

KVM, OpenVZ and Linux Containers: Performance Comparison of

Virtualization for Web Conferencing Systems

Pedro Roger M. Vasconcelos, Gisele Azevedo A. Freitas, Thales G. Marques

Federal University of Ceara, Sobral, Ceara, Brazil

Abstract

Virtualization is an important technology in data

center environment due to its useful features such as

server consolidation, power saving, live migration

and faster server provisioning. However,

virtualization sometimes incurs some performance

loss. Operating system-level virtualization could be

an alternative to classical virtualization as it

potentially reduces overhead and thus improves the

utilization of data centers. Different virtualization

platforms differ in terms of features, performance

and virtualization overhead. Web conferencing

systems become popular as the clients' bandwidth

has increased in last years, in educational,

researching and business fields. The BigBlueButton

is a web conferencing system that allows multiple

users join a conference room, having classes and

share their microphone, webcam, desktop and files.

In this paper, we use KVM, OpenVZ and Linux

Containers as virtualization platforms to deploy

conference systems using BigBlueButton. We explore

its virtual performance under a real-world workload

and a set of benchmarks that stress different aspects

such as computing power, latency and memory, I/O

and network bandwidth. These results can be a

valuable information to be taken in account by

systems administrators, for capacity planning and

systems designing. Which, in turn, lead to cost

savings for companies.

1. Introduction

The virtualization technologies allow partitioning

the underlying hardware to multiple independent

guest operating systems, coordinating and scheduling

concurrent access to memory, CPU and devices. It

has become increasingly popular in wide areas such

as server consolidation, green IT and cloud

computing. Advantages of consolidation include

increased hardware resource use, reduced costs of

servers, peripheral devices, cooling and power

supply [1]. Flexible resource management, high

reliability, performance isolation and operating

system (OS) customization are other common

features. The virtual machine monitor (VMM) is the

piece in charge of providing the virtualization of

underlying hardware and orchestration of concurrent

resource dispute. By abstracting the underlying

hardware into a generic virtual hardware, the VMM

enables virtual machines (VM) to run in any

available physical machines.

Several virtualization solutions have emerged,

using different virtualization approaches. KVM and

VMware use full virtualization to provide a complete

virtual environment for a huge range of guest OSs.

Xen can use paravirtualization to provide an API for

guests domains, and solutions as OpenVZ and Linux

Containers can provide ways to partition OS in

logically isolated containers. Different virtualizations

solutions have different strengths and weakness. For

example, full virtualization supports both Linux and

Windows virtual machines but the performance is

relatively poor, while paravirtualization cannot

support Windows virtual machine but the

performance is better [2]. It is necessary to choose a

most appropriate virtualization method for particular

purposes. Besides these benefits, the VMM require

additional CPU cycles and race conditions may occur

causing overall performance degradation.

Multiple applications differ in the resource usage,

which needs special attention in virtualized

environments as bottlenecks can occur in the

concurrent access to devices, or even the

virtualization performance to the same kind of

resource (e.g. CPU) can be different across different

platforms. Based on the above analysis, it is essential

to analyse the virtualization overhead, compare the

efficiency of different VMMs and investigate

bottlenecks that may occur in the usage of virtual

resources. In this sense, the authors had evaluated the

virtualization performance for other types of

applications in previous works [3] and [4].

Video conferencing has been useful for years to

the work meetings between offices of large

companies and more recently in education,

enhancing and easing the scope of teaching in

schools and universities. The continuous increase in

bandwidth of customers, companies and providers

have contributed to the popularization of video

conferencing solutions.

The BigBlueButton (BBB) platform is a popular

web-based video conferencing system that makes use

of open-source technologies to provide a complete

environment to allow users create rooms, share

presentations, audio and video.

Video conferencing systems can take advantage

of several benefits of virtualization, they can be used

together to achieve a best hardware usage. Server

consolidation can optimize the use of the available

hardware by making use of virtual machines to host

video conferencing platforms on physical machines.

Moreover, video conferencing systems can run for

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 319

long periods without use, which often cannot justify

the adoption of a dedicated physical machine.

Resources can be easily added to a virtualized video

conferencing platform. And often, system

administrators can make use of commodity server

solutions instead of renting dedicated servers to host

their video conferencing services, which ensures a

huge economic advantage. So, evaluate and be aware

of the performance of different types and

virtualization platforms for such applications,

become a valuable information for ensure quality of

service and a significant contribution to enterprises

from an economic point of view.

Thus, this paper has the aim to investigate the

performance of BigBlueButton systems deployed

over different MMVs under stress tests. The chosen

virtualization platforms in this paper are KVM,

OpenVZ and Linux Containers. Three open-source

virtualization solutions that use two kind of

virtualization approaches: full virtualization and OS-

level virtualization. The authors have conducted

several benchmarks from micro and macro

perspective, evaluating the virtualization

performance of specific resources and of the overall

system.

