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Abstract 
In container-based virtualization where multiple isolat-
ed containers share I/O resources on top of a single 
operating system, efficient and proportional I/O re-
source sharing is an important system requirement. Mo-
tivated by a lack of adequate support for I/O resource 
sharing in Linux Cgroup for high-performance NVMe 
SSDs, we developed a new weight-based dynamic 
throttling technique which can provide proportional I/O 
sharing for container-based virtualization solutions run-
ning on NUMA multi-core systems with NVMe SSDs. 
By intelligently predicting the future I/O bandwidth 
requirement of containers based on past I/O service 
rates of I/O-active containers, and modifying the cur-
rent Linux Cgroup implementation for better NUMA-
scalable performance, our scheme achieves highly ac-
curate I/O resource sharing while reducing wasted I/O 
bandwidth. Based on a Linux kernel 4.0.4 implementa-
tion running on a 4-node NUMA multi-core systems 
with NVMe SSDs, our experimental results show that 
the proposed technique can efficiently share the I/O 
bandwidth of NVMe SSDs among multiple containers 
according to given I/O weights. 

1 Introduction 
Container-based virtualization is emerging as a key 

cloud computing platform for serving various cloud 
services because it allows multiple isolated instances 
(called containers) to share system resources more effi-
ciently over hypervisor-based virtualization. In contain-
er-based virtualization, since multiple containers run 
independently on top of a single common operating 
system, it is important for a kernel-level resource man-
ager to support resource isolation and sharing in an ef-
ficient and proportional fashion among multiple con-
tainers with different service requirements.  

Linux Cgroup [1] is such a resource control frame-
work in Linux which supports many container-based 
virtualization solutions such as Linux container (LXC), 
Docker and libcontainer [2, 3]. Linux Cgroup manages, 
for example, the I/O bandwidth of a storage system in a 
proportional way so that the total I/O bandwidth of the 
storage system can be properly shared among multiple 
containers.  

Although Linux Cgroup efficiently supports propor-
tional I/O sharing for SATA-based HDDs/SSDs inside 
the CFQ I/O scheduler at the single-queue block layer, 

the current Cgroup implementation does not adequately 
support I/O resource sharing for recent high-
performance SSDs (such as NVMe SSDs).  For exam-
ple, since these high-performance SSDs, which can 
achieve more than 1 million IOPS, need to work with 
the newly proposed multi-queue block layer [4] for 
realizing its performance potential, the existing propor-
tional I/O sharing scheme, which was implemented at 
the single-queue block layer, cannot be used. In this 
paper, we propose a weight-based dynamic throttling 
scheme for NVMe SSDs which can provide efficient 
and proportional I/O sharing. Our proposed throttling 
scheme is implemented as an extension to the existing 
I/O throttling layer of Linux Cgroup.  

While implementing the proposed scheme, we also 
discovered that the current Linux Cgroup is not scalable 
on NUMA multicore systems when it works with high-
performance NVMe SSDs. Since these NVMe SSDs 
are expected to be shared in practice by a large number 
of containers (because of their high bandwidth as well 
as their high capacity), it is an important requirement 
for Linux Cgroup to work in a scalable way as the 
number of containers increases. Furthermore, since a 
host system for these SSDs are likely to be based on 
NUMA multi-core systems, Linux Cgroup should sup-
port NUMA-aware scalable I/O sharing as well. In or-
der to make the proposed scheme to be NUMA-scalable, 
we modified Linux Cgroup to employ per-container 
locks instead of sharing a single request-queue lock 
among multiple containers. 

In order to understand the effectiveness of our pro-
posed improvements to the current Cgroup implementa-
tion, we implemented the proposed scheme on Linux 
kernel 4.0.4 running on a 4-node NUMA multi-core 
system and evaluated it using Samsung XS1715 NVMe 
SSDs [5]. The experimental results show that our 
scheme can efficiently share the I/O bandwidth of 
NVMe SSDs among multiple containers in proportion 
to their I/O weights with scalable performance. 

The remainder of this paper is organized as follows. 
Sec. 2 explains the limitations of the current Linux 
Cgroup when NVMe SSDs are shared among contain-
ers. Sec. 3 describes the proposed I/O resource sharing 
scheme. Experimental results are presented in Sec. 4. 
Sec. 5 summarizes related work. Sec. 6 concludes with 
a summary and future work. 
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2 Limitations of Linux Cgroup for NVMe 
SSDs 

In this section, we evaluate how the existing I/O re-
source control mechanisms of Linux Cgroup work with 
NVMe SSDs in sharing I/O resource among multiple 
containers. As shown in Fig. 1, in Linux Cgroup, I/O 
resource sharing can be supported at two layers, the 
Cgroup I/O throttling layer and single-queue block lay-
er.  

