
Comparing Virtual Machines and Linux Containers
Sébastien Vaucher

Université de Neuchâtel
Neuchâtel, Switzerland

sebastien.vaucher@unine.ch

Abstract—When a single server needs to be split between mul-
tiple customers, the solution that seems the most straightforward
is virtual machines. In recent years, a new technology imposed
itself as an alternative: lightweight containers. Containers enable
isolation of different processes on a single computer. Each
container acts as if it were alone on the system. While virtual
machines use full virtualization and create a complete virtual
computer, containers use standard features of the kernel.

As such, containers provide better performance, at the expense
of some rigidity compatibility-wise. This rigidity is compensated
by convenient tools that permit the creation of an entire ecosystem
of containerized applications.

I. INTRODUCTION

The advent of the Internet has brought a lot of changes in
the way people accomplish certain tasks. As more and more
people gain access to the Internet, more and more computing
power needs to be deployed server-side. The number of
requests performed on a given Internet service varies greatly
depending on the time of day and a number of other factors
[1]. Traditionally, this meant that an application had to be
hosted on an infrastructure that could handle peak demand,
but had unused processing capacity the rest of the time. The
costs associated with running a server are mostly fixed over
time, therefore hosting a service with fluctuating demand on
a dedicated infrastructure is not very cost-effective.

A solution to this problem is to share the infrastructure
between different services with different demand patterns. This
way, a high-demand period of an application can compensate
a coincident low-demand period of another application. This
solution has been implemented in very large proportions by
Cloud hosting providers. Their business is to host a large
number of physical servers that host a larger number of
virtualized applications [2].

System virtual machines are commonly used to create the
illusion that a dedicated machine exists. They emulate a com-
plete virtual computer along with virtual peripheral devices.
The virtualization process eats up some CPU cycles, slowing
down the execution of the program running inside the virtual
machine [3]. Furthermore, the program running inside the
virtual machine happens to be a complete operating system.
This added layer will also execute overhead operations on the
CPU. A user-supplied application running in a system virtual
machine will consequently run at a slower pace compared to
the same application running on a physical computer.

This observation led to the development of a new type
of virtualization: application containers. In a container, the
overhead is reduced to a minimum. Most of the software

and hardware components are shared directly by the host
operating system and the guest applications. Isolation between
applications is provided using features of the host operating
system [4].

In this research paper, we will compare system virtual
machines with application containers. More specifically, we
will choose KVM [5] and Docker [6] as representatives of
each category.

This research will be conducted in two parts. The first part
will result in a theoretical comparison between virtual ma-
chines and containers. It will be based on existing literature. In
the second part, we will experiment both systems on a physical
computer and collect data relative to energy efficiency.

II. SYSTEM VIRTUAL MACHINES

The goal of a virtual machine manager (abbreviated as
VMM or called a hypervisor) is to abstract the hardware
of a computer, thus creating a virtual computer. A physical
computer hosting a VMM is called a host, while the program
running inside a virtual machine is called a guest. The interface
that is provided to the guest is identical (or nearly identical in
certain cases) to that of the host. All guests and the host are
mutually independent from each other [7].

Contemporary hypervisors have been commercialized since
the 1970s, starting on the IBM VM370 mainframe. Since
then, a lot of effort has been geared towards the reduction
of overhead induced by the hypervisor. In fact, most of the
slowness attributed to virtual machine execution comes from
the distinction between kernel-mode and user-mode. Only the
host kernel is allowed to run privileged instructions on the
physical CPU. However, the guest program needs to execute
kernel-mode instructions on its virtual CPU. A technique that
is used is called trap-and-emulate; when the guest tries to ex-
ecute a kernel instruction while in user-mode, an error occurs,
causing a trap to the hypervisor. The VMM will intercept the
trap and modify the instruction to permit execution in user-
mode. This process takes a lot more CPU instructions than the
initial instruction would have taken [7].

A number of more efficient approaches have since been
invented. Most of them consists in additions at the hardware
level. For instance, Intel has added a number of extensions to
the x86 architecture in their processors [8]. Their goal is to
reduce the amount of emulation done at the software level [7].

VMM implementations can be sorted in 3 categories [7]:
Type 0 Hardware-based hypervisors, commonly found in

mainframes.

mailto:sebastien.vaucher@unine.ch


Type 1 Hypervisors implemented as operating systems, or
tightly integrated in a general-purpose operating
system.

Type 2 Hypervisors running on top of a standard operating
system.

Type 0 hypervisors are only found in specific applications.
They can only virtualize certain guests due to hardware
constraints. Their speed is quite good, but their rigidity is too
big a penalty to permit large-scale deployments [7].

Type 1 hypervisors are operating systems whose only pur-
pose is to provide a VMM. They have full access to physical
CPUs, they can therefore run in kernel-mode. The performance
of type 1 VMMs is good, and they provide the largest set of
features among all types. There exist a special type of type 1
hypervisors: VMMs that are tightly integrated in the core of a
general-purpose operating system, such as Microsoft Hyper-V
or KVM. They usually provide a smaller set of features than
regular type 1 hypervisors, but the integration in the kernel
means that they are allowed to execute in privileged mode,
with all associated implications [7].

