
1 Executive Summary

By decoupling physical computing resources from the software that executes on 
them, virtualization has dramatically improved resource utilization, enabled server 
consolidation, and allowed workloads to migrate among physical hosts for usages 
such as load balancing and failover. The following key techniques for resource 
sharing and partitioning have been under continual development and refinement 
since work began on them in the 1960s:

•  Hypervisor-based virtualization has been the main focus within the Intel® 
architecture ecosystem. Increased server headroom and hardware assists from 
Intel® Virtualization Technology (Intel® VT)1 have helped broaden its adoption and 
the scope of workloads for which it is effective on open-standard hardware.

•  OS-level virtualization has been developed largely by makers of proprietary 
operating systems and system architectures. Linux* containers, introduced in 
2007, extend the capabilities for highly elastic or latency-sensitive workloads on 
open-standards hardware.

Both approaches have distinct advantages. For example, whereas each hypervisor-
based virtual machine (VM) runs an entire copy of the OS, multiple containers 
share one kernel instance, significantly reducing overhead. While hypervisor-based 
VMs can be provisioned far more quickly than physical servers—taking only tens of 
seconds as opposed to several weeks—that lag is unacceptable for workloads that 
range from real-time data analytics to control systems for autonomous vehicles.

On the other hand, hypervisor-based VMs allow for multi-OS environments and 
superior workload isolation (even in public clouds). Enterprises are also finding 
that new virtualization usage models that draw on both containers and hypervisors 
help them get more value out of strategic approaches such as public cloud, 
software-defined networking (SDN), and network function virtualization (NFV).

NOTE: In the context of this paper, the term “container” is a generalized reference for any 
virtual partition other than a hypervisor-based VM (e.g., a chroot jail, FreeBSD jail, Solaris* 
container/zone, or Linux container).

Linux* Containers Streamline 
Virtualization and Complement 
Hypervisor-Based Virtual Machines
As strategic approaches such as software-defined networking (SDN) and network  
function virtualization (NFV) become more mainstream, combinations of both  
OS-level virtualization and hypervisor-based virtual machines (VMs) often provide  
dramatic cost, agility, and performance benefits, throughout the data center.

As virtualization using  
Linux* containers emerges as 
a viable option for mainstream 
computing environments, Intel 
is investing in enablement 
through hardware and software 
technologies that include the 
following:

•  The Intel® Data Plane 
Development Kit (Intel® DPDK)

•  Intel® Solid State Drive  
Data Center Family  
for PCI Express*

•  Intel® Virtualization Technology
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This paper introduces technical 
executives, architects, and engineers to 
the potential value of Linux containers, 
particularly in conjunction with 
hypervisor-based virtualization; it 
includes the following sections:

•  The Historical Context for Containers 
and Hypervisors traces the 
development of these technologies 
from their common origin as an 
effort to share and partition system 
resources among workloads.

•  Virtualization Using Linux Containers 
introduces the support for container-
based virtualization in Linux, 
illustrated by representative usage 
models.

•  Enabling Technologies from Intel 
for Container-Based Virtualization 
discusses Intel’s hardware and 
software technologies that help 
improve performance and data 
protection when using Linux 
containers.

•  Containers in real-World 
Implementations examines a few 
examples of early adopters that are 
using containers as part of their 
virtualization infrastructures today.

2  The Historical Context for 
Containers and Hypervisors

Hypervisors and containers have a joint 
ancestry, represented in Figure 1, which 
has been driven by efforts to decrease 
the prescriptive coupling between 
software workloads and the hardware 
they run on. From the beginning, these 
advances enhanced the flexibility of 
computing environments, enabling a 
single system to handle a broader range 
of tasks. As a result, two related aspects 
of the interactions between hardware 
and software have evolved:

•  resource sharing among workloads 
allows greater efficiency compared to 
the use of dedicated, single-purpose 
equipment.

•  resource partitioning ensures that 
the system requirements of each 
workload are met and prevents 
unwanted interactions among 
workloads (isolating sensitive data,  
for example).

The first stage depicted in Figure 1 
is that of the monolithic compute 
environment, where the hardware and 
software are logically conjoined, in a 
single-purpose architecture. The ability 
to make significant changes to either 
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Figure 1. Early development of approaches to resource sharing and partitioning.
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hardware or software, short of replacing 
the entire system, is severely limited 
or even nonexistent. The second stage 
includes the supervisor (progenitor of 
the kernel), an intermediary between 
user space and system resources that 
allows hardware and software to be 
changed independently of each other. 
That de-coupling is advanced further 
in the third stage, where the supervisor 
mediates resources among multiple 
users, allowing time-sharing among 
multiple, simultaneous jobs. 

The fourth stage adds a control 
program (CP, also known as the 
“hypervisor”) that presents an 
independent view of the complete 
environment to each application; 
applications execute in isolation, 
unaware of each other. Importantly, 
various hypervisor-enabled virtual 
environments can run different 
operating systems simultaneously on 
the same hardware, which would be 
impossible under most approaches 
to virtualization that are not based on 
hypervisors. (Running workloads based 
on different operating systems on the 
same host is possible to a limited extent 
using Solaris* containers, as described 
below.)

