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Abstract 
 

Virtualization is an important technology in data 

center environment due to its useful features such as 

server consolidation, power saving, live migration 

and faster server provisioning. However, 

virtualization sometimes incurs some performance 

loss. Operating system-level virtualization could be 

an alternative to classical virtualization as it 

potentially reduces overhead and thus improves the 

utilization of data centers.  Different virtualization 

platforms differ in terms of features, performance 

and virtualization overhead. Web conferencing 

systems become popular as the clients' bandwidth 

has increased in last years, in educational, 

researching and business fields. The BigBlueButton 

is a web conferencing system that allows multiple 

users join a conference room, having classes and 

share their microphone, webcam, desktop and files. 

In this paper, we use KVM, OpenVZ and Linux 

Containers as virtualization platforms to deploy 

conference systems using BigBlueButton. We explore 

its virtual performance under a real-world workload 

and a set of benchmarks that stress different aspects 

such as computing power, latency and memory, I/O 

and network bandwidth. These results can be a 

valuable information to be taken in account by 

systems administrators, for capacity planning and 

systems designing. Which, in turn, lead to cost 

savings for companies.  

 

1. Introduction 
 

The virtualization technologies allow partitioning 

the underlying hardware to multiple independent 

guest operating systems, coordinating and scheduling 

concurrent access to memory, CPU and devices. It 

has become increasingly popular in wide areas such 

as server consolidation, green IT and cloud 

computing. Advantages of consolidation include 

increased hardware resource use, reduced costs of 

servers, peripheral devices, cooling and power 

supply [1]. Flexible resource management, high 

reliability, performance isolation and operating 

system (OS) customization are other common 

features. The virtual machine monitor (VMM) is the 

piece in charge of providing the virtualization of 

underlying hardware and orchestration of concurrent 

resource dispute. By abstracting the underlying 

hardware into a generic virtual hardware, the VMM 

enables virtual machines (VM) to run in any 

available physical machines. 

 

 

Several virtualization solutions have emerged, 

using different virtualization approaches. KVM and  

VMware use full virtualization to provide a complete 

virtual environment for a huge range of guest OSs. 

Xen can use paravirtualization to provide an API for 

guests domains, and solutions as OpenVZ and Linux 

Containers can provide ways to partition OS in 

logically isolated containers. Different virtualizations 

solutions have different strengths and weakness. For 

example, full virtualization supports both Linux and 

Windows virtual machines but the performance is 

relatively poor, while paravirtualization cannot 

support Windows virtual machine but the 

performance is better [2]. It is necessary to choose a 

most appropriate virtualization method for particular 

purposes. Besides these benefits, the VMM require 

additional CPU cycles and race conditions may occur 

causing overall performance degradation. 

Multiple applications differ in the resource usage, 

which needs special attention in virtualized 

environments as bottlenecks can occur in the 

concurrent access to devices, or even the 

virtualization performance to the same kind of 

resource (e.g. CPU) can be different across different 

platforms. Based on the above analysis, it is essential 

to analyse the virtualization overhead, compare the 

efficiency of different VMMs and investigate 

bottlenecks that may occur in the usage of virtual 

resources. In this sense, the authors had evaluated the 

virtualization performance for other types of 

applications in previous works [3] and [4]. 

Video conferencing has been useful for years to 

the work meetings between offices of large 

companies and more recently in education, 

enhancing and easing the scope of teaching in 

schools and universities. The continuous increase in 

bandwidth of customers, companies and providers 

have contributed to the popularization of video 

conferencing solutions. 

The BigBlueButton (BBB) platform is a popular 

web-based video conferencing system that makes use 

of open-source technologies to provide a complete 

environment to allow users create rooms, share 

presentations, audio and video. 

Video conferencing systems can take advantage 

of several benefits of virtualization, they can be used 

together to achieve a best hardware usage. Server 

consolidation can optimize the use of the available 

hardware by making use of virtual machines to host 

video conferencing platforms on physical machines. 

Moreover, video conferencing systems can run for 
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long periods without use, which often cannot justify 

the adoption of a dedicated physical machine. 

Resources can be easily added to a virtualized video 

conferencing platform. And often, system 

administrators can make use of commodity server 

solutions instead of renting dedicated servers to host 

their video conferencing services, which ensures a 

huge economic advantage. So, evaluate and be aware 

of the performance of different types and 

virtualization platforms for such applications, 

become a valuable information for ensure quality of 

service and a significant contribution to enterprises 

from an economic point of view. 

