
1 Executive Summary

By decoupling physical computing resources from the software that executes on
them, virtualization has dramatically improved resource utilization, enabled server
consolidation, and allowed workloads to migrate among physical hosts for usages
such as load balancing and failover. The following key techniques for resource
sharing and partitioning have been under continual development and refinement
since work began on them in the 1960s:

• Hypervisor-based virtualization has been the main focus within the Intel®
architecture ecosystem. Increased server headroom and hardware assists from
Intel® Virtualization Technology (Intel® VT)1 have helped broaden its adoption and
the scope of workloads for which it is effective on open-standard hardware.

• OS-level virtualization has been developed largely by makers of proprietary
operating systems and system architectures. Linux* containers, introduced in
2007, extend the capabilities for highly elastic or latency-sensitive workloads on
open-standards hardware.

Both approaches have distinct advantages. For example, whereas each hypervisor-
based virtual machine (VM) runs an entire copy of the OS, multiple containers
share one kernel instance, significantly reducing overhead. While hypervisor-based
VMs can be provisioned far more quickly than physical servers—taking only tens of
seconds as opposed to several weeks—that lag is unacceptable for workloads that
range from real-time data analytics to control systems for autonomous vehicles.

On the other hand, hypervisor-based VMs allow for multi-OS environments and
superior workload isolation (even in public clouds). Enterprises are also finding
that new virtualization usage models that draw on both containers and hypervisors
help them get more value out of strategic approaches such as public cloud,
software-defined networking (SDN), and network function virtualization (NFV).

NOTE: In the context of this paper, the term “container” is a generalized reference for any
virtual partition other than a hypervisor-based VM (e.g., a chroot jail, FreeBSD jail, Solaris*
container/zone, or Linux container).

Linux* Containers Streamline
Virtualization and Complement
Hypervisor-Based Virtual Machines
As strategic approaches such as software-defined networking (SDN) and network
function virtualization (NFV) become more mainstream, combinations of both
OS-level virtualization and hypervisor-based virtual machines (VMs) often provide
dramatic cost, agility, and performance benefits, throughout the data center.

As virtualization using
Linux* containers emerges as
a viable option for mainstream
computing environments, Intel
is investing in enablement
through hardware and software
technologies that include the
following:

• The Intel® Data Plane
Development Kit (Intel® DPDK)

• Intel® Solid State Drive
Data Center Family
for PCI Express*

• Intel® Virtualization Technology

WhITE PaPEr
Communications and Storage Infrastructure
Container-Based Virtualization

Table of Contents

1 Executive Summary1

2 The Historical Context for
Containers and Hypervisors2

 2.1 resource-Partitioning Techniques
Not Based on Hypervisors3

 2.2 Emergence of Software-Only,
Hypervisor-Based Virtualization
for Intel® architecture 4

 2.3 Hardware-Assisted, Hypervisor-
Based Virtualization with Intel®
Virtualization Technology4

3 Virtualization Using
Linux Containers 5

 3.1 Usage Model: Platform as a
Service on Software-Defined
Infrastructure 6

 3.2 Usage Model: Combined
Hypervisor-Based VMs and
Containers in the Public Cloud . .7

4 Enabling Technologies from Intel for
Container-Based Virtualization8

 4.1 Intel® Data Plane
Development Kit8

 4.2 Intel® Solid-State Drive
Data Center Family
for PCI Express*9

 4.3 Enhanced Workload Isolation
with Intel® Virtualization
Technology .9

5 Containers in real-World
Implementations 10

 5.1 Google: Combinations and Layers
of Complementary Containers
and Hypervisors 10

 5.2 Heroku and Salesforce.com:
Container-Based CrM, Worldwide 11

6 Conclusion . 12

This paper introduces technical
executives, architects, and engineers to
the potential value of Linux containers,
particularly in conjunction with
hypervisor-based virtualization; it
includes the following sections:

• The Historical Context for Containers
and Hypervisors traces the
development of these technologies
from their common origin as an
effort to share and partition system
resources among workloads.

• Virtualization Using Linux Containers
introduces the support for container-
based virtualization in Linux,
illustrated by representative usage
models.

• Enabling Technologies from Intel
for Container-Based Virtualization
discusses Intel’s hardware and
software technologies that help
improve performance and data
protection when using Linux
containers.

• Containers in real-World
Implementations examines a few
examples of early adopters that are
using containers as part of their
virtualization infrastructures today.

2 The Historical Context for
Containers and Hypervisors

Hypervisors and containers have a joint
ancestry, represented in Figure 1, which
has been driven by efforts to decrease
the prescriptive coupling between
software workloads and the hardware
they run on. From the beginning, these
advances enhanced the flexibility of
computing environments, enabling a
single system to handle a broader range
of tasks. As a result, two related aspects
of the interactions between hardware
and software have evolved:

• resource sharing among workloads
allows greater efficiency compared to
the use of dedicated, single-purpose
equipment.

• resource partitioning ensures that
the system requirements of each
workload are met and prevents
unwanted interactions among
workloads (isolating sensitive data,
for example).

The first stage depicted in Figure 1
is that of the monolithic compute
environment, where the hardware and
software are logically conjoined, in a
single-purpose architecture. The ability
to make significant changes to either

Monolithic
Compute

Enviroment

User

System Example:
GE-635/Multics

(circa 1959)

System Example:
GE-635/Multics

(circa 1962)

System Example:
IBM 360

(circa 1964)

System Example:
IBM 370

(circa 1972)

Supervisor

User User User

Supervisor

… Env Env Env

Supervisor

…

Control Program
(Hypervisor)

Figure 1. Early development of approaches to resource sharing and partitioning.