The rest of this paper is structured as follows. In

Section 2, we introduce a background of the VMMs

used and an introduction to BigBlueButton. In

Section 3 we present the related works. In Section 4

we present our experimental setup, macro and micro

benchmarks, and an analysis of the performance

achieved for both VMMs. Finally we give our

conclusion in Section 5 and future work in Section 6.

2. Background

The term Virtual Machine took place in 1964

when IBM initiated a project called CP/CMS system

what lead to the Virtual Machine Facility/370. In the

1970s, Goldberg and Popek wrote papers that gave a

clear comprehension of the architecture [5] and

requirements [6] related to virtualization.

The x86 OSs are designed to run directly on the

bare-metal hardware, so they suppose they are the

only operating system running on the underlying

hardware. Commonly, the OS running in the physical

machine is executed in kernel-mode and the user

applications in user-mode. The x86 architecture has

four levels of privileges known as Ring 0, 1, 2 and 3

used by OSs and applications to manage access to

the computer hardware. The OS has direct access to

memory and to the full set of CPU’s instructions as it

resides in the Ring 0. Applications running in the

unprivileged user-mode, in Ring 3, have no direct

access to the privileged instructions. The Ring 1 and

2 can be used for additional level of access,

depending of the OS. Virtualization for the x86

architecture requires placing a virtualization layer

under the OS, expected to be in the most privileged

Ring 0, so that can be possible manage virtual

machines and share resources.

VMs can be classified in System VMs, when are

used to virtualize an entire OS, in opposition of

Process VM such as those supported by the Java

Virtual Machine [7].

There are two types of VMMs, type I and II [8].

A VMM type I, also called hypervisor or native, runs

directly above the bare-metal hardware in the most

privileged Ring, controls and shares resources to all

VMs. The VMM type II runs as an application inside

the OS, and is treated as a regular user space process.

In the next step, we describe the virtualization

techniques to virtualize an entire OS. The current

virtualization solutions can make use of many of

virtualization techniques above to reach better

performance. KVM and VMware make use of full

virtualization, binary translation and hardware assist

to virtualize almost any OS. These platforms provide

paravirtualized drivers (VirtIO and VMware Tools,

respectively) to allow their full virtualized guest OSs

communicate in a more direct way with real

hardware [9]. These drivers are not CPU

paravirtualization solutions, they are minimal, non-

intrusive changes installed into the guest OS that do

not require OS kernel modification.

2.1. Full virtualization

Full virtualization can virtualize any x86

operating system using a combination of binary

translation and CPU direct execution techniques.

This approach translates kernel code to replace non-

virtualizable instructions with new sequences of

instructions that have the intended effect on the

virtual hardware. Meanwhile, user level code is

directly executed on the processor for high

performance virtualization. The VMM provides each

VM with all services of the physical system,

including a virtual BIOS, virtual devices and

virtualized memory management [9]. The guest OS

is not aware it is being virtualized and requires no

modification. Full virtualization is the only option

that requires no hardware assist or operating system

assist to virtualize sensitive and privileged

instructions. The VMM translates all operating

system instructions on the fly and caches the results

for future use, while user level instructions run

unmodified.

2.2. Binary translation

Binary translation is a technique used for the

emulation of a processor architecture over another

processor architecture. Thus, it allows executing

unmodified guest OS by emulating one instruction

set by another through translation of code. Un-like

pure emulation, binary translation is used to trap and

emulate (or translate) a small set of the processor

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 320

instructions[7]. That is, the code that needs

privileged execution, in Ring 0, such as kernel-mode.

The rest of the instructions are executed directly

by the host CPU.

2.3. Hardware assisted virtualization

Hardware assisted virtualization for the x86

architecture, was introduced in 2006 when Intel VT-

x and AMD-V extensions were released. Hardware

assisted virtualization implements a Ring with a

higher privileged mode in the processor architecture.

These extensions support allows executing un-

modified guest OSs in Ring 0 (non-root mode) and

the hyper-visor in Ring -1 (root mode). Hardware

assisted virtualization enhances CPUs to support

virtualization without the need of binary translation

or paravirtualization. The advantage is that this

technique reduces the overhead caused by the trap-

and-emulate model, instead of doing it in software

here it is done in hardware.

2.4. Operating system-level virtualization

Here, the host OS is a modified kernel that allows

the execution of multiple isolated containers (CT),

also known as Virtual Private Server (VPS) or jail.

Each CT is an instance that shares the same kernel of

the host OS. Some examples that use this technique

are Linux-VServer, OpenVZ and Linux Containers.

The physical server and single instance of the

operating system is virtualized into multiple isolated

partitions, where each partition replicates a real

server. The OS kernel will run a single operating

system and provide that operating system

functionality to each of the partitions [7].

