

 © 2014 Cisco | Red Hat. All rights reserved. Page 1

Linux Containers: Why They’re in Your Future and What Has to
Happen First

What You Will Learn

Linux containers and Docker are poised to radically change the way applications are built, shipped, deployed, and

instantiated. They accelerate application delivery by making it easy to package applications along with their

dependencies. As a result, the same containerized application can operate in different development, test, and

production environments. The platform can be a physical server, virtual server, public cloud, or network device.

This white paper is intended for IT leaders and industry analysts. It explains:

 Why Linux containers and virtual machines are optimized for different types of workloads

 What needs to happen before enterprises and service providers will use Linux containers in production

 How Cisco and Red Hat are investing to make containers ready for production

This document assumes that you know the basics of Linux containers. The Linux Journal provides a good

overview.

Application Delivery: Today’s Challenges

Today’s applications are more complex, and yet they must be developed more quickly. These trends increase

demands on infrastructure, IT teams, and processes. IT departments are struggling to find ways to:

 Lower costs by helping teams do more with the same staff size

 Respond more quickly to new business requirements

 Keep systems and data secure

 Adopt innovative development and hosting methods using existing infrastructure

Where Virtual Machines Fit

Containers and virtual machines both allow multiple applications to run on the same physical systems. They differ

in the degree to which they meet different kinds of business and IT requirements.

Virtual machines do a great job at what they were designed to do: abstract from the underlying hardware. This

lowers costs and makes it possible to automate provisioning of a complete software stack, including the operating

system, the application, and all application dependencies. At Cisco, for example, developers visit an online

catalog to self-provision a complete application infrastructure - computing, networking, and storage - in 15

minutes. By automating infrastructure as a service (IaaS) and platform as a service (PaaS) solutions, the Cisco IT

team reduced overall data center total cost of ownership (TCO) by more than 65 percent. Some of these savings

came from server consolidation. Other savings resulted from simplified system administration, because different

operating systems now can run on the same hardware.

http://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment

 © 2014 Cisco | Red Hat. All rights reserved. Page 2

Virtual machines aren’t ideal for every use case:

 Virtual machines need minutes to spin up, which can degrade the user experience and give hackers time

to exploit known vulnerabilities during bootup.

 Patching and lifecycle management for virtual machines requires a significant effort. That’s because

every virtualized application has at least two operating systems for operators to manage and secure: the

hypervisor and the guest OS that is inside the virtual machine.

 Even the simplest OS process needs its own virtual machine. This requirement increases flexibility, but it

also makes virtual machines impractical to use for microservices architectures with hundreds or

thousands of processes.

 When each physical server is replaced by one virtual machine, physical resource utilization tends to

remain low. Server sprawl is simply replaced with virtual machine sprawl.

Businesses, academia, and government can gain from a more efficient way to build, ship, deploy, and run

applications. That’s where Linux containers come in.

Where Linux Containers Fit

Briefly, a Linux container is a set of processes that are isolated from the rest of the machine. A container can

encapsulate any application dependency. For example, if a website relies on a particular version of the PHP

scripting language, the container can encapsulate that version. As a result, multiple versions of the same scripting

language can co-exist in the same environment - without the administrative overhead of a complete software

stack, including the OS kernel. Containerized applications perform about as well as applications deployed on bare

metal.

Where hypervisors provide a logical abstraction at the hardware level, containers run in isolation, sharing an

operating system instance. This approach can improve application delivery in several ways:

 Lowering costs

 Speeding up application development

 Simplifying security

 Making it easier to adopt new IT models such as hybrid clouds and microservices architecture

Lower Costs and Greater Agility

Containers simplify IT operations:

 Fewer operating systems to manage: Each virtual machine can be carved into multiple containers, all

sharing the same operating system kernel.

 Greater application mobility: You can move workload between private and public clouds more quickly,

by orders of magnitude. Instead of moving gigabytes between clouds, you can move megabytes.

 Easier OS patching: A virtualized application with 10 virtual machines has 11 operating systems - the

hypervisor and each guest operating system - and each needs patching. In contrast, a containerized

server with 10 applications has only one operating system.

 Easier application patching: Docker container images are composed of layers, and you can patch by

just adding a layer. The new layer doesn’t affect the others. The layers of a web application image, for

example, might include an Apache web server, a PHP runtime system, and Redis for caching.

 © 2014 Cisco | Red Hat. All rights reserved. Page 3

 Better workload visibility: Operators can’t see the workload inside a virtual machine, but they can look

inside a container from the container host environment. One benefit is the ability to detect unused

container instances, helping to avoid virtual machine sprawl. Another benefit is simplified dependency

mapping and security maintenance.