2

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

hardware or software, short of replacing
the entire system, is severely limited
or even nonexistent. The second stage
includes the supervisor (progenitor of
the kernel), an intermediary between
user space and system resources that
allows hardware and software to be
changed independently of each other.
That de-coupling is advanced further
in the third stage, where the supervisor
mediates resources among multiple
users, allowing time-sharing among
multiple, simultaneous jobs.

The fourth stage adds a control
program (CP, also known as the
“hypervisor”) that presents an
independent view of the complete
environment to each application;
applications execute in isolation,
unaware of each other. Importantly,
various hypervisor-enabled virtual
environments can run different
operating systems simultaneously on
the same hardware, which would be
impossible under most approaches
to virtualization that are not based on
hypervisors. (Running workloads based
on different operating systems on the
same host is possible to a limited extent
using Solaris* containers, as described
below.)

The supervisor, as mediator between
user space and system resources,
has full access to the host and allows
a subset of that access to users
(workloads). That arrangement allows
the supervisor to enforce limitations
on access that are necessary for usages
such as the time sharing among jobs
described in the third stage of Figure
1. In contrast, the CP shown in the
fourth stage moderates between the
supervisor and the multiple virtual
representations of the environment
presented to workloads. Accordingly,
the CP operates at a level superior to
that of the supervisor, conceptually
suggesting a role “beyond the
supervisor,” which is reflected in the
term “hypervisor.”

IBM introduced its first hypervisor
for production (but unsupported)
use in 1967, to run on System/360*
mainframes, followed by a fully
supported version for System/370*
equipment in 1972. The company is
generally recognized as having held
the industry’s most prominent role in
the development of hypervisor-based
virtualization from that point through
the rest of the twentieth century.

2.1 resource-Partitioning Techniques
Not Based on Hypervisors

Although hypervisors enrich isolation
among virtual environments running
on a single physical host, they also add
complexity and consume resources.
Alternate approaches to partitioning
resources were developed as interest
in Unix* and Unix-like operating
systems grew in the late 1970s and
early 1980s, driven by organizations
that included Bell Laboratories,
AT&T, Digital Equipment Corporation,
Sun Microsystems, and academic
institutions. These technologies (and
others), which are collectively referred
to as “OS-level virtualization,” provide
lightweight approaches to virtualization,
acting as foundations for today’s Linux
containers.

• The chroot system call is a critical
foundation for container-based
virtualization, introduced as a feature
of Version 7 Unix by Bell Laboratories
in 1979 and as part of 4.2BSD by the
University of California, Berkeley
in 1983. The chroot mechanism
can redefine the root directory for
any running program, effectively
preventing that program from being
able to name or access resources
outside that root directory tree. While
such partitions, referred to as “chroot
jails,” support limited virtualization
functionality, they must share a single
OS kernel. Moreover, chroot is not
designed to be tamper-resistant, and

it is vulnerable to intentional efforts
by users or programs to “break out”
of their jails and gain unauthorized
access to resources.

• FreeBSD* jails are similar in concept
to chroot jails, but with a greater
emphasis on security. This mechanism
was introduced as a feature of
FreeBSD 4.0 in 2000. FreeBSD jail
definitions can explicitly restrict access
outside the sandboxed environment
by entities such as files, processes,
and user accounts (including
accounts created by the jail definition
specifically for that purpose). While
this approach significantly enhances
control over resources compared
to chroot, it is likewise incapable of
supporting full virtualization, because
the FreeBSD jails must share a single
OS kernel.

• Solaris containers (Solaris zones)
build on the virtualization capabilities
of chroot and FreeBSD jails. Sun
Microsystems introduced this feature
with the name “Solaris containers”
as part of Solaris 10 in 2005, and
Oracle officially changed the name
to “Solaris zones” with the release
of Solaris 11 in 2011. Zones are
individual virtual server instances that
can coexist within a single OS instance.
Similar to FreeBSD jails, Solaris
zones allow for zone-specific user
accounts and access restrictions on
resources such as network interfaces,
memory, storage, and processors.
One significant advance toward full
virtualization is that while Solaris
zones must share a single OS kernel,
a capability called “branded zones”
(BrandZ) enables individual zones
to emulate the behavior of certain
operating systems. As mentioned
previously, BrandZ allows the
environment to simulate cross-OS
virtualization to a limited degree.

3

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

2.2 Emergence of Software-Only,
Hypervisor-Based Virtualization
for Intel® architecture

Shortly after the year 2000, Intel
architecture was beginning to reach
the upper limits of client-server
performance possible from scaling up
processor frequency alone. The key
factors behind that plateau were the
increased power consumption and
waste heat associated with raising
clock speed. The primary solution
that emerged was to create processor
architectures with multiple execution
cores on a single die.

Multi-core processors can execute
multiple threads of programming
instructions in parallel, simultaneously
and independently of each other. While
this approach increases scalability,
redesigning serial applications for
multithreading—so that work can
be split efficiently among multiple
cores—is a complex undertaking.
Moreover, if done incorrectly, it can
produce conflicts among threads that
cause runtime errors, unpredictable
results, or performance deficits.
Other approaches to take advantage
of hardware parallelism include the
following:

• Stateless web pages can support
many tasks running in parallel, such as
user sessions or transactions.