2.5. KVM

KVM (Kernel-based Virtual Machine) is a

kernel-resident virtualization infrastructure for Linux

on x86 hardware. KVM was the first hypervisor to

become part of the native Linux kernel (2.6.20).

KVM has support for symmetrical multiprocessing

(SMP) hosts (and guests) and supports enterprise-

level features such as live migration (to allow guest

operating systems to migrate between physical

servers) [10]. Because the standard Linux kernel is

the hypervisor, it benefits from the changes to the

mainline version of Linux (memory support,

scheduler, and so on). Optimizations to these Linux

components benefit both the hypervisor and the

Linux guest OSs.

KVM is implemented as a kernel module,

allowing Linux to become a hypervisor simply by

loading a module. KVM provides full virtualization

on hardware platforms that provide virtualization

instructions support (Inter VT or AMD-V). KVM

has two major components; the first is the KVM-

loadable module that, when loaded in the Linux

kernel, provides management of the virtualization

hardware, exposing its capabilities through the /dev

file system. The second component provides PC

platform emulation, which is provided by a modified

version of the QEMU emulator. QEMU executes as a

user-space process, coordinating with the kernel for

guest operating system requests.

When a guest OS is booted on KVM, it becomes

a process of the host operating system and therefore

scheduled like any other process. But unlike other

process in Linux, the guest OS is identified by the

hypervisor as being in the guest mode (independent

of the kernel and user modes).

The KVM module exports a device called

/dev/kvm which enables the guest mode of the

kernel. With /dev/kvm, a VM has its own memory

address space separate from that of the kernel or any

other VM that is running. Devices in the device tree

(/dev) are common to all user-space process, but

/dev/kvm is different in that each process that opens

it sees a different map, thus it supports isolation of

the VMs [11]. Finally, I/O requests are virtualized

through a lightly modified QEMU process that

executes on the hypervisor, a copy of which executes

with each guest OS process.

Other virtualization platforms have been

competing to get into Linux kernel mainline for

some time (such as UML and Xen), but because

KVM required so few changes and was able to

transform a standard kernel into a hypervisor, it’s

pretty clear why it was chosen.

2.6. OpenVZ

OpenVZ is an operating system-level

virtualization techno-logy for the Linux kernel. It

consists of a modified kernel that adds virtualization

and isolation of various subsystems, resource

management and checkpointing. OpenVZ allows a

physical server to run multiple isolated operating

system CTs.

Each CT is an isolated program execution

environment that acts like a separate physical server.

A CT has its own set of process starting from init,

file system, users, networking interfaces with

particular IP addresses, routing tables, etc. Multiple

CTs can coexist on a single physical server, each one

can operate different Linux distributions, but all CTs

run under the same kernel [12], which results in

excellent density, performance and manageability.

Virtualization and isolation enable many CTs

within a single kernel. The resource management

subsystem limits (and in some cases guarantees)

resources, such as CPU, RAM, and disk space on a

per-CTs basis. All those resources need to be

controlled in a way that lets many CTs co-exist on a

single system and not impact each other. The

checkpointing feature allows stop a CT, saving its

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 321

complete state to a disk file, with the ability to

restore that state later, even in another physical host.

The OpenVZ resource management subsystem

consists of three components [13]:

 Two-level disk quota - Disk quotas can be set

per-CT (first level) and inside CT, via standard

Unix quota tools configured by the CT

administrator.

 Fair CPU scheduler - The OpenVZ CPU

scheduler is also two levels. On the first level it

decides which CT to give the time slice to, taking

into account the CT’s CPU priority and limit

settings. On the second level, the standard linux

scheduler decides which process in the given CT

to give the time slice to.

 User Beancounters - Is a set of per-CT counters,

limits and guarantees. There is a set of about 20

parameters that cover all aspects of CT operation,

so no single CT can abuse any resource that is

limited for the whole computer and thus do harm

to other CTs. The resources accounted and

controlled are mainly memory and various in-

kernel objects such as IPC shared memory

segments, network buffers, etc.

While hypervisor-based virtualization provides

abstraction for full guest OSs, operating system-level

virtualization works at the operation system level,

providing abstractions directly for the guest

processes. OS-level virtualization shares the host OS

and drivers with CTs and have smaller virtualization

layer then hypervisors. Containers are more elastic

than hypervisors and allow a higher density per node.

Container slicing of the OS is ideally suited to cloud

slicing, while the hypervisors’ main advantage in

IaaS is support for different OS families on one

server.

2.7. Linux Containers

Linux Containers provides lightweight operating

system-level virtualization and is relatively new to

the other technologies, its 1.0 release was launched

in 2014. Linux Containers source-code is included in

the Linux mainline kernel.

