

KVM Virtualization Roadmap and Technology Update

Karen Noel Senior Eng Manager Red Hat, Inc. Bhavna Sarathy Senior Product Manager Red Hat, Inc.

June 13, 2013

Why we believe KVM is the best virtualization platform

Performance

KVM holds the **Top 6/11** virtual machine consolidation scores on SPECvirt (1)

Lower Cost

customers report up to **70%** savings by using KVM₍₂₎

Security

EAL4+ Certification (3) plus SE Linux enabling Mandatory Access Control between virtual machines

Cross Platform

Support and certification for leading x86_64 operating systems

including **RHEL** and

Microsoft Windows (4)

Cloud & Virtualization Management

Red Hat Open Stack for Cloud Virtualization and Red Hat Enterprise Virtualization for datacenter Virtualization

- (1) Source: SpecVirt_sc2010 results: <u>http://www.spec.org/virt_sc2010/results/specvirt_sc2010_perf.html</u>
- (2) Source: Case study on Canary Islands Government migration from VMware to RHEV: http://www.redhat.com/resourcelibrary/case-studies/canary-islands-government-migrates-telecommunications-platform-fromvmware-to-red-hat
- (3) Source: http://www.redhat.com/solutions/industry/government/certifications.html
- (4) Source: http://www.redhat.com/resourcelibrary/articles/enterprise-linux-virtualization-support

KVM hypervisor in multiple Red Hat products

KVM is the foundation Virtualization technology in multiple Red Hat products

Red Hat Enterprise Virtualization – Hypervisor

Derived from Red Hat Enterprise Linux

SMALL FORM FACTOR, SCALABLE, HIGH PERFORMANCE

- RHEV Hypervisor
 - Prebuilt binary (ISO) with 300+ packages derived from RHEL
 - Inherits performance, scalability, security and supportability of Red Hat Enterprise Linux
 - Shares RHEL & KVM software and hardware ecosystem

KVM Architecture: Integrated Virtualization

KVM I/O Architecture

Emulated Devices

- Native drivers
- Compatibility over performance

Virtio Devices

- Paravirtualized
- Performance over compatibility

Device Assignment

- Native drivers
- Compatibility and Performance

redhat

Let's have a look at RHEL6

These were all introduced in RHEL 6.3 and RHEL6.4 alone

Virtualization with KVM Performance

SPECvirt_sc2010: RHEL 6 KVM Posts Industry Leading Results

http://www.spec.org/virt_sc2010/results/

Comparison based on best performing Red Hat and VMware solutions by cpu socket count published at www.spec.org as of May 30, 2013. SPEC® and the benchmark name SPECvirt_sc® are registered trademarks of the Standard Performance Evaluation Corporation. For more information about SPECvirt_sc2010, see www.spec.org/virt_sc2010/.

SPECvirt_sc2013 Tile

Virtualization – Performance

- Only virtualized TPC-C result (RHEL 6.4 with KVM)
 - Virtualized was approx. 88% of bare-metal
 - Great \$/tpmC: \$0.51
 - Feb 2013: 1,320,082 tpmC, 0.51 \$/tpmC, RHEL6.4 w/KVM, DB2 ESE 9.7
 - Apr. 2012: 1,503,544 tpmC, 0.53 \$/tpmC, RHEL 6.2, DB2 ESE 9.7

See the details for these results at: http://www.tpc.org/tpcc/results/tpcc_last_ten_results.asp. Results referenced are current as of May 30, 2013. To view all TPC results, visit www.tpc.org http://www.redhat.com/resourcelibrary/reference-architectures/leadership-virtualized-tpc-c-benchmark-using-red-hat-enterprise-linux-kvm

Let's look at Scalability

Once we accept our limits, we go beyond them.

Albert Einstein

Single Guest Scalability – Virtual CPUs

RHEL6.4 vCPU = 2.5 x * vSphere 5.1 vCPU limits

Single Guest Scalability – Virtual Memory

RHEL6.4 vMemory = 2 x * vSphere 5.1 vMemory limits

http://www.vmware.com/pdf/vsphere5/r51/vsphere-51-configuration-maximums.pdf

The very important topic of

Security

KVM Security and Isolation - sVirt

Attacks on guests are isolated from the host kernel,any associated storage, as well as other virtual machines

Web
VM 2

VM 1
VM 2

VM 3

Linux Kernel

Image
Image

1
2

3
ImageN

RHEL 6.5: Cryptography

entro

dhat

- Para-Virtual Random Number Generator (RNG)
 - Provide true randomness in the guest for cryptographic purposes
 - RHEL host or RHEV Hypervisor feeds entropy to the virtual machines
 - Helps alleviate entropy starvation in guests

Certification status

http://www.redhat.com/solutions/industry/government/certifications.html

Mission Critical Systems / Software

Mission critical refers to any factor of a system (software, hardware) whose <u>failure</u> will result in the failure of business operations

KVM is hardened to run mission critical workloads

Integrated Virtualization

KVM leverages RHEL kernel, trusted for mission critical workloads

Hardware Abstraction

KVM has the highest single guest scalability (vCPU = 160, vMemory = 2TB)

Security

EAL4+ Certification (1) plus SE Linux enabling Mandatory Access Control between virtual machines

Server Consolidation

KVM runs heavy IO workloads such as large databases and holds the **Top 6/11** virtual machine consolidation scores on SPECvirt (2)

Resource Management

Cgroups helps manage resources in virtual environments too

(1) Source: http://www.redhat.com/solutions/industry/government/certifications.html

(2) Source: SpecVirt_sc2010 results: <u>http://www.spec.org/virt_sc2010/results/specvirt_sc2010_perf.html</u>

What else?

RHEL 6.4 Features

RHEL6.4: virtio-scsi

New storage architecture for KVM!

- virtio-scsi device = SCSI host bus adapter (HBA)
- Allows arbitrary number of devices per guest
 - Virtual hard drives and CDs
 - Pass-through physical SCSI device
- Supports SCSI pass-through and SCSI reservations
- Rich features depends on the target, not virtio-scsi
- Drop-in physical disk replacement, friendlier for P2V and V2V
- RHEL6.4 guests and Windows guests (excluding XP)

RHEL6.4: Para-virt End-of-Interrupt (PV-EOI)

Improved performance!

- Optimization for interrupt-intensive workloads
 - Up to 10% less CPU usage in some scenarios
- Reduces the number of context switches between the VM and the hypervisor.

Works out-of-the-box with all I/O types

- Particularly useful for high incoming network traffic
- Guest OS = RHEL 6.4 (PV calls in guest kernel)

RHEL6.4: New Virtualized CPU models

- New virtualized CPU models Intel and AMD
 - Intel 4th generation Intel Core processors (Haswell, Ivy Bridge)
 - AMD Opteron Series 6300 (Abu Dhabi, Seoul)
 - Performance!
 - Leverage new processor features
 - Use new instructions
 - New CPU model definitions in KVM
 - RHEL host support new virt features
 - Virtualized guest benefits, too

RHEL6.4: USB 2.0 Improvements

- USB 2.0 redirection with Spice
- USB 2.0 Live Migration Support
 - System admins can relocate VDI desktops for efficient load balancing, transparent to the end user!
- Migration of VMs with USB devices attached mostly useful for "migration to file" (save VM)

Reliability Availability Serviceability

Virtual Reliability, Availability, Serviceability (vRAS)

What is vRAS?

- Maintain the Service Application Level Agreement (SLA)
- Meet workload demands, spikes at peak hours
- Maintain running virtual services and applications
- Perform live operations on running VMs and storage with no downtime

Virtual RAS Features

Live Snapshots Merge and Delete Live Storage Migration

RHEL 6.5: Virtual CPU Hot-Plug

- Flexibility add additional vCPUs to running VMs
- No application downtime to adjust VM's compute capacity

RHEL 6.5: Virtual CPU Hot In-Plug

RHEL 6.5: Virtual CPU Enable/Disable

RHEL 6.5: Virtual CPU Enable/Disable

KVM-enabled features in RHEV 3.1

RHEV 3.2 Storage data-center features Live Snapshots, Merge & Delete

- Snapshot a VM while the guest is running, preserving state and data of the VM at a given point in time
- Sample use cases:
 - Data-center admin saves snapshot of a running VM prior to disruptive upgrades to system
 - Backup scenario with periodic incremental snapshot/backup

RHEV 3.1 Storage data-center features Live Storage Migration

Migrate a VM's storage files across storage arrays – no application downtime!

Let's have a look atRed Hat KVM Futures

KVM Futures – 2H 2013

KVM Futures – 2014

KVM Community and Ecosystem

KVM : Strong hypervisor foundation for RHEV, Open Stack, IBM Cloud and many others

Open Virtualization Alliance

Bringing the Community, Vendors and Users Together

What makes KVM the best Virtualization platform? Features Performance **Open Source** RHE\ **OpenStack** Security **Rartners**

Questions?

Related Summit Sessions

- Hypervisor Technology Comparison & Migration
 - Fri 9:45, Room 313
- Partner Pavilion
 - Demo of the latest KVM features
 - In the RHEV booth

Thank you