The supervisor, as mediator between 
user space and system resources, 
has full access to the host and allows 
a subset of that access to users 
(workloads). That arrangement allows 
the supervisor to enforce limitations 
on access that are necessary for usages 
such as the time sharing among jobs 
described in the third stage of Figure 
1. In contrast, the CP shown in the 
fourth stage moderates between the 
supervisor and the multiple virtual 
representations of the environment 
presented to workloads. Accordingly, 
the CP operates at a level superior to 
that of the supervisor, conceptually 
suggesting a role “beyond the 
supervisor,” which is reflected in the 
term “hypervisor.”

IBM introduced its first hypervisor 
for production (but unsupported) 
use in 1967, to run on System/360* 
mainframes, followed by a fully 
supported version for System/370* 
equipment in 1972. The company is 
generally recognized as having held 
the industry’s most prominent role in 
the development of hypervisor-based 
virtualization from that point through 
the rest of the twentieth century.

2.1  resource-Partitioning Techniques 
Not Based on Hypervisors

Although hypervisors enrich isolation 
among virtual environments running 
on a single physical host, they also add 
complexity and consume resources. 
Alternate approaches to partitioning 
resources were developed as interest 
in Unix* and Unix-like operating 
systems grew in the late 1970s and 
early 1980s, driven by organizations 
that included Bell Laboratories, 
AT&T, Digital Equipment Corporation, 
Sun Microsystems, and academic 
institutions. These technologies (and 
others), which are collectively referred 
to as “OS-level virtualization,” provide 
lightweight approaches to virtualization, 
acting as foundations for today’s Linux 
containers.

•  The chroot system call is a critical 
foundation for container-based 
virtualization, introduced as a feature 
of Version 7 Unix by Bell Laboratories 
in 1979 and as part of 4.2BSD by the 
University of California, Berkeley 
in 1983. The chroot mechanism 
can redefine the root directory for 
any running program, effectively 
preventing that program from being 
able to name or access resources 
outside that root directory tree. While 
such partitions, referred to as “chroot 
jails,” support limited virtualization 
functionality, they must share a single 
OS kernel. Moreover, chroot is not 
designed to be tamper-resistant, and 

it is vulnerable to intentional efforts 
by users or programs to “break out” 
of their jails and gain unauthorized 
access to resources.

•  FreeBSD* jails are similar in concept 
to chroot jails, but with a greater 
emphasis on security. This mechanism 
was introduced as a feature of 
FreeBSD 4.0 in 2000. FreeBSD jail 
definitions can explicitly restrict access 
outside the sandboxed environment 
by entities such as files, processes, 
and user accounts (including 
accounts created by the jail definition 
specifically for that purpose). While 
this approach significantly enhances 
control over resources compared 
to chroot, it is likewise incapable of 
supporting full virtualization, because 
the FreeBSD jails must share a single 
OS kernel.

•  Solaris containers (Solaris zones) 
build on the virtualization capabilities 
of chroot and FreeBSD jails. Sun 
Microsystems introduced this feature 
with the name “Solaris containers” 
as part of Solaris 10 in 2005, and 
Oracle officially changed the name 
to “Solaris zones” with the release 
of Solaris 11 in 2011. Zones are 
individual virtual server instances that 
can coexist within a single OS instance. 
Similar to FreeBSD jails, Solaris 
zones allow for zone-specific user 
accounts and access restrictions on 
resources such as network interfaces, 
memory, storage, and processors. 
One significant advance toward full 
virtualization is that while Solaris 
zones must share a single OS kernel, 
a capability called “branded zones” 
(BrandZ) enables individual zones 
to emulate the behavior of certain 
operating systems. As mentioned 
previously, BrandZ allows the 
environment to simulate cross-OS 
virtualization to a limited degree.
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2.2  Emergence of Software-Only, 
Hypervisor-Based Virtualization 
for Intel® architecture

Shortly after the year 2000, Intel 
architecture was beginning to reach 
the upper limits of client-server 
performance possible from scaling up 
processor frequency alone. The key 
factors behind that plateau were the 
increased power consumption and 
waste heat associated with raising 
clock speed. The primary solution 
that emerged was to create processor 
architectures with multiple execution 
cores on a single die. 

Multi-core processors can execute 
multiple threads of programming 
instructions in parallel, simultaneously 
and independently of each other. While 
this approach increases scalability, 
redesigning serial applications for 
multithreading—so that work can 
be split efficiently among multiple 
cores—is a complex undertaking. 
Moreover, if done incorrectly, it can 
produce conflicts among threads that 
cause runtime errors, unpredictable 
results, or performance deficits. 
Other approaches to take advantage 
of hardware parallelism include the 
following:

•  Stateless web pages can support 
many tasks running in parallel, such as 
user sessions or transactions.

•  High-performance computing 
models, including clusters and 
grids, coordinate workloads across 
machines.

•  Hypervisor-based virtualization 
allows serial applications to run in 
separate virtual machines (VMs).

•  Non-hypervisor virtualization 
provides resource sharing and 
partitioning among workloads using 
mechanisms such as chroot, FreeBSD 
jails, and Solaris containers.

