
Thesis no:MSEE-2016:38

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona Sweden

Performance Comparison of Cassandra in
LXC and Bare metal

Container Virtualization case study

Reventh Thiruvallur Vangeepuram

i

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial
fulfillment of the requirements for the degree of Masters in Telecommunication Systems. The
thesis is equivalent to 20 weeks of full time studies.

Contact Information:
Author(s):
Reventh Thiruvallur Vangeepuram
E-mail: reth15@student.bth.se, revanth.tv@gmail.com

University advisor:
Emiliano Cassalicchio
Professor
DIDD
Blekinge Institute of Technology

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

Internet : www.bth.se
Phone : +46 455 38 50 00
Fax : +46 455 38 50 57

1

Abstract
Big data is a developing term that describes any large amount of structured and unstructured
data that has the potential to be mined for information. To store this type of large amounts of
data, cloud storage systems are necessary. These cloud storage systems are developed such
that they are capable of keeping the data accessible and available to the users over a network.
To store big data new platforms are required. Some of the popular big data platforms are
Mongo, Cassandra and Hadoop. In this thesis we used Cassandra database system because it
is a distributed database and also open source. Cassandra’s architecture is master less ring
design that is easy to setup and easy to maintain. Apache Cassandra is a highly scalable
distributed database designed to handle big data management with linear scalable and seamless
multiple data center deployment. It is a NoSQL database system which allow schema free
tables so that a data item could have a variable set of columns unlike in relational databases.
Cassandra provides with high scalability with no single point of failure.

For the past few years’ container based virtualization has been evolving rapidly. Container
based virtualization such as LXC have been focused here. Linux Containers (LXC) is an
operating system level virtualization method for running multiple isolated Linux systems on a
single control host. It does not resemble a virtual machine, but provides a virtual environment
that has its own CPU, memory, network, etc. space and the resource control mechanism. In
this thesis work performance of Apache Cassandra database has been analyzed between bare
metal and Linux Containers(LXC).

A three node Cassandra cluster has been created on both bare metal and Linux container.
Assuming one node as seed and Cassandra stress utility tool has been used to test the load of
Cassandra cluster. The performance of Cassandra cluster database has been evaluated in bare
metal and Linux Container which is the goal of this thesis work.

Linux containers (LXC) are deployed in all the servers. A three node Cassandra database
cluster has been created in these servers and also in Linux Container(LXC). Port forwarding
is the technique used here for making communication between Cassandra in LXC which is the
goal of this thesis work. The performance metrics which determine the performance of
Cassandra cluster database are selected according to it. The network configuration parameters
are changed according to the behavior of Cassandra. By doing changes in these parameters
Cassandra starts running according to the required configuration, after this Cassandra cluster
performance will be analyzed. This is done with different write, read and mixed load
operations and compared with Cassandra cluster performance on bare metal.

The results of the thesis show an analysis of measurements of performance metrics like CPU
utilization, Disk throughput and latency while running on Cassandra cluster in both bare metal
and Linux Containers. A quantitative and statistical analysis of performance of Cassandra
cluster is compared.

The physical resources utilized by the Cassandra database on native bare metal and Linux
Containers (LXC) is similar. According to the results, CPU utilization is more for Cassandra
database in Linux Containers. Disk throughput is also more in Linux Containers except in the
case of 66% load write operation. Bare metal has less latency compared to Linux Containers
in all the scenarios.

Keywords: Cassandra, Container Virtualization, Linux Containers.

 2

ACKNOWLEDGEMENT

I would like to thank my supervisor, Prof. Emiliano Casalicchio. He believed in my efforts
and made me learn from my mistakes. In spite of being Senior Professor and editor of online
journals, he always found time to help me. He also encouraged be by providing
enough recourses.

Thanks to my mother, Mrs. Radhika, for motivating me with her words. Whenever I felt like
giving up, her words kept me moving forward.

Thank you, Prof. Kurt Tutschku, for being great examiner and advisor. His advices and
comments on thesis gave motivation to approach scientifically.

 3

 ABBREVIATIONS

CPU Central Processing Unit

CQL Cassandra Query Language

GB Giga Bytes

GPS Global Positioning System

HPC High Performance Computing

IO Input-Output

JMX Java management Extensions

KVM Kernel based Virtual Machine

LXC Linux Container

MAC Media Access Control

NoSQL Not Only SQL

NIC Network Interface Card

RAM Random Access Memory

SSH Secure Shell

SST Sorted String Tables

TCP Transmission Control Protocol

TPS Transactions per Second

 4

 LIST OF FIGURES
FIGURE	1	-	DATA	FLOW	IN	CASSANDRA	CLUSTER	[16]	...	12	
FIGURE	2	-	CASSANDRA	WRITE	PATH	[16]	...	13	
FIGURE	3	-	CASSANDRA	READ	PATH	[16]	...	13	
FIGURE	4	-	LINUX	CONTAINER	ARCHITECTURE	[17]	...	16	
FIGURE	5	-	WORK	FLOW	FOR	CASSANDRA	DATABASE	IN	BARE	METAL	...	20	
FIGURE	6	-	WORK	FLOW	FOR	CASSANDRA	IN	LINUX	CONTAINER	...	22	
FIGURE	7	-	100%	LOAD	CPU	UTILIZATION	FOR	MIXED	LOAD	...	23	
FIGURE	8	-	100%	LOAD	CPU	UTILIZATION	IN	LXC	AND	BARE	METAL	FOR	MIXED	LOAD	OPERATION	..	24	
FIGURE	9	-	66%	LOAD	CPU	UTILIZATION	FOR	MIXED	LOAD	OPERATION	...	24	
FIGURE	10	-	100%	LOAD	CPU	UTILIZATION	FOR	WRITE	OPERATION	...	25	
FIGURE	11	-	100%	LOAD	CPU	UTILIZATION	IN	LXC	AND	BARE	METAL	FOR	WRITE	OPERATION	26	
FIGURE	12	-	66%	LOAD	CPU	UTILIZATION	FOR	WRITE	OPERATION	...	26	
FIGURE	13	-	100%	LOAD	CPU	UTILIZATION	FOR	READ	OPERATION	...	27	
FIGURE	14	-	100%	LOAD	CPU	UTILIZATION	IN	LXC	AND	BARE	METAL	FOR	READ	OPERATION	28	
FIGURE	15	-	66%	LOAD	CPU	UTILIZATION	FOR	READ	OPERATION	...	28	
FIGURE	16	-	100%	LOAD	DISK	THROUGHPUT	FOR	MIXED	LOAD	OPERATION	29	
FIGURE	17	-	100%	LOAD	DISK	THROUGHPUT	IN	LXC	AND	BARE	METAL	FOR	MIXED	LOAD	OPERATION

	...	30	
FIGURE	18	-	66%	LOAD	DISK	THROUGHPUT	FOR	MIXED	LOAD	OPERATION	30	
FIGURE	19	-	100%	LOAD	DISK	THROUGHPUT	FOR	WRITE	OPERATION	..	31	
FIGURE	20	-	100%	LOAD	DISK	THROUGHPUT	IN	LXC	AND	BARE	METAL	FOR	WRITE	OPERATION	32	
FIGURE	21	-	66%	LOAD	DISK	THROUGHPUT	FOR	WRITE	OPERATION	..	32	
FIGURE	22	-	100%	LOAD	DISK	THROUGHPUT	FOR	READ	OPERATION	...	33	
FIGURE	23	-	100%	LOAD	DISK	THROUGHPUT	IN	LXC	AND	BARE	METAL	FOR	READ	OPERATION	33	
FIGURE	24	-	66%	LOAD	DISK	THROUGHPUT	FOR	READ	OPERATION	...	34	
FIGURE	25	-	100%	LOAD	LATENCY	FOR	MIXED	LOAD	OPERATION	..	35	
FIGURE	26	-	66%	LOAD	LATENCY	FOR	MIXED	LOAD	OPERATION	..	35	
FIGURE	27	-	100%	LOAD	LATENCY	FOR	WRITE	OPERATION	...	36	
FIGURE	28	-	66%	LOAD	LATENCY	FOR	WRITE	OPERATION	...	36	
FIGURE	29	-	100%	LOAD	LATENCY	FOR	READ	OPERATION	..	37	
FIGURE	30	-	66%	LOAD	LATENCY	FOR	READ	OPERATION	..	37	
FIGURE	31	-	CONFIGURATION	OF	CASSANDRA.YAML	FILE	(1)	...	42	
FIGURE	32	-	CONFIGURATION	OF	CASSANDRA.YAML	FILE	(2)	...	42	
FIGURE	33	-	CONFIGURATION	OF	CASSANDRA.YAML	FILE	(3)	...	43	
FIGURE	34	-	CASSANDRA	CLUSTER	STATUS	..	43	
FIGURE	35	-	DATA	INSERTION	INTO	CASSANDRA	CLUSTER	..	43	
FIGURE	36	-	CASSANDRA	STRESS	UTILITY	TOOL	(1)	..	44	
FIGURE	37	-	CASSANDRA	STRESS	UTILITY	TOOL	(2)	..	44	
FIGURE	38	-	66%	LOAD	DISK	THROUGHPUT	IN	LXC	AND	BARE	METAL	FOR	MIXED	LOAD	OPERATION

