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Abstract—Future exascale systems will impose several con-
flicting challenges on the operating system (OS) running on
the compute nodes of such machines. On the one hand, the
targeted extreme scale requires the kind of high resource usage
efficiency that is best provided by lightweight OSes. At the
same time, substantial changes in hardware are expected for
exascale systems. Compute nodes are expected to host a mix of
general-purpose and special-purpose processors or accelerators
tailored for serial, parallel, compute-intensive, or I/O-intensive
workloads. Similarly, the deeper and more complex memory
hierarchy will expose multiple coherence domains and NUMA
nodes in addition to incorporating nonvolatile RAM. That
expected workload and hardware heterogeneity and complexity
is not compatible with the simplicity that characterizes high
performance lightweight kernels. In this work, we describe the
Argo Exascale node OS, which is our approach to providing
in a single kernel the required OS environments for the two
aforementioned conflicting goals. We resort to multiple OS
specializations on top of a single Linux kernel coupled with
multiple containers.
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I. INTRODUCTION

Disruptive new computing technology has already be-
gun to change the scientific computing landscape. Hybrid
CPUs, manycore systems, and low-power system-on-a-chip
designs are being used in today’s most powerful high-
performance computing (HPC) systems. As these technology
shifts continue and exascale machines close in, the Argo
research project aims to provide an operating system and
runtime (OS/R) designed to support extreme-scale scientific
computations. It aims to efficiently leverage new chip and
interconnect technologies while addressing the new modali-
ties, programming environments, and workflows expected at
exascale.

At the heart of the project are four key innovations:
dynamic reconfiguring of node resources in response to
workload changes, allowance for massive concurrency, a hi-
erarchical framework for power and fault management, and
a cross-layer communication protocol that allows resource
managers and optimizers to communicate and control the
platform. These innovations will result in an open-source
prototype system that runs on several architectures. It is
expected to form the basis of production exascale systems
deployed in the 2018–2020 timeframe.

The design is based on a hierarchical approach. A global
view enables Argo to control resources such as power or
interconnect bandwidth across the entire system, respond
to system faults, or tune application performance. A local

view is essential for scalability, enabling compute nodes to
manage and optimize massive intranode thread and task par-
allelism and adapt to new memory technologies. In addition,
Argo introduces the idea of “enclaves,” a set of resources
dedicated to a particular service and capable of introspection
and autonomic response. Enclaves will be able to change the
system configuration of nodes and the allocation of power
to different nodes or to migrate data or computations from
one node to another. They will be used to demonstrate
the support of different levels of fault tolerance—a key
concern of exascale systems—with some enclaves handling
node failures by means of global restart and other enclaves
supporting finer-level recovery.

We describe here the early stages of an ongoing effort, as
part of Argo, to evolve the Linux kernel into an OS suitable
for exascale nodes. A major step in designing any HPC
OS involves reducing the interference between the OS and
the HPC job. Consequently, we are exposing the hardware
resources directly to the HPC runtime, which is a user-level
software layer. However, the increase in resource complexity
expected for the next-generation supercomputers creates a
need for some hardware management that is best left to the
OS. The resource complexity comes from the heterogeneous
set of compute cores and accelerators, coupled with deeper
and more complex memory hierarchies with multiple co-
herence and NUMA domains to cope with both the CPU
heterogeneity and the massive intranode parallelism. Our de-
sign is based on the concept of OS Specialization—splitting
the node OS into several autonomous components each
managing its own subset of CPU cores, a memory region,
etc. We introduce the concepts of ServiceOS which is a fully-
fledged Linux environment meant for node management
and legacy application execution, and Compute Containers
which realize lean OS environments meant for running HPC
applications with little interference from the OS.