For SATA HDDs and SSDs, proportional I/O re-
source sharing has been supported inside the CFQ I/O 
scheduler of the single-queue block layer [6]. However, 
since Linux kernel 3.13, NVMe SSDs have been sup-
ported under the multi-queue block layer because the 
single-queue block layer cannot achieve a high perfor-
mance potential of NVMe SSDs [4]. Therefore, the 
existing CFQ-based proportional I/O policy cannot be 
reused for NVMe SSDs. 

Linux Cgroup also provides I/O throttling at the 
Cgroup I/O throttling layer which can be used for I/O 
resource sharing by limiting the maximum I/O band-
width or maximum IOPS available for each container. 
As a simple proportional I/O sharing solution at the 
Cgroup I/O throttling layer, we developed a static throt-
tling scheme, ST, which assigns different upper limits 
on the read bandwidth and write bandwidth to contain-
ers according to their I/O weights.  

In order to quantitatively evaluate the limitation of 
the existing Cgroup resource sharing mechanisms (in-
cluding ST) for NVMe SSDs, we performed simple ex-
periments using four containers,   ,   ,   , and   , 
where the I/O weight ratios among four containers are 
given as 10:5:2.5:1. For the experiments, a Dell R920 
with 4 Samsung XS1715 NVMe SSDs was used. R920 
has 4 NUMA nodes where each NUMA node supports 
12 CPU cores. We created four containers using LXC 
[2]. Each container ran the I/O workloads summarized 
in Table 1

1
. As shown in Fig. 2, the default Cgroup 

policy, BASELINE, has no support for proportional I/O 

                                                 
1 We used the block I/O trace replay tool [7] to generate I/O requests 
from the workloads in Table 1. (These traces are from UMass [8] and 
SNIA [9]). In our experiments, these workloads were executed by 12 
concurrent threads with a queue depth of 32. 

sharing for NVMe SSDs, thus producing meaningless 
resource sharing result. Although ST, which assigns the 
maximum bandwidth allowed for each container based 
on the I/O weight of the container, works much better 
than BASELINE, it still performs poorly for proportional 
I/O sharing. For example, the required I/O weight ratio 
of    to    is 2:1, but ST achieves the ratio of 9.9 to 2.2. 

The poor performance of ST can be attributed to two 
main factors. First, although the static throttling ap-
proach used in ST is effective in guaranteeing that no 
container is allocated with the I/O bandwidth over the 
specified maximum bandwidth, it is not useful to meet 
required I/O weights of containers. Furthermore, ST is 
likely to waste the I/O bandwidth allocated for a con-
tainer if the container is not I/O-intensive. For example, 
Fig. 3 shows    wastes a significant amount of the allo-
cated read bandwidth because its read request are not 
intensive enough to fully consume the allocated read 
bandwidth. 

Second, ST separately manages read bandwidth and 
write bandwidth (following the basic throttling mecha-
nism of the Cgroup I/O throttling layer), making it dif-
ficult to manage the I/O bandwidth in an integrated 
fashion. For example, Fig. 4 shows that    consumed 
most of the allocated read bandwidth but it significantly 
under-utilized the allocated write bandwidth. Since this 
asymmetric I/O consumption pattern between reads and 
writes is application specific (e.g., MSNMeta is read-
intensive of    ), ST cannot easily estimate the required 
read bandwidth and write bandwidth in advance. There-
fore ST may waste a significant amount of the allocated 
read / write bandwidth.  

Our proposed scheme improves these two weakness-
es of ST by dynamically adjusting each container’s 
maximum I/O bandwidth by predicting future I/O de-
mands and managing both the read bandwidth and write 
bandwidth in a combined fashion. 

3 Weight-based Dynamic Throttling Scheme 
In this section, we describe our proposed weight-

based dynamic throttling scheme, WDT, for NVMe 
SSDs. 

 
Fig. 1: An overview of the I/O resource control in Linux Cgroup. 

Table 1: Characteristics of I/O workloads in four containers. 