	...	45	
FIGURE	39	-	66%	LOAD	DISK	THROUGHPUT	IN	LXC	AND	BARE	METAL	FOR	WRITE	OPERATION	45	

 5

Table	of	Contents	

1	 Introduction	...	7	

2	 Related	Work	...	9	
2.1	 State	of	the	art	..	9	

2.1.1	 Performance	of	Cassandra	..	9	
2.1.2	 Performance	of	Containers	...	9	

3	 Technological	Overview	..	11	
3.1	 Apache	Cassandra	...	11	

3.1.1	 Node	..	11	
3.1.2	 Data	center	..	11	
3.1.3	 Cluster	...	11	
3.1.4	 Commit	log	..	11	
3.1.5	 SSTable	..	12	
3.1.6	 keyspaces	..	12	

3.2	 Cassandra	Data	Structure	..	12	
3.2.1	 Cassandra	Write	Path	..	12	
3.2.2	 Cassandra	Read	Path	...	13	

3.3	 Linux	Containers	(LXC)	...	14	
3.3.1	 Container	Networking	...	14	
3.3.2	 LXC	Architecture	..	15	

4	 Methodology	..	17	
4.1	 Experimentation	..	17	

4.1.1	 Cassandra	stress	tool	...	17	
4.1.2	 SAR	tool	...	18	
4.1.3	 Iostat	tool	..	18	

4.2	 Setup	...	18	
4.2.1	 Cassandra	package	..	19	
4.2.2	 Cassandra	cluster	..	19	

4.3	 Performance	evaluation	of	Cassandra	in	bare-metal	19	
4.4	 Performance	evaluation	of	Cassandra	in	Linux	Container	(LXC)	21	

4.4.1	 Configuration	...	21	
4.4.2	 Performance	evaluation	..	22	

5	 Results	...	23	
5.1	 CPU	utilization	...	23	

5.1.1	 Mixed	load	operation	..	23	
5.1.2	 Write	operation	...	25	
5.1.3	 Read	Operation	...	27	

5.2	 Disk	Throughput	..	29	
5.2.1	 Mixed	load	operation	..	29	
5.2.2	 Write	Operation	..	31	
5.2.3	 Read	operation	..	33	

5.3	 Latency	..	34	
5.3.1	 Mixed	Load	Operation	...	34	
5.3.2	 Write	Operation	..	35	
5.3.3	 Read	Operation	...	36	

6	 Analysis	and	Discussion	..	38	

 6

7	 Conclusion	and	Future	Work	...	39	

References	..	40	

Appendix	...	42	

 7

1 INTRODUCTION

Today Big Data systems are the solution for rapidly growing large amounts of data

generating from many business organizations and companies. Not only people, mobile
devices also generates data constantly while streaming videos, playing games, making
purchases, their activity generates data continuously. To store this type of structured or
unstructured data there are many database storage systems like NoSQL. Cassandra is
one of the most popular big data system among them.

Cassandra is a non-relational and largely distributed database system sometimes
referred to as cloud database. Apache Cassandra is a massively scalable open source
non-relational database that offers continuous availability, linear performance,
operational simplicity and easy data distribution across multiple data centers and cloud
availability zones (1). Cassandra’s architecture is responsible for its ability to scale,
perform, and offer continuous uptime. It has a master less “ring” architecture that is easy
to setup and easy to maintain (1). In this thesis work we considered a three node
Cassandra. In Cassandra, while doing write or read operations it automatically makes
stress to all the three nodes equally because all nodes are connected in peer to peer. This
makes in Cassandra all nodes play an identical role, there is no concept of a master node
with all nodes communicating with each other via a distributed and scalable protocol
(1). The wide adoption of Cassandra in Big Data applications is because of its user
friendly Cassandra Query Language (CQL), and very efficient write and read access
paths that enable critical big data applications to stay always on, scale to millions of
transactions per second and handling node and even entire data center failures with ease
(2). Cassandra was originally developed and used in Facebook to handle its messenger.
Later it became a top level Apache project.

The main goal of the thesis is to evaluate the mixed load, write and read performance
of the Cassandra database on bare metal and Linux Containers (LXC). The performance
is evaluated for two node Cassandra cluster. By using Cassandra stress utility tool load
will be generated and data will be stored in Cassandra memtable. While using this stress
utility tool Cassandra database performance will be evaluated. Another part of this thesis
work is installing Linux Containers(LXC) in bare metal and repeating the same method
as discussed above. Then Cassandra database performance on bare metal and Linux
Container(LXC) is compared.

1.1 Thesis Statement

The main aim of the thesis is to evaluate the performance of Cassandra database on
Linux Containers and comparing this with Cassandra database on bare metal. A two
node Cassandra cluster is created. To evaluate the performance of Cassandra initially
load is generated to the cluster and stress utility tool is used to generate three modes
of operations like mixed load, write and read. CPU utilization, Disk throughput and
latency are evaluated on the servers while running the stress utility tool. For making
the most use of the physical resources Cassandra database is deployed on container
virtualization which performs less overhead compared to hypervisor technology.

1.2 Background

Cloud computing is evolving day by day. We can store and access data over internet
instead of using hard disk. To access this data for long term use we need to store it.
This is data is generated from people, devices and network. While streaming videos,
playing games, cell phone GPS signals and their activity generates data according to

 8

their needs and preferences (3). According to one survey every day we are creating
2.5 quintillion bytes of data and that too 90% of the data in the world today has been
created in the last two years. This data is Big Data (4). To store this high voluminous
data, we need a scalable and powerful database management system. Due to the
increase in demand many companies like Facebook, Apple, Netflix etc. started using
the database called Cassandra. Because of its peer to peer architecture allows high
performance with linear scalability and no single points of failure (5).
 Because of its master less ring architecture it results in an extremely fault tolerant
system. Cassandra provides extremely fast, linearly scalable writes. Due to its linear
scalability it makes read and write performance very simple (6). Once we have
measured our write performance or a single server we can easily calculate how many
servers to add to our cluster according to our required performance basis (6). Even
under heavy workloads Cassandra delivers higher performance.
 Here in this thesis work we study Cassandra performance on bare metal and
Linux Containers(LXC) while making write, read and mixed load operations. Linux
Containers(LXC) are installed on three nodes each provided. Cassandra is deployed
on each container and the selected parameters are changed according to our
requirements to run Cassandra. We also propose Cassandra’s best performance by
comparing in both bare metal and Linux Containers(LXC) at a given load.

1.3 Research Questions

R1) How does Cassandra performs in Linux Containers(LXC) when compared with
bare metal?

R2) What is the load used and how many number of nodes in the cluster? What
configuration gives the Cassandra’s best performance?

R3) Which of the Cassandra parameters effect its performance? What is the CPU
Utilization and Disk throughput of Cassandra on physical servers and LXC?

R4) How does Cassandra perform for different load scenarios?

1.4 Scope of implementation

The main idea of this thesis work is to set-up Cassandra cluster and each Cassandra
node run in a container and analyzing how its performance varies when compared
with bare metal. In this approach, the operating system’s kernel runs on the hardware
node with many isolated guests are installed on top of it. These isolated guests are
called containers (7). Apache Cassandra database system is installed in these
containers. Similarly, there are other NoSQL database systems which can be
installed in the same environment. Here in this thesis work we created a two node
Cassandra cluster but we can increase number of nodes in the cluster. Here we
propose the configuration at which Cassandra provides its best performance.

1.5 Objectives
• Understanding Cassandra working procedure
• Deeper analysis and behavior of Cassandra database
• Container Virtualization and networking
• Installing Cassandra database in Linux containers
• Creating Cassandra cluster in Linux containers
• Performance evaluation of Cassandra in different environments

 9

2 RELATED WORK

In this section we discuss some related and significant research works in the field of
NoSQL systems and Container virtualization.

2.1 State of the art

2.1.1 Performance of Cassandra

 There has been a lot of research in the field of Big Data system in the cloud
environment. The research activity ranges between using different big data storage
systems, here in this thesis work Cassandra performance on bare metal and Linux
Containers(LXC) are compared and best performance determined. Here we also discuss
about Cassandra for different write, read and mixed workload operations. The suitable
network configuration for Apache Cassandra to run in Linux Containers(LXC) is
defined.

 In this paper [8], the performance of Cassandra is compared with MySQL and
HBase for heavy write operations. Here throughput is selected as performance metric,
nGrinder will calculate it in terms of Transactions per Second (TPS). This paper also
explains how write operations were performed. It clearly explains how Cassandra scaled
up the most amongst the other two databases with fast write speeds.

