated, and a result set of rows must be sent to the
client. In Case 2, we prepare a simple query where we only return result set information. Clearly, Case 2 is the
better performing model.

To somewhat complicate this discussion, let us consider a DBMS server that does not natively support preparing
a SQL statement. The performance of Case 1 does not change but the performance of Case 2 improves slightly
because the dummy query must be evaluated in addition to being prepared. Because the Where clause of the
guery always evaluates to FALSE, the query generates no result rows and should execute without accessing
table data. For this situation, Case 2 still outperforms Case 1.

In summary, always use result set metadata to return table column information, such as column names, column
data types, and column precision and scale. Only use the getColumns() method when the requested information
cannot be obtained from result set metadata (for example, using the table column default values).

Returning data

To return data efficiently, return only the data that you need and choose the most efficient method of doing so.
The guidelines in this section will help you optimize system performance when retrieving data with JDBC
applications.

Returning long data

Because retrieving long data across a network is slow and resource intensive, applications should not request
long data unless it is necessary.

Most users do not want to see long data. If the user does want to see these result items, then the application
can query the database again, specifying only the long columns in the Select list. This method allows the
average user to return the result set without having to pay a high performance penalty for network traffic.

Although the best method is to exclude long data from the Select list, some applications do not formulate the
Select list before sending the query to the JDBC driver (that is, some applications SELECT * FROM

tabl e_nane .. .).Ifthe Selectlist contains long data, most drivers are forced to return that long data at fetch
time, even if the application does not ask for the long data in the result set. When possible, the designer should
attempt to implement a method that does not return all columns of the table.

For example, consider the following code:

Resul tSet rs = stnt. executeQuery(

"SELECT * FROM Enpl oyees WHERE SSI D = ' 999-99-2222"");
rs.next();
string name = rs.getString(1l);

348 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Returning data

Remember that a JDBC driver cannot interpret an application's final intention. When a query is executed, the
driver has no way to know which result columns an application will use. A driver anticipates that an application
can request any of the result columns that are returned. When the JDBC driver processes the rs.next request,
it will probably return at least one, if not more, result rows from the database server across the network. In this
case, a result row contains all the column values for each row, including an employee photograph if the
Employees table contains such a column. If you limit the Select list to contain only the employee name column,
it results in decreased network traffic and a faster performing query at runtime. For example:

Resul t Set rs = stnt. executeQuery(

"SELECT nane FROM Enpl oyees WHERE SSI D = ' 999-99-2222'");
rs.next();
string nane = rs.getString(1l);

Additionally, although the getClob() and getBlob() methods allow the application to control how long data is
returned in the application, the designer must realize that in many cases, the JDBC driver emulates these
methods due to the lack of true Large Object (LOB) locator support in the DBMS. In such cases, the driver
must return all the long data across the network before exposing the getClob() and getBlob() methods.

Reducing the size of returned data

Sometimes long data must be returned. When this is the case, remember that most users do not want to see
100 KB, or more, of text on the screen.

To reduce network traffic and improve performance, you can reduce the size of any data being returned to
some manageable limit by calling setMaxRows(), setMaxFieldSize(), and the driver-specific setFetchSize().
Another method of reducing the size of the data being returned is to decrease the column size.

In addition, be careful to return only the rows you need. If you return five columns when you only need two
columns, performance is decreased, especially if the unnecessary rows include long data.

Choosing the right data type

Retrieving and sending certain data types can be expensive. When you design a schema, select the data type
that can be processed most efficiently. For example, integer data is processed faster than floating-point data.
Floating-point data is defined according to internal database-specific formats, usually in a compressed format.
The data must be decompressed and converted into a different format so that it can be processed by the
database wire protocol.