Linux containers are a concept built on the kernel

names-paces. This feature allows creating separate

instances of previously-global namespaces. Linux

implements file system, PID, network, user, IPC, and

hostname namespaces. For example, each file system

namespace has its own root directory and mount

table, similar to chroot() but more powerful.

Namespaces can be used in many different ways, but

the most common approach is to create an isolated

container that has no visibility or access to objects

outside the container. Processes running inside the

container appear to be running on a normal Linux

system although they are sharing the underlying

kernel with processes located in other namespaces

[14].

The Linux control groups (cgroups) subsystem is

used to group processes and manage their aggregate

resource con-sumption. It is commonly used to limit

the memory and CPU consumption of containers. A

container can be resized by simply changing the

limits of its corresponding cgroup. Cgroups also

provide a reliable way of terminating all processes

inside a container. Because a containerized Linux

system only has one kernel and the kernel has full

visibility into the containers there is only one level of

resource allocation and scheduling [14].

An unsolved aspect of container resource

management is the fact that processes running inside

a container are not aware of their resource limits. For

example, a process can see all the CPUs in the

system even if it is only allowed to run on a subset of

them; the same applies to memory. If an application

attempts to automatically tune itself by allocating

resources based on the total system resources

available it may over-allocate when running in a

resource-constrained container [14].

3. Related works

Xavier et al. [15] conducted experiments using

the NAS Parallel Benchmarks (NPB) to evaluate the

performance over-head and the Isolation Benchmark

Suite (IBS) to evaluate the isolation in terms of

performance and security. Since the focus is also on

partitioning the resources of HPC clusters with

multicore nodes, they evaluated the performance in

both single and multinode environments, using

respectively OpenMP and MPI implementation of

NPB. It was evaluated Linux-VServer, OpenVZ,

LXC and Xen. The worst result was observed in Xen

for all I/O operations due to the paravirtualized

drivers. These drivers are not able to achieve a high

performance yet. In the network performance, the

Linux-VServer obtained similar behavior to the

native implementation, followed by LXC and

OpenVZ. The worst result was observed in Xen. Its

average bandwidth was 41% smaller the native, with

a maximum degradation of 63% for small packets.

Likewise, the network latency presented shows that

Linux-VServer has near native latency. The LXC

again has a great score, with a very small difference

when compared to Linux-VServer and native

systems, followed by OpenVZ. The worst latency

was observed in Xen. In the I/O performance, the

worst result was observed in Xen for all I/O

operations due to the paravirtualized drivers. These

drivers are not able to achieve a high performance

yet.

They found that all container-based systems have

a near-native performance of CPU, memory, disk

and network. The main differences between them lie

in the resource management implementation,

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 322

resulting in poor isolation and security. While LXC

controls its resources only by cgroups, both Linux-

VServer and OpenVZ implement their own

capabilities introducing even more resource limits,

such as the number of processes, which we have

found to be an important contribution to give more

security to the whole system. We suppose this

capability will be introduced in cgroups in a near

future. Careful examination of the isolation results

reveals that all container-based systems are not

mature yet. The only resource that could be

successfully isolated was CPU. All three systems

showed poor performance isolation for memory, disk

and network. However, for HPC environments,

which normally does not require the shared

allocation of a cluster partition to multiple users, this

type of virtualization can be very attractive due to the

minimum performance overhead. Since the HPC

applications were tested, thus far, LXC demonstrates

to be the most suitable of the container-based

systems for HPC. Despite LXC does not show the

best performance of NPB in multinode evaluation, its

performance issues are offset by the easy of

management. However, some usual virtualization

techniques that are useful in HPC environments,

such as live migration, checkpoint and resume, still

need to be implemented by the kernel developer

team.

Rizki et al. [16] conducted implementations of

container-based virtualization, in this case OpenVZ

and LXC. The experiments are benchmarking the

virtualized clusters to measure the performances in

terms of I/O performance overhead, and average

time execution of mapreduce job. To measure the

clusters performances, they used applications

provided by hadoop packages. TestDFSIO used to

measure the I/O performances of the cluster,

WordCount used to measure the average time

execution. TestDFSIO commonly used by hadoop

users for identifying performances bottlenecks in

networks, operating system, and also configurations

of HDFS. MapRe-duce execution time are tested

with syslog analysis to get and counts syslog priority

in a dataset. Hosts kernel requirement are differ each

other. In this experiments, OpenVZ stable used on

top of Proxmox VE 3.4 which use kernel 2.6, while

LXC used on top of Proxmox VE 4 which use kernel

3.1. Container-based hadoop cluster gives near

native performances because of the lightweight

virtualization on operating system level. In their

experiment with 3 nodes on Proxmox VE using CFQ

scheduler, the results shown that OpenVZ is more

stable in current configurations. While in Syslog

Priority Parser benchmarks, the results are

comparative. But, OpenVZ gives more faster running

time.

In the paper [17], authors aim to show the

MapReduce (MR) as a platform for resource-

intensive applications. So, container-based

virtualization might be understood as a lightweight

alternative to the traditional hypervisor-based

virtualization systems. And, since there is a tendency

to the usage of containers in MR clusters in order to

supply resource sharing and performance isolation,

experiments has been led to compare and contrast the

usual container-based systems (Linux VServer, Open

VZ and Linux Containers (LXC)) and MR clusters

considering performance and manageability. The

results indicate that all container-based systems

reach a near-native performance for MapReduce

workloads. Even so, LXC is the one which provides

the best relationship between performance and

management capabilities (notably concerning

performance isolations).

4. Experimental methodology

4.1. Experimental setup

In order to evaluate the performance of

BigBlueButton, we use the Proxmox Virtual

Environment [18] to deploy two virtualized

environments in a single machine. Proxmox is a

complete open source server virtualization platform,

that uses a custom optimized Linux kernel with

KVM, Linux Containers (or depending of the

version, OpenVZ) support. Proxmox offers

enterprise-class features and a intuitive web interface

to allow ease of management and deploying of

virtual environments. The capability of use full

virtualization to virtualize proprietary guest OSs

(like Windows and macOS), and OS-level

virtualization for easily deploy high density of

containers in one single platform is a big advantage

of Proxmox. Proxmox originally supported KVM

and OpenVZ, until version 3.4. Since version 4.0

Proxmox adopted KVM and Linux Containers.

The physical machine is an IBM BladeCenter

HS23 with two Intel Xeon CPUs E5-2620 of 2.00

GHz (with 6 cores each and Hyper-Threading

technology), 48 GB of RAM, connected to a local

gigabit ethernet network, in turn, connected to the

Internet through a 100 Mbps dedicated link. Because

Proxmox only support OpenVZ until version 3.4, we

had to install two Proxmox environments: Proxmox

VE 3.4 kernel 2.6.32-37-pve amd64 and Proxmox

VE 4.3-1 kernel 4.4.19-1-pve amd64.

It was deployed one OpenVZ, one Linux

Containers CT and one KVM VM, both using

Ubuntu GNU/Linux 10.04.4 LTS AMD64. Each

virtual environment runs BigBlueButton version 0.81

and has 2 virtual vCPUs, 4 GB of RAM, 15 GB

storage size, and one virtual gigabit ethernet adapter.

We use a set of two physical machines and 120

Amazon EC2 and Google Compute Engine instances

(a custom set of t2.micro and g1-small instances type

running Windows Server 2012 R2) to simulate

conference clients in order to stress the virtualized

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 323

BBB servers. We utilize the v4l2loopback software

to simulate a webcam device in each workstation and

use Mplayer to send a video file to those devices,

thus we could simulate a complete video conference

client.

We use the Zabbix network monitoring software

in order to collect data from the virtualized servers.

Those data include the usage of CPU, memory, I/O,

ingress/egress network traffic and number of

conference sessions.

4.2. Macro benchmarks

In this section we observe the performance and

resource utilization of BBB while users are

continuously joining the conference. We begin the

benchmark without users connected into BBB and

gradually one user joins the videoconference every

30 seconds. The two workstations in the local

network open 4 conference clients each and begin

streaming their virtual webcams. The first connected

user also share his own desktop screen through the

BBB’s java applet. We use Mozilla Firefox browser

version 46 to open 4 BBB sessions in each

workstation. BBB treats each tab in the browser as

an independent video conference client.

In the next step, we begin launching the Amazon

EC2 and Google Compute Engine instances. Each

instance opens 4 sessions to BBB servers through the

Internet. Instances do not own webcams, thus they

just watch the video from other users. The

benchmark stops when it reaches 340 connected

users. A benchmark run with 340 simultaneous users

is shown in Fig. 1.

Figure 1. BBB session with 340 users

The Fig. 2 shows the CPU utilization according

the number of connected users. As explained above,

inside a LXC container, processes see the entire host

hardware, e.g. all CPUs. So we could not use the

Zabbix agent to collect CPU usage statistics because

it sees the 24 CPU cores instead of the 2 cores

allocated to the CT. This is a drawback of Linux

Containers, we must have user space programs that

be cgroup-aware to collect performance data.

Recently it was released the project LXCFS, that

allows bind mount a /proc file system cgroup-aware

in each container, but it was not compatible with the

Ubuntu version used. So, for Linux Containers the

CPU usage was collected through Proxmox API.

The CPU usage for Linux Containers is very

above the values of KVM and OpenVZ, this can be

correlated with the way the CPU usage is gathered

(Proxmox API). We can observe that the BBB hosted

into KVM virtual machine presents a slightly

increase in CPU usage. KVM presented CPU usage

difference peak 19.2 % higher than OpenVZ.

However, the CPU usage average of the entire

benchmark for KVM is only 8 % higher of OpenVZ

CPU use.

Figure 2. CPU usage by connected users

Fig. 3 illustrates the memory consumption by the

number of connected users into the BBB session.

Here we can observe that the VM presents a memory

consumption 11.6% higher compared to OpenVZ,

and Linux Containers presented 10.27% higher than

OpenVZ. This can be explained mainly by the minor

footprint of OpenVZ containers (fewer process,

modules, daemons and virtualization layers

compared to a full Linux system in KVM).

4.3. Micro benchmarks

In order to investigate the performance data

shown above, we ran a collection of micro

benchmarks to evaluate the virtualization

performance of individual resources. Thus, we can

analyse if the performance in some macro

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 324

Figure 3. Memory usage by connected users

benchmark is result of poor performance of a

individual, or group of, resources.

CPU virtualization: We evaluate the CPU

virtualization performance of KVM and OpenVZ

with the Intel Optimized LINPACK Benchmark

(version 11.3.3.011). It consists of a generalization of

the LINPACK 1000 benchmark. It solves a dense

system of linear equations, measures the amount of

time it takes to factor and solve the system, converts

that time into a performance rate, and tests the results

for accuracy. The generalization is in the number of

equations it can solve, which is not limited to 1000.

It uses partial pivoting to assure the accuracy of the

results [19].

The Intel LINPACK Benchmark is threaded to

effectively use multiple processors. So, in multi-

processor systems, best performance will be obtained

with the Intel Hyper-Threading Technology turned

off, which ensures that the operating sys-tem assigns

threads to physical processors only. Intel LIN-PACK

is based on the Intel Math Kernel Library, which is

highly adaptive and optimizes itself based on both

available floating point resources, as well the cache

topology of the system. Thus, to achieve maximum

performance we activate the exposing of host

system’s NUMA topology to KVM VMs in

Proxmox web interface.

We run LINPACK over 12 CPU cores on the

host ma-chine, VM and CTs. We use matrices with

orders ranging from 1000 until 45000. The Fig. 4

shows the results of LINKPACK benchmark.

Performance is almost identical for most of the

problems sizes between the host machine and

containers. The average GFLOPS values for KVM,

OpenVZ and Linux Containers are about 86.05%,

95.42% and 99.13% to native system, respectively.

The vast majority of operations in LINPACK are

spent in double-precision floating point operations,

the gathered data reveals that efficiency of KVM on

floating point computing is not so good as OpenVZ

and Linux Containers.

 Figure 4. LINPACK benchmark

 Figure 5. RAMspeed benchmark for 8 threads

Memory virtualization: To investigate the

memory virtualization performance we choose

RAMspeed (version 3.5.0). RAMspeed is an open-

source utility to measure cache and memory

performance. It has numerous benchmarks such as

INTmark, FLOTmark, MMXmark and SSEmark.

They operate with linear (sequential) data stream

passed through ALU, FPU, MMX and SSE units

respectively. They allocate certain mem-ory space

and start either writing to, or reading from it using

continuous blocks sized of 1 MB. This simple

algorithm allows to show how fast are both cache

and memory subsystems. It was used 8 GB per pass

and 8 CPUs in RAMspeed runs.

The Fig. 5 illustrates the performance of memory

virtualization varying the block size in float-pointing

reading RAM-speed test. We can observe the effect

of the dual Xeon E5-2620’s three levels of on-chip

cache, observed by throughput drops near 32 KB,

256 KB and 2 MB. The L1 (32KB data) and L2

(256KB) caches are dedicated to each core. The L3

cache (15 MB) is shared over the 6 cores in a single

CPU, what theoretically can reach 2.5 MB per core.

The performance become fairly stable for data blocks

after 16 MB, when the effects of all cache are

overwhelmed. This space represents the speed of the

memory subsystem, and ensures no cache was

involved [20]. All three systems reach near same

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 325

throughput while the operations involves the cache

system, while for bigger block sizes, when the cache

effects are minimized, KVM reaches 89.9% of native

speed and the containers follow native performance.

Figure 6. IOzone throughput

Disk virtualization: Following, we analyse how

fast the execution environments can perform disk

operations. We choose the IOzone tool to assess the

disk I/O performance. IOzone generates and

measures a variety of file operations. In the native

system, we create an ext4 file system in the local

RAID 5 array using the mkfs default settings and

mount it normally. In the OpenVZ container we

mount it using the OpenVZ’s simfs file system.