The rest of the paper is organized as follows. Section II
provides motivation for putting forth OS specialization in
the Argo NodeOS. Section III describes our approach to
OS specialization using containers, as well as how Compute
Containers can achieve various levels of leanness over the
same fully-fledged Linux kernel used by the ServiceOS.
Section IV discusses related work and Section V concludes.
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Figure 1. Traditional HPC OS vs. lean OS with most resources exposed
to the HPC runtime

II. ESTABLISHING THE NEED FOR OS SPECIALIZATION

A. Lean OS

Recent 3.x Linux kernels have more than 15 millions
lines of code (LoC). With only about 60,000 LoC, the IBM
Compute Node Kernel (CNK) [1] of Mira, a Blue Gene/Q
supercomputer at Argonne National Laboratory, contrasts
with Linux by being barely more than a thin layer between
the hardware and the HPC job. The CNK LoC number
includes the kernel, the management network stack, all the
supported system calls, and limited file system facilities.
CNK is tailored to achieving the minimum possible interfer-
ence between the HPC job and its hardware usage; in doing
so, it provides the maximum possible hardware efficiency
to the HPC job. As shown for collective operations [2],
low OS interference can make a noticeable difference in
HPC job performance at extreme scales; in that respect, the
lightweight nature of kernels such as CNK is a compelling
characteristic for an exascale OS.

Contemporary HPC stacks already selectively bypass the
OS for direct access to certain devices such as RDMA-
enabled network cards (Fig. 1(a)). The Argo project goes
further by exposing most hardware resources to the HPC
runtime which executes as part of the application (Fig. 1(b)).
On top of fulfilling the minimal interference goal, offloading
the hardware resource management of the application from
the OS to the HPC runtime is justified by the runtime being
more knowledgeable about the needs of the HPC application
than the OS. The OS as seen by the HPC application running
in the Argo environment is said to be lean.

B. Provisioning for Legacy Applications

A look at the list of the 500 most powerful supercomputers
(Top500) [3], as of November 2014, shows that such systems
are overwhelmingly using Linux. In fact, Fig. 2 shows that
more than half of the Top500 systems have consistently been
using Linux for the past decade, and the share has kept
growing. This observation implies that there is a substantial
amount of HPC code that assumes the existence of familiar
programming APIs such as POSIX, as well as most of the
system calls that Linux programmers take for granted. A
purely lean OS such as CNK is not a flexible environment
that would easily host the massive amount of existing legacy
code. For instance, CNK does not support process forking;
in fact, the 63 system calls offered by CNK represent only
a very limited subset of what is offered by any Linux kernel
of the last 10 years. CNK does not provide any complex or

  

 

-Heterogeneous sets of compute cores
-Massive intra-node parallelism Deep and complex memory hierarchy

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
Massively
 Parallel
 cores

Small 
massively
 parallel
 cores

Small 
Massively
 Parallel
 cores

Big serial
 cores

Big serial
 cores

Big serial
 cores

Accelerators

Other special-purpose 
cores

NUMA 
node

Coherence 
domain

NUMA 
node

Accelerator
memory 0

Accelerator
memory 1

Accelerator
memory n

...

NVRAM

NVRAM

Other

NUMA 
node

Coherence 
domain

NUMA 
node

NUMA 
node

Coherence 
domain

NUMA 
node

NUMA 
node

Coherence 
domain

NUMA 
node

NUMA 
node

Coherence 
domain

NUMA 
node

NUMA 
node

Coherence 
domain

NUMA 
node

Figure 3. Resource heterogeneity and complexity in exascale nodes

dynamic virtual memory to physical memory mapping. Sim-
ilarly, it does not provide all the thread preemption scenarios
of a vanilla Linux kernel. In particular, the absence of time
quantum-like sharing can prevent the well-known approach
to nonblocking operations that is fulfilled by hidden agents
backed by a middleware-level thread that runs in addition to
the application threads [4].

While the overall Argo NodeOS seeks the leanness of a
lightweight kernel, there is provision for supporting legacy
applications that need a full Linux environment. An aspect
of the OS specialization is to provide side-by-side in the
same node:

• an OS environment for HPC applications that require a
fully-fledged Linux kernel,

• an OS environment that is lean. As much as possible,
that environment would allow the HPC runtime to get
direct access to the hardware resources with little or no
OS interference.

