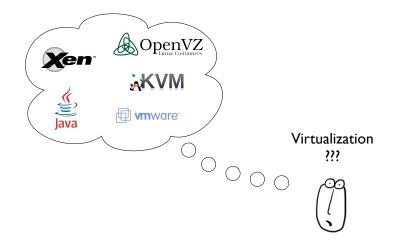
An Overview of Virtualization Technologies


Pierre Riteau

University of Rennes 1, IRISA INRIA Rennes - Bretagne Atlantique

June 29, 2011 / Contrail Summer School 2011

▲ □ ▶ ▲ □ ▶ ▲

Introduction

<ロ> <同> <同> < 同> < 同>

æ

Outline

What is virtualization?

- Concept of Virtualization
- Different Types of Virtualization

2 System-level Virtualization

- 3 Advanced Virtualization Mechanisms
 - Live Migration
 - Memory Management
 - Snapshots

3 N

System-level Virtualization Advanced Virtualization Mechanisms Summary Concept of Virtualization Different Types of Virtualization

Outline

1 What is virtualization?

- Concept of Virtualization
- Different Types of Virtualization

2 System-level Virtualization

3 Advanced Virtualization Mechanisms

- Live Migration
- Memory Management
- Snapshots

/⊒ > < ∃ >

Concept of Virtualization Different Types of Virtualization

Virtualization vs Abstraction

Virtualization is abstraction.

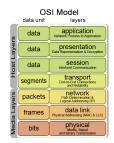
- 4 同 6 4 日 6 4 日 6

Concept of Virtualization Different Types of Virtualization

Virtualization vs Abstraction

Virtualization is abstraction.

<ロ> <同> <同> < 同> < 同>


э

System-level Virtualization Advanced Virtualization Mechanisms Summary

Abstraction

Concept of Virtualization Different Types of Virtualization

- Abstraction \rightarrow Offer a simplified interface
- Computing systems organized as layers of abstraction
 - ightarrow each layer helps to simplify the system
- Example of abstractions
 - A file is an abstraction of disk storage
 - A TCP stream is an abstraction of network packets ... which are abstraction of electrical signals

< 日 > < 同 > < 三 > < 三 >

System-level Virtualization Advanced Virtualization Mechanisms Summary

Virtualization

Concept of Virtualization Different Types of Virtualization

- Virtualization \rightarrow Offer a different interface
- Virtualized interface is not necessarily simpler
- Can be applied to many types of resources
 - Compute (CPU)
 - Storage (disk)
 - Network
- Concept of virtual machine

- A - B - M

Concept of Virtualization Different Types of Virtualization

Different Types of Virtualization

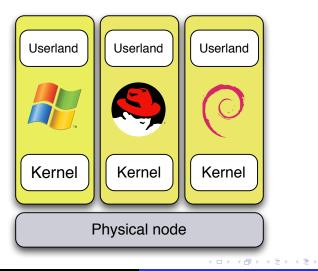
- System-level virtualization
- Process-level Virtualization
- OS Virtualization

A 10

· < E > < E >

Concept of Virtualization Different Types of Virtualization

System-level Virtualization


- Emulates a computer similar to a real physical one
- With CPU(s), memory, disk(s), network interface(s), etc.
- The virtual machine runs a full OS
- Full Virtualization vs Paravirtualization
- Examples: VMware, Xen, KVM

・ 同 ト ・ ヨ ト ・ ヨ

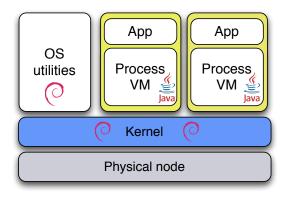
10/44

System-level Virtualization Advanced Virtualization Mechanisms Summary Concept of Virtualization Different Types of Virtualization

System-level Virtualization

э

Concept of Virtualization Different Types of Virtualization


Process-level Virtualization

- The virtual machine runs one application (one process)
- Application has to be written specifically for the VM
- Usually implemented on top of an operating system
- Example: Java Virtual Machine
- Advantage
 - Application is portable among all platforms supporting the VM \rightarrow JVM on Windows, Linux, OS X, PDAs, phones . . .
- Disadvantage
 - Legacy applications have to be rewritten for the VM

- 4 同 1 4 日 1 4 日

System-level Virtualization Advanced Virtualization Mechanisms Summary Concept of Virtualization Different Types of Virtualization

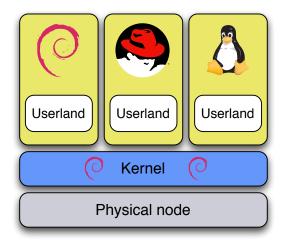
Process-level Virtualization

<ロ> <同> <同> < 同> < 同>

э

System-level Virtualization Advanced Virtualization Mechanisms Summary Concept of Virtualization Different Types of Virtualization

OS Virtualization


- The virtual machine runs a set of userland processes
- Userland domains are separated
- Kernel is the same for all userland domains
- Example: OpenVZ, Solaris zones, FreeBSD jails

・ 同 ト ・ ヨ ト ・ ヨ

System-level Virtualization Advanced Virtualization Mechanisms Summary

Concept of Virtualization Different Types of Virtualization

OS Virtualization

<ロ> <同> <同> < 同> < 同>

э

Outline

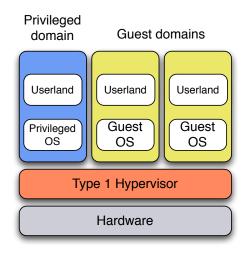
1 What is virtualization?

- Concept of Virtualization
- Different Types of Virtualization

2 System-level Virtualization

- 3 Advanced Virtualization Mechanisms
 - Live Migration
 - Memory Management
 - Snapshots

< ∃ >

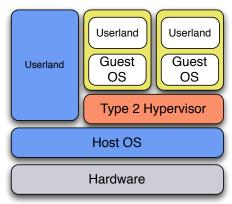

System-level Virtualization

- Virtual machines are managed by another software layer
- Hypervisor / Virtual Machine Manager (VMM)
- Can be of two different types
 - Type 1: native, runs directly on hardware
 - Type 2: hosted on top of another operating system \rightarrow Host OS

伺 と く ヨ と く ヨ と

17/44

Type 1 Hypervisor



・ロト ・回ト ・ヨト ・ヨト

э

Type 2 Hypervisor

Guest domains

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Full Virtualization

- $\bullet\,$ Full Virtualization \to Run an OS without modification
- Initiated by IBM in 1967 with the CP-40 system
- Run natively most processor instructions
- Trap and emulate privileged instructions (I/O access, system CPU registers, \ldots)
- Example
 - Virtual machine application runs a ADD instruction
 → runs directly on processor without hypervisor being involved
 - Virtual machine kernel reads the current system level
 - \rightarrow trapped by hypervisor and emulated to show a fake value

Paravirtualization

- Modify the guest OS to improve performance
- Make the guest OS aware that it is being virtualized
- Modify privileged instructions in the guest OS to avoid traps
- Replace by an interaction between the guest OS and the hypervisor interface
- Examples
 - Disco (Stanford University, 1997)
 - Xen (University of Cambridge, 2003)

A 3 3 4 4

21/44

Paravirtualized drivers

- Keep the guest OS unmodified ...
- ... but write drivers that know the system is virtualized
- Emulation of a real device \rightarrow simple virtual device
- Examples
 - virtio in KVM for Linux guests
 - VMware Tools for Windows/Linux guests
- Used for I/O devices requiring high performance
 - $\bullet \ \, Network \ \, I/O$
 - Disk I/O

伺 ト イ ヨ ト イ ヨ

Problems with virtualizing the Intel x86

- Classical x86 architecture is not virtualizable
- Some privileged instructions don't generate traps
 → sensitive instructions
- Concept of ring levels
 - Normal system
 - OS runs in ring 0
 - applications in ring 3
 - Virtualized setting
 - hypervisor runs in ring 0
 - guest OS in ring 3

How to virtualize the Intel x86

- Binary translation recompilation of code
 → hypervisor analyzes guest code and replaces it
 with emulated code
- Paravirtualization
- Hardware support
 - creates ring -1 for hypervisor
 - guest OS can run in ring 0
 - AMD-V & VT-x

Live Migration Memory Management Snapshots

Outline

1 What is virtualization?

- Concept of Virtualization
- Different Types of Virtualization

2 System-level Virtualization

3 Advanced Virtualization Mechanisms

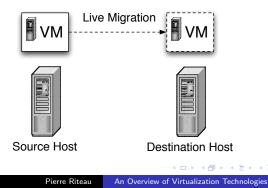
- Live Migration
- Memory Management
- Snapshots

・ 同 ト ・ ヨ ト ・ ヨ

Live Migration Memory Management Snapshots

Live Migration of Processes

- Migration of processes has long been researched
- Offers many advantages
 - Load balancing
 - Power efficiency
 - Transparent infrastructure maintenance
- Problems
 - Complex implementations required to migrate all system resources
 - Residual dependencies


- 4 同 2 4 日 2 4 日 2

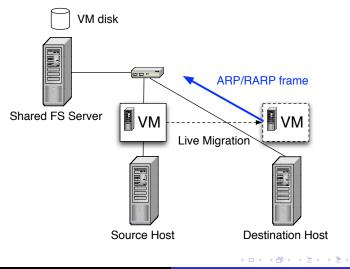
Live Migration Memory Management Snapshots

Live Migration of Virtual Machines

- Virtual machines provide complete encapsulation of
 - Applications
 - Libraries
 - Operating system

• Possible to serialize the state of a VM between physical hosts

Live Migration Memory Management Snapshots


Live Migration of VMs in LANs

- Transfer VM state from source host to destination host
- VM state
 - Processor state (CPU registers)
 - Device state (hardware registers)
 - Memory content
- What about storage and network resources?
- Shared storage (e.g. NFS) \rightarrow no migration needed
- Network traffic redirected with gratuitous ARP/RARP frames

- 4 同 🕨 - 4 目 🕨 - 4 目

Live Migration Memory Management Snapshots

Live Migration of Virtual Machines

29/44

Live Migration Memory Management Snapshots

Pre-Copy Live Migration

- Traditional method used for migration of processes
- Iterative process
 - Copy all memory content to the destination host (while the VM continues running)
 - Do multiples iterations to copy modified memory pages during the previous period
 - When enough iterations have been done, stop the VM and
 - Copy the remaining modified memory pages
 - Copy the CPU and device state
 - Resume VM on destination host

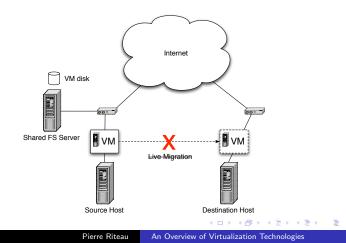
Live Migration Memory Management Snapshots

Post-Copy Live Migration

- Pre-copy: can present long downtime in the last phase
 - if the application modifies a large working set
 - if the available bandwidth is low
- Post-copy algorithm
 - Start by copying CPU and device state
 - Resume VM execution on the destination host
 - Fetch memory on demand when accessed
- Reduces downtime over pre-copy
- Can lower performance because of memory access latency

Live Migration Memory Management Snapshots

Trace & Replay Live Migration


- Use pre-copy as the basic migration algorithm
- Instead of sending modified memory pages \rightarrow send external events of the VM to replay the modifications
- $\bullet\,$ e.g., network packet received $\rightarrow\,$ modify network card registers
- Greatly reduces amount of data to send between hosts
- Problem: not working for SMP VMs as CPU synchronization would be too costly