Retrieving result sets

Most JDBC drivers cannot implement scrollable cursors because of limited support for scrollable cursors in the
database system. Unless you are certain that the database supports using a scrollable result set, rs, for example,
do not call rs.last and rs.getRow() methods to find out how many rows the result set contains. For JDBC drivers
that emulate scrollable cursors, calling rs.last results in the driver retrieving all results across the network to
reach the last row. Instead, you can either count the rows by iterating through the result set or get the number
of rows by submitting a query with a Count column in the Select clause.

In general, do not write code that relies on the number of result rows from a query because drivers must fetch
all rows in a result set to know how many rows the query will return.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 349

Chapter 9: Designing JDBC applications for performance optimization

Selecting JDBC objects and methods

The guidelines in this section will help you to select which JDBC objects and methods will give you the best
performance.

Using parameter markers as arguments to stored procedures

When calling stored procedures, always use parameter markers for argument markers instead of using literal
arguments. JDBC drivers can call stored procedures on the database server either by executing the procedure
as a SQL query or by optimizing the execution by invoking a Remote Procedure Call (RPC) directly on the
database server. When you execute a stored procedure as a SQL query, the database server parses the
statement, validates the argument types, and converts the arguments into the correct data types.

Remember that SQL is always sent to the database server as a character string, for example, { cal |

get Cust Nane(12345) } . In this case, even though the application programmer may have assumed that the
only argument to getCustName() was an integer, the argument is actually passed inside a character string to
the server. The database server parses the SQL query, isolates the single argument value 12345, and converts
the string 12345 into an integer value before executing the procedure as a SQL language event.

By invoking a RPC on the database server, the overhead of using a SQL character string is avoided. Instead,
the JDBC driver constructs a network packet that contains the parameters in their native data type formats and
executes the procedure remotely.

Case 1: Not Using a Server-Side RPC

In this example, the stored procedure getCustName() cannot be optimized to use a server-side RPC. The
database server must treat the SQL request as a normal language event, which includes parsing the statement,
validating the argument types, and converting the arguments into the correct data types before executing the
procedure.

Cal | abl eStatenent cstnt = conn. prepareCall ("call getCustNane(12345)");
Resul tSet rs = cstnt.executeQery();

Case 2: Using a Server-Side RPC

In this example, the stored procedure getCustName() can be optimized to use a server-side RPC. Because
the application avoids literal arguments and calls the procedure by specifying all arguments as parameters,
the JDBC driver can optimize the execution by invoking the stored procedure directly on the database as an
RPC. The SQL language processing on the database server is avoided and execution time is greatly improved.

Cal | abl eSt atement cstnt = conn. prepareCall ("call getCustNane(?)}");
cstnt.setlong(1l, 12345);
Resul tSet rs = cstnt. executeQery();

Using the statement object instead of the PreparedStatement object

JDBC drivers are optimized based on the perceived use of the functions that are being executed. Choose
between the PreparedStatement object and the Statement object depending on how you plan to use the object.
The Statement object is optimized for a single execution of a SQL statement. In contrast, the PreparedStatement
object is optimized for SQL statements to be executed two or more times.

350 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Selecting JDBC objects and methods

The overhead for the initial execution of a PreparedStatement object is high. The advantage comes with
subsequent executions of the SQL statement. For example, suppose we are preparing and executing a query
that returns employee information based on an ID. Using a PreparedStatement object, a JDBC driver would
process the prepare request by making a network request to the database server to parse and optimize the
query. The execute results in another network request. If the application will only make this request once during
its life span, using a Statement object instead of a PreparedStatement object results in only a single network
roundtrip to the database server. Reducing network communication typically provides the most performance
gains.

This guideline is complicated by the use of prepared statement pooling because the scope of execution is
longer. When using prepared statement pooling, if a query will only be executed once, use the Statement
object. If a query will be executed infrequently, but may be executed again during the life of a statement pool
inside a connection pool, use a PreparedStatement object. Under similar circumstances without statement
pooling, use the Statement object.

