

Linux Containers: virtualization
without overhead or strange

patches

Sam Vilain, Catalyst IT
Talk for LCA2010 SysAdmin miniconf

Wellington, New Zealand

Warning

● “miniconf” grade talk
● Always check facts/'git log'
● Refer resources at end for better facts

Broad Approaches to
Virtualization

● Complete emulation eg VMWare, QEMU
● Hypervisor eg Xen, KVM, Hurd
● System call level - eg VServer or OpenVZ,

Containers, etc
● Application eg Vhosting
● Scale of continuum – functionality vs

performance

This is your Linux

This is your Linuxes on QEMU

This is your Linuxes on Xen/KVM

This is your Linux on Containers

What is a container?

● What 'lxc' utilities deal with
● An abstract concept only – not a concrete

kernel object
– Perhaps a single isolated daemon with minimal

privileges

– Perhaps a self-contained Linux system

● A set of namespaces logically grouped together
● Potentially, a set of controllers scheduling

resources

What is a namespace?

● Every task_struct (process/thread) knows their
namespace objects; cloned via clone(2)

● System calls go through the task_struct → can
provide “customised” results

● Eg, PID namespaces: processes with a
particular namespace see private PIDs.

● Eric Biedermann's brainchild – a radical
departure from the extra syscall approach of
VServer et al.

Restricting a process
● chroot() - changes /proc/self/root

● Capabilities – de-fangs root

● Filesystem Namespaces – changes /proc/self/mounts

● UTS Namespaces – private hostname

● PID Namespaces – private PIDs

● User namespaces – private userIDs

● IPC Namespaces – private messages

● Network Namespaces – private interfaces

● /proc generally the way to inspect situation

What is a controller?

● Influences scheduling decisions, a la Linux's
TC for network scheduling

– (aside) “token bucket filter” CPU scheduler

● IBM engineers mostly AIUI
● Two parts:

– Afferent: categorisation of processes into
scheduling classes (control groups)

– Efferent: actual implementation of scheduling
(controller)

What controllers exist?

● Network: groups classifier
(CONFIG_NET_CLS_CGROUP), then use TC

● CPU: CONFIG_CGROUP_SCHED etc
● Memory: RSS, Swap
● IO: CFQ group scheduling

Comparisons with VServer

● Design differences: VServer restricts visibility
of objects; namespaces make numbers distinct

● Enter mechanism: added later with
namespaces; need to use init+getty or SSH.

● Network: network namespaces can give
private network interfaces, directly bound or
bridged. Private iptables.

More VServer comparisons

● Devices: mknod whitelist allows containers to
make /dev/null if they want

● User IDs: user namespaces – instead of XID
tagging I guess

Benefits of Lightweight Virtualization

● Flexibility of management
● Filesystems, processes visible from host

without stopping guest
● 100% speed
● 100% lightweight
● Freezing, unfreezing - live migration, even

between kernel versions

Xen/KVM or Containers?

● Use Xen/KVM if you need:
– hard resource partitioning → lower overall performance

– differing kernel versions

● Use containers if you need:
– soft resource partitioning → maximum performance,

fewer guarantees

– process jails

– live kernel upgrades

● Sometimes a mix is useful

Resources

● LXC HOWTO (vaguely useful)
http://lxc.teegra.net/

● IBM page on containers
http://www.ibm.com/developerworks/linux/library/l-lxc-containers

● lxc Ubuntu package
apt-get install lxc

http://lxc.teegra.net/
http://www.ibm.com/developerworks/linux/library/l-lxc-containers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