Container Workload Request size (total / average) R : W 

   Exchange 126.7GB / 9.3KB 0.34 : 1 

   MSNMeta 71.5GB / 5.0KB 1.94 : 1 

   MSNFS 56.0GB / 5.1KB 1.67 : 1  

   Finance 28.2GB / 2.7KB 0.87 : 1 

 
Fig. 2: Evaluation results of proportional I/O sharing in Linux 

Cgroup. 
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3.1 Key Design Decisions 

As the first design decision, we decided to implement 
WDT at the Cgroup I/O throttling layer instead of at the 
multi-queue block layer as shown in Fig. 1. Our deci-
sion is affected by three factors: 1) adding a new policy 
at the I/O throttling layer is easier by reusing most of 
the existing throttling layer code, 2) implementing a 
CFQ-like I/O scheduler for the multi-queue block layer 
can be quite expensive (because per-process I/O sched-
uling queues necessary in the CFQ I/O scheduler incurs 
a large overhead in the multi-queue block layer), and 3) 
employing an I/O scheduler is not recommended for 
high-performance SSDs. 

Another important decision we made in designing the 
current WDT scheme was how to define I/O propor-
tionality. An ideal proportional I/O sharing technique 
must satisfy the required I/O weight ratios among con-
tainers both locally and globally. By locally-
proportional I/O sharing, we mean that the I/O weight 
ratios are satisfied among I/O-active containers for a 
given short time interval. On the other hand, in a glob-
ally-proportional I/O sharing technique, the total I/O 
resource usage of multiple containers (over entire exe-
cution times) should be proportionally maintained. 
Since even formally defining the requirements of an 
ideal proportional I/O sharing technique is challenging, 
in the current version of WDT, we focus on locally-
proportional I/O sharing only. 

3.2 Overview of WDT 

In order to support locally-proportional I/O sharing 
in WDT using dynamic throttling, we employ an inter-
val-based approach. A fixed-length interval    , called 
as the throttling window, is used as a basic unit of I/O 
resource control in WDT. (We denote the size of the 
throttling window as       .) For the j-th throttling 
window    

 
, we associate the following three parame-

ters for a container   :   
 
,   

 
,   

 
. The credit budget 

  
 
 of the container    for    

 
 indicates the total num-

ber of sectors that   can request (either by reads or 
writes) during the j-th throttling window    

 
. The used 

credit   
 
 of the container    represents the total num-

ber of credits consumed by    during    
 

. The residual 
credit   

 
 of the container    indicates the remaining 

credits not consumed during    
 

.   
 
 is carried over to 

the next throttling window    
   

. Whenever an I/O re-
quest of    is serviced,   

 
 is incremented by the num-

ber of sectors serviced. 
In order to decide whether the current I/O request 

should be issued or throttled under I/O proportionality 

requirements, we check if   
 
 is smaller than the sum of 

  
 
 and   

 
. If   

 
 is smaller, that is, if there are remain-

ing credits available, the current I/O request is issued. 
Otherwise, it is throttled until the next throttling win-
dow. 

An overview of the proposed WDT scheme is shown 
in Fig. 5. The WDT scheme consists of two main func-
tions. The future I/O demand predictor is responsible 
for estimating a future I/O demand of the container   . 
WDT monitors the I/O service rate of    for    

 
, which 

we denote as     
 

 (Credits per Millisecond), and 
computes the future I/O demand of    based on the 
cumulated past      values. Once future I/O demands 
of the containers are predicted for the next throttling 
window    

   
, the total amount of credits required for 

the next throttling interval, TotalCredit, is computed. 
The budget distributor then updates   

   
 values for the 

containers by distributing TotalCredit to each container 
based on its I/O weight. 

3.3 Future I/O Demand Predictor 

The key step of WDT is to compute TotalCredit for 
each throttling window. Since the budget distributor 
simply divides TotalCredit based on I/O weights of con-
tainers, the efficiency of WDT largely depends on the 
accuracy of predicting TotalCredit. If TotalCredit is 
overestimated by a larger amount than an actual total 
number of credits necessary for the next throttling win-
dow, it may be difficult to meet proportional I/O re-
quirements because some containers may consume too 
many credits while others have no usable credits left. 
On the other hand, if TotalCredit is underestimated, the 
overall I/O performance may be degraded because it 
may throttle I/O requests more than necessary. There-
fore, accurately predicting TotalCredit is important in 
WDT. Furthermore, in order to reduce the overhead of 
updating TotalCredit, WDT only updates TotalCredit 
every N throttling windows (which we call the update 
window of TotalCredit). We denote the length of this 
update window as        . Note that since we recom-
pute TotalCredit every update window,   

 
’s are also 

updated only once per update window. However,   
 
’s 

and   
 
’s are still updated every throttling window. 