 This paper [9] shows how to design a performance monitoring tool which will help
to make decisions to optimize performance of Cassandra database. This is because
developers need to have an idea about how database is behaving in different working
environments. The performance of Cassandra database in terms of CPU utilization and
disk throughput are studied here.

2.1.2 Performance of Containers

This paper [10], compares performance of Cassandra in container based

virtualization and hypervisor based virtualization. Here, Linux container(LXC) showed
performance in gain when compared to hypervisor based virtualization system Xen. This
is because LXC uses “deadline” Linux scheduler, it imposes a deadline on all I/O
operations to ensure that no request gets starved. This experiment was conducted in HPC
environment. As per the results shown, containers systems showed poor performance
isolation for memory, disk and network. According to the analysis, author stated that
LXC demonstrates to be the most suitable container based systems for HPC
environment.

Containers system level virtualization are becoming a mainstream technology to

support cloud and distributed computing applications. In this paper [11], Performance
and scalability of kernel modules in Linux container networking was discussed. Here
the researcher divided testing part into two scenarios. One is local tests and the other is
switched tests. As per the results, for both local testing and switched testing there is no
proper difference between ipvlan and macvlan for TCP packets but for UDP macvlan
performs well. Here the researcher concluded that macvlan (bridge mode) should be
considered for best performance. LXC networking part understood here.

 10

Docker a light weight container level virtualization platform which uses Linux
kernel in the background. This paper [12] discusses about performance of Docker
containers based on their system performance. The system resource utilization is
considered for it. In this paper Docker container architecture was studied and how it is
handled to evaluate it performance. The performance of Docker can be compared to the
performance of an OS running on bare metal was concluded here due to its good
performance.

This paper [13] shows performance evaluation between KVM and LXC two

virtualization tools. According to the results obtained in this research LXC was better
compared to KVM in most of the scenarios. Because container based virtualization is a
good alternative to overcome overhead issues from virtualization.

 11

3 TECHNOLOGICAL OVERVIEW

3.1 Apache Cassandra

Cassandra is an open source distributed database system designed to handle huge
amount of structured data and is available under the Apache license. It is designed in
such a way that it can handle big data across multiple nodes with no single point of
failure. Data is distributed across all nodes in the cluster. Its peer-to-peer distributed
system makes easy to address the problem of failures in Cassandra. The communication
between all nodes in the cluster will be seen for every second. Data is sequentially
written to an in-memory structure when each node captures write activity; this structure
is called memtable Once the memory structure is full, next the data will be written to the
disk in an SSTable data file. Cassandra periodically consolidates SSTables using the
process called compaction [14].

Based on Cassandra architecture client can sent any read and write requests to any

node in the cluster. Its key structures and components in Cassandra are explained below.

3.1.1 Node

Node is the place where all our data will be stored. Generally, a node in the cluster

is connected with other nodes in the cluster through high internal network. All nodes in
the cluster work together even if any node in the cluster fails due to unexpected error as
a whole cluster can provide the service. It clearly says all nodes in the cluster are same
and there is no any master node. These nodes are peer to peer connected. We can add as
many nodes as we want in Cassandra cluster. For example, Apple used 75,000 nodes
served Cassandra cluster in 2014.

3.1.2 Data center

A data center is a collection of Racks. It is logical grouping of nodes which separates

from another node. The replication strategy called Network Topology is used here to
specify number of replicas of the entire keyspace should exist in any given datacenter.
A datacenter can be a physical or virtual datacenter. It depends on type of the workloads
to use the datacenter. By using separate datacenters, it prevents the Cassandra
transactions from being impacted from other workloads to achieve lower latency.

3.1.3 Cluster

Cluster is a collection of datacenters. Cluster allows clients to add a node or delete

a node depending on their usage. There is no chance of communication between two
clusters.

3.1.4 Commit log

The main purpose of commit log is it has the ability to recreate the memtable after

the node crashes or gets rebooted. Because when memtable is full it gets flushed to disk.
Writing to commit log is better than just writing to SSTables because SSTables stores
rows in sorted order whereas commit log stores updates in the order which they are
processed by Cassandra. Cassandra is able to truncate the commit log once all the older

 12

data is written to it. When Cassandra start running it has to read the commit log back
from that last known point. The write path in Cassandra works in this way drawn below

 Cassandra Node ----------à Memtable
 | |
 | |---àPeriodically flush to SSTable
 |

 |-------àCommit log

3.1.5 SSTable

Data stores in SSTable whenever there is no space in memtable i.e., when the

number of keys exceeds the limit or it reaches the time duration. It stores in SSTable,
immutable space. This process is called flushing. Once writes are done on SSTable, then
we can see the data in data folder. SSTable mainly comprises two files – Index file and
Data file. Index file contains bloom filter and key-offset pairs. Cassandra uses bloom
filter to save IO when performing the writes. Data file contains actual column data.

3.1.6 keyspaces

Keyspaces in Cassandra is a namespace, it defines data replication on nodes. It has

a set of attributes that define keyspace in wide behavior. In Cassandra, the basic
attributes we can set for keyspaces are Replication factor. Replication factor refers to
the number of replicas of each row of data.

3.2 Cassandra Data Structure

The data in Cassandra database is stored in tables. If any node goes down some part

of the data will be unavailable. This problem will overcome by creating copies of data.
This copies of data are called replicas. These copies of data are stored on multiple nodes
is referred to as replication. Replication of data resembles fault tolerance and reliability.

3.2.1 Cassandra Write Path
Cassandra is a master less ring architecture such that users can connect with any

node in a cluster.

 Figure 1 - Data flow in Cassandra cluster [16]

 13

In the above figure Cassandra cluster level interaction for write and read operation
is shown. By using either a thrift protocol or CQL clients can interface with a Cassandra
node. From the above figure, client has connected to node 4 which acts as a coordinator.
Through a messaging service all the inter-node requests are sent in an asynchronous
manner. Coordinator forwards the mutation to all the applicable nodes based on the
partition key and the replication strategy. Nodes 1, 2 and 3 will act as an applicable node
where node 1 is the first replica and nodes 2 and 3 are their subsequent replicas.

Write operation in every node first writes the mutation to commit log and then writes

the mutation to memtable. By writing to commit log means it will ensure durability of
the write as the memtable is an in-memory structure. It is only written to the disk when
the memtable is flushed to disk. The reasons for flushing of memtable to disk will be
when it reaches its maximum allocated size in memory, when the number of minutes
can stay in memory elapses or it may be when manually flushed by the client.

SSTable (Sorted string table) is an immutable structure. MemTables are flushed into

these SSTable. When data from the memtable is lost due to node failure then commit
log is used for playback purposes. Because of compaction process SSTables are
combined so that related data can be found in a single SSTable. This process makes the
operation much faster. In compaction process SSTables are merged together with
predefined strategy.

 Figure 2 - Cassandra Write Path [16]

3.2.2 Cassandra Read Path

 Figure 3 - Cassandra Read Path [16]

 14

A read operation is similar to write operation in Cassandra cluster. By using the
write operation client can connect with any node in the cluster. For every read operation
a row key must be applied. To determine the first replica coordinator uses the row key.

Node level read operation illustrates about key steps when reading data on a

particular node. Every column family stores data in SSTables. Data for each row will be
located in SSTables and the memtable. For every read operation Cassandra need to read
data from all applicable SSTables. After scanning the memtable for data fragments, this
data is then merged and returned to the coordinator.

Read operation becomes more complicated on a per SSTable basis. From the

diagram, it illustrates about key steps that take place when reading data from an SSTable.
Every SSTable has a bloom filter. This enables to quickly ascertain data for the requested
row key. Bloom filter is always held here for the purpose of saving the disk IO. The
Coordinator gets all the read requests and decides which nodes to handle read requests.
If requests are processed, then it takes data to the client. If this doesn’t happen then read
request enters key cache memory. Then key cache memory will hold the index of data
columns and stored in SSTable. From SSTable the required data will be found in the
columns and retrieved from it. The data here is merged and Cassandra looks for time
stamp to find data in the disk. This merged data will then be returned to the coordinator.

3.3 Linux Containers (LXC)

Linux Containers (LXC) is light weight virtualization mechanism. It doesn’t require

any emulation of physical hardware. LXC runs a complete copy of Linux Operating
system without the overhead of running a level-2 hypervisor. Linux Container processes
and file system are completely visible from the host OS because it shares the kernel with
host OS.

3.3.1 Container Networking

There are four major modules currently available and their description is described

below in detail.

Veth

This veth kernel module creates a pair of virtual networking devices. They are

connected to each other. Veth connection pipes are frequently used in combination with
Linux bridges. This provides an easy connection between a namespace and a bridge in
default networking namespace. We should remember one thing when running a
container with veth network type enabled, it should have one network interface created
on the host and the other one will be in the container [15].

OpenVswitch

This kernel module comes as part of the mainline Linux kernel. This is operated by

a separate piece of software. OpenVswitch provides a virtual switch, this supports Open
Flow. It uses veth pairs this is somewhat similar to Linux bridges [15].