Type 2 hypervisors are regular programs that execute as a
normal process on a regular operating system. The operating
system does not know that this specific process is in fact a
VMM. Type 2 hypervisors have poorer performance in general
than their type 0 and 1 counterparts. Their major advantage is
the simplicity with which they can be installed and used by a
non-specialist [7].

Paravirtualization is a technique that allows the hypervisor
to present an interface that is not completely identical to the
host interface. The guest needs to be modified in order to run
in such a VMM. This disparity permits higher performance
because some instruction translation happens directly at the
guest kernel level [7]. While paravirtualization can be used to
simplify CPU virtualization, it is also used to simplify virtual
I/O devices implementations. Virtio [9] is a standard which
aims to provide a generic interface of virtual I/O devices under
Linux.

A. KVM

The Kernel-based Virtual Machine is a hypervisor imple-
mented as a Linux kernel module [5]. It is integrated in
the mainline kernel since Linux 2.6.201. Because the virtual
machine manager runs in privileged mode inside the kernel,
it is considered as a Type 1 hypervisor [7]. KVM is based
on full virtualization, which means that the guest operating
system can run completely unmodified [10]. As a result, the
majority of today’s operating systems are supported [11].

KVM runs on x86 processors with virtualization extensions
enabled. Processor extensions differ between Intel and AMD,
fortunately KVM abstracts them and can use whichever [12].

KVM itself only provides an interface through /dev/kvm.
For most users, this turns out to be too much of a burden
to use. For this reason, third-party higher-level APIs have
been developed in parallel. One of them is libvirt [13]. It

1Released in February 2007

Figure 1. Hardware detection tool running in KVM through virt-manager

provides an API that is compatible with different hypervisors,
including KVM. On top of libvirt, one can use a graphical user
interface like virt-manager (as seen in Figure 1) [14]. With a
GUI, operating virtual machines running in KVM becomes as
simple as with any other GUI-based hypervisor.

An advantage of KVM is that it supports live migration.
Live migration is the ability to move a virtual machine from
one physical machine to another with only a negligible pause
in the execution [12]. Using this feature, physical resources
can be better allocated throughout a cluster of machines. For
example, a virtual machine that suddenly starts to use more
resources can be moved to a “less crowded” server to free up
resources for other guests, without any perceivable downtime.

III. CONTAINERS

Application containment is a relatively new technique of
operating-system-level virtualization to run multiple programs
(containers) in isolation on a single computer. Instead of vir-
tualizing full virtual computers like hypervisors do, container-
based isolation is done directly at the kernel level. Guest
processes run directly on the host kernel, and thus need to
be compatible with it.

Operating-system-level virtualization has existed for some
time. An early implementation is the chroot operation intro-
duced in Version 7 AT&T UNIX2. It can be used to confine
a process within a specific directory of the file system by
presenting a different file system root to the process [15].

More recent techniques apply the isolation to more than just
the file system. The jail mechanism introduced in FreeBSD
4.03 is capable of isolating processes on a considerable number
of aspects [16]. It can be considered as a container implemen-
tation.

In Linux, container systems are newer, because the required
kernel features appeared later. They mostly depend on two

2Released in 1979
3Released in March 2000



features offered by the kernel: cgroups and namespaces.
Control Groups provide a hierarchical grouping of processes
in order to limit and/or prioritize resource utilization [17].
Namespaces can isolate processes by presenting them with
an isolated instance of global resources [18]. While the two
features above are probably the most important to implement
a container system on Linux, other kernel features can be used
to further harden the isolation between processes. For example,
the Linux Containers (LXC) system uses six different features
of the kernel to ensure that each guest is isolated from the
rest of the system and cannot damage the host or other guests
[19].

In traditional hypervisor-based virtualization approaches,
the guest is often a full operating system. With containers, the
guest can be as limited as a simple program. A container can
also host a full operating system, with the limitation of sharing
the same kernel as the host. This is called a system container,
while a container running a single application is called an
application container. Running a program directly inside the
container has the advantage of removing the overhead created
by having a second OS executing on top of the host OS [20].

With most container systems, it is possible to ship an image
of an application as a single file. The image contains the
application along with all its dependencies. It can be used to
create a new container, effectively providing fast deployment.
This mechanism is put to use by Platform as a Service (PaaS)
providers or by development teams to test an application at
different stages (e.g. development, testing, production).

A. Docker

Docker is a cross-platform container system implementa-
tion. It was created at dotCloud, a PaaS provider, for internal
purposes [21]. Docker has since been open-sourced and can be
used by anyone. In the documentation, Docker is summarized
as follows:

Docker is an open platform for developing, ship-
ping, and running applications. With Docker you can
separate your applications from your infrastructure
and treat your infrastructure like a managed appli-
cation [22].

The main selling point of Docker is that it allows to separate
applications from the underlying layers, from the operating
system to the hardware. The key high-level components are
the containers, images and registries [22]. An image is a read-
only template of an application meant to be run in Docker.
When it gets loaded in the Docker daemon, an additional read-
write layer will be added on top of the image. The UnionFS
filesystem is used to provide the copy-on-write mechanism
[22], [23]. The image, the read-write layer, along with some
metadata and configuration data is what constitutes a container
[24].