C. Provisioning for Heterogeneous Resources

Substantial changes in hardware are expected for exascale
systems. The deeper and more complex memory hierarchy
will expose multiple coherence domains and NUMA nodes
in addition to incorporating NVRAM. The envisioned mul-
tiple coherence and NUMA domains are the consequence
of the expected increase in CPU core density and processor
heterogeneity at the node level. That resource complexity
(Fig. 3) requires a hardware management rigor that is best
left to a fully-fledged kernel such as Linux. Hardware drivers
are not always open-source, and hardware vendors are reluc-
tant to provide drivers for niche operating systems. However,
hardware drivers, especially for HPC-directed devices, are
routinely provided for Linux because it is a well-established
OS in HPC [3]. As a consequence, the Argo NodeOS
requires a fully-fledged Linux kernel as its underlying OS
but also as one of its OS specializations.

D. Provisioning for Different Compute Needs

Nob all HPC jobs have the same needs, and their un-
derlying processes do not exhibit the same behavior. HPC
jobs could differ by communication patterns, I/O require-
ments, storage needs, computation-intensiveness, etc. For
instance, a job that performs large numbers of small message



Figure 2. Percentage of the Top500 supercomputers using Linux

exchanges would be more sensitive to the latency or the
leanness of the network stack than one that does heavier data
transfers. While some jobs require massive external storage
for the sake of reading input or generating output, other
expect to start and complete entirely in memory. Some HPC
applications could require the ability to oversubscribe the
node with more threads than CPU cores so as to efficiently
achieve an optimal balance between blocking operations
and asynchronous needs. Taking that disparity of needs into
account, there is no single set of lean OS characteristics
that could fulfill all the possible compute needs. Actually,
any such single set of characteristics is bound to lead to
over-provisioning of features that could hardly keep the OS
lean. As a result, there is not just a need for distinction
between a fully-fledged Linux environment and a leaner OS
environment providing low-interference HPC; there is also
a need for specializing between various lean compute envi-
ronments. Thus, the OS specialization in the Argo project
allows OS features to be enabled or disabled according to
the desired level of leanness expressed by the HPC job being
run.

Distinct compute needs exist because different jobs are
dissimilar, but distinct compute needs can exist for a single,
composite job as well. While it is uncommon in HPC to col-
locate two or more distinct jobs on the same compute node,
and most jobs have the same compute requirements for all
their processes on the same node, there is a growing trend of
modular HPC jobs where a compute aspect collaborates with
a post-processing aspect in real time. An example of such
post-processing could be co-visualization. As the compute
and the co-visualization aspects do not have the same needs,
in spite of being part of the same job, their respective optimal
compute environments could differ widely. The same job can
therefore require its processes to be distributed over several
distinct OS specializations, even within the same node.

III. OS SPECIALIZATION VIA COMPUTE CONTAINERS

As shown in Fig. 4, the NodeOS is made of a unique
ServiceOS and of one or more Compute Containers. The
ServiceOS—which is the default OS specialization—boots
the node, initializes the hardware resources, and provides
most of the legacy API and services expected by an HPC
job that assumes a fully-fledged Linux environment. An HPC
application with lean OS requirements does not execute over
the ServiceOS; instead, it executes over one or multiple
Compute Containers which are OS specializations distinct
from the ServiceOS.

A single-kernel approach is used to achieve the special-
ization. The ServiceOS is the default host OS, and the
Compute Containers are the guest entities based on Linux
cgroups. Compute Containers get their hardware allocation
in bulk from the ServiceOS and then expose these resources,
with little interference, to the user-space HPC runtime.
For instance, scheduling policies, CPU core allocation, and
memory management are to a large extent delegated to the
runtime. The ServiceOS hosts a resource manager which ma-
nipulates cgroups and resource controllers. The ServiceOS
also deals with storage management, job management, and
system call forwarding for select calls that are by default
disabled in the Compute Containers.