Let TotalCreditp represent TotalCredit computed at 
the p-th update window. In order to compute To-
talCreditp+1 close to an actual I/O demand, we first es-

  
Fig. 3: Under-utilized read 

bandwidth in   . 
Fig. 4: Asymmetric I/O band-

width consumption between reads 

and writes. 

 
Fig. 5: An organizational overview of WDT. 

100

200

300

400

500

600

0 10 20 30 40 50 60

I/
O

 b
a

n
d

w
id

th
 
(M

B
/s

)

Time (s)

Maximum read 

bandwidth

0

200

400

600

800

1000

1200

1400

C1 C2 C3 C4

I/
O

 b
a

n
d

w
id

th
 
(M

B
/s

)

Max. read B/W

Read B/W used

Max. write B/W

Write B/W used

        

Container

Block Layer

Container Container 

weight w1 weight w2 weight w3
Credit allocation

CPM Monitoring

Data flow

Future I/O Demand 

Predictor

Budget Distributor

TotalCredit Updater

Residual Credits 

Carryover

TotalCredit  
 
   

 

   
 

Monitoring 

    

  
 
   

 

   
 

  
 
   

 

   
 

Monitoring 

    

Monitoring 

    

      



4 

 

timate the future credit budget     
   

 of the container 
     which had the highest I/O weight at the p-th up-
date window.  

Assuming that      is also the container with the 
highest I/O weight at the (p+1)-th window

2
, we can 

estimate TotalCreditp+1 as follows: 

                            
    
   

    
 

 

    
   

 can be conservatively estimated as follows: 

    
   

         
    ×         

where       
    is the Nth percentile of a cumulative 

distribution of        values. In the current WDT 
scheme, we used the 80th percentile value based on our 
empirical evaluation

3
. Since maintaining an entire cu-

mulative distribution histogram incurs a large overhead 
inside the kernel, we instead use the probit function 
[10], a well-known quantile function associated with 
the standard normal distribution. Using the probit func-
tion, the 80th percentile     

     of      can be cal-
culated as follows: 

    
         (    )     (    )        (   ) 

where     (    )  and    (    )  are the average 
and standard deviation of a cumulative distribution of 
     values. 

3.4 Residual Credit Carryover 

Although the current WDT scheme focuses on 
achieving locally-proportional I/O sharing among local-
ly I/O-active containers, WDT tries to improve the over-
all I/O performance by reducing wasted credit budgets 
of containers. In order to minimize wasted credits allo-
cated for a container    for    

 
, the container maintains 

the residual credit   
 
 for each    

 
.    

   
 is computed 

as   
 
   

 
   

 
. When the I/O behavior of    sud-

denly changes (for example, almost no I/O requests for 
   
 

), most of   
 
 are wasted unless they are carried over 

for future usage. By using   
 
, WDT can use the unused 

credits in a future throttling window when    needs 
higher I/O bandwidth.  

3.5 Per-container Lock for Performance Scalability 

                                                 
2 In most cases, this assumption holds for our experiments. For a few 
cases where      changes at the next throttling window,   

   
 values 

may be inaccurate. However, WDT quickly catches up this mistake 
within several subsequent throttling windows. 
3 Choosing a right       

    value is not trivial. Since we estimate the 
future budget for      using       

   , the best       
    is workload-

dependent. Designing a better solution (e.g., choosing       
    val-

ues in a workload-adaptive fashion) is one of our future WDT exten-
sions. 

While developing the WDT scheme, we discovered a 
scalability problem of the current Cgroup throttling 
layer implementation on a NUMA machine with high 
performance NVMe SSDs. Fig. 6 illustrates the NUMA 
scalability problem using a four-container example 
where each container runs three FIO processes and each 
FIO process intensively generates 4-KB random rad 
requests. As shown in Fig. 6, the read bandwidth sharp-
ly drops when more than one NUMA nodes are used on 
a Dell R920 machine (with four NUMA nodes). 

The main source of this scalability problem is that a 
single request-queue lock is shared among all contain-
ers (i.e., all FIO processes) whenever an I/O bandwidth 
threshold is checked. Since multiple containers running 
on different NUMA nodes will continuous incur expen-
sive cacheline invalidation operations when the shared 
lock is updated, the read bandwidth is very quickly de-
graded as the number of containers running on different 
NUMA nodes increases. Fig. 7 shows that CPU cache 
miss ratio sharply increases when multiple containers 
issue I/O requests from more than one NUMA node. 
The performance impact of the increased cache misses, 
however, depends on the performance level of a target 
storage system. For example, in slower HDDs, the per-
formance penalty from the increased cache misses was 
insignificant because HDDs performed slowly. On the 
other hand, for NVMe SSDs, this penalty directly af-
fects the I/O throughput as shown in Fig. 6. 