An image can be built as a layer on top of another image,
called the parent image. Stacking multiple images to create
a final, current base image is similar to how version control
systems work (many commits stacked form the current state of

references
parent
image

Figure 2. Stacking of multiple images and a read-write layer, forming a
Docker container5.

a repository). Figure 2 shows an example of a container built
on Debian, with emacs and Apache images added on top.

Docker has historically been developed for Linux. It uses
Linux-specific technologies like cgroups and namespaces, as
described in section III. Docker used to depend on LXC to
access required container-related Linux features. Since version
0.96, Docker can operate using its own libcontainer implemen-
tation. In April 2015, a demonstration of the Docker engine
running on Windows Server was shown at the Microsoft Build
conference [25]. Docker will therefore support Windows hosts
in the near future (when Windows Server 2016 gets released).

Using Docker simplifies the developers’ and system admin-
istrators’ jobs. The configuration resides in the Docker con-
tainer and stays the same regardless of the hosting infrastruc-
ture. The environment used in development and in production
being the same, the famous sentence “it works on my machine”
becomes less frequently used. Also, configuring the platform
only needs to be done once. Each Docker container being
independent, it becomes possible to work on different projects
that may not be compatible with each other, due to dependency
problems for example (dependency hell) [21].

IV. REASONS TO VIRTUALIZE

Nowadays, even if our only goal is to serve a handful
of services on a physical machine, we still have a problem
that can be summarized as “dependency hell”7 [26]. As an
example, let’s take a server hosting two applications written
in the same language, using the same libraries. The only
difference between them being that they depend on different
incompatible versions of the same library. Our options in
solving this problem can exist at the application level — the

5Source of the illustration: https://github.com/docker/docker/blob/master/
docs/sources/terms/images/docker-filesystems.svg

6Released in April 2014
7Also referred to as “DLL Hell” in the Microsoft world.

https://github.com/docker/docker/blob/master/docs/sources/terms/images/docker-filesystems.svg
https://github.com/docker/docker/blob/master/docs/sources/terms/images/docker-filesystems.svg


Application BApplication A

Bins/LibsBins/Libs

Guest OSGuest OS

Hypervisor

Host OS

Hardware

(a) Virtual machine layers

Application BApplication A

Bins/LibsBins/Libs

Container engine

Host OS

Hardware

(b) Container layers

Figure 3. Comparison9 of the layers involved when running an application
in a virtual machine vs. in a container.

Python virtualenv [27] package is a good example — which
is convenient, but such a solution may not exist. In this case,
we must resort to implement the separation of the applications
at a higher level. Usually, the solution consists in running two
separate copies of the operating system on different machines.
These machines may be separate physical machines, or more
wisely, virtual machines.

Using system virtual machines to solve “dependency hell”
means that two almost identical operating systems will run in
parallel on the same machine. Application containers claim a
lesser overhead, so they should be better tailored for this use
case.

Another reason to use virtualization is to have more flexi-
bility over the computing capacity running an application. For
instance, it is possible to variate the amount of system memory
(RAM) without pausing the application. Virtual machines and
containers both provide settings to enforce quotas on system
resources utilization. Some pieces of virtualization software
(KVM for instance) are capable of migrating a virtual machine
from computer to computer with only a negligible pause in the
execution [12]. These features are relevant to cloud hosting
providers who can finely optimize the utilization of their
hardware.

V. COMPARISONS BETWEEN VIRTUAL MACHINES AND
CONTAINERS

In this section, we first compare virtual machines and
containers from a theoretical point of view (subsection V-A).
Then, in subsection V-B, we analyze the respective perfor-
mance of both systems by summarizing results taken from the
existing literature.

A. Comparison of intrinsic characteristics

The role of both virtual machines and container engines
is essentially the same: providing the illusion that a given

9Inspired from the figure shown at https://www.docker.com/whatisdocker/

Table I
FEATURES SUPPORTED IN KVM AND DOCKER

Feature KVM Docker

Host OS 6= Guest OS 3 7
Application packaging 3 3
Centralized images repository 7 3
Live migration 3 (3)
Resource sharing 3 3

physical machine can run multiple machines. These machines
have to be isolated from each other and from the host. The
difference between the two systems is how they achieve
isolation. As shown in Figure 3, virtual machines execute
on top of a hypervisor, while containers execute on the host
operating system through an engine. As explained in section II,
a hypervisor virtualizes all the hardware of a normal computer.
A container engine integrates itself into the kernel of the
host OS where it can differentiate executions of containerized
processes and user-level processes.

The second major difference highlighted on Figure 3 is
what is executed on each system. A full operating system is
executed on a hypervisor, while a container can contain as
little as our application files.