Simfs is not an actual file system, it is a map to a

directory on the host, like a proxy file system. This

file system allows isolating a particular container

from other containers. In the VM we choose a LVM

logical volume created in the same RAID 5 array,

and mount it as a virtIO block device. Inside the VM

the device was formatted as a default ext4 volume.

We made IOzone runs of 8 GB total size and 1024

KB record size in O_DIRECT mode.

Using O_DIRECT allows access to bypass the

buffer cache and go directly to disk. Because Linux

kernel makes use of I/O cache in memory, we also

reduce the available RAM in all environments to

4GB. Linux Containers, however, apparently does

not support the O DIRECT flag, thus all the I/O

requests are cached in the host memory, even the

container with 4GB of RAM, in the benchmark we

see more than 8GB of cached memory on the host

system. Thus, we could not compare cached I/O

access with no cached ones. As workaround, we tried

to drop the cache at the host system with the

command ”echo 3 > /proc/sys/vm/drop caches”

while benchmarking Linux Containers.

Fig. 6 shows almost no losses in throughput for

write and rewrite operations for KVM and OpenVZ.

Although, while KVM reaches 78.9%, 79.3%, 82.6%

and 95.2% for read, reread, random read and random

write,- respectively, Linux Containers reaches

87.45%, 89.26%, 78.11% and 67.40%. OpenVZ

reaches near 100% in relation to native in the same

operations. This performance gap in KVM maybe

can be explained by the fact that each I/O operation

must go through QEMU in user space.

Network virtualization: The network

performance is evaluated with the Netperf

benchmark. Netperf is a tool for measurement of

network throughput and end-to-end latency. In our

setup another blade server run the netperf server,

called netserver, and the benchmark’s target machine

runs the netperf client. As shown in Table 1, all

environments reach the same performance, near the

gigabit ethernet interface limit, revealing no losses in

network bandwidth between KVM, OpenVZ and

Linux Containers, compared to native Linux.

Table 2 reveals the network latency for TCP and

UDP communications. Netperf does a

request/response for a given request and response

size, and measures the round-trip average latency.

The round-trip latency for TCP is naturally

bigger due the inner overhead of TCP 3-way

handshake and flow control. In OpenVZ CTs the

network is provided through the venet interface

(loaded by the vznetdev kernel module), a virtual

interface that acts like a point-to-point connection

between the container and the host system. In KVM,

we use the paravirtualized virtIO network interface.

This guest device is connected in a called tap device

on the host, which in turn, joins a bridge with the

host’s physical interface. Linux Containers use the

same approach that KVM to virtualize network. Both

virtualization approaches add some latency

overhead. Although, for TCP, KVM adds 91.7% of

latency, while OpenVZ increases it by 22% and

Linux Containers adds 67.4%. For the UDP protocol,

KVM adds a latency 119.5% higher than the physical

host while OpenVZ adds 11.9% and Linux

Containers 82.87%. The increased number of layers

in the virtual network device can contribute to the

higher latencies for KVM and Linux Containers.

Table 1. Netperf bandwidth

 Native KVM OpenVZ Linux

Containers

TCP 935 933 935 935

UDP 954 952 954 954

Table 2. Netperf round-trip time latency

 Native KVM OpenVZ Linux

Containers

TCP_RR 77.5 148.6 94.56 129.7

UDP_RR 64.95 142.5 72.7 118.7

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 326

5. Conclusion

As we have shown, video conference systems are

a kind of application well suited to virtualization.

Performance evaluation of virtualization platforms is

an important key in improving their design and

implementation. We assess KVM, OpenVZ and

Linux Containers through a real-world application,

the BigBlueButton conference system, and a series

of micro benchmarks. The results show that OpenVZ

presents a better overall performance followed by

Linux Containers. KVM presents slight performance

degradation in the most cases. The performance

overhead of CPU and memory for KVM presented in

the macro benchmarks, is confirmed in the micro

benchmarks. OpenVZ shows a clear performance

gain in some I/O operations such as storage read,

reread, random read, and in memory access

bandwidth, as well. The higher round-trip network

latency presented by KVM and Linux Containers

should be taken into account when designing

services latency-sensitive, like video conference and

real-time systems.

This increased latency joint with high load of

CPU and network, due to a large number of sessions,

can be determinant to a poor quality of these

services. The fact that Linux Containers does not

abstract the hardware seen by the CT can be a

problem to applications that make use of hardware

detection to do auto adjust. OpenVZ and KVM

guests are much more clear in this sense and this

could have influenced in the benchmarks results.

Thus, OpenVZ demonstrates to be most suitable

virtualization platform for video conferencing

workloads, also presenting minor container footprint,

what leads to a higher container density, allowing

more containers running on the same host. On the

other hand, KVM presents a more convenient way

for guest-independent virtualization. Thus, the results

can characterize a trade-off between performance

gain and ease of use.

