
Automating NSX®  
for vSphere with 

PowerNSX
The “un-official official” automation tool for NSX

With contributions from Nick Bradford and Dale Coghlan

Foreword by Alan Renouf

Anthony Burke, Solutions Architect, VMware





With contributions from Nick Bradford and Dale Coghlan

Foreword by Alan Renouf

Automating NSX®  
for vSphere with 

PowerNSX
The “un-official official” automation tool for NSX

Anthony Burke, Solutions Architect, VMware



VMWARE PRESS 

Program Managers

Katie Holms
Shinie Shaw

Technical Writer

Rob Greanias

Production Manager

Sappington

Warning & Disclaimer
Every effort has been made to make this book as complete and as 
accurate as possible, but no warranty or fitness is implied. The 
information provided is on an “as is” basis. The authors, VMware Press, 
VMware, and the publisher shall have neither liability nor responsibility 
to any person or entity with respect to any loss or damages arising from 
the information contained in this book. 

The opinions expressed in this book belong to the author and are not 
necessarily those of VMware. 

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA  
Tel 877-486-9273 Fax 650-427-5001 www.vmware.com. 

Copyright © 2017 VMware, Inc. All rights reserved. This product is 
protected by U.S. and international copyright and intellectual property 
laws. VMware products are covered by one or more patents listed at  
http://www.vmware.com/go/patents. VMware is a registered trademark 
or trademark of VMware, Inc. and its subsidiaries in the United States 
and/or other jurisdictions. All other marks and names mentioned herein 
may be trademarks of their respective companies.



 | V

Table of Contents

Audience............................................................................................................................. XII
Goal of this book ...........................................................................................................XIII
Foreword .......................................................................................................................... XIV

Chapter 1 - Tools and Cloud Management Platform ......................................... 1

Tooling and Cloud Management Platforms..........................................................2
Chapter Summary ............................................................................................................ 4

Chapter 2 - About PowerNSX ...................................................................................7

What is PowerNSX? ..........................................................................................................7
Why PowerNSX? ............................................................................................................... 8
Where to get PowerNSX ............................................................................................. 10

Chapter 3 - Getting Started with PowerNSX .................................................... 13

Installing PowerNSX ....................................................................................................... 13 
Install PowerNSX on Windows..................................................................................14
Install PowerNSX on macOS ......................................................................................16
Install PowerNSX on Linux .......................................................................................... 17
Manual Installation ...........................................................................................................19
Using the Built-in Help ................................................................................................. 20
Usage Information ..........................................................................................................28
Chapter Summary ..........................................................................................................29

Chapter 4 - Connecting with PowerNSX ............................................................ 31

Connecting to NSX Manager ....................................................................................32 
Using Credential Objects ............................................................................................33
Disconnecting from NSX Manager ....................................................................... 34
Overriding the Default Connection .......................................................................35 
Chapter Summary ..........................................................................................................36

Chapter 5 - Logical Switching ................................................................................ 39

Working with Transport Zones ...............................................................................40
Building Logical Switches ...........................................................................................42
Building Universal Logical Switches..................................................................... 44
Attaching Virtual Machines to Logical Switches ........................................... 46
Deleting Logical Switches ..........................................................................................47
Progressive Example: Creating Logical Switches ......................................... 49
Chapter Summary ...........................................................................................................51

Chapter 6 - Distributed Routing ........................................................................... 53

About Interface Specifications ............................................................................... 54
Deploying Logical Routers .........................................................................................55
Adding an Interface to an Existing Logical Router .......................................55
Configuring OSPF on Logical Router   ................................................................56
Adding a New Interface ...............................................................................................58
Deleting Logical Routers Interfaces .....................................................................60
Deleting Logical Routers  ..........................................................................................60



VI |

Progressive Example: Configuring BGP Routing on the Distributed 
Router ....................................................................................................................................61
Chapter Summary ......................................................................................................... 64

Chapter 7 - NSX Edge Services Gateway .......................................................... 67

About Interface Specifications ............................................................................... 68
Creating a New NSX Edge ........................................................................................ 69 
Adding a New Interface to an Existing NSX Edge ....................................... 70
Configuring OSPF on NSX Edge..............................................................................71
Working with OSPF Areas..........................................................................................72
OSPF Interface Assignment ......................................................................................73
Progressive Example: Configuring BGP Routing on NSX Edge .............75
Chapter Summary ..........................................................................................................77

Chapter 8 - NSX Edge Load Balancing .............................................................. 79

Enabling the Load Balancer ..................................................................................... 80
Working with Load Balancer Monitors ............................................................... 80
Working with Load Balancer Pools ........................................................................81 
Managing Application Profiles .................................................................................82
Managing Virtual Servers ...........................................................................................82
Adding and Removing Pool Members ................................................................ 84
Managing Application Rules .....................................................................................85
Progressive Example: Configuring Load Balancing Web and App Tiers 
85
Chapter Summary ......................................................................................................... 89

Chapter 9 - Distributed Firewall and Objects .................................................. 91

Working with Firewall Sections ...............................................................................92
Creating Firewall Rules ................................................................................................93
Removing Firewall Rules .............................................................................................93
Creating Objects for use in Distributed Firewall Rules .............................. 94
Creating Security Groups and Defining Members ........................................ 96
Working with Security Tags ................................................................................... 100
Removing Security Tags............................................................................................102
Creating DFW Rules using Objects .....................................................................102
Progressive Example: Creating Security Objects and DFW Rules .... 106
Chapter Summary ...........................................................................................................111

Chapter 10 - Cross vCenter and PowerNSX ..................................................... 113

Design Considerations ................................................................................................ 114
Retrieving Universal Objects ................................................................................... 114
Creating Universal Objects ....................................................................................... 116
Chapter Summary ......................................................................................................... 118

Chapter 11 - Administrative Operations ............................................................. 121

Searching for a Port .................................................................................................... 122



 | VII

Does a Firewall Rule Encompass a Specific Address? .............................. 123
Cloning an Existing NSX Edge ............................................................................... 126 
Searching Firewall Rules for Log Status ........................................................... 128
Retrieving Firewall Rules with a Specific Tag ................................................. 129
Chapter Summary ........................................................................................................ 129

Chapter 12 - Tools built with PowerNSX ............................................................131

NSX Capture Bundle Tool  ....................................................................................... 132 
Visio Diagramming Tool  ...........................................................................................134
DFW to Excel Documentation Tool ..................................................................... 137
Build NSX from Scratch ............................................................................................. 137
Chapter Summary ........................................................................................................ 139

Chapter 13 - Using PowerNSX to interact directly with the NSX API ....141

The Core of PowerNSX .............................................................................................. 142
Retrieving Information from NSX using Invoke-NsxRestMethod ........ 143
Modifying Configuration using Invoke-NsxRestMethod ..........................146 
About Invoke-NsxWebRequest ............................................................................148
Chapter Summary ........................................................................................................149
Appendix ............................................................................................................................ 151
Index .................................................................................................................................... 153



VIII |

List of Tables
Table 3.1   Manual Installation on Windows  ...........................................................19
Table 3.2  Manual Installation on macOS / Linux  ...............................................19

List of Figures
Figure 5.1   New Logical Switches .............................................................................. 50
Figure 6.1   BGP Peering on Distributed Router ...................................................61
Figure 7.1   Logical Routing Topology .......................................................................75
Figure 8.1   Load Balancing Logical Topology ..................................................... 86
Figure 9.1   Logical Security Topology .................................................................. 106
Figure 12.1   Visio Diagram Tool Output ................................................................. 136
Figure 12.2  Completed PowerNSX  ......................................................................... 137

List of Examples
Example 3.1  Installing PowerNSX on Windows  ..................................................14
Example 3.2  Installing PowerNSX on macOS  .....................................................16
Example 3.3  Installing PowerNSX on Ubuntu  ..................................................... 17
Example 3.3  Example 4-5 – Manual Import of module  ............................... 20
Example 3.4  Get-Help for New-NsxController  ................................................. 20
Example 3.5  Retrieving Examples for a cmdlet ..................................................21
Example 3.6  Retrieving Details for a cmdlet .......................................................23
Example 3.7  Retrieving all Information for a cmdlet .......................................25
Example 4.1  Connecting to NSX Manager  ...........................................................32
Example 4.2  Connecting to NSX Manager   ........................................................33
Example 4.3  Connecting to vCenter and NSX Manager with a 

Credential Object   .................................................................................. 34
Example 4.4  Disconnecting from NSX Manager .............................................. 34
Example 4.5  Storing and Handling Multiple Connections   .........................35
Example 5.1  Retrieving all Transport Zones  .......................................................40
Example 5.2  Retrieving a Specific Transport Zone by Name ......................41
Example 5.3  Storing a Transport Zone Object in a Variable .......................42
Example 5.4  Creating a New Logical Switch ...................................................... 43
Example 5.5  Configuring Replication Mode per Logical Switch .............. 44
Example 5.6  Creating a Universal Logical Switch .............................................45
Example 5.7  Attaching VM1 to Logical Switch Test-

UniversalLogicalSwitch ......................................................................... 46



 | IX

Example 5.8  Attaching Numerous VMs to Logical Switch .......................... 46
Example 5.9  Deleting a Logical Switch ..................................................................47
Example 5.10  Deleting a Logical Switch with VMs Attached ..................... 48
Example 5.11  Disconnecting Virtual Machines from a Logical Switch ... 49
Example 5.12  Creating Logical Switches ............................................................... 50
Example 5.13  Validating Logical Switches ..............................................................51
Example 6.1  Interface Spec for Distributed Router ......................................... 54
Example 6.2  Deploying a new Logical Router ....................................................55
Example 6.3  Adding a New Interface to a Logical Router  ..........................56
Example 6.4  Enable OSPF Routing on Logical Router ..................................57
Example 6.5  Create a New OSPF Area...................................................................57
Example 6.6  Add Logical Router Uplink Interface to OSPF Area ............58
Example 6.7  Adding a New Interface to a Logical Router ...........................59
Example 6.8  Adding Several Interfaces with Interface Specs ...................59
Example 6.9  Validating Newly Created Interfaces ..........................................60
Example 6.10  Removing a Specific Logical Router Interface ....................60
Example 6.11  Remove a Logical Router ...................................................................61
Example 6.12  Configure BGP Routing on Logical Router .............................62
Example 6.13  Enable Redistribution for BGP .......................................................62
Example 6.14  Redistribute Connected into BGP ...............................................63
Example 6.15  Add a BGP Neighbor to the Logical Router ...........................63
Example 7.1  NSX Edge Interface Specifications ................................................ 68
Example 7.2  Creating a New NSX Edge ................................................................ 69
Example 7.3  Adding a New Interface ..................................................................... 70
Example 7.4  Adding Interface Address with an Address Spec ..................71
Example 7.5  Enable NSX Edge OSPF ......................................................................72
Example 7.6  Remove Superfluous Area ID ...........................................................72
Example 7.7  Adding New OSPF Area ......................................................................73
Example 7.8  Assigning an NSX Edge Interface to an OSPF Area ............73
Example 7.9  Area and Interface Definition on a Selection of NSX Edges .

74
Example 7.10  Enable BGP on NSX Edge ................................................................76
Example 7.11  Creating a BGP Peer to the Logical Router ..............................76
Example 8.1  Enabling the NSX Load Balancer ................................................... 80
Example 8.2  Creating a Monitor for a Specific Service ................................. 80
Example 8.3  Creating a New Pool ..............................................................................81
Example 8.4  Creating an Application Profile ......................................................82
Example 8.5  Building a Virtual Server ....................................................................83
Example 8.6  Removing a Virtual Server ............................................................... 84
Example 8.7  Adding a Pool Member ...................................................................... 84
Example 8.8  Removing a Pool Member .................................................................85
Example 8.9  Creating an Application Rule ...........................................................85



X |

Example 8.10  Enabling the Load Balancer .......................................................... 86
Example 8.11  Creating Monitors ..................................................................................87
Example 8.12  Building and Populating the Pools ..............................................87
Example 8.13  Creating Application Profiles......................................................... 88
Example 8.14  Constructing the Virtual Servers ................................................ 88
Example 9.1  New Firewall Section .............................................................................92
Example 9.2  Retrieving a Firewall Section ............................................................92
Example 9.3  Creating a Basic DFW Rule...............................................................93
Example 9.4  Removing a Firewall Rule ..................................................................93
Example 9.5  Removing all Rules within a Section  .......................................... 94
Example 9.6  Creating a New IPSet  ......................................................................... 94
Example 9.7  Appending New IPSet Members ....................................................95
Example 9.8  Creating a New Security Group .................................................... 96
Example 9.9  Creating a New Security Group Including a Cluster 

Member ..........................................................................................................97
Example 9.10  Discovering Security Group Membership ...............................97
Example 9.11  Discovering Security Group Membership Redux ................. 98
Example 9.12  Add Security Group Member ........................................................ 99
Example 9.13  Removing a Security Group Member ........................................ 99
Example 9.14  Security Group Member Types .................................................. 100
Example 9.15  Creating New Security Tags......................................................... 100
Example 9.16  Adding VMs to a Security Tag ...................................................... 101
Example 9.17  Querying Security Tag Members ................................................. 101
Example 9.18  Removing Security Tags .................................................................102
Example 9.19  Creating Object-Based DFW Rules ..........................................103
Example 9.20  Validate DFW Rule on vNIC ....................................................... 104
Example 9.21  Add a New DFW Rule Object ..................................................... 104
Example 9.22  Remove a DFW Rule Object........................................................105
Example 9.23  Logical Security Objects ............................................................... 107
Example 9.24  Load Balancer to Web Tier .......................................................... 107
Example 9.25  Web to App VIP .................................................................................108
Example 9.26  App VIP / ESG Interface to App Tier ......................................108
Example 9.27  App Tier to DB Tier ..........................................................................109
Example 9.28  Application Specific Deny .............................................................110
Example 10.1  Retrieving Transport Zones ............................................................. 114
Example 10.2  Retrieving Universal Transport Zone ........................................ 114
Example 10.3  Creating Universal Logical Switch .............................................. 115
Example 10.4  Creating Universal Logical Router ............................................. 116
Example 10.5  Creating Universal IP Set..................................................................117
Example 11.1  Find Service by Port ............................................................................ 122
Example 11.2  Find Service by Port within a Range ......................................... 123
Example 11.3  Find Address used in a DFW Rule .............................................. 123



 | XI

Example 11.4  Find VM used in DFW Rule ............................................................ 124
Example 11.5  Find Address used in a DFW Rule .............................................. 125
Example 11.6  Removing a Rule Source or Destination Member............... 126
Example 11.7  Copying an Existing NSX Edge..................................................... 127
Example 11.8  Finding Firewall Rules without Logging Enabled  .............. 128
Example 11.9  Retrieving a Firewall Rule Based on Tag Name  .................. 129
Example 12.1  Object Capture Bundle  .................................................................... 132
Example 12.2  Bundle Import ...................................................................................... 133
Example 12.3  Traversing the Bundle....................................................................... 133
Example 12.4  Traversing the Bundle ...................................................................... 135
Example 12.5  Deploy NSX  .......................................................................................... 138
Example 12.6  Deploy only 3 Tier Application .................................................... 138
Example 12.7  Deploy NSX and 3 Tier Application  ......................................... 138
Example 13.1  Using Invoke-NsxRestMethod ....................................................... 142
Example 13.2  Examining an XML Document ..................................................... 143
Example 13.3  Using Format-List to Display Formatted XML ....................144
Example 13.4  Retrieving a Collection of XML Elements .............................. 145
Example 13.5  Updating the Description of an Existing Service ...............146





 | XIII 

Anthony Burke
Solutions Architect, 
Network Security Business Unit, VMware

Anthony is a Solution Architect with the 
Networking & Security Business Unit at VMware. 
Anthony helps customers transform their 
networks to support modern network 
architectures with network virtualization using 
technologies such as VMware NSX®. His previous 
experience with emergency services gives him a 
unique perspective of the network requirements 
of mission critical environments. Anthony has 
contributed to and evangelized PowerNSX since 
its inception. This allows customers to adopt and 
consume automation of VMware NSX for 
vSphere® in a familiar and friendly fashion.

About the Author



XIV |

About the Reviewers

Nick Bradford
Lead Solutions Architect,  
Network Security Business Unit, VMware

With 20 years in a variety of operations, 
infrastructure, and architecture roles in some of 
the biggest environments in Australia, Nick has 
designed and implemented many different 
infrastructure technologies – including 
virtualization, storage area networks, datacenter 
networks, monitoring platforms, and a variety of 
other supporting technologies. As the author of 
PowerNSX, he is passionate about automation 
and its power to enable the full potential of 
VMware NSX as a part of the VMware SDDC.

Dale Coghlan
Solutions Architect,
Network Security Business Unit, VMware

Dale Coghlan is a solution architect with the 
Networking & Security Business Unit at VMware.  
Dale works directly with our NSX customers – 
from their initial design through to 
implementation and operationalization of their 
new environments. Dale has over 17 years of 
experience in networking and security roles 
across many verticals and uses that experience  
to help customers get the best out of the  
NSX platform.



 | XV

I’d like to thank my family for supporting me with  
my endeavors. With your support, nothing seems  
too ambitious or far out of reach, and for that I am 
eternally grateful. A special shout out to Dale Coghlan 
and Nick Bradford, my technical contributors.  
Thank you for your insight, wisdom, nuggets of 
knowledge, and for cleaning up my horrible grammar.  
I also want to take the time to thank you for your  
continuing mentorship.

Thank you also to our VMware NSX for vSphere 
customers who use PowerNSX. The PowerNSX would 
not exist as does today without the fanatical support 
of these users. Finally, a call out to Katie Holms and 
Shinie Shaw. Thanks for the support in getting this 
project started and the momentum going. This would 
not have happened without you both.

Acknowledgements



Audience

This book has been written to cater to administrators 
and architects of an VMware NSX for vSphere 
environment. This book should serve as a primer for 
users with skillsets ranging from beginner to 
advanced. Some prior knowledge around the following 
topics will help readers. These topics include:

• Microsoft PowerShell:  pipelines, variables,  
loops, scripting.

• VMware vSphere® PowerCLI™:  basic vSphere 
administration.

• VMware NSX for vSphere: concepts and 
configuration specifics.

It is assumed that the reader will be familiar with NSX 
for vSphere constructs and terminology. Additional 
information about NSX for vSphere can be found in:

• VMware NSX for vSphere Administration guide

• VMware NSX for vSphere Design Guide 3.0



 | XVIIGOAL OF THIS BOOK

Goal of this book

The goal of this book is to introduce PowerNSX to 
administrators and architects of an NSX for vSphere 
environment. This book provides readers insight into 
the core aspects of PowerNSX. By the end of this book 
readers will know how to use PowerNSX for:

• Installing and getting started with PowerNSX

• Creating logical switches

• Deploying distributed logical routers (DLR)

• Deploying VMware® NSX Edge™ service gateways 
(ESG)

• Building NSX Edge services gateway load 
balancers

• Configuring distributed firewall and objects

• Performing administrative operations

• Using community tools built with PowerNSX

This book will serve as a primer and reference for 
many day to day tasks performed administrators of 
VMware NSX for vSphere environments.



XVIII |

Foreword

I will start out this foreword by warning you of the 
power you now hold in your hands! This book contains 
fantastic information that any VMware NSX for 
vSphere engineer would be grateful to digest and use 
on a daily basis in their journey to provide a fully 
automated network infrastructure. Congratulations on 
taking your first step by purchasing this book.

When two strange Australians ask you for a meeting, 
you don’t turn them down for fear of your life or the 
deadly spiders they may have smuggled with them.  In 
my case I was pleased to meet and work with two of 
the smartest networking experts I have ever met, abd I 
am now honored to be writing the foreword as they 
create this awesome book in front of you. 

The amount of work and quality of this work that has 
been put into PowerNSX has blown my mind on 
several occasions and provides network administrators 
a Swiss knife of cmdlets to automate away their day to 
day troubles and pains, simply produce audit reports 
and documentation or even automate complex 
procedures which would have taken days to 
accomplish in the past.

This book is a must have for any networking engineer, 
NSX user, automation engineer, VMware full stack 
administrator, devops engineer or automation title of 
the month.

Increase your automation skills, progress in your 
career or just automate your day job away to lead you 
to higher paid jobs, more time with the family or more 
time to party.

Go forth and Automate.

 
Alan Renouf
Sr. Product Line Manager 
VMware



 | XIXFOREWORD





Chapter 1

CHAPTER 1 - TOOLS AND CLOUD MANAGEMENT PLATFORM  | 1

Tools and Cloud 
Management Platform

Before diving into a book about PowerNSX and how to get started, it is 
important to distinguish automation tooling from cloud management 
platforms and detail how each is used.

NOTE 
This is not an exhaustive list of tools or cloud management 
platforms. The commentary and focus is apropos to 
tooling and those who would use it.



2 |

Tooling and Cloud Management Platforms
There is a complimentary relationship between tooling, automation, 
and cloud management platforms. These concepts may appear to be 
mutually exclusive or duplicating function, however when considering 
the consumer – platform operations vs. end user – there is a clear 
distinction and the complementary nature of these approaches 
becomes clear.

Many of VMware’s most successful customers have embraced end user 
self-service via a cloud management platform (CMP).  They deploy this 
in conjunction with automation and devops style approaches to 
platform operations, leveraging tools such as the NSX and vSphere 
APIs, along with toolsets that consume them like PowerCLI and 
PowerNSX.

CMPs provide the end user with the resources they need on demand, 
whereas tooling and automation allow engineers and administrators to 
efficiently care for and maintain the underlying platform. In some 
cases, tooling and automation can also be used to interact with the 
CMP.  Although PowerNSX is not concerned with this directly, the 
extensibility of PowerShell and the availability of third-party extensions 
(e.g., PowerVRA) make PowerShell an ideal choice of technology for 
tooling and automation of whole systems. Figure 1.1 highlights this 
relationship:

Figure 1.1   



CHAPTER 1 - TOOLS AND CLOUD MANAGEMENT PLATFORM  | 3

Figure 1.1 demonstrates at a very high level the relationship between 
components; the following section explores each role a little bit more.

• End users are the consumers of the cloud platform. Their focus is 
on performing job related task such as development, quality 
assurance, or research. They use a web interface or command line 
tool to interact with the CMP. One such example is VMware 
Integrated OpenStack, where the user is provided a web interface, 
CLI and API interface for their project.

• Engineers are the administrators of the platform. They support the 
underlying infrastructure that is consumed by the cloud platform 
on top. Their role is to ensure that there is resource availability and 
connectivity for all end users. Their tools need to be able to 
interact with numerous systems and interrogate numerous API 
endpoints. Engineers use such tools as Ansible, PowerCLI, 
PowerNSX, Python, and many others.

Cloud Management Platforms ensure that business logic can be 
applied to resource consumption. Business logic infers that users 
based on task, role, business unit, or assignment, can request, 
consume, validate, and destroy resources as seen fit. It also provides 
the capabilities to perform automated workflows based on request 
types.

In contrast, tooling provides the means to automate and orchestrate 
operational and provisional tasks. These include the deployment of 
new capacity or services, retrieving platform statistics and utilization, 
and perform wholesale changes across the underlying infrastructure.

Using the right tool for the job is the key here. CMPs and their 
underlying infrastructures provide API endpoints that are then 
abstracted by tooling for easy consumption.



4 |

Chapter Summary
Tooling provides administrators and engineers the ability to interact 
with a CMP and the underlying infrastructure at scale. At any stage of 
the infrastructure’s lifecycle, it is possible to use tooling to automate 
many day to day tasks. The insight provided in this chapter provides 
the reader the knowledge of where tools such as PowerNSX sit in the 
world of operations, administration, and cloud management platforms.



CHAPTER 1 - TOOLS AND CLOUD MANAGEMENT PLATFORM  | 5



6 |



Chapter 2

CHAPTER 2 - ABOUT POWERNSX  | 7

About PowerNSX

What is PowerNSX?
PowerNSX is an open source project primarily developed by members 
of the solution architect team within VMware’s Network and Security 
Business Unit.

PowerNSX is a PowerShell module that abstracts the VMware NSX API 
to a set of easily used PowerShell functions.

Since PowerNSX is open source and not developed as an official 
product, PowerNSX is not supported by VMware, and comes with no 
warranties, express or implied. While there are many customers now 
using PowerNSX in large scale and complex environments, testing and 
validation for suitability is recommend before using it in a production 
environment.