・ロト ・同ト ・ヨト ・ヨト

Live Migration Memory Management Snapshots

Live Migration over Wide Area Networks

• Live migration between different infrastructures/data centers/clouds

33/44

Live Migration Memory Management Snapshots

Live Migration of Storage

- Need to replicate data to the destination infrastructure
- Mechanism similar to pre-copy live migration
- Copy the whole disk content
- Iteratively synchronize changes
- Examples: KVM migration, DRBD

- 4 同 ト 4 ヨ ト 4 ヨ ト

34/44

Live Migration Memory Management Snapshots

Network Support for Live Migration

- Not possible to redirect traffic with ARP/RARP frames between different IP networks
- Solutions based on encapsulating traffic in a tunnel over WAN
- Or Mobile IPv6 mechanisms

< 日 > < 同 > < 三 > < 三 >

Live Migration Memory Management Snapshots

Live Migration Optimizations

- Objective: Minimize downtime
- Means: Reduce amount of data to send
- Several approaches
 - Data Compression
 - Page Delta Transfer
 - Data Deduplication

- 4 同 ト 4 ヨ ト 4 ヨ ト

36/44

Live Migration Memory Management Snapshots

Data Compression

- Compress memory pages sent over the network
- Trivial approach: compress zero'd memory pages
- General approach: use regular compression (gzip)
- More complicated: adaptive memory compression

- 4 同 2 4 日 2 4 日 2

Live Migration Memory Management Snapshots

Page Delta Transfer

- Memory pages are 4 KB on x86
- Modify 1 byte in the page ightarrow transfer 4 KB
- Delta transfer mechanism:
 - Keep copy of original page
 - Computer differences between original and new page
 - Send diff instead of full content

Live Migration Memory Management Snapshots

Data Deduplication

- VMs can contain identical data in multiple memory pages
- Deduplication retains only one unique copy of each memory page
- Duplicate detection based on fast hash algorithm + full data comparison in case of match

Live Migration Memory Management Snapshots

Memory Management

- Virtualization properties
 - Multiplexing of several guest OS
 - Isolation

 \rightarrow Consolidation: running multiple systems on one physical host

• Multiple guest OS compete for memory of host

Live Migration Memory Management Snapshots

Ballooning

- Paravirtualized driver runs in the VM
- Responds to hypervisor requests for memory
- Inflate/deflate its memory allocation
- Memory is given back to the hypervisor
 → Can be used by other VMs afterwards

・ 同 ト ・ ヨ ト ・ ヨ

Live Migration Memory Management Snapshots

Page Sharing

- Typical to run multiple times the OS on one host
- Each OS will have its own copy of code and data from
 - kernel
 - libraries
 - applications
- Detect identical pages in multiples VMs of the same host
- Merge identical pages to reduce memory consumption
- Mark shared pages as read-only to do copy on write

(日) (同) (目) (日)

Live Migration Memory Management Snapshots

Snapshots

- Snapshot = save full state (memory + storage) of a VM
- Allows to return to a previous state
- Some scenarios
 - $\bullet\,$ Wrong configuration change $\to\,$ rollback to snapshot
 - $\bullet~\mbox{Failed}~\mbox{OS}~\mbox{update} \rightarrow \mbox{rollback}~\mbox{to}~\mbox{snapshot}$
- Copy-On-Write (COW) for storing changes
 - \rightarrow Store only modifications made on writes

- 4 同 ト 4 ヨ ト 4 ヨ

43/44

Summary

- Virtualization offers different interfaces (\neq abstration).
- Concept of virtual machine as an execution platform
- Different kinds of virtual machines
- System-level virtualization allows to execute regular OS
- Features offered by system-level virtualization
 - Live migration in LAN or WAN
 - Memory balancing/sharing
 - Snapshots

・ 同 ト ・ ヨ ト ・ ヨ