Of the models described above, 
hypervisor-based virtualization 
emerged as the dominant data-center 
approach, marked by a period of 
rapid hypervisor development in the 
Intel architecture ecosystem, led by 
VMware and the open-source Xen* 
project. Other prominent providers of 
virtualization solutions include Citrix 
(including commercial versions of Xen), 
Microsoft, Oracle, Parallels, Red Hat, 
and the Kernel-based Virtual Machine 
(KVM) open-source project. A high-
level representation of virtualization 
stacks is shown in Figure 2, which 
depicts the two primary hypervisor 
variations: Type 1 and Type 2.

Type 1 hypervisors are installed 
directly on the physical host 
hardware, whereas Type 2 (also 
known as “hosted”) hypervisors are 
installed on top of a host OS. Type 
1 hypervisors communicate directly 
with the underlying hardware and 
support robust virtual networking and 
dynamic resource allocation through 
a management server; they are the 
more prevalent approach for data-
center virtualization of servers. Type 2 
hypervisors typically rely on the host 
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Figure 2. Virtualization based on Type 1 and Type 2 hypervisors.

OS (rather than a management server) 
for services such as I/O device support 
and memory management; they are 
often used for virtualized desktop 
infrastructure.

2.3  Hardware-Assisted, Hypervisor-
Based Virtualization with Intel® 
Virtualization Technology

In software-only virtualization on 
Intel architecture, the hypervisor must 
emulate the hardware environment 
for VMs, using binary translation. 
This service provides software-based 
interfaces to physical resources such 
as processors, memory, storage, 
graphics cards, and network adapters. 
Because this emulation is performed 
in software, it consumes significant 
execution resources on the processor 
that are therefore not available 
to operate on workloads, which 
significantly limits scalability.

Intel introduced Intel VT in 2006, which 
includes a new privilege level for VMs 
to operate in without the overhead 
of binary translation, dramatically 
improving efficiency on the physical 
host. Intel VT has continued to develop 
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Figure 3. Linux containers compared to a Type 1 hypervisor.

into an expanding set of features within 
processors, chipsets, and network 
hardware to make virtualization 
increasingly efficient and to enhance 
the hardware-based isolation between 
workloads on separate VMs running on 
the same host. 

Higher performance, improved data 
protection, and decreased latency 
enabled by Intel VT allowed larger 
numbers of servers to be consolidated 
per physical host and expanded 
the types of workloads suitable for 
virtualization. At the same time, 
progressive generations of Intel® Xeon® 
processors for the highly scalable 
server segment were engineered with 
more advanced reliability, availability, 
and serviceability (RAS) features, 
making them more suitable for 
virtualizing mission-critical workloads.

3  Virtualization Using Linux 
Containers

As discussed above, the requirement 
under hypervisor-based virtualization 
for a separate OS instance to run 
in each VM consumes significant 
resources. For example, multiple copies 
of many drivers and services must be 
run, including some that aren’t even 
needed by any of the running VMs. 

Furthermore, compute capacity can 
be readily increased in virtualized 
environments by starting additional 
VMs, but spinning up a new VM 
(or shutting one down) has time 
requirements on the order of tens of 
seconds. Workloads that can’t tolerate 
that level of delay are becoming more 
prevalent—notably those with elastic 
capacity needs and real-time or 
otherwise low-latency requirements, 
such as the following:

•  real-time data analytics, for systems 
providing services such as business 
intelligence that rely on immediate 
access to data as it emerges from 
dispersed sensors and other sources

•  remote interaction among users, 
including real-time usages such as 
voice or video communication, online 
collaboration, and remote control of 
automated systems, where lag or jitter 
is unacceptable

•  Latency-sensitive or lossless 
networking, as required for systems 
such as network-attached storage or 
Ethernet-based storage area networks

•  Page rendering for web content 
such as Facebook’s News Feed and 
LinkedIn’s Home/Feed, which involves 
gathering data in parallel from many 
sources

In contrast to a VM, a container does 
not require a hypervisor or incorporate 
a dedicated OS, which presents an 
attractive approach for workloads 
such as those described above. The 
open-source Linux Containers (LXC) 
project introduced public code in 2007 
that provides support for multiple 
containers on the same physical host 
(or on the same VM, as discussed 
below), sharing the same instance of 
the Linux OS kernel (and in some cases 

a set of binaries and libraries), as shown 
in Figure 3. Each container includes 
only the services that it needs but can’t 
obtain from those shared resources, 
paring down the size of the software 
stack running on each container.

Two features of the Linux kernel are 
at the core of the functionality that 
underlies Linux containers:

•  Cgroups provides the ability to 
govern and measure the use of 
resources such as memory, processor 
usage, and disk I/O by collections of 
processes called “control groups.” The 
kernel provides access to separate 
subsystems for managing each set 
of resources, either manually or 
programmatically.

•  Namespace isolation provides a 
software-based means of limiting 
each control group’s view of 
global resources, such as details 
about file systems, processes, 
network interfaces, inter-process 
communication, host and domain 
names, and user IDs.
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Using these capabilities, the containers 
themselves are created as sandboxed 
environments for applications to 
execute in. Because the containers are 
unaware of each other, each of them 
interacts with resources such as the 
shared OS kernel and file system as if 
the other containers didn’t exist. That 
isolation extends to the applications 
within the containers, their security 
settings, and their access to physical 
and virtual devices through the host. As 
discussed later in this paper, however, 
software-only approaches to isolating 
workloads are potentially more 
susceptible to compromise by malicious 
software than those that incorporate 
hardware-based mechanisms.