Both systems allow packaging of an application with its
dependencies in a single file. A wildly adopted standard for
virtual machines is the Open Virtualization Format [30]. It
defines a file format that can accommodate all the necessary
data to describe a virtual machine, including the disks content.
A user willing to deploy the VM can just import the file into
his favorite virtual machine manager and the corresponding
guest will be created. In Docker, this mechanism is integrated
at its core. A Docker image contains everything that is
needed for a given containerized application to execute. While
OVF is universal and compatible across different hypervisor
implementations, there are no universal image format that suits
different container engines. Packaged virtual machines are in
principle bigger than container images because they always
contain an entire operating system.

An important component of Docker is the Docker Hub
registry. It provides ready-to-use images of common operating
systems and applications. Thanks to this, downloading an
image is as simple as invoking docker pull from the
command line. KVM does not have an equivalent functionality.
If the user wants a specific operating system to run in a virtual
machine, he either has to install it himself, or search for a
ready-to-use OVF archive on the Internet.

Live migration is a feature that makes seamlessly moving
a guest between hosts possible. The guest state (memory, . . . )
is copied from its original host to the new host iteratively
while still executing. When the copy is finished, the guest is
frozen on the original host and the execution resumes on the
new host. This technique minimizes the downtime involved
when migrating a guest. KVM natively supports this feature
[12]. In Docker, live migration is not (yet) natively supported.
However, there exists a third party project called CRIU which

https://www.docker.com/whatisdocker/


Table II
RESULTS OF VARIOUS EXPERIMENTS

noploop [28] PXZ [20] Linpack [20] STREAM [20] netperf [28]
exec. time (ms) (MB/s) (GFLOPS) C (GB/s) TCP latency (µs) UDP latency (µs)

Native 2.391 76.2 290.8 43.48 48.21 47.18
KVM 2.397 (+0.25%) 62.2 (−18.4%) 284.2 (−2.27%) 42.53 (−2.18%) 91.57 (+89.9%) 86.99 (+84.4%)
Docker 2.393 (+0.08%) 73.5 (−3.54%) 290.9 (+0.03%) 43.40 (−0.18%) 59.79 (+24.0%) 53.69 (+13.8%)

nuttcp [20] fio [20] Ubuntu w/ MySQL [29] Boot time [29]
C (Gbit/s) sequential r/w (MB/s) random mixed (IO/s) image size (MB) (s)

Native 9.34 778.98 104553 n/a n/a
KVM 9.28 (−0.64%) 771.09 (−1.01%) 50737 (−51.5%) 1080 19.4
Docker 9.32 (−0.21%) 779.50 (+0.07%) 104518 (−0.03%) 381.5 (−64.7%) 3.85 (−80.2%)

enables live migration in Docker [31].
Up to now, we have only covered cases where we want

the host to be isolated as much as possible from its guests.
However, there are certain use cases where we need to share
resources between the host and guests, for example to transfer
files. In KVM, it is possible to mount a folder from the host
in the virtual machine using VirtFS [32]. The guest operating
system needs to support the virtio driver. It is included in
the Linux kernel. For Windows virtual machines, it has to be
installed separately. The Fedora project provides signed virtio
drivers for Windows [33]. In Docker, it is possible to directly
mount the guest filesystem on the host. This is called a data
volume in Docker’s documentation [34].

A summary of which features are supported in either system
is presented in Table I. The differences between systems are
mostly due to the use cases for which they were designed.
KVM is designed to host virtual machines that should mimic
bare machines behavior as much as possible. Docker design
is tailored to developers and system administrators. Its goal is
to obtain predictable deployment of applications.

As far as security is concerned, a quick search though
the U.S. National Vulnerability Database [35] revealed that
critical privilege escalation flaws were found in both Docker
and KVM. As both systems are rooted in the Linux kernel,
such vulnerabilities may enable an attacker to execute arbitrary
code with system privileges. Therefore, a system administrator
has to be wary that both systems are not perfect. A malicious
program may still damage the host operating system, even
when running inside a container or virtual machine. The
most paranoid users can still execute the hypervisor inside
a container. If a malicious program succeeds in exiting the
virtual machine, it would still be inside the container.

B. Comparison of performances

In previous subsection V-A, we established what are the dif-
ferences between KVM and Docker from an operational point
of view. In this section, we analyze existing papers to gather
data about the performance of KVM vs. the performance of
Docker. Docker evolves very rapidly, it is therefore important
to use results that are as up-to-date as possible.

The papers from which the results come from are the fol-
lowing: the first one is a recent and thorough paper comparing

Docker and KVM performances. It comes from IBM Research
and was published in July 2014 [20]. A more recent paper
from Ericsson Research is also used; it only exists in pre-print
version for the moment [28]. Some more data were taken from
experiments conducted by Boden Rusell who worked for IBM
at the time (May 2014) [29]. The data that we are analyzing
is represented in Table II.

The first expected comparison that we can draw is the
difference in size for a similar image. According to [29],
the same image containing MySQL on top of Ubuntu weighs
1080MB in KVM, and only 381.5MB in Docker. That is
a staggering 64.7% reduction in size. The difference can be
explained by the removal of components that are unnecessary
in a containerized environment. The virtual machine image
contains everything needed to run the operating system, in-
cluding peripheral drivers, the kernel, etc. The Docker image
does not need any of that content, as it has access to it directly
through the host kernel. The size of the same configuration for
a physical machine has not been evaluated, but it is expected
to be very close or even equal to the KVM image.