• High-performance computing
models, including clusters and
grids, coordinate workloads across
machines.

• Hypervisor-based virtualization
allows serial applications to run in
separate virtual machines (VMs).

• Non-hypervisor virtualization
provides resource sharing and
partitioning among workloads using
mechanisms such as chroot, FreeBSD
jails, and Solaris containers.

Of the models described above,
hypervisor-based virtualization
emerged as the dominant data-center
approach, marked by a period of
rapid hypervisor development in the
Intel architecture ecosystem, led by
VMware and the open-source Xen*
project. Other prominent providers of
virtualization solutions include Citrix
(including commercial versions of Xen),
Microsoft, Oracle, Parallels, Red Hat,
and the Kernel-based Virtual Machine
(KVM) open-source project. A high-
level representation of virtualization
stacks is shown in Figure 2, which
depicts the two primary hypervisor
variations: Type 1 and Type 2.

Type 1 hypervisors are installed
directly on the physical host
hardware, whereas Type 2 (also
known as “hosted”) hypervisors are
installed on top of a host OS. Type
1 hypervisors communicate directly
with the underlying hardware and
support robust virtual networking and
dynamic resource allocation through
a management server; they are the
more prevalent approach for data-
center virtualization of servers. Type 2
hypervisors typically rely on the host

Hypervisor

Type 1 Hypervisor Type 2 Hypervisor

Operating
System

App App

Bins/libs

Operating
System

App App

Bins/libs

Virtual Machine Virtual Machine

Operating
System

App App

Bins/libs

Operating
System

App App

Bins/libs

Virtual Machine Virtual Machine

Hardware

Operating System

Hardware

Hypervisor

Figure 2. Virtualization based on Type 1 and Type 2 hypervisors.

OS (rather than a management server)
for services such as I/O device support
and memory management; they are
often used for virtualized desktop
infrastructure.

2.3 Hardware-Assisted, Hypervisor-
Based Virtualization with Intel®
Virtualization Technology

In software-only virtualization on
Intel architecture, the hypervisor must
emulate the hardware environment
for VMs, using binary translation.
This service provides software-based
interfaces to physical resources such
as processors, memory, storage,
graphics cards, and network adapters.
Because this emulation is performed
in software, it consumes significant
execution resources on the processor
that are therefore not available
to operate on workloads, which
significantly limits scalability.

Intel introduced Intel VT in 2006, which
includes a new privilege level for VMs
to operate in without the overhead
of binary translation, dramatically
improving efficiency on the physical
host. Intel VT has continued to develop

4

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

Hypervisor

Type 1 Hypervisor Linux* Containers

Operating
System

App App

Bins/libs

Operating
System

App App

Bins/libs

Virtual Machine Virtual Machine Bins/libs

Container

Container

Hardware

Operating System

Hardware

App AppApp App

Bins/libs

Figure 3. Linux containers compared to a Type 1 hypervisor.

into an expanding set of features within
processors, chipsets, and network
hardware to make virtualization
increasingly efficient and to enhance
the hardware-based isolation between
workloads on separate VMs running on
the same host.

Higher performance, improved data
protection, and decreased latency
enabled by Intel VT allowed larger
numbers of servers to be consolidated
per physical host and expanded
the types of workloads suitable for
virtualization. At the same time,
progressive generations of Intel® Xeon®
processors for the highly scalable
server segment were engineered with
more advanced reliability, availability,
and serviceability (RAS) features,
making them more suitable for
virtualizing mission-critical workloads.

3 Virtualization Using Linux
Containers

As discussed above, the requirement
under hypervisor-based virtualization
for a separate OS instance to run
in each VM consumes significant
resources. For example, multiple copies
of many drivers and services must be
run, including some that aren’t even
needed by any of the running VMs.

Furthermore, compute capacity can
be readily increased in virtualized
environments by starting additional
VMs, but spinning up a new VM
(or shutting one down) has time
requirements on the order of tens of
seconds. Workloads that can’t tolerate
that level of delay are becoming more
prevalent—notably those with elastic
capacity needs and real-time or
otherwise low-latency requirements,
such as the following:

• real-time data analytics, for systems
providing services such as business
intelligence that rely on immediate
access to data as it emerges from
dispersed sensors and other sources

• remote interaction among users,
including real-time usages such as
voice or video communication, online
collaboration, and remote control of
automated systems, where lag or jitter
is unacceptable

• Latency-sensitive or lossless
networking, as required for systems
such as network-attached storage or
Ethernet-based storage area networks

• Page rendering for web content
such as Facebook’s News Feed and
LinkedIn’s Home/Feed, which involves
gathering data in parallel from many
sources

In contrast to a VM, a container does
not require a hypervisor or incorporate
a dedicated OS, which presents an
attractive approach for workloads
such as those described above. The
open-source Linux Containers (LXC)
project introduced public code in 2007
that provides support for multiple
containers on the same physical host
(or on the same VM, as discussed
below), sharing the same instance of
the Linux OS kernel (and in some cases

a set of binaries and libraries), as shown
in Figure 3. Each container includes
only the services that it needs but can’t
obtain from those shared resources,
paring down the size of the software
stack running on each container.

Two features of the Linux kernel are
at the core of the functionality that
underlies Linux containers:

• Cgroups provides the ability to
govern and measure the use of
resources such as memory, processor
usage, and disk I/O by collections of
processes called “control groups.” The
kernel provides access to separate
subsystems for managing each set
of resources, either manually or
programmatically.