 Improved resource utilization: Linux containers run on a single computing instance, making it easier to

detect their activity and retire unused containers. Idle containers don’t take up computing, memory, and

I/O resources.

 Faster provisioning: Containerized applications can boot and restart in seconds, compared to minutes

for virtual machines (Figure 1). Booting and restarting are faster because containers have smaller

payloads and don’t carry the overhead of a hypervisor and guest OS. Faster boot time correlates with

less downtime. This benefit is especially appealing for organizations that want to use a public cloud

service to handle higher-than-usual transaction volumes. In this case, faster boot and restart times can

directly reduce costs.

Figure 1: Containerized Applications: Faster Provisioning

Faster Response to New Workload Requirements

Less time is needed to transport, copy, and instantiate containers because they are smaller than virtual machines.

They are often just a few dozen megabytes, where a typical virtual machine might be hundreds of megabytes, or

even gigabytes.

Linux containers also tend to speed up application development, because you can build once and run on any

infrastructure. Infrastructure can include bare-metal servers, virtual machines, public clouds, and network devices.

Encapsulating dependencies inside a container helps shorten the testing cycle. That’s because containers make it

easier to write single-function applications, which simplifies testing and can accelerate the development and

operations (DevOps) cycle. Developers can add new application features more quickly by taking advantage of

automated building, testing, integration, and packaging - at the speed of containers.

Containers also help organizations adopt the DevOps model, especially when it is used for PaaS. Each team can

focus on what matters to them. Developers are concerned only with what’s inside the container: the code.

Operations and quality assurance (QA) teams are only concerned with placing and maintaining the containerized

code in production.

 © 2014 Cisco | Red Hat. All rights reserved. Page 4

Hybrid Cloud: Helping IT and

Application Developers Navigate the

Transition

Consider a retail or financial services

application that uses SSL to encrypt

sensitive information traveling over the

Internet. In a virtualized architecture, SSL

is part of the application image. So if an

SSL security flaw emerges, the developer

has to change the application image. This

process results in downtime and time-

consuming regression testing.

With a container-based architecture, in

contrast, SSL can be isolated in its own

container, separate from the application

code. The flaw takes less time to correct

because the developer does not need to

touch the application logic.

Keeping Systems and Data Secure

Containers that are secured with Linux namespaces, control groups (cGroups), and Security Enhanced Linux

(SELinux) provide almost as much isolation as a virtual machine. They also provide much greater flexibility and

efficiency.

Some security issues need to be addressed before enterprises and service providers will use containers in

production (see “Paving the Way for Widespread Adoption” later in this document). Containerization will

eventually make it easier to secure applications, for three reasons:

 A smaller payload reduces the surface area for security flaws.

 Instead of incrementally patching the operating system, you can update it.

 By allowing a clear separation of concerns, containers help IT and application teams collaborate (see the

“Hybrid Cloud” sidebar).

The IT department is responsible for security flaws associated with the infrastructure. The application team fixes

flaws inside the container and is also responsible for run-time dependencies. Easing the tension between IT and

applications teams helps smooth the transition to a hybrid cloud model.

Delivering New Kinds of Services

Containers provide new ways to speed up application development and deployment. Two notable examples are

microservices and open application containers for network devices.

Microservices

Instead of building one application (monolithic architecture),

developers build a suite of components, called microservices,

which come together over the network. Each component is

written in the best programming language for the task, and each

component can be deployed and scaled independently of the

others.

Containers are better suited for microservices than virtual

machines are because microservices can start up and shut down

more quickly. In addition, computing, memory, and other

resources can scale independently. Red Hat and other vendors

are currently working on orchestration software that connects

microservices.

Support for microservices is one reason that containers are an

efficient way to deliver PaaS. Red Hat uses containers in

OpenShift, which provides a self-service provisioning platform for

the full application stack. Red Hat OpenShift also includes

development tools and middleware.

 © 2014 Cisco | Red Hat. All rights reserved. Page 5

Applications that benefit most from a microservices architecture tend to be horizontally scalable. For example,

consider a financial services firm that sells options and futures contracts. Its main application might have three

components:

 Trader interface

 Trade settlement code that interfaces with order management system and exchanges

 Pricing system based on proprietary algorithms

The pricing system creates the firm’s competitive advantage. If the pricing system is in its own container, the

firm’s developers can quickly swap out old algorithms for new ones. They don’t need to touch the code for the

user interface or back-end interfaces, and they don’t need to retest those components.