The next criteria is CPU performance. Raw single-core
performance is tested in [28] by using the noploop utility,
which, as its name suggests, executes NOP operations in a
loop. We see that simple operations that do nothing but use
the CPU are not affected at all on any system. This proves
that executions of user-level instructions are not disrupted by
the hypervisor or the container engine.

The Linpack benchmark, on the other end, is more repre-
sentative of real computations, as it is floating-point intensive.
The results in the table show that Docker executes at the same
speed as code running on bare-metal. To analyze KVM’s re-
sults, we must highlight an important detail: the experimenter
used a non-uniform memory access (NUMA) machine. By
default, KVM does not expose the physical topology to its
guests. In that case, the result was a 17% drop in performance
compared to the native one. Pinning each virtual CPU to a
physical CPU greatly improves the overall performance of the
benchmark. The performance drop is now only 2.3% [20].

The last processor benchmark consists in running PXZ, a
compression program based on the LZMA algorithm, which
exploits parallelism. In this test, Docker is still very efficient,
losing only 3.5% compared to native performance. KVM is far



worse, even with the optimization (vCPU pinning) activated.
It is 18% slower, and even 22% without vCPU pinning. The
experimenter estimates that this is due to “extra TLB pressure
of nested paging” [20], a TLB (translation look-aside buffer)
being a very small cache inside the CPU that maps page
numbers with frame numbers [7].

STREAM is a benchmark measuring memory (RAM)
throughput. We observe that neither Docker nor KVM suffer
much in this area. The authors also performed a random
access test and noticed negligible performance loss of 1 to
2% [20]. Virtualization has only very limited influence on
memory access performance.

Network throughput and latency are very important in Cloud
environments, where virtualization is of common use. For this
test, KVM was set to use the virtio paravirtualized network
card. Throughput results come from [20]. Unfortunately, their
Microsoft Excel sheet does not include latency results for
Docker. Therefore, the latency measurements come from [28].
All systems managed to use the 10Gbit/s link to the max-
imum permitted by the network card. Latency suffers from
the multiple layers involved to send or receive an Ethernet
frame in virtualized environments. While the numbers show
an almost doubled latency in KVM’s case, the increase is only
≈ 83 µs in average. This is almost three orders of magnitude
smaller than typical latencies on the Internet, that range in
dozens of milliseconds. The only applications on which this
could have an impact are those with real-time requirements,
like life-critical applications.

Disk performance was assessed with the fio benchmark. A
fast SSD connected via Fibre Channel was used for the test
[20]. Docker was set to use data volumes, in order to bypass
the UnionFS layer. The results are similar to the network in
some aspects. First, sequential read/write performance of large
files is unaffected by virtualization, especially in Docker’s
case. The limiting factor is the number of operations per
second that can be done. This is important in work scenarios
where a lot of small files need to be processed. Docker
manages to fully utilize the disk’s IO operations per second.
KVM is severely impacted because every operation needs to
go through the QEMU emulator. Moreover, the experimenter
noted increased CPU usage in KVM when doing input/output
operations compared to the other systems [20].

An interesting real-life metric was collected by B. Russell:
the time needed to boot the system [29]. When running
in KVM, it took 19.4 s for the operating system to start.
On Docker, it took only 3.9 s. This reduction is important
for systems that start only when necessary. Free Dynos on
Heroku or Gears on Openshift, two PaaS providers, employ
this technique to reduce costs induced by free accounts. When
trying to access a stopped application, a user has to wait for
it to start again. Heroku already uses Linux containers (LXC)
to minimize overhead [36].

VI. EXPERIMENTS ON POWER CONSUMPTION

Power consumption and heat dissipation are two trending
topics in computer science nowadays. They are often the

Table III
CONFIGURATION OF THE TEST MACHINE

Machine type Lenovo ThinkPad T420
CPU Intel Core i7 2620M @ 2.70GHz
Cores configuration 1 socket, 2 cores, 4 threads
RAM 8GB DDR3 1333MHz
Disk Samsung 840 EVO SSD 750GB
NIC Intel 82579LM
Operating system Debian GNU/Linux 8.1 (“jessie”)

limiting factor when designing a large cluster of computers.
Virtualization is frequently used in these environments. The
experiments that we conduct will compare how virtualization
influences on energy consumption.

A. Methodology

In the experiments, we will launch the same workload
on bare metal, KVM and Docker. All tests will run on a
laptop, a type of computer that should be energy efficient.
The characteristics of the test machine are reported in Table III.
The workload that we use is the raytrace benchmark contained
in the PARSEC benchmark suite [37]. It is a highly parallel
process that demands a lot of processing power and requires
good memory bandwidth.

We tried to have as much homogeneity as possible through-
out the different systems. They are all based on the Debian
GNU/Linux 8.1 operating system. To reduce the auxiliary
power consumption, the wireless network card was shut down,
the battery removed and all non-essential peripherals uncon-
nected. The desktop manager (gdm3) was stopped and the
screen powered off. All invocations were performed from
a different machine via SSH. The only remaining auxiliary
device is the Bluetooth controller, which is necessary to
receive data from the power meter. The power meter is a
PowerSpy 2 manufactured by Alciom. It was plugged directly
into a 230V wall socket on one side, and to a 90W 20V
Lenovo charger on the other side. The powerspy.py script [38]
was used to collect the data once per second.

For each system, the benchmark was ran using the following
command:

date +%s; ./bin/parsecmgmt -a run -p
raytrace -i native -n 4; date +%s↪→

The date command executes before and after the benchmark
run. Its output is a UNIX timestamp used to properly extract
the interesting portion of the power meter log. The -i native
option tells the benchmark to use the largest data set for the
test. The -n 4 flag instructs the benchmark to use all 4 threads
of the CPU.

The benchmark was run 3 times on each platform. In
between tests of different platforms, the laptop was powered
off during 10 minutes to allow it to cool down. Before each
individual execution, we collected data while the system was
idle. The final data used for the analysis is always the average
of all executions, apart for graphs where we used the median
execution.



Table IV
POWER CONSUMPTION TEST RESULTS

Context Idle Executing benchmark

Measurement U (VRMS) P (WRMS) Execution time (s) P (WRMS) E (J) E (Wh)

Native 235.49 12.56 108.0 43.38 4801.2 1.33
KVM 234.45 15.57 (+24.0%) 114.3 (+5.86%) 46.08 (+6.21%) 5375.9 (+11.97%) 1.49
Docker 234.40 15.48 (+23.25%) 108.3 (+0.31%) 47.63 (+9.78%) 5271.0 (+9.78%) 1.46

1 20 40 60 80 100 120

10

20

30

40

50

60

Time since benchmark start (s)

In
st

an
t

po
w

er
co

ns
um

pt
io

n
(W

)

Native
KVM

Docker

Figure 4. Power consumption during benchmark execution

B. Results

The summarized results in Table IV are divided in two
contexts: idle and executing. Idle is when the system is
ready but does nothing special. Executing is when the system
actively executes the benchmark.

In the idle scenario, we see that KVM and Docker use 23%
more power than in the native case. This could cause issues
for a hosting company that has many servers idling most of
the time. The voltage is within 2% of the nominal 230V
distributed in Switzerland.

When executing the intensive benchmark, the difference in
average power consumed gets smaller than when idling. The
execution time of the benchmark is consistent to what we
saw in the performance comparison. Docker is as fast as the
native execution, and KVM is 5.9% slower. KVM consumes
6.2% more power in average compared to the native execution.
As KVM is slower and uses more power, it means that it
uses more energy in total: +12%. With Docker, we see an
interesting trend: the execution time is the same as the native
case, but with 9.8% more power and energy consumption. In
fact the increase in power and energy is exactly the same.
Therefore, we can say that Docker is as fast as bare metal,

but needs more energy to achieve the same result.
On the graph in Figure 4, we see that the benchmark

operates in two phases. In the beginning, there is a preparation
phase which uses less resources. Then, the real computations
begin, maximizing the utilization of all cores. During this
second phase, the power consumption increases slightly over
time. Our hypothesis is that the temperature increases, and so
the fans must rotate faster to dissipate the heat.

The observations are quite surprising. While the results for
KVM were predictable, those of Docker are interesting. The
graph shows clearly that they are similar to the native case, but
translated upwards. The cause of this increased consumption
is unknown. Further research is required to pinpoint why this
happens. Also, we need to keep in mind that the experiments
were conducted on a single machine, which was not server-
grade.

VII. CONCLUSION

Linux containers, and especially Docker, are trending topics
in the field of virtualization. With the information gathered
in this paper, we can easily understand why more and more
developers and system administrators are interested in this
technology.



The Docker ecosystem simplifies certain tasks related to
application development. One of its key strength is predictable
deployments. Thanks to it, we know that an application that
works on one computer A will work as expected on another
computer B. The Docker centralized registry provides ready-
to-use images that accelerate the start of a project. Compared
to hypervisors, container systems provide improved perfor-
mances in all aspects, as long as it is properly configured.
The UnionFS layer slows down disk operations, in order to
provide additional operational flexibility.

We could question why would someone use traditional vir-
tual machine managers in an era where container systems seem
to perform better in terms of performance and operational
flexibility. Hypervisors are not dead yet. They still outshine
containers when full hardware virtualization is needed, for
instance to operate a guest operating system that is not the
same as the host’s. Also, hypervisors exist since a long time.
Extensive research has been conducted on them, they are
a proven technology. Legacy applications can also warrant
the usage of hypervisors, as transitioning to containers might
prove to be unfeasible due to technical or cost factors.

As far as energy consumption is concerned, virtualization
necessarily implies more electrical usage. Both systems need
at least 10% more energy. We also found out that Docker can
achieve the same performance as on bare metal, but it needs
more power to do so. KVM is both slower and more power
hungry than the native case. The difference in energy usage
between KVM and Docker is quite small (2%).

The technology behind containers evolves very rapidly.
Docker is only 2 years old [21], and yet there is a lot of
interest regarding it. Who knows what the Docker ecosystem
will be like in one year. If so many people are interested, it
means that it is a technology that was needed, and that will
spare resources and time for some companies.

ACKNOWLEDGMENT

I would like to thank Mascha Kurpicz who supervised my
work on this project. I also thank Dr. Hugues Mercier for the
flawless organization of the R&D Workshop, along with Prof.
Jacques Savoy, Dr. Anita Sobe and Verónica Estrada.

REFERENCES

[1] “The zettabyte era: Trends and analysis”, Cisco, White Paper,
10 Jun. 2014. [Online]. Available: http://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-
index-vni/VNI_Hyperconnectivity_WP.html.

[2] P. Mell and T. Grance, “The NIST definition of cloud comput-
ing”, National Institute of Standards and Technology, Special
Publication 800-145, Sep. 2011. [Online]. Available: http : / /
csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[3] R. P. Goldberg, “Survey of virtual machine research”, IEEE
Computer, vol. 7, no. 6, pp. 34–45, Jun. 1974. DOI: 10.1109/
MC.1974.6323581.

[4] S. Soltesz et al., “Container-based operating system virtualiza-
tion: A scalable, high-performance alternative to hypervisors”,
in ACM SIGOPS Operating Systems Review, ACM, vol. 41,
2007, pp. 275–287. DOI: 10.1145/1272996.1273025.

[5] (14 May 2015). Kernel based virtual machine, [Online]. Avail-
able: http://www.linux-kvm.org/ (visited on 25/05/2015).

[6] (2015). Docker, [Online]. Available: https://www.docker.com/
(visited on 09/04/2015).

[7] A. Silberschatz, P. B. Galvin and G. Gagne, Operating System
Concepts, 9th ed. Wiley, 2013, ch. 8.5, 16, pp. 366–377, 711–
740, ISBN: 978-1-118-06333-0.

[8] M. Righini, “Enabling Intel virtualization technology features
and benefits”, Intel Corporation, White paper, 2010. [Online].
Available: https : / / www - ssl . intel . com / content / dam / www /
public/us/en/documents/white-papers/virtualization-enabling-
intel- virtualization- technology- features- and- benefits- paper.
pdf (visited on 20/04/2015).

[9] R. Russell, “Virtio: Towards a de-facto standard for virtual
I/O devices”, ACM SIGOPS Operating Systems Review, vol.
42, no. 5, pp. 95–103, 2008. DOI: 10.1145/1400097.1400108.

[10] M. J. Scheepers, “Virtualization and containerization of ap-
plication infrastructure: A comparison”, 21st Twente Student
Conference on IT, vol. 21, 23 Jun. 2014.

[11] (23 Jan. 2015). Guest support status, KVM, [Online]. Avail-
able: http://www.linux-kvm.org/page/Guest_Support_Status
(visited on 25/05/2015).

[12] A. Kivity et al., “Kvm: The Linux virtual machine monitor”,
in Proceedings of the Linux Symposium, vol. 1, 2007, pp. 225–
230.

[13] (2015). Libvirt: The virtualization API, [Online]. Available:
https://libvirt.org/index.html (visited on 25/05/2015).

[14] (2013). Virtual machine manager, [Online]. Available: https:
//virt-manager.org/ (visited on 25/05/2015).

[15] chroot(2), OpenBSD manual, OpenBSD. [Online]. Available:
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/
man2/chroot.2 (visited on 21/04/2015).

[16] jail(8), FreeBSD system manager’s manual, FreeBSD, 4 Aug.
2014. [Online]. Available: https://www.freebsd.org/cgi/man.
cgi?query=jail&sektion=8 (visited on 21/04/2015).

[17] P. Menage, P. Jackson and C. Lameter, cgroups, Dec. 2014.
[Online]. Available: https : / / www . kernel . org / doc /
Documentation/cgroups/cgroups.txt (visited on 25/05/2015).

[18] namespaces(7), Linux programmer’s manual, 21 Sep. 2014.
[Online]. Available: http://man7.org/linux/man-pages/man7/
namespaces.7.html (visited on 25/05/2015).

[19] S. Graber, LXC 1.0: Security features, 1 Jan. 2014. [Online].
Available: https : / /www.stgraber.org /2014/01/01/ lxc- 1- 0-
security-features/ (visited on 21/04/2015).

[20] W. Felter et al., “An updated performance comparison of
virtual machines and Linux containers”, IBM Research Report,
Jul. 2014.

[21] D. Merkel, “Docker: Lightweight Linux containers for consist-
ent development and deployment”, Linux Journal, vol. 2014,
no. 239, p. 2, Mar. 2014.

[22] (2015). Understanding Docker. version 1.5, [Online]. Avail-
able: https : / / docs . docker. com / introduction / understanding -
docker/ (visited on 13/04/2015).

[23] C. Anderson, “Docker, Software engineering”, IEEE Software,
no. 3, pp. 102–105, May/June 2015. DOI: 10.1109/MS.2015.
62.