PowerNSX does not cover 100% of the NSX API.  It focuses on 
exposing New, Update, Remove and Get operations for all key NSX 
functions.  It also adds functionality to extend the capabilities of NSX 
management beyond the native UI or API.  With over 250 cmdlets – 
with more being added constantly – it has significant coverage that 
addresses most requirements when it comes to automating VMware 
NSX for vSphere.



8 |

Why PowerNSX?
As the usage of PowerNSX increases and discussions take place there 
is always a question that comes to the forefront. That question is “Why 
PowerNSX?” Who better to answer that question than the founder and 
author himself, Nick Bradford?

“ A frequent question we get, is why we chose to develop 
PowerNSX as a PowerShell module when there were so many 

languages / environments to choose from, many of them being 
more ‘in vogue’ with the devops crowd than PowerShell (I’m 
looking at you Python guys!).

There are several reasons, but the most relevant one is due to the 
symbiotic nature of vSphere and NSX, and the massive install base 
of vSphere customers that VMware already had that were already 
heavy PowerCLI users.

Very early in the NSX story, we were hearing loud and clear from 
many of our NSX customers, that because they already had a lot of 
experience with vSphere, and had been operating it for years using 
(among other toolsets) PowerCLI, they had the (reasonable) 
expectation that PowerCLI would naturally be expanded to 
support NSX as a first-class citizen.

Unfortunately, the reality was that the RESTful NSX API was a 
completely different beast to the SOAP based vSphere API, and 
there were several significant technical limitations that prevented 
extending PowerCLI to support NSX as a formal product.

After several years of waiting for this impasse to be resolved (it 
wasn’t, and while there are plans internally, we are still some way 
from having formal product support for NSX in PowerCLI), and 
with the growing realization that our customers, and the VMware 
field needed more than just ‘the API’ with which to automate and 
operate NSX from a CLI and scripting perspective, it was clear to 
us that an alternative was required.

I have a long history as a vSphere customer myself prior to joining 
VMware, had utilized PowerCLI heavily, and was aware of its nearly 
ubiquitous usage within vSphere customers.  PowerCLI is an 
amazing product.  It is very mature, and succeeds magnificently in 
being a toolset for the administrator/engineer rather than being a 
toolset for the developer, whereas the underlying vSphere API that 
it abstracts is completely the opposite (read: unfriendly to 
sysadmins and operations folk).



CHAPTER 2 - ABOUT POWERNSX  | 9

But why am I talking about PowerCLI and the vSphere API?  When 
you start using the NSX API, you very quickly get confronted with 
how joined at the hip NSX and vSphere are.  You cannot deploy an 
NSX controller without specifying the datastore and cluster on 
which it will reside, or which port group it will be connected to.  
When you define these details, you must do so using the vSphere 
Managed Object Reference (i.e., MoReF) of the required vSphere 
entity, a detail that must be determined by interacting with the 
vSphere API.  

Every operation in NSX that relates to a vSphere object (VM, VNIC, 
port group, Cluster, Resource Pool etc.  Think about it, there are a 
lot of them!), requires a retrieval of that object’s MoReF to make 
the appropriate API call to NSX.  Now, to be fair to the Python 
guys, pyVmomi is a very widely used Python library that abstracts 
the vSphere API, so why not choose Python?  Well, some of our 
customers already have—and there are open source Python 
bindings for vSphere as well as Ansible modules now, and for the 
right customer, this is the right choice—but first and foremost, we 
could see the need for tooling for our typical vSphere customers 
and the VMware field—sysadmins and engineers, not developers—
who needed to interact heavily with vSphere to be functional using 
any NSX automation, and already knew and were typically heavy 
users of PowerCLI.  

‘$ds = Get-Datastore ds001; New-NsxController –
datastore $ds’

Look mum.  No MoReFs

The choice of platform was easy.  PowerNSX was born.  

To that end, PowerNSX is designed to work closely with VMware 
PowerCLI, and PowerCLI users will feel quickly at home using 
PowerNSX. Together these tools provide a comprehensive 
command line and automation environment for managing your 
VMware NSX for vSphere environments.

Remember, PowerNSX is still a work in progress, and it is unlikely 
that it will ever expose 100% of the NSX API. Feature requests are 
welcome via the issues tracker on the projects GitHub page.”



10 |

Where to get PowerNSX
PowerNSX is hosted on VMware’s official GitHub repository. The git 
repository itself is located at https://github.com/vmware/powernsx, 
and the project wiki can be found at https://powernsx.github.io

https://github.com/vmware/powernsx
https://powernsx.github.io


CHAPTER 2 - ABOUT POWERNSX  | 11



12 |



Chapter 3

CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 13

Getting Started 
with PowerNSX

Installing PowerNSX
Getting started with PowerNSX requires an environment that has 
PowerShell and PowerCLI installed. PowerCLI Core is now supported, 
so this can be a Windows, Linux, or macOS device.

The installation steps for the various platforms require the following:

• PowerShell and PowerCLI should be installed for Windows

 ° At least PowerShell 3 (recommended 5.1)

 ° At time of writing, the Windows installation script will 
automate the installation of PowerCLI, but this may change 
shortly with the move of both PowerCLI and PowerNSX to the 
PowerShell Gallery as a distribution mechanism.

• PowerShell Core and PowerCLI Core have been installed for 
macOS and Linux

 ° At the time of writing, PowerShell Core BETA is not supported.  
The only supported version of PowerShell Core is v6.0.0-
alpha.18.

 ° At the time of writing the supported version of PowerCLI Core 
is version 1.21 

For more details on supported versions please check  
https://powernsx.github.io for the latest information.

https://powernsx.github.io


14 |

At time of writing, the recommended method for installing PowerNSX 
is by running a PowerShell one-liner that downloads and invokes the 
PowerNSX installer directly from VMware’s GitHub repository.

PowerNSX will move its distribution mechanism to PowerShell gallery 
in the future, so it is recommended to check https://powernsx.github.io 
for the latest platform-specific installation instructions.

Note 
When following the example sections, copy the one-liner 
from the appropriate installation instructions at  
https://powernsx.github.io rather than manually typing  
or copying from this document!

 
 
Install PowerNSX on Windows
Example 3.1 outlines the installation process on Windows. The 
following commands are run from a PowerCLI prompt.

Example 3.1  Installing PowerNSX on Windows 

PowerCLI C:\> $Branch=”master”;$url=”https://raw.
githubusercontent.com/vmware/powernsx/$Branch/
PowerNSXInstaller.ps1”; try { $wc = new-object Net.
WebClient;$scr = try { $wc.DownloadString($url)} catch 
{ if ( $ _ .exception.innerexception -match “(407)”) { 
$wc.proxy.credentials = Get-Credential -Message “Proxy 
Authentication Required”; $wc.DownloadString($url) } 
else { throw $ _ }}; $scr | iex } catch { throw $ _ } 
 
PowerNSX Installation Tool 
 
PowerNSX is a PowerShell module for VMware NSX (NSX 
for vSphere). 
 
PowerNSX requires PowerShell 3.0 or better and VMware 
PowerCLI 6.0 or better to function. 
 
This installation script will automatically guide you 
through the download and installation of PowerNSX and 
its dependencies.  A reboot may be required during the 
installation.

https://powernsx.github.io
https://powernsx.github.io


CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 15

Performing automated installation of PowerNSX.
 
Continue? 
 
[Y] Yes  [N] No  [?] Help (default is “N”): Y 
 
PowerNSX module is already installed. 
 
Do you want to upgrade to the latest available 
PowerNSX? 
 
[Y] Yes  [N] No  [?] Help (default is “N”): Y 
 
PowerNSX installation complete. 
 
PowerNSX requires PowerCLI to function fully! 
To get started with PowerNSX, start a new PowerCLI 
session. 
 
You can view the cmdlets supported by PowerNSX as 
follows: 
    get-command -module PowerNSX 
 
You can connect to NSX and vCenter with Connect-
NsxServer. 
 
Head to https://vmware.github.io/powernsx for 
documentation, updates and further assistance. 
 
Enjoy!

Congratulations! Welcome to using PowerNSX on Windows.

The master branch is the main development branch. It is where 
development between released versions occur. Be warned that whilst 
testing and validation do occur, the master branch should be 
considered developmental. A versioned release such as v1 or v2 denote 
a “point in time” release.

NOTE 
If an administrator wants to use a specific branch such as 
v2, master, or a future released branch then replace the 
value of $branch variable.



16 |

Install PowerNSX on macOS
Example 3.2 shows the steps required to install PowerNSX on macOS. 
The following commands are run from a PowerShell prompt.

Example 3.2  Installing PowerNSX on macOS 

PS /> $pp = $ProgressPreference;$global:ProgressPrefere
nce = “silentlycontinue”; 
$Branch=”master”;$url=”https://raw.githubusercontent.
com/vmware/powernsx/$Branch/PowerNSXInstaller.ps1”; try 
{ try { $response = Invoke-WebRequest -uri $url; $scr 
= $response.content } catch { if ( $ _ .exception.
innerexception -match “(407)”) { $credentials = Get-
Credential -Message “Proxy Authentication Required”; 
$response = Invoke-WebRequest -uri $url 
-proxyCredential $credentials; $scr = $response.content 
} else { throw $ _ }}; $scr | iex } catch { throw $ _ 
};$global:ProgressPreference = $pp

PowerNSX Installation Tool

PowerNSX is a PowerShell module for VMware NSX (NSX 
for vSphere).

PowerNSX requires PowerShell 3.0 or better and VMware 
PowerCLI 6.0
or better to function.

This installation script will automatically guide you 
through the
download and installation of PowerNSX and its 
dependencies.  A reboot
may be required during the installation.

Performing automated installation of PowerNSX.
Continue?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

PowerNSX module not found.
Download and install PowerNSX?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

PowerNSX installation complete.

PowerNSX requires PowerCLI to function fully!
To get started with PowerNSX, start a new PowerCLI 
session.



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 17

You can view the cmdlets supported by PowerNSX as 
follows:
    get-command -module PowerNSX

You can connect to NSX and vCenter with Connect-
NsxServer.

Head to https://vmware.github.io/powernsx for 
documentation,
updates and further assistance.

Enjoy!

CAUTION 
The master branch is the main development branch. It is 
where development between released versions occur. Be 
warned that whilst testing and validation do occur, the 
master branch should be considered developmental. A 
versioned release such as v1 or v2 denote a “point in time” 
release.

Congratulations! Welcome to using PowerNSX on macOS.

Install PowerNSX on Linux
Example 3.3 shows the steps required to install PowerNSX on Linux. 
The following commands are run from a PowerShell prompt.

Example 3.3  Installing PowerNSX on Ubuntu 

PS /> $pp = $ProgressPreference;$global:ProgressPrefere
nce = “silentlycontinue”; 
$Branch=”master”;$url=”https://raw.githubusercontent.
com/vmware/powernsx/$Branch/PowerNSXInstaller.ps1”; try 
{ try { $response = Invoke-WebRequest -uri $url; $scr 
= $response.content } catch { if ( $ _ .exception.
innerexception -match “(407)”) { $credentials = Get-
Credential -Message “Proxy Authentication Required”; 
$response = Invoke-WebRequest -uri $url 
-proxyCredential $credentials; $scr = $response.content 
} else { throw $ _ }}; $scr | iex } catch { throw $ _ 
};$global:ProgressPreference = $pp

PowerNSX Installation Tool



18 |

PowerNSX is a PowerShell module for VMware NSX (NSX 
for vSphere).

PowerNSX requires PowerShell 3.0 or better and VMware 
PowerCLI 6.0
or better to function.

This installation script will automatically guide you 
through the
download and installation of PowerNSX and its 
dependencies.  A reboot
may be required during the installation.

Performing automated installation of PowerNSX.
Continue?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

PowerNSX module not found.
Download and install PowerNSX?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

PowerNSX installation complete.

PowerNSX requires PowerCLI to function fully!
To get started with PowerNSX, start a new PowerCLI 
session.

You can view the cmdlets supported by PowerNSX as 
follows:
    get-command -module PowerNSX

You can connect to NSX and vCenter with Connect-
NsxServer.

Head to https://vmware.github.io/powernsx for 
documentation,
updates and further assistance.

Enjoy!

CAUTION 
The master branch is the main development branch.  
It is where development between released versions occur. 
Be warned that whilst testing and validation do occur, the 
master branch should be considered developmental.  
A versioned release such as v1 or v2 denote a “point in 
time” release.

Congratulations! Welcome to using PowerNSX on Linux.



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 19

Manual Installation
Administrators who do not have Internet access to install PowerNSX 
can download the PowerNSX.psm1 and PowerNSX.psd1 files. These can 
be installed by the Import-Module cmdlet.

Manual installation requires the .psd1 and .psm1 files to be manually 
downloaded and placed on the filesystem. All prerequisites must be 
manually met, or the module will fail to load.  The .psd1 and .psm1 file 
must be in the same directory.  If using Windows, ensure the files are 
‘unlocked’.  It is convention for the module and accompanying manifest 
to be placed in a directory of the same base name (i.e., PowerNSX)

The recommended locations for Windows users are listed in Table 3.1. 
These are the default locations defined in the PowerShell variable 
$env:PSModulePath.

Table 3.1   Manual Installation on Windows 

Role Path

All Users %ProgramFiles%\Common Files\
Modules\PowerNSX

Current User %UserProfile%\Documents\WindowsPowerShell\
Modules\PowerNSX

NOTE 
If the module is placed in the location defined by the 
environment variable $env:PSModulePath then 
PowerShell will automatically load it when required, or can 
be explicitly loaded using the short name (PowerNSX). If 
an alternate location is chosen an alternate location, use 
Import-Module and specify the full path to the module 
manifest (.psd file)
 
 
Manual installation on Linux and macOS can be performed in a similar 
fashion. Table 3.2 outlines the directories required.

Table 3.2  Manual Installation on macOS / Linux 

Role Path

All Users /usr/local/share/powershell/Modules/PowerNSX

Current User ~/.local/share/powershell/Modules/PowerNSX



20 |

With the module installed to the default directories it will automatically 
load when a cmdlet is invoked. Use the command in Example 3.3 to 
explicitly import the module if desired.  As with Windows, macOS and 
Linux users can explicitly import the module with the short name if it is 
within the directories specified in $env:PSModulePath

Example 3.3  Example 4-5 – Manual Import of module 

PS /> Import-Module /Users/Administrator/Documents/Git/
powernsx/PowerNSX.psd1

After reading this section administrators can manually or automatically 
install PowerNSX to macOS, Linux, or Windows.

Using the Built-in Help
When building PowerNSX, a lot of attention was given to appropriate 
and helpful documentation. There are multiple places to go for help 
when using PowerNSX, but the first place to start is with the native 
Get-Help functionality of PowerShell.

PowerNSX leverages PowerShell’s built in documentation framework 
for all cmdlets. This provides the administrator with the ability to 
understand a cmdlet and how it is used.

Example 3.4 outlines how to use the Get-Help cmdlet with the 
PowerNSX cmdlet New-NsxController. 

Example 3.4  Get-Help for New-NsxController 

PS /> Get-Help New-NsxController

NAME
    New-NsxController
SYNOPSIS
    Deploys a new NSX Controller.
SYNTAX
    New-NsxController [-ControllerName <String>] 
[-Confirm] -IpPool <XmlElement> -ResourcePool 
<ResourcePoolInterop> -Datastore <DatastoreInterop> 
-PortGroup <Object> [-Password <String>] [-Wait] 
[-WaitTimeout
    <Int32>] [-Connection <PSObject>] 
[<CommonParameters>]



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 21

New-NsxController [-ControllerName <String>] [-Confirm] 
-IpPool <XmlElement> -Cluster <ClusterInterop> 
-Datastore <DatastoreInterop> -PortGroup <Object> 
[-Password <String>] [-Wait] [-WaitTimeout <Int32>] [
    -Connection <PSObject>] [<CommonParameters>]

DESCRIPTION
    An NSX Controller is a member of the NSX 
Controller Cluster, and forms the
    highly available distributed control plane for NSX 
logical switching and NSX
    Logical Routing.

    The New-NsxController cmdlet deploys a new NSX 
Controller.

RELATED LINKS

REMARKS
    To see the examples, type: “get-help New-
NsxController -examples”.
    For more information, type: “get-help New-
NsxController -detailed”.
    For technical information, type: “get-help New-
NsxController -full”.

By default, as shown in Example 3.4, the Get-Help command shows 
detail about a cmdlet. The synopsis provides information about the 
cmdlets function. The syntax will define the parameters accepted by 
the cmdlet along with the parameter types.

Additionally, most PowerNSX cmdlets also include example code.  
Example 3.5 shows the output of the Get-Help New-NsxController –
examples cmdlet.

Example 3.5  Retrieving Examples for a cmdlet

PS /> Get-Help New-NsxController -examples

NAME
    New-NsxController
SYNOPSIS
    Deploys a new NSX Controller.
    -------------------------- EXAMPLE 1 --------------
------------
    PS C:\>$ippool = New-NsxIpPool -Name ControllerPool 
-Gateway 192.168.0.1 -SubnetPrefixLength 24 
-StartAddress 192.168.0.10 -endaddress 192.168.0.20
   



22 |

$ControllerCluster = Get-Cluster vSphereCluster
    $ControllerDatastore = Get-Datastore 
$ControllerDatastoreName -server $Connection.
VIConnection
    $ControllerPortGroup = Get-VDPortGroup 
$ControllerPortGroupName -server $Connection.
VIConnection New-NsxController -ipPool $ippool -cluster 
$ControllerCluster -datastore $ControllerDatastore 
-PortGroup $ControllerPortGroup -password 
$DefaultNsxControllerPassword -connection $Connection 
-confirm:$false

    -------------------------- EXAMPLE 2 --------------
------------
    PS C:\>$ControllerName = “MyNSXCtrl1”

    $ippool = New-NsxIpPool -Name ControllerPool 
-Gateway 192.168.10.1 -SubnetPrefixLength 24 
-StartAddress 192.168.10.100 -endaddress 192.168.10.200
    $ControllerCluster = Get-Cluster vSphereCluster
    $ControllerDatastore = Get-Datastore 
$ControllerDatastoreName -server $Connection.
VIConnection
    $ControllerPortGroup = Get-VDPortGroup 
$ControllerPortGroupName -server $Connection.
VIConnection
    New-NsxController -ControllerName $ControllerName 
-ipPool $ippool -cluster $ControllerCluster -datastore 
$ControllerDatastore -PortGroup $ControllerPortGroup 
-password $DefaultNsxControllerPassword -connection 
$Connection -confirm:$false

    -------------------------- EXAMPLE 3 --------------
------------
    PS C:\>A secondary or tertiary controller does not 
require a Password to be defined.

    New-NsxController -ipPool $ippool -cluster 
$ControllerCluster -datastore $ControllerDatastore 
-PortGroup $ControllerPortGroup -connection 
$Connection -confirm:$false

There are detailed examples for most cmdlets. Example 3.5 above 
shows three examples on how to deploy NSX controllers with 
PowerNSX. It outlines examples using various inputs or approaches 
using a given cmdlet.

If an administrator wants to learn more about the cmdlet the –
detailed parameter will provide more information about the cmdlets 
parameters. Below in Example 3.6 the –detailed parameter expands 
further on input parameters for the cmdlet.



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 23

Example 3.6  Retrieving Details for a cmdlet

PS /> Get-Help New-NsxController -detailed
NAME
    New-NsxController
SYNOPSIS
    Deploys a new NSX Controller.
SYNTAX
    New-NsxController [-ControllerName <String>] 
[-Confirm] -IpPool <XmlElement> -ResourcePool 
<ResourcePoolInterop> -Datastore <DatastoreInterop> 
-PortGroup <Object> [-Password <String>] [-Wait] 
[-WaitTimeout
    <Int32>] [-Connection <PSObject>] 
[<CommonParameters>]

    New-NsxController [-ControllerName <String>] 
[-Confirm] -IpPool <XmlElement> -Cluster 
<ClusterInterop> -Datastore <DatastoreInterop> 
-PortGroup <Object> [-Password <String>] [-Wait] 
[-WaitTimeout <Int32>] [
    -Connection <PSObject>] [<CommonParameters>]

DESCRIPTION
    An NSX Controller is a member of the NSX 
Controller Cluster, and forms the
    highly available distributed control plane for NSX 
logical switching and NSX
    Logical Routing.

    The New-NsxController cmdlet deploys a new NSX 
Controller.
PARAMETERS
    -ControllerName <String>
        Controller Name

    -Confirm [<SwitchParameter>]
        Prompt for confirmation.  Specify as 
-confirm:$false to disable confirmation prompt

    -IpPool <XmlElement>
        Pre Created IP Pool object from which 
controller IP will be allocated

    -ResourcePool <ResourcePoolInterop>
        vSphere DRS Resource Pool into which to deploy 
Controller VM



24 |

-Cluster <ClusterInterop>
        vSphere Cluster into which to deploy the 
Controller VM

    -Datastore <DatastoreInterop>
        vSphere Datastore into which to deploy the 
Controller VM

    -PortGroup <Object>
        vSphere DVPortGroup OR NSX logical switch 
object to connect the Controller VM to.

    -Password <String>

Controller Password (Must be same on all controllers)
    -Wait [<SwitchParameter>]
        Block until Controller Status in API is 
‘RUNNING’ (Will timeout with prompt after -WaitTimeout 
seconds)
        Useful if automating the deployment of 
multiple controllers (first must be running before 
deploying second controller) so you don’t have to write 
looping code to check status of controller before 
continuing.

    -WaitTimeout <Int32>
        Timeout waiting for controller to become 
‘RUNNING’ before user is prompted to continue or 
cancel.

    -Connection <PSObject>
        PowerNSX Connection object

    <CommonParameters>

This cmdlet supports the common parameters: Verbose, 
Debug,
        ErrorAction, ErrorVariable, WarningAction, 
WarningVariable,
        OutBuffer, PipelineVariable, and OutVariable. 
For more information, see
        about _ CommonParameters (https://go.microsoft.
com/fwlink/?LinkID=113216).
<EXAMPLES SNIPPED FROM OUTPUT>

The input parameter information for a given cmdlet provides the 
administrator with a sense of what objects from the pipeline or variable 
a given parameter accepts.

The final help option provides all information about a cmdlet. Example 
3.7 details using the –full parameter with Get-Help on New-
NsxController.



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 25

Example 3.7  Retrieving all Information for a cmdlet

PS /> Get-Help New-NsxController -full
NAME
    New-NsxController
SYNOPSIS
    Deploys a new NSX Controller.
SYNTAX
    New-NsxController [-ControllerName <String>] 
[-Confirm] -IpPool <XmlElement> -ResourcePool 
<ResourcePoolInterop> -Datastore <DatastoreInterop> 
-PortGroup <Object> [-Password <String>] [-Wait] 
[-WaitTimeout
    <Int32>] [-Connection <PSObject>] 
[<CommonParameters>]

    New-NsxController [-ControllerName <String>] 
[-Confirm] -IpPool <XmlElement> -Cluster 
<ClusterInterop> -Datastore <DatastoreInterop> 
-PortGroup <Object> [-Password <String>] [-Wait] 
[-WaitTimeout <Int32>] [
    -Connection <PSObject>] [<CommonParameters>]
DESCRIPTION
    An NSX Controller is a member of the NSX 
Controller Cluster, and forms the
    highly available distributed control plane for NSX 
logical switching and NSX
    Logical Routing.