Thus, this paper has the aim to investigate the 

performance of BigBlueButton systems deployed 

over different MMVs under stress tests. The chosen 

virtualization platforms in this paper are KVM, 

OpenVZ and Linux Containers. Three open-source 

virtualization solutions that use two kind of 

virtualization approaches: full virtualization and OS-

level virtualization. The authors have conducted 

several benchmarks from micro and macro 

perspective, evaluating the virtualization 

performance of specific resources and of the overall 

system. 

The rest of this paper is structured as follows. In 

Section 2, we introduce a background of the VMMs 

used and an introduction to BigBlueButton. In 

Section 3 we present the related works. In Section 4 

we present our experimental setup, macro and micro 

benchmarks, and an analysis of the performance 

achieved for both VMMs. Finally we give our 

conclusion in Section 5 and future work in Section 6. 

 

2. Background 
 

The term Virtual Machine took place in 1964 

when IBM initiated a project called CP/CMS system 

what lead to the Virtual Machine Facility/370. In the 

1970s, Goldberg and Popek wrote papers that gave a 

clear comprehension of the architecture [5] and 

requirements [6] related to virtualization. 

The x86 OSs are designed to run directly on the 

bare-metal hardware, so they suppose they are the 

only operating system running on the underlying 

hardware. Commonly, the OS running in the physical 

machine is executed in kernel-mode and the user 

applications in user-mode. The x86 architecture has 

four levels of privileges known as Ring 0, 1, 2 and 3 

used by OSs and applications to manage access to 

the computer hardware. The OS has direct access to 

memory and to the full set of CPU’s instructions as it 

resides in the Ring 0. Applications running in the 

unprivileged user-mode, in Ring 3, have no direct 

access to the privileged instructions. The Ring 1 and 

2 can be used for additional level of access, 

depending of the OS. Virtualization for the x86 

architecture requires placing a virtualization layer 

under the OS, expected to be in the most privileged 

Ring 0, so that can be possible manage virtual 

machines and share resources.  

VMs can be classified in System VMs, when are 

used to virtualize an entire OS, in opposition of 

Process VM such as those supported by the Java 

Virtual Machine [7]. 

There are two types of VMMs, type I and II [8]. 

A VMM type I, also called hypervisor or native, runs 

directly above the bare-metal hardware in the most 

privileged Ring, controls and shares resources to all 

VMs. The VMM type II runs as an application inside 

the OS, and is treated as a regular user space process. 

In the next step, we describe the virtualization 

techniques to virtualize an entire OS. The current 

virtualization solutions can make use of many of 

virtualization techniques above to reach better 

performance. KVM and VMware make use of full 

virtualization, binary translation and hardware assist 

to virtualize almost any OS. These platforms provide 

paravirtualized drivers (VirtIO and VMware Tools, 

respectively) to allow their full virtualized guest OSs 

communicate in a more direct way with real 

hardware [9]. These drivers are not CPU 

paravirtualization solutions, they are minimal, non-

intrusive changes installed into the guest OS that do 

not require OS kernel modification. 

 

2.1. Full virtualization 
  

Full virtualization can virtualize any x86 

operating system using a combination of binary 

translation and CPU direct execution techniques. 

This approach translates kernel code to replace non-

virtualizable instructions with new sequences of 

instructions that have the intended effect on the 

virtual hardware. Meanwhile, user level code is 

directly executed on the processor for high 

performance virtualization. The VMM provides each 

VM with all services of the physical system, 

including a virtual BIOS, virtual devices and 

virtualized memory management [9]. The guest OS 

is not aware it is being virtualized and requires no 

modification. Full virtualization is the only option 

that requires no hardware assist or operating system 

assist to virtualize sensitive and privileged 

instructions. The VMM translates all operating 

system instructions on the fly and caches the results 

for future use, while user level instructions run 

unmodified. 

 

2.2. Binary translation 
 

Binary translation is a technique used for the 

emulation of a processor architecture over another 

processor architecture. Thus, it allows executing 

unmodified guest OS by emulating one instruction 

set by another through translation of code. Un-like 

pure emulation, binary translation is used to trap and 

emulate (or translate) a small set of the processor 
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instructions[7]. That is, the code that needs 

privileged execution, in Ring 0, such as kernel-mode. 

The rest of the instructions are executed directly 

by the host CPU. 