Using batches instead of prepared statements

Updating large amounts of data typically is done by preparing an Insert statement and executing that statement
multiple times, resulting in numerous network roundtrips. To reduce the number of JDBC calls and improve
performance, you can send multiple queries to the database at a time using the addBatch method of the
PreparedStatement object. For example, let us compare the following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times

Pr eparedSt at enent ps = conn. pr epar eSt at enment (
"I NSERT | NTO enpl oyees VALUES (?, ?, ?2)");
for (n = 0; n < 100; n++) {
ps. set String(nane[n]);
ps.setLong(id[n]);
ps.setlnt(salary[n]);
ps. execut eUpdat e() ;

}

Case 2: Using a Batch

Pr epar edSt at ement ps = conn. prepar eSt at ement (
"I NSERT | NTO enpl oyees VALUES (?, ?, ?2)");
for (n =0; n < 100; n++) {
ps. set String(nanme[n]);
ps. setLong(id[n]);
ps.setlnt(salary[n]);
ps. addBat ch();

}

ps. execut eBat ch() ;

In Case 1, a prepared statement is used to execute an Insert statement multiple times. In this case, 101 network
roundtrips are required to perform 100 Insert operations: one roundtrip to prepare the statement and 100
additional roundtrips to execute its iterations. When the addBatch method is used to consolidate 100 Insert
operations, as demonstrated in Case 2, only two network roundtrips are required—one to prepare the statement
and another to execute the batch. Although more database CPU cycles are involved by using batches,
performance is gained through the reduction of network roundtrips. Remember that the biggest gain in
performance is realized by reducing network communication between the JDBC driver and the database server.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 351

Chapter 9: Designing JDBC applications for performance optimization

Choosing the right cursor

Choosing the appropriate type of cursor allows maximum application flexibility. This section summarizes the
performance issues of three types of cursors: forward-only, insensitive, and sensitive.

A forward-only cursor provides excellent performance for sequential reads of all rows in a table. For retrieving
table data, there is no faster way to return result rows than using a forward-only cursor; however, forward-only
cursors cannot be used when the rows to be returned are not sequential.

Insensitive cursors are ideal for applications that require high levels of concurrency on the database server
and require the ability to scroll forwards and backwards through result sets. The first request to an insensitive
cursor fetches all the rows and stores them on the client. In most cases, the first request to an insensitive cursor
fetches all the rows and stores them on the client. If a driver uses "lazy" fetching (fetch-on-demand), the first
request may include many rows, if not all rows.The initial request is slow, especially when long data is returned.
Subsequent requests do not require any network traffic (or, when a driver uses "lazy" fetching, requires limited
network traffic) and are processed quickly.

Because the first request is processed slowly, insensitive cursors should not be used for a single request of
one row. Developers should also avoid using insensitive cursors when long data or large result sets are returned
because memory can be exhausted. Some insensitive cursor implementations cache the data in a temporary
table on the database server and avoid the performance issue, but most cache the information local to the
application.

Sensitive cursors, or keyset-driven cursors, use identifiers such as a ROWID that already exist in the database.
When you scroll through the result set, the data for these identifiers is returned. Because each request generates
network traffic, performance can be very slow. However, returning non-sequential rows does not further affect
performance.

To illustrate this point further, consider an application that normally returns 1000 rows to an application. At
execute time, or when the first row is requested, a JDBC driver does not execute the Select statement that
was provided by the application. Instead, the JDBC driver replaces the Select list of the query with a key
identifier, for example, ROWID. This modified query is then executed by the driver and all 1000 key values are
returned by the database server and cached for use by the driver. Each request from the application for a result
row directs the JDBC driver to look up the key value for the appropriate row in its local cache, construct an
optimized query that contains a Where clause similar to WHERE ROWID=?, execute the modified query, and
return the single result row from the server.

Sensitive cursors are the preferred scrollable cursor model for dynamic situations when the application cannot
afford to buffer the data associated with an insensitive cursor.

Using get methods effectively

JDBC provides a variety of methods to return data from a result set (for example, getint(), getString(), and
getObject()). The getObject() method is the most generic and provides the worst performance when the
non-default mappings are specified because the JDBC driver must perform extra processing to determine the
type of the value being returned and generate the appropriate mapping. Always use the specific method for
the data type.