Macvlan

This kernel module enslaves the driver of the Network Interface Card in kernel

space. New devices here have their own MAC address and are located within the same

 15

broadcast domain as the default driver. Macvlan kernel module has four different modes
of operation. They are explained below.

• Private – If their source MAC address matches with one of the Macvlan

interfaces then all the incoming packets on the “slave” virtual interface are
dropped. This means no Macvlan devices can communicate each other.

• VEPA – While using this we should assume that adjacent bridge returns all
frames. This is the place where source and destination local to the macvlan
port. Here the bridge is set up as a reflective relay. All the traffic will be
forwarded out to the switch even it is destined for us. And again we rely on
the switch at the other end to send it back. This mode of process is also
called “hairpin mode”.

• Bridge - A special bridge called “pseudo bridge” is created here. This bridge

forwards traffic using the RAM of the node as buffer. This allows containers
to talk each other but isolates pseudo bridged interfaces from the host.

• Passthru – This is implemented in private mode. It passes the packets to the

network due to the standard behavior of a switch not to forward packets
back to the port they came from [15].

Ipvlan

Ipvlan is similar to macvlan in some ways like enslaving driver of the NIC in kernel

space. But in other ways it differs from macvlan like packets sent all get the same MAC
address. Based on layer 3 address forwarding to the correct virtual device is done here.
Ipvlan module has two modes of operation.

• L2 mode – All the transmit processes is done up to layer 2. This happens in

the namespace of the virtual driver. This is because packets are being sent
to the default networking namespace for transmit. This causes ARP
timeouts. Therefore, device behaves like a layer 2 device.

• L3 mode – Here all the transmit process is done up to layer 3. This also

happens in the namespace of virtual driver. The main difference here is
packets are being sent to the default network namespace for layer 2
processing and transmit. It doesn’t support for broadcast and multicast.

3.3.2 LXC Architecture

 Linux Containers to function correctly, it requires several components most of
them are provided by the Linux kernel. As seen in the figure Linux kernel comprises
Namespaces, cgroups and SELinux. Kernel namespace ensures process isolation and
cgroups are employed to control the system resources. SELinux is used to assure
separation between host and container and also between the individual containers
[16]. Management interface forms a layer between Linux kernel and containers

 16

 Figure 4 - Linux Container Architecture [17]

Namespaces

By creating separate namespaces for containers kernel provides process isolation.

Without creating a problem several containers can use the same resources
simultaneously. There are five types of namespaces.

• Mount namespaces isolates the set of file system mount points. Processes in

different mount namespaces can have different views of the file system hierarchy.
• UTC namespaces isolates two system identifiers, they are node name and domain

name. This process allows each container to have its own hostname and NIS domain
name.

• IPC namespaces isolates few inter process communication resources like System V
IPC objects and POSIX message queues. This clearly describes that two containers
a create shared memory segments with same name. They are not able to interact
with other containers.

• PID namespaces allows processes to have same PID in different containers. Here
container is aware of its own native processes and cannot see the processes running
in different parts of the system. Different PID numbers are assigned indeed the host
OS is aware of processes running inside the container.

• Network namespaces allows container to use separate virtual network stack,
loopback device and process space. It also provides isolation of network controllers,
system resources associated with networking, firewall and routing tables.

Control groups (cgroups)
The Linux kernel uses cgroups to group processes for the purpose of system resource

management. It allocates CPU time, system memory, network bandwidth, or
combinations of these among user defined group of tasks [16].

SELinux

SELinux provides secure separation of containers. It integrates with virtual devices

by using the sVirt technology.

 17

4 METHODOLOGY

This section explains the method of the experiment in detail. To evaluate and

analyze the performance of Cassandra there are different methods of approach to
understand. Coming to the measurement and performance evaluation part of the thesis
this experimentation has done on a physical model of a system. Physical model of a
system is best suited for this analysis over mathematical model, which shows an abstract
version with mathematical relations between them. A two node Cassandra cluster is
created by changing the required parameters in cassandra.yaml file.

 Initially load is generated to the seed node which is considered as a coordinator in

Cassandra cluster. Then equal load will be generated to all nodes in the cluster. This is
because of its master less ring architecture. After that Cassandra stress utility tool is
executed from the load generator with the given mode of operation i.e. write, read and
mixed load one after the other. While executing the stress utility tool from the load
generator node, sar and iostat commands are executed at the same time in the seed node
to measure the CPU utilization and Disk throughput of the Cassandra database in the
cluster. This methodology is implemented to measure the performance metrics in both
bare metal and in Linux Containers (LXC). In Linux Containers, before creating
Cassandra cluster port forwarding must be done from the host servers. This process is
discussed further in section 4.4.

4.1 Experimentation
In this thesis work, the experiment was done in two ways. One is evaluating
performance of Cassandra database on physical server (bare metal) and the other is
performance of Cassandra database on Linux Container (LXC). Both the
experiments are done in the same servers therefore they use shared physical
resources. The below work flow gives a simple idea of Cassandra load generation
and Cassandra stress utility tool functions where Cassandra in 10th node and
Cassandra in 12th node are in cluster.

 Cassandra in 6th Node ----------à Cassandra in 10th node (194.47.131.211)
 (194.47.131.207) (Coordinator)
 |
 |

 |-------------------àCassandra in 12th node (194.47.131.213)

4.1.1 Cassandra stress tool

The Cassandra stress tool is a java based tool used for stress testing utility for basic
benchmarking and load testing in a Cassandra cluster. Keyspaces are created by using
this stress tool. This tool creates a keyspace called keyspace1 with in that table called
standard1. It depends on what type of table being tested. These are created automatically
when we run the stress test for the first time. These can be reused on subsequent runs
unless we drop these keyspace1 by using CQL. Here in each server CPU utilization and
disk throughput are evaluated on their respective servers by using sar tool and iostat tool.

 18

4.1.2 SAR tool

System Activity Report (SAR) is a Unix command used for system V-derived

system monitor command used to report on various system loads which includes CPU
activity, device load, memory, network. The systat package provides sar tool including
with iostat which are system performance utilities. The sar command writes to standard
output the contents of selected cumulative activity counters in the operating system [18].
This tool collects, report or save system activity information. Here it used to collect the
CPU usage on servers and Linux container. This tool takes a snap shot of the system at
regular periodic intervals. The performance characteristics such as CPU utilization,
memory usage, interrupt rate, etc. are gathered by using this tool. This tool gives the
performance metrics like CPU utilization at the application level, CPU utilization while
executing at the user level with nice priority, percentage of CPU utilization in idle form.
The below command is used to evaluate CPU utilization which generates average value
for 30 seconds i.e. 40 values in 1200 seconds.

$ sar -u 30 41 | awk '{print $8 "\t" $9}' > filename.txt

4.1.3 Iostat tool

Iostat tool is a command line tool used to report CPU statistics and input/output
statistics for devices and partitions. This command monitors system input/output
device loading by observing the activity of the devices in relation to their average
transfer rates. The reports generated by the iostat command can be used to monitor
the system configuration to better balance the input/output load between physical
disks [19].
Iostat command provides statistics concerning the time since the system was booted.
This tool generates CPU utilization report and Device utilization report. By using
this tool, we are evaluating the disk utilization of the server and Linux container.
While running this iostat command the following sections will be seen [19]. The
below command is used to generate Disk throughput for the duration of 20 minutes.

$ iostat -d 30 41 | grep sda | awk '{print $4}' > filename1.txt

• tps – This indicates the number of transfers per second that were issued to
the device. Here a transfer is an I/O request to the device

• kB_read/s – This indicates the amount of data read from the device
• kB_wrtn/s – This indicates the amount of data written to the device
• kB_read – This indicates the total number of kilobytes read
• kB_wrtn – This indicates the total number of kilobytes written

4.2 Setup

 Make sure that few prerequisites have been installed. They are Java python and java
native access because Cassandra is a java based database system. Java Open JDK 7 is
must for running Cassandra without any problem.

 19

4.2.1 Cassandra package

In this thesis Cassandra 3.0.8 version is used because of its stable version. Before

installing this we should update the servers and Linux container. This package is
installed through command line interface.

4.2.2 Cassandra cluster

Cassandra is package is installed in all the servers and Linux containers we are

using. By changing the required parameters in Cassandra.yaml file it allows to start
running Cassandra database. We are using a two node cluster and one node as seed. We
should change the local host address to the required IP addresses in Cassandra.yaml file.
This is done on all the three nodes. Changes in Cassandra.yaml file are done after
stopping the Cassandra. We should not do all these changes while Cassandra database
is running. The figure below shows a simple topology of Cassandra database running in
a native bare metal server.

The server configuration details are as follows

 Table 1 - Server Configuration Details
Operating system Ubuntu 14.04 LTS (GNU/Linux 3.19.0-

49-generic x86_64)

RAM 23 GB

Hard -disk 279.4 GB

Processor 12 cores, 2 threads per core à 24
theoretical cores

Cassandra version 3.0.8

Cassandra-stress tool 2.1

4.3 Performance evaluation of Cassandra in bare-metal

In this thesis, we have used three hosts (one source and two destination hosts).