Open Application Containers

Cisco uses open application containers for network devices such as routers and switches. The containers add

new capabilities to Cisco
®
 network operating systems. One example is performance measurement. Another is

integration of the network operating system with third-party tool chains, such as Puppet agent and Chef agent.

The Vision for Linux Containers

Linux containers have the potential to transform application delivery - in the data center, network core, and

network edge (Figure 2). Table 1 lists use cases.

Figure 2: Where Containers Will Appear

http://puppetlabs.com/puppet/what-is-puppet
http://www.getchef.com/chef/

 © 2014 Cisco | Red Hat. All rights reserved. Page 6

Table 1: Use Cases for Linux Containers

Use Case What’s New Benefit

Development and testing Replicate self-contained application

images on any certified host platform

and infrastructure.

Reduce dependency problems.

Choose where to deploy.

Low-overhead Linux

distributions

Encapsulate libraries and services in

the container image.

Reduce OS overhead. Enable the use

of small-footprint operating system.

Cloud-native applications Abstract physical resources and create

stateless web and application tiers.

Avoid being locked into a cloud

application framework.

Scaling up and down Spin up containers when workload is

heavy. Retire them when they are no

longer needed.

Use resources more efficiently.

PaaS Transport application binaries and

configurations in containers. Most

PaaS frameworks are already

container-based.

Allow PaaS frameworks to

interoperate.

Intercloud portability Natively support Docker containers in

public and private clouds.

Exchange application components

between clouds.

Microservices Design applications as suites of

services, each written in the best

language for the task.

Scale just the microservices that need

more resources, not the entire

application. Allow different teams to

manage different microservices.

Compute-enabled storage Bring computing resources to data

instead of bringing data to computing

resources.

Speed up computing operations by

not having to move large volumes of

big data. Use any language or

runtime system.

Shared network functions

and services

Virtualize network services in

containers instead of on virtual

machines or network devices.

Accelerate startup and shutdown,

improving user experience.

Containerized control and

management planes

Transport control-plane and

management-plane software.

Reduce overhead and maintain

image integrity.

Edge computing and

Internet of Everything

solutions

Package, distribute, and run

applications and services at the edge

to process data closer to the origin.

Conserve bandwidth from the edge to

the core. Enable the right kind of

services for the particular type of data

and type of analysis.

Policy-aware networks Grant or block access to containers

based on policy. For example, apply

Quality of Service (QoS) to containers.

Improve the application experience by

giving priority to containers with

critical services. Improve security.

Network application

containers

Run third-party applications in

containers on the network operating

system.

Add new capabilities to the base

network operating system.

 © 2014 Cisco | Red Hat. All rights reserved. Page 7

Why Now?

Containers aren’t new. Linux containers were introduced in 2004. Even earlier examples include Solaris Zones

and FreeBSD Jails.

What’s new is the use of containers to encapsulate all application components, such as dependencies and

services. When all dependencies are encapsulated, applications become portable.

Docker made a big contribution by providing easy-to-use tools and a repository for container images. More

recently, other vendors, including Red Hat, have contributed small-footprint operating systems and frameworks for

management and orchestration.

Paving the Way for Widespread Adoption

A few large cloud service providers have begun using Linux containers at scale. Some use Red Hat OpenShift as

the basis for a PaaS offering. Widespread adoption by enterprises will require improvements in the following

areas:

Security

Currently, kernel exploits at the host operating-system level affect all containers on the host. To address this

issue, vendors are improving techniques such as mandatory access control. SELinux is a foundational element in

Red Hat’s security strategy for virtualization; its mandatory access controls protect the host and containers

against untrusted container processes. A related project, libseccomp, allows you to eliminate syscalls, preventing

a hacked container from compromising the kernel.

Management and Orchestration

Vendors are working to create frameworks for managing container images and orchestrating the container

lifecycle. Existing OpenStack and DevOps tools are evolving to support containers, and new frameworks are

being developed. Narrowing the frameworks to just a few, and ideally just one, will encourage adoption.

Tools for Managing, Creating, Deploying, and Retiring Containers

Solutions are already available for container management and orchestration. Docker has made it easier to create

and delete containers. The container community is currently developing new tools for continuous building and

testing of images.

Containers also let you retire unused resources more easily. Containers live inside the Linux kernel. So if the

security policy permits, you can see what’s running in the container. Docker can limit the resources that a

container consumes, such as disk space, memory, and I/O, while providing metrics on the use of these resources.

Vendors are also working to create an audit trail for containers. The idea is to add metadata to the container

images to show when and where containers are delivered, and their content. Metadata might also include

information about who produced the container, the container’s products and components (for license

management), and certifications.