To further improve performance, provide the column number of the column being returned, for example,
get String(1),getlLong(2),andgetlnt(3), instead of the column name. If the column names are not
specified, network traffic is unaffected, but costly conversions and lookups increase. For example, suppose
you use:

getString("foo")...

The JDBC driver may need to convert foo to uppercase and then compare foo with all columns in the column
list, which is costly. If the driver is able to go directly to result column 23, a large amount of processing is saved.

352

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Managing connections and updates

For example, suppose you have a result set that has 15 columns and 100 rows, and the column names are
not included in the result set. You are interested in only three columns: EMPLOYEENAME (string),
EMPLOYEENUMBER (long integer), and SALARY (integer). If you specify get St ri ng(" Enpl oyeeNane") ,
get Long(" Enpl oyeeNunber "), and get I nt (" Sal ary"), each column name must be converted to the
appropriate case of the columns in the database metadata and lookups would increase considerably.
Performance improves significantly if you specify get Stri ng(1), get Long(2), and get | nt (15).

Retrieving auto-generated keys

Many databases have hidden columns (pseudo-columns) that represent a unique key for each row in a table.
Typically, using these types of columns in a query is the fastest way to access a row because the
pseudo-columns usually represent the physical disk address of the data. Prior to JDBC 3.0, an application
could only return the value of the pseudo-columns by executing a Select statement immediately after inserting
the data. For example:

/linsert row

int rowcount = stnt.executeUpdate (
"I NSERT | NTO Local Geni usLi st (nang)
VALUES (' Karen')");

/'l now get the disk address — rowid -

/1 for the newy inserted row

Resul t Set rs = stnt.executeQuery (
"SELECT rowi d FROM Local Geni usLi st
WHERE nane = 'Karen'");

Retrieving pseudo-columns this way has two major flaws. First, retrieving the pseudo-column requires a separate
guery to be sent over the network and executed on the server. Second, because there may not be a primary
key over the table, the search condition of the query may be unable to uniquely identify the row. In the latter
case, multiple pseudo-column values can be returned, and the application may not be able to determine which
value is actually the value for the most recently inserted row.

An optional feature of the JDBC 3.0 specification is the ability to return auto-generated key information for a
row when the row is inserted into a table. For example:

int rowcount = stnt.executeUpdate(
"I NSERT | NTO Local Geni usLi st (nanme) VALUES(' Karen')",
/1 insert row AND return key
St at enent . RETURN_CGENERATED_KEYS) ;
Resul t Set rs = stnt.get Gener at edKeys();
/'l key is autonatically avail able

Now, the application contains a value that can be used in a search condition to provide the fastest access to
the row and a value that uniquely identifies the row, even when a primary key doesn't exist on the table.

The ability to return keys provides flexibility to the JDBC developer and creates performance boosts when
accessing data.

Managing connections and updates

The guidelines in this section will help you to manage connections and updates to improve system performance
for your JDBC applications.

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 353

Chapter 9: Designing JDBC applications for performance optimization

Managing connections

Connection management is important to application performance. Optimize your application by connecting
once and using multiple Statement objects, instead of performing multiple connections. Avoid connecting to a
data source after establishing an initial connection.

Although gathering driver information at connect time is a good practice, it is often more efficient to gather it
in one step rather than two steps. For example, some applications establish a connection and then call a
method in a separate component that reattaches and gathers information about the driver. Applications that
are designed as separate entities should pass the established connection object to the data collection routine
instead of establishing a second connection.

Another bad practice is to connect and disconnect several times throughout your application to perform SQL
statements. Connection objects can have multiple Statement objects associated with them. Statement objects,
which are defined to be memory storage for information about SQL statements, can manage multiple SQL
statements.

You can improve performance significantly with connection pooling, especially for applications that connect
over a network or through the World Wide Web. Connection pooling lets you reuse connections. Closing
connections does not close the physical connection to the database. When an application requests a connection,
an active connection is reused, thus avoiding the network round trips needed to create a new connection.

Typically, you can configure a connection pool to provide scalability for connections. The goal is to maintain a
reasonable connection pool size while ensuring that each user who needs a connection has one available
within an acceptable response time. To achieve this goal, you can configure the minimum and maximum number
of connections that are in the pool at any given time, and how long idle connections stay in the pool. In addition,
to help minimize the number of connections required in a connection pool, you can switch the user associated
with a connection to another user, a process known as reauthentication. Not all databases support
reauthentication.

In addition to connection pooling tuning options, JDBC also specifies semantics for providing a prepared
statement pool. Similar to connection pooling, a prepared statement pool caches PreparedStatement objects
so that they can be re-used from a cache without application intervention. For example, an application may
create a PreparedStatement object similar to the following SQL statement:

SELECT nane, address, dept, sal ary FROM personnel
VWHERE enmpid = ? or name = ? or address = ?

When the PreparedStatement object is created, the SQL query is parsed for semantic validation and a query
optimization plan is produced. The process of creating a prepared statement can be extremely expensive in
terms of performance with some database systems. Once the prepared statement is closed, a JDBC
3.0-compliant driver places the prepared statement into a local cache instead of discarding it. If the application
later attempts to create a prepared statement with the same SQL query, a common occurrence in many
applications, the driver can simply retrieve the associated statement from the local cache instead of performing
a network roundtrip to the server and an expensive database validation.

Connection and statement handling should be addressed before implementation. Thoughtfully handling
connections and statements improves application performance and maintainability.

Managing commits in transactions

Committing transactions is slow because of the amount of disk I/O and potentially network round trips that are
required. Always turn off Autocommit by using Connect i on. set Aut oConmi t (f al se) .

354 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

Managing connections and updates

What does a commit actually involve? The database server must flush back to disk every data page that
contains updated or new data. This is usually a sequential write to a journal file, but nevertheless, it involves
disk I/0. By default, Autocommit is on when connecting to a data source, and Autocommit mode usually impairs
performance because of the significant amount of disk I/O needed to commit every operation.

Furthermore, most database servers do not provide a native Autocommit mode. For this type of server, the
JDBC driver must explicitly issue a COMMIT statement and a BEGIN TRANSACTION for every operation sent
to the server. In addition to the large amount of disk 1/O required to support Autocommit mode, a performance
penalty is paid for up to three network requests for every statement issued by an application.

Although using transactions can help application performance, do not take this tip too far. Leaving transactions
active can reduce throughput by holding locks on rows for longer than necessary, preventing other users from
accessing the rows. Commit transactions in intervals that allow maximum concurrency.

Choosing the right transaction model

Many systems support distributed transactions; that is, transactions that span multiple connections. Distributed
transactions are at least four times slower than normal transactions due to the logging and network round trips
necessary to communicate between all the components involved in the distributed transaction (the JDBC driver,
transaction monitor, and DBMS). Unless distributed transactions are required, avoid using them. Instead, use
local transactions when possible. Many Java application servers provide a default transaction behavior that
uses distributed transactions.

For the best system performance, design the application to run using a single Connection object.

Using updateXXX methods

Although programmatic updates do not apply to all types of applications, developers should attempt to use
programmatic updates and deletes. Using the update XXX methods of the ResultSet object allows the developer
to update data without building a complex SQL statement. Instead, the developer simply supplies the column
in the result set that is to be updated and the data that is to be changed. Then, before moving the cursor from
the row in the result set, the updateRow() method must be called to update the database as well.