Cassandra 3.0.8 is installed in them. Cassandra stress tool which is a command line tool
comes with Cassandra package. This stress tool generates load on cluster, cqlsh utility.
A python based command line client for executing CQL commands for managing a
cluster.

To evaluate the performance analysis of Cassandra database write, read and mixed

load operations are considered. One important thing here is all the servers should have
the same configuration of software, hardware and network used. After each iteration
each server should have same RAM and hard disk to ensure for high integrity of results.

After running each iteration Cassandra stress tool creates a keyspace called

keyspace1 and within the tables standard1 or counter1 in each of the nodes. These are
created automatically when we run this for first time and are reused subsequently until
and unless we drop the keyspace using CQL. Before testing the load of the database a
write operation is done to insert data into it. To evaluate the load on each server sar and
iostat are used.

 20

Cluster creation is already discussed in section 4.2.2 by changing the seed address,
listen address, rpc address and broadcast address in Cassandra.yaml file to the ip address
of the host node. One of the node ip address is set to the seed address to form Cassandra
cluster. This allows the nodes to communicate with each other and form the cluster. The
below command generates load on Cassandra cluster for the given ip address. And next
command uses stress utility tool for the duration of 20 minutes for the mode of operation
given. To evaluate 66% load 150 threads are given.

$./cassandra-stress write n=50000000 -node 194.47.131.211

$./cassandra-stress mixed ratio\(write=1,read=3\) duration=20m cl=ONE -pop

dist=UNIFORM\(1..50000000\) -rate threads\=450 -node 194.47.131.211;

$./cassandra-stress mixed ratio\(write=1,read=3\) duration=20m cl=ONE -pop

dist=UNIFORM\(1..50000000\) -rate threads\=150 -node 194.47.131.211;

To measure Cassandra database performance on load generated node sar tool and

iostat tool are used. Sar takes snapshots at regular intervals. %idle is considered here
because it shows percentage of the time CPU was idle. By subtracting this with 100 it
gives percentage of CPU’s usage. Iostat reports input/output for devices and partitions.
This tool monitors input/output device loading by observing the active devices in
relation to their transfer rates. Disk resources utilized are collected by using iostat
command. kB_wrtn/s value of the iostat tool gives us the amount of data written per
second to the disk.

By using stress tool data is written to the cluster. This makes to push data to the

nodes. Here three cases are considered on this data set. Mixed operation, read operation
and write operation for a duration of 20 minutes, while doing these operations on the
other side of the nodes CPU utilization and Disk throughput are recorded by using sar
and iostat commands. For the duration of 20 minutes’ average values of CPU utilization
and Disk throughput are for and interval of 30 seconds is taken for the servers in the
cluster. Latency value and total time taken by the write and read request from the stress
server are noted. The figure below shows a simple topology of Cassandra database
running in a native bare metal server.

 Figure 5 - Work flow for Cassandra database in bare metal

Cassandra server	
(Coordinator)	
194.47.131.207

Cassandra	
database	(seed)	
194.47.131.211	

Cassandra	
database	

194.47.131.213

 21

4.4 Performance evaluation of Cassandra in Linux
Container (LXC)

4.4.1 Configuration

Linux container is installed through terminal command. It installs with default

setting and configuration. The following commands below shows how to start and run
Linux container. By default, LXC creates a private network namespace for each
container.

$ sudo apt-get install lxc

$ sudo lxc-create –n genie –t ubuntu

The above command shows how to create Linux Container named “genie”. ‘–t’

refers to template. Ubuntu template is used to create container.

$ sudo lxc-start –n genie –d

To run the container in the background detached from the console the above

command is used. –d is the parameter here used to run the container detached from the
console.

$ sudo lxc-attach –n genie

This command attaches to the container named genie and we can enter into that for

further working in it. Here Cassandra 3.0.8 package is installed through command line
given below. It is extracted to use it.

$ sudo wget http://www-us.apache.org/dist/cassandra/3.0.8/apache-cassandra-

3.0.8-bin.tar.gz

For running Cassandra in the container we should change the Cassandra.yaml file

configuration according to the Linux container Ip addresses in all the two nodes. This is
the similar process as we discussed above in section 4.3

Port forwarding is the process used here. This makes communication between the

containers and the bare metal servers. This process enables Cassandra in containers to
listen to the destination port which is assigned in the given command. To make port
forwarding iptables rules should be installed in Linux container and it should be empty.

$ sudo apt-get install iptables

$ iptables -t nat -L -n -v

$ iptables -t nat -A PREROUTING -p tcp -i br0 -d 194.47.131.211 --dport 7000 -j
DNAT --to 10.0.3.116:7000

$ sudo iptables -A FORWARD -p tcp -d 10.0.3.116 --dport 7000 -j ACCEPT

$ iptables -t nat -A PREROUTING -p tcp -i br0 -d 194.47.131.211 --dport 9042 -j
DNAT --to 10.0.3.116:9042

 22

$ sudo iptables -A FORWARD -p tcp -d 10.0.3.116 --dport 9042 -j ACCEPT

From the above commands 10.0.3.116 is the ip address of the container genie. Port
‘7000’ is the internode communication port in Cassandra and ‘9042’ is the CQL native
transport port in Cassandra. This enables the Linux container to run Cassandra database.
The same process is applied to another container in other node. And for making
Cassandra cluster seed address Is set to the address of one node. Listen address, rpc
address are set to ip address of Linux container and broadcast address is set to ip address
of the respective node in which container is present. The diagram below shows a simple
topology of Cassandra database running in a Linux Container.

 Figure 6 - Work flow for Cassandra in Linux Container

4.4.2 Performance evaluation

We considered three modes of operation. They are mixed load, write and read

operations. These operations are done once all the nodes form the Cassandra cluster. All
the hardware resources of the servers give access to the Cassandra database in the
container as there is no other application running for the resources.

While running any one of the operations in write, read and mixed load sar and iostat

commands are executed on the other terminal to record CPU utilization and disk
throughput of the Cassandra database in the Linux container. The command sar shows
the % idle value which gives us the percentage of CPU utilization by subtracting it from
100. The iostat command gives disk throughput in kB_wrtn/s. The procedure is same as
what we did in performance evaluation in bare metal which is discussed in section 4.3.
The figure below shows a simple topology of Cassandra database running in a native
bare metal server. The below commands are used to generate 11 GB data on the
cassandra cluster and running cassandra stress utility tool for three modes of operation.
To evaluate 66% load 150 threads are given.

$./cassandra-stress write n=50000000 -node 194.47.131.211

$./cassandra-stress mixed ratio\(write=1,read=3\) duration=20m cl=ONE -pop

dist=UNIFORM\(1..50000000\) -rate threads\=450 -node 194.47.131.211;

$./cassandra-stress mixed ratio\(write=1,read=3\) duration=20m cl=ONE -pop

dist=UNIFORM\(1..50000000\) -rate threads\=150 -node 194.47.131.211

Cassandra server	
(Coordinator)	
194.47.131.207

Cassandra	in LXC
(seed)	

194.47.131.211	

Cassandra	in LXC
194.47.131.213

 23

5 RESULTS

In this section Cassandra database performance on different scenarios are shown

and explained in terms of CPU utilization and Disk throughput.

5.1 CPU utilization

CPU utilization of Cassandra database on the servers is evaluated by running sar

command tool for three different scenarios i.e. for mixed load, write and read operations.
These are done by sung Cassandra stress tool. These operations are done for a duration
of 20 minutes. Sar command tool is executed in such a way that it gives average value
of %idle of CPU usage for every 30 seconds. That means we can collect 40 average
values of % idle for the total duration of 1200 seconds. This value shows how much
time the CPU spends on user processes and system processes.

5.1.1 Mixed load operation

This operation is a mix of 1 write and 3 read processes in Cassandra stress tool for

the duration of 20 minutes.

For 100% load:

The below figure shows the graph for 100% load CPU Utilization for Mixed load

operation. 100% load is determined by op rate while running mixed load operation
which stresses on 11GB data in the Cassandra cluster and 450 threads are given in the
Cassandra stress command. The below graph shows the average values of CPU
utilization for 10 iterations. CPU utilization of Cassandra on bare metal and Cassandra
on Linux Containers is compared here. It shows Cassandra utilizes more CPU usage on
Linux Containers than Cassandra on bare metal.

 Figure 7 - 100% load CPU utilization for Mixed load

1 2 3 4 5 6 7 8 9 10
baremetal 69.09 66.17 78.54 63.56 71.43 68.38 65.71 64.6 69.966 67.83

Linux	Container 85.81 84.25 89.7 86 87.22 83.57 91.65 87.52 88.53 77.81

0
10
20
30
40
50
60
70
80
90

100

CP
U	
UT

IL
IZ
AT

IO
N	
=	
10
0	
-%

	ID
LE

NUMBER	OF	ITERATIONS

100%	load	CPU	utilization	for	Mixed	load	
operation

 24

The highest CPU utilization on Linux Containers is 91.65%. Highest CPU
utilization on bare metal is 78.54%. There are some reasons for this difference.
Sometimes nodes become unresponsive if for several seconds this causes the clusters to
start thrashing the load around. The reason might be Cassandra uses more CPU cycles.

Figure 8 - 100% load CPU utilization in LXC and bare metal for mixed load
operation

Sar tool is executed to run for 20 minutes’ duration. In the above figure each value

represents the average of 10 iterations from 30 to 1200 seconds. Sar tool is executed in
such a way to give value every time after 30 seconds, therefore 40 average values are
plotted. From the above two graphs the same trend has been observed such that CPU
utilization is more in case of Linux Containers.

For 66% Load:

 Figure 9 - 66% load CPU utilization for Mixed load operation

0
10
20
30
40
50
60
70
80
90
100

0 200 400 600 800 1000 1200 1400

CP
U	
Ut
ili
za
tio

n

Time

100%	load	CPU	Utilization	in	LXC	and	Bare	metal	
for	mixed	load	operation

Bare	metal Linux	Container

1 2 3 4 5 6 7 8 9 10
baremetal 67.77 71.56 71.77 65.59 68.89 70.07 66.98 67.29 69.91 67.35

Linux	Container 86.66 88.63 87.95 88.93 84.36 87.04 85.12 87.02 84.34 87.35

0
10
20
30
40
50
60
70
80
90

100

CP
U	
UT

IL
IZ
AT

IO
NS

	=
	1
00
	-
%
	ID

LE
	

NUMBER	OF	ITERATIONS

66%	load	CPU	utilization	for	Mixed	load	
operation

 25

The above figure shows the graph for 66% load CPU utilization for Mixed load
operation. 66% load is determined by op rate while running mixed load operation which
stresses on 11GB data in the Cassandra cluster and 150 threads are given in the
Cassandra stress command. The above graph shows the average values of CPU
utilization for 10 iterations. It shows Cassandra utilizes more CPU usage on Linux
Containers than Cassandra on bare metal in both 100% load and 66% load cases. Highest
CPU usage on Linux Container is 88.93%. Highest CPU usage on bare metal is 71.77%.
In the case of Linux Containers there might be a heavy data volume request traffic per
Cassandra node. Because of read and write operations it naturally creates very high load
on the cluster. This means columns being read; columns being compacted will quickly
become old. This old generation will fill up faster causes high CPU utilization.

5.1.2 Write operation

This operation is done by giving write process in Cassandra stress tool for 20

minutes.

For 100% load and 66% load:

The below figure shows the graph for 100% load CPU utilization for write operation.

100% load is determined by the oprate while running the write operation using
Cassandra stress tool. The graph shows the average values of CPU utilization for 10
iterations. It shows Cassandra utilizes more CPU usage in Linux Container than bare
metal.

Figure 10 - 100% load CPU utilization for write operation

1 2 3 4 5 6 7 8 9 10
bare	metal 79.83 80.36 80.23 77.21 73.98 75.63 71.85 78.69 80.06 79.62

Linux	Container 90.11 92.09 91.46 90.45 91.32 90.55 90.82 90.53 91.04 90.72

0
10
20
30
40
50
60
70
80
90

100

CP
U	
UT

IL
IZ
AT

IO
N	
=	
10
0	
-%

	ID
LE

NUMBER	OF	ITERATIONS

100%	load	CPU	utilization	for	write	operation

 26

Figure 11 - 100% load CPU utilization in LXC and bare metal for write
operation

Sar tool is executed to run for 20 minutes’ duration. In the above figure each value

represents the average of 10 iterations from 30 to 1200 seconds. Sar tool is executed in
such a way to give value every time after 30 seconds, therefore 40 average values are
plotted. From the above two graphs the same trend has been observed such that CPU
utilization is more in case of Linux Containers.

Figure 12 - 66% load CPU utilization for write operation

0
10
20
30
40
50
60
70
80
90
100

0 200 400 600 800 1000 1200 1400

CP
U	
Ut
ili
za
tio

n

Time

100%	Load	CPU	Utilization	in	LXC	and	Bare	metal	
for	write	operation

Bare	metal Linux	Container

1 2 3 4 5 6 7 8 9 10
baremetal 78.41 81.28 80.14 74.93 78.66 76.39 79.63 77.36 79.06 78.32

Linux	Container 89.66 90.19 90.16 89.92 90.04 88.91 89.33 90.08 89.91 89.62

0
10
20
30
40
50
60
70
80
90

100

CP
U	
UT

IL
IZ
AT

IO
N	
=	
10
0	
-%

	ID
LE

NUMBER	OF	ITERATIONS

66%	load	CPU	utilization	for	write	operation

 27

From the above figure, for 100% load the highest CPU usage on Linux Container is
92.09%. Highest CPU usage on bare metal is 80.36%. For 66% load the highest CPU
usage on Linux Container is 90.19%. Highest CPU usage on bare metal is 81.28%.
CPU utilization in both the cases it is almost same. When Cassandra uses heavy data
volume and request traffic per node gradually CPU usage increases. This causes very
high CPU cycles. This might be the reason for very high CPU utilization.

5.1.3 Read Operation

This operation is done by giving Read process in Cassandra stress tool for 20

minutes.
 For 100% load and 66% load:

Figure 13 - 100% load CPU utilization for read operation

1 2 3 4 5 6 7 8 9 10
baremetal 44.68 43.88 45.34 44.04 43.81 42.09 45.34 49.1 47.29 48.5

Linux	Container 37.56 41.87 43.61 45.18 44.09 43.46 46.01 47.97 46.83 47.17

0

10

20

30

40

50

60

CP
U	
UT

IL
IZ
AT

IO
N	
=	
10
0	
-%

ID
LE

NUMBER	OF	ITERATIONS

100%	load	CPU	utilization	for	read	operation

 28

Figure 14 - 100% load CPU utilization in LXC and bare metal for read
operation

Sar tool is executed to run for 20 minutes’ duration. In the above figure each value

represents the average of 10 iterations from 30 to 1200 seconds. Sar tool is executed in
such a way to give results every time after 30 seconds, therefore 40 average values are
plotted. From the above two graphs the same trend has been observed such that CPU
utilization is more in case of Linux Containers.

Figure 15 - 66% load CPU utilization for read operation

From the above figure, there is no difference between CPU utilization in bare metal

and Linux Container in both the cases 100% load and 66% load read operation. But
when we compare these values with mixed load and write operations the CPU utilized

0
10
20
30
40
50
60
70
80

0 200 400 600 800 1000 1200 1400

CP
U	
Ut
ili
za
tio

n

Time

100%	load	CPU	Utilization	in	LXC	and	Bare	metal	
for	read	operation	

Bare	metal Linux	Container

1 2 3 4 5 6 7 8 9 10
baremetal 47.53 43.45 45.77 44.61 43.28 46.18 46.08 45.12 46.09 45.99

Linux	Container 47.81 46.43 45.82 46.34 44.84 45.62 46.43 46.19 45.8 46.14

0

10

20

30

40

50

60

CP
U	
UT

IL
IZ
AT

IO
N	
=	
10
0	
-%

ID
LE

NUMBER	OF	ITERATIONS

66%	load	CPU	utilization	for	read	operation

 29

here in read operation is very less. There is very less request traffic on Cassandra cluster
then it uses less CPU cycles compared to write and mixed load operation.

5.2 Disk Throughput

Disk Throughput of Cassandra database is evaluated by running iostat command

tool for three different scenarios i.e. for mixed load, write and read operations. These
operations are done for a duration of 20 minutes. Iostat command is executed in such a
way that disk usage is listed for every 30 seconds. That means we will get 40 values for
1200 seconds. Disk usage is shown in kB_wrtn/s. For each iteration disk throughput
value is taken as average and plotted.

5.2.1 Mixed load operation

This operation is a mix of 1 write and 3 read processes in Cassandra stress tool for

the duration of 20 minutes.

For 100% load and 66% load:

Figure 16 - 100% load Disk Throughput for mixed load operation

From the above figure, Disk throughput is higher in Linux containers. Highest value

is 11247.69kB_wrtn/s. The highest value for Cassandra in bare metal is
8607.56kB_wrtn/s. 100% load and 66% load is determined from oprate value while
running Cassandra stress utility tool. In Cassandra, there is a compaction strategy which
merges multiple memtables after SSTables being flushed. This causes more disk usage.