The Container-Based Virtualization Software  
Ecosystem for Linux*

The following list captures a few noteworthy software offerings related to 
the use of containers:

•  LXC (Linux Containers) is a user-space interface (including an API and tools) 
for the cgroups and namespace-isolation features of the Linux kernel.

•  Docker is an open-source engine designed to simplify the use of LXC 
by automating deployment of applications in containers, packaging 
applications and their dependencies in images with a standard format.

•  Lmctfy (Let Me Contain That For You) is an open-source version of 
Google’s internal application containerization stack that, in contrast to 
Docker, prioritizes performance over ease of use.

•  CoreOS is a fork of Chrome OS*, designed to include only the minimum 
level of capabilities that are needed to support the operation of 
applications in containers.

•  Project atomic is a community-based effort initiated by Red Hat to create 
technologies for lightweight container hosts; this work will be used in a new 
product variant, Red Hat Enterprise Linux Atomic Host. 

•  Kubernetes is an open-source container manager developed by 
Google that provides deployment, health management, replication, and 
connectivity services for containers.

NOTE: Lmctfy, CoreOS, and Project Atomic use the Linux kernel’s cgroup and 
namespace-isolation features directly, as opposed to using LXC, although Docker is 
integrated into all three.

At the present early stage, it would 
be difficult to anticipate the roles that 
virtualization based on hypervisors 
versus virtualization based on 
containers will eventually take in 
mainstream data centers. Still, it is 
apparent that both models will persist 
for the foreseeable future, because 
of their complementary nature. For 
example, the requirement that all 
containers must use the same Linux 
OS kernel is an obvious limitation 
to server consolidation in a typical 
enterprise that is likely to also 
include Microsoft Windows*. Desktop 
virtualization is another common 
example; organizations that want to 
run virtual Windows desktops will need 

to do so using a hypervisor. Moreover, 
hypervisors and containers can each 
play a valuable role as the installation 
substrate for the other, as in the usage 
models described in the remainder of 
this paper.

3.1  Usage Model: Platform as a 
Service on Software-Defined 
Infrastructure

The container model of virtualization 
is a good fit with the rack-scale 
architecture (RSA) approach favored 
in Intel’s vision for the re-imagined 
data center. RSA looks ahead to the 
need for dramatically increased levels 
of server resources in data centers to 
support developments such as the 
Internet of Things, which is expected 
to add billions of connected devices 
to the global infrastructure in the 
next decade. To support this vast 
internetwork, server architectures 
must allow resources to shift around 
dynamically as workloads change and 
adapt. 

The RSA approach to meeting that 
challenge is to pool the processing, 
memory, networking, and storage 
resources of an entire server rack, 
disaggregating them from the host-
level units to which we are accustomed. 
Physically, these components need 
not even be arranged in the form of 
servers; for instance, a rack could 
be provisioned using a chassis for 
each type of component and the 
hardware dependencies needed to 
support it. Logically, the rack replaces 
the individual system as the unit of 
management in the data center, with 
one rack’s worth of individual resources 
referred to as a “tray.” That is, one rack 
as a logical unit consists of a processor 
tray, a memory tray, etc.

The attributes of the hardware 
resources are exposed to the software 
layer, which provision virtual systems 
on a dynamic, as-needed basis, 
according to the requirements of a 
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specific workload or task. RSA offers 
tremendous flexibility by tailoring 
software-defined infrastructure to the 
needs of applications and workloads 
in real time. This approach optimizes 
efficiency by dedicating only the level 
of resources needed for the task at 
hand, without the need to reserve 
idle headroom, because the virtual 
system will be disbanded and the 
resources returned to the rack-level 
pool before system demands could 
shift. It also offers a means of building 
a system that is far more reliable than 
any of its components, because each 
of them is inherently redundant and 
interchangeable. Overall, RSA extends 
data-center capabilities and drives up 
asset utilization, while reducing overall 
costs.

Container-based virtualization has 
obvious utility within this approach, 
because it enables extremely rapid 
provisioning and de-provisioning of 
resources, compared to hypervisor-
based virtualization. Here, the container 
environment is scaled horizontally 
using a platform-as-a-service (PaaS) 
model, with a cluster-wide resource 
manager running as a service on all 
the nodes, coordinated by a central 
executive scheduler. Several such 
resource managers integrate with Intel’s 
RSA model, including the following:

•  SLUrM (Simple Linux Utility for 
Resource Management), an open-
source project

•  TOrQUE (Terascale Open-source 
Resource and QUEue Manager), a 
community-based project

• Omega, created by Google

•  Mesos, an Apache Software 
Foundation open-source project

•  YarN (Yet Another Resource 
Negotiator), an Apache Software 
Foundation open-source project for 
Hadoop*

Usages that particularly benefit 
from the use of containers on PaaS 
architectures are those cases where 
long-running data-services applications 
with relatively higher priority can run 
in a multitenant fashion with fast-
completion, lower-priority processing 
tasks such as MapReduce* or Apache 
Spark*. Implementation of this model is 
accelerating in segments such as high-
performance computing, cloud and big 
data, telecommunications, the Internet of 
Things, and financial services (particularly  
to support high-frequency trading).

3.2  Usage Model: Combined 
Hypervisor-Based VMs and  
Containers in the Public Cloud

As they plan how to utilize the cost-
effective, on-demand infrastructure 
offered by public clouds, many 
organizations see potential efficiencies 
from deploying workloads to these 
clouds in containers rather than 
hypervisor-based VMs. The resulting 
reduced compute overhead could 
significantly decrease the amount of 
resources they would be billed for, 
reducing operational expenses. At the 
same time, however, using containers 
may not meet organizations’ needs in 
terms of isolating data among their 
own workloads or from other unknown 
organizations in the shared multitenant 

environment. In this scenario, both 
containers and hypervisor-based VMs 
have unique advantages:

•  Hypervisor-based workload 
isolation. The ability to isolate data on 
a per-VM basis, even within a shared 
multitenant infrastructure, is well 
established, including partitioning 
shared physical memory and I/O 
devices. Doing so is critical to data 
protection particularly in cases of 
sensitive or regulated workloads.

•  Container-based resource efficiency. 
Sharing the OS and some libraries 
and binaries among containers can 
dramatically reduce virtualization 
overhead, increasing provisioning 
speed, performance, and the 
number of client endpoints that can 
be supported with a given level of 
computing resources. That efficiency 
translates into cost savings for the 
customer.

The benefits of both approaches can 
be combined to a significant extent by 
the model where a customer provisions 
a set of VMs on a public cloud and 
then partitions each of those VMs 
using containers, as shown in Figure 
4. Instances of applications deployed 
in those containers could achieve 
a valuable balance between data 
protection and efficiency, particularly 
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Figure 4. Containers inside hypervisor-based virtual machines.
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by using large numbers of containers 
per VM and a stripped-down OS such 
as CoreOS, which is built explicitly 
for containers. At the same time, 
customers can take advantage of the 
global reach, cost-effectiveness, and 
elasticity of PaaS environments offered 
by global providers such as Amazon 
and Google.

Moreover, that PaaS environment could 
use a hybrid cloud model, meaning that 
it could include containers running on 
VMs within both internal data centers 
and public clouds. A virtual network 
with an umbrella DNS namespace 
could encompass the entire multi-
site environment, providing a single, 
global service that is resolved using 
DNS and routing techniques. Hybrid 
cloud infrastructure can help deliver 
the benefits of public cloud services 
while also taking full advantage of 
existing internal infrastructure assets. 
Running containers on the VMs within 
that hybrid cloud provides the rapid 
provisioning and efficiency benefits of 
containers, as well.

Deploying combinations of containers 
and hypervisor-based VMs as 
described above can help organizations 
take advantage of public clouds to 
meet a variety of business needs. For 
example, many companies—even large 
multinationals—have consolidated 
their data-center infrastructures into 
a small number of physical facilities. 
While that strategy enables them to 
achieve cost savings, it also potentially 
extends the physical distance (and 
accordingly, the number of intermediate 
router connections, or “hops”) to some 
endpoints, thereby increasing the 
latency over the connections to those 
endpoints. In response, as the number 
and types of connected devices 
continues to expand, organizations are 
assessing the potential for containers 
in conjunction with hypervisor-based 
virtualization on leased public clouds. 

That approach is particularly germane 
to supporting real-time or otherwise 
latency-sensitive workloads based on 
global networks of mobile devices. 
One example might arise in an 
organization fielding a global network 
of edge devices such as point-of-
sale (POS) systems, customer kiosks, 
smart vending machines, or sensor 
arrays. Exchanging data between such 
endpoints and core back-end systems 
may be a key requirement for real-
time data analytics, which can create 
business value by guiding tactical and 
strategic decision making in areas 
such as demand forecasting, dynamic 
price optimization, and supply-chain 
management. 

Many such implementations could need 
low-latency connectivity in regions that 
are geographically distant from any 
of the company’s owned data centers. 
Likewise, an organization might have 
highly elastic capacity requirements 
for certain applications and workloads, 
separately or in conjunction with the 
global-endpoint example given above. 
Workload characteristics that could 
create such elastic demand might 
include holiday shopping causing a 
spike in activity on retail POS systems, 
seasonal variations in travel volume 
impacting usage of airline kiosks at 
airports all over the world, and hot 
weather or a major sporting event 
producing a temporary rise in sales 
from connected vending machines.

4  Enabling Technologies from 
Intel for Container-Based 
Virtualization

In keeping with its strategic vision 
for RSA and software-defined 
infrastructure, Intel has invested in 
a number of technologies that will 
help optimize performance and 
data protection within container 
environments.

4.1  Intel® Data Plane Development Kit

To increase agility and reduce costs, 
the industry is moving toward solutions 
that decouple network functions 
from the underlying hardware by 
means of abstraction. This transition 
encompasses the interrelated efforts 
of software-defined networking (SDN) 
and network function virtualization 
(NFV). 

The Intel® Data Plane Development 
Kit (Intel® DPDK) is a set of software 
libraries that support the hardware 
abstraction required by SDN and NFV, 
as well as dramatically accelerating 
packet processing. Those capabilities 
enable application, control, and 
signal-processing workloads to be 
transitioned away from special-purpose 
hardware, to standards-based servers 
based on Intel® processors. With the 
reduction or elimination of network 
processor units (NPUs), coprocessors, 
application-specific integrated circuits 
(ASICs), and field-programmable 
gate arrays (FPGAs), the hardware 
environment becomes simpler, more 
cost-effective, and more scalable.

The more homogeneous, standardized 
architecture also better supports 
the dynamic definition of systems 
in software that underlies the RSA 
and software-defined infrastructure 
described earlier in this paper. Intel 
DPDK therefore can play a significant 
role in creating an optimal environment 
for the implementation of container-
based virtualization. Key software-
library components of Intel DPDK 
include the following:

•  Environment Abstraction Layer 
provides access to low-level resources 
such as hardware, memory space, and  
logical cores using a generic interface 
that obscures the details of those 
resources from applications and 
libraries. 
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•  Memory Manager allocates pools of 
objects in huge-page memory space. 
An alignment helper ensures that 
objects are padded, to spread them 
equally across DRAM channels.

•  Buffer Manager significantly reduces 
the time the OS spends allocating and 
de-allocating buffers. The Intel DPDK 
pre-allocates fixed-size buffers, which 
are stored in memory pools.

•  Queue Manager implements safe 
lockless queues (instead of using 
spinlocks), allowing different software 
components to process packets while 
avoiding unnecessary wait times.

•  Flow Classification incorporates Intel® 
Streaming SIMD Extensions (Intel® 
SSE) to produce a hash based on tuple 
information, improving throughput by 
enabling packets to be placed quickly 
into processing flows.

Successful implementation of NFV 
depends to a large extent on robust 
virtual switching capabilities. Open 
vSwitch is a production-quality, 
multi-layer virtual switch distributed 
under the Apache 2.0 License. Intel is 
committed to working with the Open 
vSwitch community to extend it with 
support for Intel DPDK. This support is 
now included in the openvswitch.org 
source tree.

A priority for the integration of 
Open vSwitch and Intel DPDK is 
supporting NFV applications where 
high-frequency, small packet sizes are 
common. To address the challenges 
presented by processing small packets, 
Intel provides a user-space kernel-
forwarding module (data plane) as part 
of Open vSwitch. The modifications 
made to create the Intel® DPDK 
Accelerated Open vSwitch (Intel® 
DPDK vSwitch) resulted in dramatic 
improvements to packet-switching 
throughput, providing an improved 
option for use with NFV use cases.

Ongoing work is planned to help ensure 
Intel DPDK vSwitch compatibility with 
the full range of container-based 
virtualization solutions and to make 
contributions to the main Open vSwitch 
project. In particular, development is 
underway to support direct assignment 
of single-root I/O virtualization (SR-
IOV) virtual functions, as well as 
finer-grained direct assignment at 
the queue-pair level (i.e., RX and TX 
queues).

4.2  Intel® Solid-State Drive  
Data Center Family  
for PCI Express*

The reduction in virtualization overhead 
that is enabled by containers compared 
to hypervisor-only topologies allows 
for more application instances, users, 
or transactions to be run with the 
same level of system resources. One 
effect of that capability is that it places 
greater demand for simultaneous data 
accesses on the storage subsystem. 
Therefore, containers are particularly 
sensitive to the inherent limitation that 
conventional, spinning hard disk drives 
(HDDs) do not support parallel access 
to data.

Conversely, the NAND memory in 
solid-state drives (SSDs) inherently 
supports parallel data access, in 
addition to superior data-transfer 
rates and latency, compared to 
HDDs. Therefore SSDs have the clear 
advantage over HDDs for the large 
numbers of simultaneous instances and 
rapid provisioning and de-provisioning 
associated with container-based 
virtualization. Those advantages are 
particularly pronounced for enabling 
highly parallel big data and high-
performance computing workloads 
using containers.

Even using SSDs, however, throughput 
limitations of SATA interfaces between 
SSDs and the motherboard is a further 
potential bottleneck. To address that 
issue, an industry consortium led by 
Intel developed the new Non-Volatile 
Memory Express* (NVMe) specification, 

which standardizes connectivity for 
SSDs and other non-volatile memory 
(NVM)-based devices using PCI Express*  
(PCIe*) 3.0, to dramatically improve 
data-transfer rates and latency.

Based on the NVMe standard, the Intel 
SSD Data Center Family for PCI Express 
offers a number of benefits that make 
it well suited to the needs of container-
based virtualization:

•  Dramatically improved performance. 
The Intel SSD Data Center Family for 
PCI Express provides up to six times 
faster data transfer speed than 6 Gbps 
SAS/SATA SSDs2.

•  Optimized for multi-core processors. 
Hardware and software parallelism 
enhance performance with features 
such as deeper command queues, 
parallel interrupt processing, and 
lockless thread synchronization.

•  Advanced software support. Intel’s 
NVMe driver has been incorporated 
in the Linux kernel since March 
2012, and management capabilities 
are provided by the Intel® SSD Data 
Center Tool.

•  Enhanced raS. Rigorous qualification 
and compatibility testing, plus 230 
years Mean Time Between Failures 
(MTBF), helps provide business-
critical dependability.