• Namespace isolation provides a
software-based means of limiting
each control group’s view of
global resources, such as details
about file systems, processes,
network interfaces, inter-process
communication, host and domain
names, and user IDs.

5

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

Using these capabilities, the containers
themselves are created as sandboxed
environments for applications to
execute in. Because the containers are
unaware of each other, each of them
interacts with resources such as the
shared OS kernel and file system as if
the other containers didn’t exist. That
isolation extends to the applications
within the containers, their security
settings, and their access to physical
and virtual devices through the host. As
discussed later in this paper, however,
software-only approaches to isolating
workloads are potentially more
susceptible to compromise by malicious
software than those that incorporate
hardware-based mechanisms.

The Container-Based Virtualization Software
Ecosystem for Linux*

The following list captures a few noteworthy software offerings related to
the use of containers:

• LXC (Linux Containers) is a user-space interface (including an API and tools)
for the cgroups and namespace-isolation features of the Linux kernel.

• Docker is an open-source engine designed to simplify the use of LXC
by automating deployment of applications in containers, packaging
applications and their dependencies in images with a standard format.

• Lmctfy (Let Me Contain That For You) is an open-source version of
Google’s internal application containerization stack that, in contrast to
Docker, prioritizes performance over ease of use.

• CoreOS is a fork of Chrome OS*, designed to include only the minimum
level of capabilities that are needed to support the operation of
applications in containers.

• Project atomic is a community-based effort initiated by Red Hat to create
technologies for lightweight container hosts; this work will be used in a new
product variant, Red Hat Enterprise Linux Atomic Host.

• Kubernetes is an open-source container manager developed by
Google that provides deployment, health management, replication, and
connectivity services for containers.

NOTE: Lmctfy, CoreOS, and Project Atomic use the Linux kernel’s cgroup and
namespace-isolation features directly, as opposed to using LXC, although Docker is
integrated into all three.

At the present early stage, it would
be difficult to anticipate the roles that
virtualization based on hypervisors
versus virtualization based on
containers will eventually take in
mainstream data centers. Still, it is
apparent that both models will persist
for the foreseeable future, because
of their complementary nature. For
example, the requirement that all
containers must use the same Linux
OS kernel is an obvious limitation
to server consolidation in a typical
enterprise that is likely to also
include Microsoft Windows*. Desktop
virtualization is another common
example; organizations that want to
run virtual Windows desktops will need

to do so using a hypervisor. Moreover,
hypervisors and containers can each
play a valuable role as the installation
substrate for the other, as in the usage
models described in the remainder of
this paper.

3.1 Usage Model: Platform as a
Service on Software-Defined
Infrastructure

The container model of virtualization
is a good fit with the rack-scale
architecture (RSA) approach favored
in Intel’s vision for the re-imagined
data center. RSA looks ahead to the
need for dramatically increased levels
of server resources in data centers to
support developments such as the
Internet of Things, which is expected
to add billions of connected devices
to the global infrastructure in the
next decade. To support this vast
internetwork, server architectures
must allow resources to shift around
dynamically as workloads change and
adapt.

The RSA approach to meeting that
challenge is to pool the processing,
memory, networking, and storage
resources of an entire server rack,
disaggregating them from the host-
level units to which we are accustomed.
Physically, these components need
not even be arranged in the form of
servers; for instance, a rack could
be provisioned using a chassis for
each type of component and the
hardware dependencies needed to
support it. Logically, the rack replaces
the individual system as the unit of
management in the data center, with
one rack’s worth of individual resources
referred to as a “tray.” That is, one rack
as a logical unit consists of a processor
tray, a memory tray, etc.

The attributes of the hardware
resources are exposed to the software
layer, which provision virtual systems
on a dynamic, as-needed basis,
according to the requirements of a

6

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

specific workload or task. RSA offers
tremendous flexibility by tailoring
software-defined infrastructure to the
needs of applications and workloads
in real time. This approach optimizes
efficiency by dedicating only the level
of resources needed for the task at
hand, without the need to reserve
idle headroom, because the virtual
system will be disbanded and the
resources returned to the rack-level
pool before system demands could
shift. It also offers a means of building
a system that is far more reliable than
any of its components, because each
of them is inherently redundant and
interchangeable. Overall, RSA extends
data-center capabilities and drives up
asset utilization, while reducing overall
costs.

Container-based virtualization has
obvious utility within this approach,
because it enables extremely rapid
provisioning and de-provisioning of
resources, compared to hypervisor-
based virtualization. Here, the container
environment is scaled horizontally
using a platform-as-a-service (PaaS)
model, with a cluster-wide resource
manager running as a service on all
the nodes, coordinated by a central
executive scheduler. Several such
resource managers integrate with Intel’s
RSA model, including the following:

• SLUrM (Simple Linux Utility for
Resource Management), an open-
source project

• TOrQUE (Terascale Open-source
Resource and QUEue Manager), a
community-based project

• Omega, created by Google

• Mesos, an Apache Software
Foundation open-source project

• YarN (Yet Another Resource
Negotiator), an Apache Software
Foundation open-source project for
Hadoop*

Usages that particularly benefit
from the use of containers on PaaS
architectures are those cases where
long-running data-services applications
with relatively higher priority can run
in a multitenant fashion with fast-
completion, lower-priority processing
tasks such as MapReduce* or Apache
Spark*. Implementation of this model is
accelerating in segments such as high-
performance computing, cloud and big
data, telecommunications, the Internet of
Things, and financial services (particularly
to support high-frequency trading).

3.2 Usage Model: Combined
Hypervisor-Based VMs and
Containers in the Public Cloud

As they plan how to utilize the cost-
effective, on-demand infrastructure
offered by public clouds, many
organizations see potential efficiencies
from deploying workloads to these
clouds in containers rather than
hypervisor-based VMs. The resulting
reduced compute overhead could
significantly decrease the amount of
resources they would be billed for,
reducing operational expenses. At the
same time, however, using containers
may not meet organizations’ needs in
terms of isolating data among their
own workloads or from other unknown
organizations in the shared multitenant

environment. In this scenario, both
containers and hypervisor-based VMs
have unique advantages:

• Hypervisor-based workload
isolation. The ability to isolate data on
a per-VM basis, even within a shared
multitenant infrastructure, is well
established, including partitioning
shared physical memory and I/O
devices. Doing so is critical to data
protection particularly in cases of
sensitive or regulated workloads.

• Container-based resource efficiency.
Sharing the OS and some libraries
and binaries among containers can
dramatically reduce virtualization
overhead, increasing provisioning
speed, performance, and the
number of client endpoints that can
be supported with a given level of
computing resources. That efficiency
translates into cost savings for the
customer.

The benefits of both approaches can
be combined to a significant extent by
the model where a customer provisions
a set of VMs on a public cloud and
then partitions each of those VMs
using containers, as shown in Figure
4. Instances of applications deployed
in those containers could achieve
a valuable balance between data
protection and efficiency, particularly

Hypervisor

Virtual Machine

Bins/libs

Container

Container

Hardware

Operating System

App App

Container

App AppApp App

Bins/libs

Virtual Machine

Bins/libs

Container

Container

Operating System

App AppApp App

Bins/libs

Figure 4. Containers inside hypervisor-based virtual machines.
7

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

by using large numbers of containers
per VM and a stripped-down OS such
as CoreOS, which is built explicitly
for containers. At the same time,
customers can take advantage of the
global reach, cost-effectiveness, and
elasticity of PaaS environments offered
by global providers such as Amazon
and Google.

Moreover, that PaaS environment could
use a hybrid cloud model, meaning that
it could include containers running on
VMs within both internal data centers
and public clouds. A virtual network
with an umbrella DNS namespace
could encompass the entire multi-
site environment, providing a single,
global service that is resolved using
DNS and routing techniques. Hybrid
cloud infrastructure can help deliver
the benefits of public cloud services
while also taking full advantage of
existing internal infrastructure assets.
Running containers on the VMs within
that hybrid cloud provides the rapid
provisioning and efficiency benefits of
containers, as well.

Deploying combinations of containers
and hypervisor-based VMs as
described above can help organizations
take advantage of public clouds to
meet a variety of business needs. For
example, many companies—even large
multinationals—have consolidated
their data-center infrastructures into
a small number of physical facilities.
While that strategy enables them to
achieve cost savings, it also potentially
extends the physical distance (and
accordingly, the number of intermediate
router connections, or “hops”) to some
endpoints, thereby increasing the
latency over the connections to those
endpoints. In response, as the number
and types of connected devices
continues to expand, organizations are
assessing the potential for containers
in conjunction with hypervisor-based
virtualization on leased public clouds.

That approach is particularly germane
to supporting real-time or otherwise
latency-sensitive workloads based on
global networks of mobile devices.
One example might arise in an
organization fielding a global network
of edge devices such as point-of-
sale (POS) systems, customer kiosks,
smart vending machines, or sensor
arrays. Exchanging data between such
endpoints and core back-end systems
may be a key requirement for real-
time data analytics, which can create
business value by guiding tactical and
strategic decision making in areas
such as demand forecasting, dynamic
price optimization, and supply-chain
management.

Many such implementations could need
low-latency connectivity in regions that
are geographically distant from any
of the company’s owned data centers.
Likewise, an organization might have
highly elastic capacity requirements
for certain applications and workloads,
separately or in conjunction with the
global-endpoint example given above.
Workload characteristics that could
create such elastic demand might
include holiday shopping causing a
spike in activity on retail POS systems,
seasonal variations in travel volume
impacting usage of airline kiosks at
airports all over the world, and hot
weather or a major sporting event
producing a temporary rise in sales
from connected vending machines.

4 Enabling Technologies from
Intel for Container-Based
Virtualization

In keeping with its strategic vision
for RSA and software-defined
infrastructure, Intel has invested in
a number of technologies that will
help optimize performance and
data protection within container
environments.

4.1 Intel® Data Plane Development Kit

To increase agility and reduce costs,
the industry is moving toward solutions
that decouple network functions
from the underlying hardware by
means of abstraction. This transition
encompasses the interrelated efforts
of software-defined networking (SDN)
and network function virtualization
(NFV).

The Intel® Data Plane Development
Kit (Intel® DPDK) is a set of software
libraries that support the hardware
abstraction required by SDN and NFV,
as well as dramatically accelerating
packet processing. Those capabilities
enable application, control, and
signal-processing workloads to be
transitioned away from special-purpose
hardware, to standards-based servers
based on Intel® processors. With the
reduction or elimination of network
processor units (NPUs), coprocessors,
application-specific integrated circuits
(ASICs), and field-programmable
gate arrays (FPGAs), the hardware
environment becomes simpler, more
cost-effective, and more scalable.

The more homogeneous, standardized
architecture also better supports
the dynamic definition of systems
in software that underlies the RSA
and software-defined infrastructure
described earlier in this paper. Intel
DPDK therefore can play a significant
role in creating an optimal environment
for the implementation of container-
based virtualization. Key software-
library components of Intel DPDK
include the following:

• Environment Abstraction Layer
provides access to low-level resources
such as hardware, memory space, and
logical cores using a generic interface
that obscures the details of those
resources from applications and
libraries.

8

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

• Memory Manager allocates pools of
objects in huge-page memory space.
An alignment helper ensures that
objects are padded, to spread them
equally across DRAM channels.

• Buffer Manager significantly reduces
the time the OS spends allocating and
de-allocating buffers. The Intel DPDK
pre-allocates fixed-size buffers, which
are stored in memory pools.

• Queue Manager implements safe
lockless queues (instead of using
spinlocks), allowing different software
components to process packets while
avoiding unnecessary wait times.

• Flow Classification incorporates Intel®
Streaming SIMD Extensions (Intel®
SSE) to produce a hash based on tuple
information, improving throughput by
enabling packets to be placed quickly
into processing flows.

Successful implementation of NFV
depends to a large extent on robust
virtual switching capabilities. Open
vSwitch is a production-quality,
multi-layer virtual switch distributed
under the Apache 2.0 License. Intel is
committed to working with the Open
vSwitch community to extend it with
support for Intel DPDK. This support is
now included in the openvswitch.org
source tree.

A priority for the integration of
Open vSwitch and Intel DPDK is
supporting NFV applications where
high-frequency, small packet sizes are
common. To address the challenges
presented by processing small packets,
Intel provides a user-space kernel-
forwarding module (data plane) as part
of Open vSwitch. The modifications
made to create the Intel® DPDK
Accelerated Open vSwitch (Intel®
DPDK vSwitch) resulted in dramatic
improvements to packet-switching
throughput, providing an improved
option for use with NFV use cases.

Ongoing work is planned to help ensure
Intel DPDK vSwitch compatibility with
the full range of container-based
virtualization solutions and to make
contributions to the main Open vSwitch
project. In particular, development is
underway to support direct assignment
of single-root I/O virtualization (SR-
IOV) virtual functions, as well as
finer-grained direct assignment at
the queue-pair level (i.e., RX and TX
queues).

4.2 Intel® Solid-State Drive
Data Center Family
for PCI Express*

The reduction in virtualization overhead
that is enabled by containers compared
to hypervisor-only topologies allows
for more application instances, users,
or transactions to be run with the
same level of system resources. One
effect of that capability is that it places
greater demand for simultaneous data
accesses on the storage subsystem.
Therefore, containers are particularly
sensitive to the inherent limitation that
conventional, spinning hard disk drives
(HDDs) do not support parallel access
to data.

Conversely, the NAND memory in
solid-state drives (SSDs) inherently
supports parallel data access, in
addition to superior data-transfer
rates and latency, compared to
HDDs. Therefore SSDs have the clear
advantage over HDDs for the large
numbers of simultaneous instances and
rapid provisioning and de-provisioning
associated with container-based
virtualization. Those advantages are
particularly pronounced for enabling
highly parallel big data and high-
performance computing workloads
using containers.

Even using SSDs, however, throughput
limitations of SATA interfaces between
SSDs and the motherboard is a further
potential bottleneck. To address that
issue, an industry consortium led by
Intel developed the new Non-Volatile
Memory Express* (NVMe) specification,

which standardizes connectivity for
SSDs and other non-volatile memory
(NVM)-based devices using PCI Express*
(PCIe*) 3.0, to dramatically improve
data-transfer rates and latency.

Based on the NVMe standard, the Intel
SSD Data Center Family for PCI Express
offers a number of benefits that make
it well suited to the needs of container-
based virtualization:

• Dramatically improved performance.
The Intel SSD Data Center Family for
PCI Express provides up to six times
faster data transfer speed than 6 Gbps
SAS/SATA SSDs2.

• Optimized for multi-core processors.
Hardware and software parallelism
enhance performance with features
such as deeper command queues,
parallel interrupt processing, and
lockless thread synchronization.

• Advanced software support. Intel’s
NVMe driver has been incorporated
in the Linux kernel since March
2012, and management capabilities
are provided by the Intel® SSD Data
Center Tool.

• Enhanced raS. Rigorous qualification
and compatibility testing, plus 230
years Mean Time Between Failures
(MTBF), helps provide business-
critical dependability.

4.3 Enhanced Workload Isolation with
Intel® Virtualization Technology

A hypervisor-based VM provides a
hardware-isolated environment for
provisioning containers. While the
containers within the VM are isolated
from each other using only software
capabilities, the group of containers
within the VM as a whole can be
isolated from the rest of the world
using Intel VT.

As discussed above, the Linux kernel
provides namespace isolation to
restrict access to resources as needed.
The measure of assurance provided
by this method, however, is limited

9

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

to some degree by the fact that it is
based in software, making it at least
potentially susceptible to software-
based attacks. In theory, a malicious
process could reach outside its
container by attacking the Linux OS
and breach its separation from other
containers, compromising all data and
resources on the host.

Intel VT can mitigate the risk of
software-based attacks with data-
protection measures based on
hardware features of processors,
chipsets, and network controllers and
adapters based on Intel architecture.
Both open-source and proprietary
hypervisors and other software
offerings are deeply integrated with
these hardware-based capabilities,
through co-engineering and enabling
activities by Intel. Hardware-based
isolation of data, memory, and other
resources assigned to a specific VM—
beneath the level of system software
such as OSs and hypervisors—provides
an added level of data protection,
beyond what’s possible with containers
operating on bare metal.

Containers that are provisioned inside
a hypervisor-based VM have hardware-
enforced access only to the code, data,
and memory space specified by the
hypervisor; Intel VT restricts them
from paging outside the VM’s memory
boundaries. Applications can also
be assigned to dedicated processor
cores, to increase application isolation
even further. Likewise, malware that
has infiltrated one VM is effectively
contained there, being prevented
from affecting the contents of others.
Noteworthy processor-level features
of Intel VT that contribute to data
protection within VMs include the
following:

• Descriptor table exiting. This feature
helps protect guest operating systems
from internal attack by preventing
the relocation of key system-data
structures.

• Pause-loop exiting. Taking advantage
of the fact that spin-locking code
typically uses PAUSE instructions
in a loop, this feature detects when
the duration of a loop is longer
than “normal” (a sign of lock-holder
preemption).

Intel® VT for Directed I/O (Intel® VT-d)
operates at the chipset level, providing
additional capabilities to enhance
hardware-based isolation of VMs,
including the following:

• Direct Memory Access (DMA)
remapping. I/O devices move data
independently of the processor using
DMA. Intel VT-d enables the OS
or hypervisor to create protection
domains, which are isolated sections
of physical memory to which one or
more I/O devices can be assigned. The
DMA remapping hardware provided
by Intel VT d uses address-translation
tables to block access to protection
domains by I/O devices not assigned
to them.

• Direct assignment of I/O devices.
Specific VMs can be assigned
exclusive access to particular physical
or virtual I/O devices, each of which is
given exclusive access to a dedicated
area of physical system memory; other
VMs and I/O devices are restricted
from reading data from or writing data
to those memory locations.

5 Containers in real-World
Implementations

Exploring environments where
container-based virtualization is in
broad use helps characterize where
this model is appropriate, where
hypervisors are the better choice, and
where the best option is for the two
approaches to work together.

5.1 Google: Combinations and Layers
of Complementary Containers and
Hypervisors

Many of the technologies that enable
container-based virtualization were
developed at Google. With one

of the world’s largest computer
infrastructures, the company
continuously looks for more
lightweight, flexible approaches to
virtualize those resources. At GlueCon
in May 2014, Joe Beda, a senior staff
software engineer for the Google Cloud
Platform, declared to the audience
during his presentation that “Everything
at Google runs in a container.” A high-
level look at some of the architecture
associated with those containers is
instructive.

Google presently has six main cloud
product offerings: three storage
services (based on a MySQL-compatible
relational database, an object store,
and a NoSQL database, respectively),
the BigQuery analysis service for
big data, and two compute services,
described below. The use of containers
and hypervisors in the compute-
services architecture reveals one
perspective regarding how these two
forms of virtualization contrast and
complement each other.

• Google app Engine* (GaE) is a
container-based PaaS product that
offers App Servers to customers—
containers that each hold one or more
instances of a customer’s application,
which have reserved, guaranteed
resource levels on Google’s
infrastructure.

• Google Compute Engine* (GCE) is a
hypervisor-based infrastructure-as-
a-service (IaaS) product that offers
Linux-based VMs running on top
of KVM. Interestingly, KVM itself is
installed in a container, and CoreOS
(which can only run applications in
containers) is emerging as the basis
for the default VM image on GCE.
Thus, by default, a GCE application
runs in a container, within a VM, on top
of a hypervisor, which is in a container,
as illustrated in Figure 5.

Using containers to subdivide resources
among GAE end customers offers
efficient use of hardware resources,
as well as flexibility to customers in

10

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

Operating System

Hypervisor

Container

Virtual Machine

Bins/libs

Container

Container

Hardware

Operating System

App App

Container

App AppApp App

Bins/libs

Virtual Machine

Bins/libs

Container

Container

Operating System

App AppApp App

Bins/libs

Hypervisor

Container

Virtual Machine

Bins/libs

Container

Container

Operating System

App App

Container

App AppApp App

Bins/libs

Virtual Machine

Bins/libs

Container

Container

Operating System

App AppApp App

Bins/libs

Figure 5. Layers of nested containers and
hypervisor-based virtual machines.

terms of static (manual) or dynamic
(automated) assignment of those
resources. GAE offers simple creation
and hosting of applications, websites,
and services, with some trade-offs in
terms of flexibility, due to the model
requiring Google to preselect the finite
set of languages, APIs, and frameworks
that GAE supports.

The architectural differences between
the two offerings are significant.
Consider two hypothetical customers
that must choose between GAE and
GCE. The first evaluates both services
as the core infrastructure for a
straightforward web-based business
application and chooses GAE, planning
to develop in PHP with Google’s Cloud
SQL relational-database service on the
back end. The lightweight containers
model is a good fit in this case.

The second hypothetical customer
wants to deploy a Hadoop* cluster
within Google’s cloud platform and
manage it with Cloud Foundry*, as the
basis for worldwide data collection that
feeds into real-time data analytics. GAE
does not support this use case, and
the customer opts to deploy Hadoop
and the related business logic in
containers built on top of GCE VMs. The

implementation uses the BOSH Cloud
Provider Interface (CPI) to deploy all the
distributed software and the Google
Cloud Datastore NoSQL database
service for the application’s large
repository of non-relational data.

