
VirtuOS: an operating system with kernel virtualization

Ruslan Nikolaev, Godmar Back

rnikola@vt.edu, gback@cs.vt.edu

Virginia Tech

Blacksburg, VA

Abstract

Most operating systems provide protection and isolation

to user processes, but not to critical system components

such as device drivers or other system code. Conse-

quently, failures in these components often lead to sys-

tem failures. VirtuOS is an operating system that ex-

ploits a new method of decomposition to protect against

such failures. VirtuOS exploits virtualization to isolate

and protect vertical slices of existing OS kernels in sep-

arate service domains. Each service domain represents

a partition of an existing kernel, which implements a

subset of that kernel’s functionality. Unlike competing

solutions that merely isolate device drivers, or cannot

protect from malicious and vulnerable code, VirtuOS

provides full protection of isolated system components.

VirtuOS’s user library dispatches system calls directly

to service domains using an exceptionless system call

model, avoiding the cost of a system call trap in many

cases.

We have implemented a prototype based on the Linux

kernel and Xen hypervisor. We demonstrate the viabil-

ity of our approach by creating and evaluating a network

and a storage service domain. Our prototype can survive

the failure of individual service domains while outper-

forming alternative approaches such as isolated driver

domains and even exceeding the performance of native

Linux for some multithreaded workloads. Thus, Vir-

tuOS may provide a suitable basis for kernel decompo-

sition while retaining compatibility with existing appli-

cations and good performance.
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1 Introduction

Reliability and fault resilience are among the most im-

portant characteristics of operating systems (OS). Mod-

ern general purpose operating systems require that an ap-

plication runs in its own protected virtual address space.

System critical data resides in the kernel’s address space

where it cannot be directly accessed by applications.

This isolation protects user processes from each other

and the kernel from misbehaving user processes, but

falls short of protecting the system from failing kernel

components. Failure of just one kernel component gen-

erally causes the entire system to crash. Major offenders

are device drivers [20, 23, 28], which reportedly caused

65-83% of all crashes in Windows XP [20,28,41]. These

components are numerous, hardware specific, and often

less tested due to a more limited user base. Common

causes of such bugs include memory overruns, improper

use of resources and protocols, interrupt handling errors,

race conditions, and deadlocks [46].

Architectural approaches for increasing the reliability

of kernel software and reducing the impact of faults of-

ten rely on decomposition. Microkernel-based system

design moves device drivers and other system critical

code from the kernel into separate user space processes.

Microkernels have been successful in certain areas, but

they require careful engineering to achieve good IPC

performance [25, 36]. If application or driver compat-

ibility with existing systems is required, either extensive

emulation interface layers must be implemented [24],
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or a Multiserver OS [22, 29] must be built on top of

the microkernel, which partitions an existing monolithic

kernel’s functionality into multiple, independent servers

that communicate with user processes via IPC.

Virtual machines also use hardware isolation to cre-

ate strongly isolated domains in which to separate soft-

ware components. Their design was driven by a need

to safely share a machine’s resources while maintaining

application and kernel compatibility with existing sys-

tems. They, too, require careful consideration and opti-

mization of their inter-VM and VM to hypervisor com-

munication [26, 38, 47].

Despite their dissimilar motivations and development

history, virtual machines and microkernels are con-

nected and occupy the same larger design space [24,26].

For instance, microkernels were used as a foundation

for virtual machine monitors [18], or even to support

the reuse of existing device drivers [35] within the con-

fines of a virtual machine. Conversely, modern hypervi-

sors were used to achieve microkernel-like isolation of

system components, such as in Xen’s isolated driver do-

mains [19].

This paper presents VirtuOS, a novel design that

occupies a new point in this design space. VirtuOS

uses hardware-based virtualization to encapsulate verti-

cal slices of kernel functionality in isolated service do-

mains. VirtuOS allows its user processes to interact di-

rectly with service domains through an exceptionless

system call interface [48], which can avoid the cost of

local system calls in many cases. Individual user pro-

cesses may have system calls serviced by different ser-

vice domains, which can provide redundancy when op-

erating separate service domains for separate groups of

user processes.

Each service domain handles a specific kernel service,

such as providing a networking stack or a file system im-

plementation, along with housing the drivers to access

the underlying physical devices. A service domain runs

a near-stock version of a kernel, including the major re-

lated components such as the socket layer, TCP/IP im-

plementation, and (unchanged) device drivers. We use

the PCI passthrough and IOMMU facilities of hardware-

based virtual machine monitors to provide service do-

mains with direct access to physical devices.

VirtuOS intercepts system calls using a custom ver-

sion of the C library that dispatches system calls to the

appropriate service domains. System call parameters

and associated data are passed in shared memory that is

accessible to the user processes and the service domain.

To exploit the benefits of the exceptionless system call

interface, the user library implements an M:N threading

model whose scheduler cooperates directly with worker

threads in the service domains.

We developed a prototype which implements a net-

working and a storage service domain to demonstrate

the feasibility of this design. We used the Xen hy-

pervisor along with the Linux kernel for VirtuOS’s do-

mains, along with a modified version of the uClibc [3],

NPTL [16] and libaio [2] libraries. We tested our system

with a wide range of server and client programs such as

OpenSSH, mySQL, Apache, and Firefox.

We evaluated the performance for server-based work-

loads both under failure and non-failure scenarios. We

found that VirtuOS can recover from the failure of in-

dividual service domains after restarting those domains

and the processes that were using them. For network

throughput tests and multithreaded transaction process-

ing benchmarks, we found that VirtuOS meets or ex-

ceeds the performance of not only a split-driver model

but also native Linux, indicating that it retains the per-

formance benefits of exceptionless system call dispatch

for those workloads. The performance loss for applica-

tions that do not benefit from the exceptionless model

remains within a reasonable range.

The technical contributions of this paper are the fol-

lowing: (1) An approach to partitioning existing operat-

ing system kernels into service domains, each providing

a subset of system calls; (2) A method for intercepting

and demultiplexing of system calls using a user library

and the dispatching of remote calls to service domains

using an exceptionless mechanism; (3) A way to coor-

dinate process and memory management in the primary

and service domains so that applications can make trans-

parent use of service domains.

We further discuss the challenges and limitations

of our approach to partitioning as well as lessons we

learned during the implementation of our prototype.

2 Background

This section discusses the system structure of the Xen

hypervisor upon which VirtuOS relies, and it provides

background regarding the exceptionless system call han-

dling technique used.

2.1 Xen

Xen [8] is a widely used Type I hypervisor that al-

lows the execution of virtual machines in guest domains.

Originally developed for the IA32 architecture, which

lacked secure virtualization capabilities [45], early ver-

sions of Xen required guest operating system code adap-

tations (i.e., paravirtualization [54]) to function. Pro-

cessor vendors later introduced hardware virtualization

extensions such as VT-x and AMD-V, which provide

a VMM mode that is distinct from the mode in which

privileged guest kernel code executes and which allows
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the trapping or emulation of all sensitive instructions.

Recent architectures add support for MMU virtualiza-

tion via nested paging and support for the virtualization

of memory-mapped I/O devices (IOMMU), which are

supported by Xen’s hardware containers (HVM). Xen’s

PVHVM mode, which we use for VirtuOS’s service do-

mains, adds additional paravirtualization (PV) facilities

to allow guests to more efficiently communicate with the

underlying hypervisor.

Xen’s hypervisor implementation does not include de-

vice drivers, but multiple options exist to provide do-

mains with access to devices. The original Xen de-

sign assigned device management to a dedicated, priv-

ileged domain (Dom0) using the device drivers present

in that domain’s guest kernel implementation. Other do-

mains accessed devices using a split device driver ar-

chitecture in which a front-end driver in a guest do-

main communicates with a back-end driver in Dom0.

This design required the introduction of efficient inter-

domain communication facilities to achieve good per-

formance. These include an interdomain memory shar-

ing API accessed through guest kernel extensions, and

an interrupt-based interdomain signaling facility called

event channels. Split drivers use these facilities to im-

plement I/O device ring buffers to exchange data across

domains. The back-end drivers need not necessarily re-

side in Dom0 - the split driver model also provides the

option of placing drivers in their own, dedicated driver

domains [19, 47]. Though VirtuOS does not use a split

driver model, it uses both the shared memory facilities

and event channels provided by Xen to facilitate com-

munication with service domains.

To achieve safe I/O virtualization, VirtuOS relies on

two key facilities: PCI passthrough and the presence

of an IOMMU. Xen’s PCI passthrough mode allows

guest domains other than Dom0 direct access to PCI de-

vices, without requiring emulation or paravirtualization.

These guests have full ownership of those devices and

can access them using unchanged drivers. To make PCI

passthrough safe, the physical presence of an IOMMU

is required. An IOMMU remaps and restricts addresses

and interrupts used by memory-mapped I/O devices. It

thus protects from faulty devices that may make errant

DMA accesses or inject unassigned interrupts. Thus,

devices and drivers are isolated so that neither failing

devices nor drivers can adversely affect other domains.

Self-virtualizing hardware [43] goes a step further by

making a device’s firmware aware of the presence of

multiple domains and providing support for multiplex-

ing its features to them. VirtuOS should be able to ben-

efit from this technology as it emerges.

2.2 Exceptionless System Calls

Traditional system call implementations rely on an

exception-based mechanism that transitions the proces-

sor from a less privileged user mode to kernel mode, then

executes the system call code within the context of the

current thread. This approach imposes substantial costs,

both direct costs due to the cycles wasted during the

mode switch, and indirect costs due to cache and TLB

pollution caused by the different working sets of user

and kernel code.

Exception-less system calls [48] avoid this overhead.

Instead of executing system calls in the context of the

current task, a user-level library places system call re-

quests into a buffer that is shared with kernel worker

threads that execute the system call on the task’s be-

half, without requiring a mode switch. Effective excep-

tionless system call handling assumes that kernel worker

threads run on different cores from the user threads they

serve, or else the required context switch and its asso-

ciated cost would negate its benefits. A key challenge

to realizing the potential gains of this model lies in how

to synchronize user and kernel threads with each other.

Since application code is generally designed to expect a

synchronous return from the system call, user-level M:N

threading is required, in which a thread can context-

switch with low overhead to another thread while a sys-

tem call is in progress. Alternatively, applications can be

rewritten to exploit asynchronous communication, such

as for event-driven servers [49]. VirtuOS uses the excep-

tionless model for its system call dispatch, but the kernel

worker threads execute in a separate virtual machine.

3 Design & Architecture

VirtuOS’s primary goal is to explore opportunities for

improved isolation of kernel components in virtualized

containers without significant compromises in perfor-

mance. We present the architecture of our system in Fig-

ure 1. Our design partitions an existing kernel into mul-

tiple independent parts. Each part runs as a separate ser-

vice domain, which represents a light-weight subset of

kernel functionality dedicated to a particular function. A

single, primary domain is dedicated to core system tasks

such as process management, scheduling, user memory

management, and IPC.

Service domains do not run any user processes other

than for bootstrapping and to perform any necessary sys-

tem management tasks related to a domain’s function.

Our design attempts to minimize the number of these

processes, because the sole task of service domains is

to handle requests coming from the user processes man-

aged by the primary domain.
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Figure 1: Architecture of VirtuOS

Our design does not assume that there is only one pri-

mary domain in which user processes run; it could be ex-

tended to support multiple user environments, each hav-

ing its own primary and set of service domains. This

makes VirtuOS’s design applicable in traditional virtu-

alization applications.

3.1 Failure Model

Our design goal is to contain faults originating in service

domains only; we assume that the primary domain is sta-

ble enough to perform core system tasks such as task

scheduling, IPC, and memory management. Service do-

mains execute code that is potentially less reliable, such

as drivers and corresponding software stacks.

VirtuOS provides recovery guarantees with respect to

failures caused by software errors and transient hardware

faults. Such hardware faults include invalid DMA mem-

ory accesses or interrupt signaling errors. Service do-

main failures can be contained as long as the hypervi-

sor itself enforces isolation. We designed all communi-

cation between the primary domain and all service do-

mains such that it can tolerate byzantine service domain

failures, which implies careful handling of any requests

or responses from those domains. If a failure is de-

tected, the service domain must be restarted using stan-

dard hypervisor utilities. Service domain failures affect

only those processes that have started using the failed

domain; only these processes will need to be restarted.

We believe this model provides advantages compared

to the alternative of rebooting the primary domain or

the entire machine, especially when multiple service do-

mains are used for different hardware components, such

as separate network interfaces or storage devices, which

may be accessed by disjoint subsets of processes. In ad-

dition, server applications such as web servers are of-

ten designed to use multiple OS processes, which can be

restarted if failures occur.

3.2 System Call Design

VirtuOS processes communicate with service domains

at the level of system calls. We refer to system calls

destined for a service domain as remote system calls,

whereas local system calls are directly handled by the

primary domain. A modified C library contains all nec-

essary infrastructure to transparently demultiplex local

and remote system calls and forward remote calls to ser-

vice domains. Since most programs and libraries do not

execute system calls directly, this design enables source

and binary compatibility with dynamically linked bina-

ries.

Since most POSIX system calls use file descriptors,

we tag file descriptors with their corresponding do-

main. As an example, a socket(2) system call for the

AF INET* families may be forwarded to the network-

ing service domain, which creates a socket and assigns a

file descriptor number in return. Any subsequent opera-

tion such as read(2) or write(2) will then be dispatched

to the service domain from which it originated. To avoid

the need for coordination between service domains and

the primary domain in assigning file descriptor numbers,

VirtuOS’s C library translates user-visible file descrip-

tors to domain file descriptors via a translation table.

This design also allows the implementation of POSIX

calls (e.g., dup2()) that assume that a process has con-

trol over its file descriptor space, but it requires that the

user-level library interpose on all file descriptor related

calls.
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3.2.1 Exceptionless Dispatch

To dispatch system calls to a service domain, we ini-

tially considered the use of a traditional exception-based

mechanism. We discarded this design option because

every system call would then have required exiting the

virtual machine in order to use an interdomain commu-

nication facility such as event channels, in addition to

the costs associated with the mode switch itself. Instead,

we adopted the concept of exceptionless system calls de-

scribed in Section 2.2.

The implementation of exceptionless system calls

across virtual machines poses a number of unique chal-

lenges that are not present when applying this method to

optimize the performance of native system calls as done

in FlexSC [48]. In FlexSC, the kernel worker threads

handling the system calls can easily obtain direct access

to a client thread’s address space, file descriptor tables,

credentials, and POSIX signal settings. Such direct ac-

cess is impossible in VirtuOS since the kernel worker

threads reside in a different virtual machine. Our im-

plementation addresses these differences, which requires

the primary domain to communicate essential informa-

tion about running processes to the service domains,

which we describe in Section 4.2.

A front-end driver in the primary domain kernel com-

municates with back-end drivers in the service domains

to inform them when processes are created or have ter-

minated. The front-end and back-end drivers also coop-

erate to establish the necessary shared memory areas be-

tween user processes and service domains. Each process

creates two such shared areas for each service domain:

(1) one area to hold the request queue for outstanding

system call requests, and (2) an area used as a temporary

buffer for system calls that transfer user data. We also

added a component to the underlying hypervisor to keep

track of service domain states and domain connection in-

formation, which is necessary for domain initialization

and recovery after failures.

The request queue for outstanding system call re-

quests consists of fixed-sized system call entries, which

contain the information needed to execute a system call.

System call entries are designed to be small so they

fit into a single cache line. When a system call is

dispatched to a service domain, a system call entry is

added to the request queue shared with that domain. We

adapted a FIFO/LIFO lock-free queue with ABA tag-

ging [30,40,52] to ensure that the request queue, as well

as other shared queues, can be accessed safely by both

the user process and the service domain.

3.2.2 Managing User Memory Access

System call arguments may refer to user virtual ad-

dresses, such as when pointing to buffers a system call

should copy into or out of. Our design uses a copying-

based strategy in which the user process copies data into

or out of a temporary buffer of memory shared with the

service domain. A shared memory region is mapped in a

continuous virtual address space region in the user pro-

gram and in the service domain. During initialization,

user programs use a pseudo /dev/syscall device to cre-

ate a memory mapping for this region. The primary do-

main’s front-end driver, which services this device, then

communicates to the back-end drivers within the service

domains a request to allocate and grant access to pages

that can be mapped into the user process’s address space.

A special purpose allocator manages the allocation of

buffers for individual system calls from this shared re-

gion. For simplicity, our implementation uses a simple

explicit list allocator, along with a per-thread cache to re-

duce contention. If the free list does not contain a large

enough buffer, the region can be dynamically grown via

the /dev/syscall device. The region can also be shrunk,

although the allocator used in our current prototype does

not make use of this facility. Since the POSIX API

does not impose limits on the sizes of memory buffers

referred to in system call arguments, we split large re-

quests into multiple, smaller requests to avoid excessive

growth.

Although this design for managing memory access re-

quires an additional copy, it sidesteps the potential diffi-

culties with designs that would provide a service domain

with direct access to a user process’s memory. Since a

user process may provide any address in its virtual ad-

dress space as an argument to a system call, direct access

would require coordination with the primary domain’s

physical page management. Either pages would have

to be pinned to ensure they remain in physical mem-

ory while a system call is in progress, which would

severely restrict the primary domains flexibility in man-

aging physical memory, or the primary domain would

have to handle page faults triggered by accesses from

the service domain, which would require complex and

expensive interdomain communication.

3.2.3 Polling System Calls

Polling system calls such as select(2), poll(2), or Linux’s

epoll wait(2) operate on sets of file descriptors that may

belong to different domains. These calls block the cur-

rent thread until any of these file descriptors change

state, e.g. becomes readable, or until a timeout occurs.

We implement these calls using a simple signaling proto-

col, in which the primary domain controls the necessary

synchronization. We first partition the file descriptor set

according to the descriptors’ target domains. If all file

descriptors reside within the same domain (local or re-

mote), a single request to that domain is issued and no
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interdomain coordination is required. Otherwise, we is-

sue requests to each participating service domain to start

the corresponding polling calls for its subset. Lastly,

a local system call is issued that will block the current

thread. If the local polling call completes first, the pri-

mary domain will issue notifications to all participating

service domains to cancel the current call, which must be

acknowledged by those domains before the call can re-

turn. If any remote call completes first, the correspond-

ing service domain notifies the primary domain, which

then interrupts the local call and starts notifying the other

domains in the same manner as if it had completed first.

The C library combines results from all domains before

returning from the call.

3.3 Thread Management

VirtuOS uses separate strategies to schedule user-level

threads issuing remote system call requests and to sched-

ule worker kernel threads executing in service domains.

3.3.1 User-level Thread Scheduling

User
Process Ready

Queue

Syscall Handler

Dispatch (libc-sclib)

Network
Domain

Resume

Shared
Regions

Syscall Handler

Storage
Domain

Request
Queue

Request
Queue

Figure 2: Sharing ready and request queues

To retain the performance benefits of exceptionless

system call dispatch, we must minimize the synchro-

nization costs involved in obtaining system call results.

VirtuOS uses a combination of M:N user-level thread-

ing and adaptive spinning to avoid the use of exceptions

when possible. The threading implementation uses a

single, per-process ready queue, which resides in mem-

ory that is shared with all service domains. Like the

per-service domain request queues, it is implemented in

a lock-free fashion to allow race-free access from the

service domains. Figure 2 shows the relationship be-

tween a process’s ready queue and its per-domain re-

quests queues. When a system call request is placed into

a service domain’s request queue, the issuing user-level

thread includes a pointer to its thread control block in the

system call entry. If other user-level threads are ready

to execute, the current user-level thread blocks and per-

forms a low-overhead context switch to the next ready

user-level thread. Once the service domain completes

the system call request, it directly accesses the user pro-

cess’s ready queue and resumes the blocked thread based

on the pointer contained in the system call entry.

If there are no ready user-level threads after a sys-

tem call request is issued, a user-level thread spins for

a fixed amount of time, checking for either its system

call request to complete or a new thread to arrive in the

ready queue. Otherwise, it blocks the underlying kernel

thread via a local system call, requiring an exception-

based notification from the remote service domain when

the request completes. Such spinning trades CPU capac-

ity for latency. We determined the length of the spinning

threshold empirically so as to maximize performance in

our benchmarked workloads, as we will further discuss

in Section 5.1. Alternative approaches include estimat-

ing the cost of exception-based notification in order to

optimize the competitive ratio of the fixed-spin approach

compared to an optimal off-line algorithm, or using an

on-line algorithm based on sampling waiting times, as

described in the literature [33].

Service domains perform range checking on any val-

ues read from the shared area in which the ready queue

is kept, which is facilitated by the use of integer indices.

Thus, although a failing service domain will affect pro-

cesses that use it, sharing the ready queue will not cause

faults to propagate across service domains. Though re-

quest queues are not shared across service domains, ser-

vice domains must perform range checking when de-

queuing system call requests to protect themselves from

misbehaving processes; moreover, the domain subse-

quently subjects any arguments contained in these re-

quests to the same sanity checks as in a regular kernel.

3.3.2 Worker Thread Scheduling

Each service domain creates worker threads to service

system call requests. Our approach for managing worker

threads attempts to maximize concurrency while min-

imizing latency, bounding CPU cost, maintaining fair-

ness, and avoiding starvation.

We create worker threads on demand as system call

requests are issued, but always maintain one spare

worker thread per process. Once created, a worker

thread remains dedicated to a particular process. This

fixed assignment allows us to set up the thread’s process-

specific data structures only once. Although handling

a system call request from a process must be serviced

by a worker thread dedicated to that process, all worker

threads cooperate in checking for new requests using the

following strategy.

When a worker thread has completed servicing a

system call, it checks the request queues of all other

processes for incoming requests and wakes up worker
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threads for any processes whose request queue has pend-

ing requests. Finally, it checks its own process’s request

queue and handles any pending requests. If no request is

pending in any queue, the worker thread will continue to

check those queues for a fixed spinning threshold. If the

threshold is exceeded, the worker thread will block.

To avoid excessive CPU consumption due to having

too many threads spinning, we also limit the number of

worker threads that are spinning to be no larger than the

number of virtual CPUs dedicated to the service domain.

In addition, our design allows a service domain to even-

tually go idle when there are no requests for it. Before

doing so, it will set a flag in the domain’s state informa-

tion page, which is accessible via a read-only mapping

to user threads. User-level threads check this flag after

adding system call requests to a domain’s request queue,

and initiate a local system call to wake up the service

domain if needed. To avoid a race, the service domain

will check its request queue one more time before going

idle after it has set the flag.

4 Implementation

This section describes the specific implementation strat-

egy used in our VirtuOS prototype, as well as difficulties

and limitations we encountered.

4.1 Effort

We implemented our system based on the Linux 3.2.30

kernel and the Xen 4.2 hypervisor. We use the same

kernel binary for the primary domain as for service do-

mains. On the user side, we chose the uClibc library,

which provides an alternative to the GNU C library

(glibc). We selected uClibc after concluding that glibc’s

code generation approach and extensive system call in-

lining would make comprehensive system call interposi-

tion too difficult. Unlike when using exceptionless sys-

tem calls for optimization, we require that all system

calls, no matter at which call-site, are dispatched to the

correct service domains. We replaced Linux’s pthread li-

brary with our own to provide the M:N implementation

described in Section 3.3.1.

Table 1 summarizes our implementation effort with

respect to new or modified code. The relatively small

number of changes needed to the Linux kernel shows

that our virtualization-based approach enabled vertical

slicing with comparably little effort.

4.2 Service Domain Implementation

Service domains handle remote system calls by redirect-

ing requests to the corresponding functions of the ser-

Component Number of Lines

Back-end/Front-end Driver 3115/2157

uClibc+NPTL/libaio 11152/2290

Linux kernel/Xen 1610/468

Total: 20792

Table 1: New or modified code

vice domain kernel. To keep our implementation ef-

fort small, we reused existing facilities and data struc-

tures whenever possible. For each process, we create a

shadow process control block (PCB) that keeps track of

that process’s environment, including its credentials and

file descriptors, as well as additional information, such

as the location of the regions containing system call ar-

guments and data. The data structures contained in the

shadow PCB track the data structures referenced by the

process’s PCB in the primary domain. For instance, the

primary domain must keep the service domains’ view

of process’s credentials and capabilities in sync. Any

changes are propagated to all service domains, followed

by a barrier before the next system call is executed.

We reuse the existing infrastructure to manage per-

process file descriptor tables, although the shadow

PCB’s table includes only those file descriptors that were

created by the service domain for a given process. Since

VirtuOS’s C library translates user visible file descrip-

tors before issuing system call requests, a service do-

main can directly use the file descriptor numbers con-

tained in system call arguments. Reusing the existing

data structures also ensures the correct semantics for the

fork(2) system call, which requires duplication of a pro-

cess’s file descriptor tables and credentials.

We exploit the existing mechanisms for the validation

of user-provided addresses, i.e. the copy from user(),

copy to user(), etc. functions that are already used in

all system call handler functions when accessing mem-

ory. We set the executing worker thread’s user mem-

ory range (via set fs()) to accept only addresses within

the shared region used for this purpose, as discussed in

Section 3.2.2. Since all data pages are in contiguous re-

gions in both the user process and the service domain,

our system call library can pass addresses that are valid

in the service domain as system call arguments, which

are computed by applying an offset relative to the re-

gion’s known base address.

4.3 Process Coordination

The primary and the service domains need to commu-

nicate when new processes that make use of a service

domain are created or destroyed. The front-end driver in

the primary domain informs the back-end driver of each
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new process, which then performs initial memory setup

and prepares for receiving system call requests.

The drivers communicate using Xen’s interdomain

communication facilities. We use Xen event channels

as an interdomain interrupt facility and Xen I/O ring

buffers to pass data between domains. We establish

two separate event channels. The first one is used for

adding and removing processes, as well as expanding

and shrinking the shared memory regions used by pro-

cesses to communicate with the service domain. We use

a request/response protocol on this channel. We use a

second event channel for all notifications coming to and

from service domains. We use two separate ring buffers,

one for each direction. We modified the ring buffer im-

plementation to allow for one-directional communica-

tion (i.e., requests with no responses) to support asyn-

chronous requests that do not require a synchronous re-

sponse. Xen’s ring buffers support batching so that only

one interdomain interrupt is required when multiple re-

quests or responses occur concurrently.

To ensure consistency, our back-end driver executes

process management related requests from the front-end

sequentially. For instance, a request to remove a process

must be processed after the request to add that process.

To avoid having to maintain dependencies between re-

quests, we use a single-threaded implementation, which

may create a bottleneck for some workloads.

We use two optimizations to speed up process man-

agement. First, we preallocate shared memory regions.

When a new process is created, the front-end driver will

attempt to use a preallocated region to map into the new

process. If successful, it will issue a request to obtain

grant references for the next region in anticipation of fu-

ture processes. Otherwise, it must wait for the previous

request to complete before installing the shared region.

Second, we avoid waiting for responses where it is not

necessary in order to continue, such as when shrinking

the shared memory region.

4.4 Special Case Handling

Some system calls required special handling in VirtuOS.

For example, the ioctl(2) and fcntl(2) system calls may

contain a parameter that points to a memory region of

variable size, depending on the request/command code

passed. We handle fcntl() by treating each command

code separately, performing any necessary copies. For

ioctl(), we use the IOC SIZE and IOC DIR macros

to decode memory argument size and direction, and in-

clude special handling for those ioctl() calls that do not

follow this convention.

POSIX signals interact with system calls because re-

ceiving a signal may result in a system call interruption.

To support this behavior, we inform service domains

of pending signals for in-progress system calls. We

mark the signal as pending in the remote worker thread’s

shadow process control block (PCB), resume the worker

thread and let it abort the system call as if a local sig-

nal had been produced. In addition, we make note of

pending signals through an additional flag in the system

call request queue entries; this flag lets the worker thread

recognize that a system call should be aborted even if

the notification arrived before the request was started.

To avoid spurious interruptions, we keep a per-thread

counter that is incremented with each system call and

store its current value in each system call request. The

counter value functions as a nonce so that a service do-

main can match signal notifications to pending system

calls and ignore delayed notifications.

The Linux /proc file system can be used to obtain in-

formation about file descriptors and other information

pertaining to a process. Some applications inspect the

information published via /proc. Our system call library

translates accesses to /proc when a user process accesses

the file descriptor directory so that programs see trans-

lated file descriptors only, hiding the fact that some file

descriptors belong to service domains.

4.5 Limitations

The vertical decomposition of a monolithic kernel makes

the implementation of calls that intertwine multiple sub-

systems difficult. For instance, Linux’s sendfile(2) call,

which directly transfers file data onto a network connec-

tion, must be implemented via user-level copying if the

file and the network connection are serviced by different

service domains.

Our prototype also does not support mmap(2) for file

descriptors serviced by the storage domain. mmap could

be supported by granting direct access to the service do-

main’s memory, similar to how the request queue and

data pages are shared. However, such an approach would

limit the storage domain’s flexibility in managing its

page cache.

Our current prototype also does not provide trans-

parency for file path resolution when a storage domain

is involved. To recognize accesses to files stored in a

storage domain, the C library keeps track of a process’s

current working directory and translates all relative paths

to absolute ones. This approach provides a different se-

mantics if a process’s current working directory is re-

moved.

5 Experimental Evaluation

Our experimental evaluation comprises of (1) an evalua-

tion of VirtuOS’s overhead during system call handling
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Processor 2 x Intel Xeon E5520, 2.27GHz

Number of cores 4 per processor

HyperThreading OFF (2 per core)

TurboBoost OFF

L1/L2 cache 64K/256K per core

L3 cache 2 x 8MB

Main Memory 12 GB

Network Gigabit Ethernet, PCI Express

Storage SATA, HDD 7200RPM

Table 2: System configuration

and process coordination, (2) an evaluation of its perfor-

mance for server workloads, and (3) a verification of its

ability to recover from service domain failures.

Our goals are to show that VirtuOS imposes tolerable

overhead for general workloads, that it retains the perfor-

mance advantages of exceptionless system call dispatch

for server workloads, and that it can successfully recover

from service domain failures.

We run series of micro- and macrobenchmarks to that

end. We use a native Linux system or Linux running

inside a Xen domain as baselines of comparison, as ap-

propriate. We were unable to compare to FlexSC due to

its lack of availability.

Our current prototype implementation uses the Linux

3.2.30 kernel for all domains. We tested it with Alpine

Linux 2.3.6, x86 64 (a Linux distribution which uses

uClibc 0.9.33 as its standard C library) using a wide

range of application binaries packaged with that distri-

bution, including OpenSSH, Apache 2, mySQL, Firefox,

links, lynx, and Busybox (which includes ping and other

networking utilities). In addition, we tested compilation

toolchains including GCC, make and abuild. Our system

is sufficiently complete to be self-hosting.

We used the distribution-provided configurations for

all programs we considered. Our system specification is

shown in Table 2.

5.1 Overhead

Compared to a conventional operating system, VirtuOS

imposes multiple sources of overhead, which includes

file descriptor translation, spinning, signaling (if nec-

essary), copying, and process coordination. All mi-

crobenchmarks were run at least 10 times; we report the

average result. We found the results to be highly consis-

tent, with a relative standard deviation of less or equal

than 2%.

System Call Dispatch & Spinning. Our first mi-

crobenchmark repeatedly executes the fcntl(2) call to

read a flag for a file descriptor that is maintained by the

storage domain. In native Linux, this system call com-

pletes without blocking the calling thread. In VirtuOS,

as described in Section 3.3.1, this call is submitted into

the service domain’s request queue. Our microbench-

mark considers the single-threaded case in which there

are no other user-level threads to run after the call is

submitted. In this case, the calling thread will spin for

a fixed number of iterations (the spinning threshold),

checking if the request has been processed. If not, it will

block the underlying kernel thread, requiring the more

expensive, interdomain interrupt-based notification from

the service domain.

For a single fcntl(2) call, we found that we needed to

iterate at least 45 times for the system call to complete

without blocking. If the system call completed without

blocking, the achieved throughput was 0.7x that of the

native case, which we attribute to the file translation and

dispatch overhead, which outweighed any benefit due to

exceptionless handling. Otherwise, if notification is nec-

essary, we are experiencing a slowdown of roughly 14x.

This result shows that spinning is a beneficial optimiza-

tion for workloads that do not have sufficient concur-

rency to benefit from user-level threading. We found,

however, that we needed a much larger spinning thresh-

old (1000 iterations) to achieve the best performance for

our macrobenchmarks. We use the same value for all

benchmarks; on our machine, 1,000 iterations require

approximately 26,500 machine cycles.
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Figure 3: Absolute Throughput vs Buffer Size for

writing to tmpfs

Copying Overhead. As described in Section 3.2.2,

VirtuOS requires an additional copy for system calls that

access user memory. Simultaneously, we expect those

system calls to also benefit more greatly from exception-

less dispatch. We created a microbenchmark to evaluate

these costs and benefits. The benchmark writes 16MB in

chunks of 32, 64, up to 2MB to a file created in a tmpfs

filesystem, which is provided by a native kernel in the

baseline case and by a storage domain in VirtuOS. Linux

implements this file system type using anonymous paged
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virtual memory. For the data sizes in our experiments,

no paging is necessary. Thus, any differences reflect a

combination of the effects of exceptionless system call

handling and the additional data copy required by our

method of dispatching system calls. Figure 3 shows ab-

solute throughput for various block sizes, and Figure 4

shows the throughput ratio.

Since the overall amount of data written remains the

same, smaller block sizes indicate a higher system call

frequency. For block sizes less than 64K, the savings

provided by the exceptionless model in VirtuOS out-

weigh the additional costs. Such small block sizes are

common; as a point of reference, the file utilities in-

cluded in our distribution’s GNU coreutils package (e.g.,

cp & cat) use a 32K block size. For larger block sizes,

the copying overhead becomes more dominant, reducing

performance to about 0.8x that of native Linux.
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Figure 5: Process Creation Overhead

Process Coordination. As discussed in Section 4.3,

the primary and the service domains need to coordinate

when processes are created and destroyed. Requests to

create and destroy processes are handled sequentially

by a single kernel thread in each service domain. We

created a microbenchmark that forks N concurrent pro-

cesses, then waits for all of them. The forked processes

simply exit. The case N = 1 represents the case of serial

execution of single programs, such as in a shell script,

albeit without actually executing any commands. Fig-

ure 5 shows a slowdown of 52x for this benchmark case,

which decreases to about 8x as more processes are con-

currently forked. This decrease shows the benefit of

batching, which reduces the number of interdomain in-

terrupts.

5.2 Performance

5.2.1 TCP Throughput and Latency

We first measured streaming TCP network performance

by sending and receiving requests using the TTCP

tool [1], using buffer sizes from 512 bytes to 16 KB.

We compared the performance of the following con-

figurations (1) Unvirtualized native Linux; (2) Linux

running in Xen/Dom0; (3) Linux running in Xen/DomU

PVHVM with configured PCI passthrough for a network

card; (4) Linux running in Xen/DomU using netback

drivers in Dom0; (5) VirtuOS. We used configuration (4)

as a proxy for the performance we would expect from a

Xen driver domain, which we were unable to success-

fully configure with the most recent version of Xen.

For all configurations, we did not find any noticeable

differences; all are able to fully utilize the 1 Gbps link

with an achieved throughput of about 112.3 MB/s, inde-

pendent of the buffer size used. In all configurations, this

throughput is achieved with very low CPU utilization

(between 1% and 6% for large and small buffer sizes,

respectively) in Linux and VirtuOS’s primary domain.

We observed a CPU utilization of about 20% on the net-

work service domain, due to the polling performed by

kernel worker threads described in Section 3.3.2. This

relative overhead is expected to decrease as the number

of concurrent system call requests from the primary do-

main increases since more CPU time will be used for

handling system call requests than for polling.

We also analyzed TCP latency using lmbench’s

lat tcp tool [4], which measures the round-trip time for

sending 1-byte requests. These results are shown in Fig-

ure 6. We used two spinning thresholds for VirtuOS:

default and long, which correspond to the default set-

tings used in our macrobenchmarks and to an indefinite

threshold (i.e., spinning until the request completes).

Here, we observed that VirtuOS’s latency is slightly

higher than Linux’s, but significantly less than when

Xen’s netfront/netback configuration is used. We con-

clude that VirtuOS performs better than alternative

forms of driver isolation using Xen domains. Further-

more, if desired, its latency can be further reduced by

choosing longer spinning thresholds, allowing users to

trade CPU time for better latency.
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5.2.2 Multithreaded programs

We evaluated the performance of multithreaded pro-

grams when using the network and storage domains. We

use the OLTP/SysBench macrobenchmark [5] to evalu-

ate the performance of VirtuOS’s network domain. In

this benchmark, a mySQL server running in VirtuOS re-

ceives and responds to 10,000 requests, each compris-

ing of 10 selection queries with output ordering, sent

by network clients. The client uses multiple, concur-

rent threads, each of which issues requests sequentially.

The files containing the database are preloaded into the

buffer cache to avoid skewing the results by disk I/O.

The benchmark records the average response time over

all requests; we report throughput computed as number

of threads / average response time.

We present throughput and the throughput ratio of

VirtuOS vs Linux in Figures 7 and 8, respectively. Vir-

tuOS’s performance in this benchmark mostly matches

or exceeds that of Linux by 1-16%.

To evaluate the performance of the storage domain,

we used the FileIO/SysBench benchmark [5]. This

benchmark generates 128 files with 1GB of total data

and performs random reads with a block size of 16KB.

We examined two configurations. In the first configu-

ration, shown in Figure 9, we eliminated the influence

of actual disk accesses by ensuring that all file data and

metadata was kept into the buffer cache. In the result-

ing memory bound configuration, we observed between

30% and 40% performance loss, which we attribute to

the cost of the additional memory copy. Compared to

the microbenchmark presented in Section 5.1, the use of

many concurrent threads exerts higher pressure on the

L1/L2 cache, which increases the copying overhead. As

part of our future work, we plan to verify this hypoth-

esis using hardware performance counters, which will

require the adaptation of a performance counter frame-

work developed in prior work [42]. Figure 10 shows

the relative performance for a mixed workload that in-

cludes random reads and random writes. Here we allow

the Linux kernel and the storage domain to pursue their

usual write back policies. Both systems provide roughly

similar performance in this case.
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Figure 7: OLTP/SysBench mySQL throughput
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Figure 8: OLTP/SysBench mySQL throughput gain

Taken together, these benchmarks shows that for mul-

tithreaded workloads which benefit from M:N threading,

it is possible to achieve performance that is at least as

good as native Linux’s.

5.2.3 Multiprocess programs

We also tested VirtuOS with single-threaded, multiple

process applications such as Apache 2, and compared

performance with native Linux. Single-threaded appli-

cations cannot directly utilize benefits of the M:N thread

model and, hence, may require notification if system

calls do not complete within the spinning threshold.
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Figure 9: FileIO/SysBench throughput without disk

accesses
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Figure 10: FileIO/SysBench throughput with disk ac-

cesses

We used the Apache benchmark utility (ab) to record

throughput while retrieving objects of various sizes. We

present throughput for small and large objects in Fig-

ures 11 and 12. Both Linux and VirtuOS are able to sat-

urate the outgoing Gigabit link for objects >= 16KB in

size; for smaller sizes, VirtuOS’s performance lags that

of Linux by up to 20%. Adjusting the spinning threshold

in either direction did not improve those numbers.

5.2.4 Concurrency Tunables

We found that the results in sections 5.2.2 to 5.2.3 are

sensitive to choosing multiple parameters correctly. Ta-

ble 3 shows the assignment that worked best for our

benchmarks. We found that we needed to provide as

many VCPUs to the primary domain as there are physi-
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cal cores (8) for many tests, except for the FileIO bench-

marks, where we needed to limit to number of VCPUs

available to the primary domain to ensure enough CPU

capacity for the service domain. The optimal number of

VCPUs assigned to the respective service domain var-

ied by benchmark. We let the Xen scheduler decide on

which cores to place those VCPUs because we found

that pinning VCPUs to cores did not result in higher per-

formance, except for the FileIO benchmarks, where as-

signing the VCPUs of the primary domain to the cores of

one physical CPU and the VCPUs of the service domain

to the other resulted in approx. 15% higher throughput.

For our Linux baseline, we used all 8 cores.

In addition, we observed that it is also beneficial to

tune the maximum number of kernel threads created by

our M:N library for the multi-threaded workloads. We

note that such a limit may lead to deadlock if all avail-

able kernel threads are blocked in local system calls and
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Program Pri Domain Service Domain M:N

mySQL 8 VCPUs 1 VCPU M:18

FileIO 4 VCPUs 4 VCPUs M:4

Apache 8 VCPUs 3-4 VCPUs N/A

Table 3: Number of service domain VCPUs and ker-

nel threads

the threading library does not create new kernel threads

on demand, which our current prototype does not imple-

ment.

5.3 Failure Recovery
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Figure 13: Failure recovery scenario

VirtuOS supports failure recovery for any faults oc-

curring in service domains, including memory access

violations, interrupt handling routine failure and dead-

locks. Such faults may cause the affected domain to

reboot; otherwise, the domain must be terminated and

restarted using Xen’s toolkit utilities. We provide a

cleanup utility to unregister terminated service domains,

free any resources the primary domain has associated

with them, and unblock any threads waiting for a re-

sponse from the service domain. We do not currently

provide a fault detector to detect when a domain should

be restarted. Our recovery time is largely dominated by

the amount of time it takes to reboot the service domain

(approx. 20 seconds in our current configuration).

We designed an experiment to demonstrate that (1) a

failure of one service domain does not affect programs

that use another one; (2) the primary domain remains vi-

able, and it is possible to restart affected programs and

domains. In this scenario, we run the Apache server

which uses the network domain. A remote client con-

nects to the server and continually retrieves objects from

it while recording the number of bytes transferred per

second. To utilize the storage domain, we launch the

Unix dd command to sequentially write to a file. We

record the number of bytes written per second by observ-

ing the increase used disk space during the same second

interval.

Figure 13 shows the corresponding transfer rates. At

instant 0, the Apache server is launched. At instant 6, the

dd command starts writing data to the disk. At instant 9,

a remote client connects to the Apache server and starts

using it. At instant 29, the network domain is abruptly

terminated, reducing the client’s observed transfer rate

to 0, without affecting the ability of dd to use the stor-

age domain. At instant 60, the network domain and the

Apache server are restarted, and the remote client con-

tinues transferring data.

6 Related Work

VirtuOS’s goal of decomposing kernel functionality is

shared with several other approaches. Microkernels such

as Mach [6] and L4 [37] provide an architecture in which

only essential functionality such as task scheduling and

message-based interprocess communication is imple-

mented inside the kernel, whereas most other system

components, including device drivers, are implemented

in separate user processes. Aside from optimizing IPC

performance, microkernel-based systems often devote

substantial effort to creating compatibility layers for the

existing system APIs, e.g. POSIX [27]. Multiserver

operating system designs such as Sawmill [12, 22, 50]

pursue the opposite approach by attempting to decon-

struct a monolithic kernel’s functionality into separate

servers running on top of a microkernel. Multiserver

OSs differ from VirtuOS in the methods used for com-

munication and protection. Moreover, VirtuOS does not

currently attempt to address all goals multiserver OSs

address, such as supporting system-wide policies or re-

source sharing [22].

Multiple approaches exist to improve the robust-

ness and reliability of device drivers and systems code.

Nooks [51] introduced hardware protection domains in-

side a monolithic kernel to isolate device drivers from

each other and from the remaining kernel. Such isola-

tion protects against buggy drivers that may perform il-

legal memory accesses. Nooks demonstrated how to re-

structure an existing kernel’s interaction with its drivers

to facilitate the use of intrakernel protection domains,

and explored the trade-off between benefits due to iso-

lation and costs imposed by the domain crossings this

approach requires.

Microdrivers [21] divide driver code to isolate

hardware-specific and performance critical parts, which

are run inside the kernel, from the remaining major-

ity of the code which is run as a user process and can

be written in a higher-level language [44]. Mainstream

OSs have provided support for writing device drivers

that execute in user mode for some time, but these fa-
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cilities have not been widely used because the added

context switches made it difficult to achieve good per-

formance [34]. Some systems provide the ability to run

unchanged drivers in user mode. DD/OS [35] provides

this ability by creating a virtual machine built as a user-

level task running on top of L4, whereas SUD [10] pro-

vides such an environment inside ordinary Linux user

processes.

SafeDrive [57] uses a type system approach to provide

fine-grained isolation of kernel components written in C,

which relies upon a combination of compile-time analy-

sis and runtime checking. Carburizer [31] analyzes and

modifies driver code to withstand hardware failures by

removing the assumption that the underlying hardware

behaves according to its specification. Static analysis

approaches have been used to find bugs and improve the

reliability of systems code [7,17], as well as approaches

derived from model checking [55]. Domain-specific lan-

guages can reduce race conditions, deadlocks and pro-

tocol violations by formally describing the underlying

hardware’s behavior (e.g., Devil [39]) or the driver’s ex-

pected software interface (e.g., Dingo [46]).

Multiple systems deploy exceptionless techniques:

FlexSC [48, 49] proposed the use of exceptionless sys-

tem calls, which we adopted in VirtuOS, for the pur-

poses of optimizing system call performance in a mono-

lithic kernel. Exceptionless communication techniques

are also used in the fos [53] and Corey systems [9]. Both

of these systems are designed for scalability on multi-

core systems and distribute OS services across cores.

VirtuOS shares with these systems the assumption that

the increasing availability of cores makes their dedica-

tion for systems-related tasks beneficial.

VirtuOS relies on an underlying hypervisor, and could

benefit from a number of orthogonal ideas that were in-

troduced to improve virtual machine technology. For

instance, self-virtualizing hardware [43] makes it eas-

ier to safely and efficiently multiplex devices across do-

mains, which would allow multiple service domains to

share a device. Spinlock-aware scheduling [56] modifies

the hypervisor’s scheduler to avoid descheduling VC-

PUs that execute code inside a critical region protected

by a spinlock, which could adversely affect the perfor-

mance of service domains. The Fido system [11] op-

timizes Xen’s interdomain communication facilities by

allowing read-only data mappings to enable zero-copy

communication if the application’s trust assumptions al-

low this. The Xoar system [14] addresses the problems

of improving manageability and robustness by splitting

a control VM (i.e., Dom0 in Xen) into multiple, individ-

ually restartable VMs.

A number of systems attempt to minimize the impact

of failures of isolated components and to speed up recov-

ery after failures. The microreboot approach [13] advo-

cates designing server applications as loosely coupled,

well-isolated, stateless components, which keep impor-

tant application state in specialized state stores. In doing

so, individual components can be quickly restarted with

limited loss of data. CuriOS [15] applies similar ideas to

a microkernel-based OS. VirtuOS’s use of existing ker-

nel code in its service domains prevents us from using

this approach since monolithic kernels make free and ex-

tensive use of shared data structures. Fine-grained fault

tolerance (FGFT [32]) uses device state checkpoints to

restore the functionality of drivers after a failure, but it

so far has been applied only to individual drivers rather

than the state of an entire kernel.

7 Conclusion

This paper presented VirtuOS, a fault-resilient operating

system design which provides isolation for kernel com-

ponents by running them in virtualized service domains.

Service domains are constructed by carving a vertical

slice out of an existing Linux kernel for a particular ser-

vice, such as networking or storage.

VirtuOS allows processes to directly communicate

with service domains via exceptionless system call dis-

patch. Thus, user processes can transparently benefit

from isolated service domains without requiring the use

of a special API. A special-purpose user-level thread-

ing library allows service domains to efficiently resume

threads upon system call completion via direct queue

manipulation. To the best of our knowledge, VirtuOS

is the first system to use virtual machines for system

call dispatch and to apply exceptionless communication

across virtual machines.

We have tested our VirtuOS prototype with several

existing applications; our experimental evaluation has

shown that our design has the potential to outperform

not only existing solutions for driver isolation but can

for concurrent workloads that benefit from M:N thread-

ing meet and exceed the performance of a traditional,

monolithic Linux system using exception-based system

call dispatch.

Availability. VirtuOS’s source code is available at

http://people.cs.vt.edu/˜rnikola/ under

various open source licenses.
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