Live Migration

Workloads requiring the highest availability must not lose their connection when they migrate to another physical

or virtual host. An open-source project called CRIU (Checkpoint/Restore in Userspace) satisfies part of this

requirement. CRIU continues to mature.

http://selinuxproject.org/
http://www.criu.org/

 © 2014 Cisco | Red Hat. All rights reserved. Page 8

Intercontainer Communication

Linux containers need to talk to other containers on the same or a different host. Communication requires code

for endpoint naming, discovery, and connectivity. Because Linux containers operate natively in the Linux kernel,

developers tend to use Linux constructs such as iptables to create policies that enable containers to talk to each

other.

Better methods for intercontainer communications are available through the open source community. Examples

include virtual switching, hardware-enhanced switching and routing, Domain Name System (DNS), and distributed

key-value stores. Standardizing on one or a few methods for naming, discovery, and connectivity will help

accelerate adoption of Linux containers.

Container Innovations from Cisco and Red Hat

Cisco and Red Hat each have projects underway to bring Linux containers to market. Our strengths are

complementary: application development and deployment for Red Hat, and networking and security for Cisco.

The network is a critical part of containerized architecture because it carries containers and microservices

between hosts and between clouds.

Red Hat, the leading Linux vendor and lead contributor to Linux kernel development, has been working on

container technologies since the inception of containers. Red Hat has been instrumental in adding foundational

technologies to the Linux kernel that make containers possible. Containers take advantage of major Linux kernel

subsystems, including SELinux, cgroups, and namespaces. Red Hat OpenShift Gears are Linux containers that

are built from cgroups and namespaces and augmented with the SELinux mandatory access control security

subsystem. By building on SELinux, Red Hat created a container model that is both efficient and very secure.

“Cisco Cloud Services is creating an Intercloud of container and micro-services in a cloud native and hybrid

CI/CD model across OpenStack, VMware, and public clouds. Look for availability early next year.”

- Ken Owens, Cisco Cloud Services CTO

Ongoing projects for Cisco and Red Hat include:

 Hybrid cloud: Both companies are working on allowing free movement of applications into different

clouds, with enterprise-class controls. The Cisco initiative is called Cisco Intercloud, and Red Hat is

focusing on the Open Hybrid Cloud.

 Application-optimized containers: Today, when a new application is placed in production, a networking

team needs to select the appropriate VLAN, open ports, configure load balancing, set up port security

through access control lists (ACLs), and apply network policies such as QoS. Cisco and Red Hat are

collaborating to automate network configuration using software-defined networking (SDN) and an

application-optimized infrastructure. When a new containerized application is placed in production, the

network will recognize the application requirements and automatically apply them.

 Microservices integrated with Cisco Intercloud.

 Continuous integration and continuous deployment (CI/CD) in hybrid cloud environments.

 Small-footprint operating system: Red Hat is working on an open-source project called Project Atomic. It

provides a space and the tools for the ecosystem to collaborate on small-footprint host operating

systems. Red Hat has announced Red Hat Enterprise Linux Atomic Host to deliver an optimized,

lightweight container host.

http://www.cisco.com/c/dam/en/us/products/collateral/switches/intercloud/at-a-glance-c45-730799.pdf
http://www.redhat.com/solutions/open-hybrid-cloud/
http://www.projectatomic.io/

 © 2014 Cisco | Red Hat. All rights reserved. Page 9

 Container certification: Enterprise applications need enterprise-grade reliability and security for all the

technologies inside a container as well as the container host environment. To this end, Red Hat has

announced a container certification program to support multivendor deployments.

 OpenShift: Red Hat deployed OpenShift for PaaS in 2011. Hundreds of thousands of live containers are

running on Red Hat OpenShift. Cisco IT also uses containers in the data center to deploy web

applications built on Red Hat OpenShift.

 Containers on Cisco core and edge switches: Some Cisco switches and routers already support Linux

containers, allowing Chef processes to run inside Linux containers. Cisco is exploring the use of linux

containers in the area of Fog Computing in the context of the Internet of Everything.

 Exploration of opportunities to work with the open source community: Figure 3 shows one progression

toward an open ecosystem.

Figure 3: How an Open Ecosystem Might Look

The diagram below portrays the journey how containers are leveraged in embedded devices. Initially, containers

are used to host a single component, such as an agent, of a larger application which benefits from tight

integration with the embedded device. “Guest Shell” starts to see the container as a subsystem, with the ability to

host multiple applications in parallel and open access to Linux packages and tool chains as well as the network.

Going forward we’ll start to understand the container, pre-equipped with a set of functionality, as a portable

reference environment which is an integral part of an eco-system combining network and application centric tools

and functions.