1 2 3 4 5 6 7 8 9 10
baremetal 6906.86534.18493.86116.87482.87826.6 7403 7621.78291.18607.6

Linux	Container 100619355.19150.710731 10193 112488530.39922.79177.310221

0

2000

4000

6000

8000

10000

12000

DI
SK
	T
HR

O
UG

HP
UT

	(
KB

_W
RT

N/
S)

NUMBER	OF	ITERATIONS

100%	load	Disk	Throughput	for	Mixed	load	
operation

 30

Figure 17 - 100% load Disk throughput in LXC and bare metal for mixed
load operation

Iostat tool is executed to run for 20 minutes’ duration. In the above figure each value
represents the average of 10 iterations from 30 to 1200 seconds. Iostat tool is
executed in such a way to give value every time after 30 seconds, therefore 40
average values are plotted. From the above two graphs the same trend has been
observed such that Disk throughput is more in case of Linux Containers.

Figure 18 - 66% load Disk throughput for mixed load operation

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000 1200 1400

Di
sk
	th

ro
ug
hp

ut
	(K
B_

w
rt
n/
s)

Time

100%	load	Disk	throughput	in	LXC	and	bare	
metal	for	mixed	load	operation

bare	metal Linux	Container

1 2 3 4 5 6 7 8 9 10
baremetal 8571.87775.17758.38963.39647.49279.28904.79076.38674.68816.8

Linux	Container 11214 10462 10444 10883 12365 11853 11746 11795 11164 10221

0

2000

4000

6000

8000

10000

12000

14000

DI
SK
	T
HR

O
UG

HP
UT

	(K
B_

W
RT

N/
S)

NUMBER	OF	ITERATIONS

66%	load	Disk	throughput	for	Mixed	load	
operation

 31

From the above figure, Disk throughput is higher in Linux Containers. Highest value
in Linux Containers is 12364.63kB_wrtn/s. The highest value for Cassandra in bare
metal is 9647.38kB_wrtn/s.

Cassandra on Linux Containers has higher disk throughput values because disk

usage values may be higher than expected because of heavy writing and reading
processes including with building SSTables as the final product of compaction
processes.

5.2.2 Write Operation

This operation is done by giving write process in Cassandra stress tool for 20

minutes.

For 100% load and 66% load:

The figure below shows the graph for 100% load Disk throughput for write

operation. 100% load and 66% load is determined from the oprate value while running
the cassandra stress utility tool. The graph below shows the average values of Disk
throughput for 10 iterations. For 100% load operation, disk throughput is almost same
in both bare metal and Linux Containers. Coming to 66% load, Cassandra in bare metal
has highest disk utilization than in Cassandra in Linux Containers. The reason for this
might be heavy write processes to the disk for Cassandra in bare metal. It also has effect
from compaction strategy which merges memtables after SSTables being flushed. This
process utilizes more disk usage. In normal operations maintaining a free disk space of
30% is recommended.

Figure 19 - 100% load Disk throughput for write operation

1 2 3 4 5 6 7 8 9 10
baremetal 41983 49200 51969 50383 50983 51000 49678 50857 52872 50347

Linux	Container 51559 48816 49597 50505 49698 50282 49446 49530 51520 49843

0

10000

20000

30000

40000

50000

60000

DI
SK
		T
HR

O
UG

HP
UT

	(
KB

_W
RT

N/
S)

NUMBER	OF	ITERATIONS

100%	load	Disk	Throughput	for	write	operation

 32

Figure 20 - 100% load Disk throughput in LXC and bare metal for write
operation

Iostat tool is executed to run for 20 minutes’ duration. In the above figure each value
represents the average of 10 iterations from 30 to 1200 seconds. Iostat tool is executed
in such a way to give value every time after 30 seconds, therefore 40 average values are
plotted. From the above two graphs the same trend has been observed.

Figure 21 - 66% load Disk throughput for write operation

For 66% load operation, the highest disk throughput in bare metal is

44896.15kB_wrtn/s. Highest disk throughput in Linux Containers is 43860.2kB_wrtn/s.
Here Disk throughput is more for bare metal.

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400

Di
sk
	th

ro
ug
hp

ut
	(K
B_

w
rt
n/
s)

Time

100%	load	Disk	throughput	in	LXC	and	bare	
metal	for	write	operation

Bare	metal Linux	Container

1 2 3 4 5 6 7 8 9 10
baremetal 44194 43965 44229 43836 43948 44368 43570 43883 43474 44200

Linux	Container 43316 42221 43418 43682 43255 43896 42921 43246 43860 42601

41000

41500

42000

42500

43000

43500

44000

44500

45000

DI
SK
		T
HR

O
UG

HP
UT

	(
KB

_W
RT

N/
S)

NUMBER	OF	ITERATIONS

66%	load	Disk	Throughput	for	write	operation

 33

5.2.3 Read operation

This operation is done by giving Read process in Cassandra stress tool for 20
minutes. When compared to mixed load and write operations disk throughput in read
operation is very less. This is because of very less read processes to the disk.
For 100% load and 66% load:

Figure 22 - 100% load Disk throughput for read operation

Figure 23 - 100% load Disk throughput in LXC and bare metal for read
operation

Iostat tool is executed to run for 20 minutes’ duration. In the above figure each value
represents the average of 10 iterations from 30 to 1200 seconds. Iostat tool is executed

1 2 3 4 5 6 7 8 9 10
baremetal 858.971225.11205.11171.51385.51070.9989.671047.3929.041009.2

Linux	Container 873.71928.61982.371073.8973.691055.41012.51030.3 991.2 994.56

0

200

400

600

800

1000

1200

1400

1600

DI
SK
		T
HR

O
UG

HP
UT

		(
	K
B_

W
RT

N/
S)

NUMBER	OF	ITERATIONS

100%	load	Disk	Throughput	for	read	operation

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 200 400 600 800 1000 1200 1400

DI
sk
	th

ro
ug
hp

ut
	(K
B_

w
rt
n/
s)

Time

100%	load	Disk	throughput	in	LXC	and	bare	
metal	for	read	operation

Bare	metal Linux	Container

 34

in such a way to give value every time after 30 seconds, therefore 40 average values are
plotted. From the above two graphs the same trend has been observed such that Disk
throughput is more in case of Linux Containers and it was similar for few iterations.

Figure 24 - 66% load Disk throughput for read operation

There is no compaction strategy in read operation. The reason for this is after the
memtable is flushed SSTables are not allowed to write it again. If a row is not in
memtable, a read of the row needs to lookup in all multiple SSTable files. This causes
read operation in Cassandra a little bit slower than write operation.

5.3 Latency

Here latency can be defined as time taken by the process to generate the load and

also generate a response from the Cassandra cluster. Latency values are noted after
running the stress utility tool in load generator (6th node). As the load increases the
latency for all operations increases because we will find more number of responses for
requests per second.

5.3.1 Mixed Load Operation

For 100% load:

This process is a mix of 1 write and 3 read operations executed by using Cassandra

stress utility tool in the load generator. Latency is noted after running the stress utility
tool in load generator. For 100% load 450 threads are used.

1 2 3 4 5 6 7 8 9 10
baremetal 1425.31495.41348.21479.3 1542 1529.61398.11484.51279.21376.4

Linux	Container 927.82946.371073.71008.41043.5983.271037.41024.8992.051003.7

0

200

400

600

800

1000

1200

1400

1600

1800

DI
SK
		T
HR

O
UG

HP
UT

	(
KB

_W
RT

N/
S)

NUMBER	OF	ITERATIONS

66%	load	Disk	Throughput	for	read	operation

 35

Figure 25 - 100% load latency for mixed load operation

 For 66% load:

This process is a mix of 1 write and 3 read operations executed by using Cassandra
stress utility tool in the load generator. Latency is noted after running the stress utility
tool in load generator. For 66% load 150 threads are given in the stress tool utility
command.

Figure 26 - 66% load latency for mixed load operation

5.3.2 Write Operation

For 100% load

This process is done by write operation executed by Cassandra stress utility tool in

the load generator for 20 minutes. Latency is noted after running the stress utility tool in
load generator. For 100% load 450 threads are used.

0

1

2

3

4

5

baremetal Linux	Containers

La
te
nc
y	(
m
s)

100%	load	Latency	mixed	load

0

1

2

3

4

bare	metal Linux	Containers

La
te
nc
y	(
m
s)

66%	load	Latency	mixed	load

 36

Figure 27 - 100% load latency for write operation

For 66% Load

This process is done by write operation executed by Cassandra stress utility tool in

the load generator for 20 minutes. Latency is noted after running the stress utility tool in
load generator. For 66% load 150 threads are used.

Figure 28 - 66% load latency for write operation

5.3.3 Read Operation

For 100% load

This process is done by read operation executed by Cassandra stress utility tool in

the load generator for 20 minutes. Latency is noted after running the stress utility tool in
load generator. For 100% load 450 threads are used. Sometimes there will be more
latency because of its slower process.

0

2

4

6

bare	metal Linux	Containers

La
te
nc
y	(
m
s)

100%	load	Latency	write	operation

0

1

2

3

bare	metal Linux	Containers

La
te
nc
y	(
m
s)

66%	load	Latency	write	operation

 37

Figure 29 - 100% load latency for read operation

For 66% load

This process is done by read operation executed by Cassandra stress utility tool in
the load generator for 20 minutes. Latency is noted after running the stress utility
tool in load generator. For 66% load 150 threads are used. Sometimes there will be
more latency because of its slower process

Figure 30 - 66% load latency for read operation

0

1

2

3

4

bare	metal Linux	Containers

La
te
nc
y	(
m
s)

100%	load	Latency	read	operation

0

1

2

3

4

bare	metal Linux	Containers

La
te
nc
y	(
m
s)

66%	load	Latency	read	operation

 38

6 ANALYSIS AND DISCUSSION

For both the cases 100% load and 66% load in mixed load and write operations we

observe very high CPU Utilization for Cassandra database in both bare metal and Linux
Container. The reason for this high CPU utilization might be Cassandra uses up so much
CPU cycles. This can also be shown as data volume and request traffic per Cassandra
node increases. Then CPU Utilization increases.

While running mixed load operation which have a mix of read and write operations

for millions each per node, default heap settings will not work here. This naturally
creates very high load on the Cassandra cluster. This means that columns being read,
column being compacted, key caches, memtables etc. will quickly become old
generation. This old generation will fill up faster and will potentially have high CPU
Utilization.

CPU Utilization and Disk Throughput in read operation is almost similar for both

Linux Container and bare metal and less compared to mixed load and write operations.
The reason for this is after the memtable is flushed SSTables are not allowed to write it
again. Therefore, if a row is not in memtable, a read of the row needs to lookup in all
multiple SSTable files. This is the reason why read operation in Cassandra is slower
than write operation. So Disk throughput for read operation is also very less.

Coming to Disk throughput in write and mixed load operations there is compaction

strategy which merges multiple memtables this process uses more disk usage. There is
no compaction strategy in read operation which causes less disk usage. In normal
operations maintaining a free disk space of 30% - 50% is recommended. This is for
having sufficient available space for Cassandra to perform compaction strategy which
uses additional disk space.

 39

7 CONCLUSION AND FUTURE WORK

The main aim of this thesis is to evaluate mixed load, write and read performance

of Cassandra database and comparing its CPU utilization and Disk Throughput on bare
metal and Linux Containers (LXC). According to the results, CPU utilization is more
for Cassandra database in Linux Containers. We observed overhead in case of Linux
Containers. Disk throughput is also more in Linux Containers except in the case of 66%
load write operation. This means bare metal performs less CPU utilization, less Disk
throughput in except one scenario. From these results we observe Cassandra database
performs better on bare metal because it utilizes less CPU usage. Coming to latency,
bare metal has less latency compared to Linux Containers in all scenarios. This is also a
main reason to say Cassandra on bare metal performs better.

By comparing the results, the advantage of Cassandra on physical servers (bare

metal) is its CPU utilization is almost 20 percent less in both mixed load, write operation
and it is same in read operation. The only advantage for Linux Containers observed in
this thesis work is Disk throughput for cassandra is more when compared to physical
server (bare metal) in mixed load operation. For write and read operation disk
throughput is more for physical servers (bare metal). For both 100% load and 66% load
the same trends has been observed.

As future work, we can evaluate performance technologies of Cassandra database

in cloud systems and High Performance Computing (HPC). We can also evaluate
performance of compaction strategies in Cassandra database in Linux Containers.
Container virtualization is improving day by day we can implement the same method of
this experiment on different platform.

 40

REFERENCES

[1] “A Brief Introduction to Apache Cassandra | DataStax Academy: Free Cassandra

Tutorials and Training.” [Online]. Available:
https://academy.datastax.com/resources/brief-introduction-apache-cassandra.
[Accessed: 14-Sep-2016].

[2] A. Chebotko, A. Kashlev, and S. Lu, “A Big Data Modeling Methodology for Apache
Cassandra,” in 2015 IEEE International Congress on Big Data (BigData Congress),
2015, pp. 238–245.

[3] “Big data analytics – actionable insights for the communication service provider - wp-
big-data.pdf.” [Online]. Available: http://www.ericsson.com/res/docs/whitepapers/wp-
big-data.pdf. [Accessed: 14-Sep-2016].

[4] “IBM - What is big data?,” 07-Sep-2016. [Online]. Available: https://www-
01.ibm.com/software/data/bigdata/what-is-big-data.html. [Accessed: 14-Sep-2016].

[5] “Why should I use Cassandra?,” DataStax. [Online]. Available:
http://www.datastax.com/2012/01/why-should-i-use-cassandra. [Accessed: 14-Sep-
2016].

[6] “5 reasons why you should use Cassandra - Exponential.io.” [Online]. Available:
http://exponential.io/blog/2015/01/13/5-reasons-why-you-should-use-cassandra/.
[Accessed: 14-Sep-2016].

[7] “What is container-based virtualization (operating system-level virtualization)? -
Definition from WhatIs.com,” SearchServerVirtualization. [Online]. Available:
http://searchservervirtualization.techtarget.com/definition/container-based-
virtualization-operating-system-level-virtualization. [Accessed: 14-Sep-2016].

[8] V. D. Jogi and A. Sinha, “Performance evaluation of MySQL, Cassandra and HBase
for heavy write operation,” in 2016 3rd International Conference on Recent Advances
in Information Technology (RAIT), 2016, pp. 586–590.

[9] P. Bagade, A. Chandra, and A. B. Dhende, “Designing performance monitoring tool
for NoSQL Cassandra distributed database,” in 2012 International Conference on
Education and e-Learning Innovations (ICEELI), 2012, pp. 1–5.

[10] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. D. Rose,
“Performance Evaluation of Container-Based Virtualization for High Performance
Computing Environments,” in 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, 2013, pp. 233–240.

[11] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking: Performance and
scalability of kernel modules,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, 2016, pp. 713–717.

[12] P. E. N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of Docker containers
based on hardware utilization,” in 2015 International Conference on Control
Communication Computing India (ICCC), 2015, pp. 697–700.

[13] D. Beserra, E. D. Moreno, P. T. Endo, J. Barreto, D. Sadok, and S. Fernandes,
“Performance Analysis of LXC for HPC Environments,” in 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), 2015, pp.
358–363.

[14] “Architecture in brief.” [Online]. Available:
https://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureIntro_c.h
tml. [Accessed: 14-Sep-2016].

[15] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking: Performance and
scalability of kernel modules,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, 2016, pp. 713–717.

[17] “Chapter 1. Introduction to Linux Containers - Red Hat Customer Portal.” [Online].
Available: https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-
host/7/paged/getting-started-with-containers/chapter-1-introduction-to-linux-
containers. [Accessed: 14-Sep-2016].

 41

[16] “Introduction to Apache Cassandra’s Architecture - DZone Database,” dzone.com.
[Online]. Available: https://dzone.com/articles/introduction-apache-cassandras.
[Accessed: 14-Sep-2016].

[18] “sar(1) - Linux man page.” [Online]. Available: http://linux.die.net/man/1/sar.
[Accessed: 14-Sep-2016].

[19] “iostat(1) - Linux man page.” [Online]. Available: http://linux.die.net/man/1/iostat.
[Accessed: 14-Sep-2016].

[20] “Exploring LXC Networking - Container Ops.” [Online]. Available:
http://containerops.org/2013/11/19/lxc-networking/. [Accessed: 14-Sep-2016].

[21] E. Casalicchio, L. Lundberg, and S. Shirinbad, “An Energy-Aware Adaptation Model
for Big Data Platforms,” in 2016 IEEE International Conference on Autonomic
Computing (ICAC), 2016, pp. 349–350.

 42

APPENDIX

This appendix chapter provides the status and results of the experiments conducted

for the purpose of Performance Comparison of Cassandra in LXC and Bare metal.

Cassandra Network Configuration

Figure 31 - Configuration of cassandra.yaml file (1)

Figure 32 - Configuration of cassandra.yaml file (2)

 43

Figure 33 - Configuration of cassandra.yaml file (3)

Cassandra Cluster

Figure 34 - Cassandra cluster status

Data insertion into Cassandra cluster

Figure 35 - Data insertion into cassandra cluster

 44

Cassandra stress utility tool

Figure 36 - Cassandra stress utility tool (1)

Figure 37 - Cassandra stress utility tool (2)

 45

For 66% load

Figure 38 - 66% load Disk throughput in LXC and bare metal for mixed load
operation

Figure 39 - 66% load Disk throughput in LXC and bare metal for write operation

0
2000
4000
6000
8000
10000
12000
14000
16000

0 200 400 600 800 1000 1200 1400

CP
U	
Ut
ili
za
tio

n

Time

66%	load	Disk	Throughput	 in	LXC	and	bare	metal	
for	mixed	load	operation

Bare	metal Linux	Container

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200 1400

Di
sk
	th

ro
ug
hp

ut
	(K
B_

w
rt
n/
s)

Time

66%	load	Disk	throughput	 in	LXC	and	bare	metal	
for	write	operation	

Bare	metal Linux	Container