In the following code fragment, the value of the Age column of the ResultSet object rs is returned using the
getint() method, and the updatelnt() method is used to update the column with an int value of 25. The
updateRow() method is called to update the row in the database with the modified value.

int n=rs.getlnt("Age");
/1 n contains value of Age colum in the resultset rs

rs. updat el nt (" Age", 25);
rs. updat eRow) ;

In addition to making the application more easily maintainable, programmatic updates usually result in improved
performance. Because the database server is already positioned on the row for the Select statement in process,
performance-expensive operations to locate the row that needs to be changed are unnecessary. If the row
must be located, the server usually has an internal pointer to the row available (for example, ROWID).

Using getBestRowldentifier

Use getBestRowldentifier() to determine the optimal set of columns to use in the Where clause for updating
data. Pseudo-columns often provide the fastest access to the data, and these columns can only be determined
by using getBestRowldentifier().

Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0 355

Chapter 9: Designing JDBC applications for performance optimization

Some applications cannot be designed to take advantage of positioned updates and deletes. Some applications
formulate the Where clause by calling getPrimaryKeys() to use all searchable result columns or by calling
getindexInfo() to find columns that may be part of a unique index. These methods usually work, but can result
in fairly complex queries.

Consider the following example:

Resul t Set W5rs = W5s. execut eQuery
(" SELECT first_nane, |ast_nane, ssn, address, city, state, zip FROM enp");
/] fetchdata

W5s. execut eQuery (

"UPDATE enp SET address = ?

VWHERE first_name = ? AND | ast_nanme = ? AND ssn = ?

AND address = ? AND city = ? AND state = ? AND zip = ?");
/1 fairly compl ex query

Applications should call getBestRowldentifier() to return the optimal set of columns (possibly a pseudo-column)
that identifies a specific record. Many databases support special columns that are not explicitly defined by the
user in the table definition, but are "hidden" columns of every table (for example, ROWID and TID). These
pseudo-columns generally provide the fastest access to the data because they typically are pointers to the
exact location of the record. Because pseudo-columns are not part of the explicit table definition, they are not
returned from getColumns(). To determine if pseudo-columns exist, call getBestRowldentifier().

Consider the previous example again:

i?ééultSet W5rowi d = get Best Rowl denti fier()
("en’p",),

WSs. execut eUpdat e(" UPDATE EMP SET ADDRESS = ? WHERE ROWD = ?");
/1 fastest access to the data!

If your data source does not contain special pseudo-columns, the result set of getBestRowldentifier() consists
of the columns of the most optimal unique index on the specified table (if a unique index exists). Therefore,
your application does not need to call getindexInfo() to find the smallest unique index.

356 Progress DataDirect for JDBC for SQL Server: User's Guide: Version 6.0.0

	Copyright
	Table of Contents
	Welcome to the Progress DataDirect for JDBC for SQL Server: Version 6.0.0
	What's new in this release?
	Data source and driver classes
	Connection URL
	Requirements
	Version string information
	Connection properties
	Data types
	getTypeInfo

	Contacting Technical Support

	Getting started
	Data source and driver classes
	Setting the Classpath
	Connecting using the DriverManager
	Passing the connection URL
	Testing the connection

	Connecting using data sources
	How data sources are implemented
	Creating data sources
	Example data source

	Calling a data source in an application
	Testing a data source connection

	Using the driver
	Required permissions for Java SE with the standard Security Manager enabled
	Permissions for establishing connections
	Granting access to Java properties
	Granting access to temporary files
	Permissions for bulk load from a CSV file

	Connecting from an application
	Data source and driver classes
	Setting the Classpath
	Connecting using the DriverManager
	Passing the connection URL
	Testing the connection

	Connecting using data sources
	How data sources are implemented
	Creating data sources
	Example data source

	Calling a data source in an application
	Testing a data source connection

	Using connection properties
	Required properties
	Authentication properties
	Data encryption properties
	Failover properties
	Bulk load properties
	Data type handling properties
	Timeout properties
	Statement pooling properties
	Client information properties
	Always Encrypted properties
	Additional properties