5.2 Heroku and Salesforce.com:
Container-Based CrM, Worldwide

As one of the largest cloud computing
companies, Salesforce.com is another
example of a technology provider that
uses container-based virtualization
in tandem with other approaches to
partition compute resources. The
company has steadily expanded its
portfolio of product offerings in the
past several years, building outward
from its core Customer Relationship
Management (CRM) software-as-a-
service (SaaS) offering.

In particular, the company has added
applications and services (many of a
business-oriented social-networking
nature) that integrate with and
add value to customers’ CRM data.
While those additions originate
largely from internal development
or acquisitions, Salesforce also has a
substantial commitment to facilitating
the development of software that
integrates with its CRM by third parties.

The AppExchange* app store has been
active since 2005, joined in 2007 by
Force.com, a PaaS for the development
and deployment of third-party
applications that consume Salesforce
CRM data.

In May 2014, the container-based
PaaS operated by Heroku, a Salesforce
subsidiary, was richly integrated for
the first time with Salesforce CRM as a
data source. Like Force.com, Heroku is
designed for developers to build and
deploy customer-facing applications,
mobile and otherwise. In contrast,
however, where Force.com primarily
serves developers within enterprises
building apps for employees, Heroku
customers tend to be at start-ups
and smaller independent software
vendors. Heroku’s architecture is also
substantially different from the general
approach at Salesforce, as shown in
Table 1.

Before this integration, providing
access to Salesforce data through a
Heroku application involved relatively
complex manipulation of APIs. The
new topology simplifies that process
while preserving the integrity of
established workflows, toolchains,
and expertise among Heroku
developers. Heroku applications and

11

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

Learn more about Intel®
Technology in Communications:

www.intel.com/communications

 1 Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Functionality, performance or other benefits will
vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information,
visit www.intel.com/go/virtualization.

 2 Based on the Intel® Solid-State Drive DC P3500, P3600, and P3700 Series Product Specifications. Random I/O Operations based on IOPS.

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED
IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION
WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the
latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web Site http://www.intel.com/.

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/
performance.

 *Other names and brands may be claimed as the property of others.

 Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

 0914/BY/MESH/PDF 330678-001US

services access Salesforce data from
a Postgres* database at Heroku that
synchronizes in both directions with
the main Salesforce CRM data store,
which is based on Oracle Database* and
custom-built object storage.

Establishing data synchronization
between Salesforce CRM data and the
Heroku application development and
hosting PaaS enables organizations
to extend the reach of their business

data globally through the Amazon
public cloud. That reach can strengthen
mobility initiatives targeting sales
teams and other field resources, while
taking advantage of the efficiencies of
container-based virtualization and the
data protection of hypervisor-based
VMs. This infrastructure demonstrates
the ability and value of containers
to harmoniously enhance complex
environments, without displacing
existing architectures.

6 Conclusion

Container-based virtualization is
emerging as a viable solution for
mainstream data-center operators,
helping them drive greater efficiency,
flexibility, and performance. The
capabilities of this model are an
excellent fit with strategic trends that IT
decision makers are likely to be already
implementing or considering, from
hypervisor-based virtualization to SDN.

Intel is investing in the development of
hardware and software technologies
that will support this trend, offering
a high degree of performance
optimization for Intel architecture-
based servers, as well as enhanced,
hardware-based data protection. A
growing solution ecosystem is enriching
the range of technology choices
available, for use in public, private, and
hybrid clouds. Integration among those
options is growing as well.

Looking ahead, the addition of
containers to IT infrastructures
promises to help make businesses more
agile, cost-effective, and capable of
meeting their key objectives.

Salesforce/Force.com Heroku

Physical Infrastructure Company-owned data centers Amazon Web Services* (AWS)

resource Partitioning
Custom multitenant

architecture
(details not disclosed)

Containers inside
Xen*-based AWS VMs

Service Delivery
SaaS (Salesforce);
PaaS (Force.com)

PaaS

Data Store
RDBMS: Oracle Database*

Object store: Fileforce
(proprietary)

Custom Postgres* variant

Programming
Languages

Apex (proprietary);
abstractions allow development

without writing code

Ruby*, Node.js, Python*,
Java*, others

Pricing Basis Number of users
Capacity (e.g., number of

HTTP requests)

Table 1. Layers of nested containers and hypervisor-based virtual machines.

Linux Containers Streamline Virtualization and Complement Hypervisor-Based Virtual Machines

	1 Executive Summary
	2 The Historical Context for Containers and Hypervisors
	2.1 Resource-Partitioning Techniques Not Based on Hypervisors
	2.2 Emergence of Software-Only, Hypervisor-Based Virtualization for Intel® Architecture
	2.3 Hardware-Assisted, Hypervisor-Based Virtualization with Intel® Virtualization Technology

	3 Virtualization Using Linux Containers
	3.2 Usage Model: Combined Hypervisor-Based VMs and
Containers in the Public Cloud
	3.1 Usage Model: Platform as a Service on Software-Defined Infrastructure
	4 Enabling Technologies from Intel for Container-Based Virtualization
	4.1 Intel® Data Plane Development Kit
	4.2 Intel® Solid-State Drive Data Center Family for PCI Express*
	4.3 Enhanced Workload Isolation with Intel® Virtualization Technology

	5 Containers in Real-World Implementations
	5.1 Google: Combinations and Layers of Complementary Containers and Hypervisors
	5.2 Heroku and Salesforce.com: Container-Based CRM, Worldwide

	6 Conclusion