4.3  Enhanced Workload Isolation with 
Intel® Virtualization Technology

A hypervisor-based VM provides a 
hardware-isolated environment for 
provisioning containers. While the 
containers within the VM are isolated 
from each other using only software 
capabilities, the group of containers 
within the VM as a whole can be 
isolated from the rest of the world 
using Intel VT.

As discussed above, the Linux kernel 
provides namespace isolation to 
restrict access to resources as needed. 
The measure of assurance provided 
by this method, however, is limited 
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to some degree by the fact that it is 
based in software, making it at least 
potentially susceptible to software-
based attacks. In theory, a malicious 
process could reach outside its 
container by attacking the Linux OS 
and breach its separation from other 
containers, compromising all data and 
resources on the host.

Intel VT can mitigate the risk of 
software-based attacks with data-
protection measures based on 
hardware features of processors, 
chipsets, and network controllers and 
adapters based on Intel architecture. 
Both open-source and proprietary 
hypervisors and other software 
offerings are deeply integrated with 
these hardware-based capabilities, 
through co-engineering and enabling 
activities by Intel. Hardware-based 
isolation of data, memory, and other 
resources assigned to a specific VM—
beneath the level of system software 
such as OSs and hypervisors—provides 
an added level of data protection, 
beyond what’s possible with containers 
operating on bare metal.

Containers that are provisioned inside 
a hypervisor-based VM have hardware-
enforced access only to the code, data, 
and memory space specified by the 
hypervisor; Intel VT restricts them 
from paging outside the VM’s memory 
boundaries. Applications can also 
be assigned to dedicated processor 
cores, to increase application isolation 
even further. Likewise, malware that 
has infiltrated one VM is effectively 
contained there, being prevented 
from affecting the contents of others. 
Noteworthy processor-level features 
of Intel VT that contribute to data 
protection within VMs include the 
following:

•  Descriptor table exiting. This feature 
helps protect guest operating systems 
from internal attack by preventing 
the relocation of key system-data 
structures.

•  Pause-loop exiting. Taking advantage 
of the fact that spin-locking code 
typically uses PAUSE instructions 
in a loop, this feature detects when 
the duration of a loop is longer 
than “normal” (a sign of lock-holder 
preemption).

Intel® VT for Directed I/O (Intel® VT-d) 
operates at the chipset level, providing 
additional capabilities to enhance 
hardware-based isolation of VMs, 
including the following:

•  Direct Memory Access (DMA) 
remapping. I/O devices move data 
independently of the processor using 
DMA. Intel VT-d enables the OS 
or hypervisor to create protection 
domains, which are isolated sections 
of physical memory to which one or 
more I/O devices can be assigned. The 
DMA remapping hardware provided 
by Intel VT d uses address-translation 
tables to block access to protection 
domains by I/O devices not assigned 
to them.

•  Direct assignment of I/O devices. 
Specific VMs can be assigned 
exclusive access to particular physical 
or virtual I/O devices, each of which is 
given exclusive access to a dedicated 
area of physical system memory; other 
VMs and I/O devices are restricted 
from reading data from or writing data 
to those memory locations.

5  Containers in real-World 
Implementations

Exploring environments where 
container-based virtualization is in 
broad use helps characterize where 
this model is appropriate, where 
hypervisors are the better choice, and 
where the best option is for the two 
approaches to work together.

5.1  Google: Combinations and Layers 
of Complementary Containers and 
Hypervisors

Many of the technologies that enable 
container-based virtualization were 
developed at Google. With one 

of the world’s largest computer 
infrastructures, the company 
continuously looks for more 
lightweight, flexible approaches to 
virtualize those resources. At GlueCon 
in May 2014, Joe Beda, a senior staff 
software engineer for the Google Cloud 
Platform, declared to the audience 
during his presentation that “Everything 
at Google runs in a container.” A high-
level look at some of the architecture 
associated with those containers is 
instructive.

Google presently has six main cloud 
product offerings: three storage 
services (based on a MySQL-compatible 
relational database, an object store, 
and a NoSQL database, respectively), 
the BigQuery analysis service for 
big data, and two compute services, 
described below. The use of containers 
and hypervisors in the compute-
services architecture reveals one 
perspective regarding how these two 
forms of virtualization contrast and 
complement each other.

•  Google app Engine* (GaE) is a 
container-based PaaS product that 
offers App Servers to customers—
containers that each hold one or more 
instances of a customer’s application, 
which have reserved, guaranteed 
resource levels on Google’s 
infrastructure.

•  Google Compute Engine* (GCE) is a 
hypervisor-based infrastructure-as-
a-service (IaaS) product that offers 
Linux-based VMs running on top 
of KVM. Interestingly, KVM itself is 
installed in a container, and CoreOS 
(which can only run applications in 
containers) is emerging as the basis 
for the default VM image on GCE. 
Thus, by default, a GCE application 
runs in a container, within a VM, on top 
of a hypervisor, which is in a container, 
as illustrated in Figure 5.

Using containers to subdivide resources 
among GAE end customers offers 
efficient use of hardware resources, 
as well as flexibility to customers in 
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Figure 5. Layers of nested containers and 
hypervisor-based virtual machines.

terms of static (manual) or dynamic 
(automated) assignment of those 
resources. GAE offers simple creation 
and hosting of applications, websites, 
and services, with some trade-offs in 
terms of flexibility, due to the model 
requiring Google to preselect the finite 
set of languages, APIs, and frameworks 
that GAE supports.