[24] (21 Apr. 2015). Definitions of a container, Docker, [Online].
Available: https://docs.docker.com/terms/container/ (visited on
26/05/2015).

[25] J. Barbier, Microsoft demonstrates Docker in build 2015
keynote address, 29 Apr. 2015. [Online]. Available: https : / /
blog.docker.com/2015/04/microsoft-demonstrates-docker-in-
build-2015-keynote-address/ (visited on 30/05/2015).

[26] S. Ayukov, Shared libraries in Linux: Growing pains or
fundamental problem?, 16 May 1999. [Online]. Available:
http://www.ayukov.com/essays/linuxdll.html.

[27] (7 Apr. 2015). Virtual Python environment builder, [Online].
Available: https://pypi.python.org/pypi/virtualenv (visited on
09/04/2015).

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1109/MC.1974.6323581
http://dx.doi.org/10.1109/MC.1974.6323581
http://dx.doi.org/10.1145/1272996.1273025
http://www.linux-kvm.org/
https://www.docker.com/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://dx.doi.org/10.1145/1400097.1400108
http://www.linux-kvm.org/page/Guest_Support_Status
https://libvirt.org/index.html
https://virt-manager.org/
https://virt-manager.org/
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/chroot.2
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/chroot.2
https://www.freebsd.org/cgi/man.cgi?query=jail&sektion=8
https://www.freebsd.org/cgi/man.cgi?query=jail&sektion=8
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.stgraber.org/2014/01/01/lxc-1-0-security-features/
https://www.stgraber.org/2014/01/01/lxc-1-0-security-features/
https://docs.docker.com/introduction/understanding-docker/
https://docs.docker.com/introduction/understanding-docker/
http://dx.doi.org/10.1109/MS.2015.62
http://dx.doi.org/10.1109/MS.2015.62
https://docs.docker.com/terms/container/
https://blog.docker.com/2015/04/microsoft-demonstrates-docker-in-build-2015-keynote-address/
https://blog.docker.com/2015/04/microsoft-demonstrates-docker-in-build-2015-keynote-address/
https://blog.docker.com/2015/04/microsoft-demonstrates-docker-in-build-2015-keynote-address/
http://www.ayukov.com/essays/linuxdll.html
https://pypi.python.org/pypi/virtualenv


[28] R. Morabito, J. Kjallman and M. Komu, “Hypervisors vs.
lightweight virtualization: A performance comparison”, in
2015 IEEE International Conference on Cloud Engineering
(IC2E), Mar. 2015, pp. 386–393. DOI: 10.1109/IC2E.2015.74.

[29] B. Russell, KVM and Docker LXC benchmarking with Open-
Stack, 1 May 2014. [Online]. Available: http://bodenr.blogspot.
com/2014/05/kvm-and-docker- lxc-benchmarking-with.html
(visited on 01/06/2015).

[30] L. Lamers and H. Shah, “Open virtualization format specific-
ation”, Distributed Management Task Force, DMTF Standard,
version 2.1.0, 12 Dec. 2013. [Online]. Available: http://www.
dmtf.org/sites/default/files/standards/documents/DSP0243_2.
1.0.pdf.

[31] (28 Apr. 2015). Checkpoint/restore in userspace, [Online].
Available: http://criu.org/Main_Page (visited on 31/05/2015).

[32] V. Jujjuri et al., “VirtFS – a virtualization aware file system
passthrough”, in Ottawa Linux Symposium (OLS), Citeseer,
2010, pp. 109–120.

[33] (22 May 2015). Windows virtio drivers, Fedora Project, [On-
line]. Available: https : / / fedoraproject . org / wiki / Windows _
Virtio_Drivers (visited on 01/06/2015).

[34] (21 Apr. 2015). Managing data in containers. version 1.6,
Docker, [Online]. Available: https : / / docs . docker . com /
userguide/dockervolumes/ (visited on 01/06/2015).

[35] (2015). National vulnerability database, National Institude of
Standards and Technology, [Online]. Available: https: / /nvd.
nist.gov (visited on 02/06/2015).

[36] (7 May 2015). Dynos and the dyno manager, Heroku, [Online].
Available: https://devcenter.heroku.com/articles/dynos (visited
on 01/06/2015).

[37] C. Bienia, “Benchmarking modern multiprocessors”, PhD
thesis, Princeton University, Jan. 2011.

[38] P. Marlier, Powerspy.py, GitHub repository, 12 Mar. 2015.
[Online]. Available: https : / / github . com / patrickmarlier /
powerspy.py (visited on 06/06/2015).

http://dx.doi.org/10.1109/IC2E.2015.74
http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html
http://bodenr.blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://criu.org/Main_Page
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/
https://nvd.nist.gov
https://nvd.nist.gov
https://devcenter.heroku.com/articles/dynos
https://github.com/patrickmarlier/powerspy.py
https://github.com/patrickmarlier/powerspy.py

	Introduction
	System virtual machines
	KVM

	Containers
	Docker

	Reasons to virtualize
	Comparisons between virtual machines and containers
	Comparison of intrinsic characteristics
	Comparison of performances

	Experiments on power consumption
	Methodology
	Results

	Conclusion