	Performance considerations
	Connecting to named instances
	Azure Synapse Analytics and Analytics Platform System
	Authentication
	Configuring user ID/password authentication
	Configuring Azure Active Directory authentication
	Configuring the driver for Kerberos authentication
	Kerberos authentication requirements
	The JAAS login configuration file
	Constrained delegation

	Configuring NTLM authentication
	NTLM authentication requirements
	Configuring NTLM authentication by specifying user credentials

	Data encryption
	Using SSL with Microsoft SQL Server
	Configuring SSL encryption
	Always Encrypted
	Enabling Always Encrypted
	Using keystore providers
	Caching column encryption keys
	Enabling parameter metadata discovery
	Connection string example

	Using failover
	Configuring failover
	Specifying primary and alternate servers
	Specifying connection retry

	Connection failover
	Extended connection failover
	Select connection failover
	Configuring failover with Microsoft Cluster Server
	Using client load balancing
	Using connection retry
	Always On Availability Groups

	Returning and inserting/updating XML data
	Returning XML data
	Returning XML data as character data
	Returning XML data as binary data

	Inserting/updating XML data
	Inserting/updating XML as character data
	Inserting/updating XML as binary data

	DML with results
	Using client information
	How databases store client information
	Storing client information

	Returning client information
	Returning metadata about client information locations

	Using IP addresses
	Parameter metadata support
	Insert, Update, and Delete statements
	Select statements
	Stored procedures

	ResultSet metadata support
	Isolation levels
	Using the Snapshot isolation level
	Using scrollable cursors
	Server-side updatable cursors
	JTA support: installing stored procedures
	Distributed transaction cleanup
	Transaction timeout
	Explicit transaction cleanup

	Unicode support
	Error handling
	Large object (LOB) support
	Batch Inserts and Updates
	Rowset support
	Auto-generated keys support
	Null values
	Timeouts
	Connection Pool Manager
	How connection pooling works
	The connection pool environment
	The DataDirect Connection Pool Manager
	Using a connection pool DataSource object

	Implementing DataDirect connection pooling
	Creating a driver DataSource object
	Creating the connection pool

	Configuring the connection pool
	Configuring the maximum pool size

	Connecting using a connection pool
	Closing the connection pool
	Using reauthentication
	Checking the Pool Manager version
	Enabling Pool Manager tracing
	Connection Pool Manager interfaces
	PooledConnectionDataSourceFactory
	PooledConnectionDataSource
	ConnectionPoolMonitor

	Statement Pool Monitor
	Using DataDirect-specific methods to access the Statement Pool Monitor
	Using the poolEntries method
	Generating a list of statements in the statement pool

	Using JMX to access the Statement Pool Monitor
	Importing statements into a statement pool
	Clearing all statements in a statement pool
	Freezing and unfreezing the statement pool
	Generating a statement pool export file
	DataDirect Statement Pool Monitor interfaces and classes
	ExtStatementPoolMonitor class
	ExtStatementPoolMonitorMBean interface

	DataDirect Bulk Load
	Using a DDBulkLoad object
	Exporting data to a CSV file
	Loading data from a ResultSet object
	Loading data from a CSV file
	Specifying the bulk load operation
	Logging

	CSV files
	Bulk load configuration file
	Bulk load configuration file schema
	Character set conversions
	External overflow files
	Discard file

	DataDirect Test
	DataDirect Test tutorial
	Configuring DataDirect Test
	Starting DataDirect Test
	Connecting using DataDirect Test
	Connecting using a data source
	Connecting using database selection

	Executing a simple Select statement
	Executing a prepared statement
	Retrieving database metadata
	Scrolling through a result set
	Batch execution on a prepared statement
	Returning parameter metadata
	Establishing savepoints
	Updatable result sets
	Deleting a row
	Inserting a row
	Updating a row

	Retrieving large object (LOB) data

	Tracking JDBC calls with DataDirect Spy
	Enabling DataDirect Spy
	Using the JDBC DriverManager
	Using JDBC data sources
	DataDirect Spy attributes