    The New-NsxController cmdlet deploys a new NSX 
Controller.
PARAMETERS
    -ControllerName <String>
        Controller Name
        Required?                    false
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -Confirm [<SwitchParameter>]
        Prompt for confirmation.  Specify as 
-confirm:$false to disable confirmation prompt
        Required?                    false
        Position?                    named
        Default value                True
        Accept pipeline input?       false
        Accept wildcard characters?  false



26 |

-IpPool <XmlElement>
        Pre Created IP Pool object from which 
controller IP will be allocated
        Required?                    true
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -ResourcePool <ResourcePoolInterop>
        vSphere DRS Resource Pool into which to deploy 
Controller VM

        Required?                    true
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -Cluster <ClusterInterop>
        vSphere Cluster into which to deploy the 
Controller VM
        Required?                    true
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -Datastore <DatastoreInterop>
        vSphere Datastore into which to deploy the 
Controller VM
        Required?                    true
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -PortGroup <Object>
        vSphere DVPortGroup OR NSX logical switch 
object to connect the Controller VM to
        Required?                    true
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false



CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 27

        -Password <String>
        Controller Password (Must be same on all 
controllers)
        Required?                    false
        Position?                    named
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -Wait [<SwitchParameter>]
        Block until Controller Status in API is 
‘RUNNING’ (Will timeout with prompt after -WaitTimeout 
seconds)
        Useful if automating the deployment of 
multiple controllers (first must be running before 
deploying second controller)so you don’t have to write 
looping code to check status of controller before 
continuing.
        Required?                    false
        Position?                    named
        Default value                False
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -WaitTimeout <Int32>
        Timeout waiting for controller to become 
‘RUNNING’ before user is prompted to continue or 
cancel.
        Required?                    false
        Position?                    named
        Default value                600
        Accept pipeline input?       false
        Accept wildcard characters?  false

    -Connection <PSObject>
        PowerNSX Connection object
        Required?                    false
        Position?                    named
        Default value                
$defaultNSXConnection
        Accept pipeline input?       false
        Accept wildcard characters?  false

    <CommonParameters>
        This cmdlet supports the common parameters: 
Verbose, Debug,
        ErrorAction, ErrorVariable, WarningAction, 
WarningVariable,
        OutBuffer, PipelineVariable, and OutVariable. 
For more information, see
        about _ CommonParameters (https://go.microsoft.
com/fwlink/?LinkID=113216).
<EXAMPLES SNIPPED FROM OUTPUT>



28 |

Using the –full parameter, an administrator can see the most details 
about the cmdlets supported parameters. It outlines if a parameter is 
mandatory, what type of objects are supported from the pipeline, and 
additional information like default values.

The Get-Help cmdlet provides a vast array of help that can be used 
with any PowerShell cmdlet. It allows for easy access to information 
about a cmdlet.

Worked Examples and more  
Usage Information
On top of the included help documentation, considerable effort has 
gone into documenting common operations on the PowerNSX wiki at 
https://powernsx.github.io;  more contextual assistance is available 
there.  For a fully working example script that leverages PowerCLI and 
PowerNSX to deploy and configure an NSX environment, see 
https://github.com/vmware/powernsx/blob/master/Examples/
NSXBuildFromScratch.ps1.

NSX Build from Scratch is covered in more detail in Chapter 12.

https://powernsx.github.io
https://github.com/vmware/powernsx/blob/master/Examples/NSXBuildFromScratch.ps1.
https://github.com/vmware/powernsx/blob/master/Examples/NSXBuildFromScratch.ps1.


CHAPTER 3 - GETTING STARTED WITH POWERNSX  | 29

Chapter Summary
This chapter has introduced how to install PowerNSX across several 
platforms. It also covered the extensive built-in help functions around 
each cmdlet. An administrator starting to use PowerNSX should be 
confident using the automated installer and manual installation 
methods. Increased familiarity with the Get-Help cmdlet will yield 
tangible benefits when understanding how a cmdlet functions and 
operates.

The Get-Help skills will serve as a foundation moving through the 
chapters of this book. It will also build developer skills and confidence 
in creating scripts and tools with PowerNSX.



30 |



Chapter 4

CHAPTER 4 - CONNECTING WITH POWERNSX  | 31

Connecting with PowerNSX

PowerNSX communicates with VMware® NSX Manager™ using 
RESTful API calls. These authenticated API calls are made by 
establishing a connection to NSX Manager. Chapter 3 demonstrated 
how to install PowerNSX to an operating system of choice. It is time 
to get started using PowerNSX. Connecting PowerNSX to NSX 
Manager is the first step.



32 |

Connecting to NSX Manager
Connecting to NSX Manager is the first task a script or administrator 
will perform when using PowerNSX. By default, PowerNSX connects to 
NSX Manager and stores the connection information within a default 
variable. The variable $DefaultNSXConnection is used by all cmdlets 
when performing API calls. Example 4.1 highlights how to connect to 
NSX Manager.

Example 4.1  Connecting to NSX Manager 

PS /> Connect-NsxServer -vCenterServer vc-01a.corp.
local 
PowerShell credential request
vCenter Server SSO Credentials
User: administrator@vsphere.local
Password for user administrator@vsphere.local: ********

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : nsx-01a.corp.local
Port                : 443
Protocol            : https
ValidateCertificate : False
VIConnection        : vc-01a.corp.local
DebugLogging        : False
DebugLogfile        : \PowerNSXLog-administrator@
vsphere.local@-2017 _ 07 _ 05 _ 16 _ 26 _ 19.log

The Connect-NsxServer cmdlet will create the connection to NSX 
Manager. Furthermore, it will look at the VMware® vCenter™ server 
registered to NSX Manager. It will establish a connection to both 
vCenter Server for PowerCLI and NSX Manager for PowerNSX. The 
cmdlet can use an existing PowerCLI connection if one is already 
established.



CHAPTER 4 - CONNECTING WITH POWERNSX  | 33

Example 4.2 demonstrates connecting to only an NSX Manager.

Example 4.2  Connecting to NSX Manager  

PS /> Connect-NsxServer -NsxServer 192.168.103.44 
-Username admin -Password VMware1!

PowerNSX requires a PowerCLI connection to the vCenter 
server NSX is registered against for proper operation.
Automatically create PowerCLI connection to vc-01a.
corp.local?
[Y] Yes  [N] No  [?] Help (default is “Y”): N

WARNING: Some PowerNSX cmdlets will not be fully 
functional without a valid PowerCLI connection to 
vCenter server vc-01a.corp.local

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : 192.168.103.44
Port                : 443
Protocol            : https
ValidateCertificate : False
VIConnection        :
DebugLogging        : False
DebugLogfile        : \PowerNSXLog-
admin@10.35.255.155-2017 _ 07 _ 05 _ 16 _ 11 _ 51.log

There is now an established connection to NSX Manager for use by 
PowerNSX.

NOTE 
The –DisableVIAutoConnect parameter will avoid the 
automatic prompt to connect to vCenter with PowerCLI. 
Do understand that a PowerCLI connection is required for 
the correct operation of some PowerNSX cmdlets.

 



34 |

Using Credential Objects
A credential object can be created and passed to specify a username 
and password in a secure fashion. Example 4.3 demonstrates how to 
connect using a credential object.

Example 4.3  Connecting to vCenter and NSX Manager with a Credential Object  

PS /> $cred = Get-Credential
Windows PowerShell credential request
Enter your credentials.
User: administrator@vsphere.local
Password for user administrator@vsphere.local: ********

PS /> Connect-NsxServer -vCenterServer vc-01a.corp.
local -Credential $cred

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : nsx-01a.corp.local
Port                : 443
Protocol            : https
ValidateCertificate : False
VIConnection        : nsx-01a.corp.local
DebugLogging        : False
DebugLogfile        : \PowerNSXLog-administrator@
vsphere.local@-2017 _ 07 _ 05 _ 16 _ 32 _ 47.log

After the credential object is created using Get-Credential it can be 
passed using the –credential property to Connect-NsxServer. This 
ensures a more automated connection without prompt or interaction.

Disconnecting from NSX Manager
Where a graceful disconnection of PowerNSX from NSX Manager is 
required, then Example 4.4 demonstrates how.

Example 4.4  Disconnecting from NSX Manager

PS /> Disconnect-NsxServer

This will clear the connection and related connection object to NSX 
Manager.



CHAPTER 4 - CONNECTING WITH POWERNSX  | 35

Overriding the Default Connection
When creating a connection to PowerNSX, it is stored by default in the 
variable $DefaultNSXConnection. This default is used by all cmdlets. 
There are situations where an administrator may not want to use the 
default connection. It can be overridden with the –Connection 
parameter. Example 4.5 demonstrates how to use a different 
connection object.

Example 4.5  Storing and Handling Multiple Connections  

PS /> $Connection2 = Connect-NsxServer -vCenterServer 
10.104.83.100 -Credential $cred2

PS /> $DefaultNSXConnection

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : 10.103.82.200
Port                : 443
Protocol            : https
ValidateCertificate : False
VIConnection        : 10.103.82.100
DebugLogging        : False
DebugLogfile        : \PowerNSXLog-administrator@
vsphere.local@-2017 _ 07 _ 05 _ 15 _ 31 _ 54.log

PS /> $Connection2

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : 10.103.83.200
Port                : 443
Protocol            : https
ValidateCertificate : False
VIConnection        : 10.104.83.100
DebugLogging        : False
DebugLogfile        : \PowerNSXLog-administrator@
vsphere.local@-2017 _ 07 _ 05 _ 15 _ 31 _ 39.log

PS /> Get-NsxIpSet -name RFC1918



36 |

objectId           : ipset-6
objectTypeName     : IPSet
vsmUuid            : 4201B045-B1F9-457F-E621-
B54038A6AFA5
nodeId             : 4b749a6a-bc41-431b-bf24-
cf9e54dcb452
revision           : 1
type               : type
name               : RFC1918
description        :
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
value              : 172.16.0.0/12,10.0.0.0/8,192.168.0.0/16

PS /> Get-NsxIpSet -name RFC1918 -Connection 
$Connection2 
PS />

In Example 4.5 each connection was stored in its respective variable. 
The contents of each variable display connection specific information 
about the NSX Manager and vCenter it is connected to.

The cmdlet Get-NsxIpSet is used to look up an IP set named RFC1918. 
The first use of Get-NsxIpSet uses the $DefaultNsxConnection. This 
returns the IP set named RFC1918. Running the same cmdlet using 
$Connection2 as the –Connection parameter variable returns no 
result. This is due to the second environment not having an IP set 
named RFC1918.

NOTE 
PowerNSX has been written to accommodate numerous 
NSX environments. As such, each cmdlet has the  
–Connection parameter. This parameter can be passed a 
specific connection object for that cmdlet. This allows 
operations to be performed against specific NSX 
Managers where required.

 



CHAPTER 4 - CONNECTING WITH POWERNSX  | 37

Chapter Summary
This chapter demonstrates the numerous methods of using PowerNSX 
to connect to a given environment. Administrators can take advantage 
of SSO or a direct connection to ensure the right level of access is 
granted when using the NSX Manager API. With a connection 
established to vCenter and NSX Manager an administrator can now 
perform operations with PowerNSX.



38 |



Chapter 5

CHAPTER 5 - LOGICAL SWITCHING  | 39

Logical Switching

Logical switching allows VMware NSX for vSphere to provide layer 2 
domains that span layer 3 networks. By using a protocol known as 
Virtual eXtensible Local Area Network (VXLAN), administrators can 
provision new networks without the requirement for extensive 
reconfiguration on physical networks.

The goal of this chapter is to provide insight into using PowerNSX 
for operations pertaining to the use of logical switches.



40 |

Working with Transport Zones
Logical switches provide a layer 2 domain for workloads that is 
independent of the physical topology. These logical switches are 
deployed within the scope of a transport zone.

These transport zones include clusters of vSphere hosts that make up 
the boundary of compute that support this logical switch. A host can 
be a member of more than one transport zone. Depending on the 
configuration of VMware NSX for vSphere these transport zones can 
be configured as either local or universal transport zones.

In Example 5.1 the command Get-NsxTransportZone will return all 
configured transport zones – local and universal.

Example 5.1  Retrieving all Transport Zones 

PS /> Get-NsxTransportZone 

objectId           : vdnscope-1
objectTypeName     : VdnScope
vsmUuid            : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId             : de6a0917-606c-432f-9d71-
b96ba2b28706
revision           : 0
type               : type
name               : TZ1
description        :
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
id                 : vdnscope-1
clusters           : clusters
virtualWireCount   : 0
controlPlaneMode   : UNICAST _ MODE
cdoModeEnabled     : false
objectId           : universalvdnscope
objectTypeName     : VdnScope
vsmUuid            : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId             : de6a0917-606c-432f-9d71-
b96ba2b28706
revision           : 0
type               : type
name               : UTZ1
description        :
clientHandle       :
extendedAttributes :



CHAPTER 5 - LOGICAL SWITCHING  | 41

isUniversal        : true
universalRevision  : 0
id                 : universalvdnscope
clusters           : clusters
virtualWireCount   : 0
controlPlaneMode   : UNICAST _ MODE
cdoModeEnabled     : false

The output in Example 5.1 returns two transport zones. One transport 
zone is configured as local while the other is configured as universal, 
as shown by the isUniversal property. Both are configured for unicast 
replication as denoted by the controlPlaneMode property.

In Example 5.2, a specific transport zone is selected by using the -Name 
parameter. This allows the administrator to return a transport zone by 
name, as opposed to all transport zones configured as demonstrated 
in Example 5.1.

Example 5.2  Retrieving a Specific Transport Zone by Name

PS /> Get-NsxTransportZone -Name TZ1

objectId           : vdnscope-1
objectTypeName     : VdnScope
vsmUuid            : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId             : de6a0917-606c-432f-9d71-
b96ba2b28706
revision           : 0
type               : type
name               : TZ1
description        :
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
id                 : vdnscope-1
clusters           : clusters
virtualWireCount   : 0
controlPlaneMode   : UNICAST _ MODE
cdoModeEnabled     : false

Compared with the output in Example 5.1, the output in Example 5.2 
returns a single transport zone object named TZ1. Other parameters 
such as –Name, -objectId or -UniversalOnly can also be used to filter 
the result set.



42 |

To simplify subsequent commands the next example will store the 
result in a variable. Example 5.3 demonstrates how to store the output 
of Get-NsxTransportZone –Name TZ1 into a variable named $TZ1. 

Example 5.3  Storing a Transport Zone Object in a Variable

PS /> $TZ1 = Get-NsxTransportZone -Name TZ1
PS /> $TZ1

objectId           : vdnscope-1
objectTypeName     : VdnScope
vsmUuid            : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId             : de6a0917-606c-432f-9d71-
b96ba2b28706
revision           : 0
type               : type
name               : TZ1
description        :
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
id                 : vdnscope-1
clusters           : clusters
virtualWireCount   : 0
controlPlaneMode   : UNICAST _ MODE
cdoModeEnabled     : false

Issuing $TZ1 will display the object stored within the variable. When 
working with cmdlets that accept pipeline input such as New-
NsxLogicalSwitch, either a cmdlet such as Get-NsxTransportZone, or 
the variable $TZ1 can be specified as the first element in the pipeline.  
The content of $TZ1 (a PowerNSX transport zone object) is then sent to 
the input to the next command on the pipeline when a logical switch is 
created. In this case, this is New-NsxLogicalSwitch.

To see which parameters accept pipeline input, review the help 
documentation for the cmdlet using the –full switch.  For more details 
see Chapter 3 – Getting Started with PowerNSX.

Building Logical Switches
The examples so far have been dealing with transport zones which are 
required to create a logical switch. With the transport zone TZ1 stored 
in the variable $TZ1, it is now time to create a new logical switch. 
Example 5-4 highlights the simplicity of creating a new logical switch.



CHAPTER 5 - LOGICAL SWITCHING  | 43

Example 5.4  Creating a New Logical Switch

PS /> $TZ1 | New-NsxLogicalSwitch -Name Test-
LogicalSwitch

objectId              : virtualwire-7
objectTypeName        : VirtualWire
vsmUuid               : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId                : de6a0917-606c-432f-9d71-
b96ba2b28706
revision              : 2
type                  : type
name                  : Test-LogicalSwitch
description           :
clientHandle          :
extendedAttributes    :
isUniversal           : false
universalRevision     : 0
tenantId              :
vdnScopeId            : vdnscope-1
vdsContextWithBacking : vdsContextWithBacking
vdnId                 : 5000
guestVlanAllowed      : false
controlPlaneMode      : UNICAST _ MODE
ctrlLsUuid            : ef579e88-b34b-4ed5-bdc5-
1b71e22d6987
macLearningEnabled    : false

After issuing the command in Example 5.4, a new logical switch called 
Test-LogicalSwitch has been created. This logical switch has been 
created in transport zone TZ1, which has an object ID of vdnscope-1. 
The vdnScopeId property of the logical switch matches the object ID 
of transport zone TZ1. From here the logical switch can be used by 
other constructs such as virtual machines, logical routers, and NSX 
Edges. 

NOTE 
It is important to understand the behavior of the 
PowerShell pipeline when performing multi cmdlet 
operations. Example 5.1 highlighted that two transport 
zones were already defined. The command Get-
NsxTransportZone | New-NsxLogicalSwitch –name 
Test-LogicalSwitch will create a logical switch for each 
transport zone passed along the pipeline to the cmdlet 
New-NsxLogicalSwitch. This will result in a logical switch 
named Test-LogicalSwitch being created on TZ1 and UTZ1. 
This is one of the strengths of the PowerShell pipeline, but 



44 |

it can also be confusing. If in doubt, build pipelines up 
interactively, piece by piece, verifying the correct results 
at each step. 
 

By default, a logical switch object inherits the replication mode of the 
transport zone it is bound to.  It is possible to override this with the 
-ControlPlaneMode parameter to the New-NsxLogicalSwitch cmdlet. 
Example 5.5 demonstrates a logical switch with a multicast control 
plane mode being created within a transport zone configured with a 
unicast control plane.

Example 5.5  Configuring Replication Mode per Logical Switch

PS /> $TZ1 | New-NsxLogicalSwitch -name Test-
LogicalSwitch-MULTICAST -ControlPlaneMode MULTICAST _
MODE

objectId              : virtualwire-8
objectTypeName        : VirtualWire
vsmUuid               : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId                : de6a0917-606c-432f-9d71-
b96ba2b28706
revision              : 1
type                  : type
name                  : Test-LogicalSwitch-MULTICAST
description           :
clientHandle          :
extendedAttributes    :
isUniversal           : false
universalRevision     : 0
tenantId              :
vdnScopeId            : vdnscope-1
vdsContextWithBacking : vdsContextWithBacking
vdnId                 : 5001
multicastAddr         : 239.0.0.0
guestVlanAllowed      : false
controlPlaneMode      : MULTICAST _ MODE
macLearningEnabled    : false

Building Universal Logical Switches
Building universal logical switches in PowerNSX is done simply by 
passing a universal transport zone object as an argument for the –
TransportZone parameter. Example 5.6 demonstrates this using the 
pipeline.



CHAPTER 5 - LOGICAL SWITCHING  | 45

Example 5.6  Creating a Universal Logical Switch

PS /> Get-NsxTransportZone UTZ1 | New-NsxLogicalSwitch 
Test-UniversalLogicalSwitch

objectId              : universalwire-1
objectTypeName        : VirtualWire
vsmUuid               : 564DE9EE-D75F-A2C0-EB82-
843AA89F80E7
nodeId                : de6a0917-606c-432f-9d71-
b96ba2b28706
revision              : 2
type                  : type
name                  : Test-UniversalLogicalSwitch
description           :
clientHandle          :
extendedAttributes    :
isUniversal           : true
universalRevision     : 2
tenantId              :
vdnScopeId            : universalvdnscope
vdsContextWithBacking : vdsContextWithBacking
vdnId                 : 6000
guestVlanAllowed      : false
controlPlaneMode      : UNICAST _ MODE
ctrlLsUuid            : 3b4c1e30-1161-4b2c-a5fd-
be26fad8b375
macLearningEnabled    : false

The isUniversal property of the transport zone object passed along 
the pipeline by the cmdlet Get-NsxTransportZone determines the 
logical switch type. With the transport zone UTZ1 being of the type 
universal it will ensure all logical switches bound to it are universal.

Note 
When creating a logical switch in Example 5.6 a -Name 
parameter was not explicitly specified. Most cmdlets in 
PowerNSX that accept a -Name parameter, will also accept 
the first unnamed parameter as the argument to –Name. In 
Example 5.6 the argument Test-
UniversalLogicalSwitch is bound to the -name 
parameter.  This is the only scenario in PowerNSX where 
unnamed parameters are accepted based on their 
position.



46 |

Attaching Virtual Machines to Logical 
Switches
Now that logical switches of all types can be created with PowerNSX, it 
is time to attach workloads to them. A strength PowerNSX has over 
other languages, is that it can utilize PowerCLI along the same pipeline. 
This allows operations like attaching VMs to a logical switch in a few 
commands.

Example 5.7 shows the steps required to connect a VM to a logical 
switch.

Example 5.7  Attaching VM1 to Logical Switch Test-UniversalLogicalSwitch

PS /> Get-Vm VM1 | Connect-NsxLogicalSwitch –
LogicalSwitch (Get-NsxLogicalSwitch -name Test-
UniversalLogicalSwitch)

After retrieving VM1 with the PowerCLI cmdlet Get-VM, it is connected 
to a logical switch with the PowerNSX cmdlet Connect-
NsxLogicalSwitch. The logical switch that it is to be connected to is 
defined with the parameter –LogicalSwitch. In this example, the given 
logical switch is retrieved inline, as opposed to being stored in a 
variable.

Example 5.7 uses both cmdlets to interact with NSX Manager to 
perform the network changes for the VMs and cmdlets that retrieve 
those VMs from vCenter. Example 5.8 demonstrates connecting 
numerous workloads to a logical switch. 

Example 5.8  Attaching Numerous VMs to Logical Switch

PS /> $VMs = Get-Vm | Where-Object {$ _ .name -match 
“win-”}
PS /> $Vms

Name                 PowerState Num CPUs MemoryGB
----                 ---------- -------- --------
win-02               PoweredOff 1        0.500
win-01               PoweredOff 1        0.500

Connect-NsxLogicalSwitch -VirtualMachine $vms 
-LogicalSwitch $ls2

The virtual machines are passed to the Connect-NsxLogicalSwitch 
cmdlet via the –VirtualMachine parameter. They are attached to the 



CHAPTER 5 - LOGICAL SWITCHING  | 47

logical switch stored with the $LS2 variable used by the –
LogicalSwitch parameter. The cmdlet results in the VMs being 
connected to the logical switch.

There is a lot going on in this single lined command but when breaking 
it down into small parts it becomes quite straight forward. The two 
examples above highlight different methods to achieve the same 
outcome.

Deleting Logical Switches
Throughout the lifecycle of any network component, there will come  
a time where it is no longer required and can be removed. PowerNSX 
provides the ability to remove logical switches in a similar fashion  
to creating them. Example 5.9 outlines the steps to delete a  
logical switch.

NOTE 
This demonstrates a common approach for workflows in 
PowerNSX (and PowerCLI and PowerShell more generally).  
The preferred workflow is ‘get a thing or a collection of 
things, then pass them to the remove- cmdlet to remove 
them’ rather than ‘call the remove- cmdlet with a bunch of 
arguments to define the things to be removed’.  This 
means that typically the remove- cmdlet has a very simple 
parameter list, with one of its parameters being the 
PowerNSX object (or collection of objects) representing 
the thing to be removed.  So, the Get-Widget –color 
green | Remove-Widget is the standard approach for 
deleting objects of any type.  This has the benefit of 
allowing observation of the output of the pipeline for 
validation purposes up to the remove cmdlet, before 
adding the final remove- portion.

Example 5.9  Deleting a Logical Switch

PS > Get-NsxLogicalSwitch deleteme | Remove-
NsxLogicalSwitch

logical switch removal is permanent.
Proceed with removal of logical switch deleteme?
[Y] Yes  [N] No  [?] Help (default is “N”): Y
PS />



48 |

This pipeline retrieves the logical switch deleteme and pipes it to the 
Remove-NsxLogicalSwitch cmdlet. After the user is prompted for 
confirmation, it is deleted.

If a logical switch has a virtual machine, DLR, or ESG connected to it, 
an error is thrown. Example 5.10 highlights this.

Example 5.10  Deleting a Logical Switch with VMs Attached

PS /> Get-NsxTransportZone TZ1 | Get-NsxLogicalSwitch 
test-logicalswitch | Remove-NsxLogicalSwitch 
-confirm:$false
invoke-nsxwebrequest : Invoke-NsxWebRequest : The NSX 
API response received indicates a failure. 400 : Bad 
Request : Res
ponse Body: <?xml version=”1.0” encoding=”UTF-8”?>
<error><details>virtualwire-7 resource is still in use 
by 3 number of entities.</details><errorCode>849</
errorCode><modu
leName>core-services</moduleName></error>
At /Users/aburke/.local/share/powershell/
Modules/PowerNSX/PowerNSX.psm1:8402 char:21
+ ...     $null = invoke-nsxwebrequest -method “delete” 
-uri $URI -connecti ...
+                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidResult: (Invoke-
NsxWebRequest:String) [Invoke-NsxWebRequest], 
InternalNsxApiExcept
   ion
    + FullyQualifiedErrorId : 
NsxAPIFailureResult,Invoke-NsxWebRequest

The error string virtualwire-7 resource is still in use by 3 
number of entities confirms there are 3 objects still attached. In 
this case, this is VM1, VM2, and VM3 from Example 5.8. They will need to 
be detached before the cmdlet will delete this logical switch.

WARNING 
The parameter -confirm:$false will skip the interactive 
prompt thrown by PowerNSX. The prompt is a guard rail to 
aid in preventing unexpected changes. Use with caution.
 
 



CHAPTER 5 - LOGICAL SWITCHING  | 49

Detaching a VM from a logical switch can be achieved through the 
Disconnect-LogicalSwitch cmdlet. Example 5.11 shows how a set of 
VMs can be removed from a logical switch before deleting. 

NOTE 
While the –VirtualMachine parameter does accept 
pipeline input, this demonstrates an alternative method of 
generating the parameter argument on the fly with the 
code in parentheses.

Example 5.11  Disconnecting Virtual Machines from a Logical Switch

PS /> Disconnect-NsxLogicalSwitch -VirtualMachine 
(get-vm | Where-Object {$ _ .name -match “VM”})

Disconnecting vm3’s network adapter from a logical 
switch will cause network connectivity loss.
Proceed with disconnection?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

Virtual machine VM3 has now had its vNIC removed from the logical 
switch. 

NOTE 
Some VMs have more than a single vNIC. Disconnect-
NsxLogicalSwitch can define a single NIC through 
-NetworkAdapter parameter. This allows selection of a 
specific NIC. If all NICs are to be disconnected then the 
switch -DisconnectMultipleNics should be specified.

Progressive Example: Creating Logical 
Switches
This section provides a progressive example by building logical 
switches, forming the basis of a logical topology.

The logical switches in Figure 5.1 highlight the switches required for the 
progressive example. The internal network is a VLAN backed port-
group that exists currently on a virtual distributed switch. 



50 |

 

Figure 5.1   New Logical Switches

These logical switches are the foundation of deploying a 3-tier 
application. In Example 5.13, PowerNSX is used quickly to create four 
logical switches.

Example 5.12  Creating Logical Switches

 
PS /> $tls = Get-NsxTransportZone TZ1 | New-
NsxLogicalSwitch Transit-LS 
PS /> $wls = Get-NsxTransportZone TZ1 | New-
NsxLogicalSwitch Web-LS 
PS /> $als = Get-NsxTransportZone TZ1 | New-
NsxLogicalSwitch App-LS 
PS /> $dls = Get-NsxTransportZone TZ1 | New-
NsxLogicalSwitch Db-LS  

No output is generated; the returned objects are stored within a 
variable for later use.

Example 5.14 validates the logical switches just created for the 
progressive example.



CHAPTER 5 - LOGICAL SWITCHING  | 51

Example 5.13  Validating Logical Switches

PS /> Get-NsxTransportZone TZ1 | Get-NsxLogicalSwitch | 
Select-Object Name

Name
----
Transit-LS
Web-LS
App-LS
Db-LS

This example demonstrates a simple but common use of the Select-
Object cmdlet to filter the property set of the objects in the collection 
returned by Get-NsxLogicalSwitch to include just the Name property. 
This is a human friendly method just getting a list of names for the 
given objects and can be applied to any object with a name property.

Chapter Summary
This chapter has introduced tasks and operations around logical 
switching. An administrator using PowerNSX should now be confident 
in creating and deleting logical switches of various types. Attaching 
and detaching workloads to these logical switches is now on their tool 
belt.

These skills will serve as a foundation moving through the chapters in 
other areas of PowerNSX.



52 |



Chapter 6

CHAPTER 6 - DISTRIBUTED ROUTING  | 53

Distributed Routing

The NSX logical router provides routing and forwarding capability 
within the hypervisor. This chapter focuses on administration with 
PowerNSX. As such, an administrator can create, restore, update, and 
delete logical routers as required. This includes, but is not limited to 
new routing peers, router interfaces, logical routers, and logical router 
ancillary configuration.



54 |

About Interface Specifications
To flexibly and efficiently support creation of logical routers and NSX 
Edges with PowerNSX, it was necessary to abstract the operation of 
defining an interface specification.  This allows the definition of an 
arbitrary number of interfaces ahead of time – complete with IP 
addressing, network connections, etc. – which can then be referenced 
by variable when using the New-NsxLogicalRouter / New-NsxEdge 
cmdlets.  

The New-NsxLogicalRouterInterfaceSpec and New-
NsxEdgeInterfaceSpec cmdlets do not talk to the NSX API at all, they 
just return an XML object that defines a single interface instance for 
later use by the New-NsxLogicalRouter / New-NsxEdge cmdlets.

It is also possible to create a logical router or NSX Edge with a single 
interface, and then iteratively add interfaces using the New-
NsxLogicalRouterInterface cmdlet which takes address arguments 
for a single interface instance directly and updates the logical router 
immediately.  This is a much less efficient process though, resulting in 
multiple round trips to the NSX API, and triggering multiple edge 
reconfiguration jobs within NSX, which is generally desirable to avoid.

Example 6.1 details an interface specification.

Example 6.1  Interface Spec for Distributed Router

PS /> $DLRuplinkspec = New-
NsxLogicalRouterInterfaceSpec -name Uplink -Type 
uplink -PrimaryAddress 10.85.100.32 -SubnetPrefixLength 
24 -Connected $LS
PS /> $DLRuplinkspec

name          : Uplink 
type          : uplink
mtu           : 1500 
isConnected   : True 
connectedToId : virtualwire-6 
addressGroups : addressGroups

The newly created uplink interface specification provides the inputs 
needed when creating a new NSX logical router. It is stored in the 
variable $DLRuplinkspec to be passed through to the –Interface 
parameter of New-NsxLogicalRouter or New-
NsxLogicalRouterInterface.



CHAPTER 6 - DISTRIBUTED ROUTING  | 55

Deploying Logical Routers
With an interface spec created, a new logical router can be created. 
Example 6.2 demonstrates how to create a new logical router.

Example 6.2  Deploying a new Logical Router

PS /Users/aburke> New-NsxLogicalRouter -name DLR 
-Interface $dlruplinkspec -Cluster $cl -Datastore $ds 
-Tenant “Pepsi” -ManagementPortGroup $ManagementPG
                                                                                                                                                      
          id                : edge-12                                                     
version           : 2 
status            : deployed 
tenant            : Pepsi 
name              : DLR 
fqdn              : NSX-edge-12 
enableAesni       : true 
enableFips        : false 
vseLogLevel       : info 
appliances        : appliances 
cliSettings       : cliSettings 
features          : features 
autoConfiguration : autoConfiguration 
type              : distributedRouter 
isUniversal       : false 
mgmtInterface     : mgmtInterface 
interfaces        : interfaces 
edgeAssistId      : 5000 
lrouterUuid       : f82a1962-2d79-4aa5-add6-3a88a746f22f 
queryDaemon       : queryDaemon 
edgeSummary       : edgeSummary

Given that a logical router can have nearly 1000 interfaces configured, 
the ability to pass an interface spec simplifies the addition of numerous 
interfaces.

Adding an Interface to an Existing Logical 
Router
Adding additional networks to a logical router is common practice. A 
new application or network may be required to be connected to a 
logical router. The cmdlet New-NsxLogicalRouterInterface provides 
this function. Example 6.3 demonstrates adding a new interface to a 
pre-deployed logical router.



56 |

Example 6.3  Adding a New Interface to a Logical Router 

PS /> Get-NsxLogicalRouter $lrname | New-
NsxLogicalRouterInterface -Name “NEW-LIF” -ConnectedTo 
$LS -PrimaryAddress “10.45.32.1” -SubnetPrefixLength “24” 
-Connected -Type internal

interface 
---------
interface

PS /> Get-NsxLogicalRouter $lrname | Get-
NsxLogicalRouterInterface –Name NEW-LIF

label           : 138800000010
name            : NEW-LIF
addressGroups   : addressGroups
mtu             : 1500
type            : internal
isConnected     : true
isSharedNetwork : false
index           : 16
connectedToId   : virtualwire-4
connectedToName : New-LS
logicalRouterId : edge-1

Once the new interface is created on the logical router, it is reachable 
per any pre-configured routing settings. If “redistribute connected” is 
configured, it will ensure the new network is advertised into a given 
routing protocol. Workloads attached to the network segment will now 
have gateway connectivity. 

Configuring OSPF on Logical Router  
Routing is a key component of the logical router. The logical router can 
support OSPF, BGP, and static routing. 

A typical NSX deployment with logical switching, logical routing, and 
NSX Edge routing will employ the use of dynamic routing between the 
DLR and NSX Edge, and frequently between the NSX Edge and the 
physical network to reduce the administrative burden of configuring 
and maintaining the logical network.

PowerNSX supports the configuration of static routes, as well as OSPF 
and BGP on logical routers and NSX Edges.  This includes BGP 
neighbor and prefix configuration along with redistribution rules for 
both protocols.



CHAPTER 6 - DISTRIBUTED ROUTING  | 57

Example 6.4 configures an existing logical router for OSPF and enables 
route redistribution.

Example 6.4  Enable OSPF Routing on Logical Router

PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | Set-NsxLogicalRouterRouting 
-EnableOspf -EnableOspfRouteRedistribution -RouterId 
$DlrUplinkPrimaryAddress -ProtocolAddress 
$DlrUplinkProtocolAddress -ForwardingAddress 
$LdrUplinkPrimaryAddress -confirm:$false

version             : 2                                                                                          
enabled             : true 
routingGlobalConfig : routingGlobalConfig 
staticRouting       : staticRouting 
ospf                : ospf 
logicalrouterId     : edge-6

The output of Example 6.4 highlights enabling OSPF with the required 
parameters such as –ProtocolAddress and –RouterId. 

The parameter –EnableOspfRouteRedistribution will redistribute 
connected interfaces into OSPF. It relies on the default redistribution 
rule to do this, but the New-NsxLogicalRouterRedistributionRule 
cmdlet will allow manipulation of redistribution rules if required. This 
will ensure all logical interfaces are automatically advertised via OSPF 
upon creation. Conversely, it will withdraw the route if the network is 
no longer present on the router. 

Creating a new area for OSPF is performed in Example 6.5 with the 
New-NsxLogicalRouterOspfArea cmdlet.

Example 6.5  Create a New OSPF Area

PS />   Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | New-NsxLogicalRouterOspfArea 
-AreaId $TransitOspfAreaId -Type normal -confirm:$false 
areaId type   authentication logicalrouterId                                                                     
------ ----   -------------- ---------------                                                                     
0      normal authentication edge-6



58 |

The area can now be bound to an interface as displayed in Example 
6.6.

Example 6.6  Add Logical Router Uplink Interface to OSPF Area

PS /> $DlrUplink = Get-NsxLogicalRouter | Get-
NsxLogicalRouterInterface |Where-Object{ $ _ .name -eq 
$TransitLsName }
PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | New-
NsxLogicalRouterOspfInterface -AreaId 0 -vNic 
$DlrUplink.index -confirm:$false

vnic            : 2                                                                                              
areaId          : 0 
helloInterval   : 10 
deadInterval    : 40 
priority        : 128 
mtuIgnore       : false 
logicalrouterId : edge-6

With OSPF now configured on the uplink interface of the distributed 
router, it will attempt to peer with any other routers on the same 
segment as the uplink interface. 

Adding a New Interface
An administrator may need to add an interface to an existing logical 
router. This can be done by using the New-NsxLogicalRouterInterface 
cmdlet.

NOTE 
The observant may note the use of New-
NsxLogicalRouterInterface rather than Set-
NsxLogicalRouterInterface, and the use of Set-
NsxEdgeInterface and not Add-NsxEdgeInterface.  
This is an attempt to remain consistent with the 
PowerShell semantics around creation of new entities vs. 
reconfiguring existing ones.  The difference here comes 
about because an NSX Edge always has ten interfaces.  
They can be connected, disconnected, reconfigured, but 
not removed or added.  In contrast, a logical router has an 
arbitrary number of interfaces, and by using New-



CHAPTER 6 - DISTRIBUTED ROUTING  | 59

NsxLogicalRouterInterface, a new entity is created.  
The same reasoning is behind the naming of New-
NsxEdgeSubInterface as opposed to Set-
NsxEdgeSubInterface, as any Edge trunk interface has 
an arbitrary number of sub-interfaces.

Example 6.7 demonstrates how to add a new interface to a logical 
router.

Example 6.7  Adding a New Interface to a Logical Router

PS /> Get-NsxLogicalRouter DLR-Coke | New-
NsxLogicalRouterInterface -name Expansion -type 
internal -ConnectedTo $ExpansionLS -SubnetPrefixLength 
24 -PrimaryAddress 40.0.0.1
                                                                                                                 
interface                                                                                                        
---------                                                                                                        
interface

The logical router DLR-Coke just had a new interface added to it called 
Expansion.  When creating a new logical router, it is possible to pass 
numerous interfaces at once. Example 6.8 shows how.

Example 6.8  Adding Several Interfaces with Interface Specs

PS /> $lif1 = New-NsxLogicalRouterInterfaceSpec -name 
“Cannery” -PrimaryAddress “31.0.0.1” -SubnetPrefixLength 
24 -ConnectedTo $ls1 -Type internal

PS /> $lif2 = New-NsxLogicalRouterInterfaceSpec -name 
“Bottle Factor” -PrimaryAddress “32.0.0.1” 
-SubnetPrefixLength 24 -ConnectedTo $ls2 -Type internal

PS /> $lif3 = New-NsxLogicalRouterInterfaceSpec -name 
“Slab Maker” -PrimaryAddress “33.0.0.1” 
-SubnetPrefixLength 24 -ConnectedTo $ls3 -Type internal

PS /> $uplif = New-NsxLogicalRouterInterfaceSpec -name 
“Uplink” -PrimaryAddress “30.0.0.1” -SubnetPrefixLength 
24 -ConnectedTo $ls0 -Type internal

New-NsxLogicalRouter -name DLR-Coke -Tenant coke 
-ManagementPortGroup $pg -Cluster $cl -Datastore $ds 
-Interface $lif1, $lif2, $lif3, $uplif



60 |

The New-NsxLogicalRouterInterfaceSpec cmdlet builds XML 
documents that can be passed to the –Interface parameter in a 
consistent fashion. This reduces the number of parameters used when 
creating a new logical router with numerous interfaces. Example 6.9 
reveals how to validate the interface creation.

Example 6.9  Validating Newly Created Interfaces

PS /> (Get-NsxLogicalRouter DLR-Coke).interfaces

interface
---------
{Cannery, Bottle Factor, Slab Maker, Uplink}

The four interfaces passed to New-NsxLogicalRouterInterfaceSpec 
during Example 6.8 can be validated by expanding the interfaces 
property of the logical router DLR-Coke.

Deleting Logical Routers Interfaces
If an interface is no longer required then it can be removed with the 
Remove-NsxLogicalRouterInterface cmdlet. Example 6.10 
demonstrates how to perform this action.

Example 6.10  Removing a Specific Logical Router Interface

PS /> Get-NsxLogicalRouter DLR-Coke | Get-
NsxLogicalRouterInterface -name Cannery | Remove-
NsxLogicalRouterInterface

Interface Cannery will be deleted.
Proceed with deletion of interface 10?
[Y] Yes  [N] No  [?] Help (default is “N”): y
PS />

The Cannery interface will be removed from the logical router. Any 
workloads attached to the logical switch associated with the Cannery 
interface will no longer have a gateway.

Deleting Logical Routers 
Removing a logical router can be performed using the Remove-
NsxLogicalRouter cmdlet. Example 6.11 demonstrates how.



CHAPTER 6 - DISTRIBUTED ROUTING  | 61

Example 6.11  Remove a Logical Router

PS /> Get-NsxLogicalRouter DLR | Remove-
NsxLogicalRouter

Logical Router removal is permanent.
Proceed with removal of Logical Router DLR?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

The logical router has now been deleted. 

Progressive Example: Configuring BGP 
Routing on the Distributed Router
The progressive example will demonstrate the use of PowerNSX to 
configure BGP to advertise the networks connected to the distributed 
router to the NSX Edge.

Figure 6.1 provides an overview of the logical topology.

Figure 6.1   BGP Peering on Distributed Router

With a clear picture in mind of what is to be built, it is fine to retrieve 
the existing logical router and enable BGP. Example 6.12  
demonstrates how.



62 |

Example 6.12  Configure BGP Routing on Logical Router

PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | Set-NsxLogicalRouterRouting 
-EnableBgp -ProtocolAddress 172.16.1.3  
-ForwardingAddress 172.16.1.2 -LocalAS 100 -RouterId 
172.16.1.3 -confirm:$false
                                                                                                                                                      
                                                                            
version             : 2                                                                                          
enabled             : true
routingGlobalConfig : routingGlobalConfig
staticRouting       : staticRouting
ospf                : ospf
bgp                 : bgp
logicalrouterId     : edge-9

The –ProtocolAddress parameter is the IP address assigned to the 
DLR Control VM. This protocol address is used in the control plane. The 
–ForwardingAddress parameter is the IP address of the logical 
interface in the data path. The –RouterID parameter can be any 
address. This example chose the same as the –ProtocolAddress 
parameter

Redistribution is needed to ensure BGP learns the correct routing 
information. It is toggled on a global level. Example 6.13 enables global 
redistribution for BGP.

Example 6.13  Enable Redistribution for BGP

PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | Set-NsxLogicalRouterRouting 
-EnableBgpRouteRedistribution -confirm:$false
                                                                                                                                                      
                                                                            
version             : 3                                                                                          
enabled             : true
routingGlobalConfig : routingGlobalConfig
staticRouting       : staticRouting
ospf                : ospf
bgp                 : bgp
logicalrouterId     : edge-9

With BGP enabled and redistribution enabled, it is time to select what 
will be redistributed. Connected interfaces are the best option here. 
This ensures any logical interfaces connected to the DLR are 
automatically redistributed by BGP. Example 6.14 shows how.



CHAPTER 6 - DISTRIBUTED ROUTING  | 63

Example 6.14  Redistribute Connected into BGP

PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | New-NsxLogicalRouterRedistri
butionRule -FromConnected -Learner bgp -confirm:$false

The connected logical interfaces will now be redistributed into BGP as 
they are added and removed from the distributed logical router.

With the preparation done, the next step is to configure the peering 
with the upstream NSX Edge. The BGP neighbor requires information 
about the remote neighbor along with details about the DLR itself. 
Example 6.15 highlights how.

Example 6.15  Add a BGP Neighbor to the Logical Router

PS /> Get-NsxLogicalRouter DLR | Get-
NsxLogicalRouterRouting | New-
NsxLogicalRouterBgpNeighbour -IpAddress 172.16.1.1 
-RemoteAS 200 -ForwardingAddress 172.16.1.2 
-confirm:$false -ProtocolAddress 172.16.1.3
                                                                                                                                                      
                                                                            
ipAddress         : 172.16.1.1                                                                                 
protocolAddress   : 172.16.1.3
forwardingAddress : 172.16.1.2
remoteAS          : 200
remoteASNumber    : 200
weight            : 60
holdDownTimer     : 180
keepAliveTimer    : 60
bgpFilters        :
logicalrouterId   : edge-9

The logical router has now been configured to peer with the NSX Edge. 
Its configuration includes the peers IP address and autonomous 
system.  In the next chapter’s progressive example, the NSX Edge will 
be configured with a neighbor that peers with the logical router to 
complete the BGP configuration.



64 |

Chapter Summary
This chapter has covered key components of the distributed logical 
router.  Some configuration examples related to the NSX distributed 
logical router have been provided and can be built on for any 
environment. An administrator using PowerNSX should now be 
confident in creating NSX DLRs and updating them for routing. 

These skills will serve as a foundation moving through the chapters in 
other areas of PowerNSX.



CHAPTER 6 - DISTRIBUTED ROUTING  | 65



66 |



Chapter 7

CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 67

NSX Edge Services Gateway

The NSX Edge services gateway is a virtual appliance that provides 
routing, load balancing, VPN, and additional firewall capabilities within 
VMware NSX for vSphere. It is commonly used to broker 
communication from logical switches to VLAN backed port-groups 
connecting to the existing infrastructure.

The goal of this chapter is to learn about the ESG related functions of 
PowerNSX. This will allow administrators to perform deployment and 
operational tasks.



68 |

About Interface Specifications
To flexibly and efficiently support creation of logical routers and NSX 
Edges with PowerNSX, it was necessary to abstract the operation of 
defining an interface specification.  This allows the definition of an 
arbitrary number of interfaces ahead of time – complete with IP 
addressing, network connection, etc. –  which can then be referenced 
by variable when using the New-NsxLogicalRouter / New-NsxEdge 
cmdlets.  

The New-NsxLogicalRouterInterfaceSpec and New-
NsxEdgeInterfaceSpec cmdlets do not talk to the NSX API at all, they 
just return an XML object that defines a single interface instance for 
later use by the New-NsxLogicalRouter / New-NsxEdge cmdlets.

It is also possible to create a logical router or NSX Edge with a single 
interface, and then iteratively add interfaces using the New-
NsxEdgeInterface cmdlet which takes address arguments for a single 
interface instance directly and updates the NSX Edge immediately.  
This is a much less efficient process though, resulting in multiple round 
trips to the NSX API, and triggering multiple edge reconfiguration jobs 
within NSX, which is generally desirable to avoid.

Example 7.1 demonstrates the creation of multiple interface specs prior 
to the creation of the NSX Edge.

Example 7.1  NSX Edge Interface Specifications

PS /> $uplink = New-NsxEdgeInterfaceSpec -index 0 
-name “Uplink” -Type uplink -Connected $uplinknetwork 
-PrimaryAddress “192.168.103.34” -SubnetPrefixLength 24
PS /> $uplink

name                : Uplink
index               : 0
type                : uplink
mtu                 : 1500
enableProxyArp      : False
enableSendRedirects : True
isConnected         : True
portgroupId         : dvportgroup-20
addressGroups       : addressGroups

The newly created uplink interface specification provides the inputs 
needed when creating a new NSX Edge. It is stored in the variable 
$uplink to be passed through to the –Interface parameter of New-
NsxEdge or New-NsxEdgeInterface.



CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 69

Creating a New NSX Edge
Now that an interface specification has been made it is possible to 
create a new NSX Edge. Example 7.2 builds upon the interface 
specification created in Example 7.1

Example 7.2  Creating a New NSX Edge

PS /> New-NsxEdge -name “Edge” -Datastore $ds -Cluster 
$cl -Interface $uplink,$dmz,$internal -Password 
“VMware1!VMware1!” -EnableSSH -AutoGenerateRules 
-FwDefaultPolicyAllow

id                : edge-5
version           : 1
status            : deployed
tenant            : default
name              : Edge
fqdn              : Edge
enableAesni       : true
enableFips        : false
vseLogLevel       : info
vnics             : vnics
appliances        : appliances
cliSettings       : cliSettings
features          : features
autoConfiguration : autoConfiguration
type              : gatewayServices
isUniversal       : false
hypervisorAssist  : false
queryDaemon       : queryDaemon
edgeSummary       : edgeSummary

The new NSX Edge appliance will now be deployed. It can be further 
configured using PowerNSX for routing, VPN, bridging, firewall, and 
load balancing functions.

NOTE 
Three interfaces are created in this NSX Edge due to using 
three variables containing different interface specs. This is 
far more efficient method of defining interfaces if they are 
known of time during the NSX Edges creation.



70 |

NOTE 
There are numerous parameters than can be passed when 
creating an NSX Edge. The parameter  
–FwDefaultPolicyAllow and –AutoGenerateRules are 
useful when establishing connectivity whilst staging an 
environment.

 
Adding a New Interface to an Existing NSX 
Edge
An administrator may need to configure an additional interface on an 
existing NSX Edge. The cmdlet Set-NsxEdgeInterface provides this 
functionality. Example 7.3 highlights how.

Example 7.3  Adding a New Interface

PS /> Get-NsxEdge edge | Get-NsxEdgeInterface –Index 1 
| Set-NsxEdgeInterface -Name “Outside World” 
-PrimaryAddress “192.168.143.1” -SubnetPrefixLength 24 
-Type internal -ConnectedTo $newPG

label               : vNic _ 1
name                : Outside World
addressGroups       : addressGroups
mtu                 : 1500
type                : internal
isConnected         : true
index               : 1
portgroupId         : dvportgroup-92
portgroupName       : test _ bridge _ 1
enableProxyArp      : false
enableSendRedirects : true
edgeId              : edge-3

The pipeline has retrieved the given NSX Edge and its interface at –
index 1. It then has updated the interface per the parameters set for 
Set-NsxEdgeInterface.

In addition to creating interfaces it is possible to pass multiple IP 
addresses for secondary addresses at the same. This is done by using 
the New-NsxAddressSpec cmdlet. Example 7.4 highlights passing an 
address spec saved as a variable, as opposed to defining all required 
parameters. 



CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 71

Example 7.4  Adding Interface Address with an Address Spec

$add1 = New-NsxAddressSpec -PrimaryAddress 11.11.11.11 
-SubnetPrefixLength 24 -SecondaryAddresses 11.11.11.12, 
11.11.11.13
$add2 = New-NsxAddressSpec -PrimaryAddress 22.22.22.22 
-SubnetPrefixLength 24 -SecondaryAddresses 22.22.22.23
Get-NsxEdge edge | Get-NsxEdgeInterface -index 5 | Set-
NsxEdgeInterface -ConnectedTo $ls3 –AddressSpec 
$add1,$add2 –name “New Interface via Spec” –type 
internal

label               : vNic _ 5                                                                                           
name                : New Interface via Spec
addressGroups       : addressGroups
mtu                 : 1500
type                : internal
isConnected         : true
index               : 5
portgroupId         : virtualwire-5
portgroupName       : Internal
enableProxyArp      : false
enableSendRedirects : true
edgeId              : edge-3

The address spec provides a simplified method of creating multiple 
interfaces in a single command.

Configuring OSPF on NSX Edge
Routing is paramount to dynamic connectivity of networks and their 
advertisement to other routing domains. The NSX Edge can support 
OSPF, BGP, and static routing. The following section describes OSPF 
routing and how PowerNSX configures it.

NOTE 
PowerNSX provides support for BGP, OSPF, and static 
routing on both the NSX Edge and NSX logical router. Not 
all commands or configurations are included within this 
booklet. More information can be found using the 
Get-Help cmdlet in Example 4.6.
 



72 |

Enabling a routing protocol requires retrieving the desired device and 
its routing configuration, then enabling it. Example 7.5 demonstrates 
enabling OSPF on an NSX Edge

Example 7.5  Enable NSX Edge OSPF

PS />  Get-NsxEdge Edge | Get-NsxEdgeRouting | Set-
NsxEdgeRouting -EnableOspf -RouterId 192.168.103.34 
-confirm:$false
                                                                                                                                                      
                                                                                       
version             : 4                                                                                                
enabled             : true
routingGlobalConfig : routingGlobalConfig
staticRouting       : staticRouting
ospf                : ospf
edgeId              : edge-3

OSPF requires a RouterID to be defined when enabling OSPF. This is 
passed with the –RouterID parameter. The output returned confirms 
that OSPF is enabled on edge-3.

Working with OSPF Areas
By default, new NSX Edges are deployed with an OSPF area of 51. This 
can be removed with the Remove-NsxEdgeOspfArea cmdlet in Example 
7.6

Example 7.6  Remove Superfluous Area ID

PS />  Get-NsxEdge Edge | Get-NsxEdgeRouting | Get-
NsxEdgeOspfArea -AreaId 51 | Remove-NsxEdgeOspfArea 
-confirm:$false

Removing this area ensures that only configured areas are included 
within the OSPF process. With the benign area removed a more 
suitable area can be made as demonstrated in Example 7.7.



CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 73

Example 7.7  Adding New OSPF Area

PS /> Get-NsxEdge Edge | Get-NsxEdgeRouting | New-
NsxEdgeOspfArea -AreaId 0 -Type normal -confirm:$false

areaId type   authentication edgeId                                          
------ ----   -------------- ------                                                  
0      normal authentication edge-3

Area 0 has now been created on the given NSX Edge. 

OSPF Interface Assignment
The next step is to assign an interface to the area. In Example 7.8 the 
New-NsxEdgeOspfInterface cmdlet will assign a given interface to a 
specified OSPF area.

Example 7.8  Assigning an NSX Edge Interface to an OSPF Area

PS />  Get-NsxEdge Edge | Get-NsxEdgeRouting | New-
NsxEdgeOspfInterface -AreaId 0 -vNic 2 -confirm:$false 
                                                                                                                                                      
                                                    
vnic          : 2                                                            
areaId        : 0
helloInterval : 10
deadInterval  : 40
priority      : 128
mtuIgnore     : false
edgeId        : edge-3

Now that an interface has been assigned to an OSPF area, it will try to 
form a neighbor relationship with other OSPF speakers on the same 
broadcast domain.

NOTE 
The parameter –vNic takes the index ID of a given 
interface to assign it to an OSPF area.
 
 
With a single NSX Edge modified for routing, there may be a 
requirement to modify numerous edges to have a consistent OSPF 
configuration. These NSX Edges may provide ECMP routing for 



74 |

networks connected south of it via a distributed router.  Example 7.9 
uses a simple PowerShell pipeline filter on the edge name to return a 
collection of NSX Edges.  This will be used to configure OSPF in one 
pipeline operation.

Example 7.9  Area and Interface Definition on a Selection of NSX Edges

PS /> Get-NsxEdge | Where-Object {$ _ .Name –match 
“ECMP-Edge-“} | Select-Object name, id

name         id
----         --
ECMP-Edge-1  edge-3
ECMP-Edge-2  edge-7
ECMP-Edge-3  edge-8
ECMP-Edge-4  edge-9

PS /> Get-NsxEdge | Where-Object {$ _ .Name –match 
“ECMP-Edge-“} | Get-NsxEdgeRouting | New-
NsxEdgeOspfArea -AreaId 100 -Type normal 
-confirm:$false

areaId type   authentication edgeId                                                                              
------ ----   -------------- ------                                                                              
100    normal authentication edge-3                                                                              
100    normal authentication edge-7
100    normal authentication edge-8
100    normal authentication edge-9

PS />  Get-NsxEdge | Where-Object {$ _ .Name –match 
“ECMP-Edge-“} | Get-NsxEdgeRouting | New-
NsxEdgeOspfInterface -AreaId 100 -vNic 0 -confirm:$false

vnic          : 0                                                                                                
areaId        : 100                                                                                              
helloInterval : 10                                                                                               
deadInterval  : 40
priority      : 128
mtuIgnore     : false
edgeId        : edge-3

vnic          : 0                                                                                                
areaId        : 100                                                                                              
helloInterval : 10                                                                                               
deadInterval  : 40
priority      : 128
mtuIgnore     : false
edgeId        : edge-7



CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 75

                                                                                                   
vnic          : 0                                                                                                
areaId        : 100                                                                                              
helloInterval : 10                                                                                               
deadInterval  : 40
priority      : 128
mtuIgnore     : false
edgeId        : edge-8

vnic          : 0                                                                                                
areaId        : 100                                                                                              
helloInterval : 10                                                                                               
deadInterval  : 40
priority      : 128
mtuIgnore     : false
edgeId        : edge-9

This example demonstrates the strength of PowerShell and PowerNSX 
in flexibly applying operations to collections of objects at a time to 
ensure consistent configuration across all of them.

Progressive Example: Configuring BGP 
Routing on NSX Edge
The NSX Edge provides connectivity between the logical and physical 
infrastructure. It requires BGP connectivity between the NSX Edge and 
the logical router. Figure 7.1 shows the logical topology

Figure 7.1   Logical Routing Topology

With the topology reviewed the first step is to enable BGP on the NSX 
Edge. This is performed in Example 7.10.



76 |

Example 7.10  Enable BGP on NSX Edge

PS /> Get-NsxEdge Edge | Get-NsxEdgeRouting | Set-
NsxEdgeRouting -EnableBgp -RouterId 192.168.103.34 
-confirm:$false  -LocalAS 200

version             : 11                                                                                         
enabled             : true
routingGlobalConfig : routingGlobalConfig
staticRouting       : staticRouting
ospf                : ospf
edgeId              : edge-3

With BGP configured on the NSX Edge, the final step is to configure a 
BGP neighbor on the NSX Edge. Example 7.11 creates a BGP neighbor 
with the logical router on the NSX Edge.

Example 7.11  Creating a BGP Peer to the Logical Router

PS /> Get-NsxEdge Edge01 | Get-NsxEdgeRouting | New-
NsxEdgeBgpNeighbour -IpAddress 172.16.1.2 -RemoteAS 100

Edge Services Gateway routing update will modify 
existing Edge configuration.
Proceed with Update of Edge Services Gateway edge-16?
[Y] Yes  [N] No  [?] Help (default is “N”): Y
                                                                                                                                                      
                                                                            
ipAddress      : 172.16.1.2                                                                                      
remoteAS       : 100
remoteASNumber : 100
weight         : 60
holdDownTimer  : 180
keepAliveTimer : 60
bgpFilters     :
edgeId         : edge-16

The BGP session has been configured on the NSX Edge. It is now 
peering with the logical router and learning the routes. It will have 
learned the connected networks on the logical router via their 
redistribution into BGP on the logical router.



CHAPTER 7 - NSX EDGE SERVICES GATEWAy  | 77

Chapter Summary
This chapter has introduced deployment and configuration tasks 
related to the NSX Edge. An administrator using PowerNSX should be 
confident in creating NSX Edges and configuring them for routing and 
other functions. 

These skills will serve as a foundation moving through the chapters in 
other areas of PowerNSX. The NSX Edge Load Balancer functionality is 
covered next in Chapter 8.



78 |



Chapter 8

CHAPTER 8 - NSX EDGE LOAD BALANCING  | 79

NSX Edge Load Balancing

VMware NSX for vSphere Edge Services Gateway provide load 
balancer capability. The NSX Edge load balancing presents 
administrators with configuration and options to improve service 
availability for applications.



80 |

Enabling the Load Balancer
The NSX load balancer requires three things to be configured correctly. 
An application profile, a member pool, and a virtual server. These three 
components form the core requirements of the NSX load balancer. 

Example 8.1  Enabling the NSX Load Balancer

PS /> Get-NsxEdge vRA7 _ edge | Get-NsxLoadBalancer | 
Set-NsxLoadBalancer -enabled

version                : 2
enabled                : true
enableServiceInsertion : false
accelerationEnabled    : false
monitor                : {default _ tcp _ monitor, 
default _ http _ monitor, default _ https _ monitor}
logging                : logging
edgeId                 : edge-5

Now that load balancing is enabled, it can start servicing requests on 
any configured virtual servers that are defined.

Working with Load Balancer Monitors
With load balancing enabled it is time to create some application 
specific configuration. Example 8.2 outlines creating a custom monitor 
for the recently enabled load balancer, and the application it will 
support.

Example 8.2  Creating a Monitor for a Specific Service

PS /> $WebMon = Get-NsxEdge vRA7 _ edge | Get-
NsxLoadBalancer | New-NsxLoadBalancerMonitor -Name 
vRA _ Web _ HTTPS -TypeHttps -interval  
$WebMonitorInterval -timeout $WebMonitorTimeout 
-MaxRetries $WebMonitorRetries   -Method 
$WebMonitorMethod  -Url $WebMonitorUrl  -receive 
$WebMonitorRecieve

PS /> $WebMon



CHAPTER 8 - NSX EDGE LOAD BALANCING  | 81

monitorId  : monitor-4
type       : https
interval   : 3
timeout    : 9
maxRetries : 3
method     : GET
url        : /wapi/api/status/web
name       : vRA _ Web _ HTTPS
receive    : REGISTERED
edgeId     : edge-3

The custom monitor performs URL validation to ensure a given pool 
member is active and able to serve valid requests.

NOTE 
For the examples simplicity, the values of the parameters 
have been placed into variables. Each variable has a 
defined value within a script or the runtime environment.
 
 
Example 8.3 further builds on the example now that the pre-requisite 
monitor for the load balancer pool has been created. 

Working with Load Balancer Pools
The pool in Example 8.3 will comprise of specific IP based workloads.

Example 8.3  Creating a New Pool

PS /> Get-NsxEdge vRA7 _ edge | Get-NsxLoadBalancer | 
New-NsxLoadBalancerPool -name $WebPoolName 
-Description “vRA IaaS Pool” -Transparent:$false 
-Algorithm $LbAlgo -Memberspec $webpoolmember1, 
$webpoolmember2 -Monitor $Webmon

poolId      : pool-1                                                            
name        : vRA-Web-Pool
description : vRA IaaS Pool
algorithm   : round-robin
transparent : false
monitorId   : monitor-4
member      : {vRA-Iaas-01, vRA-Iaas-02}
edgeId      : edge-3



82 |

A pool is a logical entity that represents members that provide a given 
service. The values that populates the parameters are specific to the 
given application. 

NOTE 
A pool member spec is defined using the New-
NsxLoadBalancerMemberSpec cmdlet. This cmdlet 
operates in similar fashion to New-
NsxEdgeInterfaceSpec where the configuration is 
created and stored for subsequent use.

 
Managing Application Profiles
Application profiles represent the type of traffic expected on a virtual 
server. An application profile is configured per Load Balancer and can 
be reused across many virtual servers. Example 8.4 creates an 
application profile.

Example 8.4  Creating an Application Profile

PS /> Get-NsxEdge vRA7 _ edge | Get-NsxLoadBalancer | 
New-NsxLoadBalancerApplicationProfile -Name 
$WebAppProfileName  -Type $VipProtocol –SslPassthrough

applicationProfileId : applicationProfile-1
name                 : AP-vRA-Web
insertXForwardedFor  : false
sslPassthrough       : true
template             : HTTPS
serverSslEnabled     : false
edgeId               : edge-3

Further parameters such as –sslPassthrough and –
insertXForwardedFor can be used here if an application requires it.

Managing Virtual Servers
The virtual server provides the “VIP” to load balance application flows 
to the pool assigned to it. The virtual server is configured in  
Example 8.5.



CHAPTER 8 - NSX EDGE LOAD BALANCING  | 83

Example 8.5  Building a Virtual Server

PS /> Get-NsxEdge vRA7 _ edge | Get-NsxLoadBalancer | 
Add-NsxLoadBalancerVip -name $WebVipName -Description 
$WebVipName -ipaddress $EdgeUplinkSecondaryAddress 
-Protocol $VipProtocol -Port $HttpPort 
-ApplicationProfile $WebAppProfile -DefaultPool $WebPool 
-AccelerationEnabled -enabled

                                                                                                                                       
version                : 9                                                      
enabled                : true
enableServiceInsertion : false
accelerationEnabled    : false
virtualServer          : virtualServer
pool                   : pool
applicationProfile     : applicationProfile
monitor                : {default _ tcp _ monitor, 
default _ http _ monitor,
                         default _ https _ monitor, 
vRA _ Web _ HTTPS}
logging                : logging
edgeId                 : edge-3

The Add-NsxLoadBalancerVIP cmdlet takes all previously configured 
components and enables the virtual server. 

NOTE 
The monitor property will return all monitors configured 
on the given NSX Edge. A monitor can be reused across 
different Virtual Servers on the same NSX Edge. A Virtual 
Server Pool Monitor is found with Get-
NsxLoadBalancerMonitor cmdlet and it will list the 
associated monitorId.
 
 
A load balancer can have numerous virtual servers. When a virtual 
server is no longer required it can be removed. Example 8.6 
demonstrates removing a specific virtual server.



84 |

Example 8.6  Removing a Virtual Server

PS /> Get-NsxEdge edge | Get-NsxLoadBalancer | Get-
NsxLoadBalancerVip –name Web _ VIP | Remove-
NsxLoadBalancerVip

VIP removal is permanent.
Proceed with removal of VIP virtualServer-1 on Edge 
edge-3?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

Adding and Removing Pool Members
Workloads sometimes need to be added and removed as an 
application grows and shrinks. PowerNSX can manipulate pool 
members. Adding a pool member is shown in Example 8.7.

Example 8.7  Adding a Pool Member

PS /> Get-nsxedge Edge01 | Get-NsxLoadBalancer | Get-
NsxLoadBalancerPool WebPool01 | Add-
NsxLoadBalancerPoolMember -name Web-10 -IpAddress 
192.168.200.13 -Port 80 -Weight 15 -MinimumConnections 
10 -MaximumConnections 3000
                                                                                                                                                      
                                                                            
poolId      : pool-2                                                                                             
name        : WebPool01
description : WebServer Pool
algorithm   : round-robin
transparent : false
member      : {Web-09, Web-07, Web-01, Web-10}
edgeId      : edge-16

With the pool member added it will start receiving traffic based upon 
the pools configured algorithm. If a pool member needs to be removed 
it can be done with Remove-NsxLoadBalancerPoolMember as shown in 
Example 8.8.



CHAPTER 8 - NSX EDGE LOAD BALANCING  | 85

Example 8.8  Removing a Pool Member

PS /> Get-nsxedge Edge01 | Get-NsxLoadBalancer | Get-
NsxLoadBalancerPool WebPool01 | Get-
NsxLoadBalancerPoolMember Web-01 | Remove-
NsxLoadBalancerPoolMember

Pool Member removal is permanent.
Proceed with removal of Pool Member member-1?
[Y] Yes  [N] No  [?] Help (default is “N”): y
                                                                                                                                                      
                                                                            
poolId      : pool-2                                                                                             
name        : WebPool01
description : WebServer Pool
algorithm   : round-robin
transparent : false
member      : member
edgeId      : edge-16

Managing Application Rules
Application rules allow further actions to happen based on traffic 
being load balanced. Configuring an application rule is demonstrated 
in Example 8.9.

Example 8.9  Creating an Application Rule

PS C:\>Get-NsxEdge Edge01 | Get-NsxLoadBalancer | New-
NsxLoadBalancerApplicationRule -name AR-Redirect-vC 
-script $script

 
This creates an application rule for use by a virtual server.

Progressive Example: Configuring Load 
Balancing Web and App Tiers
With the logical topology configured with routing and logical switches 
it is time to prepare the application side of things. NSX Edge load 
balancers provide many functions suitable to load balance most 
enterprise applications. To visualize the goal of this example, Figure 8.1 
depicts the logical topology



86 |

Figure 8.1   Load Balancing Logical Topology

The load balancer will need to be configured like this to support the 
progressive example.

The first step will enable the NSX Edge load balancer. This will use the 
existing edge previously deployed. Example 8.10 enables the load 
balancer.

Example 8.10  Enabling the Load Balancer

PS /> Get-NsxEdge Edge | Get-NsxLoadBalancer | Set-
NsxLoadBalancer –Enabled

version                : 13                                                                                      
enabled                : true
enableServiceInsertion : false
accelerationEnabled    : false
virtualServer          : virtualServer
pool                   : pool
applicationProfile     : applicationProfile
monitor                : {default _ tcp _ monitor, 
default _ http _ monitor, default _ https _ monitor, vRA _
Web _ HTTPS}
logging                : logging
edgeId                 : edge-3

With the load balancer enabled the configuration for the progressive 
example can be created. Before creating a virtual server, several 
required components need to be built. Example 8.11 creates the 
monitors needed for the application.



CHAPTER 8 - NSX EDGE LOAD BALANCING  | 87

Example 8.11  Creating Monitors

PS /> $WebMonitor =  Get-NsxEdge Edge | Get-
NsxLoadBalancer | Get-NsxLoadBalancerMonitor -Name 
$WebMonitorName

PS /> $AppMonitor =  Get-NsxEdge Edge | Get-
NsxLoadBalancer | Get-NsxLoadBalancerMonitor -Name 
$AppMonitorName

The newly created monitors have been stored into a variable for later 
use. These monitors will be used when building pools in Example 8.12.

Example 8.12  Building and Populating the Pools

PS /> $WebPool = Get-NsxEdge Edge | Get-
NsxLoadBalancer | New-NsxLoadBalancerPool -name 
Web-Pool -Description “Web Tier Pool” 
-Transparent:$false -Algorithm round-robin -Memberspec 
$webpoolmember1, $webpoolmember2 -Monitor $WebMonitor

PS /> $null = $WebPool | Add-NsxLoadBalancerPoolMember 
-name “Web-01” -IpAddress 10.0.1.10 -Port $HttpPort
PS /> $null = $WebPool | Add-NsxLoadBalancerPoolMember 
-name “Web-02” -IpAddress 10.0.1.11 -Port $HttpPort

PS /> $AppPool = Get-NsxEdge Edge | Get-NsxLoadBalancer 
| New-NsxLoadBalancerPool -name App-Pool -Description 
“App Tier Pool” -Transparent:$false -Algorithm round-
robin -Monitor $AppMonitor

PS /> $null = $AppPool | Add-NsxLoadBalancerPoolMember 
-name “App-01” -IpAddress 10.0.2.10 -Port $HttpPort
PS /> $null = $AppPool | Add-NsxLoadBalancerPoolMember 
-name “App-02” -IpAddress 10.0.2.11 -Port $HttpPort

Two load balancer pools have been created and they have members 
assigned to their respective pools. 

NOTE 
Using $null or piping a cmdlet to Out-Null will delete 
output instead of returning it to the console. This allows 
for cleaner output when executing scripts.
 
 



88 |

Application profiles define what traffic is expected on a virtual server.

Example 8.13  Creating Application Profiles

PS /> $WebAppProfile = Get-NsxEdge Edge | Get-
NsxLoadBalancer | New-NsxLoadBalancerApplicationProfile 
-Name “AP-WebTier” -Type $VipProtocol
PS /> $AppAppProfile = Get-NsxEdge $EdgeName | Get-
NsxLoadBalancer | new-NsxLoadBalancerApplicationProfile 
-Name “AP-AppTier” -Type $VipProtocol

Both virtual servers require an application profile and have been stored 
in variables. These will be used when creating the virtual servers. The 
final part of this progressive example culminates in the creation of the 
virtual servers, or VIPs in Example 8.14.

Example 8.14  Constructing the Virtual Servers

PS /> $null = Get-NsxEdge Edge | Get-NsxLoadBalancer | 
Add-NsxLoadBalancerVip -name VIP-Web -ipaddress 
192.168.103.150 -Protocol $VipProtocol -Port 80 
-ApplicationProfile $WebAppProfile -DefaultPool $WebPool 
-AccelerationEnabled

PS /> $null = Get-NsxEdge Edge | Get-NsxLoadBalancer | 
Add-NsxLoadBalancerVip -name VIP-App -ipaddress 
172.16.1.6 -Protocol $VipProtocol -Port 80 
-ApplicationProfile $WebAppProfile -DefaultPool $WebPool 
-AccelerationEnabled | out-null

The virtual servers have been created. They now will perform load 
balancing based on incoming traffic to the virtual server. It will then 
distribute the traffic based on the configuration to the respective pool 
members.



CHAPTER 8 - NSX EDGE LOAD BALANCING  | 89

Chapter Summary
This chapter has introduced NSX load balancing functions. An 
administrator using PowerNSX should be confident in leveraging 
PowerShell to retrieve, create, and manage application load balancers. 
Furthermore, providing repeatable configuration at large or quickly 
delivering additional function can be achieved with PowerNSX.

These skills will serve not only in managing an VMware NSX for 
vSphere environment, but the infrastructure as well.



90 |



Chapter 9

CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 91

Distributed Firewall 
and Objects

VMware NSX for vSphere delivers a capability known as distributed 
firewall (DFW). The DFW provides kernel level, stateful firewall 
function at the Virtual NIC. This unique filtering point provides near 
line rate network protection.  

The goal of this chapter is to provide insight into using PowerNSX  
for operations pertaining to the use of the DFW and its  
supporting objects.



92 |

Working with Firewall Sections
Firewall sections allow administrators to group similar DFW rules 
together. 

The command New-NsxFirewallSection Example 9.1 creates a new 
firewall section.

Example 9.1  New Firewall Section

PS /> New-NsxFirewallSection -name New-Application

id               : 1889
name             : New-Application
generationNumber : 1495794592418
timestamp        : 1495794592418
type             : LAYER3

Firewall sections can be retrieved with  Get-NsxFirewallSection. 
When creating firewall rules, a firewall section is required to be passed 
along the pipeline to New-NsxFirewallRule. This is the same behavior 
exhibited by New-NsxLogicalSwitch, that requires Get-
NsxTransportZone. Example 9.2 retrieves the firewalls section by name.

Example 9.2  Retrieving a Firewall Section

PS /> Get-NsxFirewallSection –name New-Application

id               : 1889
name             : New-Application
generationNumber : 1495794592418
timestamp        : 1495794592418
type             : LAYER3

Like most commands in PowerNSX Get-NsxFirewallSection provides 
the ability to search on name. 

NOTE 
From a DFW perspective, there are three types of firewall 
sections. They are -layer2sections, 
-layer3redirectsections and -layer3sections. These 
are parameters that can be defined when using Get-
NsxFirewallSection and New-NsxFirewallSection.



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 93

Creating Firewall Rules
Creating new DFW rules can be performed with PowerNSX. This allows 
administrators to start protecting applications and infrastructure.

Example 9.3 outlines the basic rule created on the DFW

Example 9.3  Creating a Basic DFW Rule

PS /> Get-NsxFirewallSection New-Application | New-
NsxFirewallRule -name Example-1 -Action Allow

id            : 2008
disabled      : false
logged        : false
name          : Example-1
action        : allow
appliedToList : appliedToList
sectionId     : 1889
direction     : inout
packetType    : any

The new DFW rule is created in the firewall section called New-
Application. This rule has defined the bare minimum required for a new 
DFW rule. When no source, destination or service is defined, those 
properties in the resultant DFW rule will be “any”. As such, this rule will 
permit any traffic on any port and protocol to any destination.

Removing Firewall Rules
Figure 9.4 removes the rule that was just created.

Example 9.4  Removing a Firewall Rule

PS /> Get-NsxFirewallSection New-Application | Get-
NsxFirewallRule -name Example-1 | Remove-
NsxFirewallRule

Firewall Rule removal is permanent and cannot be 
reversed.
Proceed with removal of Rule Example-1?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

The user is prompted to remove the DFW rule. This prompt ensures a 
user does not accidently remove a DFW rule. The parameter –confirm 
with the option $false can be used to override this. 



94 |

It is possible to remove only the DFW rules within a section without 
removing the DFW section itself.

Example 9.5  Removing all Rules within a Section 

PS /> Get-NsxFirewallSection New-Application | Get-
NsxFirewallRule | Remove-NsxFirewallRule 
-Confirm:$false

PS /> Get-NsxFirewallSection New-Application | Get-
NsxFirewallRule

The output in Example 9.5 will retrieve the NSX firewall section New-
Application and its associated rules through Get-NsxFirewallRule. All 
rules within that section will be removed with Remove-
NsxFirewallRule. The parameter –Confirm:$false will not prompt the 
administrator.

Now that the permissive and non-secure rules have been removed, it is 
time to create more targeted rules using defined sources and 
destinations. This can be through IP addresses, vCenter/NSX objects, 
or NSX security objects.

Creating Objects for use in Distributed 
Firewall Rules
VMware NSX for vSphere can use a mix of vCenter and NSX objects as 
part of DFW rules. These objects can be the source, destination, or the 
applied to object for DFW rules.

Example 9.6 highlights creating a new IPSet

Example 9.6  Creating a New IPSet 

PS /> New-NsxIpSet -Name IPS-RFC1918 -Description 
“RFC1918 subnets” -IPAddresses “10.0.0.0/8,172.16.0.0/12”

objectId           : ipset-2
objectTypeName     : IPSet
vsmUuid            : 564D2852-5BAB-0218-392E-B1050109BD46
nodeId             : 47ce48b9-a449-4245-a2a4-
f529c5b83b12
revision           : 1
type               : type



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 95

name               : IPS-RFC1918
description        : RFC1918 subnets
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
value              : 10.0.0.0/8,172.16.0.0/12

The newly created IPSet, shown in Example 9.6, can now be used in a 
new DFW rule, or as a member object in a security group.

NOTE 
Additional parameters can be used when creating objects. 
The –universal parameter marks the object available for 
Universal Replication. The –scopeId parameter allows 
input of an NSX Edge ID to allow use on the NSX Edge 
firewall.
 
 
There will be times where it is required to modify the values (i.e., 
members) of an existing IP Set.  The newly created IP set, shown in 
Example 9.6, is missing a subnet as per RFC1918. PowerNSX provides 
the ability to add a new IP address, IP address range or subnet to an 
existing IP set. Example 9.7 shows the use of Add-NsxIpSetMember.

Example 9.7  Appending New IPSet Members

PS /> Get-NsxIpSet -name IPS-RFC1918 | Add-
NsxIpSetMember -IPAddress “192.168.0.0/16”

objectId           : ipset-2
objectTypeName     : IPSet
vsmUuid            : 564D2852-5BAB-0218-392E-B1050109BD46
nodeId             : 47ce48b9-a449-4245-a2a4-
f529c5b83b12
revision           : 2
type               : type
name               : IPS-RFC1918
description        : RFC1918 subnets
scope              : scope
clientHandle       :



96 |

extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
value              : 192.168.0.0/16,172.16.0.0/12,10.0.0.0/8

Adding 192.168.0.0./16 to the IP set IPS-RFC1918 means the correct 
private address space is defined. The IP set is ready for later use in a 
DFW rule.

Creating Security Groups and Defining 
Members
One major facet of VMware NSX for vSphere are the objects that can 
be used as a part of a DFW rule. These objects allow administrators to 
build scalable abstractions into security that help take the rigidity out 
of firewall operations.

One such object is the security group. A security group is a construct 
that is akin to a container. It can have numerous member types within 
it. Example 9.8 outlines the ease of creating a security group

Example 9.8  Creating a New Security Group

PS /> New-NsxSecurityGroup SG-DMZ-Web

objectId           : securitygroup-10
objectTypeName     : SecurityGroup
vsmUuid            : 564D2852-5BAB-0218-392E-B1050109BD46
nodeId             : 47ce48b9-a449-4245-a2a4-
f529c5b83b12
revision           : 1
type               : type
name               : SG-DMZ-Web
description        :
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false

The newly created security group in Example 9.8 is ready to be used. 
This can be used by a DFW rule and is also an object that can include 
vCenter objects as child members. The security group itself can also be 



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 97

a member of another security group.

Example 9.9 builds a new security group and retrieves a vCenter 
cluster object to use for membership.

Example 9.9  Creating a New Security Group Including a Cluster Member

PS /> New-NsxSecurityGroup SG-DMZ-Cluster 
-IncludeMember (Get-Cluster DMZ-Cluster)

objectId           : securitygroup-11
objectTypeName     : SecurityGroup
vsmUuid            : 564D2852-5BAB-0218-392E-B1050109BD46
nodeId             : 47ce48b9-a449-4245-a2a4-
f529c5b83b12
revision           : 2
type               : type
name               : SG-DMZ-Cluster
description        :
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
member             : member

The defined cluster named DMZ-Cluster is now added as a member. 
This member will include all virtual machines associated with the 
cluster DMZ-Cluster. An administrator can validate the members of a 
security group as shown in Example 9.10.

Example 9.10  Discovering Security Group Membership

PS /> Get-NsxSecurityGroup SG-DMZ-Cluster | Get-
NsxSecurityGroupEffectiveMember

VirtualMachine IpAddress MacAddress Vnic
-------------- --------- ---------- ----
{vmnodes}                {macNodes} {vnicNodes}

The cmdlet Get-NsxSecurityGroupEffectiveMember takes a security 
group object from the pipeline and will validate the VMs that are 
resolved. In Example 9.10 the VMs that result on cluster DMZ-Cluster 
are included as properties.

The output of Example 9.10 returns the parent object of the 
membership. Whilst it is possible to use dot notation to traverse the 



98 |

object and find more detail there are additional cmdlets that achieve 
the same result.

Example 9.11 demonstrates the output of the various security group 
membership cmdlets.

Example 9.11  Discovering Security Group Membership Redux

PS /> Get-NsxSecurityGroup -name SG-DMZ-Cluster | Get-
NsxSecurityGroupEffectiveVirtualMachine

VmName                                VmId
------                                ----
{win-01, other-01, lnx-02, win-02...} {vm-44, vm-46, 
vm-48, vm-45..}

PS /> Get-NsxSecurityGroup -name RFC-TEST | Get-NsxSecu
rityGroupEffectiveIpAddress

IpAddress
---------
{10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/20}

PS /> Get-NsxSecurityGroup -name SG-DMZ-Cluster | Get-
NsxSecurityGroupEffectiveVnic

Uuid
----
{500c5441-eb92-f52b-af4a-adc9f3b3f6d0.000, 500c4eb6-658a-
a24f-f42a-4537fe76bcf3.000, 500c4ff9-8397-9e3f-fb67-
78868fdc646c.000, 500cd...

PS /> Get-NsxSecurityGroup -name SG-DMZ-Cluster | Get-
NsxSecurityGroupEffectiveMacAddress

MacAddress
----------
{00:50:56:8c:58:dc, 00:50:56:8c:83:02, 00:50:56:8c:25:4a, 
00:50:56:8c:b3:b3...}

Very quickly it becomes clear that there is a lot of detail stored in a 
membership object. This can be rapidly retrieved thanks to PowerNSX.

In production and environments rules are already created and 
enforcing security policy. At times rules may need to be edited and in 
turn objects that provide membership will need updating. Example 9.12 
highlights adding a member object to a security group.



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 99

Example 9.12  Add Security Group Member

PS /> Get-NsxSecurityGroup -name SG-DMZ-Web | Add-
NsxSecurityGroupMember -Member $WebTag

PS /> (Get-NsxSecurityGroup -name SG-DMZ-Web).member.
name
ST-DMZ-Web

Example 9.12 above adds the security tag in $WebTag variable as a 
member of the group. When performing a validation against the 
members of security group SG-DMZ-Web the member property name 
reveals ST-DMZ-Web.

NOTE 
The parameter –MemberIsExcluded provides further 
control over group membership. The parameter –
MemberIsExcluded provides the ability to exclude an 
object being if it is a member of another included 
abstraction. For example, the VMs VM1, VM2, and VM3 
reside on cluster Cluster-A. Cluster Cluster-A is added 
as a member of security group SG-DMZ-Cluster. Virtual 
machine VM2 should not be a member of security group 
SG-DMZ- Cluster. This is where –MemberIsExcluded 
should be used and as a result it is excluded from the 
security group.
 
 
Just as important as adding members to security groups is the ability 
to remove. This operations is part of life cycling applications and 
workloads. Example 9.13 shows the ability to remove an object from a 
security group.

Example 9.13  Removing a Security Group Member

PS /> Get-NsxSecurityGroup SG-DMZ-Web | Remove-
NsxSecurityGroupMember -Member $webtag

Example 9.13 removed the security tag ST-Web from security group 
SG-DMZ-Web. This can be performed for the following member types 
listed in Example 9.14



100 |

Example 9.14  Security Group Member Types

PS /> Get-NsxSecurityGroupMemberTypes
IPSet
ClusterComputeResource
VirtualWire
VirtualMachine
SecurityGroup
DirectoryGroup
VirtualApp
ResourcePool
DistributedVirtualPortgroup
Network
Datacenter
Vnic
SecurityTag
MACSet

These types are what are supported as members in security groups.

Working with Security Tags
Security tags allow a string based object to be appended to a VM. 
These security tags can also be a member criteria for security groups. 
VMs tagged with a security tag can automatically added to a given 
group. This results in VMs inheriting new DFW rules based upon their 
security group membership.

Security tag operations performed with PowerNSX are straight 
forward. Example 9.15 highlights the use of the New-NsxSecurityTag 
cmdlet.

Example 9.15  Creating New Security Tags

PS /> New-NsxSecurityTag -Name ST-Web

objectId           : securitytag-15
objectTypeName     : SecurityTag
vsmUuid            : 564D2852-5BAB-0218-392E-B1050109BD46
nodeId             : 47ce48b9-a449-4245-a2a4-
f529c5b83b12
revision           : 0



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 101

type               : type
name               : ST-Web
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
systemResource     : false
vmCount            : 0

With a new security tag called ST-Web it is now possible to use it as a 
membership criteria for a security group and apply it to a VM. This step 
is outlined in Example 9.16.

Example 9.16  Adding VMs to a Security Tag

PS /> Get-NsxSecurityTag ST-Web | New-
NsxSecurityTagAssignment -ApplytoVM -VirtualMachine 
(get-VM lnx-01)

With the security tag ST-Web applied to the VM lnx-01 it will become a 
member of any security group that uses security tags as a membership 
criteria. As environments evolve and workloads use various tags a need 
for security tag usage is apparent. Example 9.17 outlines how to 
evaluate security tag usage.

Example 9.17  Querying Security Tag Members

PS /> Get-NsxSecurityTag ST-Web | Get-
NsxSecurityTagAssignment

SecurityTag VirtualMachine
----------- --------------
securityTag lnx-01

The cmdlet in Example 9.17 shows how to determine the VMs 
associated with a specific security tag.



102 |

Removing Security Tags
There comes a time when security lifecycles require an object to be 
destroyed. The removal of a security tag can have a larger impact as it 
may be referenced by numerous objects. Example 9.18 highlights an 
important warning message.

Example 9.18  Removing Security Tags

PS /> Get-NsxSecurityTag ST-Web | Remove-NsxSecurityTag

Removal of Security Tags may impact desired Security 
Posture and expose your infrastructure. Please 
understand the impact of this
change
Proceed with removal of Security Tag ST-Web?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

If a security tag is in use as a membership object then removing the 
security tag will strip VM members of their association to a security 
group. Furthermore, if that security group is used in a DFW rule or as 
load balancer pool the policy or membership is revoked. This will lead 
into a change in security posture and loss of connectivity. Using Get-
NsxSecurityTagAssignment as demonstrated in Example 9.18 will help 
ensure the safe removal of security tags.

Creating DFW Rules using Objects
The ability to create a plethora of objects for use in DFW rules with 
PowerNSX is straightforward. Using them in DFW rules helps simplify 
security rules in many cases.

NOTE 
The upcoming examples use variables for source, 
destination, and applied to fields for reader ease. Prior 
examples have shown how to create, retrieve, and store 
objects in variables for use in cmdlets. 
 
 
Example 9.19 demonstrates how to provide a mixture of objects for 
source, destination, and applied to fields.



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 103

Example 9.19  Creating Object-Based DFW Rules

Get-NsxFirewallSection DMZ | New-NsxFirewallRule -name 
“Internet Access” -source $LS -destination $ipsrfc1918 
-NegateDestination   -Action “allow” -AppliedTo 
$sgcluster -Service $httptraffic

id            : 1010
disabled      : false
logged        : false
name          : Internet Access
action        : allow
appliedToList : appliedToList
sectionId     : 1005
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any

This firewall rule uses three different object types. They are a logical 
switch, IP set, and a security group. This firewall rule is designed to 
allow VMs on the logical switch defined by the parameter –Source to 
the IP set defined by the -Destination parameter. This IP set uses a 
-NegateDestination and as a result it will be all destinations except 
those defined in the IP set. The parameter -Action will allow traffic and 
the defined –Service parameter is for HTTP/S traffic. The DFW rule is 
applied the vNIC of all VMs in the security group defined in the –
AppliedTo property.

NOTE 
There are hundreds, if not thousands, of permeations of 
rules and examples that could be expressed here. The goal 
of this section is to give an insight into what can be used 
and how it could be used. Please utilize Get-Help | New-
NsxFirewallRule –examples for examples or visit 
https://powernsx.github.io for more details.
 
 
To validate this rule is applied correctly to an expected VM it is possible 
to use a PowerNSX cmdlet called Get-NsxCliDfwRule. This allows a VM 
to be defined in a parameter and results in retrieving data plane 
configuration. Example 9.20 highlights this.



104 |

Example 9.20  Validate DFW Rule on vNIC

PS /> Get-NsxCliDfwRule -VirtualMachine $lnx02
WARNING: This cmdlet is experimental and has not been 
well tested.  Its use should be limited to 
troubleshooting purposes only.

RuleSet        : domain-c7
InternalRule   : False
RuleID         : 1010
Position       : 1
Direction      : inout
Type           : Layer3
Service        : tcp
Source         : addrset ip-virtualwire-7
Destination    : not addrset ip-ipset-2
Port           : 80
Action         : accept
Log            : False
Tag            :
VirtualMachine : lnx-02
Filter         : nic-123791-eth0-vmware-sfw.2

The rule has been successfully pushed to the filter of VM lnx-02. It 
matches the recently created rule in Example 9.19.

Adding a new source or destination object can be required as 
applications or DFW rules change. Whilst it is possible to edit a 
security group membership there are occasions where an entire new 
object is required. Example 9.21 outlines how to add a new object to an 
existing DFW rule.

Example 9.21  Add a New DFW Rule Object

PS /> Get-NsxFirewallSection DMZ | Get-NsxFirewallRule 
“Internet Access” | Add-NsxFirewallRuleMember 
-MemberType Source -Member $DMZViewLogicalSwitch

RuleId     : 1011
SectionId  : 1005
MemberType : Source
Name       : LS-DMZ
Value      : virtualwire-7
Type       : VirtualWire
isValid    : true



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 105

RuleId     : 1011
SectionId  : 1005
MemberType : Source
Name       : DMZ-View-Connection-Servers
Value      : virtualwire-8
Type       : VirtualWire
isValid    : true

RuleId     : 1011
SectionId  : 1005
MemberType : Destination
Name       : IPS-RFC1918
Value      : ipset-2
Type       : IPSet
isValid    : true

The output of Example 9.21 shows a new logical switch DMZ-View-
Connection-Servers as a source added for the DFW rule 1011. The 
existing objects are preserved and printed to the screen as validation.

NOTE 
The parameter –MemberType allows definition of 
Destination, Source, or Both. This allows the object 
being appended to be added to either fields or both in one 
action.
 
 
Removing an object from a DFW can be performed with a similar 
cmdlet. Example 9.22 removes an old logical switch from a DFW rule.

Example 9.22  Remove a DFW Rule Object

PS /> Get-NsxFirewallSection DMZ | Get-NsxFirewallRule 
“Internet Access” | Get-NsxFirewallRuleMember -Member 
LS-DMZ | Remove-NsxFirewallRuleMember 
Removal of a firewall rule member is permanent and 
will modify your security posture.
Proceed with removal of member virtualwire-7 from the 
Source list of firewallrule 1011 in section 1005?
[Y] Yes  [N] No  [?] Help (default is “N”): Y 

PS /> Get-NsxFirewallSection DMZ | Get-NsxFirewallRule 
“Internet Access” | Get-NsxFirewallRuleMember -Member 
LS-DMZ



106 |

The output in Example 9.22 will pipe the retrieved DFW rule member 
to Remove-NsxFirewallRuleMember. This results in the member 
being removed from the firewall rule. Using Get-
NsxFirewallRuleMember against the specific rule Internet Access 
validates the member LS-DMZ is now removed.

Progressive Example: Creating Security 
Objects and DFW Rules
The progressive example provides additional examples related to a 
specific topology. It is built upon in each successive chapter within this 
book.

The diagram in Figure 9.1 highlight the logical security groups applied 
to the example topology.

Figure 9.1   Logical Security Topology

Below are the traffic flows that must be secured:

1. Source NAT from ESG vNIC on transit network to web tier on TCP 
80

2. Web tier to app load balancer IP address on TCP 80

3. Source NAT from ESG vNIC on transit network to app tier on TCP 
80

4. App tier to DB tier on TCP 3306

With the topology defined it is time to create the objects that are 
required. Example 9.23 builds the required objects for this example.



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 107

Example 9.23  Logical Security Objects

PS /> $IpsEsgPri = New-NsxIpset -Name “ESG-TRANSIT-PRI” 
-IPAddresses 172.16.1.1
PS /> $IpsEsgSec = New-NsxIpset -Name “ESG-TRANSIT-SEC” 
-IPAddresses 172.16.1.6
PS /> $WebSg = New-NsxSecurityGroup -name “SG-Web” 
-IncludeMember $Web01,$Web02
PS /> $AppSg = New-NsxSecurityGroup -name “SG-App” 
-IncludeMember $App01,$App02
PS /> $DbSg = New-NsxSecurityGroup -name “SG-Db” 
-IncludeMember $Db01

Example 9.23 outlines the security groups and the IP sets that need to 
be created for the DFW rules. Example 9.24 demonstrates using the 
objects created to create a DFW rule between the ESG and the web 
tier VMs.

Example 9.24  Load Balancer to Web Tier

PS /> Get-NsxFirewallSection $Section.name | New-
NsxFirewallRule -name “LB to Web Tier” -Source 
$IpsEsgPri -Destination $WebSg -Service $http -Action 
allow -appliedTo $WebSg -EnableLogging -Tag “LbToWeb” 
-Comment “LB to Web Tier”

id            : 1139
disabled      : false
logged        : true
name          : LB to Web Tier
action        : allow
notes         : LB to Web Tier
appliedToList : appliedToList
sectionId     : 1112
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any
tag           : LbToWeb

Example 9.25 demonstrates using the objects created to create a DFW 
rule between the ESG and the web tier VMs. 



108 |

Example 9.25  Web to App VIP

PS /> Get-NsxFirewallSection $Section.name | New-
NsxFirewallRule -name “Web Tier to App LB VIP” -Source 
$WebSg -Destination $IpsEsgSec -Service $http -Action 
allow -AppliedTo $WebSg -EnableLogging -Tag 
“WebToAppVIP” -Comment “Web Tier to App LB VIP”

id            : 1140
disabled      : false
logged        : true
name          : Web Tier to App LB VIP
action        : allow
notes         : Web Tier to App LB VIP
appliedToList : appliedToList
sectionId     : 1112
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any
tag           : WebToAppVIP

Example 9.25 outputs the rule created for access from the Web Tier to 
the App VIP on the ESG. Example 9.26 highlights access from the App 
VIP to the App tier. Due to source NAT being used on the ESG’s VIP, 
the IP address that sources the traffic is the vNIC connected to the 
network. As a result, the primary IP address on interface is the source 
of the traffic. In this case, it is 172.16.1.1 and not the VIP 172.16.1.6.

Example 9.26  App VIP / ESG Interface to App Tier

PS /> Get-NsxFirewallSection $Section.name | New-
NsxFirewallRule -name “App VIP to App Tier” -Source 
$IpsEsgPri -Destination $AppSg -Service $http -Action 
allow -AppliedTo $AppSG -EnableLogging -Tag 
“AppVIPToApp” -Comment “App VIP to App Tier”



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 109

id            : 1141
disabled      : false
logged        : true
name          : App VIP to App Tier
action        : allow
notes         : App VIP to App Tier
appliedToList : appliedToList
sectionId     : 1112
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any
tag           : AppVIPToApp

The rule created in Example 9.26 allows HTTP traffic from the defined 
source to the app tier. Example 9.27 opens the last key flow to the 
database tier.

Example 9.27  App Tier to DB Tier

PS /> Get-NsxFirewallSection $Section.name | New-
NsxFirewallRule -Name “App Tier to DB Tier” -Source 
$AppSg -Destination $DbSg -Service $mysql -Action 
allow -AppliedTo $AppSG,$DbSg -EnableLogging -Tag 
“AppToDb” -Comment “App Tier to DB Tier”

id            : 1142
disabled      : false
logged        : true
name          : App Tier to DB Tier
action        : allow
notes         : App Tier to DB Tier
appliedToList : appliedToList
sectionId     : 1112
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any
tag           : AppToDb

With the explicitly allowed traffic for the application allowed through 
the application needs to be secured. This is done in Example 9.28 with 
a deny rule that is applied to all three tiers.



110 |

Example 9.28  Application Specific Deny

PS /> Get-NsxFirewallSection $Section.name | New-
NsxFirewallRule -Name “Progressive Example Deny” 
-Service $TcpAll,$UdpAll -Action deny –AppliedTo 
$WebSg,$AppSg,$DbSg -EnableLogging -Tag “3taDrop” 
-Comment “Deny rule for Progressive Example” –Position 
Bottom

id            : 1143
disabled      : false
logged        : true
name          : Progressive Example Deny
action        : deny
notes         : Deny rule for Progressive Example
appliedToList : appliedToList
sectionId     : 1112
services      : services
direction     : inout
packetType    : any
tag           : 3taDrop

Example 9.28 applies the final rule to the progressive example. It will 
block all TCP and UDP traffic to all application tiers from unspecified 
resources. This results in a secure application topology per the 
requirements that has been deployed and configured by PowerNSX.

CAUTION 
Creating new DFW rules with PowerNSX will place it at the 
top of the referenced section. When creating a new deny 
rule this could result legitimate traffic being dropped. Use 
the –Position parameter to place the rule at the bottom 
of a given section. The parameter –Position takes the 
input of Top or Bottom.



CHAPTER 9 - DISTRIBUTED FIREWALL AND OBjECTS  | 111

Chapter Summary
This chapter has introduced tasks and operations around DFW. An 
administrator using PowerNSX should now be confident in creating, 
updating, and removing DFW rules, NSX security objects, and firewall 
sections.

These skills will serve as a foundation to managing the security posture 
of an environment with PowerNSX.



112 |



Chapter 10

CHAPTER 10 - CROSS VCENTER AND POWERNSX  | 113

Cross vCenter 
and PowerNSX

VMware NSX for vSphere can be configured in a Cross vCenter 
configuration. This allows constructs known as universal objects to be 
created. These universal objects are replicated between NSX Managers 
participating in the cross vCenter NSX environment.

A substantial update was made to PowerNSX so it could be used in 
Cross vCenter environments. PowerNSX supports the ability to create, 
modify, and delete universal objects.



114 |

Design Considerations
The design consideration around handling universal objects was key 
before the functionality was created. Early on, an idea to create 
separate cmdlets was discussed and raised. It was quickly decided that 
this would lead to a substantial amount of duplication and effort. The 
result was to utilize the existing cmdlets and update them to work with 
cross vCenter NSX. The cmdlets that have a universal option within 
VMware NSX for vSphere now have an additional –Universal or –
IsUniversal parameter appended.

This allows a consistent approach in naming convention and usage 
when using local or universal objects with the PowerNSX cmdlets.

Retrieving Universal Objects
The implementation of cross vCenter functionality into PowerNSX did 
impact the standard behavior of some cmdlets. Example 10.1 highlights 
retrieving transport zones.

Example 10.1  Retrieving Transport Zones

PS /> Get-NsxTransportZone | Select-Object Name, id

name id
---- --
UTZ1 universalvdnscope
TZ1  vdnscope-1

All transport zones are returned when using Get-NsxTransportZone. 
This returns a local and universal transport.

The use of –LocalOnly or –UniversalOnly will help filter the results to 
ensure the correct objects are retrieved. Example 10.2 demonstrates 
this.

Example 10.2  Retrieving Universal Transport Zone

PS /> Get-NsxTransportZone -UniversalOnly | Select-
Object Name, id

name id
---- --
UTZ1 universalvdnscope



CHAPTER 10 - CROSS VCENTER AND POWERNSX  | 115

With a universal transport zone retrieved it can now be used. This can 
be piped to the New-NsxLogicalSwitch cmdlet to when creating a 
new universal logical switch as shown in Example 10.3.

Example 10.3  Creating Universal Logical Switch

PS /> Get-NsxTransportZone -UniversalOnly | New-
NsxLogicalSwitch ULS-App1

objectId              : universalwire-14
objectTypeName        : VirtualWire
vsmUuid               : 4201B045-B1F9-457F-E621-
B54038A6AFA5
nodeId                : 4b749a6a-bc41-431b-bf24-
cf9e54dcb452
revision              : 3
type                  : type
name                  : ULS-App1
description           :
clientHandle          :
extendedAttributes    :
isUniversal           : true
universalRevision     : 3
tenantId              :
vdnScopeId            : universalvdnscope
vdsContextWithBacking : {vdsContextWithBacking, 
vdsContextWithBacking}
vdnId                 : 10012
guestVlanAllowed      : false
controlPlaneMode      : UNICAST _ MODE
ctrlLsUuid            : 782865e9-441b-4667-9454-
b02685719cde
macLearningEnabled    : false

The universal transport zone was piped to New-NsxLogicalSwitch and 
as a result a new universal logical switch called ULS-App1 was made.

NOTE 
An observant reader will note that there is not  
–Universal parameter used on New-NsxLogicalSwitch. 
This is due to the transport zone type denoting the type of 
logical switch. Local transport zones allow logical switches 
to be created whilst universal transport zones allow 
universal logical switches to be created.



116 |

Creating Universal Objects
Creating universal objects with PowerNSX is like creating local objects 
with PowerNSX. Functions that support cross vCenter NSX have an 
additional parameter to indicate if it is to be made universal. Example 
10.4 demonstrates creating a universal logical router.

Example 10.4  Creating Universal Logical Router

PS /> New-NsxLogicalRouter -name DLR-Universal -Tenant 
coke -ManagementPortGroup $pg -Cluster $cl -Datastore 
$ds -Interface $lif1, $lif2, $lif3, $uplif -Universal                                                                                                                                       
                                                                                                                                                      
     

id                 : edge-b7962130-3cc0-43aa-a02a-
ffa32cb10968                                                   
version            : 2
status             : deployed
tenant             : coke
name               : DLR-Universal
fqdn               : NSX-edge-b7962130-3cc0-43aa-a02a-
ffa32cb10968
enableAesni        : true
enableFips         : false
vseLogLevel        : info
appliances         : appliances
cliSettings        : cliSettings
features           : features
autoConfiguration  : autoConfiguration
type               : distributedRouter
isUniversal        : true
universalVersion   : 0
mgmtInterface      : mgmtInterface
interfaces         : interfaces
edgeAssistId       : 10000
lrouterUuid        : d1639657-4537-498d-ba03-
98b5ebf1dc27
queryDaemon        : queryDaemon
localEgressEnabled : false
edgeSummary        : edgeSummary

The only difference in the New-NsxLogicalrouter cmdlet to create 
universal logical router versus a logical router is the –Universal 
parameter.  



CHAPTER 10 - CROSS VCENTER AND POWERNSX  | 117

NOTE 
The interface specs used in Example 10.4 have universal 
logical switches associated to them. 
 
 
When creating a universal IP set the same -Universal parameter is 
used.

Example 10.5  Creating Universal IP Set

PS /> New-NsxIpSet -name UIPS-RFC1918 -IPAddresses “10.0
.0.0/8,192.168.0.0/16,172.16.0.0/12” -Universal

objectId           : ipset-84999f44-3dd1-49bd-984c-
0d2eab95b938
objectTypeName     : IPSet
vsmUuid            : 4201B045-B1F9-457F-E621-
B54038A6AFA5
nodeId             : 4b749a6a-bc41-431b-bf24-
cf9e54dcb452
revision           : 1
type               : type
name               : UIPS-RFC1918
description        :
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : true
universalRevision  : 0
inheritanceAllowed : false
value              : 172.16.0.0/12,10.0.0.0/8,192.168.0.0/16

The newly created Universal IPSet has the value of true in the 
isUniversal property. 



118 |

Chapter Summary
This chapter has introduced some considerations and design decisions 
the PowerNSX team made when dealing with universal objects and 
cross vCenter NSX. Understanding these decisions and considerations 
will aid in using PowerNSX with universal objects. An administrator 
using PowerNSX should now be confident in administering and 
operating cross vCenter NSX environments.



CHAPTER 10 - CROSS VCENTER AND POWERNSX  | 119



120 |



Chapter 11

CHAPTER 11 - ADMINISTRATIVE OPERATIONS  | 121

Administrative Operations

PowerNSX provides administrators an additional tool to aid with 
operational tasks. The following chapter outlines how PowerNSX can 
help with common operational tasks performed by an NSX 
administrator. These are in addition to the create, retrieve, update, 
delete (CRUD) operations demonstrated in previous chapters.



122 |

Searching for a Port
Searching for the correct service can be finding a needle in a haystack. 
This can be efficiently achieved with the Get-NsxService cmdlet. The 
cmdlet allows searching through using the –port parameter a feature 
than until very recently was not possible in the NSX UI.

Example 11.1 demonstrates the search for port 80.

Example 11.1  Find Service by Port

name
----

Horizon 6 Connection Server to View Composer Service communication
Horizon 6 Default HTTPS Client to Connection and Security Servers
Horizon 6 Connection Server to vCenter Server communication
HTTP
HTTP
Horizon 6 Connection Server to View Composer Service communication
Horizon 6 Default HTTPS Client to Connection and Security Servers
Horizon 6 Connection Server to vCenter Server communication

isUniversal
-----------

false
false
false
false
true
true
true
true

This command returns all ports that specifically have a port match. This 
will return both Universal and Local services. The Select-Object 
statement filters the name and isUniversal properties as they are most 
pertinent.

Services are matched, even if the port number falls within a port range, 
not just an explicit port number. Example 11.2 finds port 8032 within a 
port range.



CHAPTER 11 - ADMINISTRATIVE OPERATIONS  | 123

Example 11.2  Find Service by Port within a Range

PS /> Get-NsxService -port 8032 | Select-Object name, isUniversal

name
----
Win - RPC, DCOM, EPM, DRSUAPI, NetLogonR, SamR, FRS - UDP
Win - RPC, DCOM, EPM, DRSUAPI, NetLogonR, SamR, FRS - TCP
VMware-VDM2.x-Ephemeral
Win - RPC, DCOM, EPM, DRSUAPI, NetLogonR, SamR, FRS - UDP
Win - RPC, DCOM, EPM, DRSUAPI, NetLogonR, SamR, FRS - TCP
VMware-VDM2.x-Ephemeral

PS /> (Get- NsxService -name “VMware-VDM2.x-Ephemeral”).element

applicationProtocol value
------------------- -----
TCP                 1024-65535

isUniversal
----
false
false
false
true
true
true

By searching for port 8032 it returns six services that contain the port 
8032. Expanding the element property of VMware-VDM2.x-Ephemeral 
shows the service uses a range in the value property. The port 8032 
lies within the range of 1024-65535.

Does a Firewall Rule Encompass a Specific 
Address?
There are times when an administrator will need to determine if a 
specific address or set of addresses are covered by a firewall rule. This 
can occur when provisioning a new workload or troubleshooting 
connectivity. Example 11-3 demonstrates finding a specific address in 
the destination parameter of Get-NsxFirewallRule.

Example 11.3  Find Address used in a DFW Rule

PS /> Get-NsxFirewallRule -Destination “192.168.103.100” 
| select name

name                     id
----                     --
Progressive Example Deny 1010
Default Rule NDP         1003
Default Rule DHCP        1002
Default Rule             1001

The IP address has been detected in the destination field of four rules. 
The firewall rule Internet Access is an IP set that has three subnets 
defined from RFC1918.



124 |

The returned rules based on the –Destination “192.168.103.100” are 
found within explicitly defined IP addresses, IP ranges, or VM objects. 
These are sourced from learned the translation of learned IP addresses 
to VM objects. Example 11.4 demonstrates this.

Example 11.4  Find VM used in DFW Rule

PS /> Get-NsxFirewallRule -source $vm | select name, 
id

name                     id
----                     --
Windows Workload         1011
Progressive Example Deny 1010
Default Rule NDP         1003
Default Rule DHCP        1002
Default Rule             1001

The Get-NsxFirewallRule cmdlet is passed a VM within a variable on 
the –source parameter. The VM is revealed to be a member of five 
DFW rules.

NOTE 
It is also possible to use the parameter –source or –both 
alongside –destination to further control or scope this 
lookup. It is important to note that this query leverages 
the NSX Manager to do the heavy lifting of the translation 
between IP or VM, and the source or destination of a rule 
that causes the hit.  Rules will be hit, even if they list a 
security group that indirectly has a VM object as a 
member when specifying the IP (that NSX has learned) 
used by that VM. 
 
 
Environments change and as such firewall rules must adapt. There are 
cmdlets designed for operations pertaining to adding and removing 
DFW rule members. Example 11.5 demonstrates adding a new 
destination member.



CHAPTER 11 - ADMINISTRATIVE OPERATIONS  | 125

Example 11.5  Find Address used in a DFW Rule

PS /> Get-NsxFirewallSection $section.name | Get-
NsxFirewallRule -name “DMZ Rule” | Add-
NsxFirewallRuleMember -MemberType Destination -Member 
$NewDMZSecurityGroup

RuleId     : 1145
SectionId  : 1113
MemberType : Source
Name       : IPS-RFC1918
Value      : ipset-2
Type       : IPSet
isValid    : true

RuleId     : 1145
SectionId  : 1113
MemberType : Destination
Name       : DMZ-Rule
Value      : securitygroup-18
Type       : SecurityGroup
isValid    : true

RuleId     : 1145
SectionId  : 1113
MemberType : Destination
Name       : New-DMZ-WebApp
Value      : securitygroup-19
Type       : SecurityGroup
isValid    : true

The newly added member was a destination. The security group New-
DMZ-WebApp was added to the DFW rule “DMZ Rule”.

Note 
The –MemberType property can be Source, Destination 
or Both.
 
 
Throughout firewall operations it is possible to inadvertently remove 
the remaining member of a DFW rule. Example 11.6 demonstrates what 
occurs these scenarios.



126 |

Example 11.6  Removing a Rule Source or Destination Member

PS /> Get-NsxFirewallSection $section.name | Get-
NsxFirewallRule -name “DMZ Rule” | Get-
NsxFirewallRuleMember -member DMZ-Rule | Remove-
NsxFirewallRuleMember

Removal of a firewall rule member is permanent and 
will modify your security posture.

Proceed with removal of member securitygroup-18 from 
the Destination list of firewallrule 1145 in section 
1113?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

The destination member securitygroup-18 of rule 1145 
in section 1113 is the last destination member in this 
rule.  Its removal will cause this rule to match ANY 
Destination

Confirm rule 1145 to match Destination ANY?
[Y] Yes  [N] No  [?] Help (default is “N”): Y

WARNING: The destination member securitygroup-18 of 
rule 1145 in section 1113 was the last member in this 
rule.  Its removal has caused this rule to now match 
ANY Destination.

Example 11.6 demonstrates the removal of a member from a DFW rule. 
This is the last object in the destination list and it will throw a warning 
to the administrator. Extra confirmation is required to ensure that the 
administrator acknowledges that the rule will match any destination 
– effectively meaning it applies to everything, rather than just one 
thing that it did previously.

This is an example of how PowerNSX provides additional smarts and 
safeguards to firewall operations.

Cloning an Existing NSX Edge
The cmdlet Copy-NsxEdge provides administrators the ability to quickly 
replicate an existing Edge and its configuration. This lends itself to 
scenarios such as validation, configuration testing, or scale out. 
Example 11.7 demonstrates how the Copy-NsxEdge cmdlet operates.



CHAPTER 11 - ADMINISTRATIVE OPERATIONS  | 127

Example 11.7  Copying an Existing NSX Edge

PS /> Get-NsxEdge ecmp-edge1 | Copy-NsxEdge
Supply values for the following parameters:
Name: ecmp-edge-3
Password: VMware1!VMware1!

WARNING: IPSec PSK for site global set to BZ1A0icr. 
Please update manually as required.

Enter new primary address for source edge addressgroup 
with existing IP 172.16.10.11 on vnic 0: 172.16.10.17
Enter new primary address for source edge addressgroup 
with existing IP 172.16.20.11 on vnic 1: 172.16.20.17

WARNING: Updating Router ID. Previous ID : 172.16.10.11, 
Updated ID : 172.16.10.17
WARNING: Performing firewall fixups for any user based 
rules that contained local object references on 
edge-40.

id : edge-40
version : 2
status : deployed
tenant : default
name : ecmp-edge3
fqdn : ecmp-edge3
enableAesni : true
enableFips : false
vseLogLevel : info
vnics : vnics
appliances : appliances
cliSettings : cliSettings
features : features
autoConfiguration : autoConfiguration
type : gatewayServices
isUniversal : false
hypervisorAssist : false
queryDaemon : queryDaemon
edgeSummary : edgeSummary

The cmdlet will validate the configuration of the existing NSX Edge 
passed along the pipeline from Get-NsxEdge. It assesses properties 
such as Interface IPs, NSX Edge name, and other configuration on the 
edge. Where required the cmdlet will prompt the administrator to 
resolve it.

Copy-NsxEdge actually does a lot of heavy lifting and fixups to properly 
and completely duplicate an Edge configuration.  This includes 
regenerating self-signed certificates, reconfiguring all listening services 



128 |

(e.g., load balancing, SSL VPN, DHCP) to bind to the new NSX Edge’s 
IP, reconfiguring router IDs, recreating locally scoped objects like IP 
sets services, and fixing NAT or NSX Edge firewall rules that reference 
any NSX Edge interface address.

NOTE 
An example use of this cmdlet can be to help scale a 
2-node ECMP NSX Edge cluster to 8-nodes quickly. The 
administrator would specify new interface IP addresses 
and the rest of the configuration would be copied across. 

 
 
Searching Firewall Rules for Log Status
Whether an administrator has a few dozen or a few thousand rules it is 
critical that information can be accessed readily. Example 11.8 
highlights how to retrieve rules that are not logging. 

Example 11.8  Finding Firewall Rules without Logging Enabled 

PS /> Get-NsxFirewallSection | Get-NsxFirewallRule |Where-

Object{$ _ .logged -eq “false”} | Select id,name,logged,tag

id   name                          logged  tag

--   ----                          ------  ---

1010 Progressive Example Deny      false   

1081 DMZ-App-Stormwind             false   SW-DMZ-APP-allow

1032 DMZ-App-Elune                 false   EL-DMZ-APP-allow

1001 Default Rule                  false   

Across all firewall sections and firewall rules only those that have the 
property -logged and the value of false are returned. Using Select to 
output select parameters an administrator can easily see relevant 
information regarding logging. The addition of the id, name, and tag 
properties provide relatable information in the output.



CHAPTER 11 - ADMINISTRATIVE OPERATIONS  | 129

Retrieving Firewall Rules with a Specific Tag
Firewall rules may not appear to be related or be grouped in the same 
section. A DFW tag may be used to group common rules. Example 11.9 
retrieves all rules with the same DFW tag.

Example 11.9  Retrieving a Firewall Rule Based on Tag Name 

PS /> Get-NsxFirewallSection | Get-NsxFirewallRule | 
Where-Object {$ _ .tag -eq “g”}

id            : 1007
disabled      : false
logged        : true
name          : App VIP to App Tier
action        : allow
notes         : App VIP to App Tier
appliedToList : appliedToList
sectionId     : 1004
sources       : sources
destinations  : destinations
services      : services
direction     : inout
packetType    : any
tag           : AppVIPToApp

By using these cmdlets coupled with a Where-Object statement it 
allows the administrator to check rules based on a common property.

Chapter Summary
This chapter has introduced tasks and operations that an NSX operator 
using PowerNSX may see throughout their day. An administrator using 
PowerNSX should be confident in leveraging PowerShell to retrieve, 
filter, create, and manage infrastructure.

These skills will serve not only in managing an VMware NSX for 
vSphere environment but the infrastructure as well.



130 |



Chapter 12

CHAPTER 12 - TOOLS BUILT WITH POWERNSX  | 131

Tools built with PowerNSX

PowerNSX is a superb standalone tool to interact with VMware NSX 
for vSphere. It can also be used to create additional tools.



132 |

NSX Capture Bundle Tool 
The NSX bundle capture tool collects data about an NSX installation 
and stores in for offline use. It has a ‘point in time’ snapshot of the NSX 
environment. The tool will interrogate all objects and constructs and 
store the XML output of them. It currently uses the PowerShell CLIXML 
format for export information. These are stored in function specific 
files for traversal and use by other tools and applications. 

NOTE 
The capture bundle tool is a raw data capture tool. It is 
currently used in more advanced scenarios as a source of 
data input for tooling. The bundle capture can also be 
used as a point of reference to describe an environment if 
remote-access cannot be granted. The PowerNSX team 
understand that it is not very approachable in its current 
state. They plan to build a friendlier interface in the future.
Some examples of tools that use the capture bundle are 
the Visio diagramming tool.
 
 
Example 12.1 shows the steps required to run the capture script.

Example 12.1  Object Capture Bundle 

PowerCLI C:\> .\NsxObjectCapture.ps1
PowerNSX Object Capture Script

Getting NSX Objects
  Getting LogicalSwitches
  Getting DV PortGroups
  Getting VSS PortGroups
  Getting Logical Routers
  Getting Edges
  Getting NSX Controllers
  Getting VMs
  Getting IP and MAC details from Spoofguard

Creating Object Export Bundle

Capture Bundle created at C:\Users\Administrator\
Documents\VMware\NSXObjectCapt
re\NSX-ObjectCapt
ure-192.168.101.201-2017 _ 07 _ 04 _ 03 _ 50 _ 40.zip

With the object capture bundle having collected it is possible to import 
them and use them by other tools. Administrators can manually 



CHAPTER 12 - TOOLS BUILT WITH POWERNSX  | 133

traverse the content of the bundle for their own purposes. 
Furthermore, tools can use this data as input for perform other actions.

After unzipping the bundle, it is possible to import a given resource 
into PowerShell. Example 12.2 demonstrates how.

Example 12.2  Bundle Import

PS /> $edge = Import-Clixml $dir/EdgeExport.xml

The content of $dir is the working direction used for brevity in the 
example. The file EdgeExport.xml is stored in the variable $edge. It 
contains all NSX Edges in the environment including their configuration 
for all settings and features enabled. This includes but not limited to 
routing, load balancing, SSL VPN, interfaces, and edge configuration.

Example 12.3 shows how to traverse the contents stored within the 
variable $edge and make it usable.

Example 12.3  Traversing the Bundle

PS /> $edge
Name                           Value
----                           -----
edge-7                         <edge><id>edge-7</id>...
edge-3                         <edge><id>edge-3</id...
edge-8                         <edge><id>edge-8</id...

PS /> [xml]$edge7= $edge.Item(“edge-7”)
PS /> $edge7.edge

id                : edge-7
version           : 3
status            : deployed
tenant            : default
name              : Edge1
fqdn              : Edge1
enableAesni       : true
enableFips        : false
vseLogLevel       : info
vnics             : vnics
appliances        : appliances
cliSettings       : cliSettings
features          : features



134 |

autoConfiguration : autoConfiguration
type              : gatewayServices
isUniversal       : false
hypervisorAssist  : false
queryDaemon       : queryDaemon
edgeSummary       : edgeSummary

The first step sees the content of $edge list all edges within a construct 
known as a hash table. With interest in a specific edge the content is 
edge-7 is called via item named edge-7 and stored in a variable $edge7. 
The [xml] indicates that the variable $edge7 is an XML document.

When expanding the edge property of $edge7 the content of the given 
edge is contained. It yields the same result querying NSX Manager with 
Get-NsxEdge using the -objectId parameter. 

NOTE 
At the time of writing the object capture bundle 
collections logical topology details. Keep checking the 
vmware/powernsx repo on GitHub for the latest 
supported features and functions.

 
 
Visio Diagramming Tool 
Documentation can be tough. Keeping it up to date is even harder 
especially given the context of virtualized networking. Using 
PowerNSX, PowerCLI, and some PowerShell it is possible to automate 
the documentation of environments using the contents of the capture 
bundle.

The Visio diagramming tool takes the contents of the capture bundle 
and creates a diagram of the logical environment. By driving a Visio 
API and using the capture bundle data, the script can accurately and 
efficiently build the configuration of the NSX environment in Visio.

Example 12.4 demonstrates how to use a capture bundle with the NSX 
Visio diagram tool.



CHAPTER 12 - TOOLS BUILT WITH POWERNSX  | 135

Example 12.4  Traversing the Bundle

PowerCLI C:\> .\NsxObjectDiagram.ps1 –CaptureBundle 
C:\$BundlePath\NSX-ObjectCapt
ure-192.168.100.2017 _ 07 _ 20 _ 15 _ 34 _ 25.zip
PowerNSX Object Diagram Script

Launching Microsoft Visio.

Building Diagram
  Adding nsx-m-01a to diagram with stencil Manager
  Adding Internal to diagram with stencil PortGroup
  Connecting Manager with PortGroup with text: 
192.168.100.201
  Adding App02 to diagram with stencil VM Basic
  Adding App to diagram with stencil logical switch
  Connecting VM Basic to logical switch with text:
  Adding App01 to diagram with stencil VM Basic
  Connecting VM Basic.7 with logical switch with text:
  Adding NSX _ Controller _ 350007a3-f3a2-47a6-8455-
b2512591cf7a to diagram with stencil    Controller
  Connecting Controller with PortGroup with text: 
192.168.100.202
  Adding DB01 to diagram with stencil VM Basic
  Adding Db to diagram with stencil logical switch
  Connecting VM Basic.11 with logical switch.12 with 
text:
  Adding Web01 to diagram with stencil VM Basic
  Adding Web to diagram with stencil logical switch
  Connecting VM Basic.14 with logical switch.15 with 
text:
  Adding Web02 to diagram with stencil VM Basic
  Connecting VM Basic.17 with logical switch.15 with 
text:
  Adding Dlr01 to diagram with stencil Logical Router
  Adding Transit to diagram with stencil Logical 
Router
  Connecting Logical Router with logical switch.20 
with text: 172.16.1.2
  Connecting Logical Router with logical switch.15 
with text: 10.0.1.1
  Connecting Logical Router with logical switch with 
text: 10.0.2.1
  Connecting Logical Router with logical switch.12 
with text: 10.0.3.1



136 |

  
Adding Edge01 to diagram with stencil Edge
  Connecting Edge with PortGroup with text: uplink: 
192.168.100.192 192.168.100.193
  Connecting Edge with logical switch.20 with text: 
internal: 172.16.1.1 172.16.1.6

Saved diagram at C:\Users\Administrator\Documents\NSX-
ObjectCapture-192.168.100.2017 _ 07 _ 20 _ 15 _ 34 _ 25.vsdx

Whilst the tools progress is being output to the console, in the 
background the Visio diagram is being populated. 

NOTE 
The API used to drive Visio are quite dated. The authors 
have found that minimizing the Visio application whilst 
running this tool results in a substantial performance 
increase.
 
 
Figure 12.1 shows the final diagram built in Visio.

Figure 12.1   Visio Diagram Tool Output

The Visio diagram is built from the capture bundle. This point in time 
snapshot of the environment configuration ensures details about the 



CHAPTER 12 - TOOLS BUILT WITH POWERNSX  | 137

environment are accurate. In turn, the automated process of the Visio 
diagram tool ensures an exact diagram based on the contents of the 
capture bundle.

DFW to Excel Documentation Tool
Tony Sangha, practice lead for NSX professional services in ANZ, wrote 
a tool that will create an Excel spreadsheet with detailed DFW 
configuration. It captures security groups, security group membership, 
security tags, security group entity types, IP sets, MAC sets, services, 
service groups, layer 3 firewall rules, and excluded workloads.

An administrator will need to use the Excel spreadsheet provided to 
ensure the DFW2Excel.ps1 script can populate the correct fields. The 
script will perform several API calls using PowerNSX to populate the 
spreadsheet. Figure 12.2 shows the output of a completed spreadsheet.

Figure 12.2  Completed PowerNSX 

Readers should look at Tony’s GitHub repository at  
https://github.com/tonysangha/PowerNSX-DFW2Excel to get started.

Build NSX from Scratch
Build NSX from scratch has been around from the early days of 
PowerNSX. It was one of the first true examples of the power of 
automation. PowerNSX and PowerCLI provide a unified approach to 
automating vSphere and NSX environments. This will allow an 
administrator to stand a new NSX environment up within 10 minutes 
without human interaction. 

The script has three methods of operation. Example 12.5 shows the first 
option.

https://github.com/tonysangha/PowerNSX-DFW2Excel


138 |

Example 12.5  Deploy NSX 

PS /> ./NsxBuildFromScratch.ps1 -deploy3ta:$false

Using the –deploy3ta:$false switch will execute the script excluding 
the 3 tier application portion. This results in an NSX environment being 
built from scratch. 

Example 12.6 uses a different switch.

Example 12.6  Deploy only 3 Tier Application

PS /> ./NsxBuildFromScratch.ps1 -buildnsx:$false

The switch –buildnsx:$false will ensure only the 3 tier application is 
built and deployed. Example 12.7 builds both an NSX environment and 
deploys the 3 tier application.

Example 12.7  Deploy NSX and 3 Tier Application 

PS /> ./NsxBuildFromScratch.ps1 
 

With the deployment finished the reader can now start using their NSX 
environment.

An administrator can modify the variables within the script to tailor it 
to an environment. This can be used to deploy numerous environments 
if the reader is an integrator or VMware partner. If the reader has a lab 
environment they can use the NsxBuildFromScratch script to ensure 
consistent deployment for test and validation scenarios.

Readers should look at the official PowerNSX repository at  
https://github.com/vmware/powernsx/blob/master/Examples/
NSXBuildFromScratch.ps1 for the Build NSX example. It serves as a 
great foundation to learning PowerNSX and PowerCLI including 
getting comfortable with PowerNSX’s potential.

https://github.com/vmware/powernsx/blob/master/Examples/NSXBuildFromScratch.ps1
https://github.com/vmware/powernsx/blob/master/Examples/NSXBuildFromScratch.ps1


CHAPTER 12 - TOOLS BUILT WITH POWERNSX  | 139

Chapter Summary
This chapter has introduced some tools that have been created using 
PowerNSX. The Visio diagramming tool provides a quick and easy way 
to visualize infrastructure based on data. The DFW to Excel 
documentation tool delivers a quick way to export firewall information 
and use it for offline analysis. 

It is recommended administrators using PowerNSX give these tools a 
test in their lab and see if they are suitable for their environment.

PowerNSX provides a foundation on which numerous tools and 
functions can be built. The authors have heard of many great and 
wonderful things being created by all caliber of VMware users.



140 |



Chapter 13

CHAPTER 13 - USING POWERNSX TO INTERACT DIRECTLy WITH THE NSX API  | 141

Using PowerNSX to interact 
directly with the NSX API

Everything discussed in this booklet so far has required someone to 
previously conceive of the need for a given cmdlet, envisage how the 
pipeline operations for the related set of cmdlets might work, design 
how to make them function consistently with the rest of PowerNSX, 
and then code it.  While PowerNSX has come a long way in the last two 
years, there are still plenty of less utilized functionality in NSX that it 
does not yet support natively.  

The following information will help those who wish to extend on the 
native functionality of PowerNSX in their own scripts and 
environments.  This can sometimes be trivially easy, and other times 
more complex depending on the task, so this area should be 
considered targeted at the more experienced PowerShell user.



142 |

The Core of PowerNSX
To interact with a typical XML based REST API like NSX, every call 
PowerNSX makes requires an HTTP request.  This request includes 
encoded credentials in the authorization header, a content-type 
header, and often a properly formatted XML body.

Internally, PowerNSX uses two functions called Invoke-NsxRestMethod 
and Invoke-NsxWebRequest to automatically do all this.  This process is 
based on information stored in the Connection object that was defined 
by the call to Connect-NsxServer, so that the calling function just 
needs to specify the API Uniform Resource Locator (URI), the method 
(e.g., put, post, get, delete), and any required body.

PowerNSX exports these cmdlets too, simplifying the process for the 
PowerNSX user.

Rather than having to define authorization headers as with the native 
PowerShell cmdlet Invoke-RestMethod, simply call Connect-NsxServer, 
and then Invoke-NsxRestMethod with the necessary uri and method.  
Example 13.1 is a simple example of this, retrieving all the services 
defined in globalroot-0.

NOTE 
Internally, NSX refers to services as applications.  This 
highlights another aspect of PowerNSX, removing 
interaction with the unfortunately frequent differences 
between names and concepts presented in the NSX UI and 
API.  So PowerNSX refers to transport zones as Transport 
Zones, not VDN scopes, and services as Services, not 
applications. 

Example 13.1  Using Invoke-NsxRestMethod

PowerCLI C:\> Connect-NsxServer -vCenterServer vc-01a

Version             : 6.3.1
BuildNumber         : 5124716
Credential          : System.Management.Automation.
PSCredential
Server              : 192.168.119.201
Port                : 443
Protocol            : https



CHAPTER 13 - USING POWERNSX TO INTERACT DIRECTLy WITH THE NSX API  | 143

ValidateCertificate : False
VIConnection        : winvc-01a
DebugLogging        : False
DebugLogfile        : C:\Users\Nick\AppData\Local\Temp\
PowerNSXLog-administrator@vsphere.local@-
2017 _ 07 _ 08 _ 09 _ 38 _ 48.log

PowerCLI C:\> Invoke-NsxRestMethod -URI “/api/2.0/
services/application/scope/globalroot-0” -method get

xml                            list
---                            ----
version=”1.0” encoding=”UTF-8” list

Here Invoke-NsxRestMethod returns the base XML document, whereas 
native PowerNSX cmdlets usually return specific xml elements 
contained within the document, or often, collections of these XML 
element objects.  The process to get similar output to a PowerNSX 
cmdlet is best explained in a couple of examples.  

Retrieving Information from NSX using 
Invoke-NsxRestMethod
The contents of the list property is presented in Example 13.2

Example 13.2  Examining an XML Document

PowerCLI C:\> $xmldoc = Invoke-NsxRestMethod -URI “/
api/2.0/services/application/scope/globalroot-0” -method 
get
PowerCLI C:\> $xmldoc.list

application
-----------
{IPv6-ICMP Neighbor Advertisement, edgeservice, sys-
gen-empty-app-edge-fw, IPv6-ICMP Neighbor 
Solicitation...}

This shows the names of services within a collection of objects within a 
single application property.  

This makes much more sense in the context the actual XML.  One of 
PowerNSX’s hidden gems – an internal export function that makes life 
easier for the casual user – Format-Xml – is detailed in example 13.3.  



144 |

This function displays valid XML text in a manner formatted for easy 
consumption by a human reader

Example 13.3  Using Format-List to Display Formatted XML

PowerCLI C:\> $xmldoc.list | format-xml
<list>
  <application>
    <objectId>application-26</objectId>
    <objectTypeName>Application</objectTypeName>
    <vsmUuid>564D0978-80C8-D088-D259-8ED68F9852A3</
vsmUuid>
    <nodeId>02445238-635f-434f-b12e-aa8caf4c2298</nodeId>
    <revision>1</revision>
    <type>
      <typeName>Application</typeName>
    </type>
    <name>IPv6-ICMP Neighbor Advertisement</name>
    <scope>
      <id>globalroot-0</id>
      <objectTypeName>GlobalRoot</objectTypeName>
      <name>Global</name>
    </scope>
    <clientHandle></clientHandle>
    <extendedAttributes />
    <isUniversal>false</isUniversal>
    <universalRevision>0</universalRevision>
    <inheritanceAllowed>true</inheritanceAllowed>
    <element>
      <applicationProtocol>IPV6ICMP</
applicationProtocol>
      <value>neighbor-advertisement</value>
    </element>
  </application>
  <application>
    <objectId>application-1475</objectId>
    <objectTypeName>Application</objectTypeName>
    <vsmUuid>564D0978-80C8-D088-D259-8ED68F9852A3</
vsmUuid>
    <nodeId>02445238-635f-434f-b12e-aa8caf4c2298</nodeId>
    <revision>2</revision>
    <type>
      <typeName>Application</typeName>
    </type>
    <name>edgeservice</name>
    <description>localedge service</description>
    <scope>
      <id>edge-485</id>
      <objectTypeName>Edge</objectTypeName>
      <name>testedge</name>
    </scope>



CHAPTER 13 - USING POWERNSX TO INTERACT DIRECTLy WITH THE NSX API  | 145

    
<clientHandle></clientHandle>
    <extendedAttributes />
    <isUniversal>false</isUniversal>
    <universalRevision>0</universalRevision>
    <inheritanceAllowed>false</inheritanceAllowed>
    <element>
      <applicationProtocol>TCP</applicationProtocol>
      <value>1234</value>
    </element>
  </application>

...

This shows that a single list element contains multiple application 
elements.  When traversing an extra level deep using dot notation and 
specifying the name of an element that occurs more than once, 
PowerShell outputs a collection of XML elements.  Example 13.4 
demonstrates retrieval of the collection of application XML element 
objects from the object returned from Invoke-NsxrestMethod.

Example 13.4  Retrieving a Collection of XML Elements

PowerCLI C:\> $xmldoc.list.application

objectId           : application-26
objectTypeName     : Application
vsmUuid            : 564D0978-80C8-D088-D259-
8ED68F9852A3
nodeId             : 02445238-635f-434f-b12e-
aa8caf4c2298
revision           : 1
type               : type
name               : IPv6-ICMP Neighbor Advertisement
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : true
element            : element

objectId           : application-1475
objectTypeName     : Application
vsmUuid            : 564D0978-80C8-D088-D259-
8ED68F9852A3
nodeId             : 02445238-635f-434f-b12e-
aa8caf4c2298



146 |

revision           : 2
type               : type
name               : edgeservice
description        : localedge service
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
element            : element

...

Comparing the output in this above example to that of Get-
NsxService, it is apparent that they are the same.  And like Get-
NsxService, because it provides a collection of objects, pipeline 
processes are supported, allowing for iteration using ForEach-Object, 
filtering with Where-Object, or extracting specific properties through 
Select-Object.

Modifying Configuration using Invoke-
NsxRestMethod
Extending on these examples, the NSX API documentation shows that 
to update a service, it is necessary to get the current definition, modify 
the required property, and then send the entire definition back using 
the method PUT to the URI /2.0/services/application/
{applicationId}.  Example 13.5 demonstrates how to retrieve the 
service application-1476, update the description, and then push the 
change back to NSX.

Example 13.5  Updating the Description of an Existing Service

PowerCLI C:\> $xmldoc = Invoke-NsxRestMethod -URI “/
api/2.0/services/application/application-1476” -method 
get
PowerCLI C:\> $xmldoc.application

objectId           : application-1476
objectTypeName     : Application
vsmUuid            : 564D0978-80C8-D088-D259-
8ED68F9852A3
nodeId             : 02445238-635f-434f-b12e-
aa8caf4c2298



CHAPTER 13 - USING POWERNSX TO INTERACT DIRECTLy WITH THE NSX API  | 147

revision           : 1
type               : type
name               : TestService
description        : WrongDescription 
scope              : scope
clientHandle       :
extendedAttributes :
isUniversal        : false
universalRevision  : 0
inheritanceAllowed : false
element            : element

PowerCLI C:\> $xmldoc.application.description = 
“RightDescription”
PowerCLI C:\> $xmldoc.application.OuterXml
<application><objectId>application-1476</objectId><obje
ctTypeName>Application</
objectTypeName><vsmUuid>564D0978-80C8-D088-D259-
8ED68F9852A3</vsmUuid><nodeId>02445238-635f-434f-b12e-
aa8caf4c2298</nodeId><revision>1</revision><type><typeN
ame>Application</typeName></type><name>TestService</
name><description>RightDescription</description><scope
><id>globalroot-0</id><objectTypeName>GlobalRoot</
objectTypeName><name>Global</name></
scope><clientHandle></clientHandle><extendedAttributes 
/><isUniversal>false</isUniversal><universalRevis
ion>0</universalRevision><inheritanceAllowed>false</
inheritanceAllowed><element><applicationProtocol>TCP</
applicationProtocol><value>1234</value></element></
application>
PowerCLI C:\> Invoke-NsxRestMethod -method put -URI “/
api/2.0/services/application/application-1476” -body 
$xmldoc.application.
OuterXml

xml                            application
---                            -----------
version=”1.0” encoding=”UTF-8” application

Why is PowerNSX required at all?  While updating simple properties 
– technically existing xml text elements within the xml definition of 
existing NSX objects – is easy and frequently useful, that is about 
where the simplicity ends.  

Things start getting much harder when faced with the need to create 
new, non-text elements, usually with one or more sub-elements, deal 
with xml attributes, or efficiently search for specific elements within 



148 |

many elements.  

The realities associated with direct manipulation of XML quickly 
become apparent.  While the .NET classes for handling XML are very 
capable, XML can be quite complex to manipulate effectively and 
efficiently.  The techniques are more developer oriented than they are 
PowerShell-focused and will be alien to the average administrator.  

For this reason, PowerNSX must do a significant amount of work to 
streamline XML tasks.

NOTE 
More advanced XML manipulation is beyond the scope of 
this book. For those with skills in that area, please 
consider contributing to PowerNSX!

 
 
About Invoke-NsxWebRequest
The introduction to this chapter mentioned Invoke-NsxWebRequest.  
Like the native PowerShell cmdlet Invoke-RestMethod that it is based 
on, Invoke-NsxRestMethod returns a native PowerShell object 
representing the response content.  This is essentially the easy button 
– eliminating explicit conversion of the response content to xml.  It 
provides an XML object back ready for direct use.

There are limitations to the Invoke-NsxRestMethod cmdlet, primarily 
lack of access the response headers.  Many times, this is not an issue, 
but there are many parts of the NSX API that return data where access 
to the response headers is required.  It is then time to use Invoke-
NsxWebRequest.  There are other reasons, like wanting to access the 
response content as raw text or access the response code, and these 
are all available as properties of the WebResponse object returned by 
Invoke-NsxWebRequest.

Like the Invoke-NsxRestMethod cmdlet, the Invoke-NsxWebRequest 
cmdlet also absolves the need to populate authorization or content-
type headers, using the $Connection variable to automatically 
populate these.  If access is required the response headers of an API 
call to NSX, then Invoke-NsxWebRequest is still useful, although 
examples of this are beyond the scope of this book. 



CHAPTER 13 - USING POWERNSX TO INTERACT DIRECTLy WITH THE NSX API  | 149

Chapter Summary
While delving into the innards of the NSX API more than the average 
PowerNSX user is required to, using the core Invoke-NsxRestMethod 
and Invoke-NsxWebRequest cmdlet allows very easy interaction with 
any part of the NSX API required in the same PowerNSX script.

The examples in this chapter demonstrate that Invoke-NsxRestMethod 
just returns an XML object, precisely as do many PowerNSX cmdlets.  
Often, a PowerNSX cmdlet is doing little more than constructing the 
body XML based on passed parameters, calling Invoke-
NsxRestMethod, and returning XML elements contained within the 
response XML document.  

This also demonstrates one of PowerShell’s many strengths that come 
from its object-oriented behavior; it automatically does a very, very 
good job of making XML behave like a native PowerShell object, and 
PowerNSX relies heavily on that fact!  It is primarily for this reason – 
that even if PowerNSX does not have native functionality – PowerShell 
remains a very powerful choice of platform for providing a CLI and 
automation capability for NSX.



150 |



 | 151APPENDIX

Appendix

Acronyms

ANZ Australia / New Zealand

API Application Programmable Interface

BGP Border Gateway Protocol

CLI Command Line Interface

Cmdlet Command-let

DFW Distributed Firewall

DLR Distributed Logical Router

ESG NSX Edge Services Gateway

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

OSPF Open Shortest Path First

LIF Logical Interface

REST Representative State Transfer

TCP Transmission Control Protocol

UDP User Datagram Protocol 

VIP Virtual IP Address

VXLAN Virtual Extensible Local Area Network

XML eXtensible Markup Language





INDEX | 153

Index

A

API  3, 7, 8, 9, 24, 27, 31, 32, 37, 48, 
54, 68, 134, 136, 137, 141, 142, 
146, 148, 149

Application Rules  85

B

BGP  56, 61, 62, 63, 71, 75, 76

C

CLI  3, 8, 149
cloud management platforms  1, 

2, 4
cmdlets  7, 15, 17, 18, 20, 21, 22, 28, 

32, 33, 35, 42, 45, 46, 54, 68, 
98, 102, 114, 124, 129, 141, 142, 
143, 149

Credential Object  34

D

Distributed Logical Router  63, 64
DMZ  97, 99, 125

F

Firewall
Distributed Firewall  91, 94

Rules  92, 124, 128, 137

Sections  92

G

GitHub  9, 10, 14, 134, 137

I

Interface  3, 54, 55, 56, 58, 59, 60, 
62, 68, 69, 70, 73, 108, 117, 128, 
132

IP Set  36, 95, 96, 103, 117, 123

L

Load Balancer  77, 80, 81, 82, 85, 
86, 89, 107

Logical Switch  43, 44, 45, 46, 47, 
48, 49, 115

M

Monitoring  80, 81, 83, 86

N

NSX
NSX Edge Services Gateway  
67

NSX for vSphere  7, 9, 14, 16, 
18, 39, 40, 67, 79, 89, 91, 94, 
96, 113, 114, 129, 131

PowerCLI  2, 3, 8, 9, 13, 14, 15, 
16, 18, 28, 32, 33, 46, 47, 132, 
134, 135, 137, 138, 142, 143, 144, 
145, 146, 147

O

OpenStack  3
OSPF  56, 57, 58, 71, 72, 73, 74

P

PowerCLI  2, 3, 8, 9, 13, 14, 15, 16, 
18, 28, 32, 33, 46, 47, 132, 134, 
135, 137, 138, 142, 143, 144, 145, 
146, 147

PowerNSX  1, 2, 3, 4, 7, 8, 9, 10, 13, 
14, 15, 16, 17, 18, 19, 20, 21, 22, 
24, 27, 28, 29, 31, 32, 33, 34, 
35, 36, 37, 39, 42, 44, 45, 46, 
47, 48, 50, 51, 53, 54, 56, 61, 
64, 67, 68, 69, 71, 75, 77, 84, 
89, 91, 92, 93, 95, 98, 100, 102, 
103, 110, 111, 113, 114, 116, 118, 
121, 126, 129, 131, 132, 134, 135, 
137, 138, 139, 141, 142, 143, 147, 
148, 149



154 |

R

Routing  21, 23, 25, 53, 56, 57, 61, 
62, 71, 75

S

Security
Appliance  67, 69

Groups  96

Policy  98

Tags  100, 102

Spoofguard  132

T

Tools
Ansible  3, 9

PowerNSX  39, 42, 44, 45, 46, 
47, 48, 50, 51, 67, 68, 69, 71, 75, 
77, 113, 114, 116, 118, 141, 142, 143, 
147, 148, 149

PowerShell  43, 47, 74, 75, 141, 
142, 145, 148, 149

Transport Zones  40, 114, 142

V

VMware
NSX

NSX Edge Services Gateway  
67
NSX for vSphere  7, 9, 14, 16, 
18, 39, 40, 67, 79, 89, 91, 94, 
96, 113, 114, 129, 131

PowerNSX  1, 2, 3, 4, 7, 8, 9, 
10, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 24, 27, 28, 29, 31, 32, 
33, 34, 35, 36, 37, 39, 42, 44, 
45, 46, 47, 48, 50, 51, 53, 54, 
56, 61, 64, 67, 68, 69, 71, 75, 
77, 84, 89, 91, 92, 93, 95, 98, 
100, 102, 103, 110, 111, 113, 114, 
116, 118, 121, 126, 129, 131, 132, 
134, 135, 137, 138, 139, 141, 
142, 143, 147, 148, 149

PowerCLI  2, 3, 8, 9, 13, 14, 15, 
16, 18, 28, 32, 33, 46, 47, 132, 
134, 135, 137, 138, 142, 143, 144, 
145, 146, 147

vSphere  2, 7, 8, 9, 14, 16, 18, 
23, 24, 26, 39, 40, 67, 79, 89, 
91, 94, 96, 113, 114, 129, 131, 137



INDEX | 155



$12.99

PowerNSX is a PowerShell module that abstracts the VMware NSX 
for vSphere API to a set of easily used PowerShell functions. Working 
seamlessly with VMware PowerCLI, PowerNSX brings unprecedented 
power and flexibility to administrators of VMware NSX for vSphere 
environments. This book will teach you what PowerNSX is and the 
flexibility and control that it brings. From quick ad-hoc queries, to 
interactive administration and even full-blown automation of 
complete NSX logical topologies, you will discover how easy it is to 
leverage your existing PowerCLI skills and extend them to include 
managing your VMware NSX for vSphere environments. This book 
will provide an overview of PowerNSX architecture and functionality 
and then focus on PowerNSX usage.

About the author
Anthony is a Solution Architect with the Networking & Security 
Business Unit at VMware. Anthony helps customers transform their 
networks to support modern network architectures with network 
virtualization using technologies such as VMware NSX. His previous 
experience with emergency services gives him a unique perspective 
of the network requirements in mission critical environments. 
Anthony has contributed to and evangelized PowerNSX since its 
inception. PowerNSX allows customers to adopt and consume 
automation of NSX for vSphere in a familiar and friendly fashion.

6104297809989
 

ISBN 978-0998610429
51299 >

Cover design: VMware
Cover photo: Matjaz Slanic / iStock

ISBN-10: 0-9986104-2-9
ISBN-13: 978-0-9986104-29

www.vmware.com/go/run-nsx