Conclusion

The time for Linux containers has arrived. Application packaging is becoming more important because of the

Internet of Everything, fog computing, and a return to decentralized systems.

Vendors are responding with innovations to make containers ready for production environments. High-profile

projects include Red Hat OpenShift, Apache Mesos, VMware CloudFoundry, Google Kubernetes, and Cisco

application containers. These projects have led to notable advances:

 Distributed applications are being built with microservices architecture in mind.

 Apache Mesos is improving scheduling.

 Unique identifier (UID) namespace isolation is strengthening security.

 © 2014 Cisco | Red Hat. All rights reserved. Page 10

 Docker has improved image management and ease of use.

 Virtualization is moving to embedded systems, allowing routers and switches to host network

applications.

The adoption path for Linux containers will likely be similar to that for Linux - that is, slow at the beginning, and

then picking up speed. Service providers will take the lead. Enterprises will follow as they become more confident

in the technology and see the return on investment (ROI) from service providers.

Cisco and Red Hat are committed to meeting enterprise requirements through our work with hybrid cloud and

network-based security.

For More Information

To learn more about Cisco work with Linux containers, email linux-containers-whitepaper@cisco.com.

To learn more about Red Hat work with Linux containers, visit http://www.redhat.com.

Acknowledgements

Cisco: Hicham Tout, Howie Xu, Jenny Koerv, Sandeep Bharda, Rich Gore, Frank Brockners, Roque Gagliano,

Luca Relandini, Jari Koivisto, Pamela Lee

Red Hat: Daniel Riek, Bhavna Svarthy, Elisabeth Strenger, Michael Ferris, Dan Walsh

Additional Resources

 Linux kernel namespaces: http://lwn.net/Articles/531114/

 Cgroups: https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

 LXC: https://linuxcontainers.org/

 SELinux: http://selinuxproject.org/page/Main_Page

 AppArmor: https://wiki.ubuntu.com/AppArmor

 Docker: https://docs.docker.com/userguide/

 Docker libcontainer: https://github.com/docker/libcontainer

 Google Kubernetes container management: https://github.com/GoogleCloudPlatform/kubernetes

 Mesosphere container management: http://mesosphere.io/learn/run-docker-on-mesosphere/

 Coreos JEOS Linux OS: https://coreos.com/docs/

 Project Atomic Linux OS: http://www.projectatomic.io/docs/

 OpenVZ/CRIU Container Checkpoint Restore: http://criu.org/Main_Page

 OpenVZ Live Migration: https://openvz.org/Checkpointing_and_live_migration

mailto:linux-containers-whitepaper@cisco.com
http://www.redhat.com/
http://lwn.net/Articles/531114/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://linuxcontainers.org/
http://selinuxproject.org/page/Main_Page
https://wiki.ubuntu.com/AppArmor
https://docs.docker.com/userguide/
https://github.com/docker/libcontainer
https://github.com/GoogleCloudPlatform/kubernetes
http://mesosphere.io/learn/run-docker-on-mesosphere/
https://coreos.com/docs/
http://www.projectatomic.io/docs/
http://criu.org/Main_Page
https://openvz.org/Checkpointing_and_live_migration

 © 2014 Cisco | Red Hat. All rights reserved. Page 11

© 2014 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered

trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to

this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective

owners. The use of the word partner does not imply a partnership relationship between Cisco and any other

company. (1110R)

Copyright © 2014 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, and the Shadowman logo are trademarks of

Red Hat, Inc., registered in the U.S. and other countries. Linux
®
 is the registered trademark of Linus Torvalds in

the U.S. and other countries. The OpenStack Word Mark is either a registered trademark/service mark or

trademark/service mark of the OpenStack Foundation, in the United States and other countries and is used with

the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack

Foundation, or the OpenStack community.

THE INFORMATION HEREIN IS PROVIDED ON AN “AS IS” BASIS, WITHOUT ANY WARRANTIES OR

REPRESENTATIONS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION,

WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

C11-732571-00 09/14

Alternative container technologies in other prevalent
*
Nix operating systems:

 FreeBSD Jails: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html

 SmartOS Zones: http://wiki.smartos.org/display/DOC/Zones

 Oracle Solaris Zones: http://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm

Authors

Cisco: Ivan Melia, Sandeep Puri, Ken Owens, Kiran Thirumalai, Sailesh Yellumahanti

Red Hat: Lars Herrmann, Mark Coggin, Joe Fernandes, Kimberly Craven, Dan Juengst

http://www.cisco.com/go/trademarks
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
http://wiki.smartos.org/display/DOC/Zones
http://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm

