
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Openflow Virtual Networking: A Flow-
Based Network Virtualization 
Architecture 

 

Georgia Kontesidou 
Kyriakos Zarifis 

 

Master of Science Thesis 
Stockholm, Sweden 2009 

 
TRITA-ICT-EX-2009:205

 



 

Openflow Virtual Networking: A Flow-Based 
Network Virtualization Architecture 

 

 

Master Thesis Report 

November 2009 

 

 

Students 

Kyriakos Zarifis  Georgia Kontesidou 

Examiner 

Markus Hidell 

Supervisor 

Peter Sjödin 
 

 

Telecommunication Systems Laboratory (TSLab) 

School of Information and Communication Technology (ICT) 

Royal Institute of Technology 

Stockholm, Sweden 

https://webmail.kth.se/owa/?ae=Item&t=IPM.Note&id=RgAAAACcKU9TChy5TI6mf5N2nCVtBwD8m9zMGgLwR6BvOI0lY8jMAAyNctICAAD8m9zMGgLwR6BvOI0lY8jMACc8JXs8AAAJ


2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Abstract 

 

 

Network virtualization is becoming increasingly significant as other forms of virtualization constantly 

evolve. The cost of deploying experimental network topologies, the strict enterprise traffic isolation 

requirements as well as the increasing processing power requirements for virtualized servers make 

virtualization a key factor in both the research sector as well as the industry, the enterprise network and 

the datacenter. 

 

The definition of network virtualization as well as its manifestations vary widely and depend on the 

requirements of the environment in which it is deployed. This works sets the foundation towards a 

network virtualization framework based on a flow-based controlled network protocol like Openflow.  
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Abstract 

 

 

Så småningom, har nätverk virtualization blivit signifikant. Hög kostnaden för att utveckla 

experimentella nätverk topologier, noggranna kraven för en effektiv trafik isolering samt ökande 

centralenhets krav för virtuella servrar har gjort nätverk virtualization en viktik faktor i båda forskning 

och företag. 

 

Definitionen av nätverk virtualization samt dess manifestationer beror på miljön som den utvecklas. 

Den här arbeten försöker att ställa grundvalarna för ett nätverk virtualization framework baserat på  ett 

flow-baserat protokoll som Openflow. Vi beskriver föreslagen arkitekturen och komponenterna som 

den består av. Sedan beskriver vår proof-of-concept implementation och presenterar en utvärdering av 

den. 
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Chapter 1 

An overview of this thesis 

1. Introduction 

 

1.1 Goals of this thesis 

 

This goal of this work is threefold: First, we aim to provide an overview of network virtualization 

techniques, compare them and point out where each of them fails. Second, we suggest a virtualization 

architecture that, due to its generic and abstract nature, ameliorates most of current techniques‟ 

restrictions. This is a result of looking at virtual networks not as slices of physical network 

infrastructures, but as subsets of network traffic. This traffic-oriented definition of virtual networks is 

made possible by the use of Openflow, a flow-based controlled protocol which we also describe. 

Finally, we give a description of a proof-of-concept implementation of this architecture. 

 

1.2 Contents of this thesis 

 

Following on from this introduction, the thesis is organized in 4 sections: 

 

Section A (Chapters 2-4) provides the necessary background on topics involved in this thesis: 

Chapter 2 gives a general description of the term virtualization, and provides definitions and 

examples of several forms of virtualization in computer science. 

Chapter 3 narrows the definition of virtualization describing how it is manifest on network 

infrastructures. An overview of the most popular network virtualization techniques is provided. 

Chapter 4 introduces the Openflow protocol, which is the foundation of our proposed network 

virtualization architecture. 

 

Section B (Chapters 5-6) introduces our own contribution and the proposed schema towards an 

Openflow-based network virtualization architecture: 

Chapter 5 describes our design steps and challenges, and concludes with a description of the final 

proposed architecture. 

Chapter 6 gives a description of the high level API and protocols that we defined in order to build 
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the architecture proposed in Chapter 5. 

 

Section C (Chapters 7-8) presents our own implementation, experiments and evaluation of the 

architecture proposed in Section B: 

Chapter 7 delves deeper into implementation details regarding our own approach towards the 

architecture described in Chapter 5, using the high-level API of Chapter 6.  

Chapter 8 describes the test environment that we established in order to evaluate the design and our 

implementation, as well as some conclusions based on the experiments. 

 

Section D (Chapter 9) concludes with some general discussion and possibilities for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      SECTION                                                          

    Background       A       

                          Chapter 2      Virtualization              
  
                          Chapter 3      Network Virtualization              
 
                          Chapter 4      Openflow              



11 

 

Chapter 2 

Virtualization in Computer Science 

2. Virtualization 

 

The term virtualization has been around for many years in computer science. Although it is a very 

broad term, and can be implemented in various layers of a computer system or network, virtualization 

always refers to the abstraction between physical resources and their logical representation. This 

definition of virtualization will become clearer as we go through some of the most basic forms of 

virtualization and as we examine the need for their development. 

2.1 Storage Virtualization 

 

Storage virtualization [2] refers to the separation of physical disk space from the logical assignment 

of that space. Storage available on multiple physical locations can be combined into a single logical 

resource. The virtualization program or device is responsible for maintaining a consistent mapping 

between physical and logical space, called meta-data.  

 

The main need for the adoption of storage virtualization was inefficient storage utilization. The 

initial advantage of aggregating disk space into one logical resource is that there is a single point of 

management for administrators, leading to more efficient storage utilization. However, it also provides 

flexibility, as it makes it possible to assign storage where it is needed at any time, and also allows for 

non-disruptive data migration (i.e. the process of copying the virtual disk to another location is 

transparent to the host that is using it).  

 

Since users are presented with a logical view of the storage space,  I/O operations are refering to this 

virtual space and therefore need to be translated into I/O operations on the physical disk. The 

virtualization program can perform this translation by using the mapping information on the meta-data. 

This process of translating «virtual» I/O requests to real I/O requests on the physical storage space is 

called I/O redirection and is one of the most interesting key concepts of storage virtualization. 

 

There are three main techniques that implement storage virtualization. These can be summarized in 

the following [53], [54]: 
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Host-based virtualization,  is the simplest and most intuitive way to provide storage virtualization. 

The existing device drivers are responsible for handling the physical storage space. A virtualization 

program on top of these drivers is responsible for intercepting I/O requests, and based on the the logical 

to physical space mapping found on the meta-data, it redirects them accordingly. 

 

Storage device-based virtualization, can  be described as virtualization on the hardware level. It 

leverages the capability of RAID controllers (i.e  devices that handle multiple disk drives) to create a 

logical storage space by using resources of a pool of physical device drivers (pooling) and to handle 

meta-data. Additionally, advanced RAID controllers allow further storage devices to be attached as 

well as features such as cloning and remote replication. 

 

Network-based virtualization, operates on a network device, typically a server or a smart switch. 

This device sits between the host and storage providing the virtualization functionality (I/O redirection, 

virtualizing I/O requests, mapping of physical to logical space). The various storage devices appear as 

physically attached to the Operating System. This network of hosts, storage and virtualization device is 

called a Storage Area Network (SAN). The latter is currently the most commonly deployed  type of 

storage virtualization.  

 

Analyzing the pros and cons of each category of storage virtualization is beyond the scope of this 

work. However it is worth mentioning a few challenges and hazards that storage virtualization is 

tackling with today. 

 

First, all storage virtualization technologies offered today are closed, vendor-specific solutions. 

Therefore, interoperability between different hosts, storage devices and virtualization software at low 

overhead and performance cost is a key enabler to storage-virtualization. Performance and scalability 

issues must also be taken under consideration. The lookup performed to determine the mapping 

between physical and logical storage space can become a time and resource consuming process even 

more so as the system scales. Furthemore, keeping a consistent meta-data table can become tricky 

especially in the case of a dynamically changeable system where physical storage units are frequently 

attached/detached  thus meta-data tables need to be constantly updated. Backing up the meta-data table 

by creating replicas imposes an additional performance burden since all copies of the meta-data  table 
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should be kept up-to-date. Finally, like any other form of virtualization, storage virtualization 

introduces an additional level of complexity to the system. This affects the maintainace of the system 

(i.e, troubleshooting becomes a more complex procedure), as well as the performance of the storage 

device with regards to the I/O operations.  

2.2 Server Virtualization 

 

Server virtualization [3] refers to the partitioning of the resources of a single physical machine into 

multiple execution environments each of which can host a different server. This type of virtualization 

which is also known as server consolidation, is a common practice in enterprise datacenters in an effort 

to improve resource utilization and centralize maintainance. Server virtualization decouples the 

software running on a server from the physical server hardware. A single host is logically divided into a 

number of Virtual Machines (VMs)  or Virtual Environments (VEs) each of which can run its own 

operating system and its own server applications, making use of an allocated portion of the physical 

host's resources.  

 

Server virtualization is recommended for small or medium-scale usage applications. The advantages 

here also include flexibility in terms of non-disruptive migration of the virtual server, ease of 

management by a single administrative console, and efficiency, as several low-utilized systems are 

replaced by a single physical entity. 

 

There are three main server virtualization techniques that are deployed today in enterprise 

datacenters--Virtual Machines, paravirtualization and OS-level virtualization. We will provide a brief 

overview of these techniques and mention some of the benefits and drawbacks of using each technique. 

 

Virtual Machines (VMs), are software implementations of real or fictional hardware that run on the 

same physical host. Each VM runs an Operating System which is known as guest OS requiring 

physical resources from the host. VMs run on user-space thus on top of the hosting operating system 

without however being aware that they are not running on real hardware. The Virtual Machine 

Monitor VMM is an intermediate software layer between the OS and the VMs which provides 

virtualization . The VMM presents each VM with a virtualized view of the real hardware. It is therefore 

responsible for managing VMs' I/O access requests and passing them to the host OS in order to be 

executed.  This operation introduces overhead which has a noteworthy impact on performance. 
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However this virtualization technique which is commonly referred to as full virtualization offers the 

best isolation and security for virtual machines and can support any number of different OS versions 

and distributions. Popular solutions that follow this method of virtualization include Vmware [4], 

QEMU [5], and Microsoft Virtual Server [6]. 

 

Paravirtualization is a technique where each VM is provided with an API to the normal system 

calls of the underlying hardware. By using this technique operations that require additional privileges 

and cannot run in user-space are relocated to the physical domain instead of the virtual domain. This 

way the VMM is freed from performing the complicated and time-consuming task of managing I/O 

access requests and passing them to the host OS. This technique is also known as transparent 

virtualization since it requires of the VMs to be aware of the fact that they are running on a virtualized 

environment and to communicate with the VMM. Paravirtualization introduces less overhead 

compared to full virtualization but can suppport fewer OS versions since the VMs need to be tailored 

according to the VMM they are running on top of. Products such as Xen [7] and UML [8] use this 

technique.  

 

OS-level virtualization, is based on the concept of containers. The containers are multiple isolated 

instances of  the same OS  running in user-space. The kernel is responsible for creating containers and 

for providing resource management mechanisms to enable seamless, concurrent operation of multiple 

containers. OS-level virtualization does not provide the same degree of flexibility as other 

virtualization methods in terms of supporting different OS versions and distributions. Nevertheless,  it 

introduces much less overhead since containers can use the normal system call interface instead of a 

virtualized version of it. OpenVZ [9] and Linux-Vservers [10] are examples of OS-level virtualization. 

2.3 Application Virtualization 

 

Application virtualization [39] refers to the process of isolating a certain application from the 

underlying Operating System  it runs on. An application has certain dependencies on the OS it is 

installed over. Except for OS services such as memory allocation and device drivers an application has 

dependencies such as registry entries, use of environmental variables, access to the database servers, 

modification of existing files and much more. Through use of virtualization,  an application is under the 

illusion of interfacing directly with the operating system in order to request these services. 
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In order to virtualize an application an intermediate virtualization layer must be inserted between 

the underlying OS and the application. This layer is responsible for intercepting the application's 

requests for resources, logging them separately in a file without commiting them to the OS. In this way, 

an application is no longer dependent either on the system or on the OS it runs on. This kind of 

virtualization is very similar to the concept of OS virtualization, except for the fact that in this case it is 

not the entire OS but rather an application that is being encapsulated from the system. 

 

Application virtualization has many benefits. Sandboxing applications allows them to run 

independently on different platforms. This independence of the application from the OS shields the OS 

and provides improved system security since buggy or malicious applications do no longer interfere 

with the system. Furthermore, since every application runs in its own virtualized space, 

incompatibilities between different applications can be eliminated through the use of virtualization. 

Microsoft‟s SoftGrid [51] is an example of application virtualization. 

 

This chapter aimed at providing a brief overview of how virtualization of resources (such as 

storage, servers or applications) can be achieved today. Some of the approaches for network 

virtualization that will be described in the next chapter leverage resource virtualization techniques 

extensively. In fact, their approach of network virtualization relies on virtualizing physical devices 

along the network. The following chapter will present a selection of network virtualization techniques 

and projects that exist today, attempting to contribute towards resolving the confusion that is often 

caused by the wide and sometimes abstract use of the term network virtualization. 
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Chapter 3 

Network Virtualization 

3. Network Virtualization 

 

Although resource virtualization can be instantiated in many more layers, describing all forms of it 

is outside the scope of this document. However, it has probably been made clear by now that network 

virtualization is much more efficient when it is backed by other forms of virtualization. Just like other 

forms of virtualization, network virtualization refers to the decoupling of the hardware that form a 

physical network, from the logical networks operating over it. 

 

Network virtualization allows for different groups of users to access virtual resources on remote    

systems over a virtual private network, a logical network that seems to have been cut out for the 

specific needs of these users. The combination of network virtualization with remote virtual resources 

provides researchers with very powerful and highly customizable experimental environments. It makes 

sense to adopt this technology when there are available virtual resources spread out over a physical 

network. 

 

Of course the use of network virtualization, useful as it might be in the research field, is not limited 

to this scope. ISPs, companies or even households often adopt network virtualization techniques to 

achieve network isolation, security and traffic anonymity. Many technologies have been developed 

during the few last decades for that purpose. In the following paragraph we will briefly go through the 

development of network virtualization, noting some of its most important implementations. 

3.1 VLANs 

 

VLAN (Virtual Local Area Network) [46] is a widely used technology that enables the existance of 

a virtual network abstraction on top of a physical packet-switched network. A VLAN is essentially a 

broadcast domain for a specified set of switches.  These switches are required to be aware of the 

existance of VLANs and configured accordingly, in order to perform switching of packets between 

devices belonging to the same VLAN. VLAN membership can be defined by roughly three ways.  

 

• Port membership: : A VLAN can be defined as a set of ports in one or more switches. For 
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example VLAN 1 can be described as port #1 of switch #1 and port #2 of switch #2 and so on. 

This type of VLAN is commonly refered to as a static VLAN because the assignment of ports in 

various switches to VLANs is done manually by the network administrator. 

 

• MAC address membership: A VLAN can be defined as a set of specific MAC addresses. This 

type of VLAN is often refered to as a dynamic VLAN, since the assignment between ports and 

VLANs is done automatically based on the source MAC address of the device connected to a 

port. The VLAN membership is determined by a querey to a database containing the 

information on the mapping between MAC addresses and VLAN memberhips. 

 

• Layer 3 membership: A VLAN can be defined as a set of IP addresses or an IP subnet or a set 

of protocols/services. In this case, the assignment between ports and VLANs is done 

automatically based on the source IP address, IP subnet or the services/protocols running at the 

device connected to the port. This is also a case of a dynamic VLAN and like the MAC address 

membership method, a database is queried as a device enters the network, to determine its 

VLAN membership. 

 

VLANs perform LAN segmentation, by limiting broadcast domains within the borders of a specific 

VLAN,  hence improving bandwidth usage across the network. Implementation of VLANs also 

provides isolation, higher security and more efficient network management. VLANs require from 

network elements to have a complete knowledge of the VLAN mapping, regardless of which of the 

three ways mentioned above this is performed and regardless of whether this knowledge is injected 

statically or acquired automatically. This very fact impairs network performance by creating additional 

workload for all network elements. Another drawback is that this solution does not allow generality in 

the definition of a virtual network. There are three ways to define VLAN membership, and the 

administrators or network designers are expected to evaluate the tradeoffs according to the type of 

network they wish to deploy and chose one of the possible approaches. If one wishes to have a more 

flexible definition of a VLAN or even a custom definition (for example use a combination of IP 

addresses and ports), this is not possible, especially considering the fact that VLAN implementations 

on network devices are closed and proprietary.  

3.2 VPNs 
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Virtual Private Networks is another network virtualization concept. A VPN [33] is a private data 

network that uses a public physical network  infrastructure,  while maintaining privacy for its users. 

This privacy is achieved through the use of tunneling protocols and security functions.  Physically 

remote sites  that are connected to the same backbone network, can have IP connectivity over this 

common backbone (that could be the public Internet) by being associated to a common VPN.  

 

A VPN consists of the following components (fig. 1): 

 

• CE (customer edge) routers: They reside in the customer side and can be managed and 

configured either by the customer or the provider. 

 

• PE (provider edge) routers: Provide entry and exit points for the VPN to the customer by 

peering with CE routers and are managed and configured by the provider. They are responsible 

for most of the VPN/MPLS functionality in the network (paragraph 3.3).  

 

• P (provider) routers: All routers that form the provider's core network and are not attached to 

any CE routers. They are responsible for forwarding VPN traffic along the provider core and 

between PE routers. 

 

There are various different ways to implement VPNs, which have different requirements in  network 

equipment  and configuration. In the following sections, some of the most characteristic VPN 

implementations will be briefly presented.  

3.3 VPN over MPLS 

 

MPLS (Multi-Protocol Label Switching) [53] is a method of forwarding packets in a fast, protocol-

agnostic manner. In MPLS, packets are encapsulated by inserting one or more MPLS headers between 

a packet‟s layer-2 and layer-3 headers. MPLS is thus referred to as a layer 2,5 protocol. MPLS headers 

have a simple format which includes a 20-bit Label field, a 3-bit Type of Class field, a 1-bit Bottom of 

Stack field and an 8-bit Time-to-Live field. Forwarding decisions in MPLS are simply made based on 

the Label field of the layer-2,5 header. This simple functionality (along with many extensions that are 

out of our scope, but an interested reader can refer to [52]) is what makes MPLS fast, reliable and the 

most popular choice for Service Provider networks. 
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 Network virtualization over MPLS is a popular technique [54]. In VPN over MPLS the concept of 

sites belonging to VPNs is maintained. Different sites can be connected to one another over the 

common backbone if they belong to the same VPN. MPLS  tunnels are used to forward packets along 

the backbone network. The main course of events for a data packet arriving at a CE is the following: 

     

• Data arrives from CE (Customer Edge) via access network  

• Data is encapsulated by PE (Provider Edge) and sent over tunnel  

• Data is decapsulated by receiving PE and sent over access network to CE  

 

Each PE router needs to maintain a number of separate forwarding tables, one for each site that the 

PE is connected to. When a packet is received from a particular site, the forwarding table associated 

with that site only is being consulted in order to decide how the packet will be routed. A particular site's 

forwarding table contains only the routes to other sites that have at least one VPN in common with this 

particular site. This ensures VPN isolation and allows for different VPNs to use the same or 

overlapping address space. PE routers use BGP to distribute VPN routes to each other. P routers do not 

contain any VPN routing information but they simply forward packets according to their MPLS label 

through the core network and to the appropriate PE router. A basic setup of such a topology can be seen 

in figure 1. 

 

 

 

 

 

 

 

Figure 1. A WAN VPN topology 
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3.4  Layer 3 VPN 

 

In this type of VPN [54], providers use the IP backbone to provide VPN services to their clients. 

Thus the set of sites that compose the Layer 3 VPN are interconnected through the public, shared 

Internet infrastructure. These sites share common routing information. Layer 3 VPNs make use of the 

BGP protocol to distribute VPN routing information along the provider's network. Additionaly, MPLS 

is used to forward VPN traffic from and to the remote sites through the provider's backbone. 

 

In order to isolate VPN traffic from the production traffic flowing through the provider's backbone, a    

VPN identifier prefix is added to a VPN site address. In addition, each VPN has its own VPN-specific 

routing table that contains the routing information for that VPN only. There are two approaches for 

implementing a Layer 3 VPN: 

 

• CE-based, where the provider network is not aware of the existence of the VPNs. Therefore the 

creation and management of tunnels is left to the CE devices.  

 

• PE-based, where the  provider network is responsible for VPN configuration and management. 

A connected CE device may behave as if it were connected to a private network. 

3.5  Layer 1 VPN 

 

A Layer 1 VPN (L1VPN) [36] is a service offered by a core layer 1 network to provide layer 1 

connectivity between two or more customer sites and where the customer has some control over the 

establishment and type of connectivity. An alternative definition is simply to say that an L1VPN is a 

VPN whose data plane operates at layer 1. Layer 1 VPNs are an extention to L2/L3 VPNs to provide 

virtually dedicated links between two or more customer sites. The routing between these two sites 

however relies entirely on the customer, therefore the data plane does not guarantee control plane 

connectivity. 

3.6 Recent Network Virtualization Frameworks 

 

While the technologies described above are designed to create logical partitions of the same 

physical substrate they do not aim in providing a complete framework for performing network 

virtualization. They are commercial, hands-on solutions for logically partitioning the physical network. 
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Several initiatives to address this objective have spawned as a result of the need of the research 

community for realistic, programmable and controlled environments on which they can deploy and test 

novel services, protocols and architectures. Some are more reserved and others more radical, trying to 

follow a “clean-slate” approach, addressing the Internet community‟s reluctance to adopt new, 

innovative ideas and technologies. 

3.6.1 PlanetLab 

 

PlanetLab [20] is a network of nodes owned by different research organizations in various locations 

around the world, interconnected through the Internet creating a testbed for researchers to deploy and 

test experimental services at real-scale. PlanetLab currently consists of more than 800 nodes in 400 

different parts of the world, belonging to the Universities, organizations and companies that participate 

in the project. The objective of PlanetLab is to provide an overlay network on which researchers can 

deploy and test their services at real-scale in a way that new innovative architectures, protocols and 

services can emerge and dominate the underlying technologies. Basically, PlanetLab addresses the 

problem of experimentation of novel services over the real Internet, at large-scale. 

By virtualizing its nodes PlanetLab allows multiple experimental services to run simultaneously, 

using different topologies over the same physical network, being however isolated from one another.  

 

In the context of PlanetLab a node is a machine that is able to host one or more virtual machines [5] 

while a collection of Virtual Machines on a set of nodes is referred to as a slice. Each different service 

should acquire and run in a slice of the overlay. Therefore in PlanetLab, virtualization is a synonym for 

“slice-ability”, referring to the ability to slice up the node‟s processor, link and state resources. 

 

The main components of the PlanetLab architecture can be summarized in the following: 

 

• Node: A machine that is able to host one or more virtual machines. 

• Slice:  A collection of Virtual Machines on a set of nodes. 

• Virtual Machine (VM): A slice of the node seen as an independent machine with its own 

kernel and resources.  

• Node Manager (NM): A process that runs on each node, establishing and controlling the 

virtual machines on the node. 

• PlanetLab Central (PLC): A centralized front-end that controls and manages a set of nodes on 
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behalf of their respective owners. Additionally, the PLC creates slices on behalf of the user 

(namely the researchers). The PLC acts as:  

o A Slice Authority, which maintains state of all the slices currently active on the 

PlanetLab. This includes information on the users that have access to the slice as well as 

the state of each registered slice. 

o Management Authority, the PLC maintains a server responsible for the installation and 

update of software running on the nodes it manages. The management authority is also 

responsible for monitoring the nodes‟ behavior, detecting and correcting possible 

problems and failures. 

• Virtual Machine Manager (VMM): A process that runs on each node ensuring allocation and 

scheduling of the node‟s resources.  

 

In addition to these components, the architecture includes two infrastructure services that, like the 

experimental services, run on a separate slice on the overlay network, but are associated with core 

administrative functions of the PlanetLab: 

 

• Slice Creation Service: A service running on each node on behalf of the PLC by contacting the 

Node Manager on each node which in its turn creates a local VM and gives access to the users 

associated with this particular VM. 

 

• Auditing Service: Runs on each node. Logs traffic coming from the node and is responsible for 

associating network activity to the slice that is generating it. 
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Figure 2. PlanetLab Architecture 

source: http://www.usenix.org/event/lisa07/tech/full_papers/jaffe/jaffe_html/index.html 

3.6.2 VINI  

 

VINI [21] is a virtual network infrastructure on top of the PlanetLab shared infrastructure. VINI 

allows network researchers to evaluate their protocols and services in the wide area in a controlled and 

realistic manner. VINI provides researchers with control thus enabling them to induce external events 

(e.g. link failures, traffic congestion) to their experiments. Additionally it provides a realistic platform 

for deploying and testing new services or protocols, since its architecture, topology and functionality 

resembles real networks. To provide researchers flexibility in designing their experiments, VINI 

supports simultaneous experiments with arbitrary network topologies on a shared physical 

infrastructure. 

 

VINI currently consists of nodes at sites connected to routers in the National Lambda Rail, 

Internet2, and CESNET (Czech Republic). The nodes have their own global IP address blocks and 

participate in BGP peering with neighboring domains. 

 

A prototype implementation of VINI on the PlanetLab nodes resulted in PL-VINI. The choice of 

using PlanetLab as the physical infrastructure on which PL-VINI is  deployed seems natural. PlanetLab 

already provides node virtualization with each Virtual Machine running a different service as described 

http://www.usenix.org/event/lisa07/tech/full_papers/jaffe/jaffe_html/index.html
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above. Additionally it provides good control over resources and network isolation while giving each 

slice the impression of root-level access to a network device. PL-VINI extends the capabilities of 

PlanetLab by providing researchers with better level of configuration of routing on their slices.  

 

PL-VINI enables arbitrary virtual networks, consisting of software routers connected by tunnels, to 

be configured within a PlanetLab slice. A PL-VINI virtual network can carry traffic on behalf of real 

clients and can exchange traffic with servers on the real Internet. Nearly all aspects of the virtual 

network are under the control of the experimenter, including topology, routing protocols, network 

events, and ultimately even the network architecture and protocol stacks. 

 

PL-VINI uses a set of widely known Open Source networking tools in order to provide on-demand 

overlay topologies on top of the PlanetLab nodes. More specifically PL-VINI uses XORP [27] for 

routing, Click [28] for packet forwarding, OpenVPN [29] for creating server to end-user connections 

and for interconnection, and rcc [30] for parsing router configuration data from operational networks to 

use in the experiments.  

 

In order to efficiently deploy and run networking experiments, the virtual nodes must be under the 

impression of having access to real network devices. This can be achieved by running software which 

simulates the functionality of real network devices (such as XORP in the case of routing) in user-space 

mode, using UML (User-Mode Linux), a full-featured kernel running on user-space on the same nodes. 

Additionally in order for network services to be able to send and receive packets on the overlay, a 

modified version of the Linux TUN/TAP driver is used. Applications running in user-space can send 

and receive packets by writing/reading the TUN interface while being able to only see packets sent 

from the slice they belong. 

3.6.3 FEDERICA  

 

FEDERICA [22][23] is a European project of the 7
th

 Framework, aiming to provide a Europe-wide 

technology-agnostic infrastructure destined for research experimentation. The main concept behind 

FEDERICA is no different than that of PlanetLab and PL-VINI. FEDERICA uses the resources 

provided by National Research and Education Networks (NRENs), namely links, virtualization-capable 

nodes and network equipment in order to provide an open platform for the deployment and trialling of 

new Internet architectures and protocols.  
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The FEDERICA physical network consists of 13 Points of Presence (PoPs) hosted by different 

NRENs. These PoPs host nodes (known as Physical Nodes in the context of FEDERICA) which are 

connected by dedicated links and which are able to host multiple Virtual Nodes (VNs). Virtual nodes 

can either be virtual machines based on various operating systems or emulated L2/L3 network devices. 

VNs are connected through Virtual Paths (VPs) created on top of the physical topology using 

technologies such as tunneling.  

 

Following the same concept as PlanetLab and PL-VINI, FEDERICA allocates slices to researchers 

who request them for their experiments and who view slices as physical infrastructures. What is new 

and interesting about the FEDERICA project is that it enables researchers to access lower network 

layers, something that it is not feasible in the PL-VINI and PlanetLab implementations. Moreover, 

compared to PL-VINI, FEDERICA focuses more into creating virtual infrastructures as opposed to 

virtual network topologies on top of a common shared infrastructure. This difference is crucial since 

it implies that FEDERICA allows experimentation on the L2 layer while PL-VINI is limited to 

experimentation on the L3 layer.   

3.6.4 GENI (Global Environment for Network Innovations) 

 

GENI [47] takes PlanetLab and PL-VINI one significant step forward. While PlanetLab and PL-

VINI are trying to propose a framework for creating slices over the traditional Internet (basically 

assuming IP connectivity), GENI follows a “clean-slate” approach, by incorporating different types of 

networks such as sensor, wireless and mobile networks.  A virtual network as envinsioned by GENI can 

spread over a collection of heterogeneous underlying network technologies. In this sense, PlanetLab 

and PL-VINI can be seen as small-scale prototypes of GENI.  

3.7 A summary of network virtualization techniques and concepts 

 

The plethora of different technologies and research projects in the field of network virtualization 

might create confusion as to how all these different concepts differ both in their definition of network 

virtualization as well as in their approach towards implementing it.  

 

Chowdhury et al [25] have identified four main characteristics for categorizing network 
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virtualization projects: 

• Layer of virtualization: The layer of the network stack (physical to application) that the 

virtualization is performed. 

• Networking technology: The underlying network technology on top of which virtualization is 

implemented. 

• Level of virtualization: The component of the network infrastructure on which virtualization is 

attempted. 

• Architectural Domain: Particular architectural concepts that virtualization techniques have 

focused on. 

 

Examining the architectural domain focus of each project is out of the scope of this paper, however 

the three remaining characteristics will be used hereafter in order to evaluate and categorize the various 

network virtualization techniques and projects. 

 

VLANs: VLANs operate on level 2 (link-layer) and layer 3 in the case of IP address mapping. 

VLANs create the illusion that two (or more) machines belong to the same broadcasting domain. Hence 

they provide virtualization on the level of links. Layer 2 VLANS are technology agnostic. Layer 3 

VLANS assume IP connectivity since they use IP addressing to map machines to VLANS. 

 

VPNs: As analyzed above VPNs are capable of providing virtualization on Layer 1 (physical), 

Layer 2 and Layer 3 (network layer). Hence they provide virtualization on the level of links, switches 

and routers. 

 

PlanetLab: PlanetLab creates virtual networks or slices, by virtualizing nodes by the use of several 

specialized programs running on these nodes. It therefore provides application-layer virtualization  

PlanetLab is implemented on top of traditional Internet and implies IP connectivity. 

 

VINI: Implements virtualization on Layer 1. It virtualizes routers and nodes. It is implemented on 

PlanetLab assuming IP connectivity. 

 

FEDERICA: Performs virtualization on the link, network and application layer. It  virtualizes all 

network elements- nodes, links and network devices. 
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GENI: Performs virtualization on the link, network and application layer. It  virtualizes all network 

elements, nodes, links, network devices. GENI is technology agnostic, therefore it can provide 

virtualization across the span of a collection of heterogeneous networks.  
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Chapter 4  

The Openflow Standard 

4. Openflow 

 

Looking back at how networks were implemented 20 years ago and looking at the image of 

networking today it is obvious that networks have come a long way and evolved tremendously in terms 

of speed, reliability, security and ubiquity. And while physical layer technologies have evolved 

providing high-capacity links, network devices have improved in computational power and a vast 

amount of exciting network applications has emerged, the network in its structure has not seen much 

change from its early days. In the existing infrastructure, complex tasks that make up the overall 

functionality of the network such as routing or network access decisions are delegated to network 

devices from various different vendors all running different firmware. This well-established proprietary 

base of equipment making up the entire network infrastructure does not give much space for novel 

research ideas such as new routing protocols to be tested in wide-scale, real networks.   

 

Moreover the penetration of networking in various crucial sectors of our every-day lives discourages 

any attempt of experimentation with critical-importance production traffic. This is essentially one of 

the main reasons why network infrastructure has remained static and inflexible and no major 

breakthroughs have been achieved towards this direction. 

 

Openflow [13] has emerged from the need to address these critical deficiencies in networking today 

in order to help research bloom. Openflow exploits the existence of lookup tables in modern Ethernet 

switches and routers. These flow-tables run at line-rate to implement firewalls, NAT, QoS or to collect 

statistics, and vary between different vendors. However the Openflow team has identified a common 

set of functions that are supported by most switches and routers. By identifying this common set of 

functions, a standard way of manipulating flow-tables can be deployed for all network devices 

regardless of their vendor-specific implementation. Openflow provides this standard way of 

manipulating flow-tables, allowing a flow-based network traffic partition. This way, network traffic can 

be organized into various different flows which can be grouped and isolated in order to be routed, 

processed or controlled in any way desired. 
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Openflow can find great use in campus networks where isolating research and production traffic is a 

crucial operation. Flows can be created and maintained by a centralized entity called the controller. 

The controller can be extended in order to perform additional tasks such as routing and network access 

decisions. By removing network functionality from devices scattered along the network and 

centralizing it completely or locally, one can more easily control and therefore change it. The only 

requirements in order to implement this modification are switches that can support Openflow and a 

centralized controller process which contains the network logic. This way, the control and data plane 

are no longer colocated in one single network device, but separated and dynamically linked to one 

another. The separation of control and data plane functions and the adoption of a centrally controlled 

network model are concepts that have been discussed and approached by researchers before. Efforts 

like ForCES [43] and SoftRouter [44] have proposed architectures for enabling the decoupling of the 

control and data plane functionality of network devices, aiming in providing more efficient packet 

forwarding and greater flexibility in control functions.  Openflow shares much common ground with 

these architectures, however inserting the concept of flows and leveraging the existence of flow tables 

in commercial switches today. In the following sections the components of an Openflow-based network 

will be briefly presented. 

4.1 The Openflow network  

    

   The main components of a controller-based Openflow network are: 

 

• Openflow enabled switches  

• Server(s) running the controller process  

• Database containing the network view, a «map» of the entire topology of the network. 

 

    The Openflow switch, consists of a  flow  table  containing  flow  entries,  used  to perform packet 

lookup and forwarding and a secure channel to the controller, through which Openflow  messages  are  

exchanged  between the switch and the controller.  

 

   By maintaining a flow table the switch is able to make forwarding decisions for incoming packets by 

a simple lookup on its flow-table entries. Openflow switches perform an exact match check on specific 

fields of the incoming packets. For every incoming packet, the switch goes through its flow-table to 

find a matching entry. If such entry exists, the switch then forwards the packet based on the action 
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associated with this particular flow entry.  

  

Every flow entry in the flow-table contains [13]: 

 

1. header fields to match against packets : These fields are a ten-tuple that identifies the flow. 

 

Ingress 

Port 

Ether 

Source 

Ether 

Dst 

Ether 

Type 

VLAN 

Id 

IP 

Src 

IP 

Dst 

IP 

Proto 

Src 

Port 

Dst 

Port 

Figure 3: Fields used by OpenFlow to match packets against flow entries 

 

2. counters to update for matching packet : These counters are used for statistics purposes, in 

order to keep track of the number of packets and bytes for each flow and the time that has 

elapsed since the flow initiation. 

 

3. actions to apply to matching packets : The action specifies the way in which the packets of a 

flow will be processed. An action can be one of the following: 1) forward the packet to a given 

port or ports, after optionally rewriting some header fields, 2) drop the packet 3) forward the 

packet to the controller. 

 

The controller is a core, central entity,  gathering the control plane functionality of the Openflow 

network. Currently there are several controller implementations available. However the most widely 

used and deployed is the NOX controller [14] an open-source Openflow controller, therefore this report 

will be mostly focused around its implementation. The controller provides an interface for creating, 

modifying and controlling the switche's flow-tables. It runs typically on a network-attached server and 

could either be one for the entire set of Openflow switches on the network, one for each switch or one 

for each set of switches. Therefore the control functionality of the network can be completely or locally 

centralized according to how the delegation of switch management to controllers is performed. The 

requirement, however, is that if there are more than one controller processes, they should have the same 

view of the network topology at any given time. The network view includes the switch-level topology; 

the locations of users, hosts, middleboxes, and other network elements and services. Moreover it 

includes all bindings between names and addresses. In NOX the controller creates the network view by 

observing traffic related to services such as LLDP, DNS and DHCP. 

 



31 

 

It should be clear by now that, although the term „forwarding‟ is used, this does not refer to L2 

forwarding. This is because the examined fields include L3 information. Similarly, an Openflow switch 

does not perform L3 routing. There is no longest-prefix-match, or any other complicated calculation 

that takes place on the switch. In fact, the protocol does not define how the forwarding decisions for 

specific header fields (i.e. the actions) are made. The decisions are made by the programmable 

controller and are simply installed in the switches‟ flow tables. Openflow switches address the flow 

tables and match the incoming packets‟ header fields to pre-calculated forwarding decisions, and they 

simply follow these decisions.  

 

The secure channel is the interface that connects each Openflow switch to a controller. Through 

this interface the controller exchanges messages with the switches in order to configure and manage 

them. 

 

Figure 4: Idealized Openflow Switch. The FlowTable is controlled 

 by a remote controller via the Secure Channel. 

 

 

Openflow provides a protocol for communication between the controller process and the Openflow 

switches. There are three types of messages supported by the Openflow protocol. The controller-to-

switch, the asynchronous and the symmetric messages. We will briefly describe these three types of 

messages. For further study, the Openflow specification [1] provides an excellent source of 

information. 

 

 The controller-to-switch messages are initiated by the controller and may not always require a 

response from the switch. Through these messages the controller configures the switch, manages the 
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switch's flow table and acquires information about the flow table state or the capabilities supported by 

the switch at any given time.  

 

The asynchronous messages are sent without solicitation from the switch to the controller and 

denote a change in the switch or network state. This change is also called an event. One of the most 

significant events is the packet-in event which occurs whenever a packet that does not have a matching  

 

flow entry reaches a switch. When this happens, a packet-in message is sent to the controller, 

containing the packet or a fraction of the packet, in order for the controller to examine it and determine 

which kind of flow should be established for it. Other events include flow entry expiration, port status 

change or other error events.  

 

Finally, the third category of Openflow messages are the symmetriconous messages which are sent 

without solicitation in either direction. Those can be used to assist or diagnose problems in the 

controller-switch connection. 

 4.2 Openflow use for network virtualization 

 

The controller-based, Openflow-enabled network architecture described previously, aims to gather 

the network logic in a centralized entity, the controller. The controller is responsible for all forwarding 

and routing decisions by managing and manipulating the flow-tables on the Openflow switches. Once 

traffic is logically organized in flows, its manipulation becomes easier and much more straight-forward.  

 

This unique feature of Openflow can be used towards achieving network traffic isolation. By 

grouping together flows with different characteristics we create logical partitions of the common 

physical network infrastructure. If we map these groups of flows to different logical partitions and store 

this mapping in a centralized entity that has a complete image of the physical network, we will have 

created a flow-based virtual network abstraction on top of the physical overlay.  
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Chapter 5 

Openflow Network Virtualization 

5. Openflow Network Virtualization  

 

A number of representative virtualization techniques and architectures have been presented in 

previous chapters. An interesting conclusion deriving from this short survey is that most of the 

available network virtualization solutions today do not intend to provide a straight-forward definition 

of a virtual network. The definition is certainly implied but is not the starting point for proposing a 

certain technique or architecture. It could be said that all existing solutions accede to the loose concept 

of network virtualization being the partitioning of the physical network infrastructures to logical 

networks and procede in implementing it. 

 

 In the case of VLANs and VPNs the virtual network boils down to a set of endpoints identified 

through their MAC/IP addresses or services (essentially TCP ports) operating on them. In the context of  

PlanetLab and VINI  virtual networks are overlays on top of the existing Internet infrastructure. GENI 

and FEDERICA have a more abstract and holistic approach, being technology agnostic and providing 

full virtualization of nodes, network devices and links. 

 

Our approach is somewhat different. The definition of a virtual network is a crucial step that will 

enable us to further propose an Openflow-based architecture. The distinguising factor between our 

approach and the existing network virtualization approaches lies in the fact that our toolset for 

achieving network virtualization was very specific. Hence we were able to be very specific with our 

virtual network definitions. Having a definition as a starting point we can then move on to designing an 

Openflow-based architecture. 

5.1 Towards the definition of a virtual network 

 

The attempt to come up with a straight-forward, concrete definition of a virtual network that would 

allow us to further develop an Openflow-based architecture invoked a number of interesting issues. 

Many possible approaches for defining a virtual network were examined. We will briefly mention the 

alternative solutions that were considered along the way and the reasons why they lacked to provide an 

adequate means of defining an Openflow virtual network.  
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An approach that comes naturally to mind is to think of a virtual network in terms of the endpoints, 

links and network devices it comprises of. Similarly to PlanetLab's or FEDERICA's approach, a virtual 

network can be defined as a slice which consists of a set of virtual links, endpoints and network 

devices. End-users can opt in, requesting a set of resources which they can utilize in their preferred 

way, while being assured both high levels of isolation and interconnection with other existing virtual or 

real networks. This definition of a virtual network is resource-based, meaning that a virtual network 

can be adequately defined by the set of resources it consists of.  Although this kind of approach is 

rather straightforward and focused on the hands-on usage of virtual networks, it is very high-level and 

does not make use of Openflow's capabilities. As described in the previous chapter, Openflow enables 

the logical partitioning of network traffic in flows. Therefore, in order to leverage this unique 

capability, we should no longer think in terms of virtual links, end points and devices but rather in 

terms of traffic that goes through this set of resources. This way we can take advantage of the 

Openflow capability of describing traffic in terms of flows. 

 

The next question that comes to mind is how many and which of Openflow‟s ten-tuple fields can be 

used to describe a virtual network. Following the same approach as VLANs for example, a set of 

MAC/IP addresses or services (TCP ports) can mapped to one virtual network. However this approach 

is not flexible enough, since it should be possible for an endpoint with a certain MAC address to belong 

to more than one virtual networks. And VLANs fail to cover this case. Additionally, the IP address 

approach assumes IP connectivity. 

 

In order to allow generality and produce a more abstract, hence more flexible, definition of a virtual 

network, it is essential to impose as few restrictions as possible. Instead of using MAC/IP addresses or 

services to define a virtual network membership, we can assume that everything that can be found on a 

packet header, i.e.  IP, MAC, port info or any possible combination of this information, can be used to 

define virtual network membership.  

 

Instead of defining a virtual network through all possible information found on an individual packet, 

we can group packets in flows while preserving a certain level of generality. For example, a flow could 

be uniquely identified by an IP source and an IP destination address, but this statement makes the 

assumption that the packet is an IP packet. Therefore we need to use more fields from the packet's 
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header to be able to avoid assumptions while adding flexibility to our definition. MAC 

source/destination addresses are possible candidates. Following this concept, we conclude in a set of 

fields that could provide the building blocks for creating customized virtual network memberships.  

 

Following this idea, virtual networks can be defined not by the purpose that they serve, but by the 

kind of traffic that they carry. While these two concepts sound similar, they are fundamentally 

disparate: Mapping a virtual network to human-recognizable ideas, such as the service it provides or 

the hosts that use it, is bound to provide a constrained definition. The goal of this work is to provide a 

realization of virtual networks that are defined solely by the traffic that flows within them. It is a way 

of looking at virtualization from a network point of view, instead of the users‟ point of view. In this 

sense, a virtual network can be defined as a sum of traffic flows. This definition will become clearer as 

we revisit it in paragraph 5.3. 

 

Openflow is a protocol that provides this kind of flow-based network abstraction. As mentioned in 

the previous chapter, a flow can be identified by a 10-tuple which is part of the Openflow header [1]. 

By using flows, we can achieve the following: 

 

• One endpoint can belong to one or more virtual networks. 

• The definition of a virtual network becomes general hence virtual network membership can be 

customized according to the special requirements of the network.  

 

  In a production network there needs to be a way to map a large amount of flows to virtual 

networks. This should not significantly affect the network's performance or create an increased 

workload for the network devices.  

 

This chapter will go through the steps followed during the design phase, highlighting these decisions 

that were of critical importance to the architecture while presenting the alternative options that were 

available at any time. Further on, a set of terms and definitions that will be used in the context of the 

architecture will be presented. Finally, an overview of the final architecture will be briefly described 

and the high-level functionality of the various components comprising it will be discussed in detail. 
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5.2 Design Steps 

 

This section describes the evolution of our design. Each paragraph describes an extension to the 

approach of the previous paragraph, in an attempt to deal with shortcomings of every approach. These 

are considerations that had to be taken into account, and are provided as an indication of the challenges 

involved with an abstract design. They are not necessarily included in the actual architecture proposal, 

which is described in section 5.3.  

 

The first steps in our design stage were made with network virtualization for university campus 

networks in mind. In this context, a use case scenario of the proposed architecture would be to provide 

several virtual slices of the physical campus topology, each of them allocated to groups of researchers 

for experimental purposes. The target would be to allow research and experimentation on the available 

infrastructure, without affecting the operation of the campus production network. The benefits of 

deploying network virtualization in these environments are several, the most considerable of them 

being the ability to utilize large experimental topologies at no extra cost for equipment, or the need to 

establish distinct experimentation environments. 

5.2.1 Flow establishment 

5.2.1.1 Preconfigured flows 

 

With the above scenario in mind, our initial thoughts involved the configuration of virtual slices on 

a centralized supervising entity, and the establishment of matching flows that instantiate the configured 

slices. In this first approach, the administrator configures the virtual networks by providing a 

description for each network to the controller. The description is a topological description of the virtual 

network, which involves the definition of the network devices and their interfaces that constitute the 

slice. 

 

Depending on the capabilities of the controlled protocol, the slice configuration can optionally 

include additional information, used to customize the level of abstraction of the slice description. For 

example, in the case of OpenFlow, the administrators can provide fine-grained descriptions by 

explicitly specifying host identifiers (MAC/IP addresses), type of traffic (port), etc.  However, if no 

additional information is provided, the slice will still be abstractly defined as a subset of the physical 

topology, with no host, traffic, or even protocol restrictions. 
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Upon the configuration of a slice, flow entries that match the given configuration are automatically 

set up on the appropriate network devices, forming the slice. This way, the flows are pre-configured, 

and are ready to be used whenever a host tries to use the slice from a designated location. This could 

refer to any host connected to a designated location or specific hosts connected on designated locations, 

depending on the granularity of the configuration as described in the previous paragraph. 

 

While this simple approach provides some level of abstraction, this is far from the desirable 

generality. Pre-configured flow entries might be useful for virtual networks with very specific 

requirements, hosts and general usages (e.g. applications or type of traffic), but this kind of 

configuration is too static and does not favor scalability. Moreover, in order to abide by the principle of 

abstraction, the definition of a virtual network would ideally be independent of the network devices that 

comprise it, and a virtual network will not bound to a specific overlay of the physical topology, but the 

used paths can shift dynamically. 

5.2.1.2 Dynamic flows with host identification 

 

An alternative solution that is a step closer to the desired abstraction involved the dynamic 

establishment of flows upon user request. In this case, when a user would like to use a virtual slice, 

they would first contact this supervising entity, which, after authentication, would provide the user with 

a list of configured virtual slices of the network. The virtual slices listed there, would depend on the 

user‟s credentials, and/or the physical point of connection to the network. The user would then choose 

to join one of the available virtual networks, and after authentication the host would be a part of the 

selected slice. After that point, both the underlying production network and the other available virtual 

slices would be transparent to this host. 

 

A simple analogy of the aforementioned scenario is the process of authentication to wireless LANs. 

In WiFi, the physical medium is the air. In a given environment, several groups of users utilize this 

medium by configuring and operating separate networks on top of it. A WiFi user retrieves a list of 

advertised beacons and chooses to use one of them. After authentication, the host‟s network stack is 

unaware of other networks on the physical medium. Of course this is irrelevant to virtualization, since 

network isolation is achieved on the physical layer. However this describes the desirable functionality. 

In our case, the list of available networks is provided by a supervising entity that maintains their 
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configurations, and just like WLANs are isolated and used by different groups, the virtual slices are 

ignorant to each other‟s existence although they share the same medium; the campus network.  

 

This approach still raises several limitations that we wanted to avoid. One significant restriction is 

that each host can only operate on a single OVN at a time. This is something that contradicts the 

desirable generality of our objective. Virtualization becomes most efficient when it is realized in 

multiple forms. Network virtualization that forces a host to operate on a single slice automatically 

negates the benefits of server virtualization on that host. In other words, one machine would be unable 

to host several virtual servers that would operate on separate network slices. This kind of loss of 

generality should be avoided. 

 

Moreover, in the above scenario virtual network membership identification essentially takes place 

on the application layer, and is based on user credentials. In this way users are aware of the slices, 

making virtualization an opaque function. Thus, while this design introduces a centralized virtual 

network management entity, it does not seem to abolish several undesirable, restricting characteristics. 

 

The objective of our work has been to reach a definition of virtual networks which would be as 

abstract - and thus as customizable - as possible. A nice feature enforcing this kind of abstraction would 

be to completely conceal the concept of virtualization from the end users as well as the network 

devices. We wanted the notion of virtual slices to be manifested only on the control plane, which is in 

this case represented by our supervising entity, the controller. 

5.2.2 Path Calculation 

 

The above considerations also raised the problem of defining a method of selecting a physical path 

in order to connect two points of a slice. Even for this simple approach, the connection locations to a 

virtual network are only half of the required information that defines the network. In order to describe it 

in its entirety, we actually need to describe how these locations are connected, by setting up the flow 

entries along available physical paths.  

 

It is thus obvious that there is need for an entity that, given the network topology and a set of 

routing requirements, can calculate a path which connects two points of the network. So the question 

that rises is where should this path calculating entity fit into our architecture? The selection of a 
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physical path is a separate and complex process. Moreover, considering the variable purposes of 

network slices, the path selection might be required to be based on different algorithms for different 

networks. These considerations led us to separate the path finding functionality from the rest of the 

architectural mechanisms. 

 

The notion of an offline path-finding entity has been discussed a lot in the research community 

during the last decade. This trend has been followed by researchers working on routing protocols in 

general, and is not strictly related to virtualization. RFC 4655 [40] discusses a network architecture 

based on an offline Path Computation Entity (PCE). While the purpose of the PCE in that document is 

to run constrained based routing algorithms for MPLS networks, the benefits provided by a path finder 

as a separate finding entity are the same. 

5.3 Terms and definitions 

 

   Having discussed several initial alternative approaches, we will proceed to the proposed architecture. 

However, first, certain terms that will be used throughout this paper should be defined:  

 

• We will refer to any machine that sends or receives data through an OVN as an Endpoint.  

 

• An OF switch is a switch that supports the Openflow protocol ('type 0' switch as defined in the 

Openflow whitepaper [1]) 

 

• The term Access Point will frequently be used for describing an ingress/egress port for the 

network. An access point is represented by a [switchID, switchPort] pair.  

 

• A path is a physical route between two access points. 

 

• The term OF 10-tuple will refer to the 10 header fields found on every packet that enters the OF 

network, as described in the previous chapter. 

 

• Flow entries are forwarding rules stored in an OF switch's flow table. These rules provide a 

forwarding decision for an incoming packet based on its OF 10-tuple. 
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• The term flow refers to traffic that matches a specific OF 10-tuple. This definition is traffic-

oriented in a sense that it only reveals information about the values of the header-fields of the 

packets that constitute the flow and not the path that they follow through the network. In this 

sense, a combination of flow entries on several OF switches instantiates a flow, binding it to a 

specific path. 

 

• A sum of flows can thus adequately define a subset of the total traffic that goes through the 

physical network. Our approach to a virtual network is to define it in an abstract way using the 

traffic that goes through it. Therefore an Openflow Virtual Network (OVN), can be defined as 

a sum of flows. This provides the desirable abstract definition, which is based solely on the type 

of traffic that goes through the virtual network. Inductively, the definition of the OVN does not 

imply anything about the paths that the OVN traffic follows along the network, or the endpoints 

that use the OVN. These could and should be able to change dynamically in order to adapt to 

network changes or failures without affecting the OVN definition. 

5.4 Additional components for the proposed architecture 

 

The proposed architecture comprises of all the components needed for an Openflow-based network 

as described in the previous section, as well as some additional entities which provide OVN 

abstraction. These entities are the following: 

 

• Administrator: The administator is the entity that provides OVN abstraction to the network. It 

maintains a database of OVN entries called the OVN database. Furthermore it provides an 

interface for adding, deleting and modifying OVNs on that database. Being the only entity 

which has a global view of existing OVNs, the administrator is also responsible for OVN 

identification of a packet that is introduced to the network. The administrator could be seen as a 

process that runs on the same machine as the controller or a separate machine in the network. 

There could be one or more administrator processes as long as they have access to the same or 

to exact copies of the OVN database.  

 

• Path-Finder: An entity that is responsible for making the routing decisions within an OVN. 

This process takes 2 access points (an ingress port, and a destination port) as input and, 

knowing the network view at a particular time, calculates the path that a packet should follow 
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through an OVN. This entity could also run separately or on the same machine as the controller, 

and there can also be one or more path-finder entities in the network.  

 

The figure below describes the basic architecture of an OVN enabled Openflow network 

 

 

Figure 5: An OVN enabled Openflow network 

 

5.5 Components in detail 

5.5.1 Administrator 

 

As mentioned in the previous paragraph, the administrator is the entity that provides OVN 

abstraction within the network. It is the only entity that can understand and interpret this abstraction. 

The administrator maintains and has access to the OVN database which is the core information tank of 

our architecture. The OVN database contains one OVN entry for each of the existing OVNs. The 

format of the OVN entires is shown in the following figure: 

Name Id Properties Services Datapaths Auth 

Professors 1 [...] 

Http 

10.10.0.100 

nl:1 port:2 

All Yes 

MyRouting 2 [...] 

Dns 

192.168.1.10 

nl:2 port:4 

All Yes 

BobSlice 3 […]  
dp2, dp4, dp5, 

dp9, dp10 
No 
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Figure 6: The OVN database 

 

 

The various fields contained in an OVN entry are explained below: 

• Name: Name of the OVN, chosen by the OVN owner. 

• Id: Unique identifier for the OVN, incremented for every added ovn. 

• Properties: An array of properties of OVN traffic according to the OF 10-tuple definitions, 

based on which the administrator can decide if a packet belongs to this OVN. Each property can 

be assigned more than one value, as well as wildcard values. These properties are described in 

the next paragraph. 

• Services: List of services running on the OVN, host of the service, switchID and port where the    

service resides.  

• Auth: indicates whether access to the ovn requires authentication. 

• Datapaths: Indicates which OF switches are available for this OVN. This parameter is optional. 

An empty field indicates that the whole physical topology is at the path-finder's disposal, and 

the OVN can consequently expand anywhere on the network. A non-empty value requires a 

path-finder that supports route calculation based on given topology restrictions. Although this  

field introduces path restrictions for an OVN, the fact that it is optional does not affect our OVN 

definition which does not associate an OVN to the paths it uses. An implementation that 

supports a restriction-based path finder and makes use of this field, binds an OVN to a subset of 

the openflow network topology. The datapath restrictions can be either loose or strict. In the 

case of loose restrictions, when the path-finder cannot provide a path using the preferable set of 

datapaths, it looks for an alternative using the whole topology. If the datapath restrictions are 

strict and no path can be calculated using the designated datapaths, the path-finder notifies the 

administrator that there is no path available. 

The properties array is the most significant element of an OVN entry. OVN identification for a new 

packet is based on this array. When a packet that is received by an OF switch matches an existing flow 

in its table (be it either a production network flow or an OVN specific), it will be forwarded 
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accordingly. If however the packet cannot be matched to any flow, it will be forwarded to the 

controller. The controller will in turn consult the administrator process which will have to deduce 

which OVN the packet is intended for. In order to do so, it will need to match information found on the 

packet's OF 10-tuple to the properties that the owner of the OVN has defined for the OVN. These OVN 

properties are held in the OVN database and they correspond to 10 fields defined in an OF 10-tuple. 

The only difference is that the original ingress port field is now replaced by an access point. Each field 

can be assigned multiple values, for example many source MAC addresses, or many possible 

destination ports. The sum of all different values for every field provides a description of all the traffic 

that belongs to this OVN. It is the responsibility of the OVN owner to define the OVN traffic as strictly 

as possible. The more information the administrator is provided with, the finer the granularity of the 

flow entries corresponding to the OVN. 

Connected Ports 

[switch, port] 
Ether 

Src 

Ether 

Dst 

Ether 

Type 
Vlan ID IP Src IP Dst IP Proto Src Port 

Dst 

Port 

[1,3] [1,4] 

[3,2] [4,1] 
Any Any 0x0800 - Any Any - - 4444 

Figure 7: The Properties array of an OVN entry. 

 

 

The elements of the properties array are explained in detail below: 
 

• Connected ports: A list of access points (pairs of <switchID, port>), indicating which ports of 

the physical topology have been enabled for the OVN. 

• Ether type: The hexadecimal code for the ethernet protocol used in this OVN. If multiple 

OVNs are matched based on this, the tiebraker is one of the next properties. 

• Ether src/dst: Ethernet addresses registered in this OVN. If a packet is originated/destined 

from/to one of these addresses, it can belong to this OVN. If multiple OVNs are matched based 

on this, the tiebraker is one of the next properties. 

• VLAN id: reserved – could be used as ultimate tiebraker. 

• IP src/dst: IP addresses registered in this OVN. If a packet is originated/ destined from/to one 

of these addresses, it belongs to this OVN. If multiple OVNs are matched based on this, the 
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tiebraker is one of the next properties. 

• IP proto: The hexadecimal code for the ethernet protocol used in this OVN. 

• Src/dst port : Ports on which OVN-specific applications operate. 

5.5.2 Path-finder 

 

The path-finder is the entity responsible for making routing decisions within OVNs. The path-finder 

provides a path in the form of a list of consecutive access points. The administrator process acquires 

this list, translates every two consecutive access points from the list into a flow entry for a specific 

switch and instructs the controller to invoke the flow entry creation in the respective switches. The 

process through which a path is calculated is left at the discretion of the implementation of the path-

finder. The routing decision can be based on one or more of the following criteria:  

• Conflicts (mandatory): Any newly created flow entry should not conflict with the pre-existing 

flow entries on a switch. 

• Hops (optional): Select the path with the minimum number of hops 

• Link costs (optional): Select the path with the minimum total cost 

• Flow table sizes (optional): Select the path in a way that the average flow table size is 

maintained at a minimum. 

• Datapaths (optional): Calculate a path using a subset of the available OF switches, which is 

provided by the administrator upon a path request 

• User defined factors (optional): The user can define their own metrics for example request 

that a specific switch is not included in the path. 

5.6 Related Work  

 

Rob Sherwood et al, have proposed a special purpose Openflow application called Flowvisor [32], 

which enables experiments by different researchers to run simultaneously on the same Openflow 

network. FlowVisor creates slices (OVN equivalents) of the same physical network which are 
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independent and isolated from one another. Flowvisor uses the same virtual network definition, where a 

set of flows define a virtual network. However the architecture differs. Each slice is controlled by a 

different controller and Flowvisor acts as a proxy, siting between the experimenters' controller and the 

OF switches in the network. Flowvisor acts as a transparent multiplexer/demultiplexer of controller-

switch communications in such a way that controllers talking to Flowvisor believe that they 

communicate with their own dedicated switch, although another controller might be using another part 

of the same switch through the Flowvisor. Similarly, in the other direction, an Openflow switch thinks 

that it is communicating with a single controller, although the Flowvisor might be aggregating 

commands from several controllers, and dispatching them to different parts of the switch. Flowvisor 

makes sure that packets are forwarded according to the virtual network they belong to by modifying the 

Openflow messages received from the OF switches and controllers accordingly. Flowvisor allows for 

recursive delegation of virtual networks. This means  that a slice can be further delegated to one or 

more experiments.   

 

Based on cluster computing architectures where the resources of several distributed servers are 

combined to form one virtual server,  Fang Hao et al., [45] propose an interesting approach for 

implementing network virtualization. The main purpose of this architecture is to assist the migration of 

services in data centers. Service migration refers to services moving between different Virtual 

Machines distributed along the network, in order to minimize user delays and improve performance. 

The work proposes a centralized architecture where different FEs (Forwarding Elements) distributed 

along the network, form a a virtual router, called VICTOR (Virtually Clustered Open Router). The sum 

of different FEs can be seen as a set of input and output ports on the virtual router. A VICTOR is 

controlled by a centralized entity called the CC (Centralized Controller) which gathers the control plane 

functionality of many VICTORS. Each VICTOR is allocated for a different virtual network. The 

advantage of this architecture is that  there is a large pool of available ports on the virtual router in 

different locations since the FEs are distributed along the network. This way traffic can be routed in 

different ways according to parameters such as the location of the end hosts. 

 

Having presented the main components that comprise our architecture and go through their 

functionality in detail, the following chapter will focus on the high-level implementation of these 

components covering issues such as the communication between them. 
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Chapter 6 

Openflow Virtualization API 

6. Openflow Virtualization API 

 

This chapter describes in further detail the architecture proposed in Chapter 5. Specifically, we 

define a) the communication protocol used between our entities, b) the functions performed by each 

entitiy and c) the interface between the controller and our entities. 

6.1 Communication between entities 

 

Communication between the OF switches and the controller is taken care of by the Openflow 

protocol and has been briefly described in previous sections. The introduction of the administrator and 

path-finder entities which provide the OVN abstraction in the existing architecture mandates a need for 

communication between these entities. It also requires slight modifications in the behaviour of the 

controller as described previously. Before the OVN abstraction was introduced, it was the controller 

that was responsible for invoking the addition, deletion and modification of flows in the flow tables of 

the OF switches. This task is now delegated to the administator entity which, based on the OVN 

information found in its OVN database, will decide which flows will be added, deleted or modified and 

will hence instruct the controller to invoke these changes on the respective OF switches. It becomes 

obvious that an additional interface should be introduced, providing communication between the 

controller and the administrator process and enabling the support of the OVN abstraction from the 

controller side. 

6.1.1 Communication between Controller and Administrator  

 

We have defined 3 different types of messages for the communication between the controller and 

the administrator. The documentation as well as the source code refers to these messages as CA 

messages. These messages constist of the CA header, and possibly CA data. The CA header contains 3 

fields: 

• Packet type : Indicates type of  CA message (PUSH_PACKET, OVN_HIT, OVN_MISS) 

• Length : The length of the CA data segment 

• Packet ID : Used to identify the transaction between controller - administrator 
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6.1.1.1 Controller-to-Administrator 

 

These messages are sent from the controller to the administrator in an asynchronous manner, 

everytime a packet-in event (with reason:'no match') occurs at the controller. 

• CA_PUSH_PACKET:  As mentioned previously, for all packets that do not match any flow entry, 

a packet-in event along with the full packet or a fraction of it, is sent from the OF switch to the 

controller. The controller at this point needs to push the packet or the fraction of the packet to the 

administrator process in order for the administrator to perform the OVN lookup and determine 

which OVN the packet belongs to. This is done by sending a Push-Packet message to the 

administrator. The data segment in this case is the OF 10-tuple of the packet that triggered the 

packet-in event. (If the switch that raised the packet-in event supports buffering, it will only send 

the 10-tuple to the controller. Other wise the swtich will push the whole packet to the controller and 

it will be the resbonsibility of the controllers ovn interface to strip the unnecessary fields and only 

pudh the OF 10-tuple to the administrator) 

Type Length PacketID  OF 10-Tuple 

PUSH_PACKET message 

 

6.1.1.2 Administrator-to-Controller 

 

• CA_OVN_HIT: As mentioned previously, Modify-State messages are sent from the controller to 

the switch  in order to add/delete and modify flows in the flow tables. In the context of the OVN 

architecture, it is the administrator that decides which flows will be added, deleted or modified at a 

particular time. Therefore the administrator sends a Modify-Flow message to the controller 

containing all the necessary information in order for the controller to construct the Modify-State 

message that will be sent to the respective switch or set of switches. The data segment of this 

message is a list of switched and flow-mod commands that should be issued on each switch. 

Type Length PacketID  Flow-mod commands 

OVN_HIT message 

 

• CA_OVN_MISS: The administrator sends this packet to the controller in order to notify it that the 
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requested packet was not matched to an existing OVN. The packet has no data field, as the CA 

header is enough to let the controller know that the specified packet is production network traffic 

and should be passed to the underlying controller functions.  

Type Length PacketID  

OVN_MISS message 

 

 6.1.2 Communication between Administrator and Path-Finder  

 

There are only 2 messages involved in our current definition for this communication: one message 

for each direction. Similarly to the CA messages, the message used here are called PA messages and 

have header containing the same fields (Packet Type, Length, Packet ID). 

6.1.2.1 Administrator-to-Path-finder 

 

These messages are sent from the administrator to the path-finder entity  

PA_PATH_REQUEST: Through this message the administrator requests a path from the path-

finding entity. The Request-path message sent by the administrator contains the two access points (an 

ingress port, and a destination port) that the path-finder needs to know in order to calculate the path. 

The Packet ID is again used to tag the request. The request message may optionally include datapath 

restrictions, asking the path-finder to calculate a path that uses the designated OP switches. This occurs 

when the 'Datapaths' field of the corresponding OVN entry in the OVN database is not empty. This 

optional parameter requires a path-finder that supports this functionality.  The parameter is provided as 

a list of datapath Ids.  
 Note: There have been discussions about adding a „Capabilities‟ message in order to 

advertise support for the optional „datapaths‟ parameter. Although this could be 

useful in future work, at this point we only mention it as a possibility and do not 

standardize it or implement it, as its format would depend on forthcoming 

extensions. 

 

Type Length PacketID  AccessPoint1 AccessPoint2 [datapaths] 

PATH_REQUEST message 
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6.1.2.2 Path-finder-to-Administrator 

 

• PA_PATH_REPLY: A message containing a list of consecutive access points that indicate a path 

through a specific OVN. The administrator will use this list to invoke the corresponding flow-mod 

commands through the controller. Again, Packet ID is used to map the path to the corresponding 

request.  

Type Length PacketID  path 

PATH_REPLY message 

 

6.2 Entity Functions 

6.2.1 Administrator API 

 

As we mentioned earlier, the administator is the only entity which is aware of the existence of 

OVNs. As such, there needs to be an interface between it and the OVN owners, in order to provide the 

administator with OVN descriptions. The following set of OVN functions has been defined for this 

purpose: 

• createOvn (ovnName): This function creates a new OVN with the name ovnName. When a 

new OVN is created, a new entry is added in the OVN database of the administrator process. 

Such new entries are initially simple frameholders for the newly created OVN. The OVN is not 

functional until some switches/ports have been attached to it. 
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Figure 8: CreateOVN(Professors) adds a new OVN entry in the database. 

 

• addProperty (ovnName, propertyName, value): This function adds a new rule in the property 

list field of the ovnName's entry in the OVN database. Before a property is added, the 

administrator process must check for conflicts with properties of other OVNs. A conflict occurs 

if for two OVNs who have the same port enabled on any switch, a property with the same value 

is added (that goes also for wildcard value overlapping). In this case the addProperty function 

will return an error. 

Figure 9: The commands addProperty(Professors, Ether proto, IP) and addProperty(Professors, IPproto, TCP) 

 add two properties for the Professors OVN. 

 

• removeProperty (ovnName, propertyName, value): This function removes a property from 

the property list field of the ovnName's entry in the OVN database. 

• addPort (ovnName, switchID, port): This function attaches a port of an OF switch to 

ovnName. After this function is called, an endpoint connected to port can be a member of 

ovnName. The function does not set up any flows, but merely indicates that port is now enabled 

for ovnName. When port is successfully attached to ovnName, the 'Connected Ports' field in the 

'Properties' list of the ovnName entry in the OVN database needs to be updated with the pair 

<switchID,port>. 
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• addPorts (ovnName, [(switchID, port), (switchID, port),...]): Same as above, but can be used 

to add multiple ports on multiple switches to ovnName. 

Figure 10: addPorts(Professors, [1,3], [1,4], [3,2], [4,1]) enables the Professors OVN on 4 access points. 

 

 

• removePort (ovnName, switchID, port): This function detaches port from ovnName. The 

pair switchID,port is removed from the 'connected ports' field of the ovnName entry in the 

OVN database. Endpoints connected to port can no longer be part of ovnName. 

• removePorts (ovnName, [(switchID, port), (switchID, port),...]): As above, but used to 

detach multiple ports on multiple switches from ovnName. 
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Figure 11: An example view of an OVN enabled Openflow network after the definition of several OVNs 

 

Apart from the operations on the OVN database, the administrator needs some functions that 

implement the connectivity to the path-finder as well as the  controller. 

• SendPathRequest (<switchID1, port1>, <switchID2, port2> , [datapaths]): This function is 

used to send a Request-Path message to the path-finder 

• SendOvnHit (packetID, commands): This function sends an OVN_HIT message to the 

controller, asking it to invoke flow-mod commands on OF switches.  

• SendOvnMiss (packetID): This function sends an OVN_MISS message to the controller, 

indicating production network traffic.  

6.2.2 Path-finder API 

The path finder communicates with the administrator process each time a route needs to be 

calculated. This paragraph describes that functions that are performed on the path-finder when invoked 

by the administator. 

• findPath (pathID, [(switch1, port1), (switch2, port2)): This function calculates a path from 

 



54 

 

the first access point to the second access point of the parameters. The function returns a path 

in the form of cosecutive access points, e.g. [ (switch1, port1), (switch1, portA), (switchX, 

portB), (switchX, portC), ... (switchY, portD), (switchY, portE), (switch2, portF) (switch2, 

port2) ] 

• sendPath (pathID, path): This function sends a PA_PATH_REPLY message to the 

administator. The path parameter is a list that was returned by the findPath function. The 

administator uses pathID to map the newly learnt path to the correct request. 

6.2.3 NOX OVN interface 

The following describes a NOX application which is used as an interface between the NOX 

controller and the OVN administrator process. 

 

The interface should intercept all packets arriving to the controller from the network, and forward 

them to the administrator so that it performs the OVN membership lookup. At this point, the 

administrator will either identify the packet as traffic belonging to an OVN, or conclude that it is 

production network traffic. In the latter case, it will simply inform the OVN interface that the packet 

can be treated as production traffic, and the OVN interface will push it the underlying NOX apps. If, 

however, the packet is matched to and OVN, the administrator will consult the path finder, get a valid 

path to the destination, and send the appropriate flow-mod instructions to the OVN interface. The OVN 

interface will in turn invoke flow-mod commands on the corresponding datapaths, and send the packet 

back to the network, in order to follow the newly establish flow. 

 

 

Figure 12: The OVN interface for NOX 

 

Figure 12 illustrates the following OVN interface callback functions: 

 

• packet_in_event (1)  Send PUSH_PACKET (2) message to administrator. Buffer the packet 
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until a response from the administrator is received. 

 

• OVN_MISS (3)  Post a packet_in_event (1), as originally received from the network, to 

other nox apps. (Occurs when the administrator fails to match a packet to an existing OVN. 

Packet is treated as production network traffic. This has the same impact as if the OVN 

interface didn't exist.) 

 

• OVN_HIT (3)  Instruct NOX to send Modify-State (4) messages to corresponding 

datapaths, as instructed by administrator. Send the buffered packet back to the network (i.e. 

instruct the datapath that raised the original packet_in_event to send it out a specific port 

according to the new flow) 
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Chapter 7 

Low level Implementation 

7. Implementation 

 

This chapter delves deeper into the lowest level of the implementation. While chapter 6 decribes 

higher level functionalities and APIs, this chapter will go through our own implementation of the 

entities and the communication between them.  

7.1 Implementation of the Entities 

7.1.1 Controller OVN interface  

 

The Controller OVN interface is an interface attached to the controller (in our case NOX) for OVN 

support. This interface is a python script and it is implemented as any other NOX application. The 

main requirement for this interface was to be totally transparent to the controller itself, in case of 

production network traffic. This means that it should intercept packet-in events, and if a packet is not 

matched to an existing OVN, it should be passed to the controller which will handle it as if the OVN 

interface never existed. 

The OVN interface, just like any NOX application, attaches a behaviour to the controller, 

instructing it to perform specific procedures upon particular openflow events. The NOX controller can 

prioritize the order with which the running applications will handle events. Putting the OVN interface 

on top of that list lets us intercept packet-in events, and, if needed, pass them on to the underlying 

applications. This accomplishes independent handling of OVN and production network traffic. 

 

 Note: The description provided here will be kept at a high level. For a more detailed 

description as well as instructions, the interested reader can refer to our project‟s 

wiki for documentation and source code [42] 

 

Our implementation was written in Python. The OVN application, defined in ovn.py, is in constant 

communication with the administrator. The communication specifics are covered in the next paragraph. 

When the application receives a packet-in event, it buffers the packet, and creates a 

CA_PUSH_PACKET message which is forwarded to the administrator. The forwarded packet 
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essentially contains the original packet's OF 10-tuple along with a datapath id (this is what the 

administrator requires in order to perform an OVN lookup) and a buffer id.   

A reply from the administrator can either be a CA_OVN_HIT, or a CA_OVN_MISS message. In 

case of the latter, the event is simply passed to the underlying NOX applications as production network 

traffic. In case of an CA_OVN_HIT, the reply from the administrator will also carry the path through 

which flow entries must be established, as well as a buffer ID. The OVN application retrieves the 

buffered packet using this ID, extracts the packet's flow, and sets up corresponding flow entries on 

switches along the path provided by the administrator. 

This functionality will setup a flow from the source to the destination, but not vice versa. In order 

for the communication to be 2-way, the OVN application currently sets up a returning flow along the 

same path. 

7.1.2 Administrator 

7.1.2.1 The OVN database 

 

The OVN database is a standard MySQL database that contains two tables: the OVNEntry and the 

Properties table. The tables format is shown below: 

OVN id OVN name 

Figure 13: OVNEntry Table 

 

 

OVN 

id 

Connected 

Points 

Ether 

Src 

Ether 

Dst 

Ether 

Type 

VLAN 

id 

IP   

Src 

IP   

Dst 

IP 

Proto 

Src 

Port 

Dst 

Port 

Figure 14: Properties Table 

 

The OVNEntry table consists of the fields OVNname and OVNid. The OVNname field serves as a 

user-friendly identifier for the OVN. The OVNid field is a unique identifier for the OVN and is used as 

an index field, that is to provide a mapping between OVN entries in the OVNEntry table and their 

respective properties in the Properties table. The Properties table consists of the OVNid, the 

ConnectedPoints field which specifies which access points have been enabled for a specific OVN, as 

well as the 10-tuple fields which are used to describe the kind of traffic that belongs to a specific OVN. 
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The free software phpMyAdmin written in PHP has been used to handle the administration of the 

OVN database. PhpMyAdmin supports the majority of operations with MySQL and provides an easy 

to use web interface to manage and administer a MySQL database.  

7.1.2.2 Database Handlers 

 

 As mentioned in previous chapters the administrator entity is responsible for maintaining, editing 

and accessing the OVN database. Our administrator entity is written in Python. In order to extend its 

capabilities to support database operations, the DB-API Python module  MySQLdb [37] was used, 

which provides a database application programming interface (API).  

 

   There are two classes for handling the OVN database, the DBHandler and the OVNdbHandler 

class. The primitive class DBHandler  provides basic database operations, including generic methods 

such as connect, disconnect, issue a query and access the results of a query. The OVNdbHandler 

extends the class DBHandler with the custom methods that make up the administrator API, as 

described in section 5.2.1, for managing the OVN database. The administrator creates a reference to an 

OVNdbHandler object in order to be able to access its functions both for editing and accessing the 

OVN database.  

7.1.2.3 OVN lookup function 

 

This is one of the most essential functions of the administrator entity. Through this function, the 

administrator matches a packet based on its ten-tuple values against all possible OVN entries in the 

OVN database. When a packet enters the administrtor entity the administrator checks the Access Point 

that the packet was received from. It first queries the OVN database to get the OVN entries for which 

this Access Point has been enabled. If no such OVN exists the match is unsuccessful as there is no 

OVN entry corresponding to this Access Point. The administrator then sends an OVN_MISS message 

to the OVN interface entity. In the case that there is one or more OVN entries with this Access Point 

enabled, these entries are further checked in order to determine which  of those have a description that 

matches the incoming packet.  

 

    The fields of the packet are checked one by one against all the fields that have been set for each 

OVN entry. If all fields whose values have been set for a specific OVN entry match the respective field 

values of the packet, a successful match has been made. The next step is to check which Access Points 
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have been enabled for the matching OVN. Unless a unique destination Access Point can be determined 

through some other way, the packet will have to be sent to all Access Points enabled for the matching 

OVN except for the ingress access point. The lookup function returns all these possible Access Points 

to the administrator which then issues path finding requests for each of these access points to the path-

finder entity.  

7.1.2.3 Conflict detection in OVN definitions 

 

   Since two or more OVNs can have common Access Points enabled,  OVN definition conflicts 

might occur which will result in false handling of packets.  The table below shows an example of such 

a conflict. OVN 1 and OVN 2 have a common Access Point enabled ([3 4]).  The description of OVN 

1 in terms of flows would be «all traffic coming from IP 10.0.0.1» while the description of OVN 2 

would be «all traffic coming from 10.0.0.1 at port 80 with destination 10.0.0.2». It becomes obvious 

that the definition of the first OVN is a superset of the definition of the second OVN. In this way 

packets that perfectly match definition of OVN 2, can also match the definition of OVN 1.  

OVN 

ID 

Connected   

Ports 

Ether 

Src 

Ether 

Dst 

Ether 

Type 
Vlan ID IP Src IP Dst IP Proto Src Port 

Dst 

Port 

1 [2,4] [3,4] - - - - 10.0.0.1 Any - - - 

2 [3,4] - - - - 10.0.0.1 10.0.0.2 - 80 - 

Figure 15: OVN definition conflict example 

 

OVN definition conflicts should be avoided or else there will be no way for the administrator entity 

to determine which packet streams belong to which OVN. Therefore a conflict detection function 

should run everytime a new value is to be inserted  or an Access Point is to be enabled for a specific 

OVN. 

         

The conflict detection function allows the insertion of new values at the OVN entry only if they 

don't cause any definition conflicts. Therefore everytime an addProperty() or addPort() function is 

called, a conflict detection function checks if the value to be inserted causes possible definition  

conflicts and allows or bans the insertion of the value. 

 



61 

 

     7.1.3 Path Finder 

 

The path finding functionality was intentionally seperated from the rest of the entities in order for 

its implementation to be flexible for any given network. This way the respective path finding algorithm 

can encompass any of the factors defined in pragraph 5.5.2, based on the network requirements. 

For our purpose we re-used the routing functionality provided by the NOX controller, in a python  

application called samplerouting. This provided routing application depends on a couple of other NOX 

applications, namely the topology and the discovery application. These dependencies provide the 

global network view for the routing application. Thus, when the controller runs with this application, 

the OF switches adapt the behaviour of routers. The provided application takes care of calculating 

paths from a source access point to a destination access point, based on the minimum number of hops, 

and then sets up the flow entries that correspond to this route on the involved switches. For our proof 

of concept we wanted to strip down this functionality, and simply have the application calculate paths. 

The paths are then returned to the administrator, and it is the administrator's responsibility to setup the 

flows on the corresponding switches. 

The edited version of the samplerouting application instantiates a PathfinderPAchannel upon 

initiation, which takes care of the communication with the administrator. The communication is 

covered in the next paragraph. When a PA_PATH_REQUEST arrives from the administrator, the path 

finder creates a list of <dpid, inport, outport> triplets, and it sends it back to the administrator 

encapsulated in a PA_PATH_REPLY message. 

7.2 Implementation of communication between Entities 

 

Communication between the controller, the administrator and the path finder is event driven, and it 

is implemented using Twisted, an event-driven networking engine written in python [50]. For this 

purpose, two simple python modules have been defined:  

7.2.1 Controller – Administrator communication 

 

CAchannel.py describes the communication between the controller's OVN interface and the 

administrator. This file defines two Twisted protocols, one for each end of the CA channel. The 

controller end acts as the server and the administrator as the client for this connection. The class 

ControllerCAprotocol describes the callback functions that are triggered on the controller when events 
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occur on this channel. The controller simply instantiates an object of the ControllerCAchannel class, 

which takes care of the CA channel communication from that point on. Each time a CA message is sent 

out to the CA channel from the controller, the channel interface buffers the packet and assigns it a 

packetID, which will be used to identify replies (from the administrator) to specific CA messages. 

Similarly, the class AdminCAprotocol describes the behaviour of the administrator in case of CA 

channel events. The administrator process instantiates an AdminCAchannel, which takes takes care of 

the communication with the controller. Apart from buffering messages, the CAchannel module also 

takes care of the encapsulation of CA messages. This means that the end entities (administrator, 

controller) do not need to worry about  creating CA headers as this is done by the CAchannel objects 

that they use. 

7.2.2 PathFinder – Administrator communication 

 

PAchannel.py describes the communication between the administrator and the path finder. The 

relationship between the administrator and the path finder regarding their communication is similar to 

the relationship between the administrator and the controller for the CA channel. Just like in the CA 

channel, the administrator acts as the client in this connection. The class PathfinderPAprotocol 

describes the callback functions that are triggered on the controller when events occur on this channel. 

The path finder only needs to instantiate an object of of the PathfinderPAchannel. Whenever a  

PA_PATH_REQUEST arrives from the administrator, it calculates a path and replies with a 

PA_PATH_REPLY message. PA message encapsulation is taken care of by the module. The class 

AdminPAProtocol  describes the behaviour of the administrator in case of PA channel events. When a  

PA_PATH_REPLY message is received, the administrator matches it to an originating 

CA_PUSH_PACKET and pushes a CA_OVN_HIT to the controller, encapsulated accordingly. 
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Chapter 8 

Testing Environment 

8. Testing Environment 

 

A significant portion of the project involved the establishment of an experimental environment that 

we could use in order to deploy the proposed architecture and experiment with it. While neither the 

timeframe nor the available resources allowed for a realistic scale deployment, it was considered vital 

to provide at least a proof of concept implementation over a small, controllable topology. 

 

The establishment of the testbed was a challenging procedure in itself, mostly due the primitive and 

experimental stage of the involved tools and protocols at the time of our research. Both Openflow and 

NOX continue to be under heavy development at the time of writing of this document. Due to the 

volatile state of the code of these projects, it has been understandably difficult to maintain updated 

documentation, thus making the process of setting up a testbed even more challenging. 

8.1 Choice of controller 

 

As previously stated, NOX and OpenFlow do not necessarily need to operate together. NOX is a 

centralized programming environment which provides the ability to specify flow entries in the 

forwarding table of controlled switches. OpenFlow enabled switches are examples of controllable 

switches, but NOX can utilize any similar controlled protocol in order to manage a network. Similarly, 

OpenFlow provides an interface for controlling network devices, and defines a protocol that describes 

how devices can be manipulated by a centralized entity. However, this interface is not bound to a 

specific controller. Any simple programmatic entity with functionality that utilizes the switch API 

provided by OpenFlow can essentially act as a controller. 

 

As a result, we were faced with three alternatives regarding the implementation of our testbed: The 

first option was to use a simple controller application, provided by the OpenFlow community for 

experimental purposes. A second alternative would be to use NOX. Finally, there was the alternative of 

implementing our own custom version of a controller with stripped functionality, enough to expose the 

features of the tested architecture. 

 

Given that the purpose of our testbed environment was not to provide a complete, functional, 
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production quality implementation, but merely to demonstrate a proof-of-concept example for our 

proposed application, it seemed reasonable to opt for the alternative that would help reach the goal 

more efficiently. This ruled out the option of implementing our own controller. Although a custom 

version of a controller would be simple and easily manageable, the trade-off between having a simple, 

to-the-point controller and investing time in order to implement it seemed unfavorable.  

 

NOX appealed as the best option for several reasons. Although its configuration would prove a 

little more complex than a simplified controller, and it probably provided more functionality than what 

we required, using a mature program obviated the need to take care of low level implementation. 

Moreover, the active community alleviated the problem of complexity of configuration and operation. 

Finally, it made sense to provide proof of concept using the most widely used controller. At the time of 

writing of this document, NOX is still the predominant controller for OpenFlow, still undergoing heavy 

development and maturing rapidly. 

 

8.2 Choice of Path Finder 

We were faced with a similar dilemma to that of the choice of controller, regarding the 

implementation of the path finding entity. The purpose of the path finder being a separate entity is to 

provide the ability to apply custom routing algorithms to the architecture. For our testing purposes, a 

trivial routing protocol would suffice. One alternative was to implement our own path finding entity. 

However, NOX provides a default routing application which works in cooperation with the global 

network view information held by NOX, in order to provide basic routing functionality. Thus instead 

of implementing a path finding entity from scratch, we decided to use a customized version of the 

provided NOX routing application. Some tweaking was required, in order to attach the PAchannel 

interface that would enable the communication between the path finder and the administrator, as 

described in chapter 7. 

 

8.3 Test topology  

Our test topology consists of two linux-based openflow switches, ofswitch1 and ofswitch2, the 

NOX controller which runs on the same machine as ofswitch1 and finally the administrator process 

which runs on the same machine as ofswitch2. 
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The two linux boxes have been configured to operate as openflow switches based on the examples 

provided by the NOX/Openflow community [41]. The specific instructions for our environent are 

documented on the project wiki [42]. Both Openflow switches are connected to the controller through 

a secure channel, while the controller is also connected to the administrator through our CA channel. 

A laptop is connected to each openflow switch, acting as the end-host. The final test environment is 

depicted below: 

 

Figure 16: The testing topology. The image illustrates our 2 hosts and our 2 linux boxes. 

The switch icons specifically represent the openflow datapaths. 

 

8.4 Tests 

 

For our basic proof-of-concept experiments, we initially simply needed to check for connectivity 

within the defined OVNs, and isolation from other OVNs. For these purposes we started our 

experimentations with simple ICMP connectivity tests. The end hosts were manually configured. 

ICMP connectivity was tested starting with an abstract description of the while OVN, while a 

description of finer granularity was gradually provided.  

 

The OVN database is initially empty. In this case a ping request from host 1 to host 2 was regarded 

as production network packet. Lacking underlying routing functionality, the packet was dropped after 

being forwarded to NOX from OF1. We then defined a basic OVN on the database, which was enabled 

on the 2 corresponding ports of the switches. The only detail provided at this point was that the OVN 

serves ICMP packets. After the creation of this abstract OVN the ICMP request was matched by the 
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administrator, and invoked the creation of flow entries forwarding the request to the only other port of 

the topology were the OVN was enabled. The request was delivered to host 2 and the reversed process 

was initiated in order to route the reply back to host 1. We closely monitored every small step of this 

process, including the bouncing of the first packet from OF to NOX, from NOX to the administrator 

(CA packet) where it was matched to our OVN, resulting to a request from the administrator to the 

path finder (PA packet), and then back to the administrator which commanded NOX to invoke the 

corresponding flow entries on OF1 and OF2. We confirmed that the fine-granularity entries were 

installed on the switched, and left to expire after a given period. 

 

Moving a step forward towards a more strictly defined OVN, we provided the OVN database with 

specific information regarding the hosts. On top of ICMP traffic, we demanded that the OVN traffic 

originate from the specific hosts‟ addresses. While the exact same functionality was expected, this 

made the definition of our OVN much narrower. Again, the same ping request was sent by host 1 

towards host 2‟s address. This time the administrator had to explicitly match the source/destination IP 

addresses before the packet was identified as OVN traffic. Following the same process, connectivity 

was granted and the ping went through. Finally we experimented with modifying host 2‟s address and 

other OVN properties and verified that a ping to the new address was not successful, since it was not 

covered by the OVN definition. 

 

After restoring the host 2‟s address, a second OVN was defined, enabled on the same ports, this 

time serving TCP traffic. More specifically, this OVN was used for FTP traffic, and identification was 

done by matching the destination port. On host 1, we initiated an FTP connection to the FTP server 

listening on host 2. An initial problem in this scenario was that the source port for the FTP sessions is 

arbitrary, so, while the client-to-server flow will be matched to the OVN, the server-to-client flow 

cannot be matched to the OVN entry, if port restrictions have been defined. The workaround for this 

was to have the administrator pre-establish the reversed flow along the same path that was chosen for 

the client-to-server flow. Thus when the server replies to the client, the flow entries for the returning 

flow has been pre-established. 

 

Similar experimentations were also made for www traffic. 
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8.5 Results and Conclusions 

 

The experiments we conducted confirmed the expected functionality for the specific scenarios that 

we tested. While simple, these tests provided proof of concept that can be generalized to more complex 

topologies and OVN configurations.  

 

As the goal was only to provide a prototype deployment of the architecture, the experiments did 

not involve measurements regarding performance. However, it is expected that the overall network 

performance is not affected by the transparent interception of packets by the administrator process. 

This interception is of course excepted to add some latency for every first packet of a stream, since it is 

not only pushed to the controller but it is in turn handled by the administrator. However this is the only 

performance handicap that we expect to notice. Further performance implications can be evaluated in 

future work. 
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Chapter 9 

Discussion and Future Work 

 

9. Discussion and Future Work 

 

This chapter provides a general discussion and conclusions of our work, and addresses matters 

worth investigating when moving forward with the project. 

9.1 Future work 

 

Due to the limited timeframe within which this work was completed, there are several aspects in 

our design that have not been investigated. However, it is essential to identify these aspects of our 

design that require further study and could constitute topics for future research.  

9.1.1 Flow aggregation  

 

As previously mentioned, an OVN can be viewed as a sum of flows which can be expressed as a 

set of flow entries in different OF switches along the physical network. This definition of an OVN 

implies that as the system scales and more OVNs are created on top of the physical infrastructure, the 

respective flow-tables of the various OF switches become larger in size preventing fast switching 

decisions on the data plane. Additionally maintaining and querying the OVN database becomes a 

costly procedure as the OVN database increases in size to keep track of the mappings between flow 

entries and OVNs. A flow aggregation mechanism should exist, detecting these flow entries that can be 

grouped together and expressed by one, granular flow entry and committing the changes to the OVN 

database and the respective switches' flow tables. However flow aggregation is not a trivial process and 

should cautiously be examined because of the potential conflicts that it entails 

 

9.1.2 Conflict Resolution 

 

A conflict occurs if for two OVNs who have the same port enabled on any switch, a property with 

the same value is added. The proposed architecture introduces a simple conflict detection mechanism 

which ensures that no conflicting flow entries are inserted into the OVN database. However this 

mechanism need not be limited to conflict detection but it could be further expanded to provide some 
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type of conflict resolution. This mechanism will provide the administrator with a set of alternative 

options for expressing a flow entry without causing a conflict. The functionality of the conflict 

resolution mechanism can be seen in the example of a flow entry that causes conflicts on a certain OF 

switch.  In this case, the conflict resolution mechanism will introduce the administrator with a set of 

alternative OF switches that the flow entry could be moved at, in order to avoid conflicting OVN 

definitions. 

 

9.1.3 OVN Database Optimization 

 

Another interesting field for further study concerns the storing of OVN entries in the OVN 

database. The current design keeps two tables namely the OVNEntry and the Properties table. By 

using a relational key between these two we can map OVN entries to their respective properties. 

During an OVN lookup the database is queried in order to determine which OVN a certain packet 

belongs to. The properties (essentially the set of flow entries) that correspond to an OVN are fetched 

from the database and checked against the packet's flow header. Database optimization techniques 

could be examined in order to accelerate the OVN database querying process and  for the query to 

produce more easily parseable data for the administrator. 

 

9.1.4 Security 

 

The Openflow network architecture raises some security issues which are inherited by the proposed 

architecture due to its dependence on the Openflow protocol. The existence of an additional 

virtualization layer and the introduction of new architectural components in our architecture add some 

security issues of their own.  

 

First off, security issues are raised in terms of the communication between the various architectural 

components. The path finder, administrator and controller entities exchange information that is critical 

for the uninterrupted function of the network. The use of secure channels is one way to increase 

security. Authentication between the entities is also possible in order for the entities they are 

communicating with a trusted party. 

 

Another aspect of security regards the access rights for the administering of the OVN database. 
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This include the creation, deletion or modification of an existing OVN. The OVN database contains a 

global (or locally global) view of all the available OVNs in a network. However accessing and altering 

all or part of the information in the OVN database should only be allowed to a specific, restricted 

group of people. User groups and permissions along with authentication should be examined for 

accessing the OVN database.  

 

Additionally, some OVNs might need to be hidden or accessed by a specific group of people. 

Optional security parameters could be added as OVN properties, specifying security features such as 

blocking of IP addresses, authentication for users opting-in, firewall rules and more.  

 

9.1.5 Performance 

 

Similarly to security issues, our Openflow-based architecture inherits all performance issues that 

the Openflow network faces. The network logic in an Openflow network is gathered on a central entity, 

the controller. The flow requests are sent from the network switches to the controller which, in its turn, 

commands the flow creation on the respective switches' flow tables. This process of moving the data 

plane on a centralized entity raises reasonable questions for the network's performance and reliability 

since this type of architecture implies a single point of failure. The Openflow research team claims that 

the controller can handle 10000 flow requests per second. They additionally make the reasonable 

arrogation that computational power nowadays has reached a level that allows for complicated and 

time-consuming processes like packet lookup and forwarding to become less distributed between the 

network elements, thus gathered and executed by one or more entities on behalf of a group of network 

elements. However, these assumptions vary depending on the type  and size of the network and the 

intensity of traffic. 

 

Our architecture inserts additional entities in the Openflow network. The flow requests now are 

further forwarded to the administrator which has to perform a packet lookup in order to determine 

which OVN the packet belongs to. This additional, centralized task increases performance 

considerations.  On top of that, the path request and its calculation by the path-finder entity create an 

additional burden on the overall performance. In a real-scale network facilitating hundreds of research 

experiments and handling production traffic, having one entity responsible for handling the OVN 

lookup, flow creation and path calculation and establishment might seem impossible.  
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 One possible approach would be to try out different topologies depending on the size and needs of 

the network. Instead of completely centralize the network, a locally centralized approach could be 

followed. For example we could have one admin/controller per set of switches. Another way to look at 

the performance and reliability problem of this centralized architecture is to think of the 

controller/administrator as a regular server on the Internet, burdened with the task of serving millions 

of requests per minute. Server reliability and scalability techniques such as clustering, which are 

widely used and deployed  in large data centers can thus be applied to address the single point of 

failure and performance problem that the controller/administrator entity introduces. 

 

The issues of performance and scalability remain very critical enablers for the adoption of these 

type of centralized network architectures and ought to be thoroughly examined and further discussed 

since tackling these problems will deeply affect centralized architectures in general. 

 

9.1.6 QoS 

 

Due to the ongoing development of Openflow, the possible extensions to this work are 

proliferating. At the time of writing of this document there are active discussions in the community 

pending proposals regarding support for QoS mechanisms. For example, it will be possible for the 

controller to manage queues on the Openflow switch, and define queue characteristics such as 

minimum rate. Then the controller will be able to define, within the action of a flow entry, the queue 

that a flow will join. Once supported, these extensions will allow the deployment of different QoS 

schemes on each OVN. This would be extremely useful in scenarios where quality guarantees are 

required for some types of traffic, aggregated in an OVN, and would allow prioritization of OVN with 

regards to resource reservation. 

9.2 Conclusions 

 

This work intended to examine possible ways in which the Openflow architecture can be used to 

implement network virtualization. The work started off by defining an Openflow-based virtual network 

and went further in designing and prototyping an architectural framework for providing network 

virtualization on an Openflow network. However,  there is a much more profound contribution of this 

work than the proposed architecture as described in previous chapters. 
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 First off, this work provides a brief and consistent overview of the Openflow protocol while 

highlighting the interesting and unique features of this technology. Understanding Openflow is the first 

step towards realizing the potential of this technology and its possible uses that are not necessarily 

limited to network virtualization.  

 

Moreover,  it aims to provide insight to the various existing definitions and implementations of 

network virtualization, a valuable contribution, considering that the term has been widely used and put 

in different context, hence often causes confusion. The documentation of this overview of the currently 

existing approaches to network virtualization accelerates the pace at which research towards this 

direction is moving, providing a solid source of information for researchers who wish to engage in 

research activity within this field. 

 

Proposing and designing a bulletproof architecture has not been the intention  of this work. What is 

more important is the attempt to investigate the possibilities of Openflow as a tool for network 

virtualization and to highlight the potential of this technology towards this direction to whomever 

wishes to further deal with the subject. The architecture is designed in a component-based way hence 

can be easily subject to alterations, corrections or improvements. In fact, this is highly encouraged and 

desirable for an architecture to be viable. What is most important is that the reader gains good grasp of 

the process of designing an architecture and the several steps that have to be traversed, revisited and 

skipped in order to reach to a final design.  

 

Finally, one of the main goals of this work was to highlight the points of the Openflow network 

architecture that need re-evaluation and re-thinking. There is no panacea in technology and every 

architecture always leaves room for improvement. Sometimes radical and complete reevaluation is 

needed in order to come up with innovative solutions. For such newly introduced concepts as the one 

described in this work it is more crucial to start investigating and putting pieces together, combining 

the tools available in order to come up with creative ideas rather than reach the perfect, faultless 

architecture. The viability and further expansion of this concept relies on consistently documented 

ideas that will raise the confidence needed within the research community to take up on this subject 

and to shed light on this promising field.  
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