6. Future work

As future work it is interesting investigate and

evaluate the performance of Linux Containers with

LXCFS. LXCFS is a set of files which can be bind-

mounted over their /proc originals to provide cgroup-

aware values. Thus performance measurement tools

can take a clear comprehension of the hardware.

7. References

 [1] H. Oi and K. Takahashi, “Performance modeling of a

consolidated java application server,” in 2011 IEEE

International Conference on High Performance Computing

and Communications, Sept 2011, pp. 834–838.

[2] K. Ye, J. Che, Q. He, D. Huang, and X. Jiang,

“Performance combinative evaluation from single virtual

machine to multiple virtual machine systems,”

International Journal of Numerical Analysis and Modeling,

vol. 9, no. 2, pp. 351–370, 2012.

[3] P. R. M. Vasconcelos and G. A. de Arajo Freitas,

“Performance analysis of hadoop mapreduce on an

opennebula cloud with kvm and openvz virtualizations,” in

The 9th International Conference for Internet Technology

and Secured Transactions (ICITST-2014), Dec 2014, pp.

471–476.

[4] P. R. M. Vasconcelos and G. A. de Araujo Freitas,

“Evaluating virtual-ization for hadoop mapreduce on an

opennebula clouds,” International Journal Multimedia and

Image Processing, vol. 4, pp. 234–244, Dec. 2014.

[5] R. P. Goldberg, “Architecture of virtual machines,” in

Proceedings of the Workshop on Virtual Computer

Systems. New York, NY, USA: ACM, 1973, pp. 74–112.

[6] G. J. Popek and R. P. Goldberg, “Formal requirements

for virtualizable third generation architectures,” Commun.

ACM, vol. 17, no. 7, pp. 412– 421, Jul. 1974.

[7] F. Rodrguez-Haro, F. Freitag, L. Navarro, E.

Hernnchez-snchez, N. Faras-Mendoza, J. A. Guerrero-

Ibez, and A. Gonzlez-Potes, “A summary of virtualization

techniques,” Procedia Technology, vol. 3, pp. 267 – 272,

2012.

[8] R. P. Goldberg, “Architectural principles for virtual

computer systems,” DTIC Document, Tech. Rep., 1973.

[9] VMware, “Understanding full virtualization,

paravirtualization, and hardware assist,” VMware Inc.,

Tech. Rep., Mar. 2008.

[10] M. T. Jones, “Anatomy of a linux hypervisor,” IBM,

Tech. Rep., May 2009.

[11] “Discover the linux kernel virtual machine,” IBM,

Tech. Rep., May 2007.

[12] K. Kolyshkin. Virtualization comes in more than one

flavor. [Online]. Available:

http://kirillkolyshkin.ulitzer.com/node/318829 (Access

Date: 12 May, 2016)

[13]Openvz virtuozzo containers wiki. [Online]. Available:

http://www. linux-kvm.org/page/Main Page (Access Date:

12 May, 2016)

[14]W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,

“An updated perfor-mance comparison of virtual machines

and linux containers,” in 2015 IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS), March 2015, pp. 171–172.

[15] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,

T. Lange, and C. A. F. De Rose, “Performance

evaluation of container-based virtual-ization for high

performance computing environments,” in Proceedings of

the 2013 21st Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, ser.

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 327

PDP ’13. Washington, DC, USA: IEEE Computer Society,

2013, pp. 233–240.

[16] R. Rizki, A. Rakhmatsyah, and M. A. Nugroho,

“Performance analysis of container-based hadoop cluster:

Openvz and lxc,” in 2016 4th In-ternational Conference on

Information and Communication Technology (ICoICT),

May 2016, pp. 1–4.

[17] M. G. Xavier, M. V. Neves, and C. A. F. D. Rose, “A

performance comparison of container-based virtualization

systems for mapreduce clusters,” in 2014 22nd Euromicro

International Conference on Parallel, Distributed, and

Network-Based Processing, Feb 2014, pp. 299–306.

[18] Proxmox. Proxmox - powerful open source server

solutions. [Online]. Available:http://www.proxmox.com/

en/ (Access Date: 23 July, 2016).

[19] Intel. Intel(r) optimized linpack benchmark for linux*

os. [Online]. Available: https://software.intel.com/en-

us/node/528615 (Access Date: 23 July, 2016)

[20] S. C. C. Bell and R. Radcliff, “Designing a memory

benchmark,” Deopli Corporation, Tech. Rep., 2011.

8. Acknowledgements

The authors would like to thank the Information

Technology Center (NTI) of the State University

Vale do Acaraú (UVA), for the support and for

allowing the use of its computing infrastructure for

the deployment, development and testing of the

presented research.

International Journal Multimedia and Image Processing (IJMIP), Volume 6, Issues 1/2, March/June 2016

Copyright © 2016, Infonomics Society 328