 

2.3. Hardware assisted virtualization 
 

Hardware assisted virtualization for the x86 

architecture, was introduced in 2006 when Intel VT-

x and AMD-V extensions were released. Hardware 

assisted virtualization implements a Ring with a 

higher privileged mode in the processor architecture. 

These extensions support allows executing un-

modified guest OSs in Ring 0 (non-root mode) and 

the hyper-visor in Ring -1 (root mode). Hardware 

assisted virtualization enhances CPUs to support 

virtualization without the need of binary translation 

or paravirtualization. The advantage is that this 

technique reduces the overhead caused by the trap-

and-emulate model, instead of doing it in software 

here it is done in hardware. 

 

2.4. Operating system-level virtualization 
 

Here, the host OS is a modified kernel that allows 

the execution of multiple isolated containers (CT), 

also known as Virtual Private Server (VPS) or jail. 

Each CT is an instance that shares the same kernel of 

the host OS. Some examples that use this technique 

are Linux-VServer, OpenVZ and Linux Containers. 

The physical server and single instance of the 

operating system is virtualized into multiple isolated 

partitions, where each partition replicates a real 

server. The OS kernel will run a single operating 

system and provide that operating system 

functionality to each of the partitions [7]. 

 

2.5. KVM 
 

KVM (Kernel-based Virtual Machine) is a 

kernel-resident virtualization infrastructure for Linux 

on x86 hardware. KVM was the first hypervisor to 

become part of the native Linux kernel (2.6.20). 

KVM has support for symmetrical multiprocessing 

(SMP) hosts (and guests) and supports enterprise-

level features such as live migration (to allow guest 

operating systems to migrate between physical 

servers) [10]. Because the standard Linux kernel is 

the hypervisor, it benefits from the changes to the 

mainline version of Linux (memory support, 

scheduler, and so on). Optimizations to these Linux 

components benefit both the hypervisor and the 

Linux guest OSs. 

KVM is implemented as a kernel module, 

allowing Linux to become a hypervisor simply by 

loading a module. KVM provides full virtualization 

on hardware platforms that provide virtualization 

instructions support (Inter VT or AMD-V). KVM 

has two major components; the first is the KVM-

loadable module that, when loaded in the Linux 

kernel, provides management of the virtualization 

hardware, exposing its capabilities through the /dev 

file system. The second component provides PC 

platform emulation, which is provided by a modified 

version of the QEMU emulator. QEMU executes as a 

user-space process, coordinating with the kernel for 

guest operating system requests. 

When a guest OS is booted on KVM, it becomes 

a process of the host operating system and therefore 

scheduled like any other process. But unlike other 

process in Linux, the guest OS is identified by the 

hypervisor as being in the guest mode (independent 

of the kernel and user modes). 

The KVM module exports a device called 

/dev/kvm which enables the guest mode of the 

kernel. With /dev/kvm, a VM has its own memory 

address space separate from that of the kernel or any 

other VM that is running. Devices in the device tree 

(/dev) are common to all user-space process, but 

/dev/kvm is different in that each process that opens 

it sees a different map, thus it supports isolation of 

the VMs [11]. Finally, I/O requests are virtualized 

through a lightly modified QEMU process that 

executes on the hypervisor, a copy of which executes 

with each guest OS process. 

Other virtualization platforms have been 

competing to get into Linux kernel mainline for 

some time (such as UML and Xen), but because 

KVM required so few changes and was able to 

transform a standard kernel into a hypervisor, it’s 

pretty clear why it was chosen. 

 

2.6. OpenVZ 
 

OpenVZ is an operating system-level 

virtualization techno-logy for the Linux kernel. It 

consists of a modified kernel that adds virtualization 

and isolation of various subsystems, resource 

management and checkpointing. OpenVZ allows a 

physical server to run multiple isolated operating 

system CTs. 

Each CT is an isolated program execution 

environment that acts like a separate physical server. 

A CT has its own set of process starting from init, 

file system, users, networking interfaces with 

particular IP addresses, routing tables, etc. Multiple 

CTs can coexist on a single physical server, each one 

can operate different Linux distributions, but all CTs 

run under the same kernel [12], which results in 

excellent density, performance and manageability. 

Virtualization and isolation enable many CTs 

within a single kernel. The resource management 

subsystem limits (and in some cases guarantees) 

resources, such as CPU, RAM, and disk space on a 

per-CTs basis. All those resources need to be 

controlled in a way that lets many CTs co-exist on a 

single system and not impact each other. The 

checkpointing feature allows stop a CT, saving its 
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complete state to a disk file, with the ability to 

restore that state later, even in another physical host. 

The OpenVZ resource management subsystem 

consists of three components [13]: 

 

 Two-level disk quota - Disk quotas can be set 

per-CT (first level) and inside CT, via standard 

Unix quota tools configured by the CT 

administrator. 

 Fair CPU scheduler - The OpenVZ CPU 

scheduler is also two levels. On the first level it 

decides which CT to give the time slice to, taking 

into account the CT’s CPU priority and limit 

settings. On the second level, the standard linux 

scheduler decides which process in the given CT 

to give the time slice to. 

 User Beancounters - Is a set of per-CT counters, 

limits and guarantees. There is a set of about 20 

parameters that cover all aspects of CT operation, 

so no single CT can abuse any resource that is 

limited for the whole computer and thus do harm 

to other CTs. The resources accounted and 

controlled are mainly memory and various in-

kernel objects such as IPC shared memory 

segments, network buffers, etc. 

 

While hypervisor-based virtualization provides 

abstraction for full guest OSs, operating system-level 

virtualization works at the operation system level, 

providing abstractions directly for the guest 

processes. OS-level virtualization shares the host OS 

and drivers with CTs and have smaller virtualization 

layer then hypervisors. Containers are more elastic 

than hypervisors and allow a higher density per node. 

Container slicing of the OS is ideally suited to cloud 

slicing, while the hypervisors’ main advantage in 

IaaS is support for different OS families on one 

server. 

 

2.7. Linux Containers 
 

Linux Containers provides lightweight operating 

system-level virtualization and is relatively new to 

the other technologies, its 1.0 release was launched 

in 2014. Linux Containers source-code is included in 

the Linux mainline kernel. 

Linux containers are a concept built on the kernel 

names-paces. This feature allows creating separate 

instances of previously-global namespaces. Linux 

implements file system, PID, network, user, IPC, and 

hostname namespaces. For example, each file system 

namespace has its own root directory and mount 

table, similar to chroot() but more powerful. 

Namespaces can be used in many different ways, but 

the most common approach is to create an isolated 

container that has no visibility or access to objects 

outside the container. Processes running inside the 

container appear to be running on a normal Linux 

system although they are sharing the underlying 

kernel with processes located in other namespaces 

[14]. 

The Linux control groups (cgroups) subsystem is 

used to group processes and manage their aggregate 

resource con-sumption. It is commonly used to limit 

the memory and CPU consumption of containers. A 

container can be resized by simply changing the 

limits of its corresponding cgroup. Cgroups also 

provide a reliable way of terminating all processes 

inside a container. Because a containerized Linux 

system only has one kernel and the kernel has full 

visibility into the containers there is only one level of 

resource allocation and scheduling [14]. 

An unsolved aspect of container resource 

management is the fact that processes running inside 

a container are not aware of their resource limits. For 

example, a process can see all the CPUs in the 

system even if it is only allowed to run on a subset of 

them; the same applies to memory. If an application 

attempts to automatically tune itself by allocating 

resources based on the total system resources 

available it may over-allocate when running in a 

resource-constrained container [14]. 

 

3. Related works 
 

Xavier et al. [15] conducted experiments using 

the NAS Parallel Benchmarks (NPB) to evaluate the 

performance over-head and the Isolation Benchmark 

Suite (IBS) to evaluate the isolation in terms of 

performance and security. Since the focus is also on 

partitioning the resources of HPC clusters with 

multicore nodes, they evaluated the performance in 

both single and multinode environments, using 

respectively OpenMP and MPI implementation of 

NPB. It was evaluated Linux-VServer, OpenVZ, 

LXC and Xen. The worst result was observed in Xen 

for all I/O operations due to the paravirtualized 

drivers. These drivers are not able to achieve a high 

performance yet. In the network performance, the 

Linux-VServer obtained similar behavior to the 

native implementation, followed by LXC and 

OpenVZ. The worst result was observed in Xen. Its 

average bandwidth was 41% smaller the native, with 

a maximum degradation of 63% for small packets. 

Likewise, the network latency presented shows that 

Linux-VServer has near native latency. The LXC 

again has a great score, with a very small difference 

when compared to Linux-VServer and native 

systems, followed by OpenVZ. The worst latency 

was observed in Xen. In the I/O performance, the 

worst result was observed in Xen for all I/O 

operations due to the paravirtualized drivers. These 

drivers are not able to achieve a high performance 

yet. 

They found that all container-based systems have 

a near-native performance of CPU, memory, disk 

and network. The main differences between them lie 

in the resource management implementation, 
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resulting in poor isolation and security. While LXC 

controls its resources only by cgroups, both Linux-

VServer and OpenVZ implement their own 

capabilities introducing even more resource limits, 

such as the number of processes, which we have 

found to be an important contribution to give more 

security to the whole system. We suppose this 

capability will be introduced in cgroups in a near 

future. Careful examination of the isolation results 

reveals that all container-based systems are not 

mature yet. The only resource that could be 

successfully isolated was CPU. All three systems 

showed poor performance isolation for memory, disk 

and network. However, for HPC environments, 

which normally does not require the shared 

allocation of a cluster partition to multiple users, this 

type of virtualization can be very attractive due to the 

minimum performance overhead. Since the HPC 

applications were tested, thus far, LXC demonstrates 

to be the most suitable of the container-based 

systems for HPC. Despite LXC does not show the 

best performance of NPB in multinode evaluation, its 

performance issues are offset by the easy of 

management. However, some usual virtualization 

techniques that are useful in HPC environments, 

such as live migration, checkpoint and resume, still 

need to be implemented by the kernel developer 

team. 

Rizki et al. [16] conducted implementations of 

container-based virtualization, in this case OpenVZ 

and LXC. The experiments are benchmarking the 

virtualized clusters to measure the performances in 

terms of I/O performance overhead, and average 

time execution of mapreduce job. To measure the 

clusters performances, they used applications 

provided by hadoop packages. TestDFSIO used to 

measure the I/O performances of the cluster, 

WordCount used to measure the average time 

execution. TestDFSIO commonly used by hadoop 

users for identifying performances bottlenecks in 

networks, operating system, and also configurations 

of HDFS. MapRe-duce execution time are tested 

with syslog analysis to get and counts syslog priority 

in a dataset. Hosts kernel requirement are differ each 

other. In this experiments, OpenVZ stable used on 

top of Proxmox VE 3.4 which use kernel 2.6, while 

LXC used on top of Proxmox VE 4 which use kernel 

3.1. Container-based hadoop cluster gives near 

native performances because of the lightweight 

virtualization on operating system level. In their 

experiment with 3 nodes on Proxmox VE using CFQ 

scheduler, the results shown that OpenVZ is more 

stable in current configurations. While in Syslog 

Priority Parser benchmarks, the results are 

comparative. But, OpenVZ gives more faster running 

time. 

In the paper [17], authors aim to show the 

MapReduce (MR) as a platform for resource-

intensive applications. So, container-based 

virtualization might be understood as a lightweight 

alternative to the traditional hypervisor-based 

virtualization systems. And, since there is a tendency 

to the usage of containers in MR clusters in order to 

supply resource sharing and performance isolation, 

experiments has been led to compare and contrast the 

usual container-based systems (Linux VServer, Open 

VZ and Linux Containers (LXC)) and MR clusters 

considering performance and manageability. The 

results indicate that all container-based systems 

reach a near-native performance for MapReduce 

workloads. Even so, LXC is the one which provides 

the best relationship between performance and 

management capabilities (notably concerning 

performance isolations). 

 

4. Experimental methodology 
 

4.1. Experimental setup 
 

In order to evaluate the performance of 

BigBlueButton, we use the Proxmox Virtual 

Environment [18] to deploy two virtualized 

environments in a single machine. Proxmox is a 

complete open source server virtualization platform, 

that uses a custom optimized Linux kernel with 

KVM, Linux Containers (or depending of the 

version, OpenVZ) support. Proxmox offers 

enterprise-class features and a intuitive web interface 

to allow ease of management and deploying of 

virtual environments. The capability of use full 

virtualization to virtualize proprietary guest OSs 

(like Windows and macOS), and OS-level 

virtualization for easily deploy high density of 

containers in one single platform is a big advantage 

of Proxmox. Proxmox originally supported KVM 

and OpenVZ, until version 3.4. Since version 4.0 

Proxmox adopted KVM and Linux Containers. 

The physical machine is an IBM BladeCenter 

HS23 with two Intel Xeon CPUs E5-2620 of 2.00 

GHz (with 6 cores each and Hyper-Threading 

technology), 48 GB of RAM, connected to a local 

gigabit ethernet network, in turn, connected to the 

Internet through a 100 Mbps dedicated link. Because 

Proxmox only support OpenVZ until version 3.4, we 

had to install two Proxmox environments: Proxmox 

VE 3.4 kernel 2.6.32-37-pve amd64 and Proxmox 

VE 4.3-1 kernel 4.4.19-1-pve amd64. 

It was deployed one OpenVZ, one Linux 

Containers CT and one KVM VM, both using 

Ubuntu GNU/Linux 10.04.4 LTS AMD64. Each 

virtual environment runs BigBlueButton version 0.81 

and has 2 virtual vCPUs, 4 GB of RAM, 15 GB 

storage size, and one virtual gigabit ethernet adapter. 

We use a set of two physical machines and 120 

Amazon EC2 and Google Compute Engine instances 

(a custom set of t2.micro and g1-small instances type 

running Windows Server 2012 R2) to simulate 

conference clients in order to stress the virtualized 
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BBB servers. We utilize the v4l2loopback software 

to simulate a webcam device in each workstation and 

use Mplayer to send a video file to those devices, 

thus we could simulate a complete video conference 

client. 

We use the Zabbix network monitoring software 

in order to collect data from the virtualized servers. 

Those data include the usage of CPU, memory, I/O, 

ingress/egress network traffic and number of 

conference sessions.  

 

4.2. Macro benchmarks 
 

In this section we observe the performance and 

resource utilization of BBB while users are 

continuously joining the conference. We begin the 

benchmark without users connected into BBB and 

gradually one user joins the videoconference every 

30 seconds. The two workstations in the local 

network open 4 conference clients each and begin 

streaming their virtual webcams. The first connected 

user also share his own desktop screen through the 

BBB’s java applet. We use Mozilla Firefox browser 

version 46 to open 4 BBB sessions in each 

workstation. BBB treats each tab in the browser as 

an independent video conference client. 

In the next step, we begin launching the Amazon 

EC2 and Google Compute Engine instances. Each 

instance opens 4 sessions to BBB servers through the 

Internet. Instances do not own webcams, thus they 

just watch the video from other users. The 

benchmark stops when it reaches 340 connected 

users. A benchmark run with 340 simultaneous users 

is shown in Fig. 1. 

 

 
 

Figure 1. BBB session with 340 users 

The Fig. 2 shows the CPU utilization according 

the number of connected users. As explained above, 

inside a LXC container, processes see the entire host 

hardware, e.g. all CPUs. So we could not use the 

Zabbix agent to collect CPU usage statistics because 

it sees the 24 CPU cores instead of the 2 cores 

allocated to the CT. This is a drawback of Linux 

Containers, we must have user space programs that 

be cgroup-aware to collect performance data. 

Recently it was released the project LXCFS, that 

allows bind mount a /proc file system cgroup-aware 

in each container, but it was not compatible with the 

Ubuntu version used. So, for Linux Containers the 

CPU usage was collected through Proxmox API. 

The CPU usage for Linux Containers is very 

above the values of KVM and OpenVZ, this can be 

correlated with the way the CPU usage is gathered 

(Proxmox API). We can observe that the BBB hosted 

into KVM virtual machine presents a slightly 

increase in CPU usage. KVM presented CPU usage 

difference peak 19.2 % higher than OpenVZ. 

However, the CPU usage average of the entire 

benchmark for KVM is only 8 % higher of OpenVZ 

CPU use. 

 
Figure 2. CPU usage by connected users 

Fig. 3 illustrates the memory consumption by the 

number of connected users into the BBB session. 

Here we can observe that the VM presents a memory 

consumption 11.6% higher compared to OpenVZ, 

and Linux Containers presented 10.27% higher than 

OpenVZ. This can be explained mainly by the minor 

footprint of OpenVZ containers (fewer process, 

modules, daemons and virtualization layers 

compared to a full Linux system in KVM). 

 

4.3. Micro benchmarks 
 

In order to investigate the performance data 

shown above, we ran a collection of micro 

benchmarks to evaluate the virtualization 

performance of individual resources. Thus, we can 

analyse if the performance in some macro  
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Figure 3. Memory usage by connected users 

 

benchmark is result of poor performance of a 

individual, or group of, resources. 

CPU virtualization: We evaluate the CPU 

virtualization performance of KVM and OpenVZ 

with the Intel Optimized LINPACK Benchmark 

(version 11.3.3.011). It consists of a generalization of 

the LINPACK 1000 benchmark. It solves a dense 

system of linear equations, measures the amount of 

time it takes to factor and solve the system, converts 

that time into a performance rate, and tests the results 

for accuracy. The generalization is in the number of 

equations it can solve, which is not limited to 1000. 