The architectural differences between 
the two offerings are significant. 
Consider two hypothetical customers 
that must choose between GAE and 
GCE. The first evaluates both services 
as the core infrastructure for a 
straightforward web-based business 
application and chooses GAE, planning 
to develop in PHP with Google’s Cloud 
SQL relational-database service on the 
back end. The lightweight containers 
model is a good fit in this case.

The second hypothetical customer 
wants to deploy a Hadoop* cluster 
within Google’s cloud platform and 
manage it with Cloud Foundry*, as the 
basis for worldwide data collection that 
feeds into real-time data analytics. GAE 
does not support this use case, and 
the customer opts to deploy Hadoop 
and the related business logic in 
containers built on top of GCE VMs. The 

implementation uses the BOSH Cloud 
Provider Interface (CPI) to deploy all the 
distributed software and the Google 
Cloud Datastore NoSQL database 
service for the application’s large 
repository of non-relational data.

5.2  Heroku and Salesforce.com: 
Container-Based CrM, Worldwide

As one of the largest cloud computing 
companies, Salesforce.com is another 
example of a technology provider that 
uses container-based virtualization 
in tandem with other approaches to 
partition compute resources. The 
company has steadily expanded its 
portfolio of product offerings in the 
past several years, building outward 
from its core Customer Relationship 
Management (CRM) software-as-a-
service (SaaS) offering. 

In particular, the company has added 
applications and services (many of a 
business-oriented social-networking 
nature) that integrate with and 
add value to customers’ CRM data. 
While those additions originate 
largely from internal development 
or acquisitions, Salesforce also has a 
substantial commitment to facilitating 
the development of software that 
integrates with its CRM by third parties. 

The AppExchange* app store has been 
active since 2005, joined in 2007 by 
Force.com, a PaaS for the development 
and deployment of third-party 
applications that consume Salesforce 
CRM data.

In May 2014, the container-based 
PaaS operated by Heroku, a Salesforce 
subsidiary, was richly integrated for 
the first time with Salesforce CRM as a 
data source. Like Force.com, Heroku is 
designed for developers to build and 
deploy customer-facing applications, 
mobile and otherwise. In contrast, 
however, where Force.com primarily 
serves developers within enterprises 
building apps for employees, Heroku 
customers tend to be at start-ups 
and smaller independent software 
vendors. Heroku’s architecture is also 
substantially different from the general 
approach at Salesforce, as shown in 
Table 1.

Before this integration, providing 
access to Salesforce data through a 
Heroku application involved relatively 
complex manipulation of APIs. The 
new topology simplifies that process 
while preserving the integrity of 
established workflows, toolchains, 
and expertise among Heroku 
developers. Heroku applications and 
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services access Salesforce data from 
a Postgres* database at Heroku that 
synchronizes in both directions with 
the main Salesforce CRM data store, 
which is based on Oracle Database* and 
custom-built object storage.

Establishing data synchronization 
between Salesforce CRM data and the 
Heroku application development and 
hosting PaaS enables organizations 
to extend the reach of their business 

data globally through the Amazon 
public cloud. That reach can strengthen 
mobility initiatives targeting sales 
teams and other field resources, while 
taking advantage of the efficiencies of 
container-based virtualization and the 
data protection of hypervisor-based 
VMs. This infrastructure demonstrates 
the ability and value of containers 
to harmoniously enhance complex 
environments, without displacing 
existing architectures.

6 Conclusion

Container-based virtualization is 
emerging as a viable solution for 
mainstream data-center operators, 
helping them drive greater efficiency, 
flexibility, and performance. The 
capabilities of this model are an 
excellent fit with strategic trends that IT 
decision makers are likely to be already 
implementing or considering, from 
hypervisor-based virtualization to SDN. 

Intel is investing in the development of 
hardware and software technologies 
that will support this trend, offering 
a high degree of performance 
optimization for Intel architecture-
based servers, as well as enhanced, 
hardware-based data protection. A 
growing solution ecosystem is enriching 
the range of technology choices 
available, for use in public, private, and 
hybrid clouds. Integration among those 
options is growing as well.

Looking ahead, the addition of 
containers to IT infrastructures 
promises to help make businesses more 
agile, cost-effective, and capable of 
meeting their key objectives.

Salesforce/Force.com Heroku

Physical Infrastructure Company-owned data centers Amazon Web Services* (AWS)

resource Partitioning
Custom multitenant 

architecture  
(details not disclosed)

Containers inside  
Xen*-based AWS VMs

Service Delivery
SaaS (Salesforce);  
PaaS (Force.com)

PaaS

Data Store
RDBMS: Oracle Database* 

Object store: Fileforce 
(proprietary)

Custom Postgres* variant

Programming 
Languages

Apex (proprietary); 
abstractions allow development  

without writing code

Ruby*, Node.js, Python*,  
Java*, others

Pricing Basis Number of users
Capacity (e.g., number of  

HTTP requests)

Table 1. Layers of nested containers and hypervisor-based virtual machines.
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