Compute Containers have exclusive ownership of certain
resources that they are granted by the ServiceOS; even the
ServiceOS refrains from using these resources during the
lifetime of the owning Compute Containers. A Compute
Container can be as fully-fledged as the ServiceOS since
the same kernel is shared between the two kinds of OS
specializations. However, by default, a Compute Container
is created with many features disabled, so as to achieve a
certain default level of leanness (Fig. 5). Further features can
be selectively enabled or disabled by providing parameters
to the resource manager either at the creation time of a
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Figure 5. Differentiated behavior between ServiceOS and Compute
Containers

Compute Container or during its lifetime.
The concept of a container on Linux usually comes with

boundaries similar to virtual machine isolation. Compute
Container, as put forth by the Argo NodeOS, does not put
any emphasis on namespace isolation. Processes running
on distinct Compute Containers share the same PID space,
file system, and network domains. In fact, the NodeOS
proactively needs Compute Containers to be permeable,
so the same job using multiple Compute Containers can
seamlessly have its processes communicate without crossing
any virtual node boundary. The emphasis in this work is
put on resource partitioning and differentiated behaviors by
means of feature activation/deactivation.

A. Provisioning for Compute Container Feature Selection

The mechanism depicted in Fig. 5 is already partially
feasible on a vanilla Linux kernel. For instance, by disabling
load balancing in the cpuset resource controller for a cgroup,
it is possible to reduce the OS interference over the subset
of CPU cores dedicated to a Compute Container. When the
ServiceOS is kept away from the Compute Container CPU
cores via the isolcpus kernel parameter, the deactivation
of load-balancing noticeably reduces OS interference and
leaves the CPU core management to the HPC runtime.
These available features were already an important steps in
realizing a certain level of Compute Container leanness. The
level of feature activation/deactivation offered by a vanilla
Linux kernel is insufficient though, and we are developing
additional mechanisms to further Compute Container Spe-
cialization.

A new scheduling class is under development for Compute
Containers. It is optimized for small per-core process and
thread counts. It disables load balancing and replaces process
preemption with cooperative scheduling, thus providing a
considerably more predictable performance to workloads
optimized for a single software thread per hardware thread,
as is common in HPC.

The memory registration required by Remote Direct
Memory Access (RDMA) is known to be costly [5]. How-
ever, if a process can have its virtual address space pre-
registered, memory registration would become virtually free
at run time and would lead to an overall performance
boost for the RDMA operations that are common in su-
percomputing inter-node communication. For a process to
benefit from such static mapping, it must own the physical
memory frames exclusively. However, with the existing
cpuset resource controller, the physical memory ownership
granularity is the NUMA node. Thus, in a uniform memory
access (UMA) architecture such as the Xeon Phi, where
the whole memory is considered a single memory node, it
becomes impossible for a collocated Compute Container to
achieve the aforementioned exclusive memory ownership.
We are adding a new resource controller that breaks down
physical memory into smaller units that can be granted
exclusively to Compute Containers (Fig. 6). The units are
sized in multiples of a page size. For a UMA architecture
such as Xeon Phi, Fig. 6(a) shows how the new feature
can allow memory partitioning. The equivalent of the same
partitioning for NUMA architectures is shown in Fig. 6(b).
For NUMA architectures, the finer-grained memory units
of a Compute Container do not have to be contiguously
allocated from the same NUMA node. For instance, in
Fig. 6(b), ComputeContainer1 does not have to get all its
finer-grained memory units from NUMA node 2, especially
if it hosts a process that needs to use interleaved memory
allocation policy.

For certain threads or processes, the runtime can have very
low tolerance for preemption; and would therefore expect to
be hosted, as much as possible, in a Compute Container
that prevents the scheduling of OS-related kernel threads.
We are providing an OS specialization knob that can disable
select per-CPU core kernel threads on the cores used by any
such Compute Container. This OS specialization feature is
appropriate when the functionality provided by a disabled
per-CPU core kernel threads is not required for the set of
functionalities needed for a lean Compute Container.