It uses partial pivoting to assure the accuracy of the 

results [19]. 

The Intel LINPACK Benchmark is threaded to 

effectively use multiple processors. So, in multi-

processor systems, best performance will be obtained 

with the Intel Hyper-Threading Technology turned 

off, which ensures that the operating sys-tem assigns 

threads to physical processors only. Intel LIN-PACK 

is based on the Intel Math Kernel Library, which is 

highly adaptive and optimizes itself based on both 

available floating point resources, as well the cache 

topology of the system. Thus, to achieve maximum 

performance we activate the exposing of host 

system’s NUMA topology to KVM VMs in 

Proxmox web interface. 

We run LINPACK over 12 CPU cores on the 

host ma-chine, VM and CTs. We use matrices with 

orders ranging from 1000 until 45000. The Fig. 4 

shows the results of LINKPACK benchmark. 

Performance is almost identical for most of the 

problems sizes between the host machine and 

containers. The average GFLOPS values for KVM, 

OpenVZ and Linux Containers are about 86.05%, 

95.42% and 99.13% to native system, respectively. 

The vast majority of operations in LINPACK are 

spent in double-precision floating point operations, 

the gathered data reveals that efficiency of KVM on 

floating point computing is not so good as OpenVZ 

and Linux Containers. 

 

 
    Figure 4. LINPACK benchmark 

 
    Figure 5. RAMspeed benchmark for 8 threads 

 

Memory virtualization: To investigate the 

memory virtualization performance we choose 

RAMspeed (version 3.5.0). RAMspeed is an open-

source utility to measure cache and memory 

performance. It has numerous benchmarks such as 

INTmark, FLOTmark, MMXmark and SSEmark. 

They operate with linear (sequential) data stream 

passed through ALU, FPU, MMX and SSE units 

respectively. They allocate certain mem-ory space 

and start either writing to, or reading from it using 

continuous blocks sized of 1 MB. This simple 

algorithm allows to show how fast are both cache 

and memory subsystems. It was used 8 GB per pass 

and 8 CPUs in RAMspeed runs. 

The Fig. 5 illustrates the performance of memory 

virtualization varying the block size in float-pointing 

reading RAM-speed test. We can observe the effect 

of the dual Xeon E5-2620’s three levels of on-chip 

cache, observed by throughput drops near 32 KB, 

256 KB and 2 MB. The L1 (32KB data) and L2 

(256KB) caches are dedicated to each core. The L3 

cache (15 MB) is shared over the 6 cores in a single 

CPU, what theoretically can reach 2.5 MB per core. 

The performance become fairly stable for data blocks 

after 16 MB, when the effects of all cache are 

overwhelmed. This space represents the speed of the 

memory subsystem, and ensures no cache was 

involved [20]. All three systems reach near same 
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throughput while the operations involves the cache 

system, while for bigger block sizes, when the cache 

effects are minimized, KVM reaches 89.9% of native 

speed and the containers follow native performance. 

 

 
Figure 6. IOzone throughput 

 

Disk virtualization: Following, we analyse how 

fast the execution environments can perform disk 

operations. We choose the IOzone tool to assess the 

disk I/O performance. IOzone generates and 

measures a variety of file operations. In the native 

system, we create an ext4 file system in the local 

RAID 5 array using the mkfs default settings and 

mount it normally. In the OpenVZ container we 

mount it using the OpenVZ’s simfs file system. 

Simfs is not an actual file system, it is a map to a 

directory on the host, like a proxy file system. This 

file system allows isolating a particular container 

from other containers. In the VM we choose a LVM 

logical volume created in the same RAID 5 array, 

and mount it as a virtIO block device. Inside the VM 

the device was formatted as a default ext4 volume. 

We made IOzone runs of 8 GB total size and 1024 

KB record size in O_DIRECT mode. 

Using O_DIRECT allows access to bypass the 

buffer cache and go directly to disk. Because Linux 

kernel makes use of I/O cache in memory, we also 

reduce the available RAM in all environments to 

4GB. Linux Containers, however, apparently does 

not support the O DIRECT flag, thus all the I/O 

requests are cached in the host memory, even the 

container with 4GB of RAM, in the benchmark we 

see more than 8GB of cached memory on the host 

system. Thus, we could not compare cached I/O 

access with no cached ones. As workaround, we tried 

to drop the cache at the host system with the 

command ”echo 3 > /proc/sys/vm/drop caches” 

while benchmarking Linux Containers. 

Fig. 6 shows almost no losses in throughput for 

write and rewrite operations for KVM and OpenVZ. 

Although, while KVM reaches 78.9%, 79.3%, 82.6% 

and 95.2% for read, reread, random read and random 

write,- respectively, Linux Containers reaches 

87.45%, 89.26%, 78.11% and 67.40%. OpenVZ 

reaches near 100% in relation to native in the same 

operations. This performance gap in KVM maybe 

can be explained by the fact that each I/O operation 

must go through QEMU in user space. 

Network virtualization: The network 

performance is evaluated with the Netperf 

benchmark. Netperf is a tool for measurement of 

network throughput and end-to-end latency. In our 

setup another blade server run the netperf server, 

called netserver, and the benchmark’s target machine 

runs the netperf client. As shown in Table 1, all 

environments reach the same performance, near the 

gigabit ethernet interface limit, revealing no losses in 

network bandwidth between KVM, OpenVZ and 

Linux Containers, compared to native Linux. 

Table 2 reveals the network latency for TCP and 

UDP communications. Netperf does a 

request/response for a given request and response 

size, and measures the round-trip average latency. 

The round-trip latency for TCP is naturally 

bigger due the inner overhead of TCP 3-way 

handshake and flow control. In OpenVZ CTs the 

network is provided through the venet interface 

(loaded by the vznetdev kernel module), a virtual 

interface that acts like a point-to-point connection 

between the container and the host system. In KVM, 

we use the paravirtualized virtIO network interface. 

This guest device is connected in a called tap device 

on the host, which in turn, joins a bridge with the 

host’s physical interface. Linux Containers use the 

same approach that KVM to virtualize network. Both 

virtualization approaches add some latency 

overhead. Although, for TCP, KVM adds 91.7% of 

latency, while OpenVZ increases it by 22% and 

Linux Containers adds 67.4%. For the UDP protocol, 

KVM adds a latency 119.5% higher than the physical 

host while OpenVZ adds 11.9% and Linux 

Containers 82.87%. The increased number of layers 

in the virtual network device can contribute to the 

higher latencies for KVM and Linux Containers. 

 
Table 1. Netperf bandwidth 

 

 Native KVM OpenVZ Linux 

Containers 

TCP 935 933 935 935 

UDP 954 952 954 954 

 
Table 2. Netperf round-trip time latency 

 

 Native KVM OpenVZ Linux 

Containers 

TCP_RR 77.5 148.6 94.56 129.7 

UDP_RR 64.95 142.5 72.7 118.7 
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5. Conclusion 
 

As we have shown, video conference systems are 

a kind of application well suited to virtualization. 

Performance evaluation of virtualization platforms is 

an important key in improving their design and 

implementation. We assess KVM, OpenVZ and 

Linux Containers through a real-world application, 

the BigBlueButton conference system, and a series 

of micro benchmarks. The results show that OpenVZ 

presents a better overall performance followed by 

Linux Containers. KVM presents slight performance 

degradation in the most cases. The performance 

overhead of CPU and memory for KVM presented in 

the macro benchmarks, is confirmed in the micro 

benchmarks. OpenVZ shows a clear performance 

gain in some I/O operations such as storage read, 

reread, random read, and in memory access 

bandwidth, as well. The higher round-trip network 

latency presented by KVM and Linux Containers 

should be taken into account when designing 

services latency-sensitive, like video conference and 

real-time systems.  

This increased latency joint with high load of 

CPU and network, due to a large number of sessions, 

can be determinant to a poor quality of these 

services. The fact that Linux Containers does not 

abstract the hardware seen by the CT can be a 

problem to applications that make use of hardware 

detection to do auto adjust. OpenVZ and KVM 

guests are much more clear in this sense and this 

could have influenced in the benchmarks results. 

Thus, OpenVZ demonstrates to be most suitable 

virtualization platform for video conferencing 

workloads, also presenting minor container footprint, 

what leads to a higher container density, allowing 

more containers running on the same host. On the 

other hand, KVM presents a more convenient way 

for guest-independent virtualization. Thus, the results 

can characterize a trade-off between performance 

gain and ease of use. 

 

6. Future work 
 

As future work it is interesting investigate and 

evaluate the performance of Linux Containers with 

LXCFS. LXCFS is a set of files which can be bind-

mounted over their /proc originals to provide cgroup-

aware values. Thus performance measurement tools 

can take a clear comprehension of the hardware. 
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