	Connection property descriptions
	AccountingInfo
	AEKeyCacheTTL
	AEKeystoreClientSecret
	AEKeystoreLocation
	AEKeystorePrincipalId
	AEKeystoreSecret
	AlternateServers
	AlwaysReportTriggerResults
	ApplicationIntent
	ApplicationName
	AuthenticationMethod
	BulkLoadBatchSize
	BulkLoadOptions
	CatalogOptions
	ClientHostName
	ClientUser
	CodePageOverride
	ColumnEncryption
	ConnectionRetryCount
	ConnectionRetryDelay
	ConvertNull
	CryptoProtocolVersion
	DatabaseName
	DateTimeInputParameterType
	DateTimeOutputParameterType
	DescribeInputParameters
	DescribeOutputParameters
	Domain
	EnableBulkLoad
	EnableCancelTimeout
	EncryptionMethod
	FailoverGranularity
	FailoverMode
	FailoverPreconnect
	FetchTSWTZAsTimestamp
	FetchTWFSasTime
	GSSCredential
	HostNameInCertificate
	ImportStatementPool
	InitializationString
	InsensitiveResultSetBufferSize
	JavaDoubleToString
	JDBCBehavior
	LoadBalancing
	LoginConfigName
	LoginTimeout
	LongDataCacheSize
	MaxPooledStatements
	MultiSubnetFailover
	NetAddress
	PacketSize
	Password
	PortNumber
	ProgramID
	QueryTimeout
	RegisterStatementPoolMonitorMBean
	ResultSetMetaDataOptions
	SelectMethod
	ServerName
	ServicePrincipalName
	SnapshotSerializable
	SpyAttributes
	StringInputParameterType
	StringOutputParameterType
	SuppressConnectionWarnings
	TransactionMode
	TruncateFractionalSeconds
	TrustStore
	TrustStorePassword
	User
	UseServerSideUpdatableCursors
	ValidateServerCertificate
	XATransactionGroup
	XMLDescribeType

	Troubleshooting
	Troubleshooting your application
	Turning on and off DataDirect Spy logging
	DataDirect Spy log example

	Troubleshooting connection pooling
	Enabling tracing with the setTracing method
	Pool Manager trace file example

	Troubleshooting statement pooling
	Generating an export file with the exportStatement method
	Statement pool export file example

	Configuring logging
	Using the JVM for logging

	SQL escape sequences for JDBC
	Date, time, and timestamp escape sequences
	Scalar functions
	Outer join escape sequences
	LIKE escape character sequence for wildcards
	Procedure call escape sequences

	JDBC support
	Array
	Blob
	CallableStatement
	Clob
	Connection
	ConnectionEventListener
	ConnectionPoolDataSource
	DatabaseMetaData
	DataSource
	Driver
	ParameterMetaData
	PooledConnection
	PreparedStatement
	Ref
	ResultSet
	ResultSetMetaData
	RowSet
	SavePoint
	Statement
	StatementEventListener
	Struct
	XAConnection
	XADataSource
	XAResource

	JDBC extensions
	Using JDBC wrapper methods to access JDBC extensions
	DatabaseMetaData interface
	DDBulkLoad interface
	ExtConnection interface
	ExtDatabaseMetaData interface
	ExtLogControl class

	Designing JDBC applications for performance optimization
	Using database metadata methods
	Minimizing the use of database metadata methods
	Avoiding search patterns
	Using a dummy query to determine table characteristics

	Returning data
	Returning long data
	Reducing the size of returned data
	Choosing the right data type
	Retrieving result sets

	Selecting JDBC objects and methods
	Using parameter markers as arguments to stored procedures
	Using the statement object instead of the PreparedStatement object
	Using batches instead of prepared statements
	Choosing the right cursor
	Using get methods effectively
	Retrieving auto-generated keys

	Managing connections and updates
	Managing connections
	Managing commits in transactions
	Choosing the right transaction model
	Using updateXXX methods
	Using getBestRowIdentifier