IV. RELATED WORK

While the idea of isolating processes from each other is
not new (see chroot or jails from BSD), containers are
becoming a popular solution in the commercial space as a
lightweight virtualization technology. Docker [6] or LXC [7]
provide a framework to specify, launch, and control an
environment isolated from the base system through various
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Figure 6. Breaking physical memory nodes in finer logical nodes that can exclusively be owned by Compute Containers

namespaces and to manage resources between those envi-
ronments. However, these technologies aim at different goals
than us. Their containers are focused on isolation—a process
cannot access resources outside its container—and resource
sharing management—how much memory or CPU to give to
a given container—while we focus on exclusive partitioning
of heterogeneous resources and OS specialization inside con-
tainers. Furthermore, in our context, all processes running
in a single node are part of a single application. Thus, the
job does not benefit from these processes being hosted in
isolated containers where communication must cross virtual
node boundaries instead of using straighforward efficient
means such as shared memory.

CoreOS [8] is a minimalist OS based on the Linux kernel,
using Docker at its core to run each application inside a
container and providing additional software to control a
cluster deployment. As HPC systems usually depend on
architecture- and vendor-specific base system images, the
Argo project’s intent is to build loosely integrated compo-
nents (Fig. 4) that can later be deployed and configured on
a large variety of machines instead of a tightly integrated
solution.

In recent years, several research projects have studied rad-
ical changes to the OS stack to adapt to large, heterogeneous
or homogeneous resources on single nodes. Corey [9] put

forth a single kernel that delegates specific kernel functions
to specific cores, and allowing applications to specify when
kernel data structures should be shared and across which
part of the system. Multikernels are also being investigated
and put forth by many others. Barrelfish [10] for instance
is implemented as a distributed system, with one kernel
instance per core and efficient communication between the
different kernel instances. Another instance of multikernel
approach is presented by Baumann et al. [11], with the
goal, among other concerns, of showing that multiple OSes
over multiple partitions of the node hardware resources
can offer a means of enforcing intra-node scalability by
learning from inter-node distributed systems. Mint [12] and
Popcorn [13] are two other multikernels which are meant
for managing parallel intra-node resources with perfectly
autonomous kernels. Popcron Linux allows the independent
kernels to provide a seamless feeling of single system image
where processes can easily cross kernel boundaries. Finally,
Twin-Linux [14] appears as an approach to OS specializa-
tion via multiple fully-fledged kernels meant for different
workloads. We argue here for a middle-ground approach,
with Compute Containers using dedicated resources, having
special configurations, and some kernel functions forwarded
to the ServiceOS. Furthermore, by using the Linux kernel
as a basis, we ensure compatibility with vendor-controlled



architectures. One crucial difference between the aforemen-
tioned multikernels and the Argo NodeOS is the need to
host the same job over multiple OS specializations at low
cost.

V. CONCLUSION

The extreme scale of next generation supercomputers
will noticeably benefit from reduced OS interference in the
HPC job execution. Furthermore, hardware resource micro-
management is best offloaded from the OS to the HPC run-
time, for the latter is more informed of the needs of the HPC
job. These two goals are reminiscent of lightweight kernels
such as the Blue Gene CNK. However, the complex and
heterogeneous nature of the next generation supercomputing
systems and the need to support the massive amount of
legacy applications that assume fully-fledged POSIX APIs
and a variety of system services establish the relevance of
an existing and well-adopted OS like Linux. The NodeOS
aspect of the Argo project is an ongoing effort to simul-
taneously provide the leanness of a lightweight kernel for
extreme performance and the richness required to support
legacy applications and disparate hardware. We are leverag-
ing the cgroups and resource controller interface of Linux to
implement OS specialization on top of a single kernel. New
resource controllers are being added to complement those
that are provided by the mainline Linux kernel.
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