In order to solve the scalability problem, we adopted 
per-container locks instead of a single request-queue 
lock at the I/O throttling layer of Linux Cgroup. Since 
WDT requires container-local information only, it is not 
necessary to use a global lock shared by all the contain-
ers. Fine-grained per-container locks make the I/O 
throttling layer operate independently from other con-
tainers. The experimental result (in Sec. 4) shows that 
our simple modification significantly reduces perfor-
mance degradation from the I/O scalability problem. 

4 Experiment Results 
4.1 Experimental Setup 

The proposed WDT scheme was implemented in 
Linux kernel 4.0.4 and evaluated on a Dell R920 ma-
chine configuration described in Sec. 2. In evaluations, 
four real-world workloads (described in Table 1) are 
used as well as a synthetic workload (based on FIO 
[11]). We set        to be 100 ms (which is the throt-
tling window size used in the original Linux Cgroup). 
Since     

     tends to be changed slowly, we set 
        to the 10 times of        (i.e., 1 s). 

We evaluate three schemes, ST, WDT, and WDT-, 
where WDT- works in the same way as WDT except that 
a single request-queue lock is used for all containers. 

4.2 Results 

Fig. 8 shows how WDT satisfies different I/O weight 
combinations for four containers using read-world 
workloads of Table 1. For four different cases, WDT 
very accurately satisfies the proportional sharing re-
quirements. 

  
Fig. 6: I/O throughput of con-

tainers with varying number of 
NUMA nodes. 

Fig. 7: CPU cache miss ratio 

with varying number of NUMA 
nodes. 
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Fig. 9 compares ST, WDT- and WDT for their propor-
tional I/O support using synthetic workloads. In this 
evaluation, each container generates 4-KB random read 
and write requests intensively by using FIO processes. 
A ratio of read to write in each container was set differ-
ently from 90% (in   ), 80% (in   ), 70% (in   ) and 
60% (in   ). Both WDT and WDT- can meet the propor-
tional sharing requirement while ST cannot. It is be-
cause ST cannot properly handle asymmetric bandwidth 
consumption behaviors.  

Moreover, as shown in Fig. 9, WDT achieves much 
higher I/O bandwidth for four containers over WDT-. 
For example,    achieves an I/O bandwidth of 176 
MB/s under WDT while    reaches only up to an I/O 
bandwidth of 133 MB/s under WDT-. This difference in 
the achieved I/O bandwidth between WDT and WDT- 
shows that WDT significantly reduces the overhead of a 
shared lock at the Cgroup throttling layer. The cache 
miss ratio under WDT was 12.8 % only while that under 
WDT- was 32.4%. 

5 Related Work 
Several research groups have proposed I/O resource 

control schemes based on credit allocation and throt-
tling such as SLEDS [12], RW(D) [13] and SARC [14]. 
Unlike our scheme, SLEDS and RW(D) are not fully 
work-conserving because they lack a mechanism for 
utilizing spare bandwidth. Although SARC is work-
conserving, it is rather ineffective in meeting the I/O 
proportionality because residual credits are not ac-
counted in future credit allocation. Our scheme, on the 
other hand, is fully work-conserving while satisfying 
the required I/O proportionality very accurately by up-
dating the total credit amounts depending on estimated 
future I/O demands and fully accounting residual cred-
its for each throttling window. 

6 Conclusions 
We have presented an I/O resource management 

technique, WDT, for supporting proportional I/O re-
source sharing in Linux Cgroup on NUMA multi-core 
machines with NVMe SSDs. In order to overcome the 
shortcomings of the existing throttling policy, WDT 
employs a dynamic throttling approach by intelligently 
predicting the future I/O demands of each container and 
manages reads and writes in a combined fashion. Our 
evaluation results show that the WDT technique 
achieves very accurate proportional I/O resource shar-
ing. By employing per-container locks, WDT also 
achieves NUMA-scalable high I/O performance as well. 

The proposed WDT can be extended in several direc-
tions. For example, as described in [15,16], the problem 
of proportional I/O sharing should be solved in a cross-
layer fashion. Although the current version of WDT has 
focused on the block layer only, we plan to extend the 
WDT scheme to consider multiple layers (e.g., a file 
system and a page cache) in an integrated fashion. 
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Fig. 8: Evaluation results of proportional I/O sharing under WDT 

with real-world workloads. 

 
Fig. 9: Evaluation results of proportional I/O sharing in ST, WDT- 

and WDT schemes with FIO